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Abstract

Pairwise relations are ubiquitous. They occur in any population where individual
items are identifiable and interact somehow. Based on these pairwise interactions,
it is often of interest to discern a rating — a value reflecting the degree to which an
item has some quality, a ranking — an ordering with respect to some quality, or to
identify communities of items and the nature of those. In this thesis, I am primarily
interested in examples where we might be guided in this practice by something
other than purely pragmatic concerns of computational efficiency, predictive ability
or familiarity, but rather by more principled motivations.

The thesis comprises five chapters, each an independent reflection related to this
subject. The first three chapters deal with aspects of those principled motivations.
Chapter 1 looks at motivations for a particular well-known statistical rating model,
the Bradley-Terry model. Chapter 2 takes a fundamental question in the philosophy
of ranking, looking at the nature of the relation that ranking exercises often seek
to model by addressing the philosophical controversy over the transitivity of the
‘better than’ relation. Chapter 3 presents an argument, based in sports philosophy,
for principles that should guide the selection of ranking models in the context of
competitive sport. In Chapter 4, I turn to an example of the practice of ranking based
on pairwise comparison, investigating the statistical measures used to assess the
reliability of rating exercises in Comparative Judgement, an educational assessment
practice. In Chapter 5, I consider an example of community detection, identifying
the relative importance of different factors in the propensity for school rugby union
fixtures to exist and thus giving clues as to the nature and extent of the ‘old boy’
network.
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Introduction

Pairwise relations appear in many contexts. They may occur organically, such as in
food webs, the internet, or protein, economic or social networks, or be stimulated for
some purpose, such as in sports tournaments or as a means of assessment. Some-
times, the relationship is hierarchical, most obviously in the form of a contest, for
example in sport or in competitive animal behaviours. Sometimes, the relationship is
associative, maybe even purely reciprocal, for example Facebook friendship or trans-
port links between cities. Often, the pairwise relationship has both a hierarchical
and an associative component and we may be interested in either or both of these
features. For example, in an academic citation network, defined by the pairwise re-
lation of one paper citing another, we may be interested in the hierarchical — the
influence of particular papers, authors, journals or topic fields. Alternatively we may
wish to investigate the associative relations — determining communities of academic
endeavour based on the citation network. This thesis deals mostly with hierarchical
relations, and the endeavour of rating or ranking. ‘Rating’ is taken to mean the
assignment of a value to an item on some common scale, with ‘ranking’ being the
ordering of the items, often, though not always, based on a rating, both with respect
to some quality of interest. I also look at a question of association.

Faced with the task of ranking a set of items based on their pairwise relations,
there are a cornucopia of options. For example, leaning on the taxonomy offered
by De Bacco et al. (2018), there are: spectral methods, such as PageRank (Page
et al., 1999), Eigenvector centrality (Bonacich, 1987), or Rank centrality (Negahban
et al., 2017); ordinal ranking mathods, free from ratings, such as Minimum Violation
(Slater, 1961; Ali et al., 1986), SerialRank (Fogel et al., 2014), and SyncRank (Cu-
curingu, 2016); axiomatic approaches from the Social Choice literature such as Fair
Bets (Daniels, 1969; Slutzki and Volij, 2005) or Generalized Row Sum (Chebotarev,
1994); methods motivated from particular fields such as Colley and Massey matrix
methods from sport (Colley, 2002; Massey, 1997), trophic levels from ecology (Linde-
man, 1942), or Trueskill from online gaming (Herbrich et al., 2006); statistical models
such as the Bradley-Terry (Zermelo, 1929; Bradley and Terry, 1952) and Thurstone-
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Mosteller (Thurstone, 1927b; Mosteller, 1951) models; and exchange-based models
such as Elo ratings (Elo, 1978). Besides these, there are often context-specific or
tweaked or rediscovered versions of the above. How then to choose an approach?

Often, that decision may be driven by pragmatic concerns. Sometimes the size of
the data set or the speed requirement of the response forces computationally cheap
approaches to be preferred. Sometimes predictive ability will be a determining factor.
For example, if one is paid by having a user click on a link then it is of commercial
interest to offer links that are most likely to be clicked on (prediction) as quickly
as possible (computational speed). Sometimes, familiarity of an approach might be
a concern for the modeller. It may be attractive to use an approach with which
they are comfortable and about which they know the pitfalls. In this thesis, I am
primarily interested in examples where we might be guided by something other than
these pragmatic concerns, rather by more principled motivations.

In Chapter 1, I consider this question through an investigation of the Bradley-
Terry model. The work seeks to bring together a diverse set of motivations for its
use. Some of these motivations will be context-specific, such as those related to
penalty shoot-outs or decision-making constructs, meeting the conditions of partic-
ular situations and assumptions. Others will be much more broadly applicable, such
as those that appeal to constrained simplicity, entropy or likelihood maximisation
or the Bradley-Terry model’s status as the unique model whereby the number of
wins for each item is a sufficient statistic. This chapter includes well-known, lesser-
known and novel motivations, as well as linkages between them. In doing this, I
lay the foundation for the Bradley-Terry model’s later use in a practical situation in
Chapter 4.

In Chapter 2, a fundamental controversy from the Philosophy literature related
to ranking is addressed — the transitivity of ‘better than’. If A is better than B and
B is better than C, is A better than C? Transitivity is a definitional assumption to
the exercise of ranking, but, as I argue, it may not be true. In particular, I discuss
the difficulty of reconciling a pairwise notion of ‘better than’ with a population-level
notion of ‘better than’. I make an argument that there may be situations where the
pairwise unit is so fundamental to the context that ‘better than’ should be understood
primarily on a pairwise basis and therefore may be intransitive. The main argument
is presented in the clarifying context of competitive sport, most relevant to this
thesis. But it is also shown how the argument may be extended to more directly
address the philosophical controversy in a moral realm.

In Chapter 3, the question of what principles ought to guide ranking is considered
from a philosophical perspective and in relation to a context with popular appeal,
that of sports ranking in unbalanced league tournaments. In these tournaments, the
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schedules of participating teams may vary substantially in the strength of opposi-
tion, the number of matches played, and the proportion of matches played at home.
Perhaps the most high-profile unbalanced league ranking exercise in the world, the
annual selection of NCAA basketball teams for participation in the March Madness
tournament, is taken as an example. The aim of this chapter is not to argue for
any single ranking method, but to attempt to make a rigorous argument for what
criteria a ranking approach in that setting should seek to meet. The argument is
based on the norms of sports ranking, well-established across many sports, includ-
ing basketball, in the USA and worldwide. A set of seven principles are argued for
that may be used to guide the selection of a ranking method. The current approach
in NCAA basketball is found to be deficient with respect to these principles and
recommendations for change are made.

With Chapter 4, we move on to an example of rating based on pairwise com-
parison as it is practised. Comparative Judgement (CJ) is the exercise of rating a
population of items by ranking subsets of the population. In the majority of cases,
and in the example dealt with here, that subset consists of two items and therefore a
pairwise comparison. The use of CJ in education has been growing, with it recently
being employed in primary and secondary schools and universities in the U.K. It
has appealing features. For example, advocates of the approach argue that it: allows
more holistic assessment, mitigating ‘teaching to the test’ and allowing the evaluation
of tasks not well-suited to rubrics; greatly reduces the impact of judge inconsistency;
allows for robust progress and cohort comparisons against meaningfully age-graded
scales; and, in the context of peer assessment, can turn the provision of marks into
a formative learning experience.

However, the efficiency of the approach — the amount of assessor time taken to
produce assessments of a sufficient reliability — has been questioned. A natural way
to improve efficiency would be to attempt to optimise the scheduling of the pairwise
comparisons. But such efforts have been frustrated by the inflationary impact they
have on the measures used to evaluate the reliability of an assessment. Chapter 4
is grounded in that CJ literature and its aim is to explain why these measures may
be misleading and what might be done about it. It highlights elements, such as the
importance of the estimation method and the nature of bias in this context, that
seem to be under-appreciated within that literature, and discusses the practical and
conceptual limitations of current measures.

Chapter 5 pivots to considering an example of associative relationships. It takes
data from school sports fixtures to investigate the nature of what leads to fixtures
occurring in schoolboy rugby union and therefore perhaps to the nature of institu-
tional links, and thus what might be termed the ‘old boy network’. It demonstrates
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how a variety of statistical methods related to a latent space approach can be used
to give a consistent but nuanced interpretation of the situation.

The five chapters that constitute this thesis may be read as five independent
reflections on various aspects of the nature of pairwise relations and a quantitative
understanding of them. Nevertheless, there are links across them that are highlighted
and it is to be hoped that they reflect a cohesive perspective in advocating for a broad
consideration on the quantitative approaches taken in the investigation of pairwise
relations, and that in each instance they provide novel and useful insights.
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Chapter 1

The many routes to the ubiquitous
Bradley-Terry model

Abstract

The rating of items based on pairwise comparisons has been a topic of statistical
investigation for many decades. Numerous approaches have been proposed. One
of the best known is the Bradley-Terry model. This chapter seeks to assemble and
explain a variety of motivations for its use. Some are based on principles or on
maximising an objective function; others are derived from well-known statistical
models, or stylised game scenarios. They include both examples well-known in the
literature as well as what are believed to be novel presentations.

1.1 Introduction

The first conference that the author attended as a PhD student was an American
sports statistics conference. He presented a poster related to the Bradley-Terry
model. As a retrodictive model on rugby union in a sea of American sports predic-
tions it felt a little out of place. But a kind attendee took pity on him and decided
to engage him with a question. She asked: “Why would I choose Bradley-Terry
rather than the Thurstone model?” (by which he took her to mean what is more
commonly referred to as the Thurstone-Mosteller model). He flummered a vague re-
sponse involving analytic niceness and simplicity — he suspects Occam’s razor even
got a mention. She looked suitably unconvinced. It is to be hoped that this chapter
represents a more ordered response to the conference interlocutor and an aggrega-
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tion of, as David (1988, p.13) puts it in his canonical survey of pairwise comaprison
methods, “the many routes to the ubiquitous Bradley-Terry model.”

The main original contribution of the work is in aggregating the motivations for
the Bradley-Terry model. This is an updating of and addition to Bradley (1976),
and the relevant parts of David (1988), with the presentations of Sections 1.3, 1.5,
1.6, and 1.7 not discussed in those works. In doing so, it takes in a diverse scope of
motivating ideas including likelihood and entropy maximisation, psychological choice
and sensation models, a prominent Markov chain Monte Carlo method, other well-
known rating models such as PageRank and the RPI of American college sports,
sudden-death play-offs, pub pool norms and the British playground game of conkers.
It is hoped that such an aggregation serves to demonstrate the broad appeal of the
Bradley-Terry model in many settings.

The chapter also offers a number of novelties including: the explicit discussion
of the Bradley-Terry model in the context of an exponential family of distributions,
which provides a uniting theme to a number of the more notable motivations; a
formalisation of perhaps the most intuitive motivation for the model, by proposing an
explicit measure for the simplicity of a model in the pairwise comparison scenario and
showing that, under plausible constraints, Bradley-Terry is the model that maximises
this measure; and a demonstration of how the ideas behind the ranking method of
Wei (1952) and Kendall (1955) and the heursitic of the Ratings Percentage Index
(RPI) can be related to the Bradley-Terry model through Perron-Frobenius Theorem.

The scenario under consideration in this chapter is one where there is a desire
to create a ranking of items based on the observation of a set of binary-outcome
pairwise comparisons. One popular approach to creating rankings is to construct a
uni-dimensional rating, and then order items by their ratings. The Bradley-Terry
model achieves this by defining the probability of a preference for alternative i over
alternative j in a pairwise comparison as

pij =
πi

πi + πj

,

where πi is a positive-valued parameter that may be interpreted as a rating of alter-
native i, with a higher rating indicating greater ‘strength’ or ‘worth’. An equivalent
characterisation is to consider it as a member of the class of generalised linear models
(McCullagh and Nelder, 1989) with

F (pij) = λi − λj,

where λi is a real-valued parameter indicating the strength of i, and F is taken as
the logit function. The Thurstone-Mosteller model (Thurstone, 1927a; Mosteller,
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1951), about which the interlocutor asked, is derived from taking F to be the probit
function instead. In practice, as Stern (1992) notes, the models are often empirically
very similar.

The Bradley-Terry model has formed the basis for many models in many contexts
over time including those for journal citations (Stigler, 1994), college sports (Wobus,
2007), animal behavior (Stuart-Fox et al., 2006), risk analysis (Merrick et al., 2002),
wine tasting (Oberfeld et al., 2009), university ranking (Dittrich et al., 1998), font
selection (O’Donovan et al., 2014), exam marking (Pollitt, 2012b), and of course in
chess, which was the subject of the original work by Zermelo (1929), as well as being
the subject of the popular closely-related ranking method proposed by Elo (1978),
which is widely known and is still in use in the sport today.

Originally documented by Zermelo (1929), the Bradley-Terry model took the
name by which it came to be commonly known when Bradley and Terry (1952)
independently rediscovered it. Following the work of Thurstone (1927a,b,c) and
Zermelo (1929), paired comparison methods saw little development for the best part
of a quarter of a century until they became an active area of investigation in the 1950s
and 60s. Much of this work took place in the context of the psychological literature,
with Luce’s Choice Axiom (Luce, 1959) a particularly notable contribution, leading
to the model sometimes being referred to as the Bradley-Terry-Luce (BTL) model.
A number of these works showed how the Bradley-Terry model could be derived
based on highly plausible axioms or desirable model features (Good, 1955; Luce,
1959; Bühlmann and Huber, 1963; Luce and Suppes, 1965). Towards the end of this
period, Thompson and Singh (1967) demonstrated that a consideration of extreme
value distributions within a discriminal process leads to the Bradley-Terry model,
and Daniels (1969), in a highly original paper, noted the links between the Bradley-
Terry model and what might now be recognised as an undamped PageRank (Page
et al., 1999).

For further details of the development of the model up to this point David (1988)
provides a thorough account of the paired comparison literature more generally,
Davidson and Farquhar (1976) provides an interesting snapshot of the literature
related to the Bradley-Terry model at the end of this period, and Glickman (2013) is
a highly readable account of the history, particularly as it pertains to the contribution
of Zermelo.

The next significant contributions to motivating the Bradley-Terry model came
from Henery (1986) and Joe (1988) in identifying the model as the result of max-
imising an objective function subject to a suitable constraint. The later work (Joe,
1988) seems to have been unaware of Henery (1986), but provides a more complete
presentation. As well as considering the Bradley-Terry model as a maximum en-
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tropy model and noting its relationship to an appropriate sufficient statistic, Joe
(1988) also explicitly notes the link to a maximum likelihood derivation. A number
of motivations in this chapter are based on game-style scenarios. Perhaps the most
interesting paper related to this also comes from this period (Stern, 1990).

More recently Slutzki and Volij (2006), Negahban et al. (2012), Maystre and
Grossglauser (2015) and Selby (2020) provide more detailed accounts of the link
between the Bradley-Terry model and the limiting distribution of a Markov Chain,
and thereby to an undamped PageRank. The Social Choice literature provides an
interesting perspective, of which Slutzki and Volij (2006) is perhaps the most notable
example in the present context. Much of the relevant work investigates axiomatisa-
tions of ranking methods, with Chebotarev and Shamis (1998) providing a thorough
summary of considered conditions. An early and influential contribution of this type
was due to Rubinstein (1980), which in axiomatising the number of wins as a rating
in the very specific case of a round-robin tournament with a single round could be
interpreted as a motivation for Bradley-Terry under those conditions (further details
of Rubinstein’s axiomatisation are discussed in Chapter 3).

The chapter proceeds by dividing the motivations up into six types: axiomatic
motivations; objective function maximisation; discriminal processes; standard mod-
els; game scenarios; and quasi-symmetry and consistent estimators. These cate-
gorisations are somewhat arbitrary, and linkages exist across them which will be
highlighted, but for the present purpose they provide a useful means to order the
work. It begins with Section 1.2, the discussion of axiomatic approaches, which
takes as a starting point features that one might reasonably desire of a pairwise
comparison model. A number are very closely linked and might even be thought of
as restatements of the same idea, but the intuitions behind them differ sufficiently,
as evidenced by their separate appearances in the literature, such that they are
presented separately here.

In Section 1.3, the selection of a rating model is cast in the familiar framework
of a constrained optimisation. This also leads to a discussion of the Bradley-Terry
model in the context of an exponential family of distributions, which provides a
natural link to the axiomatic approaches of Section 1.2. Section 1.4 takes the context
of Thurstone’s discriminal processes, and discusses the distributions that lead to
a Bradley-Terry model under this set-up, and how they might be motivated. In
Section 1.5, it is noted how the Bradley-Terry model is apparent in other well-known
statistical models, as a conditional form of Rasch, hazard and network models. In
Section 1.6, some examples are introduced that derive from realistic game scenarios
picking up on the highly intuitive nature of the model. In Section 1.7, the quasi-
symmetry model is discussed, and is used to show how the often intuitive approaches
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that underlie a number of other popular rating methods can be related to Bradley-
Terry and produce consistent estimators for the Bradley-Terry strength parameters.
This also leads to noting the link to Barker’s algorithm, a popular Markov chain
Monte Carlo method. In each subsection, the reference given in the title is that of
the earliest work linking the approach explicitly to the Bradley-Terry model, and
the subsections are ordered chronologically by these. The sections are ordered with
statistical interest and chronology in mind. In the final section some short concluding
remarks are made.

Throughout the chapter, pij will be the probability of i beating j or for a prefer-
ence for i over j, where i, j ∈ T and T is of size n. The n× n data matrix C = [cij]
will be the ‘competition’ matrix of preferences or wins, such that cij is the number
of preferences for i over j. M = C + CT is defined as the symmetric matrix where
mij is the number of comparisons, or ‘matches’ in sports parlance, between i and j.
C is taken to be irreducible, that is, as described by Ford Jr (1957, p.29): “[I]n every
possible partition of the objects into two non-empty subsets, some object in the sec-
ond set has been preferred at least once to some object in the first set.” This ensures
that strength estimates are finite. It is not assumed that there are the same number
of comparisons between any two items, nor indeed that the number of comparisons
between any two items is non-zero. Where appropriate, the language of sports —
contests, scores, teams — is used to aid in providing clear interpretability, though
the motivations may often be analogised outside this context.

1.2 Axiomatic motivations

It is sometimes possible to fix properties that we would desire of a model and use
them to derive a unique model. In this section we consider such properties that lead
to the Bradley-Terry model.

1.2.1 Transitivity of odds (Good, 1955)

Consider four teams i, j, k, l. Suppose that the probability that j beats k is greater
than the probability that j beats l,

pjk > pjl,

then it is intuitive to think that the probability that i beats k will be greater than
the probability that i beats l,

pik > pil.
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A simple way to enforce this would be by insisting on the transitivity of odds as
Good (1955) proposes, that is

pij
pji

× pjk
pkj

=
pik
pki

.

Alternatively one might think of the same condition in the manner that Luce and
Suppes (1965) refers to it as the product rule, where for any triple (i, j, k) the prob-
ability of the intransitive cycle i beats j, j beats k, k beats i is the same as that of
the intransitive cycle i beats k, k beats j, j beats i, expressed

pijpjkpki = pikpkjpji for all triplets (i, j, k).

Strang et al. (2020) characterise this as an ‘arbitrage free’ condition and it is also
known as Kolmogorov’s criterion (Kolmogorov, 1936; Kelly, 1979).

Jech (1983, p. 249) provides a sketch justification for the principle that we adapt
here. Suppose we wish to estimate the odds of an item i beating an item k. We
estimate the odds of i beating k by the ratio of the number of times i beats k to the
number of times k beats i. However, suppose we can compare objects i and k only
indirectly by comparing i with j and j with k. We do this by determining that if i
beats j and j beats k then we consider that i has beaten k. If i loses to j and j loses
to k then we consider that k has beaten i. For other result combinations (i beats
j and k beats j, or j beats i and j beats k) we reserve judgement. We repeat this
operation M times and allow M to be very large

pik
pki

= lim
M→∞

(number of times i beats k)

(number of times k beats i)
=

Mpijpjk
M(1− pij)(1− pjk)

=
pij
pji

pjk
pkj

Jech (1983, p.246) claims that this leads to the “one and only one correct way of
comparing the records of teams in an incomplete tournament”, which seems a little
bold, but it is nevertheless useful for understanding the appealing intuition behind
the property.

Returning to how it leads to the Bradley-Terry model, it may alternatively be
expressed as

log
pij
pji

+ log
pjk
pkj

= log
pik
pki

.

Letting pij/pji = exp(τ(θi, θj)), where θi can be thought of as a parameter summaris-
ing the strength of i, then

τ(θi, θj) + τ(θj, θk) = τ(θi, θk).
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Then setting θj = θi, it may be noted that τ(θi, θi) = 0 for all i. By setting θk = θi
it may be noted that τ is an antisymmetric function. Further by differentiating with
respect to θi it may be noted that the partial derivative of τ(θi, θj) with respect to θi
is independent of θj, so that τ(θi, θj) is some function of θi alone plus some function
of θj alone, and since τ is antisymmetric it must be of the form t(θi)− t(θj).

Now t(θi) may be taken as an increasing continuous function of θi, and λi = t(θi)
can be used as a parameter for the strength of i also, so that

pij
pji

= exp(λi − λj) for all i, j,

giving the Bradley-Terry model.

1.2.2 Luce’s Choice Axiom (Luce, 1959)

Let pS(i) be the probability that item i is chosen from a set S ⊆ T , then a complete
system of choice probabilities satisfies Luce’s Choice Axiom if and only if for every i
and for S ⊆ T

pS(i) =
pT (i)∑

k∈S pT (k)
.

The choice axiom is a version of the decision theory axiom of the independence
of irrelevant alternatives, the idea that a choice from S is independent of the other
choices available in T . Luce (1959) introduces it with the assertion that many choice
situations are characterised by a multistage process, whereby a subset of the total
choice set is selected, from which further subsets are selected iteratively, until a single
choice is made from one of these subsets. While it is noted that the final result is
likely to depend on these intermediate categorisations for complex choices and a
multistage process, for a simple decision and a two stage process, it is argued that
the two-stage choice, reflected by the product pS(i)

∑
k∈S pT (k), does not depend on

S, and by setting S = T it is apparent that this must be pT (i). The Choice Axiom
has also been motivated by appealing to the decomposition of a full ranking model
(Block and Marschak, 1960, Theorem 3.6), to invariance under uniform expansion
of the choice set (Yellot, 1977), and under specific assumptions in a consideration of
the utility of gambling (Luce et al., 2008).

A complete system satisfies the Choice Axiom if and only if there exist a set of
numbers π1, π2, . . . πn such that for every i and S ⊆ T

pS(i) =
πi∑
k∈S πk

.
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In order to see this, let
πi = κpT (i), κ > 0,

then

pS(i) =
pT (i)∑

k∈S pT (k)

=
κpT (i)∑

k∈S κpT (k)

=
πi∑
k∈S πk

.

πi is unique up to a multiplicative constant since suppose there is another π′
i satisfying

this condition, then

πi = κpT (i) =
κπ′

i∑
k∈T π′

k

,

and setting κ′ = κ/
∑

k∈T π′
k then π = κ′π′

i

Taking S to be the two member set {i, j} gives the Bradley-Terry model.

1.2.3 Reciprocity (Block and Marschak, 1960)

What might be thought of as an alternative expression of the Choice Axiom is noted
in Block and Marschak (1960, p.103). The idea is that the odds of i beating j should
be equivalent to the ratio of strength parameters of i and j.

pij
pji

=
πi

πj

for all i, j .

Of course this condition can be framed in other familiar equivalent terms, either as
detailed balance, more typically expressed as

pijπj = pjiπi for all i, j,

or that the irreducible, positive recurrent, aperiodic Markov chain for which P =
[pij] is the transition matrix is reversible, which itself is the case if and only if
the transitivity condition of Section 1.2.1 holds (Kelly, 1979). This condition leads
immediately to

pij =
πi

πi + πj

.
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1.2.4 Points as a sufficient statistic (Bühlmann and Huber,
1963)

Suppose wi =
∑

j cij are the wins gained by team i and that the vector w =

(w1, w2, . . . , wn)
T is a sufficient statistic such that the likelihood is dependent on

C only through w.
Consider the comparison matrix C = [cij] with ckl, clm, cmk non-zero, for the

triplet (k, l,m) where without loss of generality k < l < m. Now consider an
alternative C ′ with c′kl = ckl − 1, c′lm = clm − 1, c′mk = cmk − 1 and c′lk = clk + 1,
c′ml = cml + 1, c′km = ckm + 1, and all else the same. Then the score vectors are
identical and so if score is a sufficient statistic then the likelihoods must also be
identical. The likelihood is ∏

i<j

(
mij

cij

)
p
cij
ij (1− pij)

mij−cij ,

so that the log-likelihood, up to a constant term, is∑
i<j

cij log

(
pij

1− pij

)
+mij log(1− pij).

Setting these equal for C and C ′, we get that

(ckl − c′kl) log
pkl
plk

+ (clm − c′lm) log
plm
pml

+ (cmk − c′mk) log
pmk

pkm
= 0,

and so
log

pkl
plk

+ log
plm
pml

+ log
pmk

pkm
= 0,

by the specifications of c′kl, c
′
lm, c

′
mk, giving the Bradley-Terry model following the

same argument as in Section 1.2.1.

1.3 Objective function maximisation

It is a common procedure in quantitative analysis to identify an appropriate objective
function and seek to maximise that function under certain plausible constraints.
Indeed the familiarity of such procedures makes these motivations perhaps some of
the most persuasive in the use of the Bradley-Terry model. In this section, four such
maximisations are presented. There is also discussion of the model in the context
of an exponential family of distributions, which provides a link between the entropy
and likelihood maximising motivations of this section and the motivations presented
in Section 1.2.
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1.3.1 Maximum entropy with retrodictive criterion (Hen-
ery, 1986; Joe, 1988)

Consider an objective function S(p), which is a function of the probabilities pij. We
wish to maximise this objective function subject to some identified criterion. The
proposed constraint is that of the ‘retrodictive criterion’, that the observed number
of wins for each team is equal to the expected number of wins given the matches
played. That is ∑

j ̸=i

cij =
∑
j ̸=i

mijpij for all teams i.

A justification for this criterion was pithily expressed by Stob (1984): “What sort of
a claim is it that a team solely on the basis of the results should have expected to
win more games than they did?”1

Turning to the objective function, the approach of maximising entropy is common
in statistical physics. Entropy is a measure of the uncertainty of a random variable.
By maximising it, roughly speaking, the assumptions in the model are minimised.
Jaynes (1957) influentially advocated for the choice of entropy in a broader range
of statistical settings, building on the ideas from information theory of Shannon
(1948). Good et al. (1963) provides further discussion noting “[t]he mere fact that
the principle of maximum entropy generates classical statistical mechanics, as a null
hypothesis, would be sufficient reason for examining its implications in mathematical
statistics.” Luce (1959), on the other hand, casts doubt on its applicability to choice
contexts. In this setting, the entropy is defined as

S(p) = −
∑
i ̸=j

mijpij log pij = −
∑
j<i

mij(pij log pij + (1− pij) log(1− pij)).

We consider maximising the entropy subject to the retrodictive criterion using the
method of Lagrange multipliers

L(p,η) = S(p)−
n∑

i=1

ηi

( n∑
j=1,j ̸=i

(mijpij − cij)

)
,

and setting ∂L
∂pij

= 0 for all pij in the normal way gives that

∂S(p)

∂pij
=

∂

∂pij

n∑
r=1

ηr

( n∑
s=1,s ̸=r

(mrsprs − crs)

)
for all i, j.

1As will be discussed further in Chapter 4, this could be seen as failing to appreciate the bias
present from finite observations. Nevertheless, it reflects the intuitive appeal of the condition.
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So that for all i, j such that mij ̸= 0,

− log pij + log(1− pij) = ηi − ηj,

or equivalently

pij =
πi

πi + πj

,

where πi = exp(−ηi), and it can readily be checked by differentiating S(p) that this
is a maximum.

1.3.2 Maximum likelihood estimation with retrodictive cri-
terion (Joe, 1988)

Suppose the probability of i being preferred to j is given by

pij = f(λi, λj),

where λi and λj are real-valued parameters describing the strength of items i and j,
and f : R× R → [0, 1]. Then the likelihood function is given by

L(λ) =
∏
i<j

(
mij

cij

)
p
cij
ij (1− pij)

mij−cij =
∏
i<j

(
mij

cij

)
p
cij
ij p

cji
ji ,

and the log-likelihood function, ignoring the constant term, is

l(λ) =
∑
i<j

cij log(pij) + cji log(pji).

The log-likelihood may be maximised under the constraint of the retrodictive crite-
rion, that the number of wins for each team is equal to the expected number of wins
given the matches played,∑

j

cij =
∑
j

mijpij for all teams i.

At an extreme point of the log-likelihood, for all k,

0 =
∂

∂λk

l(λ) =
∑
j

ckj
∂

∂λk

log(pkj) + cjk
∂

∂λk

log(pjk).
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Considering the constraint we note that

0 =
∑
j

ckj −mkjpkj =
∑
j

ckj − (ckj + cjk)pkj

=
∑
j

ckj(1− pkj)− cjkpkj

=
∑
j

ckj(1− pkj)− cjk(1− pjk),

and so there is an extreme point where

∂

∂λk

log(pkj) = (1− pkj)

∂

∂λk

log(pjk) = −(1− pjk),

which gives

∂pkj
∂λk

= pkj(1− pkj)

∂pjk
∂λk

= −pjk(1− pjk).

Solving these separable differential equations for pij gives

pij =
1

1 + e−(λi−λj)

=
πi

πi + πj

where πi = eλi , and as before this is a maximum since the log-likelihood is strictly
concave. So that the Bradley-Terry model is the likelihood maximising model.

1.3.3 The Bradley-Terry model as an exponential family of
distributions

Consideration of the maximum likelihood and maximum entropy motivations in the
context of an exponential family of distributions (Pitman, 1936; Koopman, 1936;
Darmois, 1935) provides a link to the motivations of Section 1.2. Following Geyer
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(2020), a statistical model is an exponential family of distributions if it has a log-
likelihood of the form

l(θ) = ⟨y, θ⟩ − k(θ),

where y is a vector-valued canonical statistic; θ is a vector-valued canonical param-
eter; ⟨., .⟩ represents an inner product; and k is a real-valued function, the cumulant
function, which is defined such that ∇k(θ) = Eθ(Y ) . In seeking a maximum likeli-
hood estimate, the derivative is taken and set equal to zero

0 = ∇l(θ) = y −∇k(θ) = y − Eθ(Y ),

by the definition of the cumulant function within an exponential family.
In the model discussed here the likelihood is∏

i<j

(
mij

cij

)
p
cij
ij (1− pij)

mij−cij ,

so that the log-likelihood, up to a constant term, may be taken to be

1

2

∑
i,j

cij log

(
pij

1− pij

)
+mij log(1− pij),

and may be rewritten in the form

l(θ) =
1

2

∑
i,j

cijθij −mij log(1 + eθij),

where θ is the canonical parameter, a vector of length n(n − 1) corresponding to
the directed pairwise comparisons, and with θij = log(pij/(1 − pij)); the canonical
statistic vector y takes scaled outcomes cij/2 as its elements; and the cumulant
function is k(θ) =

∑
i,j mij log(1 + eθij)/2.

What Geyer et al. (2007) refer to as an affine canonical submodel may be parametrised
through the linear transformation

θ = a+Xβ,

where a is an offset vector, X is a design matrix, and β is the canonical parameter
for the submodel, giving a log-likelihood of

l(β) = ⟨XTy, β⟩ − kSUB(β),
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where kSUB(β) = k(a + Xβ), so that this defines a new exponential family with
canonical statistic vector XTy, canonical parameter vector β, and cumulant function
kSUB.

In the context of the Bradley-Terry model one may take a = 0, β = λ, where
λ is the vector of log-strengths λi = log πi, and X to be the design matrix with
the columns representing the n participants, and the rows representing the n(n− 1)
directed pairwise comparisons. The entry in the row corresponding to a preference
for i over j has 1 in column i, −1 in column j and zero elsewhere. This gives a
log-likelihood

l(λ) =
1

2

∑
i,j

(cij − cji)λi −
1

2

∑
i,j

mij log(1 + eλi−λj)

=
1

2

∑
i,j

(2cij −mij)λi −
1

2

∑
i,j

mij log(1 + eλi−λj)

=
∑
i,j

cijλi −
1

2

∑
i,j

mij(λi + log(1 + eλi−λj)).

Using the same notation as before, where a vector of winsw is defined by wi =
∑

j cij,
then

l(λ) =
∑
i

wiλi −
1

2

∑
i,j

mij(λi + log(1 + eλi−λj)),

defining an exponential family where the score is the vector-valued canonical statistic
and log-strength the vector-valued canonical parameter. It is a feature of an expo-
nential family of distributions that ‘observed equals expected’, or more precisely that
the observed value of the canonical statistic vector equals its expected value under
the MLE distribution, that is to say

y = Eθ̂(Y ) = ∇k(θ̂),

which under this affine canonical submodel translates to

wk =
1

2

∑
j

mkj

(
1 +

eλk−λj

1 + eλk−λj

)
− 1

2

∑
i

mik
eλi−λk

1 + eλi−λk

=
∑
j

mkj
eλk

eλk + eλj
for all k,
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noting that pkj = eλk/(eλk + eλj) gives what was referred to as the retrodictive
criterion in Sections 1.3.1 and 1.3.2.

The motivations based on score as a sufficient statistic, maximum entropy and
maximum likelihood of Sections 1.2.4, 1.3.1, and 1.3.2 may thus be seen as an example
of a general fact about exponential families. If one starts with a canonical statistic,
then the corresponding affine submodel, if it exists, will be uniquely determined
and it will be the maximum entropy and maximum likelihood model subject to the
‘observed equals expected’ constraint on the canonical statistic. As shown in Section
1.2.4, the requirement to take score as a sufficient statistic leads directly to the same
statistical condition as the other axiomatic motivations presented in Section 1.2. A
consideration of the Bradley-Terry model as an exponential family of distributions
therefore gives a synthesis to the axiomatic and objective function motivations.

1.3.4 Simplicity 1

Often when selecting a model, transparency and interpretability are desirable fea-
tures. This may be especially so in contexts where the outcomes affect a wide group
of stakeholders. These sort of contexts are not uncommon in pairwise comparison
with the methods being used to perform activities like ranking sports teams (Firth,
2022) or in educational assessment (Pollitt, 2012b). Therefore, there may be a legit-
imate desire for simpler, more intuitive models. It is thus appealing to consider how
one might select a model with the goal of maximising simplicity.

Suppose one wished to determine a ranking by defining a probability for the
preference for i over j related only to positive real-valued strength parameters πi

and πj respectively,
pij = f(πi, πj).

A reasonable set of criteria for this function would be:

1. f : R+ × R+ → [0, 1],

2. f(πi, πj) =
1
2
when πi = πj,

3. limπi→0,πj fixed f(πi, πj) = 0,

4. limπj→0,πi fixed f(πi, πj) = 1,

5. limπi→∞,πj fixed f(πi, πj) = 1,

6. limπj→∞,πi fixed f(πi, πj) = 0.
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where R+ is taken to be the set of positive real numbers not including zero.
Assume that the simplest set of functions are those that may be defined solely

using the four basic operators (+,−,×,÷), and that any measure of the simplic-
ity of a function is a strictly decreasing function of the number of these operators
used. So that maximising simplicity is equivalent to minimising the number of basic
operators. Bracketing anywhere, used in the conventional sense, to identify a func-
tional subclause, is allowed without increasing or reducing simplicity. Constants are
also allowed in place of parameters without increasing or reducing simplicity. In the
language of Computer Science, this is therefore defining simplicity by the minimum
number of floating point operations (flops).

No f with exactly zero or one operator can meet criterion 5 other than f(πi, πj) =
1 or equivalents (for example, f(πi, πj) = πi/πi), which violates criteria 2, 3 and 6.
Likewise, considering a function with two operators and again considering criterion
5, then it must be that the operator ÷ is employed as otherwise the limit of criterion
5 would be infinite in absolute value other than in cases which are equivalent to a
constant (for example, f(πi, πj) = πi+(1−πi)) or where πi is not included, but if πi

is not included then criteria 2 and 3 will be in contradiction. So if there is a solution
with exactly two operators then it must be of the form f(πi, πj) = g(πi, πj)÷h(πi, πj)
where either g or h is equal to either one of the parameters or to a constant in order
that only two operators are used, and the other must be a single operator function
involving + or − in order to meet criterion 5 without being equivalent to a constant
(for example, f(πi, πj) = πi÷(c×πi)). From criterion 3 it must be that g(πi, πj) = πi

and then from criterion 5, h must take πi as one of its terms. Criterion 6 implies
that the other term in h is πj and criterion 2 then implies that h(πi, πj) = πi + πj.
This gives f(πi, πj) = πi ÷ (πi + πj), which meets all the required criteria. It may be
noted that not all the criteria were required for its unique derivation, and that other
subsets of the criteria may be used to derive the same result. That is to say that

pij =
πi

πi + πj

will be the unique simplicity maximiser under a number of different subsets of the
plausible criteria.

1.3.5 Simplicity 2

Given positive-valued strength parameters πi and πj for i and j respectively, one
may want to consider a model where the probability of i being preferred to j is a
function f of the ratio xij = πi/πj,

pij = f(xij).
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A reasonable set of criteria for this function would then be:

1. f : R+ → [0, 1],

2. f(1) = 1
2
,

3. limx→0 f(x) = 0,

4. limx→∞ f(x) = 1,

Proceeding in a similar fashion to the previous section, the only function including
exactly zero or one flop that meets criterion 4 is f(x) = 1 (or equivalents, for example,
f(x) = x ÷ x), but this violates criteria 2 and 3. Considering a function with two
operators and again considering criterion 4, then it must be that the operator ÷ is
employed as otherwise the limit would be infinite in absolute value other than in cases
which are equivalent to a constant (for example, f(x) = x+(1− x)). So if there is a
solution with exactly two operators then it must be of the form f(x) = g(x)÷ h(x)
where either g(x) = x or h(x) = x or g(x) = constant or h(x) = constant in order
that only two operators are used, and the other must be a single-operator function
involving + or − in order to meet criterion 4. Criterion 3 implies that g(x) = x, and
criterion 2 then tells us that h(x) = 1 + x. Thus

f(x) =
x

1 + x
,

giving

pij =
πi

πi + πj

.

1.4 Discriminal processes

Consider a scenario where the strength of each of two entities in a given pairwise
interaction is observed with error. Denote the observed strength of i as bi with ‘true’
strength λi, so that bi = λi + ϵi, where ϵi is an error term. Item i is preferred to
item j if and only if bi > bj. This is the model of Thurstone’s ‘discriminal processes’
(Thurstone, 1927a). Taking the error to be Gaussian, as Thurstone himself did, leads
to what is commonly known as the Thurstone-Mosteller model (Thurstone, 1927a;
Mosteller, 1951), but the set up may also be used to motivate the Bradley-Terry
model by considering alternative distributions for bi.
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1.4.1 Exponential Distribution (Holman and Marley as cited
by Luce and Suppes (1965, p.338))

Suppose bi follows an exponential distribution

P(bi ≤ x) = Fi(x) = 1− e
− x

πi , x ∈ R+.

Then the probability that i is preferred to j in a pairwise comparison is

pij =

∫ ∞

0

Fj(x)F
′
i (x)dx

=

∫ ∞

0

(
1− e

x
πj

) 1

πi

e
− x

πi dx

= 1− 1

πi

(
1
πi
+ 1

πj

) ∫ ∞

0

(
1

πi

+
1

πj

)
e
−
(

1
πi

+ 1
πj

)
x
dx

= 1− πj

πi + πj

=
πi

πi + πj

.

1.4.2 Extreme value distributions (Bradley, 1965; Thomp-
son and Singh, 1967)

Thompson and Singh (1967) provide a rationale for a broader class of distributions
that lead to a Bradley-Terry model under a discriminal process. Based on ideas from
Psychology, sensations are hypothesised to be a result of a large number of stimuli.
These stimuli are modeled as having independent identical distributions G(x). One
might then consider the distribution of the resultant sensation.

Two intuitive possibilities would be to model the distribution of the sensation
F (x) either as the average of those stimuli or the maximum of those stimuli. Taking
the average gives a normal distribution for F (x) and leads to a Thurstone-Mosteller
comparison model. Taking the maximum of the stimuli, gives, by extreme value
theorem (Fisher and Tippett, 1928; Gnedenko, 1943; Gumbel, 1958), one of three
distributions for F (x) — Gumbel, Weibull, or Frechet — depending on the underlying
stimuli distribution G(x), and leads to a Bradley-Terry comparison model. The
Gumbel is the most notable of these, being the sensation distribution for stimuli
distributions such as the normal, lognormal, logistic, and exponential.

While Thompson and Singh (1967) provided a clear motivation for considering
such models and do not assume that the underlying stimuli distributions need have
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the same location parameters for i and j, Lehmann (1953) had previously consid-
ered a family of distributions in the context of the power of rank tests of the form
FXi

(x; πi) = Gπi(x), where G(x) is itself a distribution function. Bradley (1965)
discussed this family of distributions with respect to the Bradley-Terry model. As
Bradley (1976) notes, if G(x) is a distribution function, andXi is the random variable
relating to a sensation i, with distribution function

P(Xi ⩽ x) = Gπi(x),

where πi > 0, then comparing sensations i and j,

pij = P(Xi > Xj) =

∫
xi>xj

dGπi(xi)dG
πj(xj) =

πi

πi + πj

, i ̸= j.

Gumbel distribution (Thompson and Singh, 1967)

Suppose bi follows a Gumbel distribution with mean λi. Then

Pr(bi ≤ x) = Fi(x) = exp (−πie
−αx) for x ∈ R and parameter α > 0,

where πi = eαλi−γ, with γ the Euler-Mascheroni constant. Then the probability that
i is preferred to j in a pairwise comparison is

pij =

∫ ∞

−∞
Fj(x)F

′
i (x)dx

=

∫ ∞

−∞
exp (−πje

−αx)απi exp (−αx− πie
−αx)dx

=
πi

πi + πj

∫ ∞

−∞
α(πi + πj) exp (−αx− (πi + πj)e

−αx)dx

=
πi

πi + πj

.

Weibull distribution (Thompson and Singh, 1967)

Suppose bi follows a Weibull distribution

P(bi ≤ x) = Fi(x) = 1− exp (−(x/λi)
α) for x ∈ R+ and parameter α > 0.
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Then the probability that i is preferred to j in a pairwise comparison is

pij =

∫ ∞

0

Fj(x)F
′
i (x)dx

=

∫ ∞

0

[1− exp (−(x/λj)
α)]

α

λi

(x/λi)
α−1 exp (−(x/λi)

α)dx

= 1−
∫ ∞

0

α

λi

(x/λi)
α−1 exp (−(x/λj)

α)− (x/λi)
α)dx

= 1−
λα
j

λα
i + λα

j

∫ ∞

0

α

λiλj

(x/λiλj)
α−1(λα

i + λα
j ) exp (−(x/λiλj)

α(λα
i + λα

j ))dx

=
πi

πi + πj

,

where πi = λα
i .

Fréchet distribution (Thompson and Singh, 1967)

Suppose bi follows a Frechet distribution

P(bi ≤ x) = Fi(x) = exp (−πix
−α)for x ∈ R+ and parameter α > 0.

Then the probability that i is preferred to j in a pairwise comparison is

pij =

∫ ∞

0

Fj(x)F
′
i (x)dx

=

∫ ∞

0

exp (−πjx
−α)

πiα

xα+1
exp (−πix

−α)dx

=
πi

πi + πj

∫ ∞

0

α
πi + πj

xα+1
exp (−(πi + πj)x

−α)dx

=
πi

πi + πj

.

1.5 Standard models

A number of models familiar to statisticians may be related to the Bradley-Terry
model by considering conditional forms. Here we discuss three well-known models
where that is the case.
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1.5.1 Rasch model (Andrich, 1978)

Let Xvi be a binary random variable, representing the outcome of a test v taken by
candidate i, where Xvi = 1 represents passing the test, and Xvi = 0 denotes failure.
Under the Rasch simple logistic model (Rasch, 1960, 1961) the probability of the
outcome Xvi = 1 is taken to be

P(Xvi = 1) =
eλi−δv

1 + eλi−δv
,

where λi represents the ability of candidate i and δv the difficulty of test v.
There are two conceptualisations by which we might derive the Bradley-Terry

model from this. First, as Andrich (1978) notes, if we take

pij = P(i passes a test v | exactly one of i and j pass the test v),

then since

P(Xvi = 1, Xvj = 0) =
eλi−δv

(1 + eλi−δv)(1 + eλj−δv)
,

and

P(Xvi +Xvj = 1) =
eλi−δv + eλj−δv

(1 + eλi−δv)(1 + eλj−δv)

then conditional on being able to discern that one of the test-takers has performed
better based on the binary test outcome and taking their test outcomes to be inde-
pendent conditional on their abilities and the test difficulty then the probability that
i has beaten j is

pij =
eλi

eλi + eλj
=

πi

πi + πj

,

where πi = eλi .
Second, we might more directly consider that in comparing i with j we are setting

a test for i of difficulty equal to the strength of the comparator λj.

1.5.2 Cox proprtional hazards model (Su and Zhou, 2006)

Consider a proportional hazards model (Cox, 1972) on random variables Ti with

hi(t) = h(t)πi
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then

P(Ti < Tj) =

∫ ∞

0

FTi
(t)fTj

(t) dt

=

∫ ∞

0

(
1− exp

{
−
∫ t

0

h(x)πi dx

})
h(t)πj exp

{
−
∫ t

0

h(x)πj dx

}
dt

= 1−
∫ ∞

0

h(t)πj exp

{
−(πi + πj)

∫ t

0

h(x) dx

}
dt

= 1− πj

πi + πj

=
πi

πi + πj

Further, as Su and Zhou (2006) note, if a stratified proportional hazards model is
used such that each stratum represents a different match with

hi(t) = hsij(t)πi,

where sij is the stratum for a match between i and j then the contribution to the
partial likelihood from the random variables Ti and Tj with the event {Ti < Tj} is
πi/(πi + πj).

1.5.3 Network models

Consider a binary directed network Y , with an edge i → j taking the value yij.
A common class of models in network analysis takes a conditional independence
approach, assuming that the value of any directed edge is independent of all other
edge values given an appropriate set of parameters. In a generalised form for the
current purposes it can be expressed as

µij = P(yij = 1)

logit(µij; δi, γj, fij) = δi + γj + fij,

where δi and γj, sometimes referred to as sociality and attractivity parameters (Kriv-
itsky et al., 2009), reflect the heterogeneity of out-degree and in-degree respectively,
and fij = f(i, j) is a symmetric function capturing the propensity for an edge in
either direction to exist. For example, Hoff et al. (2002) takes f(i, j) to be the
Euclidean distance between points associated with i and j in a latent space but
note that f(i, j) could be any distance measure satisfying the triangle inequality
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f(i, j) ⩽ f(i, k) + f(k, j). Often models also incorporate a term of the form βTxij

within f(i, j), where xij is a vector of pair specific characteristics, to capture known
homophilies.

Applying the conditional independence assumption

P(yij = 1, yji = 0; δi, δj, γi, γj, fij) =
eδi+γj+fij

(1 + eδi+γj+fij)(1 + eδj+γi+fij)
,

and

P(yij = 1 | yij + yji = 1; δi, δj, γi, γj, fij) =
eδi+γj+fij

eδi+γj+fij + eδj+γi+fij

=
eδi−γi

eδi−γi + eδj−γj

=
eλi

eλi + eλj

=
πi

πi + πj

,

where πi = eλi and λi = δi − γi. If Y is considered as a tournament matrix with
a directed edge i → j indicating i beats j, then sociality is a team’s propensity for
winning and attractivity the propensity for losing so that assessing the strength of a
team as the difference between these is readily intuitive.

1.6 Game scenarios

The Bradley-Terry model has frequently been associated with an analysis of sport.
So it is perhaps not surprising that there are a number of game scenarios in which
the model may be very naturally motivated. Some of these are presented here.

1.6.1 Poisson scoring (Audley, 1960; Stern, 1990)

Consider two teams i and j who score according to independent Poisson random
variables Xi and Xj with rate parameters πi and πj respectively. The winner is the
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first team to score. Then

pij = P(Xi = 1 | Xi +Xj = 1)

=
P(Xi = 1)P(Xj = 0)

P(Xi +Xj = 1)

=
e−πiπie

−πj

e−(πi+πj)(πi + πj)

=
πi

πi + πj

.

Audley (1960) presents an argument for this based in the psychological litera-
ture, considering the probability of one response occurring before another, where the
probability of a response occurring in any given small time interval is determined
by a response-specific parameter. While the argument is presented in terms of dis-
crete time, it notes that the continuous alternative would be to consider Poisson
distributions. Stern (1990) notes that the context may be widened to that of two
gamma random variables with the same shape parameter and different scale parame-
ters, showing that taking a shape parameter of one returns the Bradley-Terry model,
whereas allowing it to tend to infinity sees the model tend to the Thurstone-Mosteller
model. The idea might also be considered in the context of the discriminal process
on exponential distributions of Section 1.4.1, since the interarrival time of a homo-
geneous Poisson process with rate parameter λ has an exponential distribution with
a mean 1/λ. More directly it is simply an expression of the standard equivalence
between a multinomial distribution, in this case Bernoulli, and independent Poisson
distributions conditional on their total, sometimes referred to as the “Poisson trick”
(Baker, 1994).

1.6.2 Sudden death (Stirzaker, 1999; Vojnović, 2015)

Consider two teams i and j involved in a ‘sudden death’ shoot-out. They play a
game where in each round they succeed with independent probabilities pi and pj
respectively. The winner is the team who first has more successes than the other
team. Let (i ≻ j)n be the event that i wins the ‘sudden death’ contest in round n.
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Then

pij =
∞∑
n=1

P[(i ≻ j)n]

=
∞∑
n=1

n−1∑
k=0

pi(1− pj)

(
n− 1

k

)
(pipj)

k((1− pi)(1− pj))
n−k−1

= pi(1− pj)
∞∑

m=0

m∑
k=0

(
m

k

)
(pipj)

k((1− pi)(1− pj))
m−k

= pi(1− pj)
∞∑

m=0

(pipj + (1− pi)(1− pj))
m

= pi(1− pj)
∞∑

m=0

(2pipj − pi − pj + 1)m

=
pi(1− pj)

pi + pj − 2pipj

=
pi(1− pj)

pi(1− pj) + pj(1− pi)

=

pi
1−pi

pi
1−pi

+
pj

1−pj

=
πi

πi + πj

,

where πi =
pi

1−pi
.

Further suppose there is an alternative sudden death contest but now the winner
is the team that is the first to have r more successes than the opposition. Let Ai be
the event that i wins and Ar+k be the event that a result, either i or j winning, occurs
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after the winning team has scored exactly r+ k times, then defining qi = pi/(1− pi),

pij = P(Ai) =
∞∑
k=0

P(Ai|Ar+k)P(Ar+k)

=
∞∑
k=0

qr+k
i qkj

qr+k
i qkj + qki q

r+k
j

P (Ar+k)

=
qri

qri + qrj

∞∑
k=0

P (Ar+k)

=
qri

qri + qrj

=
πi

πi + πj

,

where πi = qri .

1.6.3 Accumulated win ratio (Vojnović, 2015)

Take a sequence of matches between two players, i and j, where the probability
that team i wins is proportional to the accumulated number of wins in previous
matches. Suppose that the probability that i wins the first match is πi/(πi + πj).
Then consider the probability that i will win the nth match. The claim is that this
is πi/(πi + πj). We proceed to show this by induction. Define notation (i ≻ j)n as
meaning i beats j in match n then

P[(i ≻ j)1] =
πi

πi + πj

.

Now assume that
P[(i ≻ j)k] =

πi

πi + πj

.

Then proceeding by induction

P[(i ≻ j)k+1] = P[(i ≻ j)k+1 | (i ≻ j)k]P[(i ≻ j)k]

+ P[(i ≻ j)k+1 | (j ≻ i)k]P[(j ≻ i)k]

=
πi + 1

πi + 1 + πj

πi

πi + πj

+
πi

πi + 1 + πj

πj

πi + πj

=
πi(πi + 1 + πj)

(πi + 1 + πj)(πi + πj)

=
πi

πi + πj

.
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1.6.4 Continuous time state transition (Brown, 2018)

Consider a match where the winner is the team winning at the end of a defined period
of play. We choose to model the continuous state of ‘winning’ by a continuous time
Markov chain on a binary state space I = {i winning, j winning}, Let the rate at
which there is a switch from the state ‘i winning’ to the state ‘j winning’ be denoted
by πj, and the rate at which the switch from the state ‘j winning’ to the state
‘i winning’ be denoted by πi. Then the intensity matrix is

Q =

(
−πj πj

πi −πi,

)
and the equilibrium distribution vector of this process p is such that

pQ = 0,

and in this case is given by the probability vector p =
(

πi

πi+πj
,

πj

πi+πj

)
.

Assuming that we are likely to see a large number of state changes during the
course of the match, or that the probability of the initial state being ‘i winning’ is
approximately πi/πi + πj then the probability that i beats j may be approximated
by

pij =
πi

πi + πj

.

1.7 Quasi-symmetry and consistent estimators

The quasi-symmetry model was proposed by Caussinus (1965). A matrix C is quasi-
symmetric if it can be decomposed such that

cij = αiβjγij,

where γij = γji. The form of this can be simplified by taking ai = αi/βi and sij =
βiβjγij, so that

cij = aisij,

or in matrix form
C = AS,

where A is a diagonal matrix and S is symmetric. Informally one might think of the
symmetric matrix representing the intensity of interactions, and the diagonal matrix
as the relative ratings. Asymptotically, where the number of matches between each
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pair of teams tends to infinity and the number of teams is held constant, by the Law
of Large Numbers, under a Bradley-Terry data generating process, we would expect
the results matrix to be quasi-symmetric, since

E[cij] = pijmij =
πi

πi + πj

mij = aiisij,

where sij = mij/(πi + πj) = sji and πi = aii. So, rating methods that accord with
Bradley-Terry in the case of a quasi-symmetric results matrix are consistent esti-
mators for the Bradley-Terry model given a Bradley-Terry data generating process,
and thus motivations for those rating methods are of interest in the context of this
chapter. This is especially so as it provides a link to a number of other, sometimes
familiar, rating methods.

1.7.1 PageRank (Daniels, 1969)

Daniels (1969) appears to have been the first to document the link between the
Bradley-Terry model and what might now be recognised as an undamped PageRank
(Page et al., 1999). PageRank has come to be widely known as it formed the basis
for the original Google search algorithm. An intuitive explanation for the way it
functions is the so-called ‘random surfer’ model. It envisages a (web-)surfer, who is
randomly assigned to a node in a directed network. The random surfer then moves
randomly to one of the other nodes to which there is a weighted directed edge from
the node where they are currently. The probability of moving to any particular
destination node is set equal to the weight of the edge between the origin node
and the destination node divided by the total weight of edges from the origin node.
This process continues indefinitely with the proportion of time spent at each node
representing the PageRank for that node.

In the notation of this chapter, we may take the comparison matrix to define the
relevant weighted directed network, with cij the weight of the directed edge from j to
i. DefineD as the diagonal matrix of column sums with djj =

∑
k ckj. The undamped

PageRank rating vector αPR is the stationary distribution of the Markov chain with
column-normalised comparison matrix, CD−1, as a left stochastic transition matrix2.

2By convention, it is perhaps more common to see the stationary distribution of a Markov chain
written using row vectors and a right stochastic transition matrix, rather than column vectors and
a left stochastic transition matrix. That is, given a transition matrix P , a stationary distribution
would solve πP = π, with π a row vector. In this thesis, π is taken as a column vector, aiding
consistency and interpretability, but the statement in this paragraph would be equivalent to taking
P = (CD−1)T in its right stochastic form.
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That is
αPR = CD−1αPR.

While this rating is perhaps best known from its link to PageRank, it had been
previously identified as the ‘total influence’ metric in Pinski and Narin (1976) in
the context of bibliometrics. It has been independently axiomatised in Altman and
Tennenholtz (2005) and in Slutzki and Volij (2006). More prosaically, such a measure
might be motivated in the context of sports competition by the idea of a ‘glory-seeker’
fan, or as Langville and Meyer (2012, p. 68) terms it the ‘fair weather’ fan. Consider
a fan who begins by selecting a team to support at random. At each step they
transfer their allegiance to one of the teams that has beaten the team they previously
supported. This decision is made at random in proportion to the number of their
defeats that were against each team. Each team is then rated by the proportion of
time that the glory-seeker has spent supporting them.

While there is a pleasing intuition to this approach, there are situations where
using PageRank is questionable. We present two toy examples that demonstrate just
such circumstances. First, consider a five team round-robin tournament between
teams A, B, C, D and E. A beats B, C and D; B beats C, D and E; C beats D and
E; D beats E; and E beats A, as represented in Table 1.1.

A B C D E Wins
A 0 1 1 1 0 3
B 0 0 1 1 1 3
C 0 0 0 1 1 2
D 0 0 0 0 1 1
E 1 0 0 0 0 1

Table 1.1: Five-team round-robin tournament

Undamped PageRank would rate A and E joint first, intuitively because every
time the glory-seeker selects team A, they will subsequently select team E, whereas
standard round-robin ranking by the number of wins would rate A as joint first and
E as joint last. As we go on to discuss in Chapter 3, there are sound philosophical
reasons for respecting round-robin ranking norms in sport, and so in that situation
PageRank might be deemed inappropriate.

Second, consider three teams F, G, and H. Their strengths are such that we
would expect F to beat G in 2/3 of matches, F to beat H in 4/5 of matches, and
G to beat H in 2/3 of matches. Now consider two tournaments between these three
teams. In the first of these tournaments each team plays each other team 15 times
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and the proportion of results follow expectations. These results are represented in
Table 1.2(a). In the second tournament the teams win their match-ups in the same
proportions, but H plays six times more matches against both F and G; while F and
G play each other the same number of times as in the first tournament, with results
represented in Table 1.2(b).

F G H
F 0 10 12
G 5 0 10
H 3 5 0

(a)

F G H
F 0 10 72
G 5 0 60
H 18 30 0

(b)

Table 1.2: Three-team tournaments

It seems clear that based on propensity to win, in either tournament (a) or (b),
team F should be ranked higher than team G and team G should be ranked higher
than team H. PageRank meets this requirement for tournament (a), but ranks H
highest based on the results of tournament (b).

In both examples, it seems that PageRank focuses too much on the wins of a
team, ignoring the losses. In the first example, it was E’s win against A that drove
its high ranking rather than being balanced by its losses to B, C and D. In the second
example, the number of H’s wins saw it ranked highest, ignoring its higher number
of losses. Therefore one suggestion to address this would be to adjust the PageRank
score of each competitor by dividing by their number of losses.

Let π = D−1αPR. In the context of a sports ranking this then would represent
the PageRank rating for each team divided by the number of matches they have lost.

π = D−1αPR = D−1CD−1αPR = D−1Cπ,

so that π is an eigenvector for Ĉ = D−1C.
A vector π is an eigenvector for Ĉ = D−1C with an eigenvalue of 1 if and only if∑

j

cijπj = diiπi for all i,

but if C = AS is quasi-symmetric such that A is a diagonal matrix and S is symmetric
then choosing πi = aii yields∑

j

cijπj =
∑
j

aiisijajj = aii
∑
j

sjiajj = πi

∑
j

cji = diiπi for all i,
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so that the adjusted PageRank π = D−1αPR is the diagonal component of a quasi-
symmetric matrix. Equivalently it is the Bradley-Terry rating vector in the special
case of a quasi-symmetric comparison matrix C and thus a consistent estimator for
the Bradley-Terry rating vector given a Bradley-Terry data-generating process.

In the context of bibliometrics, this rating method was proposed as the ‘influence
weight’ measure by Pinski and Narin (1976) and as ‘Scroogefactor’ by Selby (2020),
the name we will adopt for the rating for the remainder of this section. In the
bibliometric context, cij within the comparison matrix represents a citation in journal
j of an article in journal i. It was motivated by noting that journals are likely to be of
different sizes and that one may be interested in determining influence independent
of size. The proposal was therefore to normalise the citations received by i by the
citations given by i. More recently, the ‘Rank Centrality’ algorithm of Negahban
et al. (2012) proposes the same estimator applied to ratio matrices, and it is also
equivalent to the ‘Luce Spectral Ranking’ of Maystre and Grossglauser (2015) in the
k = 2 case. A more explicit discussion of these links was provided by Selby (2020).

As a brief illustration, we return to our examples. In the first example, with
results from Table 1.1, the results do not make up a quasi-symmetric matrix, so
that the Bradley-Terry rating and Scroogefactor do not align. As can be seen in
Table 1.3, Bradley-Terry produces the same ranking as the convention of taking the
number of wins, since the vector of the number of wins is a sufficient statistic for the
Bradley-Terry rating as we showed in Section 1.2.4. PageRank and Scroogefactor
both rank the teams in the descending order A, B, C, D, but PageRank ranks E as
being first equal, whereas Scroogefactor places it third. If we take number of wins
to be the correct determinant of ranking then ScroogeFactor gives a more accurate
ranking in placing E closer to last equal.

A B C D E
Wins 3(1=) 3(1=) 2(3) 1(4=) 1(4=)
Bradley-Terry 7.57(1=) 7.57(1=) 2.75(3) 1.00(4=) 1(4=)
PageRank 1.00(1=) 0.67(3) 0.44(4) 0.33(5) 1(1=)
Scroogefactor 3.00(1) 2.00(2) 0.67(4) 0.33(5) 1(3)

Table 1.3: Five-team round-robin tournament rating(ranking), with rating of E stan-
dardised to 1. PageRank here is undamped.

In the second example, there is no convention such as the number of wins to
anchor our methodology on. An appropriate approach in these circumstances is the
topic of Chapter 3. But given the ratio of wins and losses for each pair it seems clear
that the teams should be ranked in descending order F, G, H. Since both results
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matrices are quasi-symmetric then Bradley-Terry and Scroogefactor are the same
and provide a ranking in the appropriate ordering. As can be seen in Table 1.4, this
is matched by PageRank in the the first of the tournaments where every team plays
every other the same number of times, but PageRank disagrees when H has a higher
number of match-ups against the other two teams.

F G H
Bradley-Terry 4.00(1) 2.00(2) 1(3)
PageRank 1.45(1) 1.36(2) 1(3)
ScroogeFactor 4.00(1) 2.00(2) 1(3)

(a)

F G H
Bradley-Terry 4.00(1) 2.00(2) 1(3)
PageRank 0.98(2) 0.86(3) 1(1)
ScroogeFactor 4.00(1) 2.00(2) 1(3)

(b)

Table 1.4: Three-team tournament rating(ranking) with rating of H standardised to
1. PageRank is undamped.

1.7.2 Fair bets (Daniels, 1969)

Daniels (1969) introduces an idea referred to as ‘fair scores’. It was elaborated on and
cast in the perhaps more intuitive language of ‘bets’ by Moon and Pullman (1970).
Both provide interesting discussions of more general approaches. More recently,
Slutzki and Volij (2006) provides an excellent summary of the approach, providing
two axiomatisations for it, a presentation of a more informal motivation due to
Laslier (1997), the link to undamped PageRank, and a discussion as to why the
axiomatisations may lead us to believe that the ‘fair bets’ method is more appropriate
for sports tournaments, while the undamped PageRank is more suitable for citation
networks.

The first of the axiomatisations shows that the ‘fair bets’ model is the unique
ranking derived under the three simultaneous requirements of uniformity, inverse
proportionality to losses, and neutrality. Uniformity here requires that if a tourna-
ment outcome is balanced in the sense that every competitor has the same number of
wins and losses then the competitors must be ranked equally. Inverse proportionality
to losses requires that if one begins with a balanced tournament outcome, and then a

39



single competitor’s losses are multiplied by a constant then its rating will be divided
by the same constant relative to the other competitors. Neutrality requires that if
one begins with a balanced tournament outcome and some new matches are added
between two teams where they share the wins equally then competitors will remain
equally ranked.

The second of the axiomatisations requires two axioms, consistency between a
ranking and its reduced forms and reciprocity. Reciprocity here requires that, in
a two-player tournament, the ratio of the two competitors’ ratings is equal to the
ratio of their wins in matches between them, assuming that there are a non-zero
number of matches between them. The reduced form condition considers a reduced
tournament without a team k, with the comparison matrix modified to, in effect,
reallocate results involving k so that the comparison matrix is redefined as

cij =

{
0 i = j

cij +
cikckj∑

t ctk
otherwise.

The axiom requires that the relative ratings of two teams in any reduced tournament
are equal to their ratio in the full tournament. Consistency requirements of this type
are a common feature of axiomatic approaches to ranking (Thomson et al., 1996).

Alternatively, inkeeping with the original presentation of Daniels (1969), suppose
one retrospectively wishes to assign a betting scheme to a tournament, where the
loser pays to the winner an amount on the result of each match. This is subject to
two conditions. First, that the amount that is paid to the winner by the loser is a
value dependent solely on the strength of the loser. So that if i beats j then i will
receive an amount αFB

j from j. Second, that the betting scheme is fair. Here ‘fair’
is taken to mean that the wagered amounts will have led to the result that betting
on any team throughout the tournament will have a net gain of zero. Then one has
the condition that, for all i, ∑

j;j ̸=i

cijα
FB
j =

∑
j;j ̸=i

cjiα
FB
i ,

where αFB may be taken as a rating vector for the participants, with the intuition
being that one would be prepared to wager more on a strong team.

If C = AS is quasi-symmetric then we have for all i∑
j ̸=i

aiisijα
FB
j =

∑
j ̸=i

ajjsjiα
FB
i ,

so that ∑
j ̸=i

sij(aiiα
FB
j − ajjα

FB
i ) = 0.
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Thus, αFB
i = aii = πi, and the Fair Bets rating is a consistent estimator for the

Bradley-Terry rating vector given a Bradley-Terry generating process.

1.7.3 Wei-Kendall

The rating method introduced in Wei (1952) and Kendall (1955) relies on an iterative
application of the comparison matrix. The motivation for such a procedure might
be seen by taking the five-team tournament example from Section 1.7.1. One might
argue that ranking D and E equally is unfair as E’s single victory occurred against
a top-ranked team A, whereas D gained its only victory against bottom-ranked E.
An approach to address this suggested by Wei (1952) is to weight each victory by
the rating of the defeated team. The notion of inheriting the wins of a defeated
opponent to inform a rating is somewhat intuitive. For example, the idea is present
in the predominant rating system of the British playground game of conkers (Barrow,
2014). Under the Wei-Kendall method we would begin with a rating vector defined
by the sum of wins

1αWK = Ce = {3, 3, 2, 1, 1}T ,

where e is a n × 1 vector of 1s. Then we assign to each team the sum of the first
iteration ratings of each team they have beaten

2αWK = C1αWK = C2e = {6, 4, 2, 1, 3}T .

This second iteration measure is sometimes used in chess for tie-breaking, where it
is known as the Sonneborn-Berger score (Hooper and Whyld, 1996). But then one
might reason that the victories should instead have been weighted by this updated
rating. Proceeding in this way for the next five iterations we have Wei-Kendall rating
vectors

3αWK = {7, 6, 4, 3, 6}T ,

4αWK = {13, 13, 9, 6, 7}T ,

5αWK = {28, 22, 13, 7, 13}T ,

6αWK = {42, 33, 20, 13, 28}T ,

7αWK = {66, 61, 41, 28, 42}T .

Note that E continues to be ranked higher than D and C.
Generalising, one may define a series of rating vectors

kαWK = Cke.
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It is then natural to consider the limit, but this is clearly not convergent. However,
as Moon (1968) notes, since the matrix C is irreducible then by the Perron-Frobenius
theorem (Frobenius, 1912) the rating vector defined by

αWK = lim
k→∞

(
C

ρ

)k

e,

where ρ is the dominant eigenvalue of C, is convergent, and this normalised limit
may be thought of as a rating vector. In the case considered above this gives

αWK = {1.63, 1.38, 0.87, 0.55, 0.95}T .

The same argument can be applied to give a consistent estimator of the Bradley-
Terry rating vector in the case of a Bradley-Terry data-generating process. In both
cases, the idea is that we start with an intuitive rating vector and then reweight wins
based on their quality as reflected by the ratings. In the case of the Wei-Kendall
method, the initial rating is based on the number of wins. Here, the first rating is
based on the win-loss ratio of each team, Ĉe = D−1Ce. As before, one may argue
iteratively that the value of the wins within that calculation should not be assumed
equal and should instead be weighted by their rating. Proceeding in this manner,
we define a rating vector

π = lim
k→∞

Ĉke.

Since the scaled matrix Ĉ has unit dominant eigenvalue, then by Perron-Frobenius
Theorem the limit is convergent and π is equal to the leading eigenvector of Ĉ. If
additionally Ĉ is quasi-symmetric, which it will be if C is quasi-symmetric, then this
leading eigenvector will be the vector of Bradley-Terry ratings. Thus by applying
the same reasoning used to motivate the Wei-Kendall method, but starting with an
alternative plausible initial rating vector, we derive a consistent estimator for the
Bradley-Terry rating vector given a Bradley-Terry data-generating process.

1.7.4 Ratings Percentage Index

A rating measure that until recently was prevalent in college sports in North America
is the Ratings Percentage Index (RPI). It is commonly defined as

RPI = 25%×Win Percentage

+ 50%×Opposition’s Win Percentage

+ 25%×Opposition’s Opposition’s Win Percentage.
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In the notation of this article, recalling that M is the matrix of the number of
matches, let the matrix M̂ = [m̂ij] with m̂ij = mij/

∑
j mij, so that m̂ij is the

proportion of i’s matches that are against team j. Define the win percentage vector
x = (x1, x2, . . . , xn)

T where xi =
∑

j cij/
∑

j mij, then the RPI rating vector RPI =

(RPI1,RPI2, . . . ,RPIn)
T may be defined as

RPI = 0.25x+ 0.5M̂x+ 0.25M̂2x

An argument very much like the one in the previous section may be followed
to motivate this, that we must consider the strength of opposition in aggregating
wins and that we can do this iteratively. In the RPI it is assumed that the previous
iterations carry information that should be included in the overall rating and that
three such applications is sufficient.

The choice of win percentage as the initial rating vector and of the proportion
of matches as the relevant weighting factor when taking account of the strength of
opposition is not unintuitive, but not exclusively so. For example, one might instead
take each team’s win-loss ratio as the initial rating and account for the strength of
opposition by weighting wins, rather than matches, in line with those ratings. The
0.25/0.5/0.25 weighting is arbitrary and indeed has been criticised as overweighting
the strength of a team’s opposition and for producing perverse incentives (Baker,
2014). In the absence of any clear reason to do otherwise, an equal weighting might
instead be applied. This would give an initial rating vector

α1 = Ĉe,

and considering down to an opposition’s opposition’s strength as in RPI

α3 =
1

3
Ĉ2α1 +

1

3
Ĉα1 +

1

3
α1 =

1

3
(Ĉ3 + Ĉ2 + Ĉ)e.

Clearly there is no particular reason to stop after recursively considering two levels
of opposition antecedents and so one might more generally consider

π = lim
r→∞

1

r

r∑
k=1

Ĉke.

This is the row sum vector of the Cesaro average for Ĉ and so

π = lim
k→∞

Ĉke,

giving the same result as under the Wei-Kendall procedure applied to Ĉ. And so
we have that an RPI-style rating applied to win-loss ratios also gives a consistent
estimator for the Bradley-Terry rating vector given a Bradley-Terry data-generating
process.
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1.7.5 “Winner stays on” - Barker’s algorithm

It is a convention in some settings, for example pub pool tables, to play on the
basis of “winner stays on”, where the winner of any match continues to play the
next competitor. While rarely part of an official ranking system, it is intuitive that
players who spend more games as “reigning champion” might be considered stronger.
If we assume that games conform to a Bradley-Terry data-generating process and
that new opponents are selected randomly then the probability of the “reigning
champion” status transferring form j to i given a game between them is

pij =
πi

πi + πj

.

If we consider that the “winner stays on” scheme continues indefinitely with oppo-
nents selected uniformly at random and an irreducible set of results obtained, then,
by the ergodic theorem, the long-run proportion of games that each player has been
reigning champion is proportional to the Bradley-Terry strengths, π. The “propor-
tion of time as reigning champion” rating within a “winner stays on scheme” where
opponents are selected uniformly at random is thus a consistent estimator for the
Bradley-Terry strength vector.

A very similar idea underlies Barker’s algorithm (Barker, 1965) in the context
of discrete space Markov chain Monte Carlo simulation. In that context, we have
a distribution known up to a scaling and we wish to draw a sample from it. At
each iteration a proposal θ → ϕ is generated and accepted with Barker acceptance
probability

α(θ, ϕ) =
π(ϕ)q(ϕ, θ)

π(ϕ)q(ϕ, θ) + π(θ)q(θ, ϕ)
,

where π(.) is the target density and q(θ, .) is the density of the proposed transition
from θ. The transition density q is selected to be symmetric, q(θ, ϕ) = q(ϕ, θ), giving
the resultant acceptance probability as π(ϕ)/(π(ϕ)+π(θ)). By the ergodic theorem,
this generates a Markov chain with long-run occupation times of states proportional
to π.

1.8 Concluding Remarks

Special status is accorded to models and phenomena that become apparent from a
diversity of seemingly unrelated scenarios. It is partly in this spirit that this chapter
is written. Undoubtedly some of these motivations carry more weight than others.
It would seem, for example, that being the unique solution to maximising entropy
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subject to the retrodictive criterion may be a relevant motivation in more scenarios
than being a readily hypothesised model for a sudden death contest on a difference
of r points. Nevertheless, the number and diversity of motivations is suggestive of
the wide applicability and attractiveness of the model, and lays the basis for its
referencing and use later in this thesis.

The very first, and also the oldest explicit, motivation addressed in this thesis was
that of Good (1955) and the transitivity of odds. Transitivity is a key assumption
that modellers make when ranking. Indeed, it is definitional to ranking. However, it
is not clear that transitivity does obtain in the type of relations that ranking seeks
to model. This is the topic of the next chapter.
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Chapter 2

The transitivity of ‘better than’ in
competitive sport and elsewhere

Abstract

An assumption in performing ranking is that the comparative being expressed through
that ranking is transitive — if A is better than B and B is better than C, then A
is better than C. The philosophical claim that the ‘better than’ relation is transi-
tive is widespread but disputed. For statisticians, the question of the transitivity
of ‘better than’ has import, as if ‘better than’ relations are not transitive, then it
calls into question the exercise of ranking itself. Further, philosophical consideration
of the relative nature of ‘good’ and ‘better than’ may offer insight on comparative
approaches and guidance on the design of ranking measures.

In this chapter, I argue that in competitive sports of the type considered, ‘ex-
pected to beat’ is a plausible notion of ‘better than’. An example is presented to
demonstrate that this is an intransitive relation, and to explain how one might rec-
oncile this with challenges to intransitive ‘better than’ notions proposed by philoso-
phers, in particular those of monotonicity and semantics. The competitive sport
context is pertinent to this thesis. But it also allows notions of ‘better than’ to be
grounded in the readily interpretable idea of winning or losing, and for a presen-
tation of the argument in a quantitative framework that obviates many objections
that have been proposed to the well-known spectrum arguments. In a final section,
I show how these arguments might be adapted to a wider moral realm, as consid-
ered by those philosophers. In doing so, I develop a novel class of betterness cycles,
so-called unambiguous arguments, that take an unambiguously intransitive relation
as their starting point. Stylistically, this chapter adopts some of the features of the
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philosophical literature of which it is a part, with more liberal use of the first person
singular and of footnotes.

2.1 Introduction

Many hold that the relation ‘better than’ is transitive, such that for any value bearers
x, y, and z, if x is better than y, and y is better than z, then x is better than z (see, for
example, Broome (1991, p.11-16), Broome (2004, p.50-63), Binmore (2008, p.26-28),
Parfit (2011, p.128), Chang (2014, p.35)). The spectrum arguments developed by
Rachels (1998) and Temkin (1987, 1996, 2014) have provoked an active discussion on
the transitivity of ‘better than’ in the Philosophy community. Spectrum arguments
present a sequence of states — outcomes, lives or experiences. These are typically
characterised by two dimensions, often pain or pleasure in one dimension and time
or numbers of lives in a second dimension. The states are ordered, such that each is
worse (better) than the last, but the final state is better (worse) than the first. As
way of illustration, Temkin (2014) offers a particularly lucid example. He considers a
series of alternative lives, A1 to An+1. All lives are subject to a low-level background
annoyance of 15 mosquito bites per month. He then supposes that all lives are the
same except for an additional exposure of:

A1: two years of excruciating torture

A2: four years of torture whose intensity is almost, but not quite, as severe as
that of A1

. . .

An: a very mild discomfort for a very long time

An+1: one extra mosquito bite per month for a sufficiently long time that An+1

is perceived worse than An

The claim is that intermediate states A2, A3, A4 and so on may be chosen with lower
amounts of pain and higher durations each time, such that for any k = 1, . . . , n, Ak+1

is worse than Ak, but that A1 is worse than An+1.
Many responses to the spectrum arguments have considered aspects of incommen-

surability, incomparability, or vagueness (Qizilbash, 2005; Knapp, 2007; Handfield,
2016; Handfield and Rabinowicz, 2018; Thomas, 2021), or have focused on the struc-
ture of the spectrum arguments, comparing them to Zeno’s or sorites paradoxes,
or questioning the intuitions of the pairwise judgements (Voorhoeve and Binmore,
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2006; Binmore, 2008; Voorhoeve, 2008, 2013; Pummer, 2018). The aim of this chap-
ter is to investigate the nature of the transitivity of ‘better than’, avoiding these
considerations, by using examples where both the attributes of alternatives and the
comparisons of those alternatives are clearly defined, quantitative and independent
of any similarity-based reasoning.

Competitive sport provides the setting for the main working example. The use of
competitive sport allows for an appeal to a strong intuition around the context and its
features, and those may reasonably be represented and compared quantitatively. The
term ‘competitive sport’ in this chapter is restricted to the situation where matches
consist of two competitors. This is the predominant structure in team sports. While
others have noted the domain of competitive sport as it pertains to the transitivity of
‘better than’ (Sugden, 1985; Broome, 2004; Temkin, 2014; Bordner, 2016), I hope to
demonstrate that a more extensive consideration can be illuminating.1 My starting
point is to consider various relations and examine their claims to being a ‘better
than’ notion, including those claims relating to transitivity.

I discuss two arguments in support of the transitivity of ‘better than’ at greater
length. First, I present an argument based on a monotonicity principle, roughly if
Q is some property and x is Q and y is Qer than x, then y is Q. Monotonicity
principles are not refuted, but their appropriate application is clarified and hence
it is demonstrated why we might not conclude that they must lead to the rejection
of intransitivity in the relation ‘better than’. Second, I present an argument based
on semantics. Broome (2004, p.50-51) notes, “Some authors write as though the
transitivity of betterness is an issue in ethics. It is not; it is an issue in semantics.”
Roughly, the argument states that ‘A is more Q than B’ means that the degree to
which A has property Q is greater than the degree to which B has property Q. Since
‘greater than’ is a transitive relation then ‘more Q than’ is transitive. This applies
to all comparatives of the form ‘more Q than’ or ‘Qer than’, with ‘better than’ being
an irregular synonym of ‘more good than’. In addressing this argument, I make the
case for ‘better than’ as a precursor for goodness, rather than the transitive-implying
understanding of goodness as the precursor for ‘better than’.

With regard to terminology, I use ‘better than’ to refer to what some might term
‘all things considered better than’, as in general the distinction plays no role in the

1Broome (2004, p.52) dismisses the sports example as a potential counterexample to the tran-
sitivity of ‘better than’: “The very fact that the relation ‘can regularly beat’ may be intransitive
amongst football teams should make you realize it is not equivalent to ‘is better than’.” Thus, he
recognises the potential intransitivity of a relation such as ‘can regularly beat’ in the sports scenario
but assumes that this in itself must disqualify it from any claim to being a ‘better than’ relation.
This is question-begging.
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arguments made. Where the distinction has relevance, in the discussion of natural
language meaning, it will be expressed explicitly. In the moral realm, the ‘better
than’ notion is that of the reason-implying sense described in Temkin (2014, p.13):
“[r]oughly, on this use, outcome A is better than outcome B, all things considered,
if one would have more reason to prefer A to be realized than B, from an impartial
perspective.” With ‘all things considered’ taken also from Temkin (2014, p.15): “to
say that X is better than Y all things considered is simply to contend that there is
most reason to prefer X to Y from an impartial perspective after accurately taking
into account all of the factors that are relevant and significant for comparing such
outcomes from that perspective.” These definitions seem to be translatable in some
meaningfully analogous way to a competitive sports context. Thus, I take A to be
better than B in a competitive sports context if one would have more reason to
believe A to be better than B from an impartial perspective after accurately taking
into account all of the factors that are relevant and significant for comparing such
teams from that perspective. ‘Intransitive’ will be taken to mean that for a relation
R, aRb and bRc do not imply aRc.

The chapter proceeds in Section 2.2 with a discussion of some of the relations that
we might understand to constitute ‘better than’ in the context of competitive sport,
noting that the relation ‘expected to beat’ has appealing features in this context,
but that it is intransitive. A working example is introduced in order to discuss
some of the challenges that an intransitive notion faces. Two of the most significant
are addressed in the subsequent sections. In Section 2.3, monotonicity is discussed
by highlighting the apparent paradox created by holding simultaneously a general
monotonicity principle and an intransitive notion of ‘better than’. In Section 2.4,
the semantic justification for the transitivity of ‘better than’ is discussed. In Section
2.5, I summarise the arguments up to this point and note that even under more
complex notions of ‘better than’ intransitivity is likely to obtain. In Section 2.6,
the arguments considered in Sections 2.3 and 2.4 are used to motivate an example
in the moral realm. This aims to demonstrate that intransitivity is not a property
exclusive to ‘better than’ in a competitive sports context. In the final section some
short concluding remarks are provided.

2.2 ‘Better than’ in competitive sport

The aim of a competitor within a competitive sport is to win. When situations arise
that compromise this, stakeholders object to the circumstance because it transgresses
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this principle.2 Since this is the defining aim of a competitor (the lusory goal as
defined by Suits (1978) and discussed further in Chapter 3), then an acceptable
‘better than’ relation in a competitive sports context needs to be consistent with the
principle that winning is better than losing. For example, under this stipulation I
may not claim that Arsenal are a better soccer team than Manchester City because
they play more attractively (unless I also claim that the attractiveness of the soccer
is monotonically related to winning). I may claim that Arsenal are, or were, better
than Manchester City because they have beaten them, because they have a better
record against equivalent opposition, or because they would be expected to beat
them, since all of these notions respect the primacy of winning over losing. As such,
multiple definitions of ‘better than’ accord with this principle. We will proceed by
examining the claims that some of these have on being a ‘better than’ notion for
competitive sport.

Let us start by taking the relation ‘has beaten’. It is clearly not necessarily
transitive. It is common in sport for team A to have beaten team B, team B to have
beaten team C, and team C to have beaten team A. Setting this aside for now, one
may make at least four other objections to using this as a notion of ‘better than’.
First, this outcome may be due to some arbitrariness in the particular instantiation.
Upsets are a common feature in sport. This is so much a part of sport that the
refrain “may the best team win” is commonplace on the eve of matches. Second,
this is an outcome under a particular set of external conditions. The weather and
officiating decisions, for example, may have an impact on a match and are beyond
the attributes of the teams. Third, it is possible that A has beaten B, and B has
beaten A. Most would agree that ‘better than’ is asymmetric. Fourth, ‘has beaten’
represents an instantiation from a particular point in the past. It is not clear to what
time period the ‘better than’ relation may then apply. If A beats B but then goes
on a bad run of form, while team B goes on to win the championship, it does not
seem credible to maintain that A is better than B. One might insist that the ‘better
than’ relation applies solely to the period over which the match took place, but then
it is a very limited notion, and it seems we are able to make comparisons outside of
that period.

An alternative relation would be the predominant relation used in league sports,

2An example of this comes from the 2018 soccer World Cup. In the final game in Group G,
England were to face Belgium, with both teams having qualified for the knock-out stages already.
Based on results in other groups, it seemed to be the case that losing offered a clearer route to
the final. England and Belgium together changed 17 of their 22 starters from their previous group
match, which they had both won, suggesting that winning was not a priority. There was much
discussion and some discontent at this state of affairs.
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namely ‘has aggregated more wins against all other competitors’. The ubiquity with
which this notion is applied might support its case. But there are several goals
of a league tournament, including the creation of a ranking of competitors, making
that ranking methodology transparent to stakeholders, and identifying the best team.
There is no a priori reason to believe all (or any) of these are possible simultaneously.
Definitionally, to produce a ranking one requires a transitive relation. So even if
there were an agreed upon notion of ‘better than’, if it were intransitive, then it
could not be employed directly for this purpose. So, we must instead look at the
attributes of the relation. Let us consider the first two objections raised previously,
those of random instantiations and external conditions. While the impacts of these
are averaged over the outcome of all matches, they are reduced but not eliminated.
Third, the consideration of time becomes yet more unclear with an aggregation of
outcomes from different time points, so that we cannot even relate ‘better than’ to
a particular point in the past. What relative weight should a result from a year ago
take compared to a result from a week ago? Fourth, it may not be that we have a
complete set of matches on which to compare teams, for example at the mid-point
of a season, or in the case of school or college sports.

This may then encourage us to consider the relation ‘expected to aggregate more
wins against all other competitors’. In referencing expected rather than actual instan-
tiations, we are considering this claim over all possible conditions and randomness in
line with the probability that they occur, and it may be referenced to any particular
point in the past, present or future by using variants ‘was/is/would be expected to
aggregate more wins against all other competitors’, and so objections based on the
randomness and circumstances of instantiations and the lack of temporal clarity are
avoided. However, whether A is better than B then depends on the other teams in
the comparison set. It would seem desirable that if A and B have not changed in
their qualities then whether A is better than B ought not to change. But, if the
relative betterness of A and B is dependent on other teams in the comparison set
then their relative betterness can change due to changes in the other teams. In this
sense, it is not independent of irrelevant alternatives.

It might be that there is a natural comparison set within which any particular
pair should be considered and consists of the same teams over time. For example, if
comparing Manchester City and Arsenal, then perhaps one might take the teams in
the Premier League to be the most relevant comparison set. But those teams will be
continuously evolving as their players develop or grow old or as their manager tries
new tactics. So there is still the possibility for the betterness of A with respect to B to
change without A or B changing in their qualities. Alternatively, one might take the
relevant comparison set to be the set of all possible soccer teams. As Temkin (2014)
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notes in discussing his Sports Analogy, the number of calculations required would
be very high, making it of limited practical use. But setting aside this epistemic
objection, how does one define a ‘possible soccer team’? For example, if it is any
group of eleven people who consider themselves to be a team, any group who are
considered to be a team by others, or all possible groupings of eleven people who
consider themselves to be soccer players then these will change over time and thus
the relative betterness of A and B may change without their qualities changing. It
seems likely that under any plausible identifiable comparison set the other teams are
likely to change continuously over time.

Instead, we might understand ‘all possible teams’ to span a space of the various
relevant qualities of a team. It is far from clear whether such orthogonal qualities
could be defined, but assuming one could, then these qualities would seem to be
continuous. If two teams have two different levels of fitness say, then there would
seem to be an uncountably infinite number of intermediate levels of fitness, and so
the space of ‘all possible teams’ also has an uncountably infinite number of teams.
This would not matter if we could come to a conclusion by comparing teams based
on a finite sample from the space. But there seems no way to do this since the
interaction of relative styles and strengths in competitive sport means that even if
we know that the probability that A beats X is greater than the probability that
B beats X, we may note generally conclude that this will also be true against an
alternative opponent Y . So ‘better than’ becomes undefined, which is inconsistent
with our ability to use the term.

Another objection to ‘expected to aggregate more wins against all other competi-
tors’ is one related to the discussion of Smead (2019). Given a set of match proba-
bilities there are many potential aggregations of these that may be used in order to
provide a ranking on which the assessment of ‘better than’ would be based. Ranking
by a simple sum of wins is a convention in sports, but there may be reasons for
that based on the competing aims of tournaments, including notably transparency,
other than it being an accepted notion of ‘better than’. Instead, perhaps (expected)
wins against higher ranked opposition should count for more. Even ‘expected to
aggregate more wins against all other competitors’ might be ambiguous. Is the com-
parison being made based on the number of expected wins or the expected number
of wins? For the purposes of the following arguments, ‘expected to aggregate more
wins against all other competitors’ will continue to be used and will be taken to
mean a comparison based on the expected number of wins. Later in the chapter, I
take the term ‘aggregate better than’ to refer to the family of plausible ‘better than’
relations that aggregate the probabilistic match outcomes.

A ‘better than’ notion that might seem to avoid these objections would be to
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determine a single ‘strength’ value for each team based on their salient qualities and
then determine that A is better than B if and only if it has a higher strength. Such a
relation is independent of arbitrary instantiations and circumstances, definable at a
particular point in time based on the qualities at that point in time, and appears to
be independent of irrelevant alternatives. It is also transitive. This is analogous to
what Temkin (2014) calls an Internal Aspects View, roughly that A is better than B
if and only if the extent to which A is good, as determined solely on the basis of A’s
internal features is greater than the extent to which B is good, as determined solely
on the basis of B’s internal features. The Internal Aspects View has wide appeal as
it accords with many comparatives with which we are very familiar.

In the present context, the strength value must accord with a propensity to
win, based on the aims of competitive sport. This entails that given a set of salient
qualities for each team and the relevant set of competitors, it will be possible to define
a single strength value based on the qualities that will accord with some plausible
notion of propensity to win. Clearly it cannot accord with an intransitive notion of
propensity to win, but even taking a plausible transitive notion it faces difficulties.
Under the highly plausible assumption that the qualities of one team interact with
those of an opposition in the determination of a match outcome then it is not possible
to define a single metric based on the qualities of each team that can account for all
possible comparison sets and maintain an accordance with a propensity to win. If we
allow the function by which we convert the qualities into a single strength value to
alter with comparison sets then it ceases to be independent of irrelevant alternatives.
So either it does not accord with a propensity to win, or it is not independent of
irrelevant alternatives. There may also be a challenge in aggregating meaningful
qualities that exist on orthogonal scales. These arguments will be elucidated further
with the example in Section 2.3.

A suggestion that avoids this challenge but maintains transitivity and indepen-
dence of irrelevant alternatives would be to claim A is better than B if and only if it
is superior with respect to each of the relevant qualities. But suppose we consider fit-
ness to be a relevant quality in the determination of the betterness of a soccer team.
Under this notion, if we were to compare Manchester City with a team made up of
the fittest eleven people in the world who had never played soccer (who we take to be
fitter than Manchester City) then we would be unable to conclude that Manchester
City were a better team, even if they were expected to beat them (comprehensively)
and were expected to perform better against all opposition.

So let us consider the relation ‘expected to beat’, where A is expected to beat
B if and only if the probability that A beats B is greater than the probability that
B beats A (for ease of explication I assume binary win/loss outcomes). None of the

53



objections mentioned so far pertains to this — it is not subject to arbitrary outcomes
or circumstances, the relevant time may be expressed precisely, it is asymmetric, it
is dependent solely on the qualities of the two teams being compared, and it does
not depend on a definition of a comparison set. It is also, importantly for some,
not at odds with the natural language meaning in that when told “A is (all things
considered) better than B” many will interpret this as “A would be expected to beat
B”. However, ‘expected to beat’ is intransitive.

Two significant objections to an intransitive ‘better than’, those of monotonicity
and semantics, will be discussed in more detail in the following sections. In order to
facilitate those discussions and to clarify the sense in which ‘expected to beat’ may
be intransitive the following example is introduced.

The Intransitive American football teams3

Take three American football teams A, B and C. Let us suppose that
their important qualities may be summarised by their offensive and de-
fensive ability in their running and passing game, and that points are
expected to be scored in a monotonically increasing way with the dif-
ference in the strength of a team’s chosen offense and the opposition’s
corresponding defense. We also assume that the coaches know their op-
position’s qualities, presumably having reviewed their past matches, so
they will choose a running or passing offense dependent on where they
have greatest advantage (and will flip a coin if they are equal). Let us
suppose that their qualities are summarisable as in Table 2.1.

Consider a game between A and B. As the coach of team A, you wish to select your
most effective offense. You note that team B’s run defense is rated at −2 and so with
your run offense, rated at 0, you have a net advantage of 2 (= 0 − (−2)) if playing
a run offense. Your pass offense is rated at 0 and your opposition’s pass defense is

3American football serves as a useful example here because the nature of what goes on is more
readily discretised than in other sports. Many team sports share the binary of being in possession
of the ball (offense) or not (defense). But in American Football, a team with the ball will attack in
one of two ways — by giving it to a player who attempts to run round or through the opposition
(run offense) or by throwing the ball to a player downfield (pass offense). Teams will have varying
strengths in their ability to execute run or pass offensive and defensive operations. The game is
broken down into discrete units of play, where the team in possession, and specifically often their
coach, will decide what kind of offense (run or pass) to execute. The defensive team have to react
accordingly. The example is a simplification as, in practice, all teams will use a mixture of pass
and run offense in order to keep the defensive team guessing from one play to the next. But it is a
reasonable characterisation as the proportions of run or pass offensive plays will be selected based
on their relative strengths.
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Run Pass
Team Offense Defense Offense Defense
A 0 0 0 0
B +1 −2 0 +1
C −1 −1 +2 0

Table 2.1: Qualities of teams A,B and C

rated at +1 and so you have a net advantage of −1 (= 0 − (+1)) if playing a pass
offense. You therefore choose a run offense as it brings you greater net advantage.
Team B’s coach makes a similar calculation and finds that a run offense gives a net
advantage of +1 (= +1− 0) and a pass offense a net advantage of 0 (= 0− 0). They
therefore also choose a run offense. However, Team A’s net advantage from their
selected offense of +2 is greater than team B’s net advantage from their selected
offense of +1. Team A is therefore expected to beat team B. Following the same
reasoning we would expect team B to beat team C, and team C to beat team A.
The relation is therefore intransitive.

The quality values should be understood as cardinal values. A uniform positive
linear transformation of these quality values does not change the conclusion, and for
some it may aid interpretability. For example, if a constant between two and eight
is added to every number then they might be understood as a grading on a scale of
0 to 10. The specific numbers used here are chosen to highlight notions of neutrality
and as the minimum absolute integer value version. The values may be thought of
as comparable in that they all have a direct impact on expected score, which is a
consistent scale.

Before moving on to the substantial objections based on monotonicity and se-
mantics, I address two other challenges. The first is that this is merely a rock-
paper-scissors set-up, and no-one would understand it to be correct to apply the
‘better than’ relation to rock-paper-scissors. But the set-up here is different. In
rock-paper-scissors whether player 1 will beat player 2 is of primary interest, and
each player has a choice from all three items. In contrast, in the Intransitive Ameri-
can football teams example the pair for comparison is set and the expected outcome
of that comparison is of primary interest. The Intransitive American football teams
example is also distinct in that the cycle arises naturally from plausible qualities of
the items under consideration and the nature of the comparisons rather than being
directly stipulated. The second challenge is that this example constitutes a change
of criteria, with the expected match outcomes being determined by a comparison of
run qualities in the case of A vs B and B vs C (depending on C’s coin flip) but a

55



combination of pass and run in the case of C vs A. The argument goes that if the
relevant criteria are being changed then it is not the same relation. But all qualities
are considered in all comparisons and in the same clearly defined and plausible way
each time, consistent with the primacy of winning in competitive sport. The result of
the nature of the comparison is that different qualities have different force depending
on the items being compared, and that is a feature that I claim to be true of the
‘better than’ relation in these circumstances.

2.3 Monotonicity

A prominent argument offered in favour of the transitivity of ‘better than’ is mono-
tonicity. Here the objection will be framed in the form of a paradox. The particular
example presented is derived from the account of Nebel (2018). Consider a mono-
tonicity principle defined as follows.

The strong monotonicity principle

For any property P , with the opposite property Q, if x is not P (i.e. it
is Q or neutral) and y is Qer than x, then y is Q.

Suppose we take ‘better than’ to be ‘expected to beat’ and define a neutral team A
with qualities ro, rd, po, pd for run offense and defense, and pass offense and defense
respectively. Then we may determine a team B with respective qualities ro+1, rd−2,
po, pd + 1, and a team C with qualities ro − 1, rd − 1, po + 2, pd. We will then have
the cyclic triad as before, but by the strong monotonicity principle, B is a bad team
since it is worse than a neutral team, and C is a good team since it is better than a
neutral team. But the bad team is better than the good team, since team B would
be expected to beat team C, which violates the strong monotonicity principle. The
apparent paradox relies on three assumptions:

1. we may have an intransitive ‘better than’ relation,

2. we may define a neutral alternative,

3. the strong monotonicity principle holds.

For many, the resolution is to refute the possibility of an intransitive ‘better than’.
In the last section, we saw that there may be independent reasons to understand
‘better than’ to be intransitive, and so here we consider more carefully the other
assumptions.

56



In considering defining the neutral alternative, there is nothing particularly spe-
cial about neutrality on the good-bad spectrum. Neutrality is used here as there
exists readily available language to describe the situation: names for the point on
the spectrum (‘neutral’) and for the two sides it separates (‘good’ and ‘bad’). But if
one could define a point that lies at the transition from ‘bad’ to ‘very bad’ then one
could make the same argument and conclude that ‘very bad’ is better than ‘bad’.
We might even note that the Combined Spectrum Arguments that Nebel (2018) in-
troduces are not necessary. A spectrum argument of the canonical type with one of
the outcomes identified as a particular point on the good-bad spectrum would lead
to the same conclusion given the same reasoning process. So, the point to be refuted
is that one may identify any particular point on the good-bad spectrum.

There does seem to be some general meaning to what a ‘good’ team or a ‘bad’
team would be with regard to its qualities. A ‘good’ team would be one with high
scores across its qualities, and a ‘bad’ team one with low scores across its qualities.
This does not imply an ability to summarise the quality of a team in a single value
related to the qualities however, and the qualities have value only in so far as they
increase the propensity to win, in line with the aim of competitive sport. It may
be appealing for example to consider that a team with mean values for each of the
individual qualities would be a team of neutral quality. But consider the example
presented in Table 2.2. Here the four teams in the comparison set each have the
same mean of 0 across their qualities, and each of the qualities has the same mean
of 0 across the four team comparison set. However, team D would be expected to
lose all their matches. It therefore seems unsatisfactory to consider them a team of
neutral quality.

Run Pass
Team offense defense offense defense
D 0 0 0 0
E −1 −1 +2 0
F −1 −1 +2 0
G +2 +2 −4 0

Table 2.2: Qualities of teams D-G

Perhaps the mean is just not the right statistic. But this will in fact be the case
with any single value summary of the qualities. For example, it is possible for a
team H to be worse than a team I based on all standard statistics summarising their
qualities e.g. mean, median, mode, maximum, minimum, but still be expected to
beat I and to be considered better than I in the two team comparison set under any
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‘better than’ notion that accords with the stipulation that winning is better than
losing. For example, as summarised in Table 2.3. Of course, one might determine
that the appropriate strength value is not any of these standard statistics but instead
equal to the run offense value, but then if teams J and K, with qualities as in Table
2.4, are added to the comparison set then H would be rated better than J and K
under the strength value measure despite being expected to lose to and accumulate
fewer wins than both. This demonstrates the sense in which an Internal Aspects
View cannot accord with propensity to win given the highly plausible contention
that a team’s strengths and weaknesses will interact with those of their opposition
to produce a win for one team or the other.

Run Pass
Team offense defense offense defense
H +2 −1 −9 −1
I 0 0 0 +10

Table 2.3: Qualities of teams H and I

Run Pass
Team offense defense offense defense
J 0 +2 0 +10
K 0 +2 0 +10

Table 2.4: Qualities of teams J and K

In fact, the nature of the comparison function makes some of these statistics
somewhat arbitrary. The pass and run qualities are defined up to a constant. If we
add an arbitrary constant to all teams’ pass values, both offense and defense, and
a different arbitrary constant to all run values, both offense and defense, then the
comparisons will not change. This does not negate that the qualities exist and inter-
act to affect the match outcome, nor that they may be represented quantitatively.
However it demonstrates another objection to the Internal Aspects View, that the
aggregation of qualities into a single strength value may be arbitrary if the qualities
exist on orthogonal scales.

These examples suggest the difficulties in defining a neutral team, or even a good
or bad team, based directly on their qualities, even having considered them relative
to the appropriate comparison set. They suggest that instead a neutral team ought
to be defined with respect to an aggregation of their pairwise comparisons with
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the other members of the appropriate comparison set. In this setting one plausible
choice for the qualities of a neutral team would be those qualities that imply the
team would be expected to win as many matches as they lose. This is consistent
with the stipulation that the determination of ‘good’ or ‘bad’ must be made with
respect to the propensity to win. Given a comparison set, it may thus be possible
to define a neutral team, one that would be expected to win as many matches as it
would lose. So there are grounds for not rejecting the assumption of being able to
define a ‘neutral’ team.

However, the discussion gives a lead as to why we might believe that the strong
monotonicity principle is misapplied in the characterisation of the paradox. We
first note that the existence of a ‘good-bad’ spectrum presupposes a transitive order.
One resolution is indeed to insist on a transitive ‘better than’ that accords with these
notions of ‘good’, ‘neutral’ and ‘bad’. An alternative resolution would note that the
‘good’ and ‘bad’ here might be better specified as ‘aggregate good’ and ‘aggregate
bad’ since they are divided by a notion of ‘neutral’ that is reliant on an aggregation
of the pairwise comparisons. In contrast the ‘better than’ might be understood as a
‘pairwise better than’. To say that a team that is ‘aggregate bad’ is ‘pairwise better
than’ a team that is ‘aggregate good’ is not paradoxical. In the language of the strong
monotonicity principle, if x is Q and y is P , where P and Q are opposite properties,
we are not saying that y is Qer than x. We are instead saying that y is Rer than x.
Under this view, the strong monotonicity principle is not violated. So, if there are
independent reasons for holding that ‘better than’ is an intransitive notion then the
strong monotonicity principle does not itself preclude this.

However, if we are to understand ‘better than’ to be an intransitive ‘pairwise
better than’, then the argument I have presented here requires that, in this context,
one concedes that the most salient understandings of ‘good’, ‘bad’ and ‘neutral’ are
not related by the most salient understanding of ‘better than’. This leads us into
the area of semantics.

2.4 Semantics

Broome (2004) argues forcefully that the transitivity of ‘better than’ is a semantic
truth. He understands ‘better than’ to be the comparative of the monadic predicate
‘good’, with this being a semantic fact. He argues for this transitive stipulation on the
basis that cyclical relations do not have the semantic structure ‘Qer than’ or ‘more
Q than’, and for relations that do have this structure there is always an associated
value of ‘Qness’ that is being compared. For example, if considering people sitting
in a circle then ‘to the left of’ is a cyclical relation. But there is not an associated
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meaning to ‘person A is lefter than person B’, because there is no meaning to ‘person
A is left’.

Broome (2004) considers possible exceptions to this, including ‘later than’. One
may say ‘1 a.m. is later than midnight’ and ‘2 a.m. is later than 1 a.m.’ and
so forth until we have that ‘midnight is later than 11 p.m.’ completing the cycle.
But then ‘later than’ does not seem to be related to lateness. Perhaps we might
understand 11 p.m. to be late and 6 a.m. to be early. Then we can start at a time
that is late, continue via times that are later than the previous one, and end at a
time that is early. Broome (2004) seeks to resolve this by distinguishing between the
historical lateness that is behind our intuition for the comparative ‘later than’ and
the contextual lateness of ‘late’/‘early’. Based on a monotonicity principle, he asserts
that there is therefore some cut-off point on the 24-hour clock, before which is ‘late’
and after which is ‘early’, and ‘later than’ acts in relation to these. He recognises
this cut-off point as vague.

An alternative account is offered by the discussion of neutrality in the previous
section. There I argued that ‘neutral’, and by extension any point on the good-
bad spectrum, is an aggregate of pairwise comparisons, such that it is the pairwise
comparison that is the precursor. Taking the relation ‘later than’ as a precursor
explains why ‘early’ and ‘late’ are located where they are in contextual time, and
also why they are vague. Due to the nature of human sleep cycles most of us have
more experience of 6 a.m. being ‘earlier than’ than ‘later than’ in relevant com-
parisons with other times of the day, and of 11 p.m. being ‘later than’ rather than
‘earlier than’ in relevant comparisons. An aggregation of these comparisons leads
to our identification of these times as ‘early’ and ‘late’ respectively. But there is no
clear deterministic function for how these experiences ought to be aggregated; we
have varying experiences over time, relatively little experience for sleep hours, and
experiences vary across individuals, and so the resulting understanding is vague.4

These two accounts therefore agree that ‘late’ and ‘early’ exist in contextual time,
and that they are vague. The account of Broome (2004) insists that it is a semantic
truth that ‘later than’ is the relation that acts between items based on their lateness.
The analogue to my account of ‘better than’ claims that the intuitive historical
understanding of ‘later than’ is correct and provides the precursor to lateness. These

4Analogously my account readily explains why a sports team, whose intrinsic qualities do not
change, may be viewed properly as ‘good’ in some comparison sets, and ‘bad’ in others. In a
tournament with ten other teams all with the qualities of team B, then team A would be ‘good’,
since they would be expected to win all their matches, but in a tournament with ten other teams
all with the qualities of team C, then team A would be ‘bad’, since they would be expected to lose
all their matches.
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competing accounts both lead to semantically uncomfortable conclusions. Insisting
on the precursor ‘late’ results in the claim that it would be incorrect to claim ‘ten
minutes after x is later than ten minutes before x’, where x is our cut-off point
between late and early. Insisting on the comparative precursor ‘later than’ leads to
the possibility that ‘x is later than y’ where x is early and y is late.

Returning to ‘better than’, many would accept that goodness in competitive
sport is derived from an aggregation of pairwise comparisons. As Broome (2004,
p.52) notes “goodness of a football team is a complex matter involving the ability
to do well against a variety of opponents.” However, some might insist that these
pairwise comparisons should properly be seen as something other than ‘better than’
relations. In arguing against the spectrum arguments, Voorhoeve (2013) argues that
the pairwise comparisons may be seen as preference relations, and that these may
be based on heuristics that are subject to psychological biases. It seems harder
to dismiss the pairwise notion in competitive sport in the same way. There can
be no claim that there is some comparable failure of judgement or misapplication
of heuristics that have led to an incorrect judgement in the pairwise comparison.
Furthermore, there are arguments for why a specifically pairwise understanding of
‘better than’ may be deserving of primacy, particularly in this setting.

First, “A is Qer than B” is a phrase that permits only the comparison of two
items and gives no indication of a total comparison set other than the two items
themselves. If only these two items are to be considered, that one is ‘good’ and the
other ‘bad’ in the context of some wider comparison set may not be relevant for the
determination of ‘better than’. One might seek to challenge the claim that ‘better
than’ is semantically pairwise by expanding it. For example, by saying “{A,B} is
Qer than {C,D}” or “A is Qer than B and C”, but these are still pairwise. In
“{A,B} is Qer than {C,D}” the items are now sets rather than individual elements,
but the relation still acts on exactly two items, and “A is Qer than B and C” is the
conjunction of the two pairwise comparisons “A is Qer than B” and “A is Qer than
C”.

Second, if one accepts that goodness is based on an aggregation of pairwise com-
parisons that each consider all relevant qualities of the items being compared, then
those pairwise comparisons are foundational. There would seem to be some sense
in which a foundational comparison of overall relative merit has greater claim on a
title of ‘better than’ than a comparison derived from an aggregation of foundational
comparisons involving items outside of those being compared. One might point out
that ‘expected to aggregate more wins against all other competitors’ when based on
expected number of wins is not based on ‘expected to beat’ (though it would be if
based on the number of expected wins). But I am arguing that probabilistic pairwise
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comparisons are the foundational comparisons, with ‘expected to beat’ the appro-
priate way of interpreting betterness within a probabilistic pairwise comparison.

Third, in cases such as the Intransitive American football teams example the
natural unit of comparison is uniquely pairwise. Matches are played between two
teams, not three, or four, or five. This suggests that there is something essentially
pairwise in the nature of ‘better than’ in this setting, by which I mean that the
argument that whether A is better than B is independent of the nature of C has
particular force.

Briefly addressing the semantic argument more directly, it supposes that the lan-
guage we use is definitive for the nature of the comparative to which it is applied.
But this is not always the case. For example, consider relative geographic position.
‘North of’ is a transitive relation, whereas ‘west of’ is cyclical, and yet they share
a semantic structure. If one considers ‘farther west than’ to be a synonym to ‘west
of’ then this may constitute a direct counterexample to Broome’s claim that the se-
mantic structure ‘Qer than’ is determinative of a transitive relation. Broome (1991)
argues against an intransitive interpretation of ‘more westerly than’,5 but the exam-
ple of ‘west of’ and ‘north of’ might still cause us to be cautious of determining the
transitivity of ‘better than’ based on semantic structure. It seems plausible that if a
relation were predominantly transitive in our experience of it then we would adopt
a form of language that was typically used for transitive relations. This may be the
case for ‘better than’ without implying that it must be transitive in all circumstances.

2.5 Summary

Based on the requirement that any notion of ‘better than’ in competitive sport must
accord with a propensity to win, two principal notions of ‘better than’ have been
considered — ‘expected to aggregate more wins against all other competitors’ and
‘expected to beat’, characterised as ‘aggregate better than’ and ‘pairwise better than’
respectively. These share many features that mark them as preferable to alternatives.
They are independent of particular instantiations or circumstances, have a clear
meaning with respect to a particular point in time, and most importantly they accord
with a propensity for winning. ‘Expected to aggregate more wins against all other

5Of course, there is the more everyday sense in which we talk of a geopolitical ‘West’ and ‘East’.
These terms would seem to derive from societies being ‘west of’ or ‘east of’ other societies with
which they came to interact, rather than any intrinsic property of ‘westness’ or ‘eastness’. Indeed
had the centre of mass of civilisation been located in the east Pacific ocean when these terms came
to be coined rather than the Eurasian land mass, then it seems likely that we would now refer to
North America and Europe as the ‘East’ and Asia as the ‘West’.
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competitors’ accords with an understanding of ‘good’, ‘bad’ and ‘neutral’ in this
context, but is not independent of irrelevant alternatives in the sense that whether
A is better than B depends on the nature of C. It also faces the challenge of
defining ‘all other competitors’, the epistemic challenge of computation against a
large comparison set, and it is not clear that ‘expected to aggregate more wins’ is
the uniquely best aggregation of the pairwise comparisons, or that a unique best
aggregation exists. ‘Expected to beat’ accords with the natural unit of comparison
and the pairwise semantic structure of ‘better than’ and is independent of irrelevant
alternatives in the sense that whether A is better than B is independent of the nature
of C, but it does not necessarily accord with a general understanding of ‘good’, ‘bad’
and ‘neutral’.

For some, ‘better than’ must apply to the relative degree of goodness. I claim
that ‘better than’ may be essentially pairwise, while ‘good’, ‘bad’, ‘neutral’ are in-
herently qualities that are held with respect to a wider comparison set. So if there
are independent reasons for holding that ‘better than’ is intransitive then it is plau-
sible that the most salient gradable quality and the most salient comparative are not
compatible.

I have at times referred to the natural language meaning of ‘better than’. The
case made here has been for what we ought to understand by ‘(all things considered)
better than’ not what we do understand by ‘(all things considered) better than’.
Nevertheless, it seems that we should not stray too far from usage or the term
ceases to have the meaning we ascribe and instead is an alternative notion taking
on a misleading label. It seems likely that the natural language meaning of ‘(all
things considered) better than’ in competitive sport incorporates both the notions
discussed here and others besides. But if one grants that ‘expected to beat’ plays
even some small role in the assessment of the natural language meaning of ‘(all
things considered) better than’ then the relation will inherit its intransitivity, since
for any three teams equally rated on other notions but with a cyclic ‘expected to
beat’ relation, the ‘(all things considered) better than’ relation will be cyclic.

Importantly this also applies if we hold that ‘better than’ is some complex mix
of notions but includes some element of ‘expected to beat’. To paraphrase the char-
acterisation of goodness due to Broome (2004, p.52), if we hold that betterness of
one team compared to another “is a complex matter involving the ability to do well
against a variety of opponents”, then it seems plausible that the ability to do well
against the direct comparator would be overweighted with respect to other compar-
isons and thus the relation would inherit intransitivity.

To the degree that the arguments in favour of an intransitive notion of ‘better
than’ presented here are persuasive it is interesting to consider how they might have
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relevance in the moral realm, which has been the focus of the Philosophy argumen-
tation.

2.6 What of morality?

Consider a class of betterness cycle examples that take as their starting point the
three part intuition that:

1. ‘better than’ is a complex relation,

2. complex relations are multi-dimensional,

3. multi-dimensional relations may be (and often are) intransitive.

This suggests that one might work backwards in this intuition by considering ex-
amples based on unambiguously intransitive relations in some non-moral space and
relate them to a moral outcome in order to demonstrate intransitivity of ‘better than’
in the moral realm. As I noted in Section 2.4, these examples might have further
force if there is an essentially pairwise comparison on which they are based. This
strategy may be appealing, given the criticisms of spectrum arguments that generally
question their intransitivity. Here there is certainly intransitivity, and the question
is as to whether that intransitivity properly pertains to a ‘better than’ relation.

Consider the following example.

The racing evil-doer

Suppose there is an evil-doer who has identified a target 100 miles away
and will take a vehicle to get there, and a good actor who wishes to
thwart the evil-doer by taking another vehicle in order to get there first.
There are only three types of vehicle. Their performance is known but
unreliable. The time in hours that they will take to travel 100 miles is
with equal probability of a third: 1, 6, or 8 hours for vehicle A; 2, 4 or 9
hours for vehicle B; and 3, 5 or 7 hours for vehicle C.

Now suppose that there are only two vehicles available, but they are of
as yet unknown type. The good actor is hurrying to the site of the two
vehicles and is expected to arrive momentarily before the evil-doer. We
must advise the good actor of the betterness relation of her choice set, so
that when she arrives and is able to identify them, she is able to make a
correct selection.
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The probability that a vehicle of type A beats one of type B is 5/9, since with an
equal 1/9 probability we have the time pairs (1 < 2), (1 < 4), (1 < 9), (6 > 2), (6 >
4), (6 < 9), (8 > 2), (8 > 4), (8 < 9). Likewise, the probability that a type B beats
a type C is 5/9, and that a type C beats a type A is 5/9; these probabilities being
a direct result of the probabilistic speed of each.6 I claim that with respect to the
choice facing her, one may properly advise that A is better than B, B is better than
C, and C is better than A, and that this betterness is of a moral type.

Some may object that this is simply rock-paper-scissors. But here the choice
facing the good actor is not contingent on the action of anyone else, and the choice
set is always pairwise. Alternatively, a transitivist might argue that these are three
distinct ‘better than’ relations, pertaining to the three choice sets {A,B}, {B,C},
and {C,A} respectively. This is akin to the argument that the Intransitive American
football teams example included a criteria switch. There I argued that all criteria were
included in all comparisons but that their force did change due to the nature of the
comparison, but that this itself was not objectionable. Here it is not even clear what
the supposed criteria switch would consist of. The relation being applied is entirely
consistent in each case, that relating to the probability of arriving first, and each
possible arrival time of one vehicle is considered against each possible arrival time
of the other. This consistency across pairs is indicated by being able to use merely
the phrase ‘better than’ in this context without clarification. Given the scenario, it
seems clear what is meant by ‘A is better than B’, ‘B is better than C’, and ‘C is
better than A’.

Alternatively some might claim that while the relation is consistent, A, B and C
are not. They might note that the consequence of choosing A when the alternative is
B is different from the consequence of choosing A when the alternative is C, and this
makes A different in the two cases. When the consequences are taken into account
this might be thought of as like the choices {go to the park in car A, run someone
over with car B}, {go to the park in car B, run someone over with car C}, {go to
the park in car C, run someone over with car A} and no one would claim that this
involves any interesting intransitivity. To see why we might object to this account,
consider how this argument would apply in the competitive sport context. There
it would claim that the Intransitive American football teams are not comparable
because we would be taking the pairwise comparisons {A when it is expected to win,
B when it is expected to lose}, {B when it is expected to win, C when it is expected
to lose}, {C when it is expected to win, A when it is expected to lose}. Howsoever
we understand the pairwise comparison and its relationship to ‘better than’ it seems

6Readers may recognise this example as relating to intransitive dice examples such as Efron’s
dice.
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clear that the A in the comparison with B is the same as the one in the comparison
with C, and that we can refer to it when discussing betterness. Likewise in the
racing evil-doer, A is consistent across the choice sets — it is a vehicle that arrives
at the target in 1, 6 or 8 hours with equal probability of a third. The expectation of
arriving first/second is clearly a relevant property to the choice, but it is emergent
from the pairwise comparison, not intrinsic to the item being chosen.

We might also consider what alternative ‘better than’ notion might apply instead.
The most obvious alternative would be to claim that ‘better than’ is defined by the
alternatives’ expected performance against an unknown comparator. In which case
all three are equal, since amongst the choice set {A,B,C} they have equal probability
of being first to reach the target against an unknown comparator. These alternative
notions represent ‘pairwise better than’ and ‘aggregate better than’ in this context.
As well as an evaluation of their properties, we might consider the competing notions
of ‘better than’ in the iterative form of whether ‘pairwise better than’ is better than
‘aggregate better than’ or vice versa. I would contend that a plausible ‘better than’
notion is better than another if the choices it leads to are expected to be better.
In the racing evil-doer example, if we take ‘better than’ to be a transitive relation
then we may only advise that the alternatives are equally good. If the ‘better than’
relation is intransitive then we can advise the good actor that A is better than B,
B is better than C, and C is better than A. She is therefore expected to make a
choice leading to a better outcome when the intransitive ‘better than’ relation is
employed. This is in contrast to many, perhaps most, situations in moral reasoning
where employing an intransitive notion leads to significantly increased computational
costs and perhaps even no decision, and making a decision itself has value, so that
the transitivity of ‘better than’ may have value itself.

I have called arguments of this class unambiguous arguments because, in contrast
to spectrum arguments, the intransitivity of the relation at the centre of the example
is unambiguous. It is clearly not dealing with incommensurable, incomparable or
vague alternatives, the intransitivity is not due to the application of a heuristic or
a failure of intuition in the pairwise comparison, there is no ambiguity from the
competing claims of degree and kind, and they are not open to challenge as Zeno’s or
sorites paradoxes. It is perhaps also informative in doubting our transitive intuitions
that, despite being a mathematical fact, the intransitivity of the ‘expected to arrive
before’ relation may be counter-intuitive for many.
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2.7 Concluding Remarks

I have argued that ‘better than’ in the context of competitive sport is intransitive,
either because it is defined by the relation ‘expected to beat’ or because it has some
direct component of that relation in its nature. The sports context facilitated an
explication for why we might challenge prominent arguments for the transitivity of
‘better than’ as an analytic or semantic truth. These challenges would seem to have
relevance to wider considerations, and in particular led to the proposal of a family
of betterness cycle examples, the so-called unambiguous arguments. Perhaps some
would accept the plausibility of an intransitive ‘better than’ in the limited case where
the fundamental unit of comparison is naturally pairwise and the qualities of the
items being compared incontrovertibly interact in providing a direct comparison, but
not otherwise. Such circumstances may be rare and this may be a contributory factor
as to why some people’s intuition in favour of a transitive ‘better than’ is so strong.
But acceptance, even in this possibly limited context, provides a counterexample to
the claim for the transitivity of ‘better than’ as a general truth and acknowledgement
that the arguments for transitivity based on monotonicity principles and semantics
are not insuperable. As well as this being important in its own right, it may have
import for the way arguments based on other proposed betterness cycles, such as the
spectrum arguments, are evaluated.

For the purposes of this thesis, the arguments presented in this chapter set a broad
philosophical grounding to the exercise of ranking. In some sense, the arguments I
have made here would seem to be antagonistic to that exercise. If ‘better than’ is
an intransitive notion then it is impossible to represent the ‘better than’ relation
in the uni-dimensional system that ranking, conventionally understood, imposes.
However, I have argued that the most salient understanding of ‘good’ need not be
consistent with the most salient understanding of ‘better than’. Furthermore, I have
made the claim that when a quality under consideration is intransitive then ‘good’ is
derived from ‘better than’ and therefore that comparison is the appropriate means
of understanding absolute quality. In Chapter 4, I will discuss why this might be
the case from a behavioural perspective, but here the claim is of a more fundamental
nature. Ranking can reasonably be applied as an ordering of items in terms of their
absolute quality, even where that ordering may conflict with individual pairwise
comparisons.

The notions of ‘pairwise better than’ and ‘aggregated better than’ discussed in
this chapter were both framed in the context of expectations. In particular, the
notion of ‘aggregated better than’ as represented by ‘expected to aggregate more
wins against all other competitors’ is an idea to which we will return in Chapter 4,
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when considering a model-independent parametrisation of quality. However, the use
of expectations might imply the use of all data available in order to make the best
possible predictions. This may not always be desirable. In the next chapter, we will
discuss an example of ways in which an analyst may wish to constrain the ranking
exercise to ensure accordance with values such as fairness and equity, as determined
by the norms of the situation.
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Chapter 3

Principled ranking and why the
NCAA have got it wrong

Abstract

This chapter considers the question of ranking in incomplete league tournaments, of
which the regular season of college basketball is perhaps the most notable example.
The selection and seeding of teams for the annual NCAA Division I Men’s and
Women’s basketball tournaments has taken on such a significance that it has its own
day named after it, Selection Sunday. And yet the basis for these selections is highly
disputed. Drawing on common practice in round-robin tournaments, a minimum
set of principles that should guide quantitative analysts in performing generalized
league ranking is proposed. In particular, the use of predictive measures and the
inclusion of performance data other than wins is opposed. It is shown that the
current NCAA method is highly deficient with respect to these principles, and it is
argued that an approach consistent with these principles should be adopted. Further
recommendations are made for future ranking.

3.1 Introduction

On 12th March 2021, two days before the final selection and seeding for the NCAA
Division I (DI) men’s basketball tournament, the Chair of the Selection Committee,
Mitch Barnhart, gave an interview. In response to a question about the impact of
COVID-19 season interruptions, he summarized the bases for selection and seeding,
“It comes down to the foundational piece: who’d you play, where’d you play, and
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what was the result.” (NCAA, 2021) Yet it’s not clear that the methods employed
by the NCAA really do align with that statement. The intention in this chapter is
to use the NCAA tournament as a case study for examination of the methods and
principles involved in such ranking exercises, providing insight into the nature of
tournaments, rankings, and the identification of athletic excellence.

In many kinds of league tournaments around the world, rankings are determined
through ordering teams by total points, where points are awarded to teams depen-
dent on the outcome of each game, or equivalently, by win percentage in binary
outcome sports such as basketball. An underlying assumption is that the schedule
strength of one team in the league is the same as, or sufficiently similar to, that of
others. Outside of North America, the round-robin format predominates, in which
every team plays every other team an equal number of times, often both home and
away. North American leagues tend to be larger, precluding round-robin formats.
To minimize differences in schedule strength, most North American leagues have a
conference or divisional format, where teams are compared directly to others within
their conference, who typically play each other more often and have comparable
schedules.

However, sometimes equity is not possible. Recently, many leagues and tour-
naments were interrupted or modified by the COVID-19 pandemic. In other cases,
including the regular season of NCAA DI basketball, unbalanced schedules derive
from constraints of a logistical, historical, or commercial nature. There is a notice-
able gap in the philosophy of sport literature concerning the ranking in these common
tournament formats, what will be referred to as generalized league tournaments. For
example, Pakaslahti (2019) explores the methods of tie-breaking in round-robins, but
it is not clear how the arguments would be applicable to unbalanced tournaments.
And Smead (2019) discusses the application of Arrovian social choice theory (Arrow,
1963) to sports, but social choice theory takes as its basic unit complete rankings
of all comparators rather than the incomplete pairwise comparisons of games in an
unbalanced tournament, leading to some principles being not readily translatable.
Some scholars, like Bordner (2016), have resisted any conventional ranking done for
purposes of esteem, advantage, or tournament participation. We disagree, and hold
that ranking, when done well, can meet adequately the ‘structural goals’ of sport “to
measure, compare, and rank competitors according to athletic performance” (Loland,
2013, p.53), as well as the ‘intentional goals’ - “the subjective reasons leading indi-
viduals to participate in sport,” (Finn, 2009, p.70) such as commercial interests, or
the sense of engagement with a community.

This chapter also draws on the foundational sports philosophy work, The Grasshop-
per: Games, Life and Utopia (Suits, 1978), where game playing is defined by four
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elements. The first element is the goal, which itself is split into two parts, the ‘lu-
sory goal’ of winning, and the ‘pre-lusory goal’, the state of affairs that a competitor
seeks to bring about. For example, in golf we might describe the pre-lusory goal as
getting the ball in the hole, or in a race as crossing the line. The second element is
the means. These are necessarily restricted. The most efficient way of getting the
ball in the hole may be to pick it up, hop on a golf buggy and drive to the hole.
Permitted means are called ‘lusory’ means and prohibited ones ‘illusory’. The third
element is the rules. These define the means that may be employed to achieve the
pre-lusory goal. Within the rules, Suits includes the informal rules of how to play a
game well, which might be handed down by a coach, for example. The final element
is what he calls the ‘lusory attitude’, the acceptance of the rules and the goals. Under
this understanding, cheating represents a rejection of the ‘lusory attitude’ and so a
competitor who does so is no longer playing the game. These elements are brought
together in the following definition:

“To play a game is to attempt to achieve a specific state of affairs, using
only means permitted by the rules, where the rules prohibit use of more
efficient in favour of less efficient means, and where the rules are accepted
just because they make possible such activity.” (Suits, 1978, p.43)1

While there is widespread controversy about much of this framework, especially in
the nature of the rules and the interpretation of cheating, the construct of ‘lusory’
and ‘pre-lusory’ goals has wide acceptance and is the one used in this work.

3.1.1 NCAA DI basketball

The primary structural goal in NCAA DI basketball is in identifying an overall
winner. The season is split into two parts — a regular season that consists of what
may be thought of as a generalized league tournament; and a post-season, a standard
six-round knock-out tournament. Approximately half of the teams qualifying for the
post-season do so automatically by winning their conference championship during the
regular season. The others are determined by a selection committee, based on teams’
performance in the regular season. In making this determination, the committee are
mandated to look at particular quantitative metrics. Historically, they used the
Ratings Percentage Index (RPI), a heuristic measure that aimed to account for the
strength of opposition that a team had faced (for more details, see Section 1.7.4).
For the 2018/19 season, after sustained criticism of the RPI, it was replaced with the

1Suits (1978) also provided the somewhat pithier, and oft-quoted, characterisation that ‘playing
a game is the voluntary attempt to overcome unnecessary obstacles.’
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machine-learning based NCAA Evaluation Tool (NET) and the Quadrant System, a
categorisation of results that aimed to capture the role of venue (home/away/neutral)
and strength of opposition in the performance assessment.

3.1.2 Aims

The argument presented here is that fairness in ranking of generalized league tourna-
ments is important and can be usefully guided by principles, which may be derived
from the norms of sports competition. Where these generalized league tournaments
are a part of a wider tournament, such as in NCAA DI basketball, our contention
is that if methods are available that meet these principles as well as the structural
goals of the wider tournament, then such methods should be preferred.

The aims for this chapter are thus twofold. The first aim is to propose and defend
a minimum set of principles to guide ranking methods. These will be applicable where
the ranking itself constitutes the tournament outcome or where the purpose is the
identification of participants for championship tournaments or post-season games.
These principles are that a ranking should:

1. be anonymous — a team should not be (dis)advantaged due to their identity;

2. reflect a positive response with respect to the beating relation — a win is better
than a loss against the same opposition;

3. depend on current season games only;

4. have no recency weighting to the evaluative weight of games;

5. be based solely on wins and losses;

6. adequately account for strength of opposition;

7. adequately account for venue.

The claim is not that the principles would exclude all potentially objectionable rank-
ing methods in all scenarios. Instead, it is that they may be used to guide ranking,
so that failing to meet them should raise questions about the ranking approach. The
second aim is to assess the methods used by the NCAA in the administration of
their annual basketball tournament. Given the popularity of the tournament, this
question is of interest itself, but also demonstrates that the principles are not so
general as to be uninformative.
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The role of wins is of particular interest; round-robin tournaments (in binary out-
come sports) are typically decided on wins, but as Torres and Hager (2005, p.211)
notes: “The philosophy-of-sport literature is replete with either condemnations of
the obsession with winning so prevalent in sport communities across the world or
reminders that winning is neither the only value that matters in competitive sports
nor the most important,” and tournament administrators, such as the NCAA, resist
employing wins uniquely in generalized tournament ranking. We contend that in
sports where wins alone are customarily used for ranking in balanced tournaments
they should remain the guiding principle even in unbalanced tournaments, and not
other metrics that may reflect a broader understanding of athletic superiority. In par-
ticular, we find that prediction-based ranking that includes performance data other
than wins alters the lusory and prelusory goal of the sport and violates other basic
features of best ranking practices. The discussion here considers primarily sports
where the outcome is a binary win/loss, rather than points. This aids consistency,
interpretability and brevity, and is the case in basketball, which provides the main
working example. However, many of the arguments are readily adaptable to sports
where it is points rather than wins that are customarily the outcome of an individual
contest, with points then becoming the definitive data.

The chapter proceeds in Section 3.2 by discussing round-robin tournaments —
why they might be regarded as a useful base for inferring principles for generalized
tournaments, and how the round-robin ranking method might be justified. In Section
3.3, this analysis is built on to derive seven principles which it is claimed a generalized
ranking method should meet. In Section 3.4, the NCAA basketball ranking method
is judged against those seven principles and evidence found that it violates all seven.
Finally, some concluding remarks are made.

3.2 Round-robin tournaments

The round-robin tournament is a useful starting point for the consideration of gen-
eralized league tournaments. If it can be established that the standard ranking ap-
proach in round-robin tournaments is appropriate in that context then it can provide
two insights for generalized ranking. First, if there are particular principles that such
an approach meets then these may be applicable to generalized ranking. Second, if
a preferred round-robin ranking method can be identified then it is desirable for the
generalized ranking method to give the same ranking when applied to a round-robin
results set.

There is a clear norm as to how a round-robin ranking method should work,
by ranking participants in order of their number of wins. However, the ubiquity
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of the practice alone does not confirm its efficacy, so we must consider on what
grounds this ranking method might be justified. This question was addressed by
Rubinstein (1980). He takes a round-robin tournament composed of a single round
with binary win/loss game outcomes and considers three axioms. Following the
notation of Rubinstein (1980), A → B denotes ‘A beats B’, and A ⪰(T ) B denotes
‘A is ranked higher or equal to B in tournament T ’. The axioms are:

a Anonymity – Let T be a tournament, σ a permutation on the set of teams N ,
and i and j teams. Denote by σT the tournament which relabels the teams so
that σi → σj in σT if and only if i → j in T . Then i ⪰(T ) j if and only if
σi ⪰(σT ) σj.

b Positive response with respect to the beating relation – Suppose i and j are
distinct players in T and i ⪰(T ) j. Let T ′ be identical to T except for the
existence of a third player k such that k → i in T and i → k in T ′. Then
i ⪰(T ′) j.

c Independence of irrelevant alternatives – Let i, j, k and l be four distinct players.
Suppose T and T ′ are identical, except k → l in T but l → k in T ′. Then
i ⪰(T ) j if and only if i ⪰(T ′) j.

Rubinstein (1980) demonstrates that under these axioms the unique ranking method
is that defined by ordering teams by their number of wins. Henriet (1985) extends
the axioms and the result to include ties, and Nitzan and Rubinstein (1981) extends
to round-robin tournaments with multiple rounds. Van Den Brink and Gilles (2000)
provide an alternative axiomatisation also leading to a ranking by number of wins.

A second argument for ordering by wins is based on its being the accepted norm,
but notes that such norms might have particular force given the normative nature
of the outcome of a tournament. There appears to be high acceptance of the com-
bination of round-robin tournaments and ranking teams by their number of wins, as
evidenced by four factors: ubiquity — it is used worldwide across sports; uniformity
— almost everywhere it is used in a similar format with a sufficiently fair distribution
of opposition, with structural controls for variables that may meaningfully influence
the outcome (e.g. venue and neutral officiating); undisputedness — the outcomes of
these tournaments are very rarely disputed as they relate to the structure or ranking
method; certainty — no-one, not even the most ardent statistician, proposes that
points accumulation should be presented with some sort of error bar to indicate to
what degree there is uncertainty in the points aggregation as an expression of quality.

As was noted above, established norms need not be decisive in the question of
how we ought to perform ranking, but there would seem to be philosophical and
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pragmatic grounds for emphasizing them in the present context given the desire to
achieve the ‘intentional goals’ of the sport. People would be less willing to watch
post-season games if they did not believe that the teams they were seeing were
deserving, and a coach would be less likely to get the sack for finishing down the
rankings if the team would be held in no lower regard for doing so. Other outcomes —
financial incentives from further games or professional incentives from job security
— are derived from this prestige. In this way, prestige related to the determined
ranking is required for a tournament to realise these ‘intentional goals’ of the sport.
Since prestige exists purely as a function of the opinions of stakeholders, the degree
to which a tournament achieves these ‘intentional goals’ is based on the acceptance
of the tournament results by stakeholders. Therefore, ranking methods that have
widespread acceptance are due special regard in the question of appropriate ranking
methods.

As an established and hugely popular tournament, some might claim that NCAA
DI basketball is an example itself of a tournament where the ranking method has
achieved popular acceptance. But while there is generally no popular dispute about
the winner of March Madness, there is regular controversy around the selection for
the post-season tournament. Indeed the move to use NET and then amend it, and
the expansive list of alternative ranking methods (see, for example, Massey (2019))
are evidence of this controversy and the lack of a generally accepted method.

3.3 Generalized ranking

A generalized tournament here refers to any fixed period league-based tournament
or sub-tournament where the games are between two competitors. The round-robin
format is a subset of generalized tournaments. As argued above, there are both
axiomatic and normative grounds for taking total wins as the ranking method in
round-robin tournaments. But it seems less clear how one ought to rank in unbal-
anced tournaments.

A number of generalized ranking methods that accord with round-robin ranking
have been proposed. For example, one might consider a statistical generalization
where game outcomes are taken to be independent conditional on the team strengths,
with the consistency to the round-robin tournament achieved by requiring that those
strengths depend on the results only through the number of wins that each team
achieves. As was shown in Section 1.2.4, this leads uniquely to the well-known
Bradley-Terry model (Bühlmann and Huber, 1963). Alternatively Slutzki and Volij
(2005, 2006) describe sets of plausible axioms, similar to those of Rubinstein (1980),
that lead to what they call the ‘Fair Bets’ model, originally described by Daniels
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(1969) (see Section 1.7 for further details); or Chebotarev (1994) describes a family
of models meeting particular axioms that he calls the ‘generalized row sum model’.
González-Dı́az et al. (2014) review a number of ranking methods against axiomatic
criteria. But these works generally describe how particular methods accord with
particular principles, rather than arguing for those principles. In some instances
the principles are also more specific than we would be prepared to grant necessary.
Instead, a broader minimum set of principles is argued for here.

3.3.1 Principle 1: Anonymity

Given the desired consistency with round-robin ranking, we start by considering the
axioms employed by Rubinstein (1980). First, the condition of anonymity requires
that no team has an advantage in the ranking because of who they are. Perhaps some
might dispute this in the context of a play-off system, believing that a team with a
history of raising their game in the post-season should have a greater claim to a spot,
even given an equivalent or lesser playing record in the regular season. But this sort
of structural advantage seems unfair. It entails that another team is disadvantaged
due to historic results, potentially that no member of the present team had a part
in.

The mathematical definition of anonymity taken by Rubinstein (1980) is rather
restrictive for the present context and not well-suited to the conference setting. With
the conference system it would not be possible for a team to exchange their results
in the way that the relabeling definition envisages. Conference membership, which is
a key determinant of much of a team’s schedule, is defined by history and geography
and is largely inflexible. So here a broader definition is taken, that no team is
(dis)advantaged by their identity, including a team’s membership of a particular
conference. This is consistent with arguments on the use of statistical methods in
legal proceedings, where, for example, Jorgensen (2022) argues that algorithms used
to inform legal outcomes should not depend on any ‘unchosen properties’.

3.3.2 Principle 2: Positive response with respect to the beat-
ing relation

Positive responsiveness to the beating relation, broadly understood, seems to be an
expression of the goal of competitive sport to win. The specification of Rubinstein
(1980) states that a team that wins against a particular opposition is ranked at least
as high as a team that loses against the same opposition if the rest of their record is
the same. However, there may be alternatives. For example, it could be posed as:
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2∗. Suppose i and j are distinct players in T and i ⪰(T ) j (j ⪰(T ) i). Let T ′ be
identical to T except for the existence of a third player k such that there is an
additional match in T ′ between i and k, where i → k (k → i). Then i ⪰(T ′) j
(j ⪰(T ′) i).

This specification states that the addition of a win (loss) to a record cannot result
in a lower (higher) ranking.

2∗ is stricter than the specification of Rubinstein (1980), since 2∗ is a sufficient
condition for the specification of Rubinstein (1980). To see this, suppose we have
three tournaments T, T ′, T ′′. These tournaments are identical except that T ′ has
one fewer game. In T there is an additional game where k → i. In T ′′ there is an
additional game where i → k. If i ⪰(T ) j, then i ⪰(T ′) j by 2∗, and if i ⪰(T ′) j,
then i ⪰(T ′′) j by 2∗. Therefore, if i ⪰(T ) j, then i ⪰(T ′′) j and the specification of
Rubinstein (1980) is met.

Here it would seem desirable to take the weaker condition. Notwithstanding that
we later argue for a dependence solely on wins and losses, some might argue that
a narrow win against a weak team ought, in some circumstances, to see a ranking
reduced. Taking the condition of Rubinstein (1980) obviates this objection as a
counter to the principle would require that there may be circumstances where a win
would have a more negative ranking impact than a loss against the same opposition.
Such a position seems indefensible.

3.3.3 Principle 3: Dependence on current season only

In considering a third principle, it is tempting to consider the third axiom of Ru-
binstein (1980). Independence of irrelevant alternatives may be appealing if one
understands the quality of a team’s performance to be a function purely of their
own records. Building on analysis by Berker (2014), a closely related concept is ar-
gued for as ‘autonomous relative ranking’ (ARR) in a round-robin soccer context in
Pakaslahti (2019), where it is taken as a decisive argument against using head-to-
heads as tie-breakers. However, in the unbalanced tournament this principle need
not hold. Consider four teams A,B and X, Y , where A and B have one win each
against each other and X and Y have one win each against each other. The conven-
tion in round-robin ranking tells us that A and B should be ranked equal and X and
Y should be ranked equal. But now suppose that B → Y and we are required to
rank the teams. It would seem that A,B ought to be ranked higher than X, Y , which
entails ranking A higher than X, as a result of games in which neither were involved,
thus violating the axiom. Such dependence on ‘irrelevant alternatives’ in the context
of an unbalanced tournament thus appears reasonable, even necessary. So, while we

77



might expect this axiom to obtain in the special case of a round-robin, it is not ap-
plicable to the generalized case. Thus, only the first two principles from Rubinstein
(1980) — anonymity and the positive response with respect to the beating relation
— are taken.

Instead, we may draw on three principles present as assumptions in Rubinstein
(1980) in considering a round-robin tournament, but not presented explicitly as ax-
ioms. First, the ranking method should be dependent on performances in the relevant
season alone. In a sense that is the definition of a season, that each team starts with
a clean slate. Note that a ‘season’ here may have a wider interpretation than the
conventional one, including contexts in which a ‘season’ would be a small part of a
tournament, for example in the group stages of a World Cup.

There is a sense in many sports tournaments in which the results of previous
seasons are considered. Promotion and relegation is common in sports tournaments
in Europe and elsewhere. Suppose the eventual tournament winner is determined by
a play-off between the top four teams in the top division of a regular season. In order
to be able to qualify for the play-off and win the tournament overall, a team needs to
be in that top division; something that will depend on their performance in previous
seasons. However, conditional on the set of competing teams being defined at the
beginning of the season these previous seasons’ results play no role in the ranking.
This would seem to be the relevant point here, where the set of competing teams is
set, any ranking ought to take account solely of information from the current season.

3.3.4 Principle 4: No recency weighting to the evaluative
weight of games

The second assumption implicit in Rubinstein (1980) is that game results are not
treated differently due to when in the season they occurred. This principle may be
controversial to many. Some may argue that in a play-off system more recent games
should be weighted more heavily as these provide a better indicator of potential post-
season success. The norm in most sports, including those in basketball and other
professional North American leagues, is for there to be no weighting. Regular season
games in balanced leagues could be weighted, but that is not done in any of the major
professional North American sports or in the major European club tournaments in
soccer and rugby union where play-off formats are employed. Pragmatically, weight-
ing games disincentivises teams from caring about all games in the season equally,
which may be to the detriment of sports competition, but it may also be unfair when
it interacts with scheduling if, for example, a team is able to play weaker teams later
in the season when they have greater weight.
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In NCAADI basketball, it is perhaps not so clear what the norm is. There appears
to be no official acknowledgement that more recent matches carry more weight, much
less an official argument that they should — Mitch Barnhart notably did not include
“when’d you play” in his list of criteria. The quantitative metrics mandated to be
used by selection committees are consistent with this observation; neither RPI nor its
successor NET included any such recency weight. When determining the 32 qualifiers
who qualify directly for the post-season based on winning their conferences there is
also no recency weighting used in those conference determinations. Thus, adoption
of this principle seems consistent with the sports norms we have argued ought to
form the basis of the ranking method.

3.3.5 Principle 5: Based solely on wins and losses

A third implication of the Rubinstein (1980) construct that we seek to make explicit
is that the team-based data on which the ranking will depend will be solely wins and
losses. This is a central point of our argument and may be controversial to many. The
quote from Mitch Barnhart is somewhat ambiguous on this point, using the term
“result”, which may be interpreted in several ways. The term ‘team-based data’
is used here to distinguish it from game features like venue — home/away/neutral
— or strength of opposition, accounting for which is consistent with round-robin
ranking and is discussed later. Instead the argument here is to exclude the use of
additional information such as team demographic data, or team performance data
such as possession or territory statistics, or even score margin.

In the context of a tournament like March Madness, some may see the goal
as being to select the teams that are most likely to perform well in the post-season.
Others may accept the primacy of wins and losses and the requirement for consistency
with round-robin ranking, but interpret this as a requirement to determine what wins
and losses would have been achieved were all teams to have faced each other. These
are both predictive tasks, and, broadly speaking, prediction works better the greater
the number of relevant factors one allows to be used in the method. Thus, the
argument goes, relevant information is wrongly ignored by not considering factors
outside of wins and losses. Alternatively, others might be in favour of a retrodictive
approach, an evaluation of who has done best rather than who is expected to do
best, but argue that such an evaluation should include performance data other than
just wins and losses.

A potentially useful categorisation is to consider four levels of team-based data:

1. win/loss;
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2. score;

3. performance data from matches played e.g. possession, territory, shots, fouls,
net efficiency etc.;

4. non-performance data e.g. shirt colour, age, height, race etc..

Starting with the last of these, color of uniform (Hill and Barton, 2005; Attrill et al.,
2008) or the proportion of players of particular heights, ages or races may be pre-
dictive features of a team’s success, but few would advocate that they would be
appropriate to include in the ranking of a team. Indeed, their exclusion is specif-
ically mandated by the anonymity principle. The second and third categories are
differentiated by score being defined in the rules of the sport as the means by which
wins and losses are determined. In contrast, the non-score performance data are not
a specified goal of the sport. Using them in ranking teams then becomes problem-
atic. They have no intrinsic defined value from the rules of the sport, and their value
can be viewed only actuarially — the degree to which they have been predictive of
success in the past. Using these data for ranking purposes then alters the lusory
and prelusory goals of the sport (Suits, 1978). The goal of a team becomes to most
closely match the performance attributes of teams that have been successful in the
past, rather than to win. As well as being objectionable in its own right, this might
have the effect of actively discouraging tactical innovation, which is often lauded as a
feature of sport, since such innovation might result in optimising to a different profile
of performance metrics to those that have been successful in the past.

Using just scores or score margin would seem to avoid these objections but their
use might still constitute misunderstanding the prelusory goal of the sport. For
example, Pakaslahti (2019, p.358) states: “in a soccer match the betterness of teams
is determined by how much ability to score and prevent goals (by using means that
are permitted by the official rules and the ethos of soccer) each team demonstrated.”
In a soccer context, the ability to score and prevent goals is reflected as much in the
difference between a 3-0 win and a 2-1 win as between a 1-0 win and a 0-1 loss,
with the score margin being different by 2 in both cases. This could be expressed
in a ranking system. It would be possible to rank in a round-robin tournament by
aggregate goal difference, with number of wins perhaps acting as a tie-breaker. But
tournament administrators, reflecting the view of their relevant sports communities,
choose not to do that. We might reasonably conclude that they believe, as Herm
Edwards famously expressed in what became a meme,“You play to win the game.”
That is, we might better understand betterness expressed thus: “in a soccer match
the betterness of teams is determined by how much ability to score and prevent more
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goals than their opposition (by using means that are permitted by the official rules
and the ethos of soccer) each team demonstrated,” with ‘more’ here being primarily
an ordinal rather than cardinal evaluation. It is also notable that NCAA resisted the
inclusion of an uncapped “score margin” in the algorithmic rankings that they have
used to support their decisions, RPI and NET, on the grounds that “running up the
score” may embarrass opponents and would conflict with the goal of sportsmanship
(NCAA, 2018; Paul and Wilson, 2015).

Considering a predictive approach more directly, basing on prediction presupposes
that ranking ought to be defined in terms of probability of winning in some sense, but
this does not seem consistent with what we observe. An informative example is the
2015/16 English Premier League soccer season. Leicester City were the champions.
But Leicester were not favourites in the betting markets for the next season, nor
were they favourites in any of their games against the four other main contenders for
the title that season — Arsenal, Tottenham Hotspur, Manchester City, Manchester
United (football-data.co.uk, 2016). It therefore seems unlikely that people took Le-
icester City to be better than all the other teams in the tournament, in some sense
consistent with ‘most likely to win’. Yet they were fêted worldwide; no-one disputed
who the champions were or expressed concerns that the tournament structure and
ranking method had failed in meeting the requirements of ranking. Thus, the aggre-
gation of past results was accepted as the appropriate model of ranking rather than
a concept of betterness that would be modelled by predictive metrics. That unlikely
events happen should not, on its own, preclude us from using predictive measures as
a guide to ranking. But the example is informative in showing that when predictive
measures and achieved performance lead to different ranking conclusions then it is
the achieved performance that stakeholders in sport take to be decisive.

Another objection to limiting team-based data to a consideration of wins and
losses is in the consideration of ‘good’ or ‘bad’ wins or losses. There would seem to
be wide normative acceptance of the idea that a ‘good’ loss can be a better indication
of quality than an ‘ugly’ win. Taking only wins and losses does not seem to allow for
the identification of these. However, there is a strong norm in sports tournaments
worldwide and in the USA, including in basketball in the NBA, for using rankings
based solely on wins and losses and there is widespread acceptance of these rankings,
despite there still being a widespread acknowledgement of the idea of ‘good’ and
‘bad’ losses in those contexts. Therefore, the acknowledgement of ‘good’ and ‘bad’
wins does not seem to be a constraint on using wins and losses to determine rankings.

However, if a stakeholder community feels it sufficiently important to acknowledge
‘good’ and ‘bad’ wins and losses then a principles-based approach does not preclude
this. We have made the argument in this chapter in terms of wins and losses to aid
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interpretability and maintain consistency with the work of Rubinstein (1980), but in
the more general case it is points rather than wins and losses that are the relevant
data. With that in mind, it can be noted that some sports do include factors other
than just win/loss in their points systems. For example, in the NHL a team losing
in overtime gains a bonus point, or in rugby union, points are awarded for scoring
a certain number of tries or for losing within a particular score margin. Where
this norm exists within a common sports community in the round-robin format it
seems reasonable to maintain this points system in the generalized ranking through
considering points rather than wins. In all these examples, the additional point-
scoring factor is considered within the same dimension — two overtime bonus points
in the NHL are equal to one win — with the other factors always earning less than the
win, so that Principle 2, positive response with respect to the beating relation, will
not be violated. When a points method of this nature is combined with a principle
that we argue for later, that opposition strength should be adequately accounted
for, then it could even be that a narrow or overtime defeat to a very strong team
increases a ranking more than a wide win against a very weak team, under ranking
methods concordant with the principles argued for here. Importantly under such
approaches the lusory goal of winning and the pre-lusory goal of scoring more than
the opposition are not compromised.

Relatedly, it should also be noted that principle-based methods relying solely on
wins and losses will not automatically rate unbeaten teams over teams with losses
on their record. If the strength of opposition is sufficiently different, then the un-
beaten team may be ranked lower (see, for example, the discussion of using priors in
Hamilton and Firth (2021), or the discussion of the use of penalties in Chapter 4).

Finally, methods that use prediction or data other than wins and losses may
cause violations of some of the other principles. The example was given as to how
non-performance data violates anonymity, but later with the example of NCAA DI
basketball in Section 3.4, we show how the use of performance data may also cause
violations to principles 2 and 3 — positive response with respect to the beating
relation and dependence on current season games only.

3.3.6 Principles 6&7: Adequately account for strength of
opposition and venue

Two final principles relate to the other explicit criteria that Mitch Barnhart cited
— “who’d you play, where’d you play”. In a round-robin tournament these are ad-
dressed by the balance of the tournament structure. A win(loss) against the strongest
team counts the same as a win(loss) against the weakest team. This works because
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everyone plays the same opposition, so conditional on having the same number of
wins, a win against a stronger team is offset by a loss against a weaker team. In
an incomplete league, the offset is not guaranteed by the schedule and so not ac-
counting for opposition strength would allow teams to artificially inflate their rating
by playing weaker teams. Here we describe the principle as ‘adequately accounting
for strength of opposition’, by which we mean that a win(loss) against a stronger
opponent will increase(decrease) a team’s rating more(less) than a win(loss) against
a weaker opponent. The methods discussed at the start of this section — Bradley-
Terry, Fair Bets, generalized row sum model — are examples of retrodictive ranking
models that achieve this.

Similarly, most balanced league tournaments account for home advantage through
tournament design. Typically, teams play a similar number of home and away games
overall, often with each opposition played an equal number of times home and away.
This structure might be interpreted as an expression that a team’s ability ought to
be an average of their home and away strengths, or alternatively that we understand
the home advantage to be a symmetric one where the advantage to a team A playing
at home against a team B is equal to the advantage of team B playing at home
against team A. These are alternative perspectives consistent with the round-robin
norm. We are not prescriptive on this point but require that venue is adequately
accounted for in line with some reasonable interpretation of the advantage that it
confers.

3.3.7 Summary

An argument has been presented as to why the predominant ranking method used
in round-robin tournaments ought to be respected. Based on that, seven principles
have been derived with which generalized ranking ought to accord, namely that a
ranking should:

1. be anonymous — a team should not be (dis)advantaged due to their identity;

2. reflect a positive response with respect to the beating relation — a win is better
than a loss against the same opposition;

3. depend on current season games only;

4. have no recency weighting to the evaluative weight of games;

5. be based solely on wins and losses;

6. adequately account for strength of opposition;
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7. adequately account for venue.

These are now used to assess the ranking method used in NCAA basketball.

3.4 NCAA Basketball

In this section, we compare the NCAA March Madness seeding and selection to the
principles developed in Section 3.3. NCAA DI basketball consists of a regular season
followed by a knock-out tournament commonly known as March Madness. The
regular season consists of non-conference games, sometimes as part of tournaments,
followed by a conference season, and finally conference championship tournaments.
Due to disproportionate non-conference matchups and the varying size, strength,
and format of conferences, team schedules can vary greatly. The March Madness
tournament consists of 64 teams in the women’s competition and 68 in the men’s.
In both cases, 32 teams are taken as champions of their respective conferences. The
additional teams are selected by a committee, as are the seedings.

No details are given of the committee deliberations. However, the committee
are mandated to use particular metrics in their deliberations. Until the 2018/19
season, the Ratings Percentage Index (RPI) provided a key instrument. This was
often criticized for not respecting the positive response with respect to the beating
relation, and for unfairly advantaging teams from the strongest conferences, due to
overweighting the strength of a team’s opposition, thus also for being readily game-
able (Coleman et al., 2010; Baker, 2014). In response to these criticisms, for the
2018/19 season, the NCAA replaced RPI with the NCAA Evaluation Tool (NET),
which used performance indicators. The model, which used machine learning tech-
niques, was optimized against late season and NCAA tournament games as test sets
(NCAA, 2018).

For the 2020/21 season, a new version was introduced with a reduced set of
indicators:

“. . . the NCAA Evaluation Tool will be changed to increase accuracy
and simplify it by reducing a five-component metric to just two. The
remaining factors include the Team Value Index, which is a result-based
feature that rewards teams for beating quality opponents, particularly
away from home, as well as an adjusted net efficiency rating. The adjusted
efficiency is a team’s net efficiency, adjusted for strength of opponent and
location (home/away/neutral) across all games played.”

These descriptions still leave significant lacunae in our knowledge. It could be
that the method takes wins and losses in a manner consistent with the principled
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approaches already mentioned, and net efficiency is used only as a tie-breaker for ex-
ample. However, the description of NET’s development, as a model optimized against
late season and NCAA tournaments, seems inconsistent with this understanding.

We have argued that rankings in generalized tournaments should be guided by the
best practices of round-robin tournaments. The most basic problem for the NCAA’s
regular season ranking is that if a round-robin tournament were to be played, NET
would likely give a different ranking to win percentage. But the NCAA provides a
valuable case study for our principles more broadly. Since we know that net efficiency
is applied as a significant factor, the NCAA’s ranking most clearly violates Principle
5, that a ranking should be based solely on wins and losses, which we defended at
length. This violation, in turn, creates forms of breaches of three other principles:
anonymity, positive response with respect to the beating relation, and dependency
on the current season results only. We now proceed to examine these three violations
in more detail.

Net efficiency is a technical term in the context of NET with a specific definition
(Jones, 2018). However, for the purposes of the argument here and without com-
promising that argument, it can be approximated by the ratio of net score margin
to freneticism, by which we mean an approximation to the inverse of the average
possession time.

Net efficiency ∝ Net score margin

Number of possessions during game
∝ Net score margin

Freneticism

Generally, net efficiency will be associated with higher propensity to win, since it
is proportional to score margin. In order to see how a consideration of net efficiency
might violate anonymity, let us suppose that each conference has developed its own
independent culture of playing style. Conference X is unique in having a particularly
frenetic style of play where pride is taken in a more aggressive defense, in turning
over possession, and in displaying more stamina than the opponent. Scores are
similar or higher than in other conferences, but net efficiency is lower. Stakeholders
of other conferences prize patient build-up and accuracy more. When these teams
meet in the post-season, teams from the more patient conferences are less successful in
dealing with the more frenetic style, so teams from Conference X have an advantage.
However, in general, teams with higher net efficiency will win — most games will be
between two teams with a patient style, and even in games between a frenetic style
team and a patient style team, differences in team quality will often be large enough
to dominate any frenetic style advantage. In this way, higher net efficiency comes to
be associated with wins in the training of the algorithm and so yields a higher NET
value, disadvantaging teams from Conference X in their NET rating. There may
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be no compelling reasons for them to change their playing style in response, as they
will increase the probability of losing their conference games, and fans may object
to the change in style on the grounds of it not being part of their team identity.
As such, when teams from Conference X come to be compared to teams from other
conferences under NET for the purpose of March Madness selection and seeding they
may be disadvantaged by who they are with respect to the conference they play in,
thus violating anonymity.

Now let us consider Principle 2, the positive response with respect to the beating
relation. Suppose there are two tournaments T and T ′ where the wins and losses are
identical except that k → i in T and i → k in T ′. Now suppose that in T , all i’s
wins come by wide margins, and their losses by small margins so they have a high
positive net efficiency, but in T ′ all their wins come by narrow margins and their
losses come by wide margins so they have a high negative net efficiency. In T , team
j has an identical record to i, the same wins and losses against the same opponents,
but a very slightly lower net efficiency so that i ⪰(T ) j under NET. Team j achieves
exactly the same results and net efficiency in T ′ as it does in T , so that in T ′ its net
efficiency is much greater than team i, to an extent that despite team i’s additional
win, j ⪰(T ′) i under NET, violating the positive response with respect to the beating
relation. However, one might object that this assesses the adherence to the principle
by taking T and T ′ to be identical in wins and losses (excluding the games between
i and k), but that the ranking is dependent on net efficiency, so one must instead
consider the net efficiencies as well when defining identical tournaments.

Such an objection violates Principle 5, that the ranking be based solely on wins
and losses. But suppose we relax that condition and concede that T and T ′ should
be identical in both wins and losses and net efficiency except for the games against k
where k → i in T and i → k in T ′. NET may still violate the positive response with
respect to the beating relation. First, suppose, for example, that all teams play in
either frenetic or patient conferences and that all games in the regular season are close
so that signals as to the value of higher net efficiency are weak within conferences, but
in the post-season frenetic teams always beat patient teams. An algorithm trained
on these previous seasons might come to recognise lower net efficiency as being an
indicator of higher ability. If this effect were sufficiently large and the score margin
by which i beat k in T ′ were sufficiently large then the negative rating effect of
the net efficiency increase could outweigh the positive rating effect of the win such
that i ⪰(T ) j and j ⪰(T ′) i, with team i’s game against team k being the only
difference in the tournaments. Second, while we have characterised net efficiency as
being approximately proportional to score margin for the purpose of explication, the
formal definition of net efficiency does not produce this exact proportionality, and
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indeed it would be possible for a team to win but achieve a lower net efficiency than
their opponent. In this way we may have that k → i in T , but with k having lower
net efficiency and i → k in T ′ but with i having lower net efficiency, so that if the
weighting of net efficiency within NET were very large and positive then we could
get that i ⪰(T ) j and j ⪰(T ′) i.

The above examples concerning anonymity and the positive response with re-
spect to the beating relation also show how Principle 4, dependency on the current
season only, is violated, since the results in one season become dependent on those
in previous seasons. Even where net efficiency and wins are in a consistent direction,
their relative influence in NET will depend on the results from previous seasons,
since these comprised the test sets used to train NET. Indeed, it could be the case
that a team in the current season would be ranked higher had they lost some game
in the previous season, based on how that previous result impacted the training of
the algorithm.

It is important to note that the NET is not definitive in NCAA seedings. It
influences a ranking by being considered directly by committee members, but also
in determining the Quadrant system that informs the committee’s decision (Reinig
and Horowitz, 2019). Under the Quadrant system each team’s win-loss record is
summarised by means of splitting opposition into four Quadrants based on their
NET rating:

Quadrant 1: Home games vs NET top 30, neutral vs top 50, road vs top 75.
Quadrant 2: Home vs teams ranked 31-75, neutral vs 51-100, road vs 76-135.
Quadrant 3: Home vs teams ranked 76-160, neutral vs 101-200, road vs 136-240.
Quadrant 4: Home vs teams ranked 161+, neutral vs 201+, road vs 241+.

The equating of results within a Quadrant is itself objectionable. Teams rated
equally in a round-robin tournament will have different ratings under the Quadrant
system. For example, suppose we have a round-robin tournament where every team
plays every other team twice, once at home and once away. If two teams A and
B had each won one and lost one against teams ranked 31-75, but team A had
won their matches at home and team B had won their matches on the road then this
would yield different Quadrant system representations despite being identically rated
under the round-robin ranking method. The Quadrant system also has an element
of arbitrariness. A road win against the top ranked team is seen as equivalent to
one against the 75th ranked team, or road wins against the first and 76th ranked
teams constitutes a worse record than road wins against the 74th and 75th ranked
teams. There are not clear empirical or principled grounds for why a win on the road
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against the 75th ranked team is better than a win at home against the 31st ranked
team. Even to the degree that this were true in any given season it would seem
highly likely that there is variation across seasons. Thus the arbitrary treatment of
home and away wins and of results against different opposition under the Quadrant
system violate Principles 6 and 7.

Moreover, winning by a large margin might increase a team’s NET rating, but
will also decrease their opponent’s NET rating, through its consideration of net
efficiency. If that opponent were close to a Quadrant lower boundary then this
might result in the winning team’s Quadrant rating appearing worse, as it would
then have a win against a team from a lower Quadrant. In such cases, a team
may have a perverse incentive to minimize their margin of victory and therefore net
efficiency. This reverses the prelusory goal of the sport, in requiring that fewer points
are scored, and is also self-contradictory. If net efficiency is seen as suitably valuable
to be included in the NET rating then we should not want situations where teams
are incentivized to try to decrease it.

The analysis of the selection and seeding process against the principles has so far
been based solely on an analysis of the quantitative approaches that contribute to the
final ranking. As we have shown, of the seven identified principles, six are potentially
violated under the NCAA’s current approach — anonymity, positive response with
respect to the beating relation, dependence on the current season only, dependence
solely on wins and losses, and adequately accounting for opposition strength and
venue. It could be that the deliberations of the committee members ameliorate these
issues, but there is no evidence for that being the case and it may very well be that
they are in fact exacerbated, with Reinig and Horowitz (2019) finding evidence that
the Quadrant system is influential on their deliberations. The remaining principle,
Principle 4, was that there should be no recency weighting to games. NET and the
Quadrant system explicitly adhere to this (NCAA, 2020). However, one of the biggest
controversies in the 2020/21 season involved the decision not to select Louisville
despite them having a higher NET rating than other selected teams. Louisville’s
performances had been strong at the start of the season but weak at the end, which
might suggest that the committee decision violated the remaining principle.

3.5 Concluding remarks

We have argued in this chapter for a principle-based approach to generalized ranking
in meeting the structural goal of measuring performance. Seven principles were de-
rived from the common practices and axioms of ranking in the round-robin setting.
Included among the principles is the central claim that wins and losses should be the
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defining factor; prediction-based ranking for the purpose of performance measure-
ment compromises the goals of sport and violates other basic features of best ranking
practice. We applied these principles to assess the ranking method applied in the
NCAA DI basketball tournament. This highlighted the utility of such an approach,
and it demonstrated the NCAA’s ranking method as deficient, violating some, and
potentially all, of the principles.

It is our contention that these principles should guide ranking in all generalized
league tournaments. However, there can be competing goals acting on these tourna-
ments, especially in the case where they act as a qualifying tournament. The primary
goal of the overall tournament in these cases is in identifying the best team. The
post-season knock-out format is widely accepted as a means of identifying a winner
conditional on all realistic contenders being in that knock-out tournament. So the
primary goal of the qualifying regular season may be understood by some as being
to ensure that teams with the best chance of triumphing qualify. It may also be that
there are intentional goals in the selection of teams for a post-season, in maximising
public or commercial interest, that would compete with the principles we have set
out. These goals may be more sharply in tension in a sport like college football where
teams play fewer games in the regular season, making any quantitative assessment
of their performance more arbitrary, and only one game in the post-season, meaning
the validity of the final winner is more sensitive to the selection for that final game.

However, in the case of NCAA DI basketball, the presence of teams who could
realistically be expected to win the overall tournament is likely to be ensured by
the high ratio of the number of teams participating in the post-season tournament
compared to the number of teams who may realistically win. Since March Madness
was expanded to 64 teams in 1985, the lowest seed to win was seeded 8 (Villanova
in 1985) and the lowest seeds to reach the final four were seeded 11 (George Mason
2006; LSU 1986; VCU 2011; Loyola Chicago 2018; UCLA 2021). With this being the
case, then it is highly likely that a credible principle-based ranking would be capable
of selecting contenders. On the other hand, there is evidence that the committee
is influenced by the Quadrant system (Reinig and Horowitz, 2019), a patently mis-
leading measure. Therefore, it is likely that every year teams miss out on playing in
March Madness due to unfair ranking systems. Hence even for those who see the role
of the regular season rankings to be identifying potential winners, a principle-based
approach should be preferred.

In conclusion, we make four recommendations — two high level recommenda-
tions applicable to all tournament administrators, and two further recommendations
specific to NCAA DI basketball. The first of the high level recommendations is that
tournament administrators should make explicit both the goals that they are seeking
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to meet and any principles supporting those. The second is that they should, as far
as possible, be transparent about the method they intend to employ to meet those
goals and principles. Enacting these would allow and encourage the relevant sports
communities to openly debate the sort of questions addressed here, and for the rank-
ing methods to therefore be better grounded. Transparency is not a topic discussed
explicitly here but there would seem to be sound principles echoing those from a
legal context that may apply. For example, Vredenburgh (2022) argues, in the legal
context, for a right to an explanation, based in its necessity for protecting informed
self-advocacy. Indeed arguments for transparency may have particular force given
the normative outcomes of sport discussed earlier.

For NCAA DI basketball, we recognise that Selection Sunday itself meets in-
tentional goals of the tournament in providing a focus for public engagement. We
therefore moderate our recommendations from advocating for the replacement of
committee decision by principle-based ranking to something that may be agreeable
to a wider audience. First, we recommend the elimination of the Quadrant System.
Since it is a categorical simplification of what NET or other ranking methods can
capture in a more nuanced way, it serves only to arbitrarily misrepresent those data
in a way that influences the outcome (Reinig and Horowitz, 2019). Second, we rec-
ommend the replacement of NET with a transparent ranking method, or methods,
based solely on wins and losses and in line with the other principles.

As the COVID-19 pandemic highlighted, we anticipate more tournament admin-
istrators will have to address similar challenges in future. Unbalanced schedules may
be necessary due to canceled games or shortened seasons. The continual expan-
sion of leagues, especially in North America, preclude round-robin formats. These
situations will call for the careful consideration of generalized principles, and not
predictive metrics, for the purposes of official rankings in those sports. The type of
principles we outline should be used to guide and constrain these deliberations, to
be supplemented and informed by other factors agreed upon by stakeholders of a
competition.

Methods have been discussed here in terms of broad principles, but it will be
clear to readers that the Bradley-Terry model, the subject of much of this thesis,
is consistent with the principles advocated, at least once an adaptation is made to
account for venue (see, for example, Davidson and Beaver (1977) or Firth (2022)).
Although it was not included in the seven identified principles, which were of a
broader nature, the desirability of a selected ranking method returning the same as
standard ‘accumulated wins’ ranking when applied to a round-robin tournament was
discussed. As the example of the round-robin tournament and PageRank in Section
1.7.1 demonstrated, this is not automatically the case even where ranking methods
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meet the other principles. Therefore, taken in conjunction with the arguments of
Chapter 1, this chapter may be seen as highly supportive of the use of the Bradley-
Terry model in a generalized tournament setting.
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Chapter 4

Measures of reliability in
Comparative Judgement

Abstract

Comparative Judgement is an assessment method by which item ratings are esti-
mated based on rankings of subsets of the items. As an alternative assessment
technique it has been important to establish the credibility of the ratings produced.
In order to do this, studies have employed statistical measures to assess the reliabil-
ity of those ratings. Those measures have been shown to be misleading under some
conditions, and this has driven choices in how Comparative Judgement has been
implemented. In this chapter those measures are discussed in more detail than has
heretofore appeared in the literature. Relevant considerations are highlighted and
alternatives proposed that address existing shortcomings.

4.1 Background

‘Comparative judgement’ (CJ) is a term used to describe a method of assessment by
which a set of items are assessed based on rankings of subsets of the items via direct
comparison. Most commonly the subsets consist of two items, with judges asked to
provide a binary response indicating which item they consider to have more of some
relevant quality, or simply to be better. The idea of using comparative judgement
in this way builds on the idea that people are better at making comparative than
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absolute judgements (see, for example, Goffin and Olson (2011))1. In this chapter,
we focus on educational assessment, but the method can be applied more broadly to
get ratings on any subjective quality.

A comparative approach to rating subjective qualities dates back to the work
of Louis Thurstone (Thurstone, 1927a,b,c). He extended previous psychophysical
work which had used comparison methods to investigate people’s perceptions of
physical properties such as loudness, weight or brightness to applying the methods to
subjective questions such as ‘seriousness of crime’, ‘attitudes towards gambling’ and
‘excellence of handwriting’. Bramley (2007, Sec. 2) provides an excellent summary
of Thurstone’s work and its development from a CJ perspective.

As well as the expansion in scope addressed by the method, Thurstone also pro-
posed novel modelling techniques. In particular, Thurstone (1927a) proposed a model
whereby the probability pij that an item i is preferred to an alternative j is given by

Probit(pij) = λi − λj,

where λi ∈ R is a rating of item i. This has become known as the Thurstone-
Mosteller model after the elaboration in Mosteller (1951). More commonly in the
CJ literature, the Bradley-Terry model (Bradley and Terry, 1952; Zermelo, 1929) is
used to analyse these data, where

Logit(pij) = λi − λj, (4.1)

or alternatively expressed

pij =
πi

πi + πj

,

where λi = log(πi), and will be referred to as the log-strength of i.
The widespread adoption of the Bradley-Terry model in the CJ literature is per-

haps due to its form as a dichotomous Rasch model (Andrich, 1978), with the family
of Rasch models being familiar to educational researchers, who have been active in
employing Rasch models for analysis of education data. Alternatively, the Bradley-
Terry model has also been presented as an analytically attractive approximation to
Thurstone’s model (see, for example Bramley (2007)). Stern (1992) showed that
they are empirically highly similar. More broadly, as described in Chapter 1, the

1The website of the company most prominent in applying CJ assessments, www.nomoremarking.
com, includes a very good demonstration of the advantages of comparative judgement under its
Demo section. The assessor is shown a range of shades of purple, from very light to very dark, and
then challenged to order them by using absolute and comparative judgement. Readers of this thesis
are encouraged to attempt this task to get a sense for why one might be prepared to believe that
comparative judgement is an advantageous method.
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Bradley-Terry model has statistical appeal in being the unique model for which the
number of ‘wins’ per item is a sufficient statistic (Bühlmann and Huber, 1963), and
as the entropy and likelihood maximising model subject to the appealing retrodictive
criterion that, for all items, the expected number of preferences given the compar-
isons made is equal to the actual number of preferences (Henery, 1986; Joe, 1988);
these properties resulting from its identification as a full exponential family model
(see Section 1.3.2).

4.1.1 CJ in practice

CJ has seen considerable growth in its use over the last two decades. The first
systematic use in education was as a means of comparing the standards of English
exam boards (D’Arcy, 1997; Pollitt and Elliott, 2003; Bramley, 2007). It has since
been used to assess a variety of academic work including, for example, visual arts
(Newhouse, 2014), engineering design (Strimel et al., 2017), mathematical proof com-
prehension (Davies et al., 2020), and translation (Han, 2022). Of particular interest
to readers of this thesis, may be its use in tertiary Mathematics education as both a
formative and summative assessment mechanism, especially in the context of peer-
assessment (Jones and Alcock, 2012; Jones et al., 2013; Jones and Alcock, 2014; Jones
and Wheadon, 2015; Jones and Sirl, 2017; Davies et al., 2020). However, its most
widespread use currently is in English primary schools to assess writing.

Primary school writing offers a good example of an assessment task well-suited
to the method (Wheadon et al., 2020). Children are given a visual prompt and are
asked to respond to it through a piece of writing. This exercise is undertaken at
approximately the same time across many schools. The pieces of writing are then
scanned and uploaded for assessment. The assessment consists of teachers viewing
pairs of responses, either both from their own school or both from other schools to
avoid inter-school bias, and stating which they consider to be better. These judge-
ments are aggregated and ratings applied to each piece of work by applying the
Bradley-Terry model. There are a number of advantages compared to a traditional
rubric-based marking approach in this setting. First, the marking of so many re-
sponses requires many judges. It would be difficult to elicit consistent judgements
from so many judges under a rubric-based marking scheme, but the comparative
method eliminates the influence of the variable severity of judges seen, for example,
in two judges giving different marks to work of equivalent quality. Second, what is
being assessed is holistic. It is hard to quantitatively define what is a good piece
of writing for application under a rubric. CJ allows judges to consider a response’s
holistic merits (Pollitt, 2012b; van Daal et al., 2019) and negates attempts to game
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Figure 4.1: Google Scholar results by year for search “comparative judgement” OR
“comparative judgment” AND “education”. Data collected on 6th September 2022.

a marking scheme.2 Third, the items are quick and cognitively easy to compare
(Laming, 2003). Fourth, by including sample pieces of work from other assessment
exercises, progress, as well as year-on-year and cohort comparisons, can be readily
and interpretably assessed (Christodoulou, 2022).

4.1.2 CJ research

The increase in the use of CJ has seen a concomitant increase in its appearance
in the research literature as can be seen in Figure 4.1. Much of this work has
investigated its implementation in particular contexts, assessing its ability to reliably
and efficiently rate the items under consideration (see Bartholomew and Yoshikawa
(2018) for a systematic review of CJ use in the context of K-16 education in the
USA, and Bartholomew and Jones (2021) for a systematic review of CJ use in higher
education).

The method of scheduling the pairwise comparisons has also been a topic of
investigation. In particular, Adaptive Comparative Judgement (ACJ) is a scheme
for scheduling that has become popular and is embedded in one of the prominent
commercial CJ platforms, Digital Assess. It was originally proposed by one of the
leading advocates of CJ, Alastair Pollitt, formerly of Cambridge Assessment, with a
claimed increase in the efficiency of the assessments, achieving ratings of equivalent

2An example given by Daisy Christodoulou, Director of Education at No More Marking, is that
of GCSE English where a mark was awarded for correct use of a hyphen (Christodoulou, 2017).
The response of one teacher was to train her pupils to use a character with the hyphenated name
“Anne-Marie”, thus gaining the mark, without the writer requiring any understanding of the correct
use of hyphens. The author of this thesis remembers a similar piece of rote learning being employed
to gain marks for the correct use of the subjunctive in the letter-writing part of their GCSE French
exam!
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reliability from fewer judgements (Pollitt, 2012a). The algorithm is described here as
it is widely used in academic studies and in practice, and it provides useful context
for the investigations that follow in this chapter. The method begins with a single
round of random allocation – where each item is paired with one other – followed
by three rounds of a Swiss tournament. Under a Swiss tournament scheme, in each
round, items with the same (or as similar as possible) number of wins are paired.
The items are then rated by fitting the Bradley-Terry model to the results set after
these four rounds. These strength estimates are used to determine the next round of
comparisons by pairing items i and j such that the absolute difference in estimated
log-strengths, |λi − λj|, is close to a pre-specified ‘gap’. This procedure of fitting
the Bradley-Terry model after each round with the following round of comparisons
scheduled according to their strength estimates is repeated until the desired number
of rounds have been completed, or until an estimated reliability threshold is reached.

In the initial formulation, the intuition behind the selection of ‘gap’ began by
considering the usual statistical concept of information, noting that the (i, j)th value
of the expected information matrix, often known as the Fisher information, of log-
strengths is

Iij = −E
[

∂2

∂λi∂λj

log pij | λ
]
= pij(1− pij). (4.2)

Pollitt (2012a, p.163) goes on to note: “Information is maximised when pij = 0.5, but
this makes the decision process difficult for judges: their decision will be easiest when
the two portfolios are very different in quality and p is close to 0 or 1. We have chosen
to optimise the assessment process by choosing a comparator for each portfolio so
that p is approximately 0.67 or 0.33.” This equates to a gap of approximately 0.7
logits. The validity of the claims for increased efficiency of ACJ when compared to
random scheduling were challenged in a pair of papers that took a simulation-based
and empirical approach respectively (Bramley, 2015; Bramley and Vitello, 2019). In
response, Digital Assess conducted a further simulation-based investigation and a
modified ‘gap’ of 1.5-2.5 logits was recommended (Rangel-Smith and Lynch, 2018).
It also seems to have caused No More Marking to cease their investigations into using
their own adaptive method (Wheadon, 2015b).

4.1.3 Reliability

Underlying all of these investigations are the measures used to assess the reliability
of the CJ assessment exercises, and indeed the concept of reliability that underpins
any measures. Ofqual, the English exam regulator, applied the insights from a
comprehensive review of reliability (Tisi et al., 2013) to give this definition:
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...consistency of examination results is referred to as reliability - the re-
peatability of results from one assessment to the next, be they assessments
taken on different days, or from one year to the next.

In everyday use, “reliable” means “that which can be relied on”, but the
technical definition in educational assessment is narrower: “the extent to
which a candidate would get the same test result if the testing procedure
was repeated.” The technical definition of reliability is a sliding scale –
not black or white, and encourages us to consider the degree of differences
in candidates’ results from one instance to the next.(Ofqual, 2013)

Hallgren (2012) emphasises the important distinction between reliability and va-
lidity. Roughly, we might say that validity is the degree to which an assessment
assesses the understanding or skill it is intended to assess, and reliability is the de-
gree to which it does so consistently, or as Hallgren (2012) states it, validity “assesses
how closely an instrument measures an actual construct rather than how well coders
provide similar ratings”. For example, an electronically-marked multiple choice test
on English grammar has high reliability as answers are either right or wrong, so
there is no room for marker bias or error, but it may have lower validity if one is
seeking to assess the ability of the examinee to correctly use grammar in written
work. Proponents of CJ claim that the method can be well-suited for achieving high
validity in some scenarios where alternatives, such as rubric-based marking, might
struggle, though this is not a topic for investigation here.

The most frequently used statistic for assessing reliability in the CJ literature is
the so-called Scale Separation Reliability (SSR).3 It is based on classical test theory
(Lord, 1959; Novick, 1966) where

Observed Score = True Score + Measurement Error,

the idea being, in this context, that there is some ‘true’ underlying strength for each
item that we seek to measure in performing an assessment.

Conceptually, it is perhaps questionable if such a ‘true’ strength exists. Similar to
the argument made in Section 2.2 of Chapter 2, it is difficult to conceive what those
fixed elements of merit would be. It seems highly plausible that what is generally
valued in a piece of writing, say the relativity of correct spelling, good grammar,
expressive vocabulary etc., changes over time and is dependent on the marker. One

3As Bramley (2015) notes, it is unfortunate that the equations given for SSR in the literature
are frequently either wrong, including in three of the most highly-cited works (Heldsinger and
Humphry, 2010; Pollitt, 2012b; Verhavert et al., 2019) , or not very clearly defined, as in Pollitt
(2012a) or in the correction to Pollitt (2012b).
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might understand those changes and marker preferences to be part of the measure-
ment error, but the nature of the quality being assessed in CJ would seem to be
inherently subjective. Indeed, the ability to deal with subjective assessment is a
distinctive strength of the method. In practice, in educational research, ‘true’ score
is often interpreted to be the score that would have been given by a Lead Moderator
had they marked the item. In this setting, it could be interpreted in this way but that
provides no way for the measurement error to generally be evaluated. It also seems
at odds with the philosophy of the judgements being, in a sense, crowd-sourced. In-
stead, we might understand it as being the asymptotic score that would be achieved
were time and the number of judgements not to be limitations. Even then, it is
somewhat unclear which judges we would have doing these judgements and in what
ratios, but this does seem to provide, at a high level at least, an interpretible and
tractable conception of how the classical test theory might be applied in this setting.

Under the classical test theory conception, the SSR may be thought of as an
estimate of a coefficient of determination, or R2, the proportion of the observed
variation of log-strengths that can be accounted for by the true variation of log-
strengths, defined by

R2 = 1−
1
n

∑n
i=1(λi − λ∗

i )
2

1
n

∑n
i=1(λi − λ̄)2

, (4.3)

where λ∗
i is the ‘true’ strength for item i, λi is the estimate or observation of this

strength, and λ̄ =
∑

i λi/n is the mean of the λi.
Clearly, in a CJ assessment the ‘true’ strengths are unknown. SSR seeks to

estimate the numerator of the fraction in equation (4.3) by taking the mean of the
squares of the standard errors of the log-strength estimates.

SSR = 1−
1
n

∑n
i=1 se(λi)

2

1
n

∑n
i=1(λi − λ̄)2

, (4.4)

However, the standard errors of the log-strength estimates and the average of
their squares are not well-defined, since the log-strengths are identifiable only up
to a constant, as is apparent from equation (4.1). Nevertheless, there seems to be
a consensus within the CJ literature. Pollitt (2012b, p.283), the most highly-cited
paper in the CJ literature, asserts:

“The information in each decision is calculated and summed over all
decisions involving each script.

Information on script A: Ia =
n∑

i ̸=a

(pia(1− pia))
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from which the standard error for the estimate of va is given by

Standard error for script A: sea =
1√
Ia
”

Thus, the standard error for the estimated log-strength of the item is defined as the
inverse of the square root of the diagonal of the information matrix. This is incorrect.
The standard error is found as the square-root of the diagonal of the inverse of the
information matrix. In the notation of the expected information matrix defined in

equation (4.2), under the Pollitt (2012b) method,
(√

Iii
)−1

is taken as the standard

error for item i, rather than
√

(I−1)ii. Pollitt’s definition appears to be the one
applied in the vast majority, perhaps all, of the CJ literature and practice through
its use in the btm function in the sirt package in R (R Core Team, 2021), which
is used by No More Marking (Wheadon, 2015a), as well as in the Facets (Linacre,
2022a) package used in Bramley and Vitello (2019), in the study produced by a team
from the Digital Assess platform (Rangel-Smith and Lynch, 2018) and in the code
used in Crompvoets et al. (2020).

While SSR is by far the most common reliability statistic in the CJ literature, oth-
ers also appear. Jones et al. (2013) and Bisson et al. (2016) introduced a ‘split-half’
procedure whereby judges were partitioned at the analysis stage into two approxi-
mately equal-sized sets and the Pearson correlation of the ratings produced by those
two sets calculated. This procedure was repeated over a number of such possible
partitions and summary statistics were presented. This measure has begun to be
adopted more widely (for example, Jones and Wheadon (2015); Davies et al. (2020);
Han (2022)). It is generally understood to be a measure of inter-rater reliability, the
degree to which different judges agree in their assessment decisions.

However, we might reasonably understand any measure of reliability in this con-
text to be a measure of inter-rater reliability. If we are to understand reliability
as “the extent to which a candidate would get the same test result if the testing
procedure was repeated” (Ofqual, 2013), then the variation in the test result may
be due to one of three elements: variation in the performance of the candidate;
intra-judge variation — variation in the assessments of any individual judge; and
inter-judge variation — variation between the assessments of different judges. Given
a single item of work from a candidate, we cannot consider the first of these. The
second will be difficult to detect and even harder to quantify given the typical CJ
data set. Cyclic chains of comparisons where, for example, A is preferred to B, B
to C and C to A, may be detected. But on many data sets, the network of judge-
ments by any individual judge will be extremely sparse and likely unconnected, so
that non-detection of intransitivities is uninformative, and even the detection of an
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intransitivity may tell us little about how much variation there is in an individual
judge’s preferences. It also seems highly reasonable to suggest that the degree of
variation between judges’ assessments is likely to be significantly higher than the
variation within any one judge’s assessments, given natural trait-preference differ-
ences between judges. Split-halves might therefore be interpreted more broadly as a
reliability measure in the CJ context.

Alternatively, Holmes et al. (2017) uses a Spearman rank correlation when com-
paring rankings produced by traditional rubric-based marking vs pairwise compar-
ison vs an anchored rank order approach; Pinot de Moira et al. (2022) uses Krip-
pendorf’s alpha (Hayes and Krippendorff, 2007) to compare the attainment category
applied through a traditional rubric-based marking vs lead examiner marking vs
CJ by assuming that the number of members of each category should be the same
as that under the rubric-based method. Additionally there have been a number of
simulation-based studies, typically investigating adaptive scheduling procedures such
as ACJ (Bramley, 2015; Rangel-Smith and Lynch, 2018; Bramley and Vitello, 2019;
Crompvoets et al., 2021). In this situation, the true log-strengths are known, in being
those used to simulate the data, and can be used to calculate a similarity statistic of
interest.

Finally, we note that the amenability of any CJ assessment to an estimation of
reliability as a byproduct of the assessment process should itself be understood as a
strength of the method. Alternatives such as rubric-based marking generally do not
have the density of judge-item networks to allow such a measure to be robust.

4.1.4 Parameter estimation

An important consideration in assessments of this kind that has gone unrecognised
in the CJ literature is the estimation approach. Maximum likelihood estimation is
standard practice in fitting model parameters in CJ, providing an asymptotically
unbiased estimator under standard regularity conditions. However, when data is
sparse, the maximum likelihood log-strength estimates may be materially biased,
indeed, they will not even be finite if an item has been preferred (dis-preferred) in
all its comparisons. The large number of items and relatively small number of judge-
ments in many CJ assessment exercises means these issues occur with high frequency.
Additionally, adaptive scheduling schemes, such as ACJ or Swiss tournaments, can
further increase bias by accentuating differences at the extreme ends of the strength
scale. In general, the CJ literature is frustratingly unclear on exactly what estimation
methods are used and regrettably there does not appear to be a norm around making
code and data available along with publication. Consequently, here the discussion is
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confined to investigating three estimation approaches associated with software that
has appeared in the CJ literature, plus three others with particular appeal or rel-
evance. These are all within the family of penalised estimation approaches. Later
bootstrap bias-correction methods are also investigated.

4.1.5 Aims

The aim of this chapter is to review two of the central practices in CJ — parameter
estimation and the measurement of reliability — and where appropriate to suggest
better alternatives. These are important questions for the field as the current focus on
SSR, and the requirement that it be an accurate indicator of reliability under current
estimation methods, has caused the rejection of adaptive scheduling approaches by
the largest platform, No More Marking, and a substantial dilution of the practice
on one of its competitor platforms, Digital Assess (Rangel-Smith and Lynch, 2018).
The consequent reduction in efficiency, the time taken for an assessment of equal
reliability, may be holding back the approach from wider adoption (Pinot de Moira
et al., 2022).

Section 4.2 introduces the estimation procedures that will be considered in this
analysis, highlighting how they might be related in a generalised form, and selecting
four for the later analyses. In Section 4.3, the SSR measure is reviewed. The effect on
SSR of the interaction of estimation method with the scheduling scheme and underly-
ing log-strength distribution is investigated. The section concludes with a discussion
of the conceptual desirability of using SSR. In Section 4.4 the split-halves measure
is discussed, noting its flexibility but also how it may underestimate reliability due
to the loss of information inherent in the procedure. The conceptual desirability
of the measure as most commonly implemented is also discussed. In Section 4.5, a
bootstrap method for reliability estimation is introduced and compared to SSR. It
is found to perform substantially better, though not to be a solution on its own. In
Section 4.6, the use of a bias-corrected estimator is investigated. It is demonstrated
how the approach improves the performance of the parameter estimation and thus
of both estimated and achieved reliability. In Section 4.7, an alternative measure for
reliability is introduced that addresses some of the critiques of other measures and
may be calculated within the framework suggested by Section 4.5.

The investigations up to this point will be based on simulation studies. In Section
4.8, an empirical study is undertaken using a data set from Bramley and Vitello
(2019). It is shown how the improved parameter and reliability estimation methods
lead to radically different conclusions. In Section 4.9, the notable success of one of
the estimation methods is discussed further, and cast in terms of a more detailed
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examination of the inference being performed and the importance of the schedule
as an ancillary statistic. Section 4.10 presents some concluding remarks, including
recommendations for current practice and possibilities for future research.

Notation is consistent with that used in Chapter 1 but will be reintroduced to
aid readability and will be extended in Section 4.9. Given the specific context, the
descriptions will use the terms: items, comparators, preferences, dispreferences and
comparisons in place of: teams, opponents, wins, losses and matches respectively.
‘Tournament’ will be used to denote a schedule of comparisons, not including the
outcomes of those comparisons. The term ‘strength’ is used in a general sense such
that as the ‘strength’ of an item increases the probability that it will be preferred in
any comparison increases, but does not refer to any specific parametrisation.

4.2 Estimation

Various methods of estimation have been proposed for contexts relevant to CJ. For
example, one stream of literature considers bias reduction in relevant model families
(see, for example, Firth (1993); Kosmidis and Firth (2009, 2011); Kosmidis (2014);
Kenne Pagui et al. (2017); Kosmidis et al. (2020); Kosmidis and Firth (2021)). An-
other, independent, stream of investigation considers estimation in the context of
Rasch models, typically considering both bias and predictive accuracy (see, for exam-
ple, Molenaar (1995); Linacre (2004); Haberman (2004); Robitzsch (2021)). A third
stream considers Bayesian estimation and the selection of an appropriate prior within
a Bradley-Terry model (see, for example, Davidson and Solomon (1973); Leonard
(1977); Chen and Smith (1984); Whelan (2017); Phelan and Whelan (2017)). In this
section, those literatures are leant on in reviewing six approaches. The first three
approaches appear explicitly in the CJ literature. Next, two further methods are in-
cluded that have particular interpretive appeal and relate closely in form to the three
from the CJ literature. These have appeared in the literature on prior distribution
selection with Bayesian estimation. Finally, the method from the most-cited work
on bias reduction, Firth (1993), is also considered.

The score function under the Bradley-Terry model for an item r is

∂l(λ)

∂λr

= wr −
∑
j

mrjprj,

where wr =
∑

j crj is the number of observed preferences for item r over all other
items and mrj is the number of comparisons between r and j. Under maximum
likelihood estimation, this is set to zero and the parameters estimated from this
system of equations.
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Under a penalised likelihood approach, a penalty term, ar, is introduced into the
score equation,

wr + ar =
∑
j ̸=r

mrjprj.

This has the effect of ensuring the finiteness of estimates even where items have been
(dis)preferred in all comparisons, and of providing shrinkage to the estimates, such
that bias may be reduced. Here, in order to highlight the relative nature of the
penalties, they will be compared in the generalised form,

ar = constant× (1− 2Ωr),

where Ωr is a function that can depend on the data or on the log-strengths of the
items. Ωr is chosen so that it increases with the strength of the item, such that ar is
negative for strong items and positive for weaker ones. Roughly speaking, different
Ωr will express different relationships between strength and the penalty, for example,
linear or sigmoid, or related to the observed performance or the estimated strength,
while the constant reflects the strength of the penalty.

The approaches will be presented individually and then further investigated by
using simulation to calculate their bias and expected error under various conditions.
Based on these considerations, four will be selected for further analysis in later
sections.

4.2.1 ϵ-adjustment (Bertoli-Barsotti et al., 2014)

Many CJ studies have been performed using the No More Marking platform, which is
made freely available to researchers. For example, a Google Scholar search for “com-
parative judgement” OR “comparative judgment” AND “nomoremarking” yields 99
results as at 6th September 2022. Wheadon (2015a) indicates that No More Mark-
ing use the btm function from the sirt package (Robitzsch and Robitzsch, 2022)
in R (R Core Team, 2021) for their analysis. This function uses a bias reduction
method proposed by Bertoli-Barsotti et al. (2014), which they call the ϵ-adjustment
approach, where the number of preferences for item r, wr =

∑
j crj is adjusted by

the offset term

ar = ϵ

(
1− 2

wr

mr

)
, (4.5)

where mr =
∑

j mrj =
∑

j (crj + cjr) is the number of comparisons involving r, and
ϵ is a constant, set to be 0.3 by default in sirt. The number of observed preferences,
a sufficient statistic for the log-strengths, is therefore transformed from being in the
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interval [0,mr] to [ϵ,mr−ϵ] for each r, ensuring that log-strength estimates are finite.
In our generalised form the constant is taken to be ϵ, 0.3 by default, and Ωr is the
proportion of comparisons involving item r in which it was preferred. Robitzsch
(2021) found the ϵ-adjustment to be one of the best-performing of a wide variety of
proposed estimation methods when considering the wider context of Rasch models,
looking at bias and root mean squared error. None of the other estimation methods
discussed here was considered in that study, though the method of Warm (1989),
which was considered and rejected, is closely related to that of Firth (1993).

4.2.2 Facets (Linacre, 2022a)

Another approach used by software that appears in the CJ literature is to be found
in the commercial package Facets (Linacre, 2022a). Facets was used for the data
analysis in Bramley and Vitello (2019), which was an empirical follow-up study to
Bramley (2015). Based on analysis presented in Section 4.8, it appears that the model
in Bramley and Vitello (2019) was fitted without penalty, with an ad hoc approach
used to address issues of finiteness, but as a software tool used in education research,
its penalisation approach is still of interest, and is a useful example of a somewhat
intuitive method that fails to work well. The approach taken is described in an article
on the website for the product (Linacre, 2022b). It introduces two dummy items, a
hypothetical ‘best’ and ‘worst’. Each item is then assumed to have been preferred
once in comparison with the ‘worst’ item and dispreferred once in comparison with
the ‘best’ item. The ‘best’ and ‘worst’ items are assigned log-strengths of 10 and
-10 respectively. There seems to be no empirical or theoretical basis for the choice
of these values, with Linacre (2022b) merely stating: “[l]et’s hypothesize that a
reasonable logit distance between those two hypothetical performances is, say, 20
logits”. The likelihood is therefore augmented by a multiplicative term∏

i

pbipiw,

where b and w denote the dummy ‘best’ and ‘worst’ items respectively, and the
log-strengths of the dummy items are set to

λb = 10, λw = −10.

This translates to an additive term in the log-likelihood of∑
i

λb − log(e10 + eλi) + λi − log(eλi + e−10),
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so that the Facets adjustment is equivalent to an adjustment to the number of pref-
erences of

ar = 1− eλr

e10 + eλr
− eλr

eλr + e−10
= 1− prb − prw. (4.6)

In the generalised form this therefore takes the constant as 1, and Ωr as the aver-
age of the probabilities of item r being preferred to the dummy ‘best’ and ‘worst’
items. Rangel-Smith and Lynch (2018) report observing standard deviations of the
log-strengths of between 0.9 and 3.6 logits in CJ exercises. At this level, the Facets
approach offers a very minimal penalty, addressing the issue of finiteness but not of
bias. Figure 4.2 gives an example of this. It shows the bias under the three penalisa-
tion methods mentioned in the literature for 15-round randomly scheduled tourna-
ments with normally distributed log-strengths. As we will see later, this represents
a ‘well-behaved’ example, a combination of log-strength distribution and scheduling
scheme where estimation methods generally perform well, and yet the bias is close
to a third of the log-strengths for the majority of the items. In the context of this
work, the weakness of the penalisation in the Facets method is useful in giving an
indication of the sort of bias we might expect with no penalisation, while dealing
with the problem of finiteness of the log-strength estimates.

4.2.3 All v All (Crompvoets et al., 2020)

Another approach from the CJ literature appears in the Supplementary Material to
Crompvoets et al. (2020). There it is assumed that each item is preferred against
every other item an additional 0.01 times, augmenting the likelihood with the mul-
tiplicative term ∏

i ̸=j

p0.01ij ,

giving an additive term in the log-likelihood of

0.01
∑
j ̸=i

log pij = 0.01
∑
j ̸=i

λi − log(eλi + eλj),

and therefore a score penalty of

ar = 0.01
∑
j ̸=r

(
1− 2

eλr

eλr + eλj

)
= 0.01(n− 1)

(
1− 2

∑
j ̸=r prj

n− 1

)
.

In the generalised form, Ωr is then the average probability of being preferred when
compared to all other items. The constant is dependent on the size of the set of
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Figure 4.2: Bias under penalisation methods appearing in the CJ literature. Sim-
ulation based on 250 items, with normally distributed log-strength in a 15-round
randomly-scheduled tournament. Method of Crompvoets et al. (2020) shows sub-
stantial over-shrinkage. Facets penalisation shows substantial under-shrinkage.

items. This seems undesirable. It provides a bias reduction method that depends
on the total number of items, so that shrinkage will increase with the number of
items. An example of this can be seen in Figure 4.2, where with just 250 items the
penalty becomes large enough that there is very substantial over-shrinkage. However,
using the average expected number of wins against all comparators seems a sensible
suggestion for Σr in the generalised form and leads to the following proposal.

4.2.4 α-adjustment

Consideration of the method of Crompvoets et al. (2020) suggests an alternative,
where the results are augmented by assuming that each item has been preferred to
each other item α/(n− 1) times. This implies a score penalty of

ar = α

(
1− 2

∑
j ̸=r prj

n− 1

)
. (4.7)

This method will be referred to as the α-adjustment approach here. In the generalised
form, the constant is then α, to be determined, and Ωr is the average probability
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of item r being preferred in comparisons with all other items. With α = 1, this
represents a form of Laplace’s rule of succession, with an observed ratio of preferences
to comparisons of (wi+1)/(mi+2) for all items i. More generally, it can be understood
as a Bayesian estimation with a conjugate Beta(α/(n− 1) + 1, α/(n− 1) + 1) prior
on each of the pairwise preference probabilities.

It might also be interpreted as an information-based penalty in the sense that the
likelihood is augmented by a multiplicative term that is a function of the pairwise
information, ∏

i,j

p
α/(n−1)
ij =

∏
i<j

(pij(1− pij))
α/(n−1) =

∏
i<j

(Iij)
α/(n−1).

4.2.5 Dummy item (Phelan and Whelan, 2017)

Phelan and Whelan (2017) propose a method that takes a dummy item of average
quality, against which each item is preferred and dispreferred an equal number of
times, c0, which need not be an integer. This method seems to have been used in
early implementations of the Bradley-Terry model applied to rank teams in college
hockey in the USA with c0 taken to be a half (Wobus, 2007). As Phelan and Whelan
(2017) note, this is equivalent to taking a Bayesian approach where the prior is a
Beta(c0 + 1, c0 + 1) distribution on the probability of an item of zero log-strength
being preferred to an item i. In the ‘dummy item’ approach the likelihood is therefore
augmented with a multiplicative term∏

i

pc0i0(1− pi0)
c0 ,

where 0 denotes the dummy item, and pi0 the probability of item i being preferred
to the dummy item. The log-strength of the dummy item is set to zero, which also
provides an identifiability constraint. The penalty translates to an additive term in
the log-likelihood of ∑

i

c0λi − 2c0 log(1 + eλi).

The dummy item adjustment is therefore equivalent to a score penalty of

ar = c0

(
1− 2eλr

1 + eλr

)
= c0 (1− 2pr0) . (4.8)

In the generalised form, the constant is therefore taken to be c0, and Ωr is the
probability of item r being preferred to the dummy item, an item of zero log-strength.
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As with the α-adjustment, with c0 = 1 this is a form of Laplace’s rule of succession,
but here the additional preference and comparisons are added by means of the dummy
item rather than additional comparisons with all other items.

4.2.6 Firth (1993)

The most cited work on the topic of bias reduction of maximum likelihood estimates is
Firth (1993). It notes that previous proposals to use a jackknife method (Quenouille,
1949, 1956) or ‘corrective’ bias-correction rely on estimates being finite, but this
cannot be guaranteed in general. Instead a ‘preventive’ correction is proposed, based
on eliminating the “1/n” bias term (see, for example, McCullagh and Nelder (1989,
p.455-456)). In the context of exponential family distributions, such as the Bradley-
Terry model, this may be described by an adjustment to the log-likelihood by the
log of the square-root of the determinant of the information matrix, i(λ),

l∗(λ) = l(λ) +
1

2
log
∣∣i(λ)∣∣ ,

which is alternatively viewed as the Jeffreys (1946) invariant prior for the problem.
Note that here, we have not specified if this is observed or expected information,
since for the Bradley-Terry model, conditional on the comparisons observed being
an ancillary statistic, they are equal. The implications of the schedule not being
an ancillary statistic, as is the case under adaptive schedules such as ACJ or Swiss
tournaments, is a topic that will be discussed at more length in Section 4.9.

In terms of the score function, the penalisation proposed is an additive term to
the the number of preferences wr of

ar =
1

2
tr

{
i(λ)−1

(
∂i(λ)

∂λr

)}
. (4.9)

Firth (1993) observes that the method is equivalent to solutions of the maximum
likelihood equations on adjusted data of c∗ij = cij + hij/2 and m∗

ij = mij + hij, where
hij is the leverage of comparisons between items i and j, a measure of how far away
the observation of pair i, j is from other observations, derived from the hat matrix.
The ‘adjusted data’ score equation is thus

w∗
r =

∑
j ̸=r

m∗
rjprj

where

w∗
r =

∑
j ̸=r

c∗rj =
∑
j ̸=r

(
crj +

hrj

2

)
= wr +

1

2

∑
j ̸=r

hrj.
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The score equation being solved in the maximum likelihood estimation would then
be

wr +
1

2

∑
j ̸=r

hrj =
∑
j ̸=r

prj (mrj + hrj) .

Rearranging into the generalised form presented in this section,

wr +
1

2

∑
j ̸=r

hrj

(
1− 2

∑
j ̸=r prjhrj∑
j ̸=r hrj

)
=
∑
j ̸=r

prjmrj.

So that for an item r, the penalty term is

ar =
1

2

∑
j ̸=r

hrj

(
1− 2

∑
j ̸=r prjhrj∑
j ̸=r hrj

)
, (4.10)

with Ωr a leverage-weighted average preference probability of the observed compar-
isons since hij = 0 for unobserved comparisons, and the constant equal to half of the
sum of the leverages for the item.

4.2.7 Comparison

Here and in later analysis it is desirable to consider some of the main distributional
features that we might expect to observe in such data. In order to do this we consider
three distinct underlying distributions — normal, bimodal and skew normal — that
will be used to simulate results. In all simulation distributions the standard deviation
of the log-strengths is taken to be 2. Rangel-Smith and Lynch (2018) reports an
observed log-strength standard deviation range of between 0.9 to 3.6 logits for CJ
assessments. This will have been based on ACJ scheduling as these are data from
the Digital Assess platform, so, as we will see later, these may have been somewhat
inflated. On the other hand, it is helpful to have a slightly larger range in order to
highlight some of the features of the distributions and hence a standard deviation
of 2 is chosen here. All have a mean of zero. For each distribution, 100 items are
considered. This is in line with the order of magnitude of many assessments based
on a university or school cohort. For the three distributions, the log-strength of the
kth item is taken to be:

1. Normal: 2Φ−1 ((k − 0.5)/100)

2. Bimodal: 2
3.174

(Φ−1 ((k − 0.5)/50)− 3) , k = 1, . . . , 50;
2

3.174
(Φ−1 ((k − 50.5)/50) + 3) , k = 51, . . . , 100
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Figure 4.3: Simulated densities

3. Skew normal: 2Ψ−1 ((k − 0.5)/100;α = 8, ω = 3.274, ξ = 2.592),

where Φ is the cumulative distribution function for a standard normal distribution,
and Ψ is the cumulative distribution function for a skew normal distribution with
ΨX(x;α, ω, ξ) = Φ((x−ξ)/ω)−2T ((x−ξ)/ω, α) where T (h, a) is Owen’s T function.
These give the densities shown in Figure 4.3

Simulation study

To investigate the performance of these methods, the expected bias and expected ab-
solute error of the log-strength estimates are considered through a simulation study.
The approach of Crompvoets et al. (2020) will not be considered due to its unde-
sirable scaling property by which the strength of the penalty changes depending on
the number of items. Facets is also not considered, since it can be expected to ad-
dress the finiteness of estimates but not the bias. For the dummy item method,
c0 will be taken to be 0.25. In testing based on a round-robin tournament, where
the expected penalty was calculated analytically, this value was found to provide a
good approximation to the method of Firth (1993). For the ϵ-adjustment approach,
ϵ will be taken to be 0.3. Robitzsch (2021) suggests that in the wider context of
a Rasch model a choice of ϵ = 0.24 is optimal, but here we are interested in what
practitioners might do and it seems not unreasonable to consider that many would
take the default setting when applying the function. In order to be able to make a
direct comparison, α is also taken to be 0.3. For the purpose of this investigation,
the assessments will be taken to consist of 20 rounds of comparison with each item
appearing in one comparison in each round. The choice of 20 is based on personal
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correspondence with No More Marking where they confirmed that this was the stan-
dard request they made of submitting schools. That is, if a school submits 100 items
to be assessed then the school would be expected to perform a thousand pairwise
comparisons, so that each item is compared 20 times.

Two scheduling schemes will be investigated. Both will consist of rounds of
comparison where each item is compared once in each round. In the first scheduling
scheme, the pairs in each round are selected uniformly at random. In the second
scheduling scheme the pairs are selected according to a Swiss system. Under the
Swiss scheduling scheme, the first round of pairings is random. In each subsequent
assessment round, items are paired with other items with as similar as possible
(typically the same) number of preferences up to that point.

While the Swiss system is not formally used in CJ, it forms the basis for the
ACJ method, being used in the first four rounds of that scheme and having the
same underlying philosophy of matching items of similar strength. For the purposes
of this investigation it allows for the approaches to be assessed against an intuitive
scheme that is computationally cheaper to simulate, not requiring the re-estimation
after each round that ACJ does, and avoids the complication of determining an
appropriate method for the intermediate strength estimation. For each scheduling
scheme, the three distributions previously specified for the log-strengths — normal,
bimodal, skew normal with 100 items, mean zero, and standard deviation of 2 — will
be considered. 1000 assessments were simulated under each of the six distribution and
scheduling scheme combinations using a Bradley-Terry data generating process. All
simulations are performed in R (R Core Team, 2021). The Firth (1993) adjustment
is fitted using the brglm2 package (Kosmidis, 2020), the other estimation methods
are fitted using a Gauss-Siedel algorithm based on the code used in the btm function
in sirt (Robitzsch and Robitzsch, 2022).

Based on these simulations, estimates of the bias and expected absolute error are
calculated as

Biasi =
1

N

N∑
k=1

(λik − λ∗
i ), (4.11)

Expected Absolute Errori =
1

N

N∑
k=1

| λik − λ∗
i |, (4.12)

where λik is the estimate for the log-strength of the ith item (i = 1, . . . , 100) from
the kth simulation (k = 1, . . . , N), with N = 1000 in this case, and λ∗

i is the ‘true’
log-strength of item i used to generate the simulation.

For the randomly generated schedule, Figures 4.4 and 4.5 suggest that all four
estimation methods do an effective job in constraining the bias and reducing error.
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Figure 4.4: Bias of log-strength estimates under different scheduling scheme, log-
strength distribution and penalisation method combinations. All four methods
achieve substantially reduced bias for random schedules, but only α-adjustment is
effective in reducing bias under a Swiss scheme.
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Figure 4.5: Expected absolute error of log-strength estimates under different schedul-
ing scheme, log-strength distribution and penalisation method combinations. All
four methods achieve substantially reduced error for random schedules, but only α-
adjustment is effective in reducing error under a Swiss scheme.
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The α-adjustment notably over-constrains at the extremes, especially for the skewed
population of log-strengths.

Under the Swiss scheduling scheme there is more divergence between the estima-
tion methods. The α-adjustment gives notably lower absolute error and bias than the
other methods, with the expected absolute error comparable to the results from the
randomly scheduled scheme. Figure 4.4 shows that there is an extremising tendency
in the estimation of the log-strengths for all the methods, where the lower strength
item estimates have a negative bias and the higher strength item estimates have a
positive bias. The intuition behind this effect is that the selective scheme leads to
a higher proportion of strong vs strong or weak vs weak comparisons, extremising
the estimates. In the next sections, the implications for SSR and split-halves are
considered, as well as a discussion of the conceptual applicability of the underlying
metrics to the context.

4.3 Scale Separation Reliability (SSR)

Recall that the SSR can be considered as an estimate of a coefficient of determination,
R2, the proportion of variation of the observed log-strengths that can be accounted for
by the variation of the ‘true’ log-strengths, as represented by equation (4.3). It is then
natural to consider the success of this estimate through simulation, comparing the
proportion estimated by SSR to the true proportion. Figure 4.6 plots this comparison
for the first 50 simulated tournaments under each of the estimation methods in order
to get a sense for the success of this estimate.

For the randomly scheduled tournaments, the results are encouraging for the use
of SSR as an estimate of R2. Most simulations show an R2 of between 0.85 and 0.9
and estimates within 0.05 of the true value. A close look seems to suggest that for
the bimodally distributed log-strengths the α-adjustment gives a slightly lower SSR,
and a slightly lower R2 for the skewed distribution.

For the Swiss scheduled tournament, the results are far less encouraging for the
use of SSR. For the Firth (1993), ϵ-adjustment and dummy methods the SSR seems
to increase as the R2 decreases and is inflated by between 0.05 and 0.15 with respect
to the true value. However, it is also notable that with normally distributed item
log-strengths, the SSR is a good estimate of R2 when using the α-adjustment, and
that it performs better than the other methods for the bi-modal and skew normal
distributions. It is also worth noting that for normal and skew normal distributions,
R2 is around 0.05 higher than under the randomly scheduled scheme. This suggests
that for any given level of reliability it should be possible to achieve those results
with meaningfully fewer judgements if an adaptive scheme is utilised. So that the
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Figure 4.6: SSR accuracy under different scheduling scheme, log-strength distribution
and penalisation method combinations. SSR is a reasonable estimate for R2 with
all four methods under a random schedule. α-adjustment gives higher R2 and a
closer match between SSR and R2 under a Swiss scheme than the other estimation
methods, for which SSR is a substantially inflated estimate of R2.

115



correct response does not seem to be to reject adaptive scheduling but rather to
consider the reliability measure.

The SSR seems to carry a large amount of credibility in the CJ literature and
research community, so before advocating its rejection, it is worth understanding the
cause of its error, and perhaps even seeking to address that, as Bramley and Vitello
(2019) suggests. The calculation includes two parts — the observed variance of log-
strength estimates and the mean of the squared standard errors as an estimation of
the mean of the squares of the actual errors. These are not independent and it is
their ratio that is important for the calculation of SSR but it is helpful to consider
them separably nevertheless.

Figure 4.7 shows boxplots of the standard deviation of the log-strength estimates.
The ‘true’ standard deviation of the underlying log-strength distribution of 2 is high-
lighted by the dashed line. This representation reflects on a population level what
was observed in Figure 4.4, where all estimation schemes under Swiss scheduling
other than the α-adjustment showed an extremising bias. It is notable, however,
that this bias is consistent enough that the other estimation methods almost never
achieve the underlying standard deviation, while the α-adjustment achieves a nar-
row band of standard deviation with the mean close to 2. Again, the results for the
randomly scheduled scheme are similar across estimation methods and close to the
underlying standard deviation of the log-strengths, with the α-adjustment giving a
consistently lower standard deviation but by a small absolute amount.

Another source of error in SSR is in its estimation of standard error. Under the
SSR, the estimation of the error for each item is taken to be the square root of the
inverse of the diagonal of the information matrix. This is incorrect. The standard
error is the square-root of the diagonal of the inverse of the information matrix.
However, care needs to be taken in the definition of the information matrix here.
The information matrix for may be defined as

i(λ)ij =

{∑
k mikpik(1− pik) i = j

−mijpij(1− pij) i ̸= j.

But this is not of full rank, because the log-strengths are identifiable only up to
a constant, and so it is not invertible. The problem of identifiability is generally
resolved by applying an identifiability constraint. For example, we might apply
the corner point constraint λ1 = 0. But the standard errors will then be different
depending on the identifiability constraint applied. One alternative is to take a
generalised inverse to the information matrix and make the computation on the
diagonal of that. In particular, the Moore-Penrose pseudoinverse meets a number of
desirable criteria (Penrose, 1955) and so we consider it here.
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Figure 4.7: Distribution of the standard deviation of log-strength estimates under
different scheduling scheme, log-strength distribution and penalisation method com-
binations. All four estimation methods produce accurate estimates of standard de-
viation under random schemes. Only α-adjustment achieves a good estimate in the
case of Swiss tournaments.
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An alternative to calculating the standard errors, would be to note that the data
are pairwise and so we might wish to choose item-level standard errors that can best
approximate the standard errors of the pairwise contrasts. This is the intuition be-
hind quasi-variances (Firth and De Menezes, 2004). In the present context, given the
variance-covariance matrix for the log-strength contrasts, the method is to identify
quasi variances qi such that

var(λi − λj) ≈ qi + qj,

by selecting qi for each item to minimise the penalty function

∑
i<j

(
log

(
var (λi − λj)

qi + qj

))2

.

Figure 4.8 shows the results from taking the first 10 simulations and calculat-
ing the three alternative mean squared error methods — the one used in the CJ
literature and advocated by Pollitt (2012b), that taken from the diagonals of the
Moore-Penrose pseudoinverse to the information matrix, and the quasi-variances —
for each estimation method. The small number of simulations charted here is to allow
an intuitive graphical representation without those charts being too cluttered, but
the findings remain the same when looking at the complete population of simulations.

We observe that across all simulations the estimates from taking the quasi-
variances and the diagonal of the Moore-Penrose pseudoinverse of the information
matrix are very close. They are also consistently higher than the Pollitt method. For
the random scheduling scheme, the difference between the Pollitt method and the
other two methods is approximately 0.05 . Given that the variance of the log-strength
estimates is close to 4, then this will have minimal impact on the SSR (see equa-
tion (4.3)). Both the estimated and true MSE under the α-adjustment method are
slightly lower than from the other methods but this seems to be mostly offset by the
lower observed standard deviation of the log-strength estimates under α-adjustment
observed in Figure 4.7, so that it does not appear to have a material effect on SSR.

For the Swiss schedule, note that there is a change in the range of the axes. The
results are much more stark. The estimated MSE is materially lower than the actual
MSE, especially under ϵ-adjustment and Firth (1993) estimation methods. The
α-adjustment method, taking either the Moore-Penrose diagonal or quasi-variance
specifications accurately estimates the MSE. It should also be noted that the Swiss
scheduling scheme gives lower actual MSE when using the α-adjustment method
than the random scheduling scheme, indicating again the potential advantages from
an adaptive scheme.
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Figure 4.8: Mean squared error (MSE) under different scheduling scheme, log-
strength distribution and penalisation method combinations. MSE estimates under
Swiss scheduling scheme are highly inaccurate for all estimation methods except α-
adjustment.
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This analysis supports a number of findings with respect to the SSR. For a ran-
domly generated tournament, if there are a sufficient number of comparison rounds,
the SSR is likely to be a good estimate for R2 under a number of estimation methods,
though not all (for example, non-penalised, Facets and Crompvoets et al. (2020)).
Adaptive scheduling schemes can achieve higher reliability than random schedul-
ing schemes, but not as high as SSR would suggest. In applying SSR to adaptive
scheduling schemes, the estimation method matters. The findings here suggest that
the α-adjustment method may allow SSR to be an accurate estimation of R2 for
some adaptive scheduling schemes for some underlying log-strength distributions.
However, without significantly more empirical or theoretical evidence, this conclu-
sion cannot be asserted more generally. Furthermore, outside of empirical concerns
about the use of SSR, there may be conceptual reasons to question its efficacy as a
measure of reliability in this context.

Underlying the use of SSR is the assumption that R2 applied to the log-strengths
from the Bradley-Terry model is an appropriate indicator of reliability that we should
seek to estimate. There are at least two reasons why we might question this. First,
since the measure relies on the average of squares, its conclusions can be dominated by
extreme points. In particular in the CJ context, assuming, say, a normal distribution,
then the measure is likely to have heavy dependence on the items at the two ends
of the distribution where accurate estimation is harder and the errors likely to be
greater. In some contexts, a reliability measure more sensitive to the extreme items
may be desirable. For example, if we were looking at estimating a league position
in a sports tournament where the major consequence of the rating was promotion
or relegation, then we would care more about the accuracy of the estimates at the
extreme ends, but in the academic context the opposite is generally true. Typically,
marks are used to segregate students into grade bands and so whether a student is
at an extreme end of the top grade band or just marginally above others in the top
grade band is of little consequence. Second, the measure relates directly to the log-
strength scale but this is an artefact of the model rather than an intrinsic property.
Another way to express this would be that we can apply any monotonically increasing
function to the log-strengths to get an alternative set of ratings. For example, the
specification of the item strengths within the Bradley-Terry model as πi = exp(λi)
is a natural one as shown by the motivations of Sections Sections 1.3.4 and 1.3.5.
These alternative ratings can be used to derive the same pairwise probabilities, and
so would fit the data in exactly the same way, but would give a different R2. The
R2, even if its estimation is accurate, should therefore be interpreted cautiously as a
useful absolute or relative indicator of reliability.
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4.4 Split-halves

In this section, we consider the use of the split-halves measure as a measure of
reliability. Recall that the split-halves reliability measure partitions the judges in a
CJ assessment at the analysis stage into two equally-sized groups. The log-strengths
are estimated for each of these groups independently and the Pearson correlation
between them calculated. This procedure is repeated with a number of different
partitions (100 times in Bisson et al. (2016), 20 times in Davies et al. (2020)) and a
summary of these correlations reported. Given the concerns on using SSR highlighted
in the previous section, it might be attractive to interpret split-halves as a broad
reliability measure based on the rationale of measurable reliability being essentially
the same as inter-rater reliability in this context, as we discussed in Section 4.1.3.

A problem with the interpretation of split-halves as a broad reliability measure,
at least in the framework of classical test theory, is that the correlation with the ‘true
score’ has error in only one of the data sets, the ‘true score’ being fixed. Whereas,
the correlation between two estimates includes error in both, and so split halves
would likely underestimate the relevant reliability. Even understood more narrowly
as inter-rater reliability, it would seem to produce an underestimate because it is a
measure produced by comparing two sets of estimates from only half the data. Recall
that the definition of reliability was “the extent to which a candidate would get the
same test result if the testing procedure was repeated.” This suggests repeating the
assessment with the same number of judgements. If we were to do so, we might
reasonably expect the correlation to be higher, and conceptually it would seem that
this is the level of inter-rater reliability that is most relevant to the reported estimates.
As a countervailing impact, Pearson correlation may suffer from the same issue as
SSR in producing a higher figure when bias is present and an over-dependence on
the assessment of extreme items. This may have an interaction with the estimation
method.

Here we seek to investigate these elements — the impact of taking the correlation
between two populations that are estimated with error, the sensitivity to estimation
method, the impact of halving the data, and the degree to which the split-halves
method can be applied to adaptive scheduling schemes. In order to do this we use a
simulation study.

For the purposes of this investigation, we will consider 100 items, 10 different tour-
naments, and 10 splits within each tournament, giving 100 split-half assessments in
total for each of the six combinations of strength distribution and scheduling scheme.
It will be assumed that there are 50 judges such that they each perform one judge-
ment in each round and 20 judgements in total. The judgements are simulated based
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on a Bradley-Terry data generating process using the underlying log-strengths, with
these judgements randomly encoded to judges. In each simulation, three correlations
will be calculated: between the log-strength ratings of the two halves (‘Half-Half’ in
Figure 4.9), between the log-strength ratings of the halves and the ‘true’ log-strengths
(Half-True), and between the log-strength estimates from the full data and the ‘true’
log-strengths (Full-True). Where the partition of comparisons means that an item
does not appear in one of the subsets then the correlation will be calculated only on
the items that are common to both sets. The procedure followed for each of the six
log-strength distribution by scheduling scheme combinations and for tournaments of
10, 15, 20, 25 and 30 rounds is summarised in Algorithm 1. We take m = 10 and
n = 10.

Algorithm 1 Split-half simulation algorithm

Require: λ∗,m,n.
1: Simulate Bradley-Terry assessment from log-strengths λ∗.
2: Split judges randomly into two equal-sized sets, A and B.
3: Estimate log-strengths

a: based on judgements from set A alone, λA

b: based on judgements from set B alone, λB

c: based on all judgements, λ.
4: Calculate correlation between

a: λA and λB (Half-Half),
b: λA and λ∗ and between λB and λ∗ (Half-True),
c: λ and λ∗ (Full-True).

5: Repeat steps 2-4 m times.
6: Repeat steps 1-5 n times.

Given the analysis in the previous section, and with the goal of clear presenta-
tion, results will be reported only for the α-adjustment and ϵ-adjustment methods.
These represented the extremes of fit for the Swiss scheduling scheme and so their
comparison may demonstrate the range of sensitivity of the split-halves correlation
measure to estimation method.

In practice, we might expect more structure to the judge behaviour than we are
imposing in this simulation. For example, one subset of judges in a writing assessment
might put more weight on correct use of grammar while another subset might put
more weight on use of descriptive words. These tendencies would see judges with
similar preferences be positively (negatively) inclined to the same items. However,
the size and nature of this structure is very unclear, and so, for the purposes of
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the questions being investigated here, all judges will be assumed to follow the same
Bradley-Terry data-generating model. If such structure did exist, then we would
expect it to increase the size of the differences between the Half-Half, Half-True, and
Full-True measures, as partitions that align with judge preference differences would
show more variation from the overall and in an opposite direction to the other half. It
may also be expected to increase the range of the Half-Half and Half-True estimates
for the same reason.
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Figure 4.9: Median and inter-quartile range of split-half Pearson correlations for
combinations of number of rounds of judgement, scheduling scheme, log-strength
distribution, estimation method and the item sets being correlated. Pearson corre-
lation increases substantially with number of rounds. Pearson correlation is higher
under Swiss scheduling than random. Pearson correlation between two population
halves is substantially lower than between entire population and the ‘truth’.

Figure 4.9 presents the results showing the median and inter-quartile range for
each correlation. First, the impact of using only half the data can be seen in the dif-
ference between the ‘Half-True’ and ‘Full-True’ correlations. This difference is around
0.09 for the 20-round tournaments and larger for tournaments of fewer rounds. This
represents a material difference. Second, the impact of comparing two populations
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estimated with error can be seen by comparing the ‘Half-Half’; and ‘Half-True’ cor-
relations. This difference is around 0.11 for the 20-round tournaments and larger
for tournaments of fewer rounds. This again represents a material difference. Third,
considering the influence of estimation method, it can be seen that for the random
scheduling scheme the correlations are similar for 20 or more rounds, but for 10 or
15 rounds the difference between the three different correlations is greater for the
ϵ-adjustment. For the Swiss scheduling this result is reversed with only a small differ-
ence between the three correlations under the ϵ-adjustment. The difference between
estimation methods under Swiss scheduling is consistent with the evidence presented
in Figure 4.4, where the ϵ-adjustment was shown to have an extremising bias that
would produce higher correlations. Perhaps the most striking aspect of the results
are the high correlations observed under the Swiss scheduling scheme, particularly
under the ϵ-adjustment method. The high value of the ‘Full-True’ measure under
the Swiss tournament, even with a lower number of rounds of judgement, suggests
that the adaptive scheme is producing some benefit compared to random scheduling,
consistent with the results presented in Figure 4.6.

There should be caution in the interpretation of the results under the Swiss
scheme however. It is tempting to understand the split-half method as running the
assessment exercise twice and comparing the results, but under an adaptive scheme
the scheduling benefits from all the comparisons, those in both sides of the partition,
so this interpretation is incorrect. As expected, the split-half measure improves
considerably with the number of rounds of judgement. For example, using a random
scheduling scheme, with 15 rounds of judgement a split-half correlation of below
0.6 is observed, but the split-half from 30 rounds where two 15-round judgements
are compared gives a correlation of above 0.8. This suggests that the agreement
we might expect were we to repeat the assessment with 15 rounds of judgement is
substantially higher than the split-half method suggests. In all cases, the split-half
correlation is substantially below the ‘Half-True’ correlation, so understood in the
context of classical test theory and a desire to understand the measurement error,
the split-half method again seems conservative.

Finally, we consider the appropriateness of Pearson correlation as a measure
in this context. As with SSR, it suffers from being a measure on the somewhat
arbitrary scale of log-strengths, so that a monotonic transformation of the estimates
in a way that would not change the model could lead to a different correlation. An
alternative would be to employ a correlation on the rank orders as Verhavert et al.
(2018) does. However, this could lead to lower reliability despite more accurate
estimates of relevant strengths if a population of items happened to have a smaller
variation in quality. An alternative that addresses these concerns will be proposed
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in Section 4.7.

4.5 Bootstrap measures

In this section, we discuss the use of bootstrap methods for estimation of reliability
measures. Bootstrap methods (Efron, 1992) are a commonly used tool that use
random sampling to estimate the properties of an estimand, with the sampling based
on a distribution that approximates the one of interest. In the present context,
the idea is to use a parametric bootstrap where the estimated log-strengths are
used to simulate CJ assessments and then measures are calculated which relate the
log-strengths from those simulated CJ assessments to the original estimated log-
strengths. This may then be understood to approximate the measure we would
derive if we were able to compare our original estimated log-strengths to the ‘true’
underlying log-strengths. The approach aligns well with our definition of reliability
— “the extent to which a candidate would get the same result if the testing procedure
was repeated” — in directly simulating repeated assessments.

A parametric bootstrap of this type might be expected to address some of the
concerns that were highlighted in the previous sections, especially in the estimation
of reliability under adaptive schemes. The key issue that arose for both the SSR
and split-halves measures was that there was an extremising bias to the log-strength
estimates. In the case of the SSR, the MSE was also underestimated for the Swiss
scheduling scheme. A small part of this was due to the particular definition of
standard error that has commonly been applied in CJ. But the much larger effect was
due to taking an asymptotic measure of variance with the inappropriate assumption
that the schedule is an ancillary statistic. This will be discussed further in Section
4.9.

These issues manifested for all estimation methods other than the α-adjustment.
That the α-adjustment seemed to address this in the simulation studies presented
in Sections 4.3 and 4.4 is encouraging and an intuition behind this will also be
discussed in Section 4.9, but without substantial further testing or some theoretical
grounding it is not clear that it would continue to do so for all adaptive schemes,
underlying strength distributions, judge consistency levels and variations in numbers
of items, rounds and judges. It is therefore desirable to have a method for estimating
reliability that we might reasonably expect to address these problems, or at least
reliably mitigate them. Bootstrap methods would seem to be a natural candidate
for this task, due to their non-reliance on asymptotic theory and close relation to the
concept of reliability. On the other hand, one reason that we might be cautious of
this approach is that there is still potential for inflation of the R2 estimate from the
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extremising bias, since simulating from an extremised distribution could be expected
to bring the R2 estimate closer to unity. We also note that in producing multiple
simulations, the bootstrap approach very naturally gives the distribution for any
measure which may be helpful in the interpretation of any reliability measure.

In this section, one particular bootstrap method will be investigated, with an
alternative discussed. We will apply it to the R2 measure, for which SSR is an al-
ternative estimate, but it could be applied to produce estimates of any measure of
similarity between the ‘true’ log-strengths and the estimated log-strengths. The ap-
proach begins by estimating the log-strength of the items based on the comparisons
in the observed assessment in the conventional way. These estimated log-strengths
are then used as the underlying strengths to simulate further assessments. Crucially,
these simulation assessments apply whatever scheduling scheme was used in the orig-
inal assessment, and will be fitted using the same estimation method. The estimates
from these simulated assessments may then be compared to the original estimates
to derive any statistic that is of interest. In the context of estimating R2, the errors
can be estimated by taking the errors between the simulated log-strength estimates
and the original log-strength estimates.

The simulation will consist of five assessments, with 100 items, and 20 rounds in
each assessment. For each assessment and each estimation method, the log-strengths
will be estimated, and these used to simulate a further 50 assessments according
to the scheduling scheme that was used to generate the original assessment. Log-
strength estimates for each of the 50 simulations are then calculated, applying the
same estimation method. The R2 is calculated between the original log-strength
estimates and each of the 50 simulated log-strength estimates. Summary statistics
for these 50 R2 estimates are calculated. The R2 is then calculated between the
original estimate and the underlying ‘true’ log-strengths. This is understood to
be the value that is being estimated through the simulation and against which the
success of the procedure can be assessed. This procedure is performed for each of the
six distribution and scheduling scheme combinations. A summary of this procedure
is provided in Algorithm 2. We take m = 50 and n = 5.

The results of this exercise are summarised in Figure 4.10. It is informative to
compare with those of Figure 4.6, as an alternative approach for the estimation of
R2. The performance on the randomly scheduled assessments is reasonable across all
estimation methods and log-strength distributions. For the Swiss scheduled assess-
ments, the bootstrap R2 performs better than SSR for the dummy, ϵ-adjustment and
Firth (1993) estimation methods with the difference between the true R2 and the
R2 estimate reduced compared to the difference observed with SSR. However, the
difference is still notable. It is uniformly flattering, indicating greater reliability than
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Algorithm 2 Bootstrap R2 simulation algorithm

Require: λ∗,m,n.
1: Simulate assessment A with Bradley-Terry outcomes based on log-strengths λ∗.
2: Estimate log-strengths, λ, based on judgements from assessment A.
3: Simulate assessment As with Bradley-Terry outcomes based on log-strengths λ.
4: Estimate log-strengths, λs, based on judgements from simulated assessment As.
5: Calculate R2 between λ and λs.
6: Repeat steps 3-5 m times.
7: Calculate R2 between λ∗ and λ to compare to the R2 calculated in step 5.
8: Repeat steps 1-7 n times.
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Figure 4.10: Median and 95% range for bootstrap R2 estimation under differ-
ent scheduling scheme, log-strength distribution and penalisation method combi-
nations. All four estimation methods perform similarly under a random schedule.
α-adjustment performs better than alternatives under Swiss schedule.

127



is the case. The true value is mostly not even within the 95% range of estimates.
This seems likely to be due to the extremising bias of these methods when applied
to Swiss scheduling schemes. The α-adjustment continues to perform well across all
assessment scheme and log-strength distribution combinations, though marginally
less so for the bimodal distribution.

This is perhaps the most intuitive bootstrap method to apply, but there are alter-
natives that could be explored. For example, there may be a desire to try to reflect
the notion of an inter-rater reliability more directly without the loss of information
inherent to the split-halves approach. The idea would be to determine individual
judge-level probabilities for each of the pairwise comparisons. The population of
judges used for each simulation would then be sampled with replacement from the
original population of judges, and each judgement would be determined by that
judge’s probabilistic preference rather than the one due to the overall log-strengths.
The method thus closely resembles the first approach, but perhaps comes closer to a
more literal interpretation of the concept of reliability by envisioning repeating the
assessment with a potentially different population of judges, each expressing their
own preferences.

In order to simulate assessments in this way, one would require the ability to
estimate the probability, pijk, of an item i being preferred to an item j by a judge
k, for all i, j, k. In some environments it may be possible to identify important item
traits and the degree to which each item possesses each trait and then use a judge’s
comparison decisions to estimate the degree to which each trait is valued by each
judge and therefore how highly each item is rated by a judge. This approach is similar
to the one used to determine overall feature preference in Floridi and Lauderdale
(2022). However, in a typical CJ setting there is not sufficient trait information for
such an approach, and there is also likely not to be sufficient data for each judge.

A more generally applicable approach would be to rely on the insight that judges
are allocated to comparisons randomly so that

pij =
1

J

J∑
k=1

pijk,

where J is the number of judges. For any judge a, we can consider the probability
that i is preferred to j if a were not part of the judging population.

−apij =
1

J − 1

J∑
k=1,k ̸=a

pijk, for all i, j.

Therefore
pija = Jpij − (J − 1)−apij.
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In computing pija, pij can be taken to be the estimate for the probability that i is
preferred to j using all the results from the original assessment, and −apij can be
taken to be the estimate for the probability that i is preferred to j when all results
except those due to judge a are used. Thus, judge-specific pairwise probabilities may
be calculated and then used for simulation purposes.

This procedure might be understood to be a form of jackknife estimation (Que-
nouille, 1949), though here we are leaving out a set of observations — those from
a single judge a — rather than a single observation as in the classic jackknife, and
the purpose is to infer something about the omitted judge’s preferences rather than
the population overall. In doing so, there is an assumption that any single judge
will have generally similar preferences to the wider population. If better data on
the preferences of each individual judge were available, either because each judges
performs more judgements or because each judgement has more information, then it
may be possible to consider more sophisticated factor analysis approaches that would
allow both the identification of judge preferences and latent qualities of the items
being assessed. In many CJ assessments, however, it is common for a large number
of judges to perform a relatively small number of judgements, so such approaches
may be infeasible.

4.6 Bias-corrected estimation

In this section, we consider the use of a bootstrap method for correcting the bias of the
log-strength estimates. This represents another common use of bootstrap methods
and seems well-suited to this problem. As was seen in Figure 4.4 and discussed in
Section 4.2, under a Swiss scheduling scheme, all except the α-adjustment method,
led to biased estimates. The bias-correction method here works first by estimating the
log-strengths of a Bradley-Terry model based on the results of the CJ assessment of
interest. These log-strength estimates are then used to simulate other CJ assessments
using the same scheduling scheme and a Bradley-Terry data-generating process. The
log-strengths are then estimated for these simulated CJ assessments. For the bias-
correction calculation, in resimulating the assessments, we maintain the part of the
scheduling that is an ancillary statistic. For the randomly scheduled tournament
that is the entire tournament. For the Swiss scheme that is just the first round. This
is in line with the insight of Cox (1958) that inference should be conditioned on any
ancillary statistic.

The bias of an original estimate is then calculated as the mean of the difference
in the item log-strength estimates of the simulations and the original estimate. This
bias is then subtracted from the original log-strength estimate to get a bias-corrected
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Figure 4.11: Bias using bias-corrected estimator under different scheduling scheme,
log-strength distribution and penalisation method combinations. Bias is reduced to
close to zero in all cases.
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Figure 4.12: Expected absolute error using bias-corrected estimator under different
scheduling scheme, log-strength distribution and penalisation method combinations.
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Figure 4.13: SSR using bias-corrected estimator under different scheduling scheme,
log-strength distribution and penalisation method combinations. Error is substan-
tially reduced by bias-correction in the case of Swiss tournaments. Using bias-
corrected estimator improves the performance of SSR as an estimate of R2 for Swiss
tournaments.
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estimate. That is, the bias-corrected item log-strength estimates are

BCλi = 0λi −

(
1

S

S∑
s=1

sλi − 0λi

)
, (4.13)

where 0λi is the original estimate for the log-strength of item i, and sλi, (s = 1, . . . , S)
is the log-strength estimates for item i from simulation s. Here we take S = 40, and
produce results by averaging over 100 tournaments for each of the six log-strength
distribution and scheduling scheme combinations. Each tournament has 100 items
and 20 rounds. This procedure is summarised in Algorithm 3, where we take m = 40
and n = 100. In the algorithm we utilise the distinction between a tournament,
which we defined as a schedule of comparisons not including the outcomes of those
comparisons, and an assessment, which is a schedule of comparisons including their
associated outcomes.

Algorithm 3 Bias-correction simulation algorithm

Require: λ∗,m,n.
1: Simulate tournament T and assessment A using a Bradley-Terry data-generating

process and log-strengths λ∗.
2: Estimate log-strengths, λ, based on judgements from assessment A.
3: if Scheduling = random then
4: Simulate assessment As from tournament T using a Bradley-Terry data-

generating process and log-strengths λ.
5: else
6: if Scheduling = Swiss then
7: Simulate assessment As using only first round of tournament T and later

rounds based on Swiss scheduling using a Bradley-Terry data-generating process
and log-strengths λ.

8: end if
9: end if
10: Estimate log-strengths, λs, based on judgements from assessment As.
11: Repeat steps 3-10 m times.
12: Calculate bias-corrected log-strength estimates λBC using equation (4.13).
13: Repeat steps 1-12 n times.

Having estimated these bias-corrected log-strengths, λBC , we calculate the esti-
mated bias and expected absolute error as defined in equations (4.11) and (4.12).
We can also calculate the SSR as described in Section 4.1.3. The results of these are
presented in Figures 4.11, 4.12 and 4.13 respectively.
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Figure 4.11 shows that the bias-correction was largely successful in minimising
bias, though the most extreme item under the skew normal distribution and the
random scheduling scheme maintained some bias. It is not altogether clear why that
would be the case, but it is unlikely to be impactful to overall results. Figure 4.12,
when compared to Figure 4.5, shows that the bias correction has also materially
reduced the expected absolute error in all cases and especially for the Swiss tourna-
ments. Consequently, in Figure 4.13, the SSR based on the bias-corrected estimates
is significantly improved, and once again shows that the Swiss scheduling scheme
achieves higher R2 values than the randomly scheduled tournament.

4.7 Alternative measures

So far, we have continued to consider the most common reliability measure, SSR as an
estimate of R2, and have shown how selection of an appropriate underlying penalised
likelihood estimation method, use of a bias-corrected estimator, and application of
a bootstrap for estimating the measure are all likely to contribute to provide an
improved estimate of R2 and hence allow for the use of adaptive scheduling schemes
that are more efficient. However, in Sections 4.3 and 4.4 the appropriateness of R2

and Pearson correlation as measures of reliability, even if accurately estimated, were
questioned. In this section we therefore propose an alternative that has not appeared
before in the CJ literature.

A criticism that applied to both SSR and the split-halves measures was that
they were dependent on the log-strength scale, which was essentially arbitrary. A
monotonically increasing function could be applied to these estimates along with an
appropriate adjustment to the model specification, such that neither the probabilities
associated with the pairwise comparisons nor the likelihood that the model yields
would change. Yet measures based on R2 or Pearson correlation could change sub-
stantially when using these transformed parameters. Conceptually the log-strengths
are a non-unique means to parametrise the probabilities of the pairwise outcomes.
They are not in themselves especially meaningful.

This insight might encourage us to consider alternative item ratings and related
measures based on those pairwise probabilities. An obvious choice, consistent with
the arguments made in Chapter 2, is to consider Expected Preferences per Compar-
ison (EPC) with

EPCi =
1

n− 1

n∑
j=1;j ̸=i

pij, (4.14)

where the EPCi is estimated based on the pij derived from log-strength estimates.
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This rating has the conceptual advantage of being based on the type of data that
we actually observe — the pairwise comparisons, being naturally constrained to the
interval [0, 1] as many academic assessments are, and having an immediate intuitive
meaning as the mean number of preferences that an item would be expected to
receive if it were compared to all others. This idea has been proposed previously
in the context of sport in Hamilton and Firth (2021). This can be estimated by
applying a Bradley-Terry model to the observed judgements to estimate the strength
parameters and thus each of the pij.

Having adopted this as a rating, we can define an overall reliability score by
considering the errors in the item EPCs. One way of doing this is to consider the
average absolute error in EPC, defining a measure that will for convenience just be
referred to as κ.

κ = 1− 1

n

n∑
i=1

| EPCi − EPC∗
i |, (4.15)

where EPC∗
i is the ‘true’ EPC of item i and EPCi its estimate. As discussed with

respect to log-strengths in Section 4.1.3, we might reasonably understand EPC∗
i to

be the proportion of preferences that item i would receive if it were compared against
all other items a sufficiently large number of times.

Total EPC is fixed since

n∑
i=1

EPCi =
1

n− 1

n∑
i=1

n∑
j=1;j ̸=i

pij =
n

2
,

so the EPCs can be considered an allocation of the n/2 total. Thus, the measure
may also be interpreted as the proportion of correctly allocated EPC,

κ = 1− 1

n

n∑
i=1

| EPCi − EPC∗
i |= 1−

∑n
i=1 | EPCi − EPC∗

i |
2
∑n

i=1 EPCi

,

where the factor of two on the denominator appears because an absolute error in
EPCi will cause an equal total absolute error in other items and hence the absolute
error in proportion to the total EPC would be double-counted. The distribution of
EPC for each item and of κ may be estimated using the bootstrap method presented
in Section 4.5. Algorithm 4 describes how the results of a CJ assessment can be used
to estimate EPC and κ. The use of κ will be explored based on empirical data in
the next Section.
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Algorithm 4 Bootstrap EPC estimation from CJ assessment

1: Conduct CJ assessment A.
2: Estimate log-strengths, λ, based on judgements from assessment A.
3: Estimate EPCi for all i based on λ and equation (4.14).
4: Simulate assessment As according to the same scheduling scheme as used in A

with Bradley-Terry outcomes based on log-strengths λ.
5: Estimate log-strengths, λs, based on judgements from simulated assessment As.
6: Estimate EPCs

i for all i based on λs and equation (4.14).
7: Estimate κs based on the EPCs

i and EPCi and equation (4.15).
8: Repeat steps 4-7 S times (s = 1, . . . , S).

4.8 Empirical study

In order to complement the simulation studies that have formed the basis for this
chapter so far, this section seeks to investigate reliability measures using an empirical
data set. For this purpose, the results from Bramley and Vitello (2019) are reanal-
ysed. Bramley and Vitello (2019) was a follow-up study to Bramley (2015), which
used a simulation-based study to demonstrate that adaptive scheduling schemes
could have an inflationary effect on SSR. That work was criticised for being based
on simulated rather than empirical data (Pollitt, 2015). In response, Bramley and
Vitello (2019) sought to collect relevant empirical data.

The data consist of pairwise comparisons from three CJ assessment exercises.
The assessment exercises are referred to here, consistently with Bramley and Vitello
(2019), as studies 1a, 1b, and 2. They were designed as follows:

1a — a study of 150 GCSE English essays, with comparisons scheduled by an
adaptive scheme, made by 18 judges.

1b — a study of a subset of 20 GCSE English essays from the wider set of 150,
with a round-robin format where every one of the 20 items was compared with
every other item once. The judges were the same as those in 1a.

2 — a study of the same 150 GCSE English essays, with comparisons scheduled
randomly. Essays were judged a similar number of times. There were 16 judges,
none of whom had participated in 1a and 1b.

The judges were all examiners of English GCSE for the Oxford, Cambridge and
RSA (OCR) examining body. In study 1b, 19 judges were recruited to do 10 judge-
ments each. However, one judge dropped out late in the process and the results of
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another were excluded based on their poor consistency with other judges and their
response time (average of 1 second per judgement). This means that each item is
compared to just 17 rather than 19 others in study 1b. A summary of the data is
given in Table 4.1. For further details of data collection, see Bramley and Vitello
(2019).

1a adaptive 1b round-robin 2 random
Combined
(1a, 1b, 2)

Essays 150 20 150 150
Judges 18 17 16 34

Judgements
per essay 14.4 17 14.6 31.3

Table 4.1: Data summary for studies from Bramley and Vitello (2019)

The adaptive scheme used in study 1a was based on the progressive method pro-
posed in Revuelta and Ponsoda (1998) and further discussed in Barrada et al. (2008,
2010). This method has intuitive appeal as it provides for a gradual transition from
scheduling pairs on a random basis to scheduling pairs with the most information.
Unfortunately for our purposes, the implementation details of the method are not
given, and have not been discernible from the available evidence of the relevant liter-
ature and data. Since being able to simulate consistently with the scheduling scheme
is a requirement of both the bootstrap measure and the bias-corrected estimation,
these methods are not empirically testable here for the data collected in study 1a.

However, the data set is still useful in at least two ways. First, the assessment
of the same items through an adaptive and a random scheme enables us to examine
the interaction between estimation method and scheduling scheme in determining
reliability. Second, the all-play-all structure of study 1b gives a large amount of data
on these 20 items, so that we can use the log-strength estimates for these as ‘quasi-
true’ values. In turn these allow for the calculation of a ‘quasi-true’ R2. This allows
for a comparison between SSR, a bootstrap R2 and the ‘quasi-true’ R2, giving us an
indication as to the usefulness of SSR and bootstrap R2 as measures of reliability.

Bramley and Vitello (2019) states that maximum likelihood estimation was used
to calculate the log-strength estimates under a Bradley-Terry model. It does not
discuss the use of a penalty, and indeed the results presented in Tables 4.2 and 4.3,
showing respectively the SSR and standard deviation of the log-strength estimates,
strongly suggest that none was used. For study 2, there are eight essays which
were either preferred or dispreferred in all comparisons. It is reported that these
“receieved a measure based on an extrapolation rule”, though this is not specified.
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This accounts for the calculation of SSR in study 2 despite there being no finite
estimate for their log-strength when no penalty is used.

The results are suggestive of bias in the estimates reported by Bramley and Vitello
(2019), due to not using an adequate penalty, especially in the case of the adaptive
scheme. This led to the unintuitive finding that the preferred estimate of reliability,
SSR, was higher based on the data from study 1a alone than when analysing the data
combined over all studies. It is theoretically possible that reliability could be lower for
estimates based on the larger combined data set, for example, if the judges in study 1b
had starkly different judging criteria to those in study 1a. But, given their common
background as approved examiners, this seems unlikely. This finding is therefore
consistent with the earlier observation that insufficiently penalised estimation of log-
strengths will inflate SSR, especially in the case of an adaptive scheme.

Looking at Table 4.2, we also see that the SSR from the adaptive and combined
data is equal when using an α-adjustment penalty with α set to 0.3. One possibility
is that α = 0.3 does not provide a sufficient penalty for the analysis of data from
study 1a. One way to investigate this is by looking at the standard deviations of the
estimates in Table 4.3. The combined data has a large number of judgements per
essay and so we might expect the standard deviation of the log-strength estimates
to be consistent across different estimation methods and indicative of a true range.
We do indeed see much more consistency to the standard deviation of log-strength
estimates using the combined data of around 1.4 logits. This in turn suggests that
α = 0.3 fails to provide sufficient shrinkage for the data from study 1a, whereas
taking the stronger penalty α = 0.5 appears to constrain results closer to the likely
‘true’ standard deviation. While Sections 4.2 and 4.3 were supportive of using the
α-adjustment, and Section 4.9 will go on to provide some intuition behind that, they
provide no reason to believe that 0.3 would be an optimal choice for α for all adaptive
schemes covering all numbers of comparisons per item and so it is not surprising that
a different value may be better for analysing the data from study 1a.

1a adaptive 2 random
Combined
(1a, 1b, 2)

Bramley and Vitello (2019) 0.98 0.72 0.91
No penalty 0.98 N/A 0.91
Firth (1993) 0.97 0.72 0.89

α = 0.3 0.89 0.69 0.89
α = 0.5 0.82 0.64 0.87

Table 4.2: SSR as reported in Bramley and Vitello (2019) and using no penalty,
Firth (1993) and α-adjustment.
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1a adaptive 2 random
Combined
(1a, 1b, 2)

Bramley and Vitello (2019) 4.7 1.8 1.5
No penalty 4.7 N/A 1.5
Firth (1993) 4.0 1.4 1.4

α = 0.3 1.9 1.3 1.3
α = 0.5 1.4 1.1 1.2

Table 4.3: Estimated log-strength standard deviation as reported in Bramley and
Vitello (2019) and using no penalty, Firth (1993) and α-adjustment.

The extra comparisons for the subset of 20 items considered in study 2 provide
a means of evaluating SSR directly. When the data from all studies are combined,
the 20 items have been judged a mean of 45 times, including a direct comparison
between each other in almost all cases. It might therefore be reasonable to take the
log-strength estimates for these items from the combined data as a ‘quasi-true’ log-
strength, against which an R2 may be calculated and compared to the SSR. Here,
this is done by estimating the log-strengths using the α-adjustment with α = 0.3,
though the results are not sensitive to this choice as the high R2 across methods
using the combined data in Table 4.5 show.

1a adaptive 2 random
Combined
(1a, 1b, 2)

Bramley and Vitello (2019) 0.97 0.70 0.93
No penalty 0.97 N/A 0.93
Firth (1993) 0.96 0.68 0.92

α = 0.3 0.87 0.66 0.92
α = 0.5 0.80 0.74 0.91

Table 4.4: SSR for the subset of 20 items from study 1b as reported in Bramley
and Vitello (2019) and using no penalty, Firth (1993) and α-adjustment estimation
methods.

Tables 4.4 and 4.5 show SSR and ‘quasi-true’ R2 respectively for the subset of
20 items. The ‘quasi-true’ R2 is calculated against the log-strengths derived from
an α = 0.3 estimate using data from studies 1a, 1b and 2 combined. When using
the data only from 1a, the estimations using no penalty gives an SSR of 0.97. This
compares to a ‘quasi-true’ R2 value of just 0.48, demonstrating the inflationary effect
of the combination of an adaptive scheme and a weak (or no) penalty. The R2 is
highest at 0.91 under an α-adjustment penalty with α = 0.5, though the SSR is
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1a adaptive 2 random
Combined
(1a, 1b, 2)

No penalty 0.48 N/A 0.99
Firth (1993) 0.53 0.74 1.00

α = 0.3 0.86 0.77 1
α = 0.5 0.91 0.70 1.00

Table 4.5: ‘Quasi-true’ R2 for the subset of 20 items from study 1b using no penalty,
Firth (1993) and α-adjustment estimation methods.

substantially lower at 0.80. The ‘quasi-true’ R2 when using α = 0.3 and Firth (1993)
penalties are substantially higher than the SSR, suggesting that SSR provides an
underestimate for R2 in this case.

The lack of details on the adaptive scheduling method prevents the application of
bootstrap methods to the data from 1a. However, they may be applied to the data
from 2. Tables 4.6 and 4.7 show the results from doing so. Because it is not possible
to get finite log-strength estimates without penalisation from the results of study 2,
a weak penalty, taking α = 0.005, is used instead. This ensures estimates are finite
while limiting the degree to which the estimates are debiased.

SSR Bootstrap R2 ‘Quasi-true’ R2

α = 0.005 -0.18 0.44 (0.01, 0.72) 0.70
Firth (1993) 0.68 0.76 (0.48, 0.90) 0.74

α = 0.3 0.66 0.77 (0.52, 0.89) 0.77
Bias-corrected(Firth (1993)) 0.79 (0.44, 0.91) 0.74

Bias-corrected(α = 0.3) 0.79 (0.57, 0.91) 0.78

Table 4.6: SSR and mean and 95% range bootstrap R2 compared to ‘true’ R2 for
the 20 items in study 1b based on the data from study 2.

Looking at Table 4.6, we can see that with the limited penalty the ‘quasi-true’
R2 is perhaps surprisingly comparable to that from the other estimation methods,
but that the SSR does a poor job of estimating this, while the bootstrap gives a very
wide range with the 95% estimation interval spanning 0.71. For the other methods,
the bootstrap mean provides a good estimate for R2, though the ranges produced are
wide, suggesting that a randomly scheduled assessment of these items can produce
very variable reliability, something not discernible from the SSR point estimate.

Table 4.7 immediately highlights one feature of the κ measure, that it produces
very high absolute values with this data set, regardless of estimation method. This
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Bootstrap κ ‘Quasi-true’ κ
α = 0.005 0.961 (0.944, 0.973) 0.952

Firth (1993) 0.958 (0.942, 0.972) 0.951
α = 0.3 0.960 (0.945, 0.972) 0.956

Bias-corrected(Firth (1993)) 0.959 (0.945, 0.971) 0.949
Bias-corrected(α = 0.3) 0.958 (0.943, 0.972) 0.955

Table 4.7: Mean and 95% range bootstrap κ compared to ‘quasi-true’ κ for the 20
items in study 1b based on the data from study 2.

may be an issue if it constrains the ability of the measure to readily differentiate
between assessments of varying reliability. It also lacks the intuition that perhaps,
for some, comes with the R2 measure. On the other hand, Figure 4.14 shows that the
main outlier in the α = 0.005 estimates was a single item. This item was dispreferred
in all its comparisons in study 2. That it should be ranked substantially lower than
the other items seems reasonable, but precisely how much is immaterial. It would
be very unlikely to be preferred in any comparison with the other items. It therefore
seems desirable that difficulties in estimating the log-strength of this item within
this population should not have a material bearing on the assessment of reliability.
This is reflected in the EPC item-strength estimates, which are consistent across
estimation method. Consequently the κ measure is also substantially similar across
estimation methods in contrast to the results seen for SSR in Table 4.6.

4.9 Discussion

The aim of this section is to discuss in more detail the inference being undertaken
when a CJ assessment is analysed and to provide an intuition for some of the results
seen in the previous sections. We will show that the maximum likelihood estimate
is a consistent estimator under any scheduling scheme — random or adaptive —
where the conditional independence assumption of the Bradley-Terry model holds.
We go on to discuss how the maximum likelihood estimate will be the same given the
same data, whether that is collected under a random or adaptive scheme, but that
the estimator properties, in particular bias, will be different. Next, by considering a
pseudolikelihood that conditions on the comparisons observed, we make a proposal
for why the α-adjustment proved to be a successful penalty in the previous analy-
sis. Finally, we discuss the calculation of the information matrix under an adaptive
scheme.

141



Figure 4.14: Log-strength and EPC estimates for the 20 items in study 1b based
on comparisons from study 2 of Bramley and Vitello (2019) plotted against ‘true’
estimations using the combined data sets from studies 1a, 1b, 2. The lowest rated
item had a log-strength estimate of -43.2 under the α = 0.005 estimation method
and is not plotted here.
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In order to do this, it is helpful to introduce some additional notation. Let

• rXij, (r ∈ {1, . . . , R}), be a random variable that takes value 1 if i is preferred
to j in round r and 0 otherwise.

• rxij be the observed preference from the rth round of a CJ assessment for a
pair of items (i, j), where rxij is 1 if i has been preferred to j in round r and
0 otherwise.

• x = (1x12, 1x13, . . . , 1x(n−1)n, 2x12, . . . , 2x(n−1)n, . . . , Rx12, . . . , Rx(n−1)n) be the
observed sample of preferences.

• rYij be a random variable that takes value 1 if i is compared to j in round r
and 0 otherwise, so that rYij = rYji = rXij + rXji.

• ryij be the observed comparison from the rth round of a CJ assessment for a
pair of items (i, j), where ryij is 1 if i has been compared to j in round r and
0 otherwise, so that ryij = ryji = rxij + rxji.

• y = (1y12, 1y13, . . . , 1y(n−1)n, 2y12, . . . , 2y(n−1)n, . . . , Ry12, . . . , Ry(n−1)n) be the ob-
served sample of comparisons.

• Cr = ∩i,j{rXij = rxij} be the event that the preferences in round r were as
observed.

• C = ∩rCr = ∩r∩i,j {rXij = rxij} be the event that the preferences during each
round of the CJ assessment were as observed.

• cij =
∑R

r=1 rxij be the total number of observed preferences for i over j during
the whole CJ assessment.

• Mr = ∩i,j{rYij = ryij} be the event that the comparisons in round r were as
observed.

• M = ∩rMr = ∩r ∩i,j {rYij = ryij} be the event that the comparisons during
each round of the CJ assessment were as observed.

• mij =
∑R

r=1 ryij be the total number of observed comparisons between i and j
over the whole CJ assessment.

• pij be the probability that i is preferred to j in a comparison.

• λ be the vector of log-strengths of the items, where we assume a Bradley-Terry
data generating process, such that pij = P(rXij = 1|rYij = 1) = eλi/(eλi + eλj).
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4.9.1 Estimator properties

Under a maximum likelihood approach, in the present setting, we observe a CJ
assessment and wish to estimate the log-strengths, λ. What we observed consists of
both the comparisons made and the corresponding preferences, so we are considering
the likelihood,

L(λ) = L(λ;x, y) = p(x, y;λ) = P(C,M ;λ)

Considering a tournament of R rounds,

P(C,M ;λ) = P(CR, . . . , C1,MR, . . . ,M1;λ)

= P(CR,MR | CR−1, . . . , C1,MR−1, . . . ,M1;λ) P(CR−1, . . . , C1,MR−1, . . . ,M1;λ)

and

P(CR,MR | CR−1, . . . , C1,MR−1, . . . ,M1;λ)

= P(CR | CR−1, . . . , C1,MR, . . . ,M1;λ) P(MR | CR−1, . . . , C1,MR−1, . . . ,M1;λ)

Conditional on the event MR and given λ, CR is independent of CR−1, . . . , C1 and
MR−1, . . . ,M1 by the assumption of our data-generating process. Likewsie, condi-
tional on the events {CR−1, . . . , C1}, MR is independent of MR−1, . . . ,M1 and has no
dependence on λ because, even under an adaptive scheme, pairings are based on the
preferences observed, so that

P(CR,MR | CR−1, . . . , C1,MR−1, . . . ,M1;λ)

= P(CR | MR;λ)P(MR | CR−1, . . . , C1),

and

P(C,M ;λ) = P(CR, . . . , C1,MR, . . . ,M1;λ)

= P(CR | MR;λ) P(MR | CR−1, . . . , C1) P(CR−1, . . . , C1,MR−1, . . . ,M1;λ).

Applying the same reasoning iteratively we have that

P(C,M ;λ) = P(CR, . . . , C1,MR, . . . ,M1;λ)

=
R∏

r=1

P(Cr | Mr;λ)
n∏

r=2

P(Mr | Cr−1, . . . , C1) P(M1)
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Since the first round of comparisons is scheduled randomly under any scheduling
scheme, then P(M1) is constant. Given λ, the comparison preferences within any
round r, rCij, are independent of one another, so that,

R∏
r=1

P(Cr | Mr;λ) =
R∏

r=1

∏
i,j

P(rCij | rMij;λ) =
∏
i,j

R∏
r=1

prxij

ij =
∏
i,j

p
cij
ij

And so we have that

P(C,M ;λ) =
∏
i,j

p
cij
ij

n∏
r=2

P(Mr | Cr−1, . . . , C1)P(M1). (4.16)

Note that the term
∏n

r=2 P(Mr | Cr−1, . . . , C1)P(M1) is not dependent on λ, and
so the estimation of λ is entirely dependent on

∏
i,j p

cij
ij , whose form is dictated

by the conditional independence assumption of the Bradley-Terry model, that pij =
P(i is preferred to j;λ) = πi/(πi+πj). This guarantees that the maximum likelihood
estimator will be a consistent estimator under any scheduling scheme where the
conditional independence assumption of the Bradley-Terry model holds.

However, it remains the case that adaptive schemes introduce additional bias
into parameter estimation. Intuitively, this is because the comparisons under an
adaptive scheme are more likely to be between two items closer in strength. For
example, if two strong items, close in strength, are compared, one must be preferred
and its strength will then be estimated to be very high since it was preferred to
another strong item. With enough comparisons, the relative strengths of these two
items would be reflected in their proportion of wins, but under finite (and often
sparse) sampling, randomness of preferences will induce bias, with this effect being
inflated by an adaptive scheduling scheme. It may therefore be appealing to consider
alternative ways of estimating the parameters.

4.9.2 Conditional likelihood

One might consider conditioning on the comparisons observed,

P(C,M ;λ) = P(C | M ;λ)P(M ;λ).

Under a wide variety of scheduling schemes (including random, Swiss, ACJ and the
progressive scheme of Revuelta and Ponsoda (1998)), conditional on the comparisons
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observed, the preferences in different rounds and between different pairs are indepen-
dent given λ.4 We may also condition the comparisons on earlier round comparisons
so that

P(C,M ;λ) = P(C | M ;λ)P(M ;λ)

=
R∏

r=1

P(Cr | M ;λ)
R∏

r=2

P(Mr | Mr−1, . . .M1;λ)P(M1). (4.17)

Under a random scheduling scheme, given λ, Cr is dependent only on Mr. The
observed comparisons are independent of other rounds and of λ, so that P(Mr |
Mr−1, . . . ,M1;λ) = P(Mr) is uniform — each possible tournament has equal prob-
ability of being observed. Alternatively expressed, {mij : i, j ∈ {1, . . . , n}, i ̸= j} is
an ancillary statistic, and we should condition on it (Cox, 1958). Under an adaptive
scheme, the observed comparisons are dependent on the item-strengths. For exam-
ple, under a scheme that sought to maximise information on a pairwise basis, items
that are close in strength are more likely to be compared. Relatedly, it is no longer
the case that Cr is independent of other round comparisons conditional on Mr.

To illustrate this, consider a two-round CJ assessment involving four items,
A,B,C and D. Suppose that the same preferences were observed under a random
scheduling scheme and a Swiss scheduling scheme. In the first round A was preferred
to B and C was preferred to D. In the second round, A was preferred to C and B
was preferred to D. Under the Swiss scheduling scheme, the two first-round winners
will face each other, as will the two first-round losers. Therefore, if A is compared
to C in the second round, then the sample space for preferences from the first round
excludes the preferences where A is preferred to B and D is preferred to C or where
B is preferred to A and C is preferred to D. In this way, later round comparisons
have information on the preferences of earlier rounds. The constituent parts to the
two likelihood equations (4.16) and (4.17) are summarised in Table 4.8.

However, it is not clear how the terms in this likelihood formulation, P(Cr | M ;λ)
and P(Mr | Mr−1, . . .M1;λ), may be modelled even knowing the scheduling scheme.
For this reason, we might consider instead the pseudolikelihood,

R∏
r=1

P(Cr | Mr;λ)P(Mr;λ) (4.18)

4An example of a scheduling scheme where this would not be the case would be one where items
are paired in each round uniformly at random, but two items may only be compared a third time
if they have each been preferred once in the two previous comparisons.
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Random Swiss
P(C1 | M1;λ) pABpCD pABpCD

P(C2 | M2;λ) pACpBD pACpBD

P(M1;λ) 1/3 1/3
P(M2 | C1;λ) 1/3 1
P(C1 | M1,M2;λ) pABpCD pABpCD/(pABpCD + pBApDC)
P(C2 | M1,M2;λ) pACpBD pACpBD

P(M2 | M1;λ) 1/3 pABpCD + pBApDC

P(M1) 1/3 1/3

Table 4.8: Likelihood function for two round CJ assessment

Under the assumption of a Bradley-Terry data-generating process,

P(Cr | Mr;λ) =
∏
i,j

prxij

ij .

In any round, r, the number of comparisons is constrained such that each item is
compared once. Thus P (Mr;λ) is positively related to∏

(i,j)∈Mr

P(rYij = 1;λ),

where Mr = {(i, j) : ryij = 1} is the set of pairs (i, j) that were compared in round
r. Under an adaptive scheme, the probability P(rYij = 1;λ) will be higher when
the items are closer in strength. It is this insight that is suggestive of why the
α-adjustment seems to work better than alternatives.

Here, this is illustrated graphically by computing the average probability of ob-
serving at least one comparison between pair (i, j) over the twenty comparison rounds
of a Swiss scheduling scheme,

P

(
20∑
r=1

rYij ≥ 1;λ

)
.

To calculate this, we use the simulations from the previous sections and for each
pair (i, j) calculate the proportion of simulations where at least one comparison was
observed. The calculation is made for each of the three log-strength distributions.
Results are shown in Figure 4.15.
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Figure 4.15: Probability of at least one comparison for each pair of items under a 20
round Swiss scheduling scheme. Items shown in strength order from 1, the weakest
to 100, the strongest.

Recall that under the dummy penalty approach, we consider a likelihood penalty
of ∏

i

pc0i0(1− pi0)
c0 =

∏
i<j

(pi0p0ipj0p0j)
c0/(n−1),

where the dummy item represented by 0 has log-strength of zero. Under the α-
adjustment, we consider a likelihood penalty of∏

i,j

p
α/(n−1)
ij =

∏
i<j

(pijpji)
α/(n−1).

Thus, these likelihood penalties can be decomposed in terms of a value relating to
pair (i, j) and compared to the average probability of observing a comparison between
that pair. pi0p0ipj0p0j and pijpji respectively are plotted for the three log-strength
distributions in Figures 4.16 and 4.17.

The intensity of the profiles for these penalties is adjustable by varying the pa-
rameters c0 and α respectively, but the profile will remain broadly consistent. There
is a clear consistency of profile between the α-adjustment in Figure 4.17 and the
probability of observing at least one comparison in Figure 4.15. On the other hand,
the profiles diverge much more for the dummy item adjustment seen in Figure 4.16.
This may be suggestive of why the α-adjustment, with an appropriately selected
value for α seemed to provide better estimates in Sections 4.2 - 4.4 when using the
adaptive scheme, since it shows graphically how the penalty that the α-adjustment
provides is consistent with the term

∏
r P(Mr;λ) from the pseudolikelihood in (4.18).

The other two penalties, ϵ-adjustment and Firth (1993), do not give pairwise
likelihood penalties that allow us to compare them in the same way. However, there
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Figure 4.16: Pairwise value of dummy penalty. Items shown in strength order from
1, the weakest to 100, the strongest.
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Figure 4.17: Pairwise value of α-adjustment penalty. Items shown in strength order
from 1, the weakest to 100, the strongest.
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are independent reasons to expect that they may not be performant for adaptive
scheduling schemes. The ϵ-adjustment relies on the ratio wr/mr increasing with
item strength. But this will be the case to a far lesser degree under an adaptive
scheme, where comparisons are more likely between items of similar strength. Under
a random scheduling scheme, the wr/mr term will approximate the

∑
j prj/(n − 1)

term of the α-adjustment. Under an adaptive scheduling scheme, this results in too
little bias correction when using the ϵ-adjustment as seen in Figure 4.4. It is possible
that the penalty would perform better with a greater value of ϵ, but it seems likely to
be highly sensitive to the adaptivity of the scheduling scheme, the number of rounds
of comparison and the distribution of the item strengths, which may not all be well
anticipated prior to analysis. It therefore seems likely to be an inferior penalty to
the α-adjustment.

The generalized form of the Firth (1993) penalty expressed in equation (4.10)
shows that it shares this same problem. Recall that Ωr in that form was the leverage-
weighted average of the pairwise probabilities of preference of the observed compar-
isons. So that an adaptive scheme where the prj will be closer to 0.5 for all items r will
fail to provide a penalty of sufficient strength to items at the extremes of the strength
distribution. Alternatively we might interpret this as the Firth (1993) penalty re-
lying on an adjustment based on the asymptotic bias of the unpenalised estimator.
The asymptotic bias will be different under an adaptive scheme and so the penalty
cannot be relied upon. Consistent with this reasoning, the evidence of Figures 4.4
and 4.5 suggests that it produces a penalty very similar to the ϵ-adjustment.

4.9.3 Information matrix estimation

In this chapter, we have proposed the use of bootstrap measures of reliability, for
which only good point estimation is required. However, bootstrap methods are
computationally intensive, so it may be desirable to find ways to accurately compute
the information matrix under an adaptive scheme, in order to calculate analytic
measures of reliability. As was seen in Section 4.3, under the four penalisation
approaches tested and a random scheduling scheme, all were able to return credible
values for SSR, indicating good error estimation. However, this was notably not the
case under the Swiss scheduling scheme, with the Mean Squared Errors shown in
Figure 4.8 materially wrong for all except the α-adjustment approach.

Analytic error estimation is dependent on the calculation of the expected informa-
tion matrix. Recall that the form of the information matrix under the Bradley-Terry
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model is

i(λ)ij =

{∑
k mikpik(1− pik) i = j

−mijpij(1− pij) i ̸= j.

Under the random scheduling scheme, where the schedule is taken as an ancillary
statistic and conditioned on in the inference, then the mij are known and constant.
Under an adaptive scheme, E[mij] is dependent on λ.

Figure 4.8 showed that the α-adjustment allowed for reasonably accurate error
estimation under the Swiss scheduling scheme and in the tested scenario of 100
items and 20 rounds. Figures 4.15 and 4.17 might suggest that this was because
the α-adjustment penalty produced a mij used in the inference that approximated
E[mij]. This is somewhat speculative however, and especially so where there are
fewer comparisons, which is, after all, the aim of using adaptive scheduling schemes.

But there may be circumstances where it is possible to approximate the informa-
tion matrix more reliably. Given a known adaptive scheme, a number of rounds of
comparisons and a number of items being compared, which are all known prior to
analysis, E[mijpij(1− pij)] is a function of λ, and therefore the information matrix,
will depend on the distribution of the item strengths. In general, the log-strength
distribution of the items is unknown, even approximately, prior to analysis. It is not
uncommon in academic settings for distributions of marks to show multimodality or
skew, for example, but for this to be unanticipated. However, where log-strength
distributions may be confidently anticipated prior to analysis, it may be possible to
discern through simulation, under a particular adaptive scheme and for a defined
number of rounds of judgement and number of items, how the term E[mijpij(1−pij)]
relates to the item strengths and thus to calculate an approximate information matrix
that may be used for inference. For example, in the large-scale assessment exercises
conducted by No More Marking, tens of thousands of items are assessed and distri-
butions from year to year may be observed. If the strength distributions observed are
sufficiently stable then these large-scale marking exercises may provide an example
where a different approach would be possible.

4.10 Concluding remarks

The work presented here provides recommendations for current practice in CJ and
suggestions for future research. Recommendations include:

1. CJ analysts should be encouraged to give greater consideration to their param-
eter estimation methods. Authors should be encouraged to be more explicit
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about these choices and to publish code and appropriately anonymised com-
parison data along with their work. Here we have demonstrated the strong
dependence of conclusions on estimation methods. Therefore, without know-
ing what estimation procedure was used, it is not possible to adequately verify
or challenge conclusions. Publishing data would allow later researchers to ap-
ply proposed methods to empirical data sets, accelerating the development of
better practice.

2. Adaptive sampling schemes should be encouraged. With good inference prac-
tices, they increase the efficiency of CJ assessments, allowing more reliable
conclusions to be drawn from the same amount of effort or equally reliable
conclusions from less effort.

3. Even under random sampling, it is recommended that parameter estimation
use a penalisation method. This is necessary for better point estimation and
accurate estimation of errors, with these errors used in measures of reliabil-
ity such as SSR. Not all penalisation methods are performant (e.g., Facets
and the method used in Crompvoets et al. (2020)), but several were found
to perform well in the scenario tested (ϵ-adjustment, α-adjustment, dummy
adjustment, and that due to Firth (1993)). ϵ-adjustment, α-adjustment, and
dummy-adjustment all rely on a constant, the value of which is not strongly
suggested by theory. On the other hand, the penalisation method of Firth
(1993) is free from such arbitrariness and has appealing asymptotic qualities
(Firth, 1993; Kosmidis and Firth, 2009; Kosmidis, 2014). It is therefore rec-
ommended that penalisation using the method of Firth (1993) is applied when
random scheduling schemes are used.

4. For adaptive scheduling schemes, it is recommended that point estimation be
performed using a bias-corrected method based on an initial estimation using
an α-adjustment penalty. The value for α can be estimated prior to analysis
based on a simulation study using the scheduling scheme and the numbers of
items and comparisons that were used to collect the data. The α-adjustment
was found to provide an effective penalty providing point estimates with small
bias and absolute error, allowing the bias-correction method to work effectively.
Applying bias correction allows bias and errors to be minimised further.

5. For error and reliability estimation a bootstrap method is recommended. With
adequate point estimation, this provides a credible, flexible and interpretable
method. It can also be used to provide things such as item errors, and avoids
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concerns around accurate estimation of the expected information matrix in-
herent to analytic alternatives. In general, given the sparse samples typical in
CJ, analytic measures derived from asymptotic assumptions may not always
be relied upon.

6. It is recommended that consideration be given to alternative measures of re-
liability than SSR and split-halves given their dependence on an essentially
arbitrary parametrisation and their greater sensitivity to the extremes of the
strength distribution. The suggestion made here was to consider a measure,
κ, based on Expected Preferences per Comparison (EPC). However, appropri-
ate measures are likely to be context specific. For example, if considering the
degree to which CJ is able to accurately assign items within grade boundaries
(which is a typical objective of assessments) then something like Krippendorf’s
α may be more appropriate. Also, if the EPC-based κ measure were to be used,
it would require a better understanding of the scale. In contrast, R2 measures
may be more familiar for some researchers and practitioners and, at least in
principle, allows for comparison directly to rubric-based marking schemes. An
R2 measure based on EPC using a bootstrap for error estimation would be a
possibility if that were the case.

The work here also signals towards a number of interesting possible future re-
search directions. In recommending adaptive schemes in general, it is clear that the
selection of such a scheme is a topic of interest. There is relevant literature that may
be drawn from for this task. Within the education literature, there is a large body
of work on Computer Aided Testing (CAT) See Chapter 5 of Verhavert (2018) for
a summary relevant to CJ. But these schemes rarely address pairwise comparison
directly. There is some work specific to CJ (for example, Pollitt (2012b); Humphry
and Heldsinger (2019); Crompvoets et al. (2020); Verhavert et al. (2022)), but these
approaches tend to be heuristic in nature, and lack a theoretical grounding. Further
insights from Statistics may also be usefully applied. For example, the scheduling
scheme proposed by Glickman and Jensen (2005) and the advocation for Bayesian op-
timal design of Chaloner and Verdinelli (1995) or Lindley (1972, 1956), or a method
for assessing judge reliability based on Dawid and Skene (1979) provide examples
of useful proposals. The machine learning literature also deals with related topics.
Mikhailiuk et al. (2020) provides a helpful recent summary, and Chen et al. (2016)
and Pfeiffer et al. (2012) are perhaps particularly interesting works in the context
of CJ. However, much of the work so far is not directly addressable to some of the
features of the CJ assessment environment, with the machine learning literature, in
particular, tending to be interested in identifying the best items rather than a reliable
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rating for all items.
As specific suggestions for future research, questions could include designing a

scheduling scheme that:

• best achieves grade categorisation, privileging comparisons close to grade bound-
aries;

• dynamically optimises with respect to time taken, accounting for the observa-
tion that a comparison between two very similar strength items may take much
longer than two estimated to have a greater difference in strength;

• takes account of varying judge accuity;

• allows judges to chain judgements, taking in an item that they have previously
observed to reduce the overall time taken for judgements;

• allows judges to determine a comparison to be a tie (or to indicate they would
have selected a tie were they allowed);

• accounts for the disproportionate influence that a judge providing judgements
at the beginning of an adaptively scheduled assessment window may have com-
pared to a judge who provides their judgements later;

• accounts for the time taken to compute and propose subsequent pairings under
an adaptive scheme in seeking to maximise efficiency.

Given any particular adaptive scheduling scheme, a credible method of parameter
and reliability estimation is required. While Section 4.9 provided some intuition as
to how and why the α-adjustment may have performed better than the alternatives
examined here in the examples of Sections 4.2-4.8, there is scope for more developed
theory on parameter estimation under adaptive schemes, or for empirical work on
the applicability of the α-adjustment under different scheduling schemes and with
different numbers of items and rounds. Given the sparse data typical of CJ assess-
ments, it is likely that bootstrap methods will remain appealing for both point and
error estimation. But, performant adaptive methods are likely to depend on the es-
timation of item strength for online scheduling and for that task bootstrap methods
would be limiting given their computational expense. While it should be noted that
the bootstrap methods used here would be readily parallelisable, which may help to
mitigate some computational expense, this is unlikely to provide a complete solution.

In this chapter, we have applied the Bradley-Terry model in order to rate and rank
the items in terms of their quality based on the pairwise comparisons. As we argued
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in Chapters 1 and 3, there can be principled reasons in some contexts for choosing
particular models. In this setting, a statistical model offers advantages in being more
interpretable than some of the competing alternatives to ranking mentioned in the
Introduction to this thesis. However, it is not clear that the round-robin norm is
a strong one in the same way it is in the Sports context (as argued for in Chapter
3). As such, it may be that we ought to be prepared to consider other models if
they offer pragmatic advantages (see, for example, Glickman and Jensen (2005) and
Pfeiffer et al. (2012), where the Thurstone-Mosteller model is applied as it allows
computationally cheaper methods to be used for the proposed scheduling stage). In
particular, for adaptive schemes, perhaps computationally cheaper spectral methods,
such as those discussed in Section 1.7, could be used to approximate Bradley-Terry
ratings for intermediate scheduling steps.

Finally it is worth noting that population sizes in CJ assessments are distributed
bimodally. Many assessments are small with the number of items in the tens or
low hundreds in line with the typical number of students in a particular school or
university class or cohort. On the other hand, the national assessments conducted
by No More Marking include more than fifty thousand scripts (Wheadon et al.,
2020), and this number is growing as their platform becomes more widely adopted.
Appropriate answers to some of the further research questions raised here may be
dependent on population size and to what degree it is reasonable to make pre-analysis
assumptions about the shape of the distribution of item log-strengths as highlighted
in Section 4.9.

It is to be hoped that this work provides useful recommendations to improve some
current practices in CJ assessment, and a lead into further research. CJ represents a
distinct opportunity for statistical researchers in this respect, in being an area that
has the potential to combine interesting theory with impactful practice.
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Chapter 5

Investigating the ‘old boy network’
using latent space models

Abstract

This chapter investigates the nature of institutional ties between a group of English
schools, including a large proportion of private schools that might be thought of
as contributing to the ‘old boy network’. The analysis is based on a network of
bilaterally-determined school rugby union fixtures. The primary importance of geo-
graphical proximity in the determination of these fixtures supplies a spatial ‘ground
truth’ against which the performance of models is assessed. A Bayesian fitting of the
latent position cluster model is found to provide the best fit of the models examined.
This is used to demonstrate a variety of methods that together provide a consistent
and nuanced interpretation of the factors influencing community and edge formation
in the network. The influence of homophily in fees and the proportion of boarders
is identified as notable, with evidence that this is driven by a community of schools,
who have the highest proportion of boarders and charge the highest fees, suggestive
of the existence and nature of an ‘old boy network’ at an institutional level.

5.1 Introduction

‘Old boy network’ is an English phrase used to refer to the informal system through
which men assist other men of a similar socio-economically privileged background,
reflected in attending the same school or university. It derives from the term, ‘old
boy’, used to refer to a former pupil at a British ‘public school’, the confusing name
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given to a subset of traditional, and often especially expensive, private schools in
England. Generally the old boy network is considered to act at an individual level,
but it may be reasonable to think that it will be stronger if and where there are
institutional links between schools. However, it is not clear to what degree there
are such links and, to the degree that there are, what features of the school might
define them. In the English school system, there are a number of distinctions that
might be thought to be identifiable in the functioning of such a network, for example
private/state, boarding/day, level of fees. In this chapter, latent space models are
applied to a network of school rugby union fixtures to investigate whether such
functional networks exist and, if they do, what the nature of them may be.

The fixture data provides an interesting data set on which to apply these ap-
proaches, for a couple of reasons. First, since one may reasonably expect that a
primary consideration in agreeing a fixture would be geographical proximity, then
there is a spatial ‘ground truth’ against which to assess the models considered. Sec-
ond, there is reason to believe that the set of fixtures may be informative. Fixtures
change from year to year but not drastically, and the process of fixtures being sched-
uled and changed has been taking place for many decades, with the first school rugby
union fixture taking place over a hundred years ago. Together these considerations
suggest that there has been time for relevant factors to exert an influence such that
the observed situation represents a steady state with respect to the schools’ current
relationships, allowing inferences to be informative.

As with rating, the attempt to detect clusters or communities in networks is
a topic that has garnered great attention across a number of areas of academic
enquiry including Computer Science, Physics and Statistics. As a result, there are
a profusion of available methods (see, for example, Fortunato and Hric (2016) and
Javed et al. (2018) for surveys). For the present investigation, where the data have
a natural spatial interpretation and there are no definitive membership groups, then
latent space models are appealing. Network latent space models position nodes in an
unobserved latent space, with the probability of an edge existing between any two
nodes being related to the proximity of the two nodes in the latent space. Modelling
in this way can allow a number of features common to networks to be captured —
transitivity; homophily by attributes; and clustering — as well as often allowing for
informative graphical representations.

In the context of networks, transitivity is the phenomenon that two nodes, which
each share an edge with the same third node, will have a higher probability of
having an edge with each other than a pair that do not. Homophily by attributes
describes the greater propensity for an edge to exist when two nodes share observed
attributes. For example in a friendship network these could be attributes such as age,
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sex, geographical location, or recreational interests. Transitivity and homophily by
attributes will both lead to clustering, but it is not uncommon to observe clustering
beyond what may be explained by these features. This may be due to homophily by
unobserved attributes, self-organisation of actors, the popularity of particular actors,
or endogenous attributes such as position in the network (Handcock et al., 2007).

Early latent space network models used multidimensional scaling, and while these
captured transitivity and homophily by attributes they were reliant on the arbitrary
choice of a distance measure, leading to variable interpretations. Hoff et al. (2002)
proposed a stochastic model in which the latent space positions may be estimated
through standard statistical techniques. Handcock et al. (2007) extended that model
to account for clustering by assuming that the latent positions are drawn from a finite
mixture of multivariate normal distributions.

In the present setting, there is reason to believe that there will be clustering
beyond that due to transitivity or observed homophily of attributes. First, because
there are likely to be factors not captured in available data that account for un-
observed homophilies, such as sport orientation within school culture, and social
networks between relevant staff. Second, because the fixture information is pub-
licly accessible, which might increase the potential for further clustering through
self-organisation; if a school sees that a number of the schools they play have an
opponent in common who they do not play they may consider proposing a fixture.

The chapter proceeds in Section 5.2 by discussing the data, with details of its
collection, and a brief analysis highlighting some features and inter-relations of the
school covariates considered. In Section 5.3, the latent space models of Hoff et al.
(2002) and Handcock et al. (2007) are fitted. In Section 5.4, the influence of the
different covariates is explored. Section 5.5 provides some concluding remarks.

5.2 Data

5.2.1 Background

The Daily Mail Trophy is an annual tournament between some of the best school
rugby teams in England, along with a single school in Wales. In order to qualify
for a ranking in the Daily Mail Trophy a school must register for the tournament
and compete against a minimum of five other teams in the tournament. There are
in total 118 schools included, playing between 3 and 37 matches over the course of
the three seasons analysed here. The matches played as part of the tournament are
typically only a subset of the matches played by these schools, with other matches
taking place as friendlies with non-tournament schools, or as part of a centrally
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scheduled knock-out competition. In almost all cases however, if they have played a
match against one of the other tournament teams, outside of the centrally scheduled
knock-out competition, it would be classed as a Daily Mail Trophy match and would
appear in the data set. So the existence or absence of a match with another school
is an accurate representation of the bilaterally arranged fixtures within the set of
schools in the tournament.

The network to be investigated is based on all matches in the Daily Mail Trophy in
the 2015–16, 2016–17 and 2017–18 seasons. Schools who registered but were unable
to complete five eligible matches in any given season are maintained in our analysis,
despite being excluded from an official ranking. The network being considered is
undirected; each node is a school, and each edge has a value equal to the number of
seasons, out of the three for which there are data, in which the two schools played
each other. This network is considered in relation to school-level data representing
variables that could contribute to some observable homophily.

5.2.2 Data collection

The fixtures and results for the Daily Mail Trophy were kindly shared by School-
srugby.co.uk, the organiser of the tournament, but are also available at the tourna-
ment website (www.schoolsrugby.co.uk/dailymailtrophy.aspx). In the analysis
that follows it is the number of seasons, out of the three considered, that two teams
play each other that are used. There were five instances where teams played each
other twice in a season. These are coded the same as if they had played a single time
in those seasons.

For each school, data were also collected on:

1. annual fees (Fees)

2. year of foundation (Founded)

3. the number of boys in sixth form (6th Form boys)

4. the proportion of pupils in the school that are boys (Percent boys)

5. the proportion of pupils that are boarders (Percent boarders)

6. whether the school is privately or state-funded (School type)

7. whether the school played one or two terms of rugby (Term type)

8. performance rating of the rugby-playing strength of the school (Rating)

While it would be plausible to consider other variables, these were either not
readily available, for example the size of sports bursaries or proportion of pupils from
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overseas, or were substantially accounted for by this set of covariates, for example
if a school is co-educational throughout or just in sixth form, or not at all, is well
captured in the proportion of pupils that are boys and the number of sixth form boys.
All covariate data were collected during the first week of June 2019. This means they
are not contemporaneous with the fixtures occurring in the period 2015–2018. This
is not expected to have materially impacted any conclusions because the covariates
are not subject to large year on year changes.

Fees information was sourced from the schools’ own websites. Annual fees were
taken to be the minimum fees for full-time education of a pupil in Upper Sixth form,
not accounting for bursaries or scholarships. Thus it is zero for state-funded schools,
standard day fees for schools that admit day pupils, and minimum boarding fees for
schools that admit only boarders.

Year of foundation was generally more readily available on the Wikipedia page for
the school than the school’s website and so the Wikipedia date was used. This was
originally included as it was suspected that it might define a meaningful similarity
between schools. But in collecting the data it became clear that the trajectories of
schools were very diverse and it was often even difficult to be sure of a definitive
foundation date with occurrences of, for example, schools moving geographically,
amalgamating, moving from private to state or vice versa, and renaming not uncom-
mon. All of these contributed to subjectivity in the definition of year of foundation.
It is included in the analysis however as it provides a useful sanity check to some of
the later methods in the degree to which those methods identify year of foundation
as a non-informative covariate.

Whether a school was state or privately funded was determined by its classifi-
cation in the most recent relevant government report (Department for Education,
2019). The source of data on the number of pupils, including the proportions of boys
and boarders, and the absolute numbers of sixth form boys, was dependent on the
school’s status as a private or state school. Pupil numbers for state schools were taken
based on the most recent relevant government report (Department for Education,
2019). These did not include a delineation for numbers of sixth form students or of
boarders. For this, the most recent available Ofsted report with such data was used
(www.gov.uk/government/organisations/ofsted). Since these were from previ-
ous years and so total numbers differed, the proportions of sixth form students or
boarders were assumed to be constant, and the absolute number of sixth form boys
was adjusted for the current total number of pupils. The total number of pupils
was never materially different from current numbers, and so one may reasonably be
confident that these numbers are accurate. However it should be noted that these
Ofsted reports were quite commonly from as much as a decade ago.
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For privately funded schools, these data were collected from the Independent
Schools Council (ISC) website (www.isc.co.uk). For boys and for girls, this reports
the number of boarders, the number of day pupils, and the number of sixth form
pupils. From these the proportion of day pupils, and the proportion of boys are
calculated. However, it should be noted that since schools admit pupils from different
ages, the relative proportions as they pertain to a consistent age group, say 13–18,
are unlikely to be the same. Given the purpose of including these proportions —
identifying homophilies — and that no ready alternative was available, then this
seems acceptable, as they still provide evidence on the nature of the school. In one
case, Ampleforth College, the population information was not available on the ISC
website and so the method used was the same as for the state schools, with the most
recent Independent Schools Inspectorate report (www.isi.net) used, in place of an
Ofsted report, to derive the relevant proportions.

In order to determine if the school played one or two terms of rugby, the month
of the school’s first and last fixtures of the 2018 season were considered, including
those fixtures outside the Daily Mail Trophy competition. If these both lay in a
single term, then it was interpreted as being a single term rugby-playing school. If
there were two or more matches in the second term then it was deemed to be a two
term school. If there was a single match outside of first term then previous seasons’
fixtures as well as any information from the school’s website was used to make the
categorisation.

The performance rating used here is described in Hamilton and Firth (2021),
applied to an aggregation of the three seasons’ results. The method accounts for the
varying schedule strengths of participating schools in a manner consistent with the
predominant league points system used in rugby union. Taking the projected league
points per match were each team to play every other team home and away in a round
robin format provides a positive-valued measure of a comparable scale to the other
covariates as well as an intuitive interpretation to the rating measure.

For all of these factors, when considering edge covariates the absolute difference
is used. The binary variables of school type and term type take value 0 if identical
and 1 if different for each pair. The two percentage variables of proportion of boys
and proportion of boarders are taken as the absolute difference in these percentages.

Postcodes were taken from the Daily Mail Trophy website and then used via a
Google Maps API in order to calculate travel times and distances between schools
using the R package googleway (Cooley, 2017) and to project locations onto a rel-
evant map. Distances were calculated as at Saturday 5th October 2019 12pm us-
ing the “best guess” methodology, assuming a journey by road. In order to plot
schools geographically, latitude and longitude for each postcode was sourced from
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www.freemaptools.com.
The five continuous variables are scaled to allow for better comparability and

interpretability, specifically the following units are used:

Travel Time hours
Fees £10,000
Founded centuries
6th Form Boys 100 boys
Rating projected league points per match

5.2.3 Exploratory Data Analysis

The two binary covariates of whether a school is privately or state-funded, and
whether it plays one or two terms of rugby are compared first. Table 5.1 shows
that there is a clear relation, with the private schools substantially more likely to
play one term and state-funded schools more likely to play two.

One term Two terms
Private 79 17
State 8 14

Table 5.1: Number of schools in the tournament playing one or two terms of rugby
and private or state-funded

The other covariates are presented in Figure 5.1. A number of things may be
noted. The individual covariate distributions are largely in line with expectations.
A number of the covariates are bimodal. This is unsurprising in the case of fees,
with one of the modes at zero, or in the case of the percentage of boys, with modes
close to 50% and 100%, reflecting a predominance of all-through co-educational and
single sex schools, but the bimodal nature to the year of foundation is less intuitive
without more historical context. The number of sixth form boys is right-skewed with
a mode around 150. The proportion of boarders has a clear mode at just above zero,
reflecting a high proportion of day schools and some schools with just a handful
of boarders. The remaining proportions are, perhaps not so intuitively, distributed
quite evenly up to full boarding status, but without another clearly identifiable mode.
Rating is left-skewed with its mode at around 2.7 league points per match, which
suggests teams would be expected to share almost one and a half bonus point per
match on average. Importantly for our analysis, with the exception of the percentage
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Figure 5.1: Scatterplots of school covariates. Private schools in grey, state-funded
schools in black

163



of boarders and fees, and the proportion of boys and the number of sixth form
boys, which have Pearson correlation of 70% and 68% respectively, the continuous
covariates all have absolute correlations of less than 25%, which is helpful for being
able to discern independent effects. The correlation between the proportion of pupils
that are boarders and the fees is not due, as one might first suspect, to boarding fees
being higher as they must also account for living expenses, since the minimum upper
sixth form fees have been used in all cases, and there are only four pure boarding
schools where those minimum fees include boarding fees. In all other cases they
represent a day fee. A correlation of 68% between the proportion of pupils that are
boys and the number of sixth form boys is less surprising. Here shading has been
used in the scatterplots to differentiate state-funded and private schools. Apart from
the self-explanatory difference in fees, these also show that within this set of schools
the state schools are more likely to have high numbers of sixth form boys, to be single
sex (or close to), and to be day schools rather than boarding. We might therefore
expect some confounding of these factors in later analyses. These charts were also
looked at with a differentiation based on the number of terms of rugby played. This
highlighted similar features, as one might expect from Table 5.1, but less strongly.

5.3 Latent Space Model

5.3.1 Model specification

Given the three seasons of fixture data, a binomial latent space model is fitted here,
the general form of which is

P (A;Z,x,β) =
∏
i<j

(
3

Aij

)
µ
Aij

ij (1− µij)
3−Aij (1)

logit(µij) = β0 +

p∑
k=1

xijkβk − d(Zi,Zj). (2)

Here A = [Aij] is the symmetric adjacency matrix of fixtures with Aij equal to the
number of seasons out of the three in which teams i and j played each other, xijk is
the kth edge covariate for teams i and j, βk is the coefficient for the kth covariate,
Zi is the latent position for team i, and d(Zi,Zj) is the Euclidean distance between
teams i and j in the latent space. This is the binomial version of the model proposed
by Hoff et al. (2002).

It is worth noting that a sociality parameter is not included. In this context
a sociality parameter would describe the propensity for a particular school to have
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matches. It is not included here because the fixtures represented are an incomplete
set of fixtures for the participating teams, with teams generally playing additional
matches, against teams outside of the tournament, as friendlies or as part of other
competitions. While these data are not fully available, the schedule for a sample of
teams has been inspected and generally they have played a similar total number of
matches, so observing a team to have higher degree within the network is not a reflec-
tion of that team having a higher propensity to play matches in general. Including
such effects could therefore, for example, misleadingly diminish the extent to which
one might infer a lower homophily from the absence of a fixture in the case of teams
with lower degree. On the other hand, the current rules of the tournament encour-
age teams to play as many other tournament participants as possible, since they are
awarded bonus points merely for playing matches in the tournament, independent
of result. Based on conversations with the tournament organisers and observations
of historic results, it is likely that there will be a difference in motivation between
teams in their desire to be competitive in the tournament, and some may actively
seek to schedule more tournament matches. However there are only a small number
of teams, consistent across years, for whom the tournament is a goal in itself. For the
vast majority, they enter simply because they can, as a by-product of their standard
fixture list, which is largely similar from year to year. So while this effect could be
argued to be a genuine sociality effect, within the context of just this network of
fixtures, it is likely to apply to only a small minority of teams. Therefore on balance,
the distorting impact of inclusion is considered to be more of a danger than that
of exclusion and so no sociality effect is included. All models are fitted using the
latentnet package in R (Krivitsky and Handcock, 2008).

5.3.2 Hierarchical Clustering

Initially the parameters of the model represented in equations (1)–(2) are estimated
through the method of maximum likelihood and with no covariates included.

It was suspected that geographical proximity would be a primary driver of the
propensity for a match to occur, and therefore of model distance. Figure 5.2 plots
the pairwise Euclidean distances, calculated using the latent space positions, against
the pairwise estimated travel times. This shows a strong relationship, with a Pearson
correlation of 74%. Travel time is used here as this would seem to be a more rele-
vant motivating condition for a fixture than geographical distance, but substantially
similar results are found when using geographical distance. The comparison between
latent space distance and travel time may also be used as a means of testing the
choice to use a two dimensional latent space. When fitting with three dimensions
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Figure 5.2: Scatterplot of latent space distance against travel time. School pairs who
do not play each other during the three seasons are in red, pairs who play each other
at least once are in blue. OLS regression line is shown in black.

the correlation increased only by 1%, and goodness of fit measures based on the pos-
terior predictive distribution of degree and minimal geodesic distance (Krivitsky and
Handcock, 2008) showed no clear improvement with increased dimension, strongly
suggesting that modelling in two dimensions, with the representational benefits it
brings, is a reasonable choice. As such, all further models will be applied using a two
dimensional latent space.

While the fit is reasonable, there seems to be a notable skew to the residuals.
Looking at the residual plot in Figure 5.3 it can be seen that this is driven by two
groups. The first has high travel time and considerably lower latent space distance
than the linear regression would suggest, the second low travel time but considerably
higher latent space distance than the regression would suggest.

It might be supposed that the former group is likely to be due to the requirement
for geographically extreme teams to travel longer distances in order to complete a
sufficient number of matches in the tournament, so that travel time for them has a
different level of consideration than for teams with greater geographical proximity
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Figure 5.3: Scatterplot of residuals from OLS fit of latent space distance against
travel time
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Figure 5.4: Location maps for the teams featuring in the extreme residuals. Size of
dot represents the number of times that the team appears in the relevant set of pairs.
Left hand chart includes pairs where d < d̂ − 4, and right hand where d > d̂ + 4,
where d is the latent space distance and d̂ the expected latent space distance based
on the linear regression with travel time.

to other schools. However, Figure 5.4 suggests this does not account for the entire
effect. While the most northerly and southerly teams, as well as the single team in
East Anglia do stand out in the figure on the left, teams from all over the country
are represented and the third highest weighted is King Edward’s, Birmingham in
the middle of the country, suggesting there is something else at work here. The
other group is made up of geographically proximate teams with a large latent space
distance. Again it is perhaps to be expected that many of these are in the more
densely geographically clustered south east, but some of the most westerly teams also
feature strongly. Even in the case of the south east teams, it remains unexplained
as to why these particular teams have this greater latent space distance. This will
be examined further in Section 5.4 when the influence of the other edge covariates is
investigated.

The geographical implications of model distance may also be considered by inves-
tigating community detection in relation to the geographical location of the schools.
Numerous methods of clustering could be applied given the latent space distance
matrix. As an example, by applying a hierarchical clustering with complete linkage
the dendrogram presented in Figure 5.5 is obtained.
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Figure 5.5: Dendrogram of hierarchical clustering of schools by latent space
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Figure 5.6: Communities of size G = 2, 3, 4, 5, 6, 7 based on complete linkage hierar-
chical clustering of latent space distances

Inspection of the dendrogram suggests that five communities could be an appro-
priate partition with a number of communities converging at a distance of around
45. In Figure 5.6, communities are plotted, based on the dendrogram, for G =
2, 3, 4, 5, 6, 7, where G is the number of groups, in order to show the geographical
detection ability with different numbers of groups.

5.3.3 Latent Position Cluster Model

Handcock et al. (2007) provided a model with the extended feature that the latent
positions are drawn from a finite mixture of multivariate normal distributions. That
is,

Zi
i.i.d.∼

G∑
g=1

λgMVNd(µg, σg
2Id). (3)

Two methods of estimation were proposed in Handcock et al. (2007). The first
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method is a two-stage maximum likelihood procedure. In the first stage, the latent
positions are estimated in the same way as with the model in Section 5.3.1. In the
second stage, a maximum likelihood estimate for the group membership is found
conditional on the latent positions calculated in the first step using an EM algorithm
(Dempster et al., 1977). This provides a quick and simple estimation. However,
by not estimating latent position and clustering simultaneously, it loses information
from the clustering that may be useful in the determination of the latent positions.
The second method is a fully Bayesian estimation using Markov chain Monte Carlo
sampling. In this chapter, this is fitted based on a burn-in period of 10,000 iterations
and a sample run of 1,000,000 iterations of which every fiftieth was sampled, giving
a sample size of 20,000.

Figures 5.7 and 5.8 present the results from the two methods. In Figures 5.6,
5.7, and 5.8, communities are identified such that the number of schools remaining
in the same community as in the previous clustering (as represented by a particular
colour) is maximised. The different colours representing different regions in the three
Figures is thus a result of different evolutions of the community detection in each case.
The fittings using the Gaussian clustering, both based on the two-stage MLE and
the MCMC, appear to show better geographic separation than did the hierarchical
clustering, particularly when looking at schools close to the west coast. The MCMC
clustering arguably shows a better separation in the London area, though there is
substantial agreement in the community membership up to G = 5.

For the purposes of further investigation it is useful to select a single number
of communities, G, with which to work. Graphical inspection of Figures 5.7 and
5.8 suggests that between three and five communities may fit best, given the clear
geographical separation they evidence. Handcock et al. (2007) suggest the use of
a Bayesian Information Criterion (BIC) for the purpose of selecting the number of
communities when using the MCMC fitting. Figure 5.9 shows this BIC for each value
of G. Experimentation with different specifications of the algorithm showed the BIC
value to be somewhat unstable. As such this is taken to be indicative rather than
definitive and so taking into account both the BIC and the geographical separation
G = 4 is chosen.

In Figure 5.10 the travel time in minutes is plotted against the latent space
distance. Due to the nature of the two-stage MLE fit, the left-hand chart is the
same as appears in Figure 5.2. It is repeated here next to that from the MCMC
estimation to aid comparison. The most notable feature is that the effect of applying
the simultaneous fit of latent position and cluster of the MCMC estimation is to
reduce and also compress latent space distances particularly for the large latent
space distances. The interquartile range of the residuals, for example, is thus more

171



Figure 5.7: Communities of size G = 2, 3, 4, 5, 6, 7 based on two-stage MLE
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Figure 5.8: Communities of size G = 2, 3, 4, 5, 6, 7 based on MCMC parameter esti-
mation
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Figure 5.9: Bayesian Information Criterion for different numbers of groups, G.
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Figure 5.10: Scatterplot of latent space distance against travel time for two-stage
MLE and MCMC fits with G = 4. School pairs who do not play each other during
the three seasons are in red, pairs who play each other at least once are in blue.
Linear regression line is shown in black.

than 25% lower when compared to the two-stage MLE fit. The Pearson correlation is
slightly higher at 78% compared to 74% from the two-stage MLE fit, and the intercept
is closer to zero. This suggests that the assumption of community membership
usefully constrains the fit. The community memberships are substantially similar
with 108 of the 118 schools belonging to equivalent groups. However based on the
seemingly improved latent space fit, the MCMC estimation with G = 4 is the model
selected for further analysis.

A feature of the mixture model is that it allows us to view the probability of
each community membership for each node. Figure 5.11 provides a graphical inter-
pretation of these probabilistic community memberships. Perhaps the most notable
feature is the difference in delineation of the communities. What might be referred
to as the northern community is most clearly delineated, with all but two mem-
bers having greater than 75% probability of being part of that community. On the
other hand, the two central communities are substantially more indeterminate with
the southernmost (that represented in the chart in pink) having no member with a
greater than 75% probability of being part of the community. The schools in and
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Figure 5.11: Probability of membership of each community.

around London show perhaps more delineation than one might expect given the short
distances. Due to the geographical proximity of a number of schools, some are ob-
scured in the chart. This does not alter the interpretation when the distributions of
these schools are known. It could also be noted that the most geographically isolated
school, St Joseph’s Ipswich, has a substantial probability of being in three of the four
different groups.

An alternative way of considering the link between the latent and geographical
spaces is presented in Figure 5.12. This suggests that the two latent space dimensions
are picking up something like a polar coordinate system with a radial coordinate
eminating from a centre in the south-east (as seen on the size scale), and an angular
coordinate going from the south to the north east (as seen in the colour scale), an
observation which is consistent with the probabilistic clustering seen in Figure 5.11,
as well as the evolution of the community detection seen in Figures 5.7 and 5.8.

5.4 A consideration of covariates

5.4.1 Relative Importance

The analysis so far has shown a clear link between the travel time and the propensity
for the existence of fixtures, but this is to be expected and it is desirable to consider
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Figure 5.12: Map of schools with colour and size representing first and second latent
space coordinate respectively for each school, based on MCMC estimation of latent
position cluster model with G = 4.
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how travel time compares to the other covariates in its importance for fixture propen-
sity. Grömping (2015) provides a thorough overview of various measures of relative
importance, and the factors to consider in selecting one. These are presented in the
context of linear regression. Some of these measures may be extended to wider fami-
lies of models, and, in particular, Thomas et al. (2008) proposed relative importance
measures for logistic regression that are consistent with some of the features of the
measure axiomatically justified by Pratt (1987) for linear regression.

In the present case, the unreliability and the computational expense of the coeffi-
cient estimates obtained when the model is fitted with all covariates simultaneously
are considerable hindrances to applying relative importance measures directly to the
model. This is especially so since a number of the measures require at least p! com-
putations, where p is the number of regressor variables, in order to average over the
permutations of regressor variables. One alternative is instead to use the pairwise
latent space distances estimated by the selected model. A linear regression of these
distances against the edge covariates can then be considered. Doing so provides
an estimate for the relative importance of the covariates in the determination of
pairwise latent space distance. One reason to be cautious of this approach is that
it may be viewed as a measure of relative importance of the covariates only in so
much as latent space distance is a good measure of the propensity for a fixture to
exist. However if the conclusions drawn from the analysis prove to be corroborated
by other approaches then we may have more confidence about the meaningfulness of
the results.

Two specific measures are considered here. Both have the desirable and intu-
itive properties of providing: independence from the order of the regressors in the
model; scale invariance; and a proper decomposition of the model variance (R2) for
any orthogonal regressor subgroups. The first (which we will refer to as ‘Pratt’) is
the one advocated by Pratt (1987)1. It provides an axiomatic justification, based on
appealing ideas of symmetry, for using bkρk to assess relative importance, where bk
is the standardised coefficient for the kth regressor variable, xk, and ρk is the corre-
lation of xk with the independent variable y, in this case the latent space distance.
The principal objection to this approach is that it can produce a negative measure,
which is not clearly interpretable. The second (LMG, after the original authors) is
the method originally due to Lindeman et al. (1980), which was also influentially
and independently advocated by Kruskal (1987). For each regressor, this takes the
marginal increase of explained variance from the addition of the regressor to the
model, and takes the mean of these values over all regressor order permutations of

1The paper itself is somewhat hard to find but Pratt gives a clear lecture on the subject available
at https://www.youtube.com/watch?v=EzLQkAH5g3A
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the model. Taking the notation of Grömping (2015), denote the explained variance
and the sequential additional variance respectively as

evar(S) = var(y)− var(y | xj; j ∈ S),

svar(M | S) = evar(M ∪ S)− evar(S).

Then we can define, without loss of generality, the measure for the first regressor as

LMG(1) =
1

p!

∑
π

svar({1} | S1(π)),

where π are the regressor permutations and S1(π) the set of regressors preceding
regressor 1 in permutation π. The model has an R2 of 62%, and the proportion of
that coming from each covariate is shown in Table 5.2.

Variable Pratt LMG
Travel time 98.09% 97.77%
Percent Boarder 0.88% 0.88%
Fees 0.72% 0.63%
Percent Boys 0.09% 0.08%
Boys 0.08% 0.12%
School type 0.05% 0.30%
Rating 0.04% 0.14%
Term type 0.02% 0.02%
Founded 0.01% 0.04%

Table 5.2: Proportion of explained variance (R2) attributable to each covariate in
linear regression of pairwise latent space distance against covariates. Ordered in
descending order of relative importance under the Pratt measure.

It is perhaps unsurprising based on the previous analysis that travel time is
dominant, but the degree to which this is the case is nevertheless notable. The
other covariates have negligible relative importance in comparison to travel time, but
relatively they suggest that fees and the proportion of boarders may have greater
influence. The two measures of relative importance assessed here, Pratt and LMG,
are very substantially consistent, with Pratt giving slightly higher values for travel
time and fees and lower for school type and rating.

178



5.4.2 Covariate inclusion

An alternative means to investigate the influence of the different covariates is by
considering models with each covariate included individually,

logit(µij) = β0 + xijkβk − d(Zi,Zj), (k = 1, . . . p), (4)

where the index k represents the edge covariates. Table 5.3 presents the parame-
ter estimates based on the posterior mean of the coefficient, as well as a statistic
representing q = 2 × min(P (βk > 0), P (βk < 0)), where βk is the coefficient under
consideration, and the Bayesian Information Criterion (BIC) for each model, which
may be compared with a BIC of 3647 for the model with no covariates included.
Comparing individually in this way thus allows us to consider the importance of a
particular covariate based on the change in BIC, and the q-value statistic.

β̂k q BIC
Travel Time −1.523 < 10−15 3316
Fees −0.368 < 10−15 3618
Percent boarder −0.860 < 10−15 3630
Term type −0.309 0.0016 3642
6th Form boys −0.199 0.0039 3642
School type −0.370 0.0017 3643
Founded −0.038 0.0473 3646
Percent boys −0.756 0.0070 3649
Rating −0.057 0.3239 3651

Table 5.3: Coefficient, q-value and BIC when model fitted with individual additional
covariates. Ordered in increasing BIC.

The BIC estimates are consistent with what was seen in the relative importance
analysis in highlighting travel time as the dominant covariate. In that fees and
the proportion of boarders are the only others that have a notably lower BIC and
also q-value, these are also somewhat consistent with the previous results. With
the exception of rating, the q-values are all low, indicating that it is likely that these
factors are influencing the propensity for a fixture to exist. This is perhaps surprising
in the case of year of foundation, though the q-value there is less conclusive.

Alternatively we may choose to fit the model with all covariates, as in equation
5.

logit(µij) = β0 +

p∑
k=1

xijkβk − d(Zi,Zj), (5)
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The results are presented in Table 5.4. The computation of this showed greater
sensitivity to the specification of the algorithm, so we might be cautious about the
results. They do however show broad agreement with previous analyses, and where
there are discrepancies between the coefficient estimates when taken together and in-
dividually these may reasonably be thought of as being as a result of the confounding
of covariates. For example, the correlation between the percentage of boarders and
fees provides an explanation for the smaller absolute impact from boarding when the
covariates are considered together.

In this context however it is perhaps more intuitive to interpret the impact of the
covariates individually as in the models represented by equation (4), in the sense that
knowing nothing else about the schools in each case, one would expect the odds of
a fixture to decrease by 78% for every additional hour of travel between schools, by
31% for every £10,000 per annum difference in fees, and by 58% for a fully boarding
school (100% boarders) playing a fully day school (0% boarders) as compared to a
match between two schools with the same proportion of boarders.

β̂k q
Travel Time −1.552 < 10−15

Fees −0.363 < 10−15

Percent boarder −0.317 < 10−15

Term type −0.283 < 10−15

6th Form boys −0.252 < 10−15

Percent boys −0.734 < 10−15

Founded −0.042 0.0478
School type +0.154 0.1541
Rating −0.002 0.9613

Table 5.4: Coefficient q-values when model fitted with all covariates. Ordered in
increasing q-value.

5.4.3 Graphical inspection

Another method of investigation that the model allows is by inspection of the latent
space graphically. Given the dominance of travel time, it is useful to control for it in
considering the other covariates. Thus the following model is considered with G=4
based on BIC values.

logit(µij) = β0 + xijTravel TimeβTravel Time − d(Zi,Zj), (6)
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Figure 5.13: Latent space plots based on model with Travel Time controlled for and
with G=4. Colour scale representing Fees on left hand side, and % Boarders on right
hand side.
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In Figure 5.13, the colours are used to show the fees and proportion of boarders
for each school. As was noted in Section 5.2, these covariates are strongly linked
and this is evident in the plots. It can be seen that while schools with lower fees
and low proportions of boarders are distributed quite evenly throughout the latent
space, those with higher fees and a high proportion of boarders are to be found
disproportionately often in a cluster at the bottom of the latent space. This effect
is perhaps clearer for the proportion of boarders. This suggests that there is a small
community of schools with a higher proportion of boarders and higher fees, who are
more likely to play each other, and that it is this that was driving the greater relative
importance of these covariates noted in Sections 5.4.1 and 5.4.2.

5.5 Concluding Remarks

The latent space models demonstrated a number of desirable features in the context
of addressing the question of the nature of institutional ties. They showed a good
ability to detect geographical communities in the data set, and the spatial nature of
the output provided a natural means of interpreting the result in terms of pairwise
distances. It was possible to employ a variety of methods in order to analyse the
relative importance of the different school homophilies in the propensity for a fixture
to exist — by using the methods of Pratt (1987) and Lindeman et al. (1980) to
provide quantitative estimates based on latent space distance; by inspection of q =
2×min(P (βk > 0), P (βk < 0)) and BIC on fitting models with covariates included;
and by using graphical assessment based on latent space plots as in Figure 5.13.
These produced a consistent interpretation. The latent position cluster model of
Handcock et al. (2007) was found to usefully constrain the latent space model such
that it appeared to provide a better fit. It also usefully facilitated a means of assessing
the strength of community attribution at a school level by producing the probabilities
of each school being a member of each community as seen in Figure 5.11. It is
notable that, while a relatively high number of iterations was chosen to be run based
on the diagnostics, most of these conclusions were substantially unchanged when
running off the default settings of burn-in of 10,000, with 40,000 sampling iterations
of which every tenth was sampled giving a sample size of 4,000. The BIC values and
coefficient ranges were however notably more affected by changes in other algorithm
specifications when run on a lower number of simulations. The latent space models
thus performed well in providing quantitative and qualitative insights into the nature
of communities and the influential elements of edge formation in this network.

Perhaps unsurprisingly, travel time was found to be the dominant factor in con-
tributing to the prevalence of fixtures. The degree of this dominance is notable,
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representing 98% of R2 based on the two relative importance measures employed.
The proportion of boarders and fees were identified as the next most important
factors, with the dependency driven by a community of schools with the highest pro-
portion of boarders and the highest fees. It should be noted that the data represent
a self-selecting group of the top rugby-playing schools. It seems not unreasonable to
expect that were a full set of data available then the impact of some of the other
covariates would take on a greater importance. For example, over a wider data set
with more state schools and a greater range of abilities, perhaps fees, school type
or rating would take on greater relative importance. However, for the question at
hand, it is still notable that rather than clustering seeming to correlate with, for
example, rating, as meritocrats might have liked to believe, or with school type as
others might have suspected, it was a school’s status as a majority-boarding school,
with a high level of fees, that produced a detectable clustering effect.

There should be caution in drawing social conclusions from this. The analysis
might be seen as consistent at an institution level with a traditional understanding
of the old boy network, where relationships within a socio-economically privileged
group are preferentially advanced. However, the relative importance of the measured
homophilies were found to be very small in comparison to travel time and, in partic-
ular, school type (private or state-funded) seemed to have little relative importance.
To the degree that there was an identifiable effect of schools with a high proportion
of boarders and high fees having a greater propensity for fixtures, the tournament
organisers offer an explanation. They identify that it is common for schools to seek
opponents who can provide fixtures for all the teams they wish to field. The mea-
surable variables of high proportion of boarders and high fees may be indicative of
schools where there is a greater expectation that boys will represent the school at
rugby union. The mutual desire to be able to field fixtures for all their teams, with
as many as five teams in each year group, may lead to these schools having a higher
propensity for fixtures. Thus, the greater propensity for these relationships might be
argued to be meeting a functional need rather than being based on some prejudicial
exclusion. On the other hand, others may argue that even if the motivation is func-
tional rather than prejudicial, this would still have the effect of increasing contact
between the schools and the pupils within them due to a commonality of culture
that was not shared by other schools representing different demographics, and this
may contribute to what gets referred to as the old boy network.
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