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QUANTITATIVE RATES OF CONVERGENCE TO EQUILIBRIUM FOR THE

DEGENERATE LINEAR BOLTZMANN EQUATION ON THE TORUS

JOSEPHINE EVANS∗ AND IVÁN MOYANO∗∗

Abstract. We study the linear relaxation Boltzmann equation on the torus with a spatially varying jump

rate which can be zero on large sections of the domain. In [5] Bernard and Salvarani showed that this
equation converges exponentially fast to equilibrium if and only if the jump rate satisfies the geometric

control condition of Bardos, Lebeau and Rauch [3]. In [24] Han-Kwan and Léautaud showed a more general

result for linear Boltzmann equations under the action of potentials in different geometric contexts, including
the case of unbounded velocities. In this paper we obtain quantitative rates of convergence to equilibrium

when the geometric control condition is satisfied, using a probabilistic approach based on Doeblin’s theorem

from Markov chains.
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1. Introduction and Main Results

In this article, we study the linear Boltzmann equation in the phase space Ω× V (here we study models
where V = Rd and where V is a subset of Rd not containing zero), i.e., the system

(1)

{
∂tf + v · ∇xf −∇xW (x) · ∇vf = C (f), in (0, T )× Ω× V,
f |t=0 = f0, in Ω× V,

where the density function, f = f(t, x, v), undergoes the action of the potential W = W (x) and the collision
term

C (f) := σ(x)

∫
V

(p(v, v′)f(v′)− p(v′, v)f(v)) dv′,

for some σ ∈ C0(Ω), assumed to be non-negative, and p ∈ C1(V ×V ) a transition kernel (
∫
V
p(v, v′)dv = 1).

Physically we can think of (1) as modelling a radiative transfer system where different parts of the space

Key words and phrases. Convergence to equilibrium; Hypocoercivity; Linear Boltzmann Equation; Degenerate Hypocoer-
civity, Geometric Control Condition. MS classifications 35B40, 35Q49, 35Q70.
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may have different transparencies, according to the scattering function p = p(v, v′). When σ = σ(x) is a
positive constant, (1) is the linear relaxation equation, linear BGK equation or linear Boltzmann equation.

In this work we set Ω = Td, the d-dimensional torus, with the usual identification

(2) Td = Rd/Zd.

Let u1 be the uniform measure in Td. We stress that it is not possible (or necessary) to write down an
explicit equilibrium for all of the examples given.

In the non-degenerate case σ > 0, the study of the trend to equilibrium of solutions to system (1) has
been the object of many publications, using techniques such as hypocoercivity (see Section 1.2 for details).
In the degenerate case σ ≥ 0, the problem of characterising the trend to equilibrium is deeply connected to
the structure of the phase space Td × V and the geometry of the set {σ > 0}, as (1) reduces to a transport
equation outside this region. In [6] Bernard and Salvarani showed that exponential convergence towards
equilibrium cannot hold in general. On the other hand, the same authors proved in [5] that the solutions to
(1) with Ω×V = Td×Sd−1 and W = 0 converge to equilibrium exponentially in L1 if and only if the support
of σ satisfies the geometric control condition (GCC for short), inspired from [3,28] and characterized in the
following way.

Definition 1. The function σ satisfies the Geometric Control Condition (GCC) if there exists T = T (σ) >
0, κ > 0 such that

(3) inf
(x,v)∈Td×V

∫ T

0

σ(x− vt) dt ≥ κ.

The case W 6= 0 and σ ≥ 0 has been analysed by Han-Kwan and Léautaud in [24], where the action of
the potential may generate many different dynamics. Considering the characteristic flow

(4) Φt(x, v) =
(
ΦXt (x, v),ΦVt (x, v)

)
, t ∈ R,

where, for (x, v) ∈ Td × V given, (ΦXt ,Φ
V
t ) =

(
ΦXt (x, v),ΦVt (x, v)

)
solve the characteristic equations

(5)
d
dtΦ

X
t = ΦVt , ΦX0 = x,

d
dtΦ

V
t = −∇xW (ΦXt ), ΦV0 = v.

The authors adapt the Geometric Control Condition to the action of a potential W in the following way.

Definition 2. Let W ∈ C1(Td) be a given potential. A function σ ∈ L∞(Td) satisfies the Geometric Control
Condition (GCC) if there exist T = T (σ,W ) > 0, κ > 0 such that

(6) inf
(x,v)∈Td×V

∫ T

0

σ(ΦX−t(x, v)) dt ≥ κ,

where (Φt)t≥∈R is the flow defined by (4) and (5).

This definition is again inspired from the study of the controllability of the wave equation in [3, 28] (see
Section 1.2 for more details). In this context, Han-Kwan and Léautaud give in [24] conditions linking the
collision kernel and the potential which imply either convergence to a steady state or exponential convergence
to a steady state. Let us mention that the results in [24] are much more general (see Section 1.2) than the
setting presented here.

The methods developed in the works [5,6,24] do not yield constructive convergence rates for the trend to
equilibrium. The goal of the present work is to obtain quantitative rates using different methods, inspired
in tools from Markov chains.

1.1. Main results. We shall consider the following two regimes

(R1): W = 0, V is a subset of Rd which is bounded away from the origin (so that it is possible to satisfy
the GCC), and there exist v∗ ∈ Rd and r0, γ strictly positive constants such that

p(v, v′) ≥ γ1v∈B(v∗,r0).
2



(R2): W ∈ C2(Td) with ∇W 6= 0, V = Rd, the scattering function is bounded below by a decreasing radial
function which is always strictly positive

(7) p(v, v′) ≥M(|v|), ∀v, v′ ∈ V,

where M(v) = em(|v|2) for some decreasing and Lipschitz continuous function m : R→ R.

Remark. We briefly mention that the case (R1) above does not allow us to consider velocities on the unit
sphere and this situation is well treated by related works. This is because of a technical barrier relating to the
way we estimate lower bounds on the solution f in the proof of the main theorem. We will explain in more
detail in another remark after Lemma 1.

In what follows we consider measure-valued solutions to (1) and we refer to Definition 5 for details. We
denote by M (Td × V ) the space of measures on Td × V , which is a Banach space endowed with the total
variation norm, denoted ‖.‖TV (see (17) for details). We denote P(Td × V ) (respectively P(V )) the space
of probability measures on Td×V (respectively on V ). Finally, for a given potential W ∈ C1(Td) we denote
by (Tt)t≥0 the transport semigroup generated by the corresponding characteristic flow and for the sake of
notation, we drop the explicit dependence on W .

Definition 3. The transport semigroup on P(Ω× V ), noted (Tt)t≥0, is defined by

(Ttµ0)(φ) =

∫∫
Ω×V

φ(Φt(x, v)) dµ0( dx, dv), ∀φ ∈ Cb(Ω× V ),

for any µ0 ∈P(Ω× V ) and t ≥ 0.

Before we state our main theorem we mention that since we deal with measures many times we have
chosen to use compact notation so µ ≤ ν means µ(A) ≤ ν(A) for every A in the σ-algebra or equivalently∫
φdµ ≤

∫
φdν for every positive continuous bounded function φ.

Now, let V ⊆ Rd be an open set, let p be a scattering function on V × V , let W ∈ C1(Td) be a given
potential function and let σ ∈ C0(Td). Later we will prove Proposition 1 showing that the unique measure-
valued solution (µt)t to the linear Boltzmann equation (1) is global in time. Our main result is the following.

Theorem 1. Let (µt)t be a measure-valued solution to the linear Boltzmann equation (1) and let Tt the
transport semigroup associated to the potential W ∈ C1(Td). Assume that

(i) σ ∈ C 0(Td) satisfies the GCC (Definition 2) for some time T with a constant κ,
(ii) there exists a u2 ∈ P(V ) such that p(·, v′) ≥ β2u2, and for this u2 there exist T∗ > 0, β1 > 0 such

that

(8) inf
x0∈Td

∫
V

Tt (δx0 ⊗ u2) dv ≥ β1u1,

for every t ∈ [T∗, T∗ + T ] and v′ ∈ V ,
(iii) for u2 in the previous condition and recalling that u1 is the uniform measure on the torus, there

exists β3 > 0 such that

(9) Tt(u1 ⊗ u2) ≥ β3u1 ⊗ u2, ∀t ∈ R.

Then there exists a unique equilibrium state ν ∈P(Td × V ) for (1) and

(10) ‖µt − ν‖TV ≤ e−λ(t−2T−T∗)‖µ0 − ν‖TV , ∀t ≥ 2T + T∗,

with the quantitative rate

(11) λ = − 1

2T + T∗
log
(

1− β1β
2
2β3κ

2e−(2T+T∗)‖σ‖∞
)
.

Remark. Condition 8 is a condition linking the possible post collision velocities and the transport map, in
the sense that it gives a quantitative estimate of the fact that for every point y ∈ Td there is a velocity in the
range of p such that x0 will be mapped to y by following the transport map with that velocity. Condition 9 is
less restrictive. We expect it to hold very generally (with similar proofs to the specific situations detailed in
this paper e.g. Lemma 6) but it is helpful to have the quantitative constant in the arguments which follow.
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The lower bound in (8) is a crucial hypothesis intimately linked to Doeblin’s theorem and is key to obtain
the exponential rate (11), as can be seen in Section 3.2.

As a consequence of Theorem 1 we obtain explicit decay rates for the linear Boltzmann equation in the
particular regimes described by (R1) and (R2). In the first instance we have the following result.

Corollary 1. Let σ ∈ C0(Td) satisfy definition (1) and assume that (R1) holds. Then, if (µt)t≥0 is a

measure solution to (1) with initial datum µ0 ∈P(Td × V ), if we write T∗ = 2
√
d

r0
we will have

(12) ‖µt − ν‖TV ≤ e−λ(t−2T−T∗)‖µ0 − ν‖TV , ∀t ≥ T∗,

with the quantitative rate

(13) λ = − 1

2T + 2
√
d

r0

log

(
1− γ2|B(v∗, r0)|2

2d
κ2e−(2T+ 2

√
d

r0
)‖σ‖∞

)
.

In order to refine the quantitative bound in (11), we give in Lemma 3 some sufficient conditions on V so
that (8) holds with concrete choices of β1, β2, β3 and T∗.

Our second result concerns the regime (R2), with non-zero potentials.

Corollary 2. Let σ ∈ C0(Td) satisfying definition (2) and assume that (R2) holds. Then, if (µt)t≥0 is a
measure-valued solution to (1) with initial datum µ0 ∈P(Td × V ), then there exists a T∗∗ > 0 and β∗∗ > 0
that we can make quantitative so that

(14) ‖µt − ν‖TV ≤ e−λ(t−2T−T∗∗)‖µ0 − ν‖TV , ∀ t ≥ 0,

with the quantitative rate

(15) λ = − 1

2T + T∗∗
log
(

1− β∗∗κ2e−(2T+T∗∗)‖σ‖∞
)
.

Remark. Observe that Corollary 2 contains quantitative rates in terms of β∗∗ and T, T∗∗. We will give in
Section 4 precise results with explicit rates and assumptions. It is difficult to make them as compact as in 1

Remark. Observe that we are assuming that σ ∈ C 0(Td) instead of just bounded and measurable. This is a
technical assumption due to the fact that we are working with measured-valued solutions. See Section 2 for
details.

1.2. Previous works: Hypocoercivity, Doeblin’s theorem and the geometric control condition.

1.2.1. Hypocoercivity results when σ is strictly positive. Finding quantitative rates of convergence to equilib-
rium is a long-standing problem in kinetic theory. In the context of spatially inhomogeneous kinetic equations
this is usually done using the tools of hypocoercivity, a name given by Villani in [32] to equations exhibiting
convergence like Ce−λt where C ≥ 1. In the context of kinetic equations, hypocoercive behaviour is typi-
cally found when considering spatially inhomogeneous equations where the dissipation of natural entropies
vanishes on a large class of functions, the local equilibria, making it impossible to prove entropy-entropy pro-
duction inequalities. Techniques to prove convergence for such equations based on hypoellipticity methods
were developed in [26,30,32] as well as in many other works.

When σ is constant, equation (1) is a key example of a hypocoercive equation, shown to converge faster
than any power of t in H1 norm in [14] using the framework of [17]. It was then shown to converge
exponentially fast to equilibrium in H1 weighted against the equilibrium in [30] and in L2 weighted against
the equilibrium in [25]. The convergence in weighted L2 can also be seen as a result of the general theorem
in [18]. There are several other works showing exponential convergence in various norms or for various
more complex versions of this equation we mention in particular [11] since this work uses Doeblin/Harris’s
theorem, which is also the tool we will apply to the spatially degenerate case.
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1.2.2. Hypocoercivity results when σ can vanish. The case where σ = σ(x) is non constant and can vanish
on areas of the spatial domain was first studied in [4] although it is mentioned somewhat indirectly. This
paper deals with non-equilibrium steady states for scattering operators and is a pioneering example of the
use of probabilistic tools in statistical physics, but without quantitative rates.

The more recent works on these spatially degenerate models was begun in [16] where the authors study
a model where σ vanishes at a discrete set of points. In [6] Bernard and Salvarani showed that there are
situations where the velocity space and form of σ together mean that there is no exponential convergence
towards equilibrium. On the other hand, Bernard and Salvarani proved in [6] that the solutions to (1) with
Ω × V = Td × Sd−1 and W = 0 convergence to equilibrium exponentially in L1 if and only if the support
of σ satisfies the geometric control condition of Definition 1. This work is then extended in [29] to give a
more delicate sense of when exponential convergence to equilibrium will occur. The results in [6, 29], based
on semigroup theory and abstract functional analysis, do not give quantitative rate of the convergence.

An equation related to (1), the 1d Goldstein-Taylor type model, has been studied in [7] where the authors
do get explicit rates via comparing this equation to a damped wave equation for which explicit rates were
obtained by Lebeau in [28].

The case where V is unbounded is treated in [24] by Han-Kwan and Léautaud, where the authors study
linear Boltzmann type equations for a general class of collision operators and external confining potential
terms on a closed, smooth, connected and compact Riemannian manifold M (and in particular the torus).
In this context, the authors identify geometric control conditions in the natural phase space T ∗M (similar
to Definition 2 in the case M = Td) allowing to completely characterise the convergence to equilibrium and
exponentially fast convergence to equilibrium for the corresponding linear Boltzmann equation. On the other
hand, the techniques developed in [24], using phase-space and micro-local tools inspired from [3, 28] do not
give explicit rates of convergence.

In [20] the kinetic Fokker-Planck case is studied and here it is shown that the GCC is not equivalent to
exponential convergence to equilibrium.

1.2.3. Doeblin’s theorem. We use techniques which are inspired from Doeblin’s theorem from Markov process
theory (see [22] for a detailed exposition of this theorem). This theorem was used to show convergence to
equilibrium for scattering equations in [4]. It has been used several times to study convergence to equilibrium
for kinetic equations in the context of Non-Equilibrium Steady States [15] and is currently being used for
studying the convergence to equilibrium for solutions of PDEs from mathematical biology. We mention in
particular the works on the renewal equation [21], and the neuron population model [12]. This last paper
contains a similar type of degeneracy to that studied in this work. In this context Doeblin’s theorem and
Harris’s theorem have been extended to PDEs which do not conserve mass and/or have time-periodic limiting
solutions rather than steady states, as in [1, 2].

1.2.4. The geometric control condition in control theory. . The geometric control condition mentioned in the
previous section plays a fundamental role in the study of controllability and stabilisation properties of some
linear PDEs, typically of hyperbolic type. The GCC condition was introduced in the seminal works [3,27,31]
in order to prove that the linear wave equation and the Schrödinger equation in a domain Ω ⊂ Rd, possibly
with boundary, are exactly controllable from an open subset ω (or a subset of the boundary) as long as ω
satisfies the geometric control condition. In [9] the GCC condition is proved to be necessary for the exact
controllability of the wave equation. As for the stabilisation properties, the works [3,10,28] prove that under
the GCC condition one can expect an exponential trend to equilibrium for the wave equation with a localised
damping, which is a crucial inspiration for the works [6, 24] on the linear Boltzmann equation.

1.3. Strategy and Outline. We prove Corollaries 1 and 2. As stated above the proof is based around
Doeblin’s theorem for Markov processes. The key element to executing a Doeblin argument is to find a time
t∗ such that we can prove a lower bound on the solution of the equation at time t∗ which is independent
of the initial condition. We give a detailed proof of this fact based on using Duhamel’s formula. We then
explain how this implies exponential convergence to equilibrium via Doeblin’s theorem.

Acknowledgements. We would like to thank many people for some useful discussion. In particularly José
Cañizo. We had useful discussions with Francesco Salvarani, Havva Yoldaş, Chuqi Cao, Helge Dietert and
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Clément Mouhot. The first author was supported by FSPM postdoctoral fellowship (between October 2018-
July 2020) and the grant ANR-17-CE40-0030 and then by a Leverhulme trust grant ECF-2021-134. Much
of this was written while the first author was visiting the Hausdorff Research Institute for Mathematics on
a Junior Trimester fellowship. We would like to thank them for their hospitality. The second author was
supported by the ERC grant MAFRAN.

2. Measured-valued solutions to the linear Boltzmann equation

Let us first define some notation in order to state our results. Given (X ,Σ) a measurable space, we denote
by M (X ) the set of Radon measures on X . We denote by P(X ) the set of probability measures on X , i.e.,
all measures µ ∈M (X ) satisfying µ(X ) = 1 and µ(A) ≥ 0 for every measurable A. As usual the space P(X )
is endowed with the weak topology, denoted w −P(X ), induced by the family of semi-norms

φ 7→
∫
X
φ(z)µ( dz), ∀φ ∈ Cb(X ),

i.e., we are using test functions which are continuous and bounded on X . Recall that µ ∈M (X ) is said to
be non-negative whenever

(16)

∫
X
φ(x)µ( dz) ≥ 0, ∀φ ∈ Cb(X ;R+).

The total variation distance in M (X ) is defined as usual as

(17) ‖µ‖TV := sup

{∫
X
φ(z)µ( dz); φ ∈ Cb(X ), ‖φ‖∞ ≤ 1

}
.

Consider next a phase space of the form X = Ω × V , where Ω = Td. If ΣΩ×V is the Borel σ-algebra on
Ω × V , we denote by LΩ×V the Lebesgue measure on Ω × V . If A ∈ ΣΩ×V , we simply denote by |A| the
Lebesgue measure of A if no confusion arises.

2.1. Measure-valued solutions. With the notation of the previous section, given T > 0 and µ0 ∈P(X×
V ), we consider the transport equation

(18)

{
∂tµ+ v · ∇xµ−∇xW · ∇vµ = 0, in (0, T )× Ω× V,
µ|t=0 = µ0, in Ω× V.

Definition 4. A measure solution to (18) is an element of C0([0, T ];w −P(Ω× V )) (continuous funtions
from [0, T ] to the space of probability measures endowed with the topology of weak convergence). We denote
the solution µt = µt( dx, dv), and it satisfies that for every φ ∈ C1

c ([0, T )× Ω× V ),∫ T

0

∫∫
Ω×V

(∂tφ− v · ∇xφ+∇xW · ∇vφ)µt( dxdv) dt = −
∫∫

Ω×V
φ(0, x, v)µ0( dxdv).

We can write any weak solution to (18) using the transport semigroup. In particular, µt = Ttµ0( dx, dv)
is a measure solution to (18).

In this article we work with the linear Boltzmann equation (1) in the sense of measures. Given µ ∈
P(Ω× V ) we set

mσµ( dx, dv) := σ(x)µ( dx, dv), L+µ(v, dx) :=

∫
V

p(v, v′)µ( dx, dv′),(19)

which are respectively the multiplication by σ and the average in the variable v ∈ V . Given µ0 ∈P(Ω× V )
we set

(20)

{
∂tµ+ v · ∇xµ−∇xW (x) · ∇vµ = mσ (L+µ− µ) , in (0, T )× Ω× V,
µ|t=0 = µ0, in Ω× V,

which is a version of (1) for measured-valued solutions.
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Definition 5. A measure solution to (20) is an element of C0([0, T ];w − P(Ω × V )), denoted µt =
µt( dx, dv), satisfying that for every φ ∈ C1

c ([0, T )× Ω× V ),∫ T

0

∫∫
Ω×V

(
∂tφ− v · ∇xφ+∇xW · ∇vφ+mσ(φ−

∫
V

p(v′, v)φ(x, v′)dv′)

)
µt( dx dv) dt

= −
∫∫

Ω×V
φ(0, x, v)µ0( dx dv).

The following existence and uniqueness result is well-known and can be proved by a standard contraction
mapping argument in the space C0([0, T ],P − TV ) as one would for Picard iteration for ODEs. The
semingroup property, conservation of mass, continuous dependence on initial conditions etc. can then be
proved directly from the solution and its representation. This procedure is standard (see for example chapter
21 of [19]).

Proposition 1. Given T > 0 and given µ0 ∈ P(Ω × V ), there exists a unique measure-valued solution to
(20), namely µt = µt( dx, dv). Moreover, this solution admits the representation

(21) µt( dx, dv) = exp

(
−
∫ t

0

σ(ΦX−t+s(x, v)) ds

)
(Ttµ0)( dx, dv) + St[µ]( dx, dv)

where (Tt)t≥0 is given by Definition 3 and

(22) St[µt]( dx, dv) =

∫ t

0

exp

(
−
∫ t

s

σ(ΦX−t+r(x, v)) dr

)
(Tt−smσL

+µs)( dx, dv) ds.

Denoting

(23) µt( dx, dv) = Ptµ0, t ≥ 0,

the family (Pt)t≥0 is a semigroup on M (Ω× V ) enjoying the following properties

‖Ptµ0‖TV = 1, ∀µ0 ∈P(Ω× V ),(24)

‖Ptµ0 − Ptµ0‖TV ≤ ‖µ0 − µ0‖TV , ∀µ0, µ0 ∈P(Ω× V ).(25)

3. Proof of Theorem 1

The goal of this section is to prove Theorem 1 based on Doeblin’s theorem.

3.1. Propagation of lower bounds.

Lemma 1. Suppose that the hypothesis of Theorem 1 are satisfied. Let T∗, β1, β2 be as in (8) and let β3 as
in (9). Let µt = µt( dx, dv) be the solution to (1) with initial datum

(26) µ0 = δx0 ⊗ δv0 ,

for (x0, v0) ∈ Td × V given. Then, for t = 2T + T∗ we have

(27) µt( dx, dv) ≥ β1β
2
2β3κ

2e−(2T+T∗)‖σ‖∞u1 ⊗ u2, in M (Td × V )..

Proof. Using Duhamel’s formula (21) we have that, for every t ≥ 0,

µt( dx, dv) = exp

(
−
∫ t

0

σ(ΦX−t+s(x, v)) ds

)
(Ttµ0)( dx, dv) + St[µt]( dx, dv)(28)

≥ exp

(
−
∫ t

0

σ(ΦX−t+s(x, v))ds

)
(Ttµ0)( dx, dv)

≥ e−t‖σ‖∞(Ttµ0)( dx, dv),

as, according to (22),

St[µt]( dx, dv) ≥ 0 in M (Ω× V ).
7



Substituting (28) into the second term in (21) we get

µt( dx, dv) ≥
∫ t

0

exp

(
−
∫ t

s

σ(ΦX−t+τ (x, v)) dτ

)
(Tt−smσL

+µs)( dx, dv) ds

≥
∫ t

0

e−(t−s)‖σ‖∞(Tt−smσL
+µs)( dx, dv) ds

≥ e−t‖σ‖∞
∫ t

0

(Tt−smσL
+Tsµ0)( dx, dv) ds.

Now we can substitute this in a second time to get

(29) µt( dx, dv) ≥ e−t‖σ‖∞
∫ t

0

∫ s

0

(Tt−smσL
+Ts−τmσL

+Tτµ0)( dx, dv) dτ ds.

We notice that Tt(δx0
× δv0) = δΦt(x0,v0) = δΦXt (x0,v0) ⊗ δΦVt (x0,v0). Now using (26) we may write

Ts−τmσL
+Tτµ0 = Ts−τmσL

+
(
δΦXτ (x0,v0) ⊗ δΦVτ (x0,v0)

)
= Ts−τmσ

(
p( dv,ΦVτ (x0, v0))δΦXτ (x0,v0)( dx)

)
= Ts−τ

(
σ(x)δΦXτ (x0,v0)(dx)p( dv,ΦVτ (x0, v0))

)
= σ(ΦXτ (x0, v0))Ts−τ

(
δΦXτ (x0,v0)(dx)p( dv,ΦVτ (x0, v0))

)
.

Now assuming that s− τ ≥ T∗, the definition of T∗ in assumption (8) gives

L+Ts−τmσL
+Tτµ0 = L+σ(ΦXτ (x0, v0))Ts−τ

(
δΦXτ (x0,v0)(dx)p( dv,ΦVτ (x0, v0))

)
≥ β2σ(ΦXτ (x0, v0))L+Ts−τ (δΦXτ (x0,v0) ⊗ u2)

≥ β2
2σ(ΦXτ (x0, v0))u2

∫
V

Ts−τ (δΦXτ (x0,v0) ⊗ u2) dv

≥ β1β
2
2σ(ΦXτ (x0, v0))u1 ⊗ u2.

Hence,

mσL
+Ts−τmσL

+Tτµ0 ≥ β1β
2
2σ(ΦXτ (x0, v0))σ(x)u1 ⊗ u2.

Now, using (9) we have

Tt−smσL
+Ts−τmσL

+Tτµ0 = β1β
2
2β3σ(ΦXτ (x0, v0))σ(ΦX−t+s(x, v))u1 ⊗ u2.

Expanding this computation for any test function φ we have∫
φ(x, v)Tt (σ(x, v)u1 ⊗ u2) (dx, dv) =

∫
σ(x, v)φ(Φt(x, v))u1 ⊗ u2(dxdv)

=

∫
σ(Φt(Φ−t(x, v)))φ(Φt(x, v))(u1 ⊗ u2)(dx, dv)

=

∫
σ(Φ−t(x, v))φ(x, v))Tt(u1 ⊗ u2)(dx, dv)

≥ β3

∫
σ(Φ−t(x, v))φ(x, v)(u1 ⊗ u2)(dx, dv).

Now, taking t = 2T+T∗ as in the statement and integrating (29) with respect to τ ∈ [0, T ], s ∈ [T+T∗, 2T+T∗]
we get

µt( dx, dv) ≥ β1β
2
2β3e

−(2T+T∗)‖σ‖∞
∫ 2T+T∗

T+T∗

∫ T

0

σ(ΦX−(t−s)(x, v))σ(ΦXτ (x0, v0))u1 ⊗ u2 dτ ds

≥ β1β
2
2β3κ

2e−(2T+T∗)‖σ‖∞u1 ⊗ u2,

whence (27) follows. Here we note that we used the GCC on both the forwards and backwards flow and this
is possible since the map Φt is invertible and Φ−1

t = Φ−t. �
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Remark. We are able to see at this point why it is not possible to apply our techniques when V is the unit
sphere. This is because by dimensional concerns our estimate in this case would need to involve at least three
iterations of Duhamel’s formula. After doing this σ and the transport map become entangled in a way which
means we cannot use the GCC to get a lower bound.

The next result is an extension of Lemma 1, valid for Dirac masses, to any initial data that is a probability
measure.

Lemma 2. Under the same hypothesis of Lemma 1, let µ0 ∈P(Td×V ) and let µt be the associated solution
to (20). Then, for t = 2T + T∗ we have

(30) µt( dx, dv) ≥ β1β
2
2β3κ

2e−t‖σ‖∞u1 ⊗ u2 in M (Td × V ).

Proof. Let µ0 and let µt as in the statement. According to (23), we can write µt = Ptµ0. We claim that it
suffices to prove that

(31) µt =

∫∫
Td×V

(Ptδx0,v0)µ0(dx0,dv0).

We are writing this as we were trying to avoid introducing lots of notation from Markov process theory (in
this case Markov transition kernels). We can define the integral above by duality.∫∫

Td×V
φ(x, v)µt(dx, dv) =

∫∫
Td×V

(∫∫
Td×V

φ(x, v) (Ptδx0,v0) (dx, dv)

)
µ0(dx0,dv0),∀φ ∈ C0(Ω× V ).

We note here that
∫∫

Td×V φ(x, v) (Ptδx0,v0) (dx, dv) is a function of (x0, v0) and it is continuous as Pt is
a continuous map from the space of probability measures with the topology of weak convergence to itself.
Therefore if (xn, yn) → (x0, y0) then we will have δ(xn,yn) → δ(x0,y0) weakly so Pt(δ(xn,yn)) → Pt(δ(x0,y0))
weakly.

If (31) holds, Lemma 1 implies

Ptµ =

∫∫
Td×V

(Ptδx0,v0)µ0( dx0, dv0)

≥ β1β
2
2β3κ

2e−t‖σ‖∞
∫∫

Td×V
u1 ⊗ u2µ0( dx0, dv0)

= β1β
2
2β3κ

2e−t‖σ‖∞u1 ⊗ u2.

Next, in order to prove (31), we observe that it is sufficient to check that

νt :=

∫∫
Td×V

(Ptδx0,v0)µ0(dx0,dv0)

is indeed a measure-valued solution to (20) with initial datum µ0, as uniqueness of solutions (Proposition 1)
would imply νt = µt and a fortiori (31).

According to Definition 5, let φ ∈ C1
c ((0, T ]× Td × V ). As φ and ∇t,xφ are bounded and p is C1, then

Pφ =

(
∂tφ− v · ∇xφ+∇xW · ∇vφ+mσ(φ−

∫
V

p(v′, v)φ(x, v′)dv′)

)
∈ C1((0, T ]× Td × V ).

Then, using Fubini’s theorem,∫ T

0

∫∫
Td×V

(
∂tφ− v · ∇xφ+∇xW · ∇vφ+mσ(φ−

∫
V

p(v′, v)φ(x, v′)dv′)

)
νt(dx, dv)

=

∫ T

0

∫∫
Td×V

Pφ

(∫∫
Td×V

Ptδx0,v0µ0(dx0,dv0)

)
(dx, dv)

=

∫∫
Td×V

(∫ T

0

∫∫
Td×V

Pφ (Ptδx0,v0) (dx,dv)

)
µ0(dx0,dv0)

= −
∫∫

Td×V
φ(0, x0, v0)µ0(dx0,dv0).

9



Note here that
∫∫

Td×V Pφ (Ptδx0,v0) (dx, dv) is a bounded measurable function of (t, x0, v0) (as it is con-

tinuous) and we use Fubini’s theorem to commute the order of integrals with this function as the in-
tegrand. We also note here that we are integrating against µ0 which has finite mass so the fact that∫∫

Td×V Pφ (Ptδx0,v0) (dx, dv) is bounded implies it is in L1. �

3.2. Doeblin type argument and exponential decay. Now we want to conclude the proof of Theorem 1
using Doeblin’s theorem, which states the following result, whose proof can be found for instance in [13, Thm
2.1].

Theorem 2 (Doeblin). Let S : M (Td×V )→M (Td×V ) be a stochastic operator satisfying that there exist
0 < α < 1 and η ∈P(Td × V ) such that

(32) Sµ ≥ αη, ∀µ ∈P(Td × V ).

Then S has a unique stationary state µ∗ ∈P(Td × V ) which is exponentially stable, and more generally

(33) ∀k ∈ N, ‖Skµ1 − Skµ2‖TV ≤ (1− α)k‖µ1 − µ2‖TV ,

for all µ1, µ2 ∈P(Td × V ).

Proof of Theorem 1. Let t∗ = 2T + T∗ and set

α := β1β
2
2β3κ

2e−t∗‖σ‖∞ .

We note that α < 1 since conservation of mass implies the mass of a lower bound on µt cannot be larger
than 1. Set

S = Pt∗ , η = u1 ⊗ u2.

Now, thanks to (30), the lower bound (32) holds and thanks to Doeblin’s theorem (cf. Theorem 2) we know
that a unique equilibrium ν exists and furthermore (33) yields

(34) ∀k ∈ N, ‖Pkt∗µ0 − ν‖TV ≤ (1− α)k‖µ0 − ν‖TV ,

for every µ0 ∈P(Td × V ). Let t > t∗ and set k ∈ N be such that

k <
t

t∗
≤ k + 1.

Then, using (34),

‖Ptµ0 − ν‖TV = ‖Ptµ0 − Ptν‖TV
≤ ‖Pkt∗µ0 − Pkt∗ν‖TV
≤ (1− α)k‖µ0 − ν‖TV

≤ exp

(
t− t∗
t∗

log(1− α)

)
‖µ0 − ν‖TV ,

where we have used that, thanks to the choice of k,

(k + 1) log(1− α) ≤ t

t∗
log(1− α).

This gives (10) with the rate (11).
�

4. Quantitative decay estimates in the regimes (R1) and (R2)

In this section we explain how the situations described by (R1) and (R2) imply a quantitative lower
bound of the form (8). As a consequence, Theorem 1 imply Corollaries 1 and 2.
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4.1. Proof of Corollary 1.

Lemma 3. Assume that assumption (R1) is satisfied for some v∗ ∈ Rd and γ, r0 > 0 given. Then, the
lower bound (8) holds with

(35) T∗ =
2
√
d

r0
, β1 = 2−d, β2 = γ|B(v∗, r0)|, u2 =

1

|B(v∗, r0)|
1B(v∗,r0) dv.

Proof of Lemma 3. In order to verify the lower bound in (8), let x0 ∈ Td and write∫
B(v∗,r0)

Tt (δx0
⊗ u2) dv =

1

|B(v∗, r0)|

∫
B(v∗,r0)

Tt
(
δx0
⊗ 1v∈B(v∗,r0)

)
dv

=
1

|B(v∗, r0)|

∫
B(v∗,r0)

δx0
(x− vt)1v∈B(v∗,r0)dv

=
1

td|B(v∗, r0)|

∫
B(x−tv∗,tr0)

δx0
(y)1y∈B(x−tv∗,tr0)dy

=
1

td|B(v∗, r0)|
1x0∈B(x−tv∗,tr0).

Now we need to recall that x ∈ Td so we want to understand this ball as B(x− tv∗, tr0) ⊆ Td. Since we are
interested in this as a distibution on Td the easiest way is to look at it by integrating against an arbitrary
smooth 1-periodic function on Rd, namely φ. In this next section let Q(x, r) be the union of all the open
hypercubes with integer vertices contained inside B̄(x, r) then∫

Rd
φ(x)1x∈B(x0+tv∗,tr0)dx ≥

∫
Rd
φ(x)1x∈Q(x0+tv∗,tr0)dx

=|Q(x0 + tv∗, tr0)|
∫
Td
φ(x)dx.

Now we can see that if r >
√
d then B(x, r) \ Q(x, r) ⊂ B(x, r) \ B(x, r −

√
d). We have |Q(x, r)| =

|B(x, r)| − |B(x, r) \ Q(x, r)| ≥ |B(x, r)| − |B(x, r) − B(x, r −
√
d)| = |B(x, r −

√
d)|. Consequently, if

tr0 >
√
d we have

|Q(x0 + tv∗, tr0)| ≥ |B(x0 + tv∗, tr0 −
√
d)| = |B(0, 1)|(tr0 −

√
d)d.

This means that as a distribution on the torus∫
V

Tt (δx0
⊗ u2) dv ≥ |B(0, 1)|(tr0 −

√
d)d

td|B(v∗, r0)|
=

(
1−
√
d

r0t

)d
.

Therefore for

t ≥ 2
√
d

r0

we have that (recalling that u1 is the uniform measure on the torus)∫
V

Tt (δx0
⊗ u2) dv ≥ 2−du1.

�

Lemma 4. Assume that assumption (R1) is satisfied. Then, (9) in the statement of Theorem 1 holds with
β3 = 1.

Proof. According to (R1), W = 0 in this case and therefore (Tt)t≥0 reduces to the free transport semigroup,
which preserves spatially homogeneous distributions. Hence, (9) follows. �

Proof of Corollary 1. As assumption (R1) is satisfied for some v∗ ∈ Rd and γ, r0 > 0 by hypothesis, thanks
to Lemmas 3 and 4, the assumptions (8) and (9) hold. Now, applying Theorem 1 we get exponential decay
with the explicit rate (11). Using the values found in Lemmas 3 and 4, we get
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λ = − 1

2T + T∗
log
(

1− β1β
2
2β3κ

2e−(2T+T∗)‖σ‖∞
)

= − 1

2T + 2
√
d

r0

log

(
1− γ2|B(v∗, r0)|2

2d
κ2e−(2T+ 2

√
d

r0
)‖σ‖∞

)
,

which is (13).
�

4.2. Proof of Corollary 2.

Lemma 5. For W smooth, periodic and positive, and for p(v′, v) ≥ M(|v|) for strictly positive, decreasing
M , we can find T∗∗ < ∞ and β∗∗ ∈ (0, 1) such that for all t ∈ [T∗∗, T∗∗ + T ], where T is the time from the
GCC, we have

(36) inf
x0∈Td

∫
Rd
Tt (δx0

⊗ p(v′, v)) dv ≥ β∗∗u1.

Here T∗∗ = 1/2 and

β∗∗ = exp (−(T + 1) (1 + ‖Hess(W )‖∞))M(4(1 + ‖∇W‖∞) + 5‖∇W‖∞T ).

Proof of Lemma 5. The strategy of this lemma is to split a time t ∈ [T, 1 + T ] into the form s + r where
s ∈ [1/2, 1] and r ∈ [T − 1/2, T ]. For the part of the transport semigroup corresponding to the time of
length r we show that if we start with sufficient mass in large velocities we will retain a large amount of
mass in large velocities. More precisely mass cannot move to velocities more than T‖∇xW‖∞ away from
the starting velocity and since the torus is compact ‖∇xW‖∞ < ∞. Then for the part of the transport
semigroup corresponding to the time of length s we approximate the Hamiltonian flow by free transport and
use the fact that for sufficiently large velocities the free transport maps moves mass to all possible x.

In this proof we first write the short time estimate approximating by free transport, then the longer time
estimate separately. We then put the two together at the end.

We begin by looking at short times. We can use a Taylor expansion to write

(37) ΦX−t(x, v) = x− vt+
1

2
t2R(x, v, t),

Here R(x, v, t)i = ∂xiW (φX−s(x, v)) for some s ∈ [0, t). We want to consider this map as free transport plus a
perturbation. If we start with sufficiently large velocities, and since ∇xW is bounded the contribution from
vt will be much larger than the contribution from ∇xW . We will first consider for some 0 < R1 < R2 the
marginal measure given by ∫

Rd
Tt
(
δx0
× 1R1≤|v|≤R2

)
dv.

We study this by integrating it against a test function. We choose a smooth, positive test function ψ(x)
which is a function on all of Rd which is 1-periodic in every direction. The periodicity of ψ allows us to
capture the dynamics of x and v mixing with the x variable on the torus. Therefore we have∫

Td

∫
Rd
ψ(x)Tt

(
δx0
× 1R1≤|v|≤R2

)
dvdx =

∫
Td

∫
Rd
ψ(x)δx0

(ΦX−t(x, v))1R1≤|ΦV−t(x,v)|≤R2
dvdx

=

∫
Td

∫
Rd
ψ(ΦXt (y, u))δx0

(y)1R1≤|u|≤R2
dudy

=

∫
Rd
ψ(ΦXt (x0, u))1R1≤|u|≤R2

du.

We used here the change of variables (y, u) = (ΦX−t(x, v),ΦV−t(x, v)) which has Jacobian equal to 1. We now
use equation (37), and the fact that |∇xW | ≤ G, to see that for t ∈ (1/2, 1) we have

(38) 1R1≤|u|≤R2
≥ 1R1+G≤|ΦXt (x0,u)−x0|≤R2/2−G.

12



Expanding on this we have that if |x − ΦX | ≤ R2/2 − G and t2|R| ≤ t2G then t|u| = |x − ΦX − t2R/2| ≤
R2/2 ≤ tR2, and similarly if |x−ΦX | ≥ R1 +G then t|u| ≥ R1 ≥ tR1. We then substitute this in to get that∫

Td

∫
Rd
ψ(x)Tt

(
δx0
× 1R1≤|v|≤R2

)
dvdx ≥

∫
Rd
ψ(ΦXt (x0, u))12R1+G≤|ΦXt (x0,u)−x0|≤R2/2−Gdu

=

∫
Rd
ψ(x)12R1+G≤|x−x0|≤R2/2−G

1

|∂uΦXt (x0, u)|
dx.

Now we need to bound the Jacobian appearing here, we recall that the system of equations definiting ΦX ,ΦV

are

d

dt
ΦXt = ΦVt ,

d

dt
ΦVt = −∇xW (ΦXt ).

We can differentiate with respect to v to get,

d

dt
∂vΦ

X
t = ∂vΦ

V
t ,

d

dt
∂vΦ

V
t = −Hess(W )(ΦXt )∂vΦ

X
t .

We can use this to get the differential inequality

d

dt

(
|∂vΦXt |2 + |∂vΦVt |2

)
≤ (1 + ‖Hess(W )‖∞))

(
|∂vΦXt |2 + |∂vΦVt |2

)
.

Therefore by Grönwall’s inequality we have(
|∂vΦXt |2 + |∂vΦVt |2

)
≤ exp (t(1 + ‖Hess(W )‖∞))

(
|∂vΦX0 |2 + |∂vΦV0 |2

)
.

As ∂vΦ
X
0 = 0 and ∂vΦ

V
0 = 1 therefore it follows that

|∂vΦXt | ≤ exp (t(1 + ‖Hess(W )‖∞)) .

Now this gives the following lower bound

min
x,v,t∈(0,1+T ]

1

|∂vΦXt (x, v)|
≥ exp(−(T + 1)(1 + ‖Hess(W )‖∞)) =: α,

and we choose R1, R2 so that R2/2−R1− 2G ≥ 2. This will mean that the anulus {x : R1 +G ≤ |x−x0| ≤
R2/2−G} contains at least one unit square say with integer vertices Q ⊂ {x R1 +G ≤ |x−x0| ≤ R2/2−G}.
Then we have ∫

Td

∫
Rd
ψ(x)Tt

(
δx0 × 1R1≤|v|≤R2

)
dvdx ≥

∫
1R1+G≤|x−x0|≤R2/2−G

ψ(x)αdx

≥
∫
Q

ψ(x)αdx

=

∫
Td
ψ(x)αdx.

This means as measures on the torus, when t ∈ (1/2, 1) and R2/2−R1 − 2G ≥ 2, we have that∫
Rd
Tt
(
δx0 × 1R1≤|v|≤R2

)
dv ≥ α.

Now we would like to get a similar result covering a much larger range of times. Before we do this we first
show bounds on how the transport semigroup moves velocities, we show that if we start with large velocities
after time t we will still have mass in large velocities. We can see that for any x0, and t ≤ T then since
ΦVt = v + tR(x, v, t), where R(x, v, t)i = ∂xiW (x, v, s) for some s ∈ (0, t) we have

1R3≤|v|≤R4
≥ 1R3+GT≤|ΦVt (x0,v)|≤R4−GT .
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Therefore, taking another smooth, positive, bounded test function ψ̃ which is now a function of x and v and
is still periodic in x we have∫

Td

∫
Rd
ψ̃(x, v)Tt

(
δx0 × 1R3≤|v|≤R4

)
dxdv =

∫
Td

∫
Rd
ψ̃(ΦXt (x, v),ΦVt (x, v))δx0(x)1R3≤|v|≤R4

dxdv

≥
∫

Td

∫
Rd
ψ̃(ΦXt (x, v),ΦVt (x, v))δx0

(x)1R3+GT≤|ΦVt (x,v)|≤R4−GTdxdv

=

∫
Td

∫
Rd
ψ̃(x, v)δx0

(ΦX−t(x, v))1R3+GT≤|v|≤R4−GTdxdv.

Here we used the transformation (x, v)→ (ΦXt (x, v),ΦVt (x, v)) first in one time direction and then backwards.
Therefore we have for t ≤ T that as measures

Tt
(
δx0
× 1R3≤|v|≤R4

)
≥ δx0

(ΦX−t(x, v))1R3+GT≤|v|≤R4−GT .

Now suppose we have t ∈ [1/2, 1/2 + T ] we can write this as t = s+ r where r ≤ T and s ∈ (1/2, 1) then we
have

Tt
(
δx0
× 1R3≤|v|≤R4

)
=Ts

(
Tr
(
δx0
× 1R3≤|v|≤R4

))
≥Ts

(
δx0(ΦX−r(x, v))1R3+GT≤|v|≤R4−GT

)
.

Now we want to do both these steps at the same time, first by using the semingroup property and rearranging∫
Td

∫
Rd
ψ(x)Tt

(
δx0 × 1R3≤|v|≤R4

)
dvdx =

∫
Td

∫
Rd
ψ(ΦXt (x, v))δx0(x)1R3≤|v|≤R4

dvdx

=

∫
Rd
ψ(ΦXt (x0, v))1R3≤|v|≤R4

dv

=

∫
Rd
ψ(ΦXs

(
ΦXr (x0, v),ΦVr (x0, v)

)
1R3≤|v|≤R4

dv

=

∫
Td

∫
Rd

(ψ ◦ ΦXs )(x, v)Tr(δx0 × 1R3≤|v|≤R4
)(dx, dv).

This means we are now able to use the fact that as r ≤ T
Tr
(
δx0 × 1R3≤|v|≤R4

)
≥ δx0(ΦX−r(x, v))1R3+GT≤|v|≤R4−GT .

We then substitute this in and continue to get∫
Td

∫
Rd
ψ(x)Tt

(
δx0
× 1R3≤|v|≤R4

)
dvdx ≥

∫
Td

∫
Rd

(ΦXs ◦ ψ)(x, v)δx0
(ΦX−r(x, v))1R3+GT≤|v|≤R4−GT (dx,dv)

=

∫
Rd
ψ(ΦXs

(
ΦXr (x0, v),ΦVr (x0, v)

)
1R3+GT≤|ΦVr (x0,v)|≤R4−GTdv

≥
∫
Rd
ψ(ΦXs

(
ΦXr (x0, v),ΦVr (x0, v)

)
1(R3+GT )+G≤|ΦXt (x0,v)−ΦXr (x0,v)|≤(R4−GT )/2−Gdv.

Here in the last line we used (38). Now let us write F (v) = ΦXt (x0, v) and use the change of variables
x = F (v) then we have (F−1 exists globally since ∂vF is bounded above and below by the argument given
above),∫

Td

∫
Rd
ψ(x)Tt

(
δx0
× 1R3≤|v|≤R4

)
dvdx ≥

∫
Rd
ψ(x)

1

|∂uF (u)|
12(R3+GT )+G≤|x−ΦXr (x0,F−1(x)|≤(R4−GT )/2−Gdx

Now taking α from before and provided that (R4 − GT )/2 − 2(R3 + GT ) − 2G ≥ 2 we will have as above
that ∫

Rd
Tt
(
δx0 × 1R3≤|v|≤R4

)
dv ≥ α.

We can choose specific values for R3, R4 we may as well choose R3 = 0 and R4 = 4(1 +G) + 5GT .
Lastly we want to extend from looking at anuluses to looking at p(v′, ·). We know that since M is

decreasing

p(v′, v) ≥M(|v|) ≥M(R4)1R3≤|v|≤R4
.
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Therefore,∫
Rd
Tt (δx0 × p(v′, ·)) ≥M(4(1 +G) + 5GT )

∫
Rd
Tt
(
δx0 × 1R3≤|v|≤R4

)
dv ≥M(4(1 +G) + 5GT )α.

This concludes the proof.
�

Lemma 6. Assume that assumption (R2) is satisfied. Then, (9) in the statement of Theorem 1 holds with

β3 = exp(−4‖m‖Lip‖W‖∞), u2 = M(|v|).

Proof. According to (R2), W ∈ C2(Td) and m ∈ Lip(Td). Therefore, the flow (Φt)t≥0 defined by (5)
satisfies the conservation law

W (x) +
1

2
|v|2 = W (ΦX−t(x, v)) +

1

2

∣∣ΦV−t(x, v)
∣∣2 ,

for every (x, v) ∈ Td × Rd. Hence,

m
(∣∣ΦV−t(x, v)

∣∣2) ≥ m(|v|2)− 2‖m‖Lip‖W −W (ΦX−t(·, v))‖∞ ≥ m(|v|2)− 4‖m‖Lip‖W‖∞.

Then we can take u2 = e−m(|v|)dv. Finally, as

Tt(u1 ⊗ u2) = exp
(
m
(∣∣ΦV−t(x, v)

∣∣2)) ,
we deduce

Tt(u1 ⊗ u2) ≥ exp(−4‖m‖Lip‖W‖∞)u1 ⊗ u2.

We have now verified all the conditions of Theorem 1 to prove Corollary 2. �

5. Comments on the rates

Lastly we comment on the rates we get. For the main model our rate is

λ = −
log
(
1− κ2e−‖σ‖∞(2T+T∗)/2

)
2T + T∗

.

This is almost definitely not optimal. To the best of our knowledge the rate should vary quite strongly
depending on the geometry. We can give a little bit of information about a bound on the spectral gap and
examples of situations where the spectral gap is well below this bound. In [23] the authors prove some results
on the spectrum of this operator. Defining the constants

C−∞ = sup
T>0

inf
x,v

1

T

∫ T

0

σ(ΦXt (x, v))dt, C+
∞ = inf

T>0
sup
x,v

1

T

∫ T

0

σ(ΦXt (x, v))dt,

it is proven in [23] that the essential spectrum of the linear Boltzmann operator lies in the strip {z : C−∞ ≤
Re(z) ≤ C+

∞}. They also show that the spectrum is contained in a strip of the form {0 ≤ Re(z) ≤ L∞},
where L∞ is related to the supremum of the collision kernel. We can give an upper bound on the spectral
gap in total variation using a simple probabilistic argument.

Lemma 7. Let ft be the unique measure valued solution to (1) with initial data f0. If there exists λ > 0, A > 0
such that for all f0,

‖ft − ν‖TV ≤ Ae−λt‖f0 − ν‖TV ,
then λ ≤ C+

∞ using the notation above.

Proof. We use a stochastic process whose law follows the equation (1). Let us define a Poisson process with
intensity ‖σ‖∞ whose jump times are I1, I2, . . . and generate a sequence of iid random variables U1, U2, . . .
who are uniform on [0, ‖σ‖∞]. Then for t ∈ [In, In+1) we define Xt = XIn + tVIn and Vt = VIn . Then
when t = In+1 then if Un ≤ σ(XIn+1) we draw VIn from the distribution p(·, VIn) and if Un > σ(XIn) then
VIn+1 = VIn . We can check that the law of (Xt, Vt) will satisfy (1) (which incidentally gives another proof of
existence of solutions). The jumping process is a time inhomogeneous Poisson process with intensity σ(Xt)
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and if we start at (x0, v0) conditional on us not having jumped we have σ(Xt) = σ(ΦXt (x0, v0)) therefore by
standard result about inhomogeneous Poisson processes we have

‖ft − ν‖TV ≥ P(jumped no times in time t) = exp

(
−
∫ t

0

σ(ΦXs (x0, v0))ds

)
.

Fixing ε there exists T (ε) such that

sup
x,v

∫ T (ε)

0

σ(ΦXs (x, v))ds ≤ (C+
∞ + ε)T (ε).

Therefore, since we were taking the supremum over all (x, v) we will have∫ (k+1)T (ε)

kT (ε)

σ(Φs(x, v))ds =

∫ T (ε)

0

σ(Φs(ΦkT (ε)(x, v)))ds ≤ (C+
∞ + ε)T (ε)

and hence

‖f(nT (ε))− ν‖TV ≥ exp

(
−
∫ nT (ε)

0

σ(ΦXs (x, v))ds

)
≥ exp

(
−nT (ε)(C+

∞ + ε)
)
,

for every n. Therefore λ ≤ C+
∞ + ε and ε is arbitrary which gives the result. �

The consideration of optimal rates raises several natural further questions. The first is to investigate the
optimal rates. Secondly it would be interesting to characterize which possible choices of σ lead to the fastest
and slowest rates. This is especially interesting since it is not obvious that having constant σ gives the fasted
rates, particularly in the presence of a confining potential. If it is possible to choose a degenerate σ so that
the convergence to equilibrium was much faster than the optimal choice of constant σ then this could have
implications for Hamiltonian Markov chain Monte-Carlo simulation. This is because discrete versions of this
flow are used to sample from e−W (x) in HMCMC schemes and the intensity of the noise is generally chosen
to be constant. If a spatially varying σ could increase the convergence speed of this continuous flow the same
might be true for the HMCMC schemes.
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[7] É. Bernard and F. Salvarani. Optimal estimate of the spectral gap for the degenerate Goldstein-Taylor model. Journal of
Statistical Physics, 153(2):363–375, Oct 2013.

[8] P. Billingsley. Probability and Measure. Wiley, 3rd Edition, 1995.
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du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series]
With the collaboration of Michel Artola, Claude Bardos, Michel Cessenat, Alain Kavenoky, Hélène Lanchon, Patrick

Lascaux, Bertrand Mercier, Olivier Pironneau, Bruno Scheurer and Rémi Sentis 1985
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In Séminaire Laurent Schwartz—Équations aux Dérivées Partielles et Applications. Année 2013–2014, pages Exp. No. VII,
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[24] D. Han-Kwan and M. Léautaud. Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium. Ann. PDE,

1(1):Art. 3, 84, 2015.
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