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A B S T R A C T   

This study presents a novel approach for urban flood forecasting in drainage systems using a dynamic ensemble- 
based data mining model which has yet to be utilised properly in this context. The proposed method incorporates 
an event identification technique and rainfall feature extraction to develop weak learner data mining models. 
These models are then stacked to create a time-series ensemble model using a decision tree algorithm and 
confusion matrix-based blending method. The proposed model was compared to other commonly used ensemble 
models in a real-world urban drainage system in the UK. The results show that the proposed model achieves a 
higher hit rate compared to other benchmark models, with a hit rate of around 85% vs 70 % for the next 3 h of 
forecasting. Additionally, the proposed smart model can accurately classify various timesteps of flood or non- 
flood events without significant lag times, resulting in fewer false alarms, reduced unnecessary risk manage
ment actions, and lower costs in real-time early warning applications. The findings also demonstrate that two 
features, “antecedent precipitation history” and “seasonal time occurrence of rainfall,” significantly enhance the 
accuracy of flood forecasting with a hit rate accuracy ranging from 60 % to 10 % for a lead time of 15 min to 3 h.   

1. Introduction 

The early warning of floods in urban drainage systems (UDS) is 
critical to mitigate potential social, economic, and environmental losses 
caused by the growing concern of urban flooding worldwide (Zoune
mat-Kermani et al., 2020). The highly complex and 
temporally-restricted nature of UDS flooding, along with spatial limi
tations (Piadeh et al., 2022a), underscores the importance of early 
warning systems for decision-makers and communities. Such advance 
notice enables the reduction of financial and human losses/fatalities, 
minimisation of infrastructure damage, and better preparation of safety 
services (Mobini et al., 2022). Historical long-term and large-scale da
tabases that are continuously updated with real-time rainfall and water 
level data in UDS can be integrated with data-driven models for simu
lating dynamic and continuous flood events, particularly for flood 
forecasting. Prominently, single or ensemble weak learner data mining 

models (WLDMs) have been developed for this purpose (Munawar et al., 
2021). 

Several predictive data mining models (DMs) aim to estimate future 
flood events by flood regression, time series analysing of hydrological 
characteristics, flood risk, flood classification, and forecasting flood 
events (Zounemat-Kermani et al., 2021). Among these wide-ranging 
applications, classification and forecast of floods have attracted more 
attention, especially for water level rise or flooding in UDS. Earlier 
studies have demonstrated the application of various weak learner 
models, such as support vector machine (SVM), k-nearest neighbour
hood (KNN), Naïve Bayes (NB), and neural network pattern recognition 
(NNPR), for water level forecasting (Mosavi et al., 2018). These models 
have also been used for flood forecasting when the flow associated with 
water level rise exceeds the full capacity of the UDS conduits. Other 
strong DMs, particularly various feedback forward and recurrent neural 
network (RNN) models, show more capability in the accuracy of flood 
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forecasting, handling big data and high-speed computation (Rasheed 
et al., 2022). Despite the advantages of these DMs, the accuracy of 
overflow predictions made for periods longer than one hour has been 
significantly reduced (Piadeh et al., 2022a). 

To overcome this limitation, hybrid models have been developed 
recently, in which WLDMs are combined with RNN, such as nonlinear 
autoregressive network with exogenous inputs and long short-term 
memory (Piadeh et al., 2022b; Zhang et al., 2023). In addition to 
water level forecasting, WLDMs have been used to classify urban 
flooding, specifically for flood susceptibility, overflow probability, and 
flood risk index (Shahzad et al., 2022). However, only a few studies have 
investigated the classification of floods in UDS, which involves identi
fying flood or non-flood conditions due to rainfall occurrence. For 
instance, recent studies have employed a combination of decision tree 
(DT) and random forest (RF) to predict multivariate flood status in the 
UK (Aswad et al., 2022) and to forecast flash floods in cities in Malaysia 
and China (Zang et al., 2022). 

Ensemble modelling is another popular approach in flood forecasting 
that involves combining multiple forecasts from different models to 
improve the accuracy of predictions. The resulting ensemble forecast 
provides a range of possible outcomes and their probabilities, allowing 
forecasters to make more informed decisions (Bui et al., 2019). 
Ensemble modelling has been applied to various flood forecasting 
problems, including riverine, flash floods, and storm surges. However, 
its application in real-time urban flood forecasting is a promising area 
for further investigation, particularly for longer periods of forecasting 
(Zounemat-Kermani et al., 2021) or using dynamic platforms in which 
ensemble models are adapted based on timesteps of forecasting (Zhou 
et al., 2023). These studies demonstrate that flood forecasting methods 
can achieve higher accuracy and faster processing with less computa
tional efforts compared to other conventional data mining models. 
However, these methods may fail to provide accurate predictions for 
longer lead times, such as projections of more than two hours ahead 
(Wagenaar et al., 2020). 

Besides, the recent progress in flood forecasting has primarily 
concentrated on improving the accuracy of projection for a single or 
multiple timesteps ahead, but dynamic forecasting of almost all time
steps of flood events, known as event-based modelling still requires 
more attention. This approach can enable a more detailed about fore
casting the timing, magnitude, and duration of a specific flood event, in 
comparison to just providing an overall performance of the model across 
single or multiple timesteps of the events (Yaseen et al., 2019). This is 
particularly crucial in the context of flood risk management and emer
gency response, where accurate forecasts of specific flood events are 
vital to minimise potential impacts on society and the environment 
(Orellana-Alvear et al., 2021). Such accurate forecasts of specific events 
can facilitate informed decision-making and support effective risk 
management during flood events. However, development of time-series 
dynamic DMs that can accurately forecast nature of flood events 
commonly known as a challenging task and further research is required 
to develop reliable and effective models for this purpose (Munawar 
et al., 2021). 

To overcome the above challenges, this study introduces several 
innovative contributions to the field of urban flood forecasting. Firstly, 
this study utilises a novel time-series ensemble-based data mining 
model, which has yet to be extensively applied. This approach provides a 
fresh perspective on addressing the existing knowledge gaps in current 
flood forecasting methods by enhancing the accuracy of flood fore
casting with longer lead times, which is crucial for effective flood risk 
management. Secondly, this study presents the concept of dynamic 
modelling for ensemble-based data mining to move beyond this focus on 
single-timestep forecasting and investigates the performance of the 
proposed model for event forecasting. Finally, the study couples the 
decision tree algorithm with the concept of ensemble modelling to blend 
the performance of WLDM models. 

2. Methodology 

Two general approaches are documented for UDS flood forecasting: 
(1) direct relationship approach that goals to establish a direct rela
tionship between rainfall data and the UDS water. This means that the 
model attempts to predict the water level directly based on the incoming 
rainfall data. This approach is simpler and more straightforward, as it 
involves no intermediate step of forecasting rainfall, (2) rainfall fore
casting approach that involves forecasting the intensity of rainfall in the 
area. The predicted rainfall data is then used as an input to a model that 
simulates the behaviour of the UDS to predict the resulting water levels. 
This approach can be more accurate in capturing the dynamics of the 
system but involves more complexity and uncertainty due to the two- 
step forecasting process (Zounemat-Kermani et al., 2021; Piadeh et al., 
2022a). This study adopts the first approach mainly due to its more 
simplicity and response time, data availability and finally less UDS 
complexity in comparison to large catchments of river basins or reser
voirs dams (Zhou et al., 2023). 

The proposed modelling framework, as illustrated in Fig. 1, involves 
two key stages: (1) an offline data mining framework for pre-training, 
and (2) a real-time online platform for implementation. To ensure the 
framework’s applicability to scenarios with limited data availability, 
only time-series data from a single rainfall station and a single water 
level station, which are commonly used in hydrological practices, are 
utilised and other time-series data resources are excluded to maintain 
simplicity. While there might be various rainfall stations to choose from, 
the selection process is guided by two parameters, drawing inspiration 
from the research of Piadeh et al. (2023): (1) dominant wind direction 
determined based on wind rose data aligned with the geographical 
positioning of both the rainfall station and the UDS station, (2) highest 
cross-correlation coefficient between the data from the rainfall stations 
and the UDS water levels (See Figure C1 in the Appendix C for further 
description). 

The continuous time-series data of rainfall and water level are par
titioned into dry and wet weather events using the methodology out
lined in Section 2.1. These events are subsequently transformed into 
rainfall features to develop WLDMs, as explained in Section 2.2. The 
commonly used WLDMs are developed and stored in a data warehouse, 
and their performance indicators on forecasting unseen data is also 
stored in a data cube structure for ensemble model development. 
Further details are presented in Section 2.3. Lastly, a dynamic platform 
utilising time-series ensemble models is developed using the method
ology proposed in Section 2.4. 

2.1. Event identification 

This study follows an event identification procedure, as described in 
Piadeh et al. (2021) and Piadeh et al. (2022b), to classify time-series 
data into flood and non-flood events. The classification is based on 
typical event states as illustrated in Fig. 2a, and the event identification 
procedure outlined in Fig. 2b. The time-series data is initially divided 
into dry (R1, R4, R6) and wet (R2, R3, R5) weather classifications based on 
rainfall data. Then, the water level is classified into six categories 
(S1-S6): (S1) dry flow event, which is characterised by no rainfall and 
trivial/no change in water level; (S2) upstream discharge event, which 
denotes an increase in water level without rainfall, caused by leaka
ge/exfiltration, infiltration, or discharging diurnal wastewater into 
combined sewerage; (S3) evaporation event, which indicates rainfall 
without an increase in water level due to either evaporation or infil
tration into the soil; (S4) overflow event, which occurs when rainfall and 
water level increase with a time lag, ultimately leading to water level 
exceeding the full UDS capacity; (S5) depletion event, which describes a 
scenario of no rainfall but a decrease in water level back to the dry flow 
state in the falling limb of the hydrograph; and (S6) drained event, which 
occurs when rainfall and water level rise but less than the full UDS ca
pacity, allowing for the safe drainage of excessive water. 
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This study has been developed for real-time applications, and since 
the duration of a real-time rainfall events are unknown in this period of 
time, it is necessary to break down the identified events into multiple 
events with different rainfall durations, known as extended events. This 
breakdown is then used for WLDM and ensemble model training. For 
instance, for a rainfall event with n timesteps schematically represented 
in Fig. 3a, at real-time timestep i, only the first i timesteps of rainfall are 
illustrated for forecasting water level at any given lead time from 
timestep i onwards (e.g., 1, ..., i*, ..., p). Therefore, this event can pro
vide maximum n states of extended events in practice in which p water 
level data are collected. A rainfall data cubic structure is then created for 
all identified extended rainfall events, as shown in Fig. 3b. One 
dimension represents the ID number of the original rainfall events 
(ranging from 1 to k in Fig. 3b). The rainfall intensity of the associated 
extended events is then organised ranging from 1 to n for the number of 
extended events and t1 to tn for the timesteps. Accordingly, water level 
data is considered up to the maximum interested lead time (Here p) is 
stored in another data cube shown in Fig. 3c. This data cube is structured 
similarly to the rainfall data cube, but instead of rainfall intensity, it 
stores water level data ranging from 1 to p. It should be noted that stored 
data here are numerical and time-series rainfall and water level data. 

2.2. Event classification and key rainfall feature extraction 

Stored numerical data are transformed into categorised orders, 
referred to as rainfall features and water level class which can be utilised 
for developing and testing WLDMs. Various extracted potential features 
are listed in Table 1, including (1) current rainfall characteristics such as 
duration, depth, average intensity, and peak depth, as demonstrated in 
previous studies by Bui et al. (2019) and Hosseini et al. (2020), (2) 
antecedent precipitation history, which reflects the short-term effects of 
soil moisture and surface temperature on model development, and is 

represented by two forms of recent rainfall occurrence and average in
tensity, and (3) time occurrence, which represents the long-term effects 
of average air temperature on model development, and is indicated by 
the season code based on the Köppen climate classification (DEFRA, 
2022) and the average intensity of the long-term history of similar 
rainfall. Furthermore, the forecasted water level data for each lead time 
is classified into a binary structure, referred to as “class 1” and “class 2,” 
for the purpose of flood forecasting. Class 1 corresponds to the situation 
where the water level remains under the full capacity level of the UDS, 
while class 2 denotes the occurrence of flooding when the water level 
exceeds the UDS full capacity level. These binary classes are defined for 
each timestep ahead, ranging from 1 to p, and stored in the data cube of 
features for water level class (as illustrated in Fig. 5a). 

The features extracted from the extended rainfall events (Table 1) are 
then refined using three established techniques: principal component 
analysis (PCA), partial least squares (PLS), and sequential sensitivity 
analysis. These techniques are widely accepted as prerequisite steps to 
identify key variables that enhance classification performance and 
reduce computation times (Masahiko et al., 2019). PCA is a process that 
extracts principal components representing the original variables and 
explains the majority of the variance in the dataset. PLS is used to es
timate linear relationships between dependant and independent vari
ables, showing the direct effect of independent variables on the 
dependant variables. Further sensitivity analysis is conducted by 
removing one feature at a time and measuring the accuracy difference of 
the developed WLDM models discussed in the next section. Key rainfall 
features are finally selected based on the results of these three methods 
and determined individually for each extended event. The values of 
these features (1 to r in Fig. 4b) are stored in the data cube for each 
extended event, ranging from 1 to n. 

Fig. 1. Schematic structure of the: (a) proposed framework for real-time dynamic flood forecasting, (b) pre-training offline data mining platform, (c) online dynamic 
flood forecasting platform. 
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2.3. Development of weak learner data mining models 

This study employed seven WLDMs, namely DT, KNN, NB, NPR, 
SVM, discriminant analysis (DA), and Gaussian process regression 
(GPR), which were chosen based on their widespread use and potential 
in previous hydrological classification studies (Zounemat-Kermani et al., 
2020). These models were developed in MATLAB 2021a using rainfall 
features and water level class (data cubes in Fig. 4) to forecast flooding 
in UDS for various lead times up (limited here up to 12-timesteps). 
Additionally, the 5-fold cross-validation method was employed to 

reduce error bias, which is commonly used in practical data mining 
applications (Gharib and Davies, 2021). All identified events were 
randomly distributed across the training, validation, and testing data
bases to ensure equal representation. All models were optimised using 
automatic hyperparameter optimisation in MATLAB 2021a by mini
mising the five-fold cross-validation loss over 30 iterations, as detailed 
in Table A1 in Appendix A. Each model was optimised individually for 
all lead times, ranging from 1 to 12 timesteps. The optimisation process 
for flood forecasting for one timestep ahead are presented in Figure A1 
in Appendix A. As a result, 84 models were developed, consisting of 

Fig. 2. Event classification method used in this study: (a) schematic representation of typical events, and (b) event identification procedure.  
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seven WLDMs for each of the 12 different lead times and stored in library 
shown in Fig. 6a. 

To evaluate the performance of these models in flood forecasting, 

this study employed the confusion matrix concept as a statistical clas
sification technique (Tharwat, 2021). The process involved mapping the 
forecasted water level classes (i.e., overflow or not overflow) onto the 

Fig. 3. Conceptual development of extended events based on the identified events: (a) Schematic hyetograph of extracting extended events from one identified 
overflow (flood) event (S4 in event identification method) and hydrograph used for extracting required water level data for the extended ith event, (b) structure of 
data cube for rainfall data, (c) structure of data cube for water level data. 

Table 1 
Potential rainfall features extracted for developing data mining models.  

Group feature Extracted rainfall 
feature 

Code Description Transformation 
key 

Unit/ 
class 

Current rainfall 
characteristics 

Duration F1 Time period of between the onset and end of the precipitation Numerical min 
Depth F2 Maximum water depth if all rainfall cumulated in saturated impervious surface Numerical mm 
Intensity F3 The ratio of total depth to the duration Numerical mm/h 
Peak depth F4 Maximum rainfall intensity Numerical mm 

Antecedent precipitation 
history 

Occurrence F5 Previous rainfall occurred until maximum previous period equalled to time of 
concentration 

Binary 0:No 
1:Yes 

Average intensity F6 The average rainfall intensity of previous rainfall occurred until maximum previous 
period equalled to time of concentration 

Numerical mm/h 

Time 
occurrence 

Season F7 A different class of humid temperate climate Class 1:Dry 
2:Mild 
3:Rainy 

Long-term 
similarity 

F8 Average of past 10 years’ rainfall intensity for a similar duration of current event Numerical mm/h  
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confusion matrix, with a schematic representation shown in Fig. 5. The 
comparison of observed and forecasted water levels yielded four 
possible states for evaluating the model’s performance in flood fore
casting: True Negative (TN), False Positive (FP), False Negative (FN), 
and True Positive (TP). Using this mapping of the confusion matrix, this 
study defined seven key performance indicators (KPIs) for assessing the 
performance of the developed models. These KPIs were selected based 
on their wide application and are presented in Table 2 (Grandini et al., 
2020; Chicco et al., 2021). As each KPI represents an independent aspect 
of model performance, the non-parametric Friedman ranking test (FRT) 
was employed to compare the average rank of the selected KPIs for all 
models (Ghosh et al., 2022). 

To facilitate analysis and minimising ambiguity in the individual 
models’ KPIs, their associated KPIs and Friedman rank of all 84 models 
were stored in a data warehouse, as depicted in Fig. 6b in a data cubic 
structure for 1–12-timesteps. Subsequently, the built data warehouse 
was utilised to develop time-series ensemble models for further analysis. 

2.4. Development of dynamic ensemble model 

This study developed ensemble models by combining multiple 
WLDMs to create a more robust and accurate forecasting model. Due to 
the homogeneous nature and high variance and bias of flood forecasting, 
the stacking method was selected as it is well-suited for creating 
ensemble models (Prasad et al., 2021). In this method, all WLDMs are 
trained on the same set of training data and then blended using a variety 
of techniques such as weighted averages, decision trees, voting, 
Bayesian averaging, or machine learning algorithms (Yao et al., 2022). 

Two ensemble models are developed here for flood forecasting, as 
schematically shown in Fig. 7 for k-timestep of forecasting. The first 
model is a hybrid model, which takes into account the different abilities 
of WLDMs. The second model is a smart model, which uses an initiative 
decision framework for selecting the best classification. Relevant pre
trained WLDMs are recalled from the data warehouse and used for flood 
forecasting in a specific lead time, such as k-timestep ahead. 

The hybrid model selects individual models that outperform others 
with respect to TPR, F1-score, MCC, DP, and CKR indicators for flood 
forecasting in k-timestep ahead. It employs a simple but effective voting 
approach to determine the forecasting class. Similarly, the smart model 
selects two individual models with a higher rate of TPR and TNR in
dicators for flood forecasting in k-timestep ahead. The smart model uses 
a decision tree framework, as shown in Fig. 7b, to determine the water 
level class by using FRT and ACC ratios of the selected models and 
considering the purpose of the selected model. The model prioritises the 
highest TPR and TNR rates for flooding and non-flooding, respectively. 
Selected WLDMs are dynamically varied in each timestep of forecasting 
which equips the ensemble models to utilise the full potential of all 84 
developed WLDMs. 

In addition to assessing the multistep forecasting performance, a new 
event-based performance assessment is introduced in this study. It 
evaluates the accuracy of ensemble models in predicting each individual 
event, whether it is a flood or non-flood event. The forecasted events are 
divided into two classes: missed classes and hit classes. Missed classes 
occur when the model is unable to forecast the event at any timestep, 
while hit classes occur when the model predicts the event correctly, with 
or without a time lag. Missed classes can result in complete incorrect 

Fig. 4. Schematic structure of data cube used for developing data mining models: (a) water level class, (b) rainfall features.  

Fig. 5. Schematic visualisation of mapping classification of forecasted data onto the confusion matrix concept.  
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forecasting, as shown in Fig. 8b,i,j, or partial incorrect forecasting, as 
shown in Fig. 8f,l (underestimation) and b–d (overestimation). On the 
other hand, correct forecasting of each event (hit class) can occur in 
various situations, which are illustrated in Fig. 8 and listed in Table 3 for 
brevity. 

3. Results and discussion 

The proposed methodology’s results for real-time forecasting of 
water level class at the gauging station of a real-world case study are 
presented using unseen original test data. To facilitate discussion, the 
proposed methodology is compared to three commonly used stacked 
conventional methods: selecting the best WLDMs in each timestep, 
voting, and Bayesian averaging (Rahman et al., 2021; Zoune
mat-Kermani et al., 2021; Piadeh et al., 2022a). All benchmark models 
are trained and validated using the same original database and the 
introduced features used for training and validation of the proposed 
methodology. The performance assessment of flood forecasting is car
ried out for up to 12 timesteps. 

This study reports the results of a proposed methodology for real- 
time forecasting of water level class at a gauging station in a real- 
world case study described in Section 3.1. The methodology is 
compared with three commonly-used stacked ensemble models, namely 
choosing the best TPR-performed WLDMs in each timestep (Piadeh 
et al., 2022a), voting, and Bayesian averaging (Zounemat-Kermani et al., 
2021; Aswad et al., 2022). These benchmark models are trained and 
validated using the same original database and features as those used for 
training and validation of the proposed methodology. The performance 
of flood forecasting is assessed for up to 12-timestep of flood forecasting 
on unseen original test data. 

3.1. Study area and time-series data acquisition 

Fig. 9a displays the location of the Ruislip gauging station, RAF 
Northolt rain gauge, and urban catchment area. The Ruislip UDS, an 
open channel situated in the northwest of London, Borough of Hill
ingdon, collects surface runoff from a catchment area of 9.3 km2 and 
transfers it through the river Pinn to a tributary of the River Thames in 
England. Rainfall events, as illustrated in Fig. 9b, were mainly recorded 
throughout the year, with a duration and depth typically less than 600 
min (i.e., 10 h) and 10 mm, respectively. These rainfall events resulted in 
several fluvial floods and water escaping into Ruislip’s urban neigh
bourhoods, leading to road traffic, significant water puddles on pave
ments, and damage to properties and infrastructure. The Ruislip gauging 
station measures real-time UDS water levels every 15 min, and the rain 
gauge station, as shown in Fig. 9a, was selected based on the prevailing 
wind direction in the pilot study (i.e., southwest) to obtain 15-min 
rainfall data. The entire database comprises 365,233 data samples for 
both rainfall and water level, spanning a continuous 12-year period 
(2009–2021), which can be accessed through the application program
ming interface of the UK Environment Agency (DEFRA, 2022). Missing 
values were infilled using the copula-based regression method recom
mended by Ben Aissia et al. (2017). The input data was first divided into 
two subsets, with 80 % and 20 % of the data allocated for model 
development of WLDMs and time-series ensemble models, respectively. 
Specifically, the WLDMs were trained and validated on the 60 % subset 
and tested on the 20 % subset, which served as unseen data. 

The time of concentration (ToC) for the urban catchment area as 
depicted in Fig. 9c is estimated to be approximately 79 min, based on the 
longest length of 9.3 km, an average slope of 18.3 %. Consequently, ToC 
is assumed to be approximately 6-timesteps long (90 min) in the feature 
extraction analysis. It should be noted, however, that using this 
parameter to exclude durations of historic rainfalls larger than ToC is 
challenging due to the non-uniformity of historic rainfall patterns 
observed through time-series analysis of rainfall hyetograph data, and 
the lack of historic hydrograph data for water level in which the water Ta
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level began to stabilise during the rainfall. 

3.2. Feature selection analysis 

Fig. 10a presents the results of PCA and PLS analysis for all eight 
rainfall features in the database (refer to Table 1). The analysis indicates 
that rainfall duration (F1) and intensity (F3) are the most influential 
features, followed by antecedent precipitation occurrence (F5) and 
season type (F7). On the other hand, rainfall depth (F2) does not have a 
strong correlation compared to these four rainfall characteristics, espe
cially when rainfall duration and intensity are used. In addition, the 
occurrence of antecedent rainfall is determined to be more important 
than its intensity (6 times more in PCA and 4 times in PLS). Furthermore, 
long-term similarity of rainfall occurrence is excluded, possibly due to 
the uncertainty in the rainfall distribution that may occur on the same 
date in different years. 

The results of sensitivity analysis for all 84 WLDMs are also presented 
in Fig. 10b with detailed data available in Table A2 in appendix A. The 
results confirm the features identified by PCA/PLS analysis and 
demonstrate consistency between these three analytical methods. 
However, the results indicate that rainfall intensity is the most sensitive 
feature affecting the accuracy performance of the models. While the 
range of differences is almost identical for the season, rainfall duration, 
and intensity, different models exhibit varying degrees of sensitivity for 
antecedent rainfall occurrence. 

3.3. Performance of WLDM models 

The results of the best-performing WLDMs for three KPIs, namely 
CKR, TPR, and TNR, across different lead times are shown in Table 4 
(also see Tables A3 and A4 and Figure A2 in Appendix A). Findings 
reveal that none of the WLDMs exhibited superior performance in the 
majority of KPIs, and thus, no ideal WLDM can be chosen from Table 4. 
Moreover, the trend of the decreasing rate of the best model perfor
mance varies across different lead times concerning each KPI. Specif
ically, TNR is insignificantly impacted by various lead times, with a 
minor drop from 98 % for 15 min to 94 % for 3 hrs, compared to TPR 
(which shows a significant drop from 87 % for 15 min to 66 % for 3 hrs) 
and CKR (with a moderate drop from 92 % for 15 min to 78 % for3 h). 
This implies that the accuracy of true flood forecasting (i.e., TPR) is 
highly sensitive to lead times, while this has a minor impact on correct 
forecasting non-flood events (i.e., TNR). Such results may stem from the 
large correct forecasting of non-flood events relative to the small num
ber of forecasted floods during the test period. Comparing TPR with TNR 
confirms this result that WLDMs can identify non-flood states more 
accurately than flood events, indicating a high miss rate of WLDMs for 
early flood warning. 

Table 5 presents the results of the Friedman test performance metric 
for the WLDMs across various lead times, as well as the rankings of the 

models in the last row based on the Friedman average metrics of all lead 
times. The analysis reveals that the DA model is ranked first, followed by 
the GPR model in second place, and the NB model in third place. Spe
cifically, the DA model achieved the best metric for six different lead 
times, which represents 50 % of all lead times. While analysis identified 
the top-performing models based on various KPIs and lead times, none of 
the models consistently outperformed the others across all KPIs and lead 
times. Therefore, to achieve accurate time-series multistep flood fore
casting, it is recommended to use an dynamic approach that selects or 
combines the best-performing models based on the specific lead time 
and KPI of interest. 

3.4. Performance of ensemble models 

The accuracy performance of the ensemble models for each lead time 
is depicted in Fig. 11. The accuracy of the forecast for the hit rate, which 
denotes the correct detection of flood or non-flood events, ranges from 
80 % to 90 % for a 15 min lead time. Specifically, the voting-based 
model achieved an 80 % hit rate, the TPR-based model achieved an 
90 % hit rate, and other models achieved over 90 % hit rate. However, 
the hit rate of the voting-based model significantly decreased to nearly 
65 % for 12-timestep, whereas the TPR-based and weighting-based 
models maintained an 75 % hit rate. Moreover, the miss rate, which 
refers to the incorrect detection of events, varied significantly across the 
models. For instance, the TPR-based model tends to classify non-flood 
events as flood events, while the voting-based model has a greater ten
dency towards underestimation of forecasts, i.e., forecasting non-flood 
events as flood events. This difference in miss rate is particularly 
evident for longer lead times, as illustrated in Fig. 11b and c. 

The analysis of the accuracy performance of the weighting-based 
model in terms of the balance between the rate of underestimation 
and overestimation shows similar results to the TPR-based model for a 3- 
hour lead time (refer to Fig. 11a vs 11b and c). This suggests that the 
weighting-based model has a greater ability to predict non-flood events 
as compared to accurately forecasting flood events. The lower rate of 
flood forecasting and a significant share of underestimations observed in 
the voting-based model is reasonable, given the inherent ability of the 
WLDMs to better forecast non-overflow events. It is also expected that 
the weighting-based model may have higher overestimation and un
derestimation rates due to the use of all WLDMs, including models with 
lower TPR and TNR scores. However, the flexible use and application of 
a weighted average of the WLDMs in different timesteps can help 
overcome this limitation and improve the accuracy performance of the 
model by reducing the range of both overestimated and underestimated 
predictions. 

Comparison of the performance of all ensemble models reveals that 
the hybrid and smart models outperform the other three ensemble 
models with respect to the four metrics shown in Fig. 11. This superi
ority may be attributed to the development of ensemble models based on 

Fig. 6. Schematic illustration of constructed data warehouse: (a) library of developed WLDM models, (b) structure of performance data cube.  
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combined key performance indicators (KPIs) such as CKR and MCC, 
leading to the emergence of the hybrid model (Fig. 11d), which exhibits 
a remarkable improvement in forecasting non-overflow states. Conse
quently, overestimated and underestimated rates are improved not only 
in the 15 min but also in the 3 h lead time, by more than 90 % and 85 %, 
respectively. However, rate of the flood forecasting in the hybrid model 
drops to 70 % for the 3 h lead time. On the other hand, the smart model, 
which selects the best TPR and TNR models through a smart decision 
framework as shown in Fig. 7b, outperforms the hybrid model, 

especially in longer lead times, such as 3 h. Although the underestimated 
rate in the smart model seems to be higher than that in the hybrid model 
for some specific lead times, such as 1:15 h or 1:30 h, the flood fore
casting rate remains above 80 % for all forecasted timesteps. The su
perior flood forecasting performance achieved by the smart model can 
also be compared with other RNN models developed in previous studies 
for urban flood forecasting, such as those reported by Noymanee et al. 
(2017), Mosavi et al. (2018), and Wagenaar et al. (2020), which 
determined accuracies of around 70 % for 2 h lead times. 

Fig. 7. Visual representation of sacked generalisation of developed dynamic ensemble models: (a) hybrid model and (b) smart model.  
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The performance of five ensemble models is presented in Fig. 12, 
where three real events with a 3-h time window (12-timesteps) were 
simulated. While the majority of ensemble models accurately predicted 
the non-flood event (as evidenced by predictions in the left graphs of 

Fig. 12), the TPR-based and voting-based models exhibited some misses 
and tended to overestimate this event within the last timesteps. For the 
flood event shown in the middle graphs, all models could forecast the 
flood occurrence, but the TPR-based and voting-based models indicated 
flood classes for the non-flood situation in earlier timesteps (i.e., 3 to 6- 
timesteps). This suggests that these models may estimate flood occur
rence earlier than usual, which seems initially be useful for an early 
warning system, but the considerable time lag may necessitate excessive 
costs and efforts for further risk management actions. Conversely, the 
weighting-based model missed two timesteps of flooding (see Fig. 12h) 
and announced flood occurrence later than the measured situation. 
Alternatively, the hybrid and smart models could forecast this event 
with minor time lags. The privilege of these models was highlighted in 
the third event example (right column in Fig. 12), where the TPR-based 
model in Fig. 12c or the weighting-based model in Fig. 12i missed the 
flood condition or the voting-based model falsely alarmed an overflow 
condition (see Fig. 12f). However, against the hybrid model, the smart 
model could forecast the classes of this event correctly, with only one 
missing timestep at the 10th timestep. 

For a comprehensive assessment, the model performance of all 
developed ensemble models is presented in Fig. 13, based on the 
introduced event-based sheet in Table 3. Further details are provided in 
Table B1 and Table B2 in appendix B. Overall, the miss rate of TPR-based 
and weighting-based models is significantly higher compared to other 
models, with rates of 35 % and 26 %, respectively, in contrast to 12 % for 
TPR-based, and only 5 % for both hybrid and smart models. Despite 
better accuracy of multistep forecasting achieved by the weighting- 
based model compared to TPR and voting-based models, this model 
shows a higher miss rate of event forecasting. 

Comparing the results in Fig. 13 with those in Fig. 11, it can be seen 
that although the TPR-based model has better accuracy in multi- 

Fig. 8. Different examples of event-base performance assessment: (a–d) Non overflow events, (e–j) non-ended Overflow events, (k–n) ended Overflow events.  

Table 3 
Event-based performance assessment proposed for dynamic ensemble models.  

Miss class1 Hit class2 

Under Over Vice versa 

(A) (B) (C) Earlier Exact Late 
Average lag Under (D) – (E) 

Exact – (F) – 
Over (G) – (H) 

1: When the model cannot forecast the true conditions at any event such as non- 
flood for flood events and flood for non-flood events. 
2: When the model can forecast the event correctly regardless of any time lag. 
(A): When the model forecasts non-flood condition for all timesteps of flood 
event (see Figure F8f and F8l). 
(B): When the model forecasts the flood condition for all timesteps of non-flood 
event (see Fig. 8b, c, and d). 
(C): When the model forecasts non-flood for flood condition and flood for non- 
flood condition (see Fig. 8j and k). 
(D): When the model forecasts non-flood for flood condition earlier than the 
exact timestep (see Fig. 8i and o). 
(E): When the model forecasts non-flood for flood condition in timesteps later 
than the exact timestep (see Fig. 8h and o). 
(F): When the model forecasts all timesteps precisely (see Fig. 8a, e and l). 
(G): When the model forecasts flood for non-flood conditions earlier than the 
exact timestep (see Fig. 8g and m). 
(H): When the model forecasts flood for non-flood conditions later than the exact 
timestep (see Fig. 8n). 
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forecasting than the voting-based models, it shows a higher miss rate in 
events forecasting. This suggests this model is likely to forecast many 
non-flood events as flood conditions in real-time applications. On the 
other hand, a high rate of underestimation obtained by the weighting- 
based model can result in missing flood conditions and consequently a 

lack of proper risk action in the concept of early warning systems. 
The findings presented in Fig. 13b indicate that the voting-based 

model is unable to accurately forecast the behaviour of events, i.e., 
correctly predicting all timesteps in one event. Only 17 % of the total 
events are precisely forecasted by this model, whereas the TPR-based 

Fig. 9. Geographical map and hydrological data of the pilot study: (a) location of stations and layout of catchment, (b) Characteristics of recorded rainfalls and (c) 
layout of Ruislip UDS and catchment. 

Fig. 10. Performance of the potential rainfall features as input data of the WLDM models based on (a) PCA and PLS methods, (b) sensitivity analysis.  
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and weighting-based models demonstrate superior performance with 30 
% and 48 %, respectively. This implies that, while the miss rate of the 
voting-based model is significantly lower than that of the other two 
models (12 %), it primarily relies on overestimating flood conditions 
earlier or later than the actual event (32 % for later-under and 25 % for 
later-over conditions, respectively), potentially resulting in additional 
costs and unnecessary alert procedures in real-time systems. 

Conversely, the hybrid and smart models exhibit a miss rate of 
approximately 5 %, wherein flood events are primarily underestimated, 
as illustrated in Fig. 13a. Despite the hit rate of these models (Fig. 13b) 
being more than 90 %, the hybrid model could only forecast the event 
entirely in approximately half of the total events (52 % of the exact rate). 
Further scrutiny of events reveals that it is susceptible to overestimation 
in the latest timesteps (refer to Fig. 8g). Consequently, the hybrid model 
is best suited for the nearest lead time. On the other hand, it appears that 
the smart model is appropriate for real-time early warning systems due 
to its highest rate of exact forecasting (71 %), relatively lower rate of 
false alarms (13 % for later-over), and a lower rate of underestimation 
(7 % for earlier-under) in later timesteps. 

However, it is worth noting that these rates only reflect the quantity 
of forecasted events, and the quality of forecasting necessitates further 
analysis through lag time specification. The distribution of lag times for 
different overestimation and underestimation forecasting is presented in 
Fig. 13c and d. Although benchmark models exhibit high ranges of 
earlier and later lags, hybrid and smart models can reduce lag time by 
less than 1.5-timesteps (approximately 22 min). More importantly, the 
smart model’s low rate of underestimated lag time for forecasted events, 
whether earlier or later (1.2 and 1.1, respectively), alleviates concerns of 
missing long timesteps of overflowing. 

3.5. Further analysis and recommendation 

This study presents a time-series ensemble model that utilises water 
level and rainfall data as inputs to improve the accuracy of flood fore
casting. While this novel approach offers potential benefits in urban 
flood forecasting, further validations by other time-series models are 
necessary to assess its efficacy in diverse contexts. In order to generalise 
the findings, the proposed methodology underwent testing on two 
additional UDS stations: Eastcote and Willow Bank (Detailed 
geographical information can be found in Part 1 of Appendix C). This 
extension aimed to enhance the applicability of the approach to more 
complex and diverse geographic regions. The results clearly illustrate 
the superior performance of the proposed hybrid and smart model when 
compared to the benchmark models, as visualised in Fig. 14. However, 
the outcomes also reveal a noteworthy trend: as the distance between 
the rainfall station and the UDS increases, the accuracy of the models 
tends to decrease, as one would expect. For instance, in the case of 
Eastcote, where the rainfall station is situated at twice the distance from 
Willow Bank (5.09 km compared to 2.08 km), the accuracy of flood 
forecasting and hit accuracy both experience a reduction of approxi
mately 1.5 % and 2.5 %, respectively, for a 3 h ahead of forecasting. 
While this decline might not be drastic, it highlights the influence of the 
spatial separation between rainfall and UDS stations. Consequently, it is 
recommended that future research include sensitivity analysis focusing 
on the impact of the distance between the data source of rainfall and the 
UDS station. This becomes especially pertinent when dealing with 
alternative forms of rainfall data, such as satellite or radar data. More
over, despite the relatively consistent outcomes across different UDS 
stations, the applicability of this model should be further explored 
within real-time forecasting scenarios in other applications such as 
reservoir or river basins. This expanded investigation could lead to a 
broader range of practical applications for the developed model. 

The assessment delved into the influence of alternative available 
rainfall stations, encompassing scenarios where data from various sta
tions were combined. Diverse rainfall merging techniques, as outlined in 
Piadeh et al. (2022a), were evaluated and finally resulted in the selec
tion of two optimal techniques: KED (Kriging with external drift) for 
interpolation and MSF (multiquadric surface fitting) for bias adjustment. 
Additional details are provided in Part 2 of Appendix C. The findings, 
illustrated in Table 6, shows a compelling trend using a single rainfall 
station that exhibits stronger correlation with the UDS (refer to Part 1 in 
Appendix C) yields better results in comparison to scenarios where less 
correlated stations are integrated into the data mining models. At first 
glance, this outcome might seem to challenge recommendations from 
other research works, such as Zounemat-Kermani et al. (2020), Zoune
mat-Kermani et al. (2021), and Paideh et al. (2022a). However, it is 
important to recognise that the methodology employed here revolves 
around identifying flood events, encompassing both rainfall occurrences 
and rising water levels. The manipulation of more correlated rainfall 
data, coupled with the adjustment or interpolation of less correlated 
stations, can potentially alter the duration and intensity of rainfall 
events. This, in turn, exerts a significant influence on the proposed 
models, as previously elucidated in the feature analysis depicted in 
Fig. 10. This conclusion gains further support from the observation that 
the KED techniques are notably more sensitive to the data from other 
rainfall stations. This heightened sensitivity translates into a consider
able increase in the underestimation rate, particularly evident when 
employing the KED merging technique. This results in an upward spike 
of miss rates, exceeding 30 % for KED merging, in contrast to approxi
mately 20 % for MSF merging. 

Finally, data from two other rainfall stations, exhibiting stronger 
correlation, were integrated as eight additional features to construct 
WLDM models. This step aimed to assess the influence of these supple
mentary resources on the model’s accuracy (Further details can be found 
in Table C2 in Appendix C). The outcomes of the sequential sensitivity 
analysis conducted on these newly introduced features yield a notable 

Table 4 
Best WLDMs based on the selected three key performance indicators.   

KPIs 

Lead time CKR TPR TNR 

15 min DA (0.92) NB (87 %) DT (98 %) 
30 min DA (0.92) NB (88 %) DT (97 %) 
45 min KNN (0.90) NB (87 %) KNN (98 %) 
1 h GPR (0.90) NB (84 %) GPR (98 %) 
1:15 h:min DA (0.87) DA (83 %) DT (95 %) 
1:30 h:min KNN (0.87) DA (81 %) DT (95 %) 
1:45 h:min DA (0.85) NB (75 %) DA (95 %) 
2 h DA (0.85) DA (76 %) KNN (94 %) 
2:15 h:min KNN (0.80) NB (73 %) SVM (94 %) 
2:30 h:min NRP (0.80) NRP (70 %) SVM (93 %) 
2:45 h:min DA (0.79) NRP (67 %) SVM (94 %) 
3 h SVM (0.78) NB (66 %) SVM (94 %)  

Table 5 
Friedman test ranking of the WLDMs in each lead time.  

Timestep (Lead time) Average ranking of WLDM 

DA DT GPR KNN NB NRP SVM 

15 min (1.7) 5.9 3.3 2.1 5.3 4.6 5.1 
30 min (1.4) 6.1 4.0 2.4 5.0 3.7 5.4 
45 min 4.0 6.3 3.3 (1.7) 5.0 2.4 5.3 
1 h 3.0 6.0 (1.7) 3.3 5.4 4.3 4.3 
1:15 h:min (1.4) 5.9 4.3 2.1 5.6 3.1 5.6 
1:30 h:min 2.0 5.4 4.0 (1.3) 6.0 4.3 5.0 
1:45 h:min (1.1) 5.6 4.9 2.3 6.0 3.6 4.6 
2 h (1.3) 5.9 4.6 2.3 6.0 3.4 4.6 
2:15 h:min 3.0 6.4 4.9 (1.7) 5.3 2.4 4.3 
2:30 h:min 3.0 6.6 4.4 2.2 5.7 (1.9) 4.1 
2:45 h:min (1.7) 6.7 4.6 2.9 5.6 3.0 3.6 
3 h 3.1 6.9 4.3 3.3 5.0 (2.0) 3.4 
Average 2.23 6.13 2.30 5.49 3.23 4.01 4.61 
Rank 1 7 2 6 3 4 5  
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revelation: none of the newly incorporated features succeeded in 
enhancing the accuracy of the WLDM models. Specifically, the param
eters of depth and peak depth displayed minimal impact on model ac
curacy, effectively registering near-zero improvements. Moreover, when 
considering extended lead times, the inclusion of duration from other 
rainfall stations as an additional rainfall feature shows a significant 57 % 
decrease in accuracy for forecasting flood classes in next 12-timestep 
ahead. This outcome strongly indicates that the model misconstrues 
the primary rainfall characteristics, causing it to lose its ability to discern 
the prevailing conditions upon the addition of other rainfall events. This 
result suggests that the model’s performance can be affected when 
confronting with the incorporation of rainfall events from secondary 
sources. 

Besides, as mentioned earlier, this model follows a direct relationship 
between rainfall data and UDS water level. The other approach i.e., 

providing rainfall forecasting and using its output for forecasting water 
level should also be tested and compared with this approach. Addi
tionally, the selected KPIs for the latest lead times require improvement, 
which can be achieved by partitioning water level data into more classes 
or incorporating classified rainfall data to develop models. The proposed 
model also serves as a comparative analysis and requires further eval
uation and enhancements to ensure its effectiveness in diverse settings. 

4. Conclusions 

This paper presented a dynamic ensemble data mining modelling 
approach for real-time flood forecasting, with a focus on its application 
in urban drainage systems. The study analysed the main rationales 
behind the event identification method, rainfall feature extraction, the 
development of different WLDMs, and the blended ensemble 

Fig. 11. Performance of the time-series ensemble models for each lead time: (a) TPR -based, (b) voting-based, (c) weighting-based, (d) hybrid, and (e) smart models.  
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approaches. The approach combined time-series forecasting with an 
ensemble modelling technique to improve the accuracy of non-flood and 
flood detection, particularly for longer timesteps, which has yet to be 
properly addressed in previous attempts. The use of applied data cubes 
and data warehouse significantly aids in constructing the real-time 

platform, and the KPI performance of WLDMs for blended ensemble 
models shows advances in developing an efficient early warning system. 
While the framework is applied to a case study, the main research 
findings are summarised as follows: 

Fig. 12. Performance of the dynamic ensemble models for three event examples: (Left): non-flood event, (Middle): flood event occurring in the middle and 
continuing after 3 h, (Right) flood occurring and finishing within 3 h, (a–c): TPR-based, (d–f): voting-based, (g–i): weighting-based, (j–l): hybrid, (m–o): 
smart models. 
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- The smart model achieved a higher accuracy in forecasting events 
(71 %), with a correct classification of all timesteps in each event 
without any lag time. This was higher than the hybrid model’s ac
curacy of 52 % and the weighting-based model’s accuracy of 48 %. 
This results in reducing false alarms, unnecessary risk management 
actions, and extra costs in real-time early warning applications.  

- Although both the voting-based hybrid model and decision-based 
smart model achieved a hit rate near 90 % for 3 hrs ahead of fore
casting, the higher rate of the hybrid model mainly relied on suc
cessful forecasting of non-flood events. This finding was supported 
by a significant reduction (20 %) between 15 min and 3 hrs flood 
forecasting rates.  

- The event-based miss rate of the smart model was limited to only 5 
%. 13 % of the total event-based hit rate was forecasted with an 
average of 1.1 overestimation lag time (16 min earlier) and 7 % was 
forecasted with an average of 1.3 underestimation lag time (20 min 

later). These lag times were significantly better than the at least 30 
min delay or 40 min earlier flood forecasting reported by other 
developed models.  

- Comparison of different event-based hit rates, i.e., with or without 
lag time flood forecasting, shows that there is no correlation between 
the distribution of lag time and their values. For example, the rate of 
flood forecasting with earlier false alarm (EO) is very small for the 
voting-based model (1.43 %) in comparison to the rate of overflow 
forecasting with later overestimation (LO) (25 %). However, the 
value of the EO lag time is documented more than the LO lag time 
(3.2 vs. 2.1). This finding highlights the importance of both the 
quantity (rate of different hits) and quality (average lag times) of 
event-based performance assessment to provide a comprehensive 
evaluation of models in forecasting different events.  

- The proposed features named “short time history of past rainfall” and 
“seasonal time occurrence of current rainfall” significantly improved 

Fig. 13. Event-based performance of the ensemble models: (a) event miss rate, (b) event hit rate, (c) average overestimation time lags, (d) average underestimation 
time lags. 
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the accuracy of the WLDMs. Rainfall duration and rainfall intensity 
had a greater impact on WLDM accuracy than other rainfall char
acteristics such as total depth or peak depth. 
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Fig. 14. Performance of the time-series ensemble models for each lead time: (left): Eastcote UDS station, (right) Willow Bank UDS station, (a and b) best performed 
benchmark model, (c and d) hybrid model, and (e and f) smart model. 

Table 6 
Miss rate of the developed ensemble models for other merging models.  

Model Miss class rate (%) Total rate (%) 

Under Over Vice versa 

Hybrid model 
Best correlated Single station 1.79 2.44 0 4.23 
KED merging 25.47 4.76 0 30.22 
MSF merging 11.46 7.97 0 19.43 
Smart model 
Best correlated Single station 4.18 1.23 0 5.41 
KED merging 26.87 10.68 0 37.54 
MSF merging 10.94 8.09 0 19.03 

KED: Kriging with external draft MSF: Multiquadric surface fitting. 
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