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ABSTRACT

Underwater dynamic power cables connected to offshore
floating energy devices are subject to ocean turbulence and,
through eddy shedding, may experience vortex-induced vibra-
tion (VIV). A high level of turbulence intensity may cause fatigue
damage to cables in the ocean. The present preliminary study
investigates the VIV response of a rigid circular cylinder in free-
stream turbulent flow. A phenomenological reduced-order wake
oscillator model is coupled with a stochastic differential equa-
tion that represents flow turbulence. The model consists of two
coupled ordinary differential equations: one, a structure oscil-
lator equation that considers forcing from the vortex shedding
wake; the other, a van der Pol oscillator with a structural cou-
pling term. Wake oscillator models have been used extensively
in the past, with many application-specific versions having been
developed. The stochastic differential equation accounts for ran-
dom fluctuations in the fluid flow velocity. Here, we vary the
turbulence intensity in the model up to a maximum of 20%. The
cylinder response is not significantly affected by very low levels
of turbulence, but amplitude modulations and beating phenom-
ena are observed in a strongly turbulent flow. Lock-in, whereby
the structure oscillation frequency synchronizes with the vortex
shedding frequency, is also explored to study how the resonant
frequencies differ in cases with and without turbulence present.
We also investigate the stochastic VIV response of a cable struc-
ture to changes in mass-damping ratio, fluid-structure coupling
terms, and initial conditions. The findings should be of benefit

to researchers and design engineers concerned with the develop-
ment of floating energy systems by better characterizing opera-
tional load conditions for new installations.

1 INTRODUCTION
Underwater cables connected to offshore floating wind en-

ergy devices can experience vortex-induced vibrations (VIV) as
the cable interacts with the ocean flow and vortex shedding oc-
curs [1, 2]. Owing to repetitive loading in the turbulent oceanic
environment, an underwater cable experiences fatigue. Extreme
weather, and adverse operating and environmental conditions
may amplify oceanic turbulence, causing an underwater cable
to become damaged. To design cables so that they are resilient,
it is important first to understand the likely response of a cable
immersed in free-stream turbulence [3].

Numerous experimental and numerical studies have con-
sidered fixed cylinders experiencing VIV in water and air (see
e.g., [4]). In the last two decades, increasing research effort has
been directed towards the study of flexible cylinders experienc-
ing VIV, partly driven by an interest in energy generation from
VIV as part of the response to the world’s energy crisis [5, 6].
However, the effect of free-stream turbulence on the stochastic
VIV of a cable/rigid cylinder has been relatively little explored
except for a few recent studies (see [7–10]).

Phenomenological models such as the wake oscillator model
(WOM) can be useful to predict the stochastic response of ca-
bles subject to free-steam turbulence [11, 12]. WOM essentially
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comprises two coupled ordinary differential equations. The first
equation models the equation of motion of the structure with a
forcing term from the fluid, while the second equation comprises
the wake equation of motion incorporating a forcing term from
the structure. WOMs capture many features of the responsive be-
haviour; they are fast to run and much less computationally ex-
pensive than computational fluid dynamics (CFD) models [13].

In the present study, the WOM proposed by Nielsen and
Krenk [14,15] is used to mimic the stochastic response. To avoid
the design complexity involved with a flexible cable, we consider
a simple rigid cylindrical structure of circular cross-section that
experiences VIV in a turbulent environment. The forcing terms
of both equations in this model use the concept of an exact bal-
ance of energy exchange taking place between the fluid and the
structure. This implies that, at all times, the forcing terms are
fed with exactly the same energy flow. The model is exploited
to predict the response behaviour for two different mass ratios at
different turbulence intensities.

2 STOCHASTIC WAKE-CYLINDER OSCILLATORS
2.1 Structure oscillator

FIGURE 1: SCHEMATIC MODEL OF A CYLINDER-
SPRING-DAMPER SYSTEM IN TURBULENT FLOW.

We consider the two-dimensional problem of a spring-
mounted rigid cylinder of diameter D and mass m attached to
linear springs of stiffness h and damping constant r placed in the
fluid of density ρ and uniform fluid velocity U (Fig. 1). Here,
the fluid velocity U can be expressed as U = Um + u(t), where
Um is the mean flow velocity and u(t) is the turbulent velocity
component [7, 8, 15]. The cylinder experiences vibrations in the
cross-flow direction due to its interaction with the fluid flow. The
equation of motion of the cylinder may be written,

mŸ + rẎ +hY =
1
2

ρU2DCL (1)

where Y is the instantaneous transverse displacement of the
cylinder and CL is the lift coefficient which is expressed in terms
of the wake displacement Q and wake coupling coefficient γ as
CL =

Q̇(t)
U γ in which t is time. Following Nielsen and Krenk [15],

we replace µ0 =
ρD2l

m and non-dimensionalize the resulting equa-
tion by setting y=Y/D, ẏ= Ẏ/D ÿ= Ÿ/D, q=Q/Q0, q̇= Q̇/Q0
and q̈ = Q̈/Q0. Here, y and its resulting equation become

ÿ+2ξ ω ẏ+ω
2y = µ0c0ω f q̇ (2)

where ω is the structural frequency, Ur is the reduced velocity
and c0 = Q0γ/4πSt is the non-dimensional coupling parame-
ter in which St is the Strouhal number. To take into account
the effects of turbulence, the reduced velocity is expressed as
Ur = Ur(1+R(t)), where R(t) = 2u(t)/Um is the stochastic tur-
bulence process. Here u(t) is the local fluctuating velocity com-
ponent and Um is the mean flow speed. R(t) takes the form of
mean reverting Ornstein-Uhlenbeck process [15], which can be
simulated from the Ito-differential equation:

dR(t) =− 1
τc

R(t)dt +

√
2
τc

σRdW (t) (3)

In the above equation, τc is the correlation time scale, σR is the
standard deviation which relates to the turbulent intensity (Iu)
defined by the expression Iu = 1

2 σR based on the definition of
R(t) [15], and dW (t) is the standard Weiner process. A more
general and accepted way of defining turbulence intensity is as
the ratio of the standard deviation of the turbulent velocity com-
ponent to the mean flow velocity component. The above differ-
ential equation is solved numerically using the Euler-Maruyama
method [16]. The structure oscillator with a stochastic turbulence
process is given by

ÿ+2ξ ω ẏ+ω
2y = (1+R)µ0c0ω f q̇ (4)

where ω f is the fluid oscillator frequency.

2.2 Wake oscillator
As the model is based on the principle of energy balance

between the forcing terms of the structure and wake, the wake
oscillator receives the same energy in its forcing terms as the
structure oscillator. The equation is thus given by

m f Q̈−2m f εω f (1−
(Q2 + Q̇2/ω2

f )

Q2
0

)Q̇+m f ω
2
f Q

=−1
2

ρU2D
˙Y (t)

U
γ

(5)

where m f is the fluid mass, ε is the wake coupling coefficient and
ω f is the fluid oscillator frequency defined as ω f = 2πStU/D. St
is the Strouhal number and in the present study, we use St = 0.2.
The above equation is non-dimensionalized in the same way as
previously for the structure oscillator equation, giving:

q̈−2εω f (1−q2 − q̇2

ω2
f
)q̇+ω

2
f q =−c0v−2

0 ω f ẏ (6)

where v0 is the normalized amplitude of the fluid oscillator on
a fixed cylinder in laminar flow. Next, the effect of turbulence
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TABLE 1: MAIN INPUT PARAMETERS AND VALUES IN
EQS. 4 AND 7.

Parameter Symbol Value

Mass ratio m∗ = m
π
4 ρD2l 2.54 and 12.73

Structural damping ξ 1.25E −03

Turbulence intensity Iu 5%, 10%, 20%

Strouhal number St 0.2

Coupling coefficient A 0.177 (m∗ = 2.54)

Coupling coefficient A 0.0035 (m∗ = 12.73)

Wake damping coefficient ε 0.064

is added to the above equation. The coupling coefficient is ex-
pressed in simple terms as c0v−2

0 = A. The wake oscillator ac-
counting for turbulence is then expressed as,

q̈−2ε(1−q2 − q̇2

ω f
)ω f q̇

+ω
2
f (1+R)2q =−Aω f (1+R)ẏ

(7)

Eqs. 4 and 7 are the same as those used in [15]. In the present
simulations, to obtain the range of different reduced velocities,
the natural frequency ω0 is varied while the vortex shedding fre-
quency ω f is kept constant, to obtain the corresponding reduced
velocity. The solution for the stochastic wake oscillator is ob-
tained by solving Eq. 3 using the Euler-Maruyama method and
then incorporating the solution at each time step in Eqs. 4 and 7
and in the time integration.

2.3 Parametric consideration
Table 1 lists values of key constants and parameters used in

the simulations. The mass ratios are selected based on a prelim-
inary literature review of VIV experiments of circular cylinders
with low mass ratios ranging between 2 ≤ m∗ ≤ 20 [17]. Val-
ues of the Strouhal number and coupling coefficients have been
adopted from those given by Nielsen and Krenk [15]. Note that
the coupling coefficients need to be tuned and are presently de-
pendent on the mass ratio.

2.4 Validation
In this section, we validate the present model using existing

experimental data. Firstly, in Fig. 2, the model prediction re-
sults for the maximum amplitude normalized with respect to D
(a0) are validated against experimental VIV results for a circular
cylinder with a low mass ratio of m∗ = 2.4 and low damping ratio
ξ = 0.00542. For this low mass ratio, the coupling coefficients
are similar to those reported in Table 1 for m∗ = 2.54.

Next, in Fig. 3, we compare predicted results for the nondi-
mensionalized root-mean-squared (RMS) amplitude, aRMS =
YRMS

D , against experimental data for VIV of a cylinder in uni-
form flow with low turbulence intensity [18]. In the literature,
to the best of the authors’ knowledge, experimental results for
VIV of cylinders with low mass ratios in free-stream turbulent
flows are limited. Hence, we consider experimental data that are
available for a high mass ratio case with m∗ = 133.75. In both
validation cases, the model is found to give predictions that com-
pare well with observed maximum responses. In the latter case,
the amplitude response is low primarily because of the high mass
ratio. Note that the Strouhal number adopted for the validation
is St = 0.2095 and the coupling coefficients (associated with the
mass ratio) are c0 = 1.473 and A = 6.788 on tuning the model.
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FIGURE 2: MODEL VALIDATION AGAINST EXPERIMEN-
TAL DATA [17] FOR CYLINDER VIV WITH A LOW MASS
RATIO (m∗ = 2.4).
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FIGURE 3: MODEL VALIDATION AGAINST EXPERIMEN-
TAL DATA [18] FOR VIV IN TURBULENT FLOW (m∗ =
133.75, Iu = 3% and ξ = 3.9E −03.)
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3 RESULTS AND DISCUSSION
Eqs. 4, 7 and 3 have been solved in MATLAB for two sets of

mass ratios by considering the turbulence-free flow vs. the free-
stream flow with low, medium, and high turbulence intensities.

First, we present aRMS versus the reduced velocity for each
of the mass ratios 2.54 and 12.73, and for different turbulent in-
tensities. Low mass ratios are considered in order to mimic actual
underwater systems. We then discuss the power spectral density
(PSD) contour plots for each case. The simulations have been
performed by increasing and decreasing the reduced velocity pa-
rameter. The first case run in each set is initiated with an initial
displacement of y0 = 0.1. The rms values from the first reduced
velocity case are used as inputs to initiate the second or next re-
duced velocity case. This cycle is repeated until the last reduced
velocity has been considered.

3.1 Response amplitudes
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FIGURE 4: VARIATION IN RMS AMPLITUDES WITH Ur
FOR m∗ = 2.54 AND ZERO TURBULENCE.
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FIGURE 5: VARIATION IN RMS AMPLITUDES WITH Ur
FOR m∗ = 12.73 AND ZERO TURBULENCE.

3.1.1 No turbulence intensity: Figs 4 and 5 show
the variation of rms amplitude plotted against reduced velocity in

the absence of turbulence intensity for m∗ = 2.54 and m∗ = 12.73
respectively. In both cases, the rms amplitude is small when
Ur < 4, corresponding to the lower branch. The amplitude then
rises to a peak at Ur = 4.5 for m∗ = 2.54 and at Ur = 5 for
m∗ = 12.73. This zone represents lock-in where the structure fre-
quency synchronizes with the fluid frequency, and is termed the
upper branch. The amplitude then falls steadily until Ur = 10.
Even so, there is no significant drop in amplitude observed and
so the branch still corresponds to the upper branch. Similar re-
sponse amplitudes and features between the increasing Ur and
decreasing Ur cases suggest the negligible hysteresis effect. The
trend observed in the current results matches qualitatively with
wind tunnel experiments performed by Pasto for higher mass ra-
tios [18].
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FIGURE 6: VARIATION IN RMS AMPLITUDES WITH Ur
FOR m∗ = 2.54 AND Iu = 5%.
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FIGURE 7: VARIATION IN RMS AMPLITUDES WITH Ur
FOR m∗ = 12.73 AND Iu = 5%.

3.1.2 Low turbulence intensity (Iu = 5%): As de-
fined previously, turbulence intensity is the ratio of the standard
deviation of the turbulent velocity component to the mean flow
velocity component. Figs 6 and 7 show the variation in rms
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amplitude with reduced velocity for both mass ratios at 5% tur-
bulence intensity. The results display similar qualitative trends
for the no turbulence case for reduced velocity in the range
3 ≤ Ur ≤ 7. At higher Ur, we observe larger amplitudes than
in the corresponding cases with no turbulence. To investigate
this further, we plot the time histories of displacement and the
phase portrait at Ur = 3,5,9 for m∗ = 2.54 in Fig. 8 and Fig. 9
respectively. These two figures show that signal modulation is
significant at higher reduced velocities due to the existence of a
stochastic process in the signal. Near the lock-in zone, the signal
remains smooth and no chaotic signal is observed. The trends for
m∗ = 12.73 at Iu = 5% are similar.
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FIGURE 8: Iu = 5% TIME SERIES FOR m∗ = 2.54 AND Ur =
3 (pre lock-in), Ur =5 (lock-in), and Ur = 10 (far lock-in) .

3.1.3 Medium turbulence intensity (Iu = 10%):
Figs 10 and 11 show the variation in rms amplitude with re-
duced velocity for both mass ratios and a turbulence intensity of
10%. Interestingly, we observe an increment in amplitude over
the entire range of reduced velocities for each of the mass ratios
when compared to the respective mass ratio cases of low turbu-
lence intensity respectively. Beyond Ur ≥ 8, a further increase

(a) Ur = 3

(b) Ur = 5

(c) Ur = 10

FIGURE 9: Iu = 5% PHASE PORTRAITS FOR m∗ = 2.54 AND
Ur = 3 (pre lock-in), Ur =5 (lock-in) and Ur = 10 (far lock-in) .

in rms amplitude results from the components at higher frequen-
cies becoming dominant over those at the structural frequency.
Fig. 12 shows the time series and corresponding phase portrait
for m∗ = 2.54 and Ur = 4. A chaotic signal and a sudden jump
in amplitude occur. The presence of dual amplitudes can be dis-
cerned from the phase portrait. The jump occurs when one of
the frequencies of the chaotic signal synchronizes with the fluid
frequency.

3.1.4 With high turbulence intensity (Iu = 20%)
We next consider a higher value of turbulence intensity of 20%.
Figs 13 and 14 show the variation in rms amplitudes with the
reduced velocity for each of the two mass ratios. The trends ob-
tained for the two mass ratios differ significantly. For low m∗, the
amplitude increases progressively with reduced velocity. Signif-
icantly larger amplitudes are observed, perhaps due to incorrect
tuning of the coupling coefficients. For m∗ = 12.73, the rms am-
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FIGURE 10: VARIATION IN RMS AMPLITUDES WITH Ur
FOR m∗ = 2.54 AND Iu = 10%.
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FIGURE 11: VARIATION IN RMS AMPLITUDES WITH Ur
FOR m∗ = 12.73 AND Iu = 10%.

plitude increases to Ur ≈ 5.5, drops significantly at Ur = 5, and
then increases steadily. This trend remains similar for both in-
creasing and decreasing reduced velocity simulations. Chaos ex-
ists in the signal, as exemplified by Fig. 15. Dual amplitude re-
sponses are evident and the signal remains chaotic throughout the
simulation. In the time series and phase portrait plots, a colour
coding is used to distinguish between the amplitude branches.

3.2 Response frequencies
Response frequencies with the power spectral density (PSD)

contour plots are now presented, with the reduced velocity on
the abscissa and the frequency on the ordinate axis. At each
frequency, the power spectrum is plotted vertically and the re-
sults are combined horizontally over the range of reduced ve-
locity 3 ≤ Ur ≤ 10. Here, the log10 scale is used to contrast
the variation, with blue representing −10 and red indicating 0.
Each contour plot is superimposed with the natural frequency in
vacuum nondimensionalized with respect to the vortex shedding
frequency.
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FIGURE 12: Iu = 10% TIME SERIES AND PHASE PORTRAIT
FOR m∗ = 2.54 AND Ur = 4.
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FIGURE 13: VARIATION IN RMS AMPLITUDES WITH Ur
FOR m∗ = 2.54 AND Iu = 20%.
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FIGURE 14: VARIATION IN RMS AMPLITUDES WITH Ur
FOR m∗ = 12.73 AND Iu = 20%.
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FIGURE 15: Iu = 20% TIME SERIES AND PHASE POR-
TRAITS FOR m∗ = 2.54 AND Ur = 7.

FIGURE 16: PSD CONTOUR PLOT FOR m∗ = 2.54 WITH
ZERO TURBULENCE. A WHITE MARKER REPRESENTS
THE NATURAL FREQUENCY IN VACUUM FOR THAT
CORRESPONDING REDUCED VELOCITY.

3.2.1 No turbulence intensity Figs 16 and 17 show
the PSD contour plots for m∗ = 2.54 and 12.73 in the absence
of turbulence. A shift in frequency is observed at particular Ur
in both the PSD plots. For m∗ = 2.54 the shift in frequency oc-
curs at Ur = 4.5 while for m∗ = 12.73, the shift in frequency
occurs at Ur = 5. This shift in frequency accounts for two sep-
arate zones. These zones correspond to the initial and the upper
lock-in branch, as discussed earlier. Lock-in between structure

FIGURE 17: PSD CONTOUR PLOT FOR m∗ = 12.73 WITH
ZERO TURBULENCE.

and natural frequency occurs for cases of lower reduced velocity
whereas the structure locks in with the vortex shedding frequency
at higher reduced velocity.

3.2.2 Low turbulence intensity (Iu = 5%) Figs 18
and 19 display the PSD contours for 5% turbulence intensity at
each mass ratio. Two different frequencies are observed beyond
Ur = 5 indicating the presence of other harmonics, arising from
the stochastic process in the flow.

FIGURE 18: PSD CONTOUR PLOT FOR m∗ = 2.54 AND Iu =
5%.

3.2.3 Medium and high turbulence intensity (Iu =
10% & 20%) Figs 20 and 22 show PSD contour plots obtained
for 10% and 20% turbulence intensity for m∗ = 2.54. Figs 21 and
23 show the PSD contours for the same turbulence intensities for
m∗ = 12.73. The presence of dual frequencies is observed even
at the higher level of turbulence intensity. The two frequencies
correspond to the vortex shedding frequency and the natural fre-
quency, respectively. As the turbulence intensifies, the natural
frequency signals correspond to higher power spectrum values
compared to the vortex shedding frequency. This is in agreement
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FIGURE 19: PSD CONTOUR PLOT FOR m∗ = 12.73 AND
Iu = 5%.

FIGURE 20: PSD CONTOUR PLOT FOR m∗ = 2.54 AND Iu =
10%.

FIGURE 21: PSD CONTOUR PLOT FOR m∗ = 12.73 AND
Iu = 10%.

with the dual amplitudes in Fig 15 where the structure can select
to lock into either the vortex shedding or natural frequency.

FIGURE 22: PSD CONTOUR PLOT FOR m∗ = 2.54 AND Iu =
20%.

FIGURE 23: PSD CONTOUR PLOT FOR m∗ = 12.73 AND
Iu = 20%.

The results presented are part of a preliminary study using a
phenomenological model. We intend to improve the model with
the laboratory scale data in the near future.

4 CONCLUSION

This paper presents a modified wake oscillator model and re-
sults from a preliminary numerical study that has assessed the re-
sponse of a circular cylinder placed in free-stream turbulent flow
and undergoing VIV. Two different mass ratios, m∗ = 2.54 and
10.73, and the turbulence intensity up to 20% have been consid-
ered. Results show that VIV response amplitudes increase with
the increasing turbulence intensity but reduce with the higher
mass ratio. Chaotic response signals are observed in a high tur-
bulence intensity case. For each of the reduced velocities con-
sidered, two separate branches are observed in the response fre-
quency spectra for turbulent flow cases. Frequencies for the VIV
lock-in conditions correspond to the considerably larger peaks in
the power spectra when a stronger turbulence intensity is present.
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NOMENCLATURE
A wake coupling coefficient
a0 nondimensional maximum amplitude
aRMS nondimensional RMS amplitude
CL lift coefficient
c0 coupling parameter
D cylinder diameter
h spring stiffness
Iu turbulent intensity
m cylinder mass
m f displaced fluid mass
m∗ mass ratio
Q dimensional wake variable
R(t) stochastic turbulence process
r damping coefficient
St Strouhal number
U fluid velocity
Um mean flow velocity
Ur reduced velocity
u(t) turbulent velocity component
Y dimensional cylinder displacement
y nondimensional cylinder displacement
ε wake coupling coefficient
ξ damping ratio
ρ fluid density
σR standard deviation
τc correlation time scale
ω structural frequency
ω f fluid oscillator frequency
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