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Abstract—This paper studies an intelligent reflecting sur-
face (IRS)-empowered wireless powered communication network
(WPCN) in Internet of Things (IoT) networks. In particular, a
power station (PS) with multiple antennas uses energy beam-
forming to enable wireless charging to multiple IoT devices, in
the downlink wireless energy transfer (WET) phase; then, during
the uplink wireless information transfer (WIT) phase, these IoT
devices utilise the harvested energy to concurrently transmit their
individual information signal to a multi-antenna access point
(AP), which equips with multi-user decomposition (MUD) tech-
niques to reconstruct the IoT devices’ signal. An IRS is deployed
to improve the energy collection and information transmission
capabilities in the WET and WIT phases, respectively. To examine
the performance of the system under study, We maximize the
sum throughput with the aim of jointly designing the optimal
solutions for the active PS energy beamforming , AP receive
beamforming, passive IRS beamforming, and time scheduling.
Due to the multiple coupled variables, the resulting formulation
is non-convex, and a two-level scheme to solve the problem is
proposed. At the outer level, a one-dimensional (1-D) search
method is applied to find the optimal time scheduling, while at the
inner level, an iterative block coordinate descent (BCD) algorithm
is proposed to design the optimal receive beamforming, energy
beamforming, and IRS phase shifts. In particular, the receive
beamforming part is designed by considering the equivalence
between sum rate maximisation and sum mean square error
(MSE) minimisation, thereby deriving a closed-form solution.
Furthermore, we alternately optimize the energy beamforming
and IRS phase shifts using Lagrange dual transformation (LDT),
quadratic transformation (QT), and alternating direction method
of multipliers (ADMM) methods. Finally, numerical results are
presented to showcase the performance of the proposed solution
and highlight its advantages compared to some typical bench-
mark schemes.

Index Terms—Intelligent reflecting surface (IRS), wireless
powered communication networks (WPCNs), mean square error
(MSE), Lagrange dual transformation (LDT), quadratic trans-
formation (QT), and alternating direction method of multipliers
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I. INTRODUCTION

Advanced information and communications technologies
(ICT) empower the next-generation Internet of Things (IoT)
networks, enabling various types of smart device (SD)
connectivities with higher spectral and energy efficiencies,
and supporting diverse vertical industries, e.g., smart fac-
tory/home/healthcare, mission-critical public-safety networks,
and intelligent transportation [1]. An IoT network consists of
an access point (AP) and multiple SDs, and the AP collects,
analyzes and processes the data from these devices over the
Internet. While these SDs are rapidly proliferating in the
real world, existing IoT networks refuse to support massive
wireless connectivity when they rely on the traditional multiple
access (MA) techniques. The main challenge restricting the
wireless connectivity lies in two aspects, i.e., energy constraint
and information constraint [1].

In most IoT applications, SDs have low energy capacity,
traditionally charged by power sources/batteries with limited
energy capacity, and require regular upkeep to maintain their
lifespan. The cost of this maintenance is considerably high
and sometimes even impossible for the SDs deployed in harsh
environments [2]. On the other hand, current research efforts
are mainly focused on energy-efficiency requirements, while
the issue of energy constraints of the SDs continues to be a
challenge in IoT networks. Given the advances of radio fre-
quency (RF) energy harvesting, the concept of named wireless
powered communication networks (WPCN) is considered as
one of the potential energy-efficient solutions for SDs in IoT
networks [3], [4]. In WPCN, SDs can be powered wirelessly
from a stable power source, i.e., power station (PS), during the
phase of downlink wireless energy transfer (WET), and then
use the collected energy to deliver information to an AP during
the phase of uplink wireless information transfer (WIT) [5].
Due to this transmission structure, the PS in the WPCN can be
regarded as an alternative to the traditional battery equivalent,
which not only effectively increases the energy efficiency of
SDs, but also circumvents expensive maintenance and periodic
replacement costs.

In addition to the energy constraint, information constraints
represent another challenging task for low-power SDs. This
mainly stems from two aspects: the need for more data and
the controllable wireless propagations, both of which aim to
guarantee a sufficiently high data rate for future IoT net-
works. Current techniques, e.g., millimeter-wave (MmWave)



and massive multiple-input multiple-output (massive MIMO),
operate mainly in the high frequency bands and rely on
a large number of RF chains at the AP, respectively, to
achieve high data rate/spectral efficiency [6], [7]. This how-
ever incurs more energy consumption and higher hardware
complexity. In conventional wireless networks, propagation
channels are typically treated as a random and uncontrolled
medium, which requires optimal transceiver strategies, i.e.,
beamforming designs, and power control algorithms [7]. Al-
though these transceiver strategies can overcome the signal
attenuation induced by fading channels, the channels are not
yet reconfigurable, which should be fully exploited in future
IoT networks. To iron out these two issues, a novel concept
has been proposed, namely intelligent reflecting surface (IRS).
The IRS is composed of a large number of passive reflecting
elements/units to match the channel phase of a cascaded link
of AP-IRS-SDs to the phase of the direct link of AP-SDs
by dynamically controlling its reflection coefficients [8]–[10].
Due to their passive nature, the IRS-assisted wireless net-
works are proven to improve energy efficiency and achievable
rate/throughput compared to conventional networks. The IRS
operates in full-duplex (FD) mode and can simultaneously
receive and reflect the energy/information signal.

A. The State-of-Art

The current research endeavours exploit the synergy be-
tween IRS and wireless powered IoT (WP-IoT) networks in
a variety of contexts [11]–[23]. The overview in [11] aimed
to present the performance gains of IRS in spectral efficiency
without sacrificing energy efficiency. In [12]–[14], the IRS-
assisted WPCN was investigated, where the energy harvesting
capability of IoT devices was enhanced by the IRS passively
participating in the downlink WET. In the uplink WIT, with
the aid of IRS, these devices utilised the collected energy for
information delivery in the manners of time-division multi-
ple access (TDMA) [12], frequency-division multiple access
(FDMA) [13], or non-orthogonal multiple access (NOMA)
[14]. In addition, two novel transmission schemes, e.g., time
switching and power splitting, were investigated in [15],
[16]. Specifically, the circuit operation of IRS controller was
supported by the RF harvested energy radiated by the PS,
allowing the downlink WET to be divided into two portions
for energy harvesting at the IRS and IoT devices. The work
in [17] aimed to maximise the system throughput of an IRS-
assisted WP-NOMA network with a co-located hybrid AP (H-
AP). The downlink and uplink IRS passive beam patterns are
attained based on an alternating optimisation (AO) approach,
confirming that both IRS beam patterns are identical to achieve
its optimality. A similar multi-group scenario was reported in
[18], which separated all IoT devices into different groups.
For the uplink WIT, these groups employ the TDMA protocol,
while all IoT devices in a group share one sub-time duration
to use the NOMA protocol. Three IRS beam patterns, i.e., full
dynamic, partial dynamic, and static IRS beamformers, were
considered for the downlink WET and uplink WIT [19], where
a power splitting structure was considered in multiple rectifiers
of the NLEH model to avoid input RF power in the saturated

region; the transmit energy at the H-AP was minimised to
jointly design the time scheduling, H-AP’s transmit power,
power splitting factor, and IRS passive beam patterns. In [20],
the authors evaluated the impact of IRS phase shift error
(PSE) and transceiver hardware impairment (THI) on system
throughput of the IRS-assisted WPCN. By jointly optimising
the PSE, IRS passive beam patterns, and time allocations,
significant benefits can be gained by adjusting he phase shifts
of the IRS elements. In the meantime, the PSE and THI were
shown to have an adverse effect on the system’s throughput
performance. Recently, an IRS-assisted NLEH scheme was
proposed with the help of IRS in the downlink WET so as to
enable the IRS-assisted uplink WIT [21], where the fractional
energy harvesting model was transformed to a subtractive form
to derive IRS beam patterns and time allocations. In [22],
the potential of IRS was unlocked in an full-duplex WPCN
(FD-WPCN), where an H-AP simultaneously radiated energy
signals in downlink WET and received information signal in
uplink WIT. Full dynamic IRS beam pattern was optimally
designed with transmission time allocation, and outperformed
the partially dynamic and static IRS beam patterns, which
mitigated signalling overhead and implementation complexity.
The IRS-assisted FD WPCN was further extended to the
MIMO scenario, and particularly, the weighted sum through-
put was maximised, which was solved by the element-wise
(EW) based algorithm to design the optimal IRS beam patterns
[23]. Several recent state-of-the-art papers have explored the
IRS-assisted WPCN in various contexts [24]–[28]. The work
in [24] investigated a double-IRS-assisted wireless powered
NOMA network to improve the downlink WET and uplink
WIT. In [25], secrecy performances of the IRS-assisted WPCN
in terms of connection outage probability (COP), secrecy
outage probability (SOP) and effective secrecy performance
(ESP), were theoretically analyzed in three different models,
i.e., co-located AP, and two separated PS and AP cases
with different deployments of IRS. In [26], the authors first
proposed an IRS-assisted wireless powered heterogeneous
network (WPHN), containing two types of IoT devices, i.e.,
energy-harvesting devices (EHD) and non-energy-harvesting
devices (NEHD), and utilizing IRS to improve downlink WET
for the EHD and uplink WIT for the EHDs and NEHDs. The
IRS-assisted wireless powered secure mobile edge computing
(WP-SMEC) network was presented in [27] to explore the
trade-off between the WET efficiency, secure computational
offloading and local computing. In [28], a Stackleberg game-
based multiple access scheme has been designed in an IRS-
assisted WPCN, which fits with the case that both downlink
WET and uplink WIT networks belong to different service
suppliers and thus IoT devices need to provide monetary
payment in exchange for the wireless charging of the PS.

Although the aforementioned works focus on the IRS-
assisted WPCN, the multi-antenna AP that employs receive
beamforming to decode the information from multiple devices
at the uplink WIT has not been fully exploited. On the other
hand, it is imperative to exploit the downlink and uplink IRS
beam patterns in the WPCN to demonstrate the advantage of
IRS to enable the energy harvesting and information trans-
mission capabilities. Moreover, there is a paucity of work



that investigates the joint optimisation of energy beamforming,
receive beamforming, as well as downlink and uplink IRS
beam patterns in the IRS-assisted WPCN with multi-antenna
PS and AP.

In this context, this work investigates an IRS-aided WPCN
in which a multi-antenna equipped PS uses energy beamform-
ing to wirelessly charge IoT devices in the downlink WET,
thereby harvesting energy to support their data transmission
in the uplink WIT. In [29], an IRS-assisted WPCN with a
separate energy/information transceiver was considered, where
multiple IoT devices collect energy from a multi-antenna PS
with the help of IRS and then transmit their signals to the AP
wirelessly using the harvested energy. An energy efficiency
(EE) maximization problem was formulated in [29], which
aimed to evaluate the impact of energy consumption on overall
performance and guarantee the quality of service (QoS) of
each IoT device. Note that our work differs from those in the
literature from two aspects. First, the direct link between PS
and IoT devices is completely blocked by obstacles; Second,
IRS only participates in the downlink WET downlink to
support the energy harvesting from PS to IoT devices, while
the IRS has no influence on the uplink WIT. In [30], a PS
provided wireless charging for an AP to support its downlink
WIT with NOMA, and the IRS was deployed to improve the
energy harvesting and information transmission capabilities.
Although this work examined the IRS involvement in WIT and
WET and considered a sum throughput maximization problem,
it is still significantly different from our work. Specifically,
our work presents an IRS-assisted downlink WET and up-
link WIT. In the downlink WET, the IRS assists the PS to
wirelessly charge the IoT devices using energy beamforming.
Then, these devices simultaneously transmit their individual
information to the AP, which uses multi-user decomposition
(MUD) technology to restore the information of each device.
In addition, the work in [30] considered the power constraint
of SIC demodulation and the QoS requirement of each device,
since the NOMA scheme was used in the downlink WIT.
Regarding the optimization algorithms, in [29], the authors
proposed to apply the Dinkelbach’s method to recast the
fractional EE objective function into the subtractive form for
traceability. Then, an AO algorithm was adopted to alternately
co-design the solutions for energy beamforming, time schedul-
ing, power allocation, and IRS phase shifts for downlink WET.
The Lagrange dual method with subgradient method was
considered to iteratively derive the semi-closed-form solutions
for energy beamforming, time scheduling, power allocation
for given IRS phase shifts, which is then numerically solved
by the semidefinite programming (SDP). In [30], the AO
and SCA algorithms was presented to solve the formulated
problem. Compared with the existing studies, e.g., [29] and
[30], the system model and algorithm design in our work
generate unique contributions, the most important of which
are summarised as follows:

1) The considered system model includes two time intervals
or phases, one for downlink WET and the other for
uplink WIT. In the downlink WET phase, the IoT devices
collect the RF energy radiated from the multi-antenna PS,

and then utilise the harvested energy to transmit their
own information in the uplink WIT phase. The multi-
antenna AP employs receive beamforming to decode the
information signal of each device. Unlike [29] and [30],
our work focuses on the sum throughput maximization
problem, where the sum throughput is maximized to
enhance the total network performance, subject to the
energy consumption constraint of each IoT device, time
scheduling, energy beamforming, as well as IRS phase
shifts for downlink WET and uplink WIT. The for-
mulated non-convex problem includes multiple coupled
variables, i.e., energy/received beamforming, IRS phase
shifts, power allocation, and time scheduling.

2) In this work, a two-level method for decomposing the
formulated problem is proposed, which has a novel design
compared to [29] and [30]. For the outer level, it is a
single-variable optimization problem with respect to time
scheduling. By fixing energy/receive beamforming, IRS
phase shifts, and power allocation, we numerically search
for optimal time scheduling using a one-dimensional (1-
D) line method. For the inner level, a block coordinate
descent (BCD) iterative algorithm is applied to opti-
mize the receive beamforming, power allocation, energy
beamforming, and IRS phase shifts in an alternating
manner. In particular, the MSE is minimised accordingly
to derive the closed-form expression for the receive beam-
forming. In addition, the Lagrange dual transformation
(LDT), quadratic transformation (QT), and alternating
direction method of multipliers (ADMM) are proposed
to iteratively design the optimal solutions for energy
beamforming, and power allocation, and IRS phase shifts.

3) This work also provides comprehensive simulation results
to validate the theoretical derivations and performance
gains of the proposed algorithm. Specifically, the nu-
merical searches, i.e., the 1-D and golden methods, can
achieve an identical optimal solution for time scheduling.
The convergence of the proposed algorithm is also effec-
tively verified. In addition, the number of IRS reflecting
element, the transmit power of PS, and the number of PS
and AP, can be increased to enhance the sum throughput
performance. Furthermore, the proposed algorithm has a
significant superiority over the benchmark schemes, and
the results show that the increase of IRS reflecting ele-
ments saves the WET scheduling time without sacrificing
the sum harvested energy.

The remaining part of this paper is organised as follows:
the system model and problem formulation are depicted in
Section II, and the formulated problem is solved in Section
III; numerical results are presented in Section IV to validate
the theoretical derivations, and Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

An IRS-empowered WPCN structure is depicted in Fig. 1,
where a PS, comprise of multiple antennas, utilises energy
beamforming to broadcast RF energy to K IoT devices (i.e.,
Dk, ∀k ∈ {1, ...,K}) in the downlink WET, which then
use harvested energy to support information transmission in



Fig. 1: System model.

Fig. 2: The transmission structure.

the uplink WIT. An AP is equipped with multiple antennas,
aiming to recover data of each device by exploiting the
MUD technique. Meanwhile, an IRS aims to participate
in the downlink WET and uplink WIT so as to bring the
energy harvesting and data transmission performance gains
by generating passive beam patterns. The PS, AP, and
IRS are equipped with NT transmitting antennas and NA
receiving antennas, and NR passive reflecting elements,
respectively. In our work, we mainly focus on developing
optimization strategies suitable for the IRS-assisted WPCN
with multi-antenna PS and AP, and we are interested in the
upper bounds of the sum throughput performance for the
considered system model, for which the perfect channel state
information (CSI) is in general assumed. To address the
imperfect CSI issue of IRS-assisted wireless networks, there
has been channel estimation techniques and CSI uncertainties
or channel estimation errors modelled in the existing works
[31]–[34]. As expected, the channel estimation techniques
and CSI uncertainties or channel estimation errors will lead
to sum throughput performance degradation, which can be
tackled by using robust resource allocations for active transmit
beamforming and IRS reflecting coefficients. We assumes
block-fading, e.g., the channel remains static within one time
block but may change at the next time block. The channel
coefficients for PS-Dk, PS-IRS, IRS-Dk, Dk-AP, Dk-IRS,
and IRS-AP links are represented by gd,k ∈ CNT×1,
G0 ∈ CNR×NT , gr,k ∈ CNR×1, hd,k ∈ CNA×1,
hk ∈ CNR×1, and Hr ∈ CNA×NR , respectively. As
shown in Fig. 2, we denote the whole time duration as
T , where the IoT devices collect energy at the downlink
WET time period of τ0 ∈ [0, T ], and they simultaneously
transmit information to the AP at the uplink WIT time slot

of T − τ0. Moreover, the IRS passive reflecting coefficients
for downlink WET and uplink WIT are denoted by Θm =
diag [θm,1, ..., θm,NR ] , ∀m ∈ {0, 1}, ∀n ∈ {1, ..., NR},
where each element θm,n = βm,n exp(jαm,n) is the
associated reflecting coefficient that is composed of amplitude
βm,n ∈ [0, 1] and phase αm,n ∈ [0, 2π).1 Denote w ∈ CNT×1
as the coefficients for energy beamforming by the PS, which
satisfies |w|2 = 1. At the downlink WET time duration of τ0,
the harvested energy at Dk, ∀k ∈ {1, ...,K} is given by

Ek = τ0 min
(
ηkP0

∣∣(gHr,kΘ0G0 + gHd,k
)
w
∣∣2 , Ps) , (1)

where ηk ∈ (0, 1], ∀k ∈ {1, ...,K} is the energy harvesting
efficiency in the linear region; Ps represents the saturation
power, and the harvested power will not increase beyond this
threshold. Equation (1) has two terms, where the first one fol-
lows the LEH model with an energy conversion efficiency ηk
to approximately linearise the practical non-linear harvester;
the second term is a saturated threshold of the harvested power,
which means that the harvested power first linearly increases
in terms of the received power as seen in the first term of
(1), and then gradually approaches the saturated threshold Ps
denoted by the second term in (1). Suppose that the harvested
power at each device does not exceed the threshold Ps. Then,
at the uplink WIT time period of T − τ0, the received signal
at the AP is given by

yUL =

K∑
k=1

√
pk (HrΘ1hk + hd,k)xULk + n, (2)

where pk = Ek
T−τ0 and xULk ∈ C are the transmit power and

symbol of Dk, respectively; n is the noise vector at the AP.
Here, we consider the MUD technique to recover each IoT
devices signal, where F ∈ CNA×K = [f1, ..., fK ] is adopted,
and fk ∈ CNA×1 is denoted by the k-th column of F for
recovering of Dk. Via MUD, the signal of Dk decoded by the
AP can be expressed as

x̃ULk = fHk yUL

= fHk

 K∑
j=1

√
pj (HrΘ1hj + hd,j)x

UL
j + n

 . (3)

Thus, the individual throughput at the AP decoding the in-
formation from Dk is given at (4) on the top of the next
page, where σ2 is the noise power of the AP. We proceed
to maximise the sum throughput, with the constraints of IoT
device’s transmit power, IRS phase shifts, energy beamfoming
of PS, and time allocation. Thus, this problem is formulated
as (5) on the top of the next page, where Θ = [Θ0,Θ1],
and p = [p1, ..., pK ]. Problem (5) is non-convex due to its
objective function (5a), as well as constraints (5b) and (5c),
which cannot be solved directly.

1In our work, the amplitude is typically set to be one, which aims to
maximize the reflected signal. Hence, the IRS reflecting coefficients can be
written as |θm,n| = βm,n = 1.



Rk=(T−τ0) log

(
1+

pk
∣∣fHk (HrΘ1hk+hd,k)

∣∣2∑
j 6=k pj

∣∣fHk (HrΘ1hj+hd,j)
∣∣2+σ2fHk fk

)
. (4)

max
w,F,Θ,p,τ0

K∑
k=1

(T − τ0) log

(
1 +

pk
∣∣fHk (HrΘ1hk + hd,k)

∣∣2∑
j 6=k pj

∣∣fHk (HrΘ1hj + hd,j)
∣∣2 + σ2fHk fk

)
, (5a)

s.t. (T − τ0)pk ≤ τ0ηkP0

∣∣(gHr,kΘ0G0 + gHd,k
)
w
∣∣2 , ∀k ∈ {1, ...,K} , (5b)

|θm,n| = 1, ∀m ∈ {0, 1}, ∀n ∈ {1, ..., NR}, (5c)
0 ≤ τ0 ≤ T, (5d)

|w|2 ≤ 1. (5e)

III. OPTIMAL SOLUTION OF PROBLEM (5)
To find the optimal solutions for energy beamforming w,

transmit power of IoT devices p, receive beamforming F at
the AP, IRS phase shifts θ, and time scheduling τ0, first, we
perform the following mathematical manipulations:

t0,k =
∣∣(gHr,kΘ0G0 + gd,k

)
w
∣∣2 =

∣∣(θH0 Ak + gHd,k
)
w
∣∣2 ,
(6a)

t1,k,j =
∣∣fHk (HrΘ1hj + hd,j)

∣∣2 =
∣∣fHk (Bjθ1 + hd,j)

∣∣2 ,
(6b)

where θ = {θm}1m=0, θm = [θm,1, ..., θm,N ]
T , Ak =

diag
(
gHr,k

)
G0, and Bk = Hrdiag (hk). With (6a) and (6b),

problem (5) is equivalent to

max
w,F,θ,p,τ0

(T − τ0)

K∑
k=1

log

(
1 +

pkt1,k,k∑
j 6=k pjt1,k,j + σ2fHk fk

)
,

(7a)
s.t. (T − τ0)pk ≤ τ0ηkP0t0,k, ∀k ∈ {1, ...,K}, (7b)

(5c), (5d), (5e). (7c)

To solve (7), we propose a two-level method. Specifically, we
first fix w, p, F, and θ to optimize the transmission time
scheduling τ0, where its optimal solution can be numerically
searched via the 1-D line method. In the following, we solve
the inner level problem for a given τ0, by applying a BCD
iterative algorithm to alternately design F, w, p, and θ.

A. Optimal Solution of F

In this subsection, we fix w, θ, and p to optimize F. Denote
dk = Bkθ1 + hd,k, and (7) is written in terms of F, as

max
F

K∑
k=1

log

(
1 +

pk
∣∣fHk dk

∣∣2∑
j 6=k pj

∣∣fHk dj
∣∣2 + σ2fHk fk

)
. (8)

The closed-form solution for fk, ∀k ∈ {1, ...,K}, is provided
in the following theorem,

Theorem 1: For given w, θ, and p, the optimal solution of
fk is given by

f∗k =

 K∑
j=1

pjdjd
H
j + σ2INA×NA

−1√pkdk. (9)

Proof: Note that (8) is equivalent to the individual
throughput maximization with respect to F due to the inde-
pendence of Rk in (4) with respect to fk. Thus, (8) is further
written as

max
F

log

(
1 +

pk
∣∣fHk dk

∣∣2∑
j 6=k pj

∣∣fHk dj
∣∣2 + σ2fHk fk

)
. (10)

Next, the maximization of (10) is equivalent to the minimiza-
tion of MSE, as

min
F

MSEk = E
(
x̂ULk −xULk

)2
= E

xULk −fk

 K∑
j=1

√
pjdjxj+n

2

. (11)

As the transmit-symbol guarantees that E
((
xULk

)2)
= 1 and

E
(
xULk xULj

)
= 0, ∀j 6= k, (11) is further expanded as

min
F

MSEk=1−2
√
pkf

H
k dk+

fHk

K∑
j=1

√
pjdj

2

+σ2fHk fk.

(12)

Considering the first-order derivative of (12) with respect to
fk and setting it to zero, yields

∂MSE
∂fk

= 0⇒

 K∑
j=1

pjdjd
H
j + σ2INA×NA

 fk =
√
pkdk

⇒ f∗k =

 K∑
j=1

pjdjd
H
j + σ2INA×NA

−1√pkdk,
(13)

which completes the proof of Theorem 1.



B. Optimal Solution of θ1
Next, we fix w, θ0, p, and F, to optimize θ1. To proceed,

problem (7) is expressed with θ1, as

max
θ1

K∑
k=1

log

(
1+

pk
∣∣fHk (Bkθ1+hd,k)

∣∣2∑
j 6=k pj

∣∣fHk (Bjθ1+hd,j)
∣∣2+σ2fHk fk

)
,

(14a)
s.t. |θ1,n| = 1, ∀n ∈ {1, ..., NR}. (14b)

Due to the fractional property of (14a) and non-convex
unit-modulus constraint (14b), (14) is a non-convex problem
and cannot be solved directly. To solve it, we propose to
utilise the LDT. Denote Xk = pk

∣∣fHk (Bkθ1 + hd,k)
∣∣2 and

Yk =
∑
j 6=k pj

∣∣fHk (Bjθ1 + hd,j)
∣∣2 + σ2fHk fk, problem (14)

is equivalent to

max
θ1

f0(θ1, r)=

K∑
k=1

log (1+rk)−
K∑
k=1

rk+

K∑
k=1

(1+rk)Xk

Xk+Yk
,

s.t. (14b), (15)

where r = [r1, ..., rK ]
T is an auxiliary vector introduced by

the LDT. Setting ∂f0
∂rk

= 0, the optimal rk is derived for given
θ1 as

r∗k =
Xk

Yk
, ∀k ∈ {1, ...,K}. (16)

For given rk, (15) is further modified as

max
θ1

K∑
k=1

(1 + rk)pk
∣∣fHk (Bkθ1 + hd,k)

∣∣2∑K
j=1 pj

∣∣fHk (Bjθ1 + hd,j)
∣∣2 + σ2fHk fk

s.t. (14b). (17)

Problem (17) is still intractable due to the sum of fractional
objective functions. As such, QT is utilised, which aims to
recast the sum in (17) into a subtractive form by introducing
an auxiliary vector ξ = [ξ1, ..., ξK ]

T . With b̃k,j = fHk Bj , and
b̂k,j = fHk hd,j , problem (17) is recast as

max
θ1,ξ

K∑
k=1

2 [(1 + rk)pk]
1
2 <
{

conj (ξk) b̃k,kθ1 + conj (ξk) b̂k,k

}

− |ξk|2
 K∑
j=1

pj

∣∣∣b̃k,jθ1 + b̂k,j

∣∣∣2 + σ2fHk fk

 ,

s.t. (14b). (18)

Problem (18) is still non-convex due to the coupled variables
θ1 and ξ, which can be solved in an alternated manner to
iteratively update these two variables. First, we fix θ1 and then
use the Lagrange dual method to derive the optimal solution
of ξ as

ξ∗k =
[(1 + rk)pk]

1
2 (b̃k,kθ1 + b̂k,k)∑K

j=1 pj

∣∣∣b̃k,jθ1 + b̂k,j

∣∣∣2 + σ2fHk fk

. (19)

Then, (18) is reformulated into the following problem for given
ξk, as

min
θ1

θH1 Ω1θ1 − 2<
{
θH1 γ1

}
s.t. |θ1,n| = 1, ∀n ∈ {1, ..., NR}. (20)

where

Ω1 =

 K∑
k=1

ξk

K∑
j=1

b̃k,jb̃
H
k,j

 ,

γ1 =

K∑
k=1

2 [(1 + rk) pk]
1
2 ξkb̃

H
k,k −

K∑
k=1

|ξk|2
K∑
j=1

pj b̂k,jb̃
H
k,j .

In (20), the constant term in (20) has been omitted for simiplic-
ity. Non-convexity of the unit-modulus constraint leads to the
intractability of problem (20). In order to tackle (20), ADMM
is applied to derive the closed-form solution of θ1 iteratively.
To proceed, we first introduce a new vector % ∈ CN×1 into
(20), guaranteeing % = θ1, which is further modified as

min
θ1,%

%HΩ1%− 2<
{
%Hγ1

}
, (21a)

s.t. |θ1,n| = 1, ∀n ∈ {1, ..., NR}, (21b)
% = θ1. (21c)

Consequently, the augmented Lagrange dual function of (21)
is applied as

L (%,θ1,χ) = %HΩ1%− 2<
{
%Hγ1

}
−<

{
χH (%− θ1)

}
+
ψ

2
‖%− θ1‖2 , (22)

where χ ∈ CN×1 and ψ > 0 are the dual vector for constraint
(21c) and the penalty factor, respectively. In the following, we
proceed to iteratively update %, θ1, and χ. Denote %(i), θ(i)1 ,
and χ(i) as the feasible solutions at the i-th iteration.

Update %(i+1): The following sub-problem is explored to
update %(i+1),

%(i+1) = arg min
%
L
(
%,θ

(i)
1 ,χ(i)

)
. (23)

To solve (23), we set the first-order derivative of (23) to
zero, as

2Ω1%
(i+1) − 2γ1 − χ(i) − ψ

(
θ
(i)
1 − %(i+1)

)
= 0. (24)

With several mathematical manipulations, we have,

%(i+1) = (ψIN + 2Ω1)
−1
(

2γ1 + ψθ
(i)
1 + χ(i)

)
. (25)

Update θ(i+1)
1 : We consider the following sub-problem to

update θ(i+1)
1 ,

θ
(i+1)
1 = arg min

θ1
L
(
%(i+1),θ1,χ

(i)
)
, (26)

which can be equivalently reformulated as

min
θ1

∥∥∥∥θ1 − (%(i+1) − 1

ψ
χ(i)

)∥∥∥∥2 , s.t. (21b). (27)

As such, the closed-form solution of (27) is derived as

θ
(i+1)
1 [n]=


(%(i+1)−1

ψχ
(i))[n]

|(%(i+1)−1
ψχ

(i))[n]| , if
(
%(i+1) − 1

ψχ
(i)
)

[n] 6= 0,

θ
(i)
1 [n], otherwise,

(28)

where (∗) [n] denotes the n-th entry of (∗).



Update χ(i): The following equality is utilised to update χ,

χ(i+1) = χ(i) − ψ
(
%(i+1) − θ(i+1)

1

)
. (29)

Substituting (24) into (29) and with some simple manipu-
lations, (29) is equivalent to

χ(i+1) = 2
(
Ω1%

(i+1) − γ1
)
. (30)

The following lemma is presented for the convergence of the
ADMM algorithm,

Lemma 1: The penalty factor ψ satisfies the following
condition to guarantee convergence of the ADMM algorithm,

ψINR −Ω1 � 0. (31)

Proof: First, we rewrite (25) as

χ(i) + ψθ
(i)
1 = (ψIN + 2Ω1)%(i+1) − 2γ1, (32)

which is plugged into (29), leading to

χ(i+1) = χ(i) + ψθ
(i)
1 − ψ%(i+1)

= (ψIN + 2Ω1)%(i+1) − 2γ1 − ψ%(i+1)

= 2
(
Ω1%

(i+1) − γ1
)
. (33)

Via (33), χ can be written as a function of %,

χ = 2 (Ω1%− γ1) . (34)

Substitute (34) into (22), we obtain (35) on the top of the next
page. It can be seen from (35) that the ADMM procedures
(23), (26), and (29) are equivalent to the following coordinate
ascent problems,

%(i+1) = arg min
%
L̃0

(
%, θ̃

(i)
0,m

)
, (36a)

θ̃
(i+1)
0,m = arg min

θ̃0,m

L̃0

(
%(i+1), θ̃0,m

)
, (36b)

which can ensure convergence of the ADMM algorithm.
Based on the aforementioned derivations, we summarise

the detailed steps of the proposed ADMM in Algorithm 1.
Its convergence has been widely investigated in the existing
works [10], [35], [36].

Algorithm 1: The proposed algorithm to solve (14).

1) Initialisation: iteration index i, initial points r(0), ξ(0),
%(0), θ(0)1 , and χ(0).

2) Set the penalty factor ψ = υ‖Ω1‖2, where υ ≥ 1 denotes
the minimum integer to guarantee (31) in Lemma 1.

3) Repeat: at the i-th iteration
a) Update r(i+1) via (16).
b) Update ξ(i+1) via (19).
c) Update %(i+1) via (25).
d) Update θ(i+1)

1 via (28).
e) Update χ(i+1) via (30).
f) Set i← i+ 1 until convergence.

4) Collect the optimal solutions, θ∗1 , ξ∗ and r∗.

C. Optimal Solution of p, w, and θ0
In this subsection, we fix θ1, F, and τ0 to optimise p, w, and

θ0. First, it is readily observed from (14a) that it monotonically
increases in terms of pk. As such, the optimal solution of pk
can be obtained when (7b) holds the equality,

p∗k =
τ0ηkP0

∣∣∣(θH0 Ak + gHd,k

)
w
∣∣∣2

T − τ0
. (37)

Substituting (37) into (14a), and denoting t1,j =∣∣fHk (Bjθ1 + hd,j)
∣∣2 , ∀k, j ∈ [1,K], k 6= j, we reformulate

the optimization problem (7), in terms of θ0, as

max
θ0,w

K∑
k=1

log

1+
Sk

∣∣∣(θH0 Ak+gHd,k

)
w
∣∣∣2∑

j 6=k Sj

∣∣∣(θH0 Aj+gHd,j

)
w
∣∣∣2+σ2fHk fk

,
(38a)

s.t. |θ0,n| = 1, ∀n ∈ {1, ..., NR}, , (38b)
(5e). (38c)

where Sj =
τ0ηjP0t1,j
T−τ0 . Via the LDT as in Section III-B,

problem (14) can be transformed in terms of w, and θ0 as

max
θ1,w

K∑
k=1

(1 + r̃k)Sk

∣∣∣(θH0 Ak + gHd,k

)
w
∣∣∣2∑K

j=1 Sj

∣∣∣(θH0 Aj + gHd,j

)
w
∣∣∣2 + σ2fHk fk

s.t. (5e), |θ0,n| = 1, ∀n ∈ {1, ..., NR}. (39)

Similar to Section III-B, the optimal r̃k can be derived for
given w and θ0, which is given by

r̃∗k =
Sk

∣∣∣(θH0 Ak + gHd,k

)
w
∣∣∣2∑

j 6=k Sj

∣∣∣(θH0 Aj + gHd,j

)
w
∣∣∣2 + σ2fHk fk

. (40)

We proceed to tackle problem (39), which aims to alternately
optimise w, and θ0. Now, we first fix θ0 to optimise w. Specif-
ically, we introduce an auxiliary variable ξ̃k, ∀k ∈ {1, ...,K},
and QT is adopted to recast the sum of fractional objective
functions in problem (39) into the subtractive form such that
(39) is modified as

max
w,ξ̃k

f1(w, ξ̃k)=

K∑
k=1

2 [(1+r̃k)Sk]
1
2 <
{

conj
(
ξ̃k

)
θH0 Akw

}
+ 2 [(1+r̃k)Sk]

1
2 <
{

conj
(
ξ̃k

)
gHd,kw

}
−
∣∣∣ξ̃k∣∣∣2 K∑

j=1

Sj
∣∣(θH0 Aj+gHd,j

)
w
∣∣2−∣∣∣ξ̃k∣∣∣2 σ2fHk fk,

s.t. (5e). (41)

To proceed, we fix w to derive the optimal ξ̃k, which can be
derived in closed-form via setting ∂f1

∂ξ̃k
= 0, as

ξ̃∗k =
[(1 + r̃k)Sk]

1
2

[(
θH0 Ak + gHd,k

)
w
]

∑K
j=1 Sj

∣∣∣(θH0 Aj + gHd,j

)
w
∣∣∣2 + σ2fHk fk

. (42)



L (%,θ1) = %HΩ1%− 2<
{
%Hγ1

}
−<

{
2 (Ω1%− γ1)

H
(%− θ1)

}
+
ψ

2
‖%− θ1‖2

= %HΩ1%− 2<
{
%Hγ1

}
+
ψ

2
%H%− ψ<

{
θH1 %

}
+
ψ

2
θH1 θ1 − 2<

{
%HΩ1%

}
+ 2<

{
%HΩ1θ1

}
+ 2<

{
γH1 %

}
− 2<

{
γH1 θ1

}
= %

(
ψ

2
IN −Ω1

)
%+

ψ

2
θH1 θ1 −<

{
ψθH1 %+ 2%HΩ1θ1 − 2γH1 θ1

}
. (35)

Then, we fix ξ̃k and reformulate problem (41) by manipulating
f1 with respect to w as

min
w

wHΩ2w − 2<
{
g̃Hw

}
,

s.t. (5e), (43)

where

Ω2 =
K∑
k=1

∣∣∣ξ̃k∣∣∣2 K∑
j=1

Sjgjg
H
j ,

g̃H =

K∑
k=1

[(1 + r̃k)Sk]
1
2 gk,

gHk = θH0 Ak + gHd,k.

To solve (41), the Lagrange multiplier method is then applied
to derive the optimal energy beamforming w as

w∗ = (Ω2 + λINT×NT )
−1

g̃H , (44)

where λ ≥ 0 is the dual multiplier with respect to (5e), and
its optimal solution can be obtained by bisection search.

Then, we fix w to optimise θ0. By introducing an auxiliary
variable ξ̂k, we apply the QT to recast the sum in (39) to
its subtractive counterpart such that (39) can be written with
respect to θ0 as

max
θ0,ξ̂k

f2(θ0, ξ̂k)=

K∑
k=1

2 [(1+r̃k)Sk]
1
2 <
{

conj
(
ξ̂k

)
θH0 Akw

}
+ 2 [(1 + r̃k)Sk]

1
2 <
{

conj
(
ξ̂k

)
gHd,kw

}
−
∣∣∣ξ̂k∣∣∣2 K∑

j=1

Sj
∣∣(θH0 Aj+gHd,j

)
w
∣∣2−∣∣∣ξ̂k∣∣∣2 σ2fHk fk,

s.t. (38b). (45)

Given θ0, the optimal solution of ξ̂k can be derived by the
Lagrange multiplier method, as

ξ̂∗k =
[(1 + rk)Sk]

1
2
(
θH0 ak + ĝk

)∑K
j=1 Sj

∣∣θH0 aj + ĝHj
∣∣2 + σ2fHk fk

(46)

where aj = Ajw, and ĝj = gHd,jw, ∀j ∈ [1,K]. For given
ξ̂k, (45) can be reformulated with respect to θ0 as

min
θ0

θH0 Ω0θ0 − 2<
{
θH0 γ0

}
s.t. (38b), (47)
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Fig. 3: Comparison between 1-D exhaustive method search and
golden search.

where

Ω0 =

K∑
k=1

∣∣∣ξ̃k∣∣∣2 K∑
j=1

Sjajaj ,

γ0 =

K∑
k=1

[(1 + rk)Sk]
1
2

(
conj

(
ξ̃k

)
ak

)
−

K∑
k=1

∣∣∣ξ̃k∣∣∣2 K∑
j=1

Sjconj(ĝj)aj .

The non-convex unit-modulus constraint (38b) leads to in-
tractability of problem (47). To solve it, we employ the
ADMM method to derive the optimal solution of θ0 in an
iterative manner, and its procedure has been demonstrated in
Algorithm 1 of Section III-B and is not repeated here.

D. Overall Algorithm

From the theoretical derivations in Section III-A - III-C, this
subsection summarises the overall procedure of the proposed
BCD algorithm in Algorithm 2.

Algorithm 2: Overall algorithm to solve problem (7).

1) Fix τ0 to iteratively derive the optimal solutions of F, p,
w, and θm, ∀m ∈ {0, 1}.

a) Initialisation: iteration index l, initial points p(0),
w(0), θ(0)m , ∀m ∈ {0, 1}.

b) Repeat: at the l-th iteration
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Fig. 4: Convergence performance of Algorithm 2.

i) Fix p(l), w(l), and θ(l)m to update F(l+1) via (13).
ii) Fix F(l+1), p(l), w(l), and θ(l)0 to update θ(l+1)

1

via Algorithm 1.
iii) Fix F(l+1), and θ(l+1)

1 to update p(l+1), w(l+1),
and θ(l+1)

1 via (37), (44), and solving (47) with
the ADMM framework. This step is similar to
Algorithm 1.

iv) Set i← i+ 1 until convergence.
2) Update τ0 by the 1-D line method, i.e., golden search

until obtaining its optimal solution, i.e., τ∗0 .
3) Collect the optimal solutions, F∗, p∗, w∗, and
θ∗m, ∀m ∈ {0, 1}.

Now, let us characterize the convergence property of Algorithm
2 by the following lemma:

Lemma 2: The sum throughput yields a monotonically
non-decreasing behaviour over iteration, and the converged
solution is a stationary point when Algorithm 2 is guaranteed
to converge.

Proof: Please see Appendix V-A.
Then, we proceed to discuss the computational computational
complexity of the proposed algorithm (i.e., Algorithm
2). We set the maximum iteration numbers to guarantee
the convergence of the ADMM algorithm for optimizing
the downlink WET/uplink WIT IRS phase shifts, the
BCD algorithm, and one-dimensional (1-D) line search
(i.e., golden search) as IADMM,D/U , IBCD, and IG,
respectively. First, the computational complexity of
received beamforming is given by O

(
KN3

A

)
. Next, the

computational complexity of the energy beamforming
is given by O

(
N2
T

)
. Then, the complexity to optimize

the downlink WET/uplink WIT IRS phase shifts is
O
(
I(ADMM, q)(N2

R +KNR)
)
, ∀q = {D,U}. Thus,

the computational complexity to implement Algorithm 2
is O

{
IGIBCD[KN3

A +N2
T + IADMM,D(N2

R +KNR)
+IADMM,U (N2

R +KNR)]
}

.

IV. NUMERICAL RESULTS

Here, we provide the numerical results to validate the the-
oretical derivations presented in Section III, and examine the
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Fig. 5: Sum throughput versus number of IRS reflecting elements
NR.

performance of the system under investigation. In simulations,
a three-dimensional (3-D) coordinate is employed to depict the
node deployment, in which the coordinates of PS, AP, and IRS
are set to (−15, 0, 0), (15, 0, 0), and (−2, 6, 0), respectively.
The IoT devices are randomly distributed at an x− z circular
area with centre (0, 0) and radius 5 metres. All IRS-related
and direct channel coefficients are modelled as Rician fading
and Rayleigh fading, respectively [15].

G0 =
√
PLq

[√
K1

K1 + 1
ḠLOS

0 +

√
1

K1 + 1
ḠNLOS

0

]
,

gr,k =
√
PLq

[√
K1

K1 + 1
ḡLOS
r,k +

√
1

K1 + 1
ḡNLOS
r,k

]
,

hk = gTr,k,

Hr =
√
PLq

[√
K1

K1 + 1
H̄LOS
r +

√
1

K1 + 1
H̄NLOS
r

]
,

gd,k =
√
PLqḡd,k, hd,k =

√
PLqh̄d,k, (48)

where ḠLOS
0 , ḡLOS

r,k , H̄LOS
r denote the line-of-sight (LoS)

components of the corresponding channels; ḠNLOS
0 , ḡNLOS

r,k ,
H̄NLOS
r are the non-line-of-sight (NLOS) components of the

corresponding channels; ḡd,k and h̄d,k are zero-mean cir-
cularly symmetric independent and identically distributed
Gaussian random variables. Following our previous works
[12], [15], [20], the path-loss model is denoted as PLq =

R0

(
dq
d0

)εq
, in which R0 = −30 dBm, and d0 =

1 metre is the reference distance; dq and εq , ∀q ∈
[PS2IRS, IRS2D,PS2D, IRS2AP,D2AP ] are the dis-
tance and path-loss exponent of the PS-IRS, IRS-Dk, PS-Dk,
IRS-AP, and Dk-AP links, respectively. The other parameters
are set to: NT = 6, NR = 30, NA = 5, K = 5,
σ2 = −110 dBm, T = 1 second, εPS2IRS = εIRS2AP = 2,
εIRS2D = 2.5, and εPS2D = εD2AP = 3.5.

First, we verify the correctness of the 1-D exhaustive search
over τ0 in Fig. 3 in comparison to the golden section search,
which shows the sum throughput versus the time scheduling
τ0 with both search methods. As seen in this figure, the 1-
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D exhaustive search demonstrates a concave behaviour with
respect to τ0, and achieves an identical maximum point to that
of the golden search method. This highlights the effectiveness
of the golden search method due to its low-complexity. As
indicated by Fig. 4, the proposed algorithm shows a mono-
tonically increasing behaviour and then converges roughly
at the fourth or fifth iteration. This verifies the convergence
property of the proposed LDT, QT, and ADMM approaches for
alternately performing energy beamforming, power allocation,
IRS passive beam patterns, and received beamforming.

Then, we provide the following schemes for comparison
with the same setup to highlight the proposed scheme.

1) Fixed time scheduling: Energy beamforming, power allo-
cation, IRS phase shifts, receive beamforming are opti-
mally designed with fixed time scheduling τ0 = 0.5.

2) Random phase shifts: Each element of IRS phase shift
matrix is randomly generated at [0, 2π].

3) Without IRS: The system model is reduced to a WPCN
without IRS’s participation in WET and WIT, where
energy beamforming, power allocation, and receive beam-
forming are jointly optimised by the proposed algorithm.

4) Majorization-Minimization (MM)-based Algorithm [12]:
The MM-based algorithm is employed to derived the
semi-closed-form solution of the downlink WET and
uplink WIT IRS phase shifts.

5) Imperfect CSI case: Here, the cascaded CSIs of the
downlink WET and uplink WIT are considered to be
imperfectly available. The actual CSIs can be modelled
as Ak = Āk + ∆Ak

and Bk = B̄k + ∆Bk , where Āk

and B̄k are the estimated cascaded CSI for downlink
WET and downlink WIT, respectively [32]. Also, ∆Ak

and ∆Bk denote the corresponding estimation errors,
satisfying ‖∆Ak

‖F ≤ δDL,k and ‖∆Bk‖F ≤ δUL,k,
where δDL,k, and δUL,k denote the CSI uncertainty bound
for the downlink WET and uplink WIT, respectively, and
we assume that δDL,k = δUL,k = δ.

The sum throughput against the number of IRS reflecting el-
ements NR with different numbers of IoT devices, i.e., K = 5
and K = 10 is shown in Fig. 5. It can be indicated by this
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result that the IRS-based schemes, i.e., the proposed scheme,
the scheme with fixed time scheduling τ0 = 0.5, and the
random phase shift scheme, exhibit a monotonically increasing
trend, significantly outperforming the scheme without IRS. In
addition, the proposed scheme has a better sum throughput
performance than the fixed time scheduling, the random phase
shift, and no IRS counterparts, which highlights the positive
impact of the IRS on the uplink WIT in comparison to
these benchmark schemes. The advantage of optimal time
scheduling design, optimal IRS phase shift design, and IRS
employment is manifested by the sum rate performance gain
of the proposed scheme. In addition, more IoT devices can
bring a larger sum throughput gain, which shows the positive
impact of IRS on the uplink WIT, stemming from the fact
that more devices utilizing the harvested energy are involved
in WIT.

Fig. 6 illustrates the impact of PS’s transmit power P0 on the
sum throughput, showing a monotonic growth with respect to
P0 for all schemes. This emphasises that a higher power con-
sumed by the PS can enhance the energy harvesting capability
at IoT devices to better support information delivery during
WIT, which further confirms the positive impact of IRS on the
uplink WIT, especially in the large power region. Additionally,
the proposed scheme outperforms its counterparts with fixed
time scheduling τ0 and with random phase shifts, respectively.
This highlights a positive impact of optimal time scheduling
design and optimal IRS phase shift design on sum throughput
performance. Moreover, the employment of IRS is important
in the proposed scheme, leading to a significant gain over that
without IRS with respect to sum throughput.

The impact of the number of transmit and receiving anten-
nas of the PS and AP NT and NA on the sum throughput
performance is examined in Fig. 7 and Fig. 8, respectively.
In Fig. 7, the proposed scheme has a performance gain over
the other benchmark schemes, which monotonically increases
with NT . This result reveals the fact that a larger number of
transmit antennas, i.e., NT , can increase the power consump-
tion at the PS via energy beamforming to enhance energy and
further information receptions at the IoT devices and the AP,
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respectively. Meanwhile, the IRS brings a further performance
gain on sum throughput performance, especially when NT
is large, which verifies the positive impact of the IRS on
improving the uplink WIT efficiency. Fig. 8 illustrates the sum
throughput performance with respect to different numbers of
AP’s antennas NA, and all schemes exhibit a monotonically
growing behaviour in terms of NA. This is due to the fact that
increasing NA enables better utilization of the spatial diver-
sity/multiplexing gain to decode received signals from multiple
IoT devices. Larger NA can better enable the uplink WIT
impact of IRS on the sum throughput performance. Similarly,
the proposed scheme has a better throughput performance than
all the other benchmark schemes, demonstrating the advantage
of optimal time scheduling and IRS phase shift designs as well
as the employment of IRS.

Moreover, the impact of IRS deployment on the sum
throughput is evaluated in Fig. 9, where we consider a scenario
that the x-coordinate of IRS, XIRS , varies from −10 to 10.
The proposed scheme achieves the nearly same performance
as the existing MM-based algorithm, which confirms its effec-
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tiveness.. As indicated, all IRS-based schemes first exhibit an
slightly increasing behaviour with XIRS and then significantly
decline roughly after XIRS ≥ −2, which significantly outper-
forms no IRS counterpart (remaining constant with XIRS).
This result shows the importance of IRS’s position in achieving
the maximum sum throughput performance, which also shows
that this positive impact of the IRS is maximized in the uplink
WIT compared to the scheme without IRS.

In Fig. 10 and Fig. 11, the positive impact of IRS on
downlink WET is examined to confirm its importance as well
as the optimal design of the IRS beampatterns, and the time
scheduling. In Fig. 10, the optimal WET time scheduling τ0
versus NR is evaluated with K = 5 and K = 10. As observed,
the proposed scheme exhibits a declining behaviour as NR
increases. It consumes significantly less WET time duration
than that without IRS, which is not affected by NR. This mit-
igates the total energy consumed at the AP, and allows longer
time duration for uplink WIT to enhance the sum throughput.
On the other hand, Fig. 11 characterises the sum harvested
energy against NR with K = 5 and K = 10. Particularly, the
sum harvested energy demonstrates a monotonically growing
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trend with NR, and the proposed scheme can acquire more
harvested energy than the other benchmark schemes, which
highlights the fact that the improvement of energy harvesting
performance is not at the expense of WET time slot as
evidenced by Fig. 10. Additionally, the performance advantage
of the proposed scheme over other counterparts comes from
the optimal design of the WET IRS passive beam pattern, and
the improved channel gain at IoT devices by introducing IRS.

Finally, we make a comparison between perfect and imper-
fect CSI scenarios in terms of sum throughput versus transmit
power of PS P0 in Fig. 12. As expected, the perfect CSI
case (i.e., the proposed scheme) exhibits significantly better
performance compared to its imperfect counterpart. This is due
to the fact that the channel estimation error negatively affects
the cascaded CSI, degrading the sum throughput performance.
Also, the sum throughput is more sensitive to the larger
channel estimation error, which can produce a greater impact
on the throughput performance.

V. CONCLUSION

This paper exploited the sum throughput maximisation
problem for IRS-empowered WPCN. This resultant optimisa-
tion problem was solved by a two-level procedure, in which the
outer level aimed to numerically search for the optimal trans-
mission time scheduling, while the BCD iterative algorithm
was proposed to alternately solve the inner-level problem,
for optimising receive beamforming, energy beamforming,
and IRS phase shifts, respectively. Numerical results were
presented to verify convergence of the proposed algorithm and
effectiveness of the numerical search method. Moreover, these
results highlighted the advantage of optimal IRS phase shift
design, optimal time scheduling design, and employment of
IRS, compared to existing benchmark schemes.

For future work, we would investigate active-IRS-assisted
WPCNs to jointly design the energy beamforming of PS,
receive beamforming of AP, IRS active beampattern and time
scheduling. For the active IRS, we would not employ the
LDT and QT to convert the sum of logarithmically fractional

objective functions into the quadratic form. Rather, the numer-
ical solutions, i.e., semi-definite programming and successive
convex approximation, could be adopted to solve the IRS ac-
tive beamforming with the non-convex phase shift constraint.
Additionally, we could explore hybrid multiple access (i.e.,
hybrid TDMA/FDMA scheme) in the IRS-assisted WPCN,
to reduce the network overhead. Moreover, the fairness-aware
scheme should be considered in the IRS-assisted WPCN, in
which the sum rate maximization will be formulated subject
to the individual rate constraint to guarantee the QoS of each
IoT device.

APPENDIX

A. Proof of Lemma 2

The convergence of Algorithm 2 mainly depends upon the
BCD to design the received beamforming, energy beamform-
ing, and the IRS passive beampatterns of downlink WET and
uplink WIT in an iterative manner. Now let us prove the
convergence of the iterative BCD in Algorithm 2. To this
end, we fix the time allocation τ0 to transform problem (7)
as follows:

max
w,F,θ,p

f (w,F,θ,p)=

K∑
k=1

log

(
1+

pkt1,k,k∑
j 6=k pjt1,k,j+σ

2fHk fk

)
,

s.t. (T − τ0)pk ≤ τ0ηkP0t0,k,

|θm,n| = 1, ∀m ∈ {0, 1} , ∀n ∈ {1, ..., NR} ,
‖w‖2 ≤ 1. (49)

By applying the LDT, we have

max
w,F,θ,p,r

f̃ (w,F,θ,p, r)

=

K∑
k=1

log (1 + rk)−
K∑
k=1

rk +

K∑
k=1

(1 + rk)Xk

Yk
,

s.t. (T − τ0)pk ≤ τ0ηkP0t0,k,

|θm,n| = 1, ∀m ∈ {0, 1} , ∀n ∈ {1, ..., NR} ,
‖w‖2 ≤ 1. (50)

Via the QT, we obtain the following problem

max
w,F,θ,p,r,ξ

f̄ (w,F,θ,p, r, ξ)

=

K∑
k=1

log (1 + rk)−
K∑
k=1

rk

+

K∑
k=1

[
2 [(1+rk)pk]

1
2 <
{

conj (ξk) b̃k,kθ1+conj (ξk) b̂k,k

}

− |ξk|2
 K∑
j=1

pj

∣∣∣b̃k,jθ1 + b̂k,j

∣∣∣2 + σ2fHk fk

 ,
s.t. (T − τ0)pk ≤ τ0ηkP0t0,k,

|θm,n| = 1, ∀m ∈ {0, 1} , ∀n ∈ {1, ..., NR} ,
‖w‖2 ≤ 1. (51)

From the aforementioned three problems, we have,
1) f (w,F,θ,p) ≥ f̃ (w,F,θ,p, r) with equality if and

only if r satisfies rk = Xk
Yk

.



2) f̃ (w,F,θ,p, r) ≥ f̄ (w,F,θ,p, r, ξ) with equality if

and only if ξ satisfies ξk =
[(1+rk)pk]

1
2 (b̃k,kθ1+b̂k,k)∑K

j=1 pj|b̃k,jθ1+b̂k,j|2+σ2fHk fk
.

Then, we denote l as the iteration index of
the BCD in Algorithm 7. Also, the vari-
ables ξ(l) and ξ̃(l) are determined by ξk =

[(1+rk)pk]
1
2 (b̃k,kθ1+b̂k,k)∑K

j=1 pj|b̃k,jθ1+b̂k,j|2+σ2fHk fk
with

(
w(l),F(l),θ(l),p(l), rl

)
and with

(
w(l+1),F(l+1),θ(l+1),p(l+1), rl

)
, respectively. For

the iterative BCD with the ADMM procedures, the following
relationships hold

f
(
w(l+1),F(l+1),θ(l+1),p(l+1)

)
(α1)

≥ f̃
(
w(l+1),F(l+1),θ(l+1),p(l+1), r(l+1)

)
(α2)

≥ f̃
(
w(l+1),F(l+1),θ(l+1),p(l+1), r(l)

)
(α3)
= f̄

(
w(l+1),F(l+1),θ(l+1),p(l+1), r(l), ξ̃(l)

)
(α4)

≥ f̄
(
w(l+1),F(l+1),θ(l+1),p(l+1), r(l), ξ(l)

)
(α5)

≥ f̄
(
w(l),F(l),θ(l),p(l), r(l), ξ(l)

)
(α6)
= f̃

(
w(l),F(l),θ(l),p(l), r(l)

)
(α7)
= f

(
w(l),F(l),θ(l),p(l)

)
, (52)

where (α1) follows by Relation 1; (α2) follows the update
of r to maximize f̃ for given other variables; (α3) follows
by Relation 2; (α4) follows the update of ξ to maximizes
f̄ for given other variables; (α5) follows the updates of
the variables w, F, θ, and p in Step b) of Algorithm 7;
(α6) follows by Relation 2; (α7) follows by Relation 1.
From aforementioned discussion, the sum throughput objective
f produces a monotonically non-decreasing behaviour over
iteration. Since the value of f is bounded above, Algorithm 2
will converge to a local optimum.
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