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A B S T R A C T

Machine learning (ML) methods have become an important tool for modelling and forecasting complex high-
dimensional spatiotemporal datasets such as those found in environmental and climate modelling applications.
ML approaches can offer a fast, low-cost alternative to short-term forecasting than expensive numerical simu-
lation while addressing a significant outstanding limitation of numerical modelling by being able to robustly
and dynamically quantify predictive uncertainty. Low-cost and near-instantaneous forecasting of high-level
climate variables has clear applications in early warning systems, nowcasting, and parameterising small-scale
locally relevant simulations. This paper presents a novel approach for multi-task spatiotemporal regression
by combining data-driven autoencoders with Gaussian Processes (GP) to produce a probabilistic tensor-based
regression model. The proposed method is demonstrated for forecasting one-step-ahead temperature and
pressure on a global scale simultaneously. By conducting probabilistic regression in the learned latent space,
samples can be propagated back to the original feature space to produce uncertainty estimates at a vastly
reduced computational cost. The composite GP-autoencoder model was able to simultaneously forecast global
temperature and pressure values with average errors of 3.82 ◦C and 638 hPa, respectively. Further, on average
the true values were within the proposed posterior distribution 95.6% of the time illustrating that the model
produces a well-calibrated predictive posterior distribution.
1. Introduction

Many scientific and engineering problems focus on dynamical sys-
tems, complex phenomena evolving in time and space, often charac-
terised by non-linear interactions of underlying mechanisms on varying
scales. Forecasting the behaviour of these complex and multi-faceted
systems is challenging yet critical and relied upon every day, i.e., such
as weather forecasts. In order to forecast these complex dynamical sys-
tems, sophisticated computer models have been developed that aim to
simulate the underlying physics and processes governing the behaviour
of the system. These models typically represent the system in terms of
a set of partial differential equations (PDEs). For instance, numerical
weather prediction (NWP) models may rely on finite difference im-
plementations of the Navier–Stokes equations for incompressible fluid
flow (Bauer et al., 2015; Giraldo and Restelli, 2008).

In recent decades, there has been significant advancement in com-
puter models designed to solve systems of PDEs, aiming to predict
the behaviour of such systems. This progress has been driven largely
by breakthroughs in both software engineering and hardware de-
velopment, enabling parallel simulations that leverage the immense
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computational power of hundreds of thousands of CPU and GPU cores
(Worley et al., 2011). However, as these computer models continue
to scale up in complexity, the computational resources they demand
increase proportionally. This escalation often renders many simulation
tasks, such as those integral to NWP, beyond the reach of much of the
scientific and engineering community. Additionally, there is a need
to better consider the economic and environmental costs associated
with the operation of supercomputers, aspects that are often over-
shadowed or neglected (Portegies Zwart, 2020; Bates et al., 2015).
Moreover, even when utilising the most advanced supercomputer and
algorithms available, certain forecasting tasks, such as those involving
real-time prediction or a large number of evaluations (for uncertainty
quantification and sensitivity analysis) remain infeasible due to the
computational time required.

Despite significant advances in robustness and accuracy of numer-
ical algorithms for modelling complex systems, the resulting models
are generally deterministic in nature, and fail to account for inherent
uncertainty and stochasticity within a given system. In the context of
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forecasting dynamical systems, uncertainty can represent variability
in data, incomplete knowledge of the underlying physics, errors as a
result of discretisations and simplifications, and general measurement
errors (Xiu, 2009). Therefore, in order to generate robust forecasts
for the behaviour of complex dynamical systems, it is imperative to
incorporate a systematic approach for quantifying and propagating
uncertainty in the forecasts. Monte Carlo sampling (Eigel et al., 2019;
Lozanovski et al., 2020) and Bayesian methods (Haukaas and Gardoni,
2011; Behmanesh and Moaveni, 2015; Cockayne et al., 2019; Esmaeil-
beigi et al., 2023) have been implemented into numerical computer
models to address the issue of uncertainty. However, robust incorpora-
tion of uncertainty and probabilistic methods into numerical algorithms
remains an active area of research, with ongoing debates regarding
the reliable incorporation of various sources of uncertainty, such as
uncertain inputs, into complex numerical models (Chakraborty and
Chowdhury, 2016).

The integration of ML approaches to forecasting dynamical systems
serves several benefits. Primarily, it presents an alternative to the
computationally intensive process of simulation when making new
inferences about a system. ML models generally operate in a ‘‘slow to
train, fast to evaluate’’ paradigm. Once a model is trained, making new
inferences is generally very low-cost and occurs in real-time. Further,
ML models also offer the benefit of being able to straightforwardly
leverage the growing abundance of empirical data in scientific and
engineering domains, such as sensor and satellite data, resolving some
of the questions surrounding data assimilation in numerical modelling
applications such as ocean modelling (Wilkin et al., 2017; Fringer et al.,
2019; Fanous et al., 2023a,b).

ML-based approaches offer significant advantages in terms of reduc-
ing computational demands for inference and optimising data utilisa-
tion. However, some algorithms also have the capability to facilitate
probabilistic inference, producing distributions of outputs and allowing
for the quantification of uncertainty associated with a forecast. Despite
these capabilities, many existing applications of ML to forecasting tasks
still rely on deterministic algorithms, especially when dealing with
complex high-dimensional and multi-task data like the spatiotempo-
ral data characteristic of dynamical systems. This is because there
is generally a trade-off between scalability and having the ability to
quantify uncertainty or introduce probabilistic aspects to a model. This
study explores efficient and scalable approaches to forecasting high-
dimensional multi-task data in a robust and probabilistic approach.
The capacity to manage uncertainty is of paramount importance as it
enables a more nuanced comprehension of potential system outcomes
and variabilities.

To demonstrate the appropriateness and robustness of the proposed
methodology, it is applied to a case study of forecasting global climate
data. Global and local climatic patterns are examples of a well-studied
dynamical system, where forecasts can have significant, far-reaching
implications, influencing global economic policy and politics which
ultimately impacts the lives of the majority of the population. In
this study, a data-driven surrogate model (Donnelly et al., 2023) is
developed for probabilistic modelling of global climate data from the
ERA5 global reanalysis datasets (Hersbach et al., 2020). The dataset
consists of accurate hindcast data for a wide collection of meteorolog-
ical and environmental measurements across the planet dating back
to 1940. Despite not being strictly empirical data, the ERA5 dataset
underscores the need and significance of ML methods in facilitating
easy scalability and leveraging of vast datasets. The ERA5 dataset,
which is already several petabytes in size and continuously updated,
serves as a prime example of the importance of efficient handling and
analysis of voluminous data.

This study leverages the abundant empirical and quasi-empirical
(simulation of historical data) climatic data to develop a data-driven
reduced order model (ROM). This ROM is constructed using deep
convolutional neural network (CNN)-based autoencoders and GP re-
2

gression models to simultaneously forecast temperature and pressure
observations on a global scale. By integrating these methodologies, this
study outlines an advanced and novel approach to quantify predic-
tive uncertainty in high-dimensional feature spaces parameterised by
multi-channel tensor data. This is achieved via a latent-space sampling
approach whereby uncertainty in the latent space can be robustly de-
coded back to the original feature space to provide dynamic estimates
of uncertainty for multi-task regression problems.

The proposed method is demonstrated to be highly flexible, scal-
able, and applicable to general dynamical systems based on spatiotem-
poral data and can provide accurate point-wise one-step-ahead fore-
casts as well as robust and dynamic estimates of predictive uncertainty.
This ROM is demonstrated as a viable alternative to resource-intensive
numerical simulations, facilitating rapid inference capabilities essential
for downstream applications such as nowcasting, early warning systems
(EWS), and producing realistic input for locally relevant lower-cost
simulations. The advantages of a model such as this are clear when
considering both the costs of constant re-evaluation using expensive
multi-core supercomputers and the existing limitations with respect to
uncertainty quantification.

The proposed model extends the current state-of-the-art (SOTA)
with respect to probabilistic regression in high-dimensional multi-task
settings and demonstrates how advances in computer vision can be
effectively applied to address problems in dynamical systems and cli-
mate forecasting. Furthermore, this study outlines the significance of
employing a probabilistic strategy in dynamical system regression, as
opposed to traditional point-wise forecasting methods, and its potential
applicability to real-world challenges like global climate modelling.

2. Related work

The intractability of many approaches to ML on very high-
dimensional datasets has led to dimensionality reduction often being
an integral part of any ML modelling framework (Ayesha et al., 2020).
The recent advances in deep learning have led to the development
and adoption of autoencoders as a flexible, non-parametric approach
to dimensionality reduction (Tschannen et al., 2018; Sewak et al.,
2020). Autoencoders offer increased scalability and complexity over
well-known parametric approaches to dimensionality reduction such
as principal component analysis (PCA).

Within the dynamical systems literature, the ROM is often employed
similarly, aiming to provide low-dimensional descriptions of the under-
lying behaviour of a complex system (Loiseau et al., 2018). Historically,
approaches to ROM were parametric and involved projecting data
onto lower-dimensional linear subspaces, such as proper orthogonal
decomposition (Lee and Carlberg, 2020). In recent years, data-driven
non-parametric approaches to model reduction have been adopted
within the dynamical systems literature, leveraging models such as
convolutional autoencoders for a variety of applications such as fluid
dynamics (Agostini, 2020; Lee and Carlberg, 2020; Otto and Rowley,
2019; Xu and Duraisamy, 2020; Daneshkhah et al., 2020).

Learning low-dimensional latent representations can facilitate fast
regression, as an alternative to time-consuming numerical simulations.
This type of ROM-enabled regression has been applied to a variety of
problems such as energy forecasting (Mudunuru et al., 2017), fluid flow
predictions (Wiewel et al., 2019; Daneshkhah et al., 2020) and wildfire
forecasting (Cheng et al., 2022). However, the approaches outlined
are flexible and generally not context-dependent, advanced regression
models such as long short-term memory (LSTM) networks have been
shown to effectively learn the latent features of general dynamical
systems (Maulik et al., 2020).

Maulik et al. (2021) used convolutional autoencoders to produce
latent features of a dynamical system governed by the Navier–Stokes
equations. A GP-based regression model was then developed to learn
the temporal evolution of the latent space features. The data was ap-
plied to a single task, i.e., a single-channel (1×64×64) tensor, regression

problem, and found that the model was able to accurately reproduce
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the underlying data. However, this is a toy example and does not
reflect representative real-world problems and does not demonstrate
the scalability of the proposed method. Furthermore, the proposed
methodology is not fully utilised by quantifying original feature space
after reconstructing the latent representations. Similarly, Guo and Hes-
thaven (2018) uses GPs for latent space modelling in structural analysis,
however, the authors relied on existing parametric model-reduction
techniques rather than more flexible data-driven approaches.

Quilodrán-Casas and Arcucci (2023) propose a sophisticated data-
driven approach to the development of a surrogate model to forecast
latent space dynamics for 3D unstructured computational fluid dynam-
ics (CFD) simulations. The authors construct a ROM by utilising both
PCA and a data-driven autoencoder to produce latent features from
their high-dimensional simulation data before training an LSTM one-
step-ahead regression model on their latent features. The application
to unstructured 3D domains is novel and the results highlighted the
robustness of the proposed approach.

PCA involves a linear transformation of the original data onto a
new basis. A fully-connected dense autoencoder with a linear activation
function is capable of retrieving principal components when trained
to minimise the squared distance between the original data and its
reconstruction. Therefore, the two-step encoding process can be rein-
terpreted as including an additional pre-trained fully-connected layer,
parameterised by a weight vector 𝑊 ∗

0 , located at the beginning of the
utoencoder. Although PCA is a widely used technique for dimension-
lity reduction, it does not easily extend to the case of multi-channel
ata and can suffer from computational costs in very high-dimensional
paces. Additionally, compared to a GP model, an LSTM does not
asily extend to probabilistic inference, which can lead to a lack of
onsideration for uncertainty in the predictions.

There are many examples of attempts to forecast environmental and
limatic variables using ML and neural network-based approaches. Tran
t al. (2021) outline a review of the existing literature for using neural
etworks to forecast air temperature. The studies outlined utilise a
ariety of neural network architectures, mostly feed-forward networks,
nd LSTM models, however, in more recent years CNNs have become
ncreasingly adopted for spatiotemporal forecasts. Wang et al. (2021)
imilarly outlines a review of neural network-based approaches to fore-
asting wind speed, and consequently wind power, and found growing
doption of CNNs and autoencoders for feature extraction.

Zhang and Dong (2020) explore a convolutional recurrent neural
etwork (CRNN) model for a temperature forecasting case study in
hina. By discretising the domain into a 32 × 62 matrix the authors pro-

duce a neural network operating on 4 × 32 × 64 tensors by aggregating
historical data to produce the next temperature map in the sequence.
The authors manage to obtain a Root Mean Squared Error (RMSE) of
1.7◦C for their proposed model.

Similarly, Kreuzer et al. (2020) propose convolutional LSTM for
temperature forecasting in Germany and obtain an RMSE of 2.1◦C,
owever, this study only forecasted measurements at five weather
tations rather than forecasting a full grid of values across a spatial do-
ain. However, these studies explore deterministic models producing
oint-wise estimates and forecasts making no considerations for pre-
ictive uncertainty. Moreover, these studies focus on the forecasting of
ingle-level measurements and the approaches outlined do not attempt
ulti-task regression with robust quantification of uncertainty.

Despite some successful applications thus far of data-driven ap-
roaches to ROM used in conjunction with advanced regression models
ike GPs, the existing literature fails to tackle a truly high-dimensional
nd multi-task (i.e., predicting multiple spatially varying measure-
ents) problem, generally modelling relatively small-scale data with

hallow autoencoders. Existing neural network-based approaches to
orecasting environmental and climate data generally make no con-
ideration for uncertainty and aim to forecast single levels over a 1D
3

rid-based output or for discrete locations aggregated into vectors. O
The existing literature does not tackle scenarios of high-dimensional
ulti-task data with robust consideration of predictive uncertainty.

urthermore, while GP models have been adopted, the existing liter-
ture fails to focus on the probabilistic aspects of GP regression. The
xisting literature primarily emphasises GP as a flexible non-parametric
egression model, but it fails to acknowledge the benefits of generating
ull predictive posterior distributions or quantifying uncertainty in
omplex regression problems.

. Methods

.1. Probabilistic tensor regression

Tensor data is ubiquitous in scientific and engineering applications,
.g., a single-channel 2D tensor describing a scalar field for some
patially varying measurement, or a three-channel tensor representing
GB images. This study is concerned with time-indexed tensors, 𝐑(𝑡) ∈
𝐶×𝐻×𝑊 , describing the state of some dynamical system at time 𝑡,

i.e. at each point in time there are 𝐶 variables being measured, each
varying over a rectangular 𝐻 × 𝑊 grid. Given a collection of time-
indexed measurements, {𝐑(𝑡)}𝑇𝑡=1, the aim is to construct a probabilistic
regression model,

�̂�(𝑡+1) = 𝑓 (𝐑(𝑡)) (1)

such that given the state of the system at time 𝑡, a probabilistic forecast
for the state of the system at time 𝑡+1 can be made using some model,
𝑓 . The regression model will be constructed in order to provide both
point-wise estimates of the system at time 𝑡 + 1, E[�̂�(𝑡+1)], as well as a

easure of predictive uncertainty, V[�̂�(𝑡+1)].
To construct the probabilistic regression model, 𝑓 , a GP is utilised.

A GP is a stochastic process defined as a collection of random variables,
any finite number of which have a joint Gaussian distribution (Williams
and Rasmussen, 2006). A GP can be considered as a generalisation
of the multivariate Gaussian distribution, retaining many convenient
mathematical properties of the multivariate Gaussian distribution (Don-
nelly et al., 2022). However, instead of being defined over finite-length
vectors and parameterised by a mean vector and covariance matrix, a
GP is defined over functions and parameterised by mean and covariance
functions. A GP is therefore a (possibly infinite) distribution that is fully
specified by its mean function 𝑚(𝐱(𝑖)) and its kernel-covariance function
𝑘(𝐱(𝑖), 𝐱(𝑗)).

GPs are a robust Bayesian regression model, allowing for straightfor-
ward inferences about predictive uncertainty without expensive sam-
pling techniques. However, GPs are limited in their scalability and
flexibility. For standard regression problems, GPs can only learn func-
tions of the form 𝑓 ∶ R𝑝 → R. i.e., a scalar output, 𝑦(𝑡+1), is regressed
onto a vector valued input, 𝐱(𝑡),

𝑦(𝑡+1) = 𝑓 (𝐱(𝑡)) + 𝜖(𝑡), (2)

where, 𝑓 is a GP and 𝜖(𝑡) is additive Gaussian noise. However, in GP
regression, instead of producing a deterministic prediction, 𝑓 (𝐱(𝑡)), a
full predictive posterior distribution over the output is constructed,

𝑝(𝑦(𝑡+1)|𝐱(𝑡)) = 𝑁(𝜇(𝑡+1)
∗ , 𝜎(𝑡+1)∗ ), (3)

where 𝜇(𝑡)
∗ and 𝜎(𝑡)∗ are the predictive mean and standard deviation,

respectively. Samples can be drawn from this posterior. However, the
expected value and predictive uncertainty are determined analytically
without sampling where, E[𝑦(𝑡+1)] = 𝜇(𝑡+1)

∗ and V[𝑦(𝑡+1)] = 𝜎(𝑡+1)∗ .
The regression problem outlined in Eq. (1) cannot be solved using

tandard GPs as these are three-dimensional tensors, not scalars. How-
ver, GPs can be extended to handle vector-to-vector regression prob-
ems. This can be achieved by modelling each output independently
sing a standard GP or through multi-task models using approaches
uch as the Linear Model of Coregionalization (Alvarez et al., 2012).

ther methods (Liu et al., 2018) also exist, which generally model the
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Fig. 1. Illustration of the GP-autoencoder, showing how sampling in the latent space using a GP propagates uncertainty through to the original feature space.
problem as a standard GP but use structured kernel matrices to handle
multiple tasks and specify inter-task dependencies.

GPs suffer from high computational complexity costs, scaling cu-
bically, 𝑂(𝑁3), with the number of training instances, 𝑁 , due to the
inversion of a 𝑁 ×𝑁 matrix during training (Williams and Rasmussen,
2006; Chatrabgoun et al., 2022). Modelling 𝑑 tasks with an exact multi-
task GP similarly scale with 𝑂(𝑑3𝑁3) complexity. While approximate
GPs using a subset of inducing points, thereby reducing the size of the
matrix being inverted, have been demonstrated effectively (Liu et al.,
2020; Foreman-Mackey et al., 2017), a robust probabilistic model that
demonstrates scalability like neural networks does not exist.

To overcome these limitations, the underlying data, {𝐑(𝑡)}𝑇𝑡=1, can
be modified to make it amenable for GP regression. By producing
a sophisticated encoder, 𝑔, and corresponding decoder, ℎ, to trans-
form the original tensors, 𝐑(𝑡), into latent vectors, 𝐳(𝑡), with minimal
reconstruction error, 𝐿(�̂�(𝑡),𝐑(𝑡)),

𝐳(𝑡) = 𝑔(𝐑(𝑡))

�̂�(𝑡) = ℎ(𝐳(𝑡))
(4)

the regression problem can be reinterpreted as,

𝐳(𝑡+1) = 𝑓 (𝐳(𝑡)) + 𝝐(𝑡). (5)

where 𝑓 is a multi-output GP model, and 𝑑, where 𝐳(𝑡) ∈ R𝑑 , is small
enough to build such a model. Using a GP, a predictive posterior can
be constructed over the latent features, 𝑝(𝐳(𝑡+1)|𝐳(𝑡)), as shown in Eq. (3)

By sampling in the latent space, producing a collection of realisa-
tions of the latent target, 𝐳(𝑡+1)𝑖 , uncertainty can be propagated back into
the original tensor space,

E
[

�̂�(𝑡+1)] = E
[

ℎ(𝐳(𝑡+1)𝑖 )
]

(6)

V
[

�̂�(𝑡+1)] = V
[

ℎ(𝐳(𝑡+1)𝑖 )
]

(7)

producing robust point-wise forecasts (Eq. (6)) and estimates of predic-
tive uncertainty (Eq. (7)) for each element in the tensor simultaneously.

A robust and accurate encoder–decoder scheme that generates non-
discontinuous features in the latent 𝑧-space with minimal reconstruc-
tion error could enable a GP regression model to accurately reproduce
the system’s behaviour in the encoded space. For an encoder–decoder to
have sufficient capability to produce meaningful representations in the
latent space from large tensors, 𝑔 and ℎ are likely to be complex, non-
linear functions. The overall methodology for the study is outlined in
Fig. 1, by sampling in the latent space and propagating samples through
the decoder, point-wise forecasts and estimates of uncertainty can be
propagated through to the original feature space.

3.2. Autoencoders

Autoencoders are a class of neural network consisting of an en-
coder sub-network, 𝑔, and a decoder sub-network, ℎ, which take an
arbitrary input 𝐗 and maps back to an output �̂� with the same shape
4

as the input. Autoencoders generally contain an under-parameterised
bottleneck such that the encoder sub-network produces an intermediate
output, 𝐳, smaller than the original input. Using self-supervised train-
ing, where the input and the output are the same, and a distance-based
loss function, 𝐿, the network optimises its weights to minimise the
reconstruction error between the input and the reconstructed output,
𝐿(�̂�,𝐗). Since the bottleneck of the network is under-parameterised,
the network simultaneously learns an efficient encoding scheme for the
original data, 𝐳 = ℎ(𝐗), and decoder for the latent features, �̂� = 𝑔(𝐳), as
previously expressed in Eq. (4).

Neural networks can learn non-parametric, non-linear functions,
which means that both the encoder and decoder sub-networks can
be infinitely expressive and capable of learning complex patterns. By
constructing highly complex networks and leveraging large datasets
to optimise the weights, autoencoders can be a more powerful di-
mensionality reduction tool than parametric approaches such as PCA.
Furthermore, neural network architectures, such as CNN are well-suited
for to handling non-linear data with multiple channels in the input
and output making them ideal for flexible tensor-based compression.
An example of two-channel convolutional autoencoder is illustrated in
Fig. 2.

To construct highly flexible and powerful autoencoders, existing
state-of-the-art CNN classification architectures were used as the basis
of the network. The ResNet50 (illustrated in Fig. 3 model outlined in He
et al. (2016) is a 150-layer CNN designed to classify RGB images into
distinct categories. The architecture obtained SOTA performance on
ImageNet (Krizhevsky et al., 2017) and CIFAR-10 (Krizhevsky et al.,
2009). In this architecture, multi-channel tensors are down-sampled
through convolutions and pooling layers to finally produce classifi-
cation probabilities in a vector-based output. The network can be
modified such that the classification layer becomes the bottleneck of the
autoencoder with a fixed size. In addition to the original ResNet50 ar-
chitecture, smaller versions of ResNet, such as ResNet18 and ResNet34,
which were inspired by the original architecture, were also tested to
compare their performance.

3.3. Data

The proposed predictive model is developed for the case study of
predicting temperature and pressure data recorded at 3-hour intervals
on a global scale. The dataset consists of the full record of simulated
hindcast data from the ERA5 reanalysis (Hersbach et al., 2020) for the
year 2022. This meant the proposed regression model involved simulta-
neously forecasting global temperature and pressure values for 3-hours
ahead based on the current values. The spatial resolution of the data
is 1◦ × 1◦, therefore for each time-step, the data is described by tensors
𝐑(𝑡) ∈ R2×180×360 and the full dataset consisted of approximately 2900
samples. This resulted in an aggregated dataset 𝐗 ∈ R2900×2×180×360.
Examples of the original data are illustrated in Fig. 4, showing the
transition of both temperature and pressure across 3 time steps. This
data also highlights the vastly different scales of the two measurements,
varying in units of measurement and the magnitude of the average
values.
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Fig. 2. Example of an under-parameterised convolutional autoencoder architecture.
Fig. 3. ResNet50 architecture .
Source: Figure adopted from Gorlapraveen123: Wikimedia Commons (2021).
Fig. 4. Un-transformed global temperature and pressure data for 2 temporal transitions.
4. Results

4.1. Experimental setup

In this study three autoencoders were trained and assessed, with
the encoder’s sub-network based on the existing ResNet18, ResNet34,
and ResNet50 object-classification architectures with the output layers
modified to produce continuous latent vectors rather than discrete
5

classifications. In order to determine the dimensionality of the bot-
tleneck and latent vectors, a trade-off between the expressiveness of
the latent representations and the complexity of the GP model needs
to be balanced. Balancing this trade-off along with preliminary testing
determined a latent dimension size of 12 features such that 𝐳𝑡 ∈ R12.
The training cost and computational resources required to train the
autoencoder are not sensitive to the size of 𝐳𝑡, the GP is highly sensitive
to this choice. The computational complexity of the multi-task GP
model is 𝑂(𝑑3𝑁3) where 𝑑 is the number of features and 𝑁 is the
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Fig. 5. Examples of augmented temperature data.
number of instances, so as the latent dimension 𝑑 grows, the GP model
can quickly become prohibitively expensive.

In order to construct robust autoencoders that can effectively cap-
ture the intricate features of the underlying data and generalise well,
it is necessary for the network to possess adequate flexibility. Ad-
ditionally, the application of data augmentation and pre-processing
strategies during training has been shown to be crucial for achieving
good performance. The data were normalised to have zero mean and
unit variance across each feature, then a series of augmentations were
applied randomly during the training process. These augmentations
consisted of crops and resize (i.e., randomly cropping then re-scaling
back to the original shape), alternating the order of the channels
(i.e., swapping the order of temperature and pressure data), applying
a mask (i.e., randomly zeroing out cells in the data) and randomly ap-
plying Gaussian noise to cells. Examples of some of these augmentation
strategies applied independently can be seen in Fig. 5.

The training of the autoencoders was parallelised across 6 Nvidia
Tesla K80 GPUs using a batch size of 32, Adam optimiser and initial
learning rate of 1𝑒−4. Training was conducted for 100 epochs, or until
convergence was reached. After producing the latent feature dataset
from the trained autoencoder, a multi-task GP parameterised by a
multi-task Matern3∕2 kernel function and a constant mean function
was trained. The GP training, i.e., tuning of the hyperparameters of
the kernel function and additional noise parameters, was performed
through minimising the negative marginal log likelihood (Williams and
Rasmussen, 2006).

Additionally, a second phase of GP training was initiated whereby
the noise hyperparameter of the GP likelihood, i.e., the parameter de-
termining how much the true target is corrupted by noise as illustrated
in Eq. (1), is modified to fine-tune the level of predictive uncertainty.
Purely data-driven optimisation of these parameters can overfit the
data and produce values of V[𝐳(𝑡+1)] that are far too low in practice.
However, the influence of the noise parameter on the value of E[𝐳(𝑡+1)]
is minimal and therefore does not significantly change the performance
of point-wise predictive performance.

4.2. Autoencoder

The performance of the ResNet-based autoencoders can be seen
in Table 1. Increasing the network’s capacity resulted in a consis-
tent decrease in the RMSE for temperature predictions, but it did
not necessarily lead to an improvement in predictive performance for
pressure measurements. ResNet-34 is likely to be the right balance
between good predictive performance, while not being too highly over-
parameterised. Training and inference costs also scale with size of the
model and therefore again, ResNet-34 seemed the best architecture
6

Fig. 6. Reconstruction RMSE for temperature and pressure on a cell-by-cell basis across
the domain using the ResNet-34 based autoencoder.

overall out of those tested (ResNet-18, ResNet-34 and ResNet-50) in this
study because of this trade-off between accuracy and computational
resources. Furthermore, ResNet-34 obtained the best predictive score
for the pressure measurements out of all the models. An RMSE of 2.79
for temperature predictions on the test set means that on average, the
predicted value in each cell is incorrect by 2.79◦C, and likewise, for
pressure, each cell is incorrect by, on average, 434 hPa.

In Fig. 6, the reconstruction error on the test set can be seen for
the ResNet-34 autoencoder. The plot shows the RMSE for each cell in
the domain across all time-steps in the test set. In spite of the aggregate
RMSE value being 2.79◦C, it is observed that much of the domain, espe-
cially those locations on land, have a higher average loss. Similarly, the
values over the oceans tend to have a lower average loss. This outcome
can be explained by Fig. 7, which shows the standard deviation of the
test set values, highlighting that the areas of the domain with the most
variability are the same areas where the prediction error is highest.

In Fig. 8, the predictive performance for a collection of test samples
is illustrated by showing the 𝐿1 loss on the temperature and pressure
data. As can be seen across both variables, the reconstruction error
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Fig. 7. Cell-by-cell standard deviation over the test set samples.

is low generally, with small areas where the reconstruction error is
significantly higher. For instance, in sample 1, while the majority of
the domain has a reconstruction error below 2, certain areas in North
America exhibit a significantly higher reconstruction error, ranging
from 8 and above. This is a common result of data-driven modelling
in which predictive performance is lower when results deviate most
strongly from their training set means.
7

Table 1
Validation performance of different popular CNN-architecture autoencoder
backbones with ResNet-18 having fewest parameters and ResNet-50 the most.
Architecture Temp. (RMSE) Pressure (RMSE)

ResNet-18 3.04 482
ResNet-34 2.79 434
ResNet-50 2.66 533

4.3. GP-autoencoder

After having trained the autoencoder, the latent feature data was
used to train the GP regression model. Regression performance of the
GP model in the latent space is illustrated in Fig. 9 along with the
2 standard deviation predictive intervals. An accurate model would
expect to see the true value within these intervals for 95% of the ob-
servations. The autoencoder resulted in non-discontinuous and smooth
latent features facilitating very high latent space regression accuracy.
Having trained both the autoencoder and GP regression model, the
composite GP-autoencoder model can be used for inference by produc-
ing point-wise forecasts for the true tensor, E[�̂�(𝑡+1)], and a tensor of
equal shape, V[�̂�(𝑡+1)], outlining predictive uncertainty associated with
each element where V[�̂�(𝑡+1)]𝑖𝑗𝑘 = 𝜎(𝑡+1)𝑖𝑗𝑘 .

The results of the GP-autoencoder performance on the test set can be
seen in Table 2. The full GP-autoencoder model increases the average
loss by 1.03◦C for the temperature predictions, and by 234 hPa for the
pressure predictions compared to the baseline reconstruction error for
the autoencoder alone. When compared to the RMSE values of 1.7◦C
and 2.1◦C for temperature predictions in the studies by Zhang and Dong
(2020) and Kreuzer et al. (2020), respectively, the RMSE of 3.82◦C
achieved is lower in point-wise accuracy. However, it is important to
note that these are not like-for-like comparisons. The proposed model
performed in significantly higher dimensions, conducts simultaneous

multi-task forecasting, and provides predictive uncertainty estimates.
Fig. 8. 𝐿1 loss for samples in the test set.
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Table 2
Validation performance of the composite
GP-autoencoder regression model.
Temp. (RMSE) Pressure (RMSE)

3.82 638

Fig. 9. Test performance in the latent space for the first and fifth component of the
set of vectors {𝐳(𝑡+1)} showing the mean prediction and 2 s.d. predictive uncertainty.

Considering these caveats, our model illustrates notable performance,
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achieving a high level of accuracy.
Furthermore, in order to assess the robustness of the estimated pre-
dictive posterior distribution a custom probabilistic validation metric
was proposed. This metric involved, for each sample in the test data,
counting how many of the true individual tensor elements, 𝐑(𝑡+1)

𝑖𝑗𝑘 , were
within the plausible range of the posterior distribution. This was done
by counting the number of tensor elements within 3 standard deviations
of the mean of the predictive posterior,
∑

𝑖

∑

𝑗

∑

𝑘
I{3𝜎(𝑡+1)𝑖𝑗𝑘 } (8)

where,

I{3𝜎(𝑡+1)𝑖𝑗𝑘 } =

⎧

⎪

⎨

⎪

⎩

1, if 𝐑(𝑡+1)
𝑖𝑗𝑘 ∈

[

E[�̂�(𝑡+1)]𝑖𝑗𝑘 − 3𝜎(𝑡+1)𝑖𝑗𝑘 , E[�̂�(𝑡+1)]𝑖𝑗𝑘 + 3𝜎(𝑡+1)𝑖𝑗𝑘

]

0, otherwise

(9)

On average it was found that 95.6% of the true values were within
this 3 s.d. range. For a fully accurate Gaussian probabilistic model
it would be expected that approximately 99% of the values would
fall within the 3 s.d. range. However, this importantly highlights that
even when the point-wise estimate is not close to the target value,
the true target value has a 95% chance of being within the range of
the predictive posterior. This underscores the significance and practical
value of incorporating uncertainty quantification in complex regression
models.

Examples of some of the best and worst performance with respect to
this metric can be seen in Figs. 10–11, illustrating predictions where the
true value falls within the predictive posterior distribution (3 s.d.). The
cells marked in red represent cells where the respective forecast did not
Fig. 10. Test predictions where (A) 99% of the cells fall within the 3 s.d. range for the temperature forecast and (B) 98% of the cells fall within the 3 s.d. range for pressure.
The red cells represent those not within the range.
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Fig. 11. Test predictions where (A) 82% of the cells fall within the 3 s.d. range for the temperature forecast and (B) 93% of the cells fall within the 3 s.d. range for pressure.
The red cells represent those not within the range.
fall in the range for A) temperature and (B) pressure. Poor performance
again results from true values that deviate mostly strong from their
training set values. The average rate of 95.6% of cells falling within
the reasonable range of the predictive posterior suggests that the model
generally performs very well with respect to this metric. However, to
handle more extreme cases additional probabilistic components could
be considered in the model, such as a probabilistic encoding scheme
through the use of variational autoencoders.

In Fig. 12, the average RMSE for both temperature and pressure
is illustrated alongside the average predictive uncertainty (one stan-
dard deviation) across the test data. This figure shows that the model
generates mostly accurate point-wise estimates but also high-resolution
dynamic estimates of predictive uncertainty. The figure only outlines
the predictive uncertainty averaged across test samples. However, these
estimates of predictive uncertainty vary from sample to sample are not
constant. Fig. 7 showed that there is low variation in ocean conditions
around the equator and as such the model produces very low estimates
of predictive uncertainty, meaning point-wise forecasts can be inter-
preted with a high degree of confidence. Similarly, in areas where there
is significant variation, a robust approach to forecasting would be to
observe the full range of possible values and give less credibility to a
single point-wise estimate. In the forecasting of complex systems, it is
better to be imprecisely right than precisely wrong. Furthermore, by
using a more diverse sample of training data the model could easily
be improved with respect to predictive performance. However, for
demonstrative purposes, only data from 2022 was used to train and
validate the model.

5. Limitations

The proposed methodology has been demonstrated highly effec-
tive for the case study of forecasting temperature and pressure on a
9

global scale. This is a highly versatile approach to forecasting problems
involving high-dimensional tensor-based data with clear applications
beyond the case study outlined here. This methodology relies on au-
toencoders for data compression and GPs for learning the latent-space
dynamics. Both of these models are highly flexible; autoencoders can
be made with arbitrary encoder/decoder sub-networks and GPs can be
parameterised with a variety of kernel and mean functions.

A limitation of the proposed method, the individual autoencoder,
and GP models is that the data should exhibit some measure of smooth-
ness, or facilitate a smooth representation through pre-processing. In
the case study outlined here, this would mean that it should be expected
that values within a pixel neighbourhood in the tensors should be
similar and that the changes in the value of a pixel between time steps
should not be very large and discontinuous. Dealing with highly non-
linear and discontinuous data has always been known as a limitation of
GP models which later influenced the development of Deep Gaussian
Process models (Damianou and Lawrence, 2013).

Autoencoders are sensitive to the size of the latent dimension and as
the size of the latent dimension converges to the size of the input, the
reconstruction error will converge to zero. Conversely, the greater the
compression the more information can be expected to be lost. Similarly,
depending on the choice of kernel function, GPs will result in a smooth
interpolation between points in the output space which can result in
poor performance on outlying and extreme data points. Given these
limitations, their composition into a single model could result in a
prohibitively high amount of information loss from the original data
if poorly constructed.

An existing limitation of GP regression models is the high computa-
tional complexity during training, with multi-task GP models scaling
with 𝑂(𝑑3𝑁3) computational complexity for 𝑑 tasks/output features
and 𝑁 instances. While autoencoders are highly scalable and can scale
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Fig. 12. Average RMSE for temperature and pressure predictions alongside average predictive uncertainty.
to arbitrarily large 𝑁 , the model will be bottlenecked by the complex-
ity of the latent-space GP model. Therefore, careful consideration of
training data is required to obtain an optimal ratio of information-data
through the selection of the 𝑁 training instances.

6. Conclusions

Multi-task spatially-varying regression is a challenging task in data-
driven modelling, with models needing to be sufficiently flexible to
capture the underlying patterns while also not suffering from high com-
putational costs and the curse of dimensionality. However, many nat-
ural and artificial dynamical systems generate this data in abundance
through improvements in numerical simulation, sensor technology or
the proliferation of satellite data. Forecasting the behaviour of these
systems is important in many scientific and engineering disciplines, as
well as crucial to modern life generally.

To make robust forecasts and sophisticated inferences about the
future behaviour of these systems, an appropriate consideration must
be made for the uncertainty that can arise from the inherently chaotic
nature of many of these systems. Therefore, to produce effective re-
gression models for the behaviour of these systems, the models need to
generalise well to high-dimensional spatiotemporal data and quantify
the uncertainty associated with the forecasts. The existing literature
and ML models fail to achieve this for representative problems in
the real-world. Developing models with these capabilities is still an
ongoing challenge in the existing literature due to clear challenges of
tractability and computational complexity associated with expensive
sampling procedures or Bayesian approaches.

By utilising SOTA approaches to deep learning and probabilistic in-
ference, a flexible and robust non-parametric approach to probabilistic
tensor-based regression has been outlined. Using advanced CNN-based
architectures from computer vision applications as the basis of autoen-
coder networks, it is shown possible to accurately reconstruct complex
multi-channel tensor data from very small latent vectors. Further, the
latent vectors produced were smooth, non-discontinuous, and amenable
to exact multi-task GP regression.

The proposed GP-autoencoder model has been applied to the case
study of simultaneously forecasting one-step-ahead global temperature
and pressure observations, significantly important high-level underly-
ing drivers of global climate behaviour. Developing an ML-based model
that facilitates near-instantaneous is important to reduce the reliance
10
on expensive numerical simulation and consequently allows for real-
time forecasting where simulation would not. This would be crucial to
the development of early warning systems, nowcasting, and parame-
terise the inputs of smaller regional simulation models. Furthermore,
by including dynamic estimates of predictive uncertainty the forecasts
would allow for a more sophisticated and nuanced interpretation than
a deterministic point-wise estimate. This can be particularly valuable
in complex regression problems, where uncertainty quantification is
crucial for informed decision making.

The model was demonstrated to have good accuracy, obtaining
an average error of 3.82◦C and 638 hPa for the temperature and
pressure observations, respectively. Additionally, the model produced
well-calibrated predictive posterior distributions, with the posterior
distribution on average containing the true observation 95% of the
time. This aspect of the model demonstrates that even when the point-
wise error was above average there was a strong chance that the true
observation falls within the predicted distribution. Contrasting these re-
sults with the existing SOTA outlined in Section 2 showed the proposed
model to have a slightly higher error for temperature forecasting. How-
ever, the problem tackled in this study uses data order of magnitudes
larger, forecasts multiple variables simultaneously, and provides prob-
abilistic predictions. These contributions while still obtaining accurate
and comparable forecasts, demonstrate the contributions outlined in
this study.

A commonality of all data-driven forecasting is that performance
was poorest when the data being predicted was more anomalous and
less similar to the examples within the training data. For demonstrative
purposes in this study, the data used was limited only to 2022, which
inevitably leads to lower performance in some of the test cases as only a
fraction of the true range of outputs is observed. The proposed model’s
predictive power could be readily enhanced through the utilisation of
a more extensive and sophisticated training dataset. However, these
limitations are intrinsic to data-driven modelling, and are to some
extent irreducible since finite training data is unlikely to ever fully
capture the behaviour of a dynamic system. Probabilistic modelling
can effectively mitigate many of these problems by offering dynamic
and robust estimates of predictive uncertainty, thereby eliminating the
issues associated with producing point-wise estimates on previously
unseen data.

The novel methodological approach outlined in this study can read-
ily be repurposed to a variety of complex modelling problems involving
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time-indexed tensor data. Based on the results outlined, the authors
believe that using a highly-flexible autoencoder and a GP regression
model is the best existing approach to forecasting high-dimensional
multi-channel data in a robust and probabilistic manner.
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