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EV-Tach: A Handheld Rotational Speed
Estimation System with Event Camera

Guangrong Zhao, Yiran Shen⇤, Senior Member, IEEE , Ning Chen, Pengfei Hu, Member, IEEE ,
Lei Liu, Member, IEEE , and Hongkai Wen, Member, IEEE

Abstract—Rotational speed is one of the important metrics to be measured for calibrating electric motors in manufacturing, monitoring
engines during car repairs, detecting faults in electrical appliance and more. However, existing measurement techniques either require
prohibitive hardware (e.g., high-speed camera) or are inconvenient to use in real-world application scenarios. In this paper, we
propose, EV-Tach, a novel handheld rotational speed estimation system that utilizes emerging imaging sensors known as event
cameras or dynamic vision sensors (DVS). The pixels of DVS work independent and trigger an event as soon as a per-pixel intensity
change is detected, without global synchronization like CCD/CMOS cameras. Thus, its unique design features high temporal resolution
and generates sparse events, which benefits the high-speed rotation estimation. To achieve accurate and efficient rotational speed
estimation, a series of signal processing algorithms are specifically designed for the event streams generated by event cameras on an
embedded platform. First, a new cluster-centroids initialization module is proposed to initialize the centroids of the clusters to address
the issue that common clustering approaches are easy to fall into a local optimal solution without proper initial centroids. Second, an
outlier removal module is designed to suppress the background noise caused by subtle hand movements and host devices vibrations.
Third, a coarse-to-fine alignment strategy is proposed with Iterative closest point (ICP)-based event stream alignment to obtain angle of
rotation and achieve accurate estimation for rotational speed in a large range. With these bespoke components, EV-Tach is able to
extract the rotational speed accurately from the event stream produced by an event camera recording rotary targets. According to our
extensive evaluations under controlled and practical experiment settings, the Relative Mean Absolute Error (RMAE) of EV-Tach is as
low as 0.3‰ which is comparable to the state-of-the-art laser tachometer under fixed measurement mode. Moreover, EV-Tach is robust
to subtle movement of user’s hand and dazzling light outdoor, therefore, can be used as a handheld device under challenging lighting
condition, where the laser tachometer fails to produce reasonable results. To speed up the processing of EV-Tach and reduce its
resource consumption on embedded devices, VoxelGrid filtering is applied to significantly downsample the event streams by merging
the events within the same 3D-VoxelGrid while preserving its formation in spatial-temporal domain. At last, we implement EV-Tach on
Raspberry Pi and the evaluation results show that the downsampling process preserves the high measurement accuracy while saving
the computation speed and energy consumption by approximately 8 times and 30 times in average.

Index Terms—mobile sensing, rotational speed measurement, dynamic vision sensing, iterative closest point

F

1 INTRODUCTION

Machines and devices with rotary components are perva-
sive in our daily life and play significant roles in various
industrial fields, such as energy, aviation, automobile and
home appliance. In manufacturing, rotational speed is one
of the key indicators to reflect the current working state
of the machines, therefore, there is a huge demand for
measuring the rotational speed with an accurate and con-
venient tool. In the field of appliance repairing, repairmen
normally use tachometer (an instrument to measure the
rotational speed) to measure the rotational speed of the
electrical motors of the appliance, such as the condensing
unit of air-conditioners and washing machines, to infer
possible faults from the irregular rotational speed. In the
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automotive maintenance, the checking of rotational speed
of the wheels has become a standard item in the annual
vehicle inspection manuals [1]. Real-time measurement of
rotational speed is also useful for predicting the actions of
flying drones because they change their flying direction and
speed by adjusting the rotational speed of one or multiple
propellers; the actions should be always after the change
of rotational speed due to inertial effect. At last, rotational
speed calibration of some devices and equipment, such
as drones, watermeters and car engines, is another typical
scenario in which the rotational speed need to be calibrated
precisely to ensure the devices are functioning as expected.

A number of different measurement approaches have
been proposed to obtain the rotational speed of different tar-
gets under different circumstances. They are different from
the requirement of physical contact (contact or non-contact)
or sensing modalities (electromagnetic, laser or vision). Me-
chanical tachometers [2] are a type of traditional devices
to measure rotational speed of large machines via physi-
cal connection to the shaft of the targets. Electrostatic [3],
hall-effect [4] and optical encoder tachometers [5] are non-
contact but they must be placed in proximity to measure
the rotation of the extra hardware mounted on the shafts of
the targets. All the above approaches are invasive as the
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Fig. 1. Shooting high-speed rotating wings of drone with a conventional
RGB camera (left) and an event camera(right) respectively.

physical contact or extra hardware may place significant
influence on the natural rotating. Laser tachometers [6],
[7] make a step forward to more accurate and convenient
measurement on rotational speed. The laser tachometer en-
ables highly accurate (the error rate is below 0.4‰) and low
invasive measurement and can be used in reasonable work-
ing distance. Therefore, the laser tachometer has become
the mainstream golden standard instrument for rotational
speed measurement. However, the requirement of retro-
reflective labels on the targets still limits the application
of laser tachometers under some circumstances as attach-
ing labels may not be convenient or even impossible for
some devices. Then, most importantly, although the laser
tachometers are built as portable devices, it is difficult for
the users to point to the extremely small label on the rotating
target with the laser tachometer in hands especially when
the object is vibrating or in long measurement distance
and the accuracy in handheld mode degrades significantly
according to our evaluation in Section 4.2. Vision-based
approaches [8], [9], [10], [11], [12], [13], [14] require no extra
hardware on the rotating targets and can further extend the
working distance with zoom lens. They also show strong
environmental adaptability and robustness. However, for
vision-based approaches with CCD/CMOS [8], [10], [11],
[12], [13], the range of rotational speed to be measured is
limited by the frame rate, which is normally between 30-50
fps (frames per second) and the accuracy is not good enough
(error rate is over 1%) for high-precision measurement.
As shown on the left of Figure. 1, high-speed rotation of
drone’s propellers will place significant motion blur in the
recorded video of normal RGB cameras and causes failure of
measurement. High-speed cameras with frame rate of few
hundreds and even thousands can cover larger range of
rotational speed. However, high-speed cameras are highly
resource-consuming which is too prohibitive for processing
on portable devices with embedded CPUs.

Introducing Event Camera for Rotational Speed Es-
timation: to solve the above issues, we adopt the event
cameras or dynamic vision sensors (DVS), a new sensing
modality [15], [16], to capture high speed rotation without
motion blur. DVS is bio-inspired and its pixels work in-
dependently to detect the change of intensity. Unlike the
frame-based RGB cameras, the output of DVS consists of
nonstructural and discrete event points in spatial-temporal
domain and is termed as event streams [17], [18]. In recent
years, DVS has been widely applied in a variety of computer
vision tasks, such as super resolution, image deblurring,
gesture recognition, etc. Unlike traditional RGB cameras,

DVS do not produce synchronous video frames at fixed
rate, but asynchronous event streams [17], [18]. Specifically,
pixels of the DVS work independently, to detect the change
of the intensity of the scene as,

|log I(x, y, tnow)� log I(x, y, tprevious)| < C (1)

where I(x, y, t) is the intensity value of pixel (x, y) at
time t. When the change of intensity at the pixel is over
the threshold C , an event will be released immediately.
An event stream is a collection of events overtime and is
represented as a stream of quadruplet {x, y, t, p}. When the
event corresponds to a positive change, the polarity p is +1
otherwise it is �1. Compared with traditional RGB cameras,
DVS possess a number of unique characteristics. As an event
is launched as soon as a change is detected without global
synchronization, the event streams are high in temporal
resolution and low in response latency (in the order of
microseconds) [19], [20], [21]. DVS save sensing energy
and bandwidth as they produce events only when changes
are detected. The high dynamic range (140 dB vs. 60 dB of
traditional RGB cameras) enables them work greatly under
challenging lighting conditions. These characteristics make
DVS have great potential for high-speed motion capture
and working on resource-constrained devices. Especially,
DVS has microsecond temporal resolution [20], [21], which
makes it more appealing than frame-based RGB cameras for
capturing high-speed motion.

Figure. 1 presents the rotating propellers of a drone
landing on the floor. The left figure is an RGB frame from a
video recording in a frame rate of 60 fps by an off-the-shelf
smartphone camera and the right figure shows accumula-
tive outputs of two 2 ms event streams from DVS in red
and green respectively. From the figures we can observe the
rotating propellers are severely blurred in the RGB frame
while the shape of the propellers are well preserved and the
rotation between the two slices can be easily identified in
DVS outputs.
Motivation and Challenges: though DVS is able to capture
the high speed motion naturally due to its high temporal
resolution, how to infer the rotational speed from the non-
structural and noisy spatial-temporal event streams con-
sisting of thousands sparsely distributed events are not
straightforward as most of the traditional image processing
techniques cannot be applied. There is a first attempt for
measuring rotational speed with DVS in [22], its main pur-
pose is to estimate visual optical flow. However, its setting
is far from the practical usage: to estimate the rotational
speed of a white plate, it calculates the optical flow of
a straight line (drawn from center to edge) to infer the
rotational speed of a rotating plate. Therefore, it cannot
be used to estimate most of the rotating objects in real-
world as most of them are rather than a simple straight
line. Moreover, as reported in [22], as the noisy nature of
event streams, the accuracy of optical flow cannot meet the
requirement of precise rotational speed measurement: it can
only provide reasonable results when rotational speed is less
than 500rpm though the setting of experiment in [22] has
been far simpler than real-world scenarios. To fully explore
the potential of DVS on rotational speed measurement task
under real-world scenarios, a number of challenges need to
be solved. First, multiple rotating targets can be recorded
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simultaneously and how to separate the event streams
generated by different targets correctly is fundamental for
estimating the rotational speed of each target accurately.
Then, to be used handheld under practical scenarios, the
movement of user’s hand and host devices will cause events
irrelevant to the rotation. The noisy event streams will bring
difficulty on obtaining accurate measurement for handheld
tachometers. Finally, processing the event streams with tens
of thousands events poses a huge computation burden for
embedded CPU and prohibitive for resource-constrained
handheld platforms. To deal with the challenges above, we
propose EV-Tach, an event-based rotational speed estima-
tion system facilitating a number of bespoke modules for
event streams processing. The contributions of this paper
can be summarized as follows:

• To the best of our knowledge, this is the first sophis-
ticated approach and comprehensive work on rotary
motion sensing with DVS and demonstrate its privilege
in capturing high speed rotation under practical and
challenging scenarios as a handheld device.

• An event-based rotational speed estimation system, EV-
Tach, is proposed via efficient high-fidelity rotary mo-
tion sensing with DVS to estimate high-speed rotating
targets. EV-Tach consists of a series of bespoke modules
for accurate and robust rotational speed estimation, in-
cluding heatmap-based stream-centroids initialization
to separate multiple rotating objects, outlier removal to
deal with noisy events caused by subtle movement and
a coarse-to-fine strategy to improve the alignment of
consecutive slices of event streams.

• We conduct extensive evaluations on the accuracy of
EV-Tach and robustness to different rotational speeds,
working distances, view angles, ratios of occlusion and
vibration. According to the results, EV-Tach achieves
comparable accuracy to laser tachometer for fixed set-
ting. The robustness of EV-Tach to subtle movement
shows it can be used in handheld mode and measure
the unstable rotating targets where the laser tachometer
does not work.

• The experiments under practical scenarios are also con-
ducted to measure the rotational speeds of the four
propellers of drone, condensing unit of air-conditioner
deployed outdoor and car wheels under maintenance.
The results show that EV-Tach can provide accurate
and robust measurement on multiple rotating targets
simultaneously or under challenging conditions.

• At last, EV-Tach is implemented on Raspberry Pi and
VoxelGrid filtering is applied to significantly reduce the
number of events to be processed so that the processing
time and energy consumption is saved by up to 10.5
and 40 times respectively.

The rest of the paper is organized as follows. Section 2
provides related work on rotary motion measurement and
DVS. Then we overview the system design in Section 3
including the algorithms of event stream processing and
rotational speed estimation. Extensive evaluations are con-
ducted and results are presented in Section 4. Finally, we
discuss the advantages and limitations of EV-Tach in Sec-
tion 5, and conclude the whole paper in Section 6.

2 RELATED WORK

In this section, we will review the work related to rotary
motion sensing and dynamic vision sensor.
Traditional Rotary Motion Sensing. Mechanical tachome-
ters [2] are physically connected to and rotate with the shaft
of the target to measure the rotational speed. However, the
physical contact constrains the working distance and causes
inaccurate measurement due to the mass and friction of the
mechanical tachometers. Electrostatic [3] and hall-effect [4]
sensors detect the change of electromagnetic field caused
by shaft-bearing fixed on the target and the frequency of
the change was estimated as the rotational speed. Optical
encoder tachometers [5] relied on a photoelectric sensor to
detect light through the disc of encoder placed between the
LED light source and photoelectric sensor. An encoder is a
disc mounted on the shaft of the rotating target with opaque
and transparent segments so that rotational speed can be
estimated based on the pattern of the light. The electrostatic
and optical encoder tachometers can be regarded as non-
contact but they must be placed in proximity to measure the
rotation of extra hardware attached on the shaft of target.
RFTacho [23] proposed an RF-based approach for contact-
less rotational speed estimation and was able to estimate
multiple targets simultaneously. However, compared with
EV-Tach, the robustness of RF-Tacho to the subtle movement
was not addressed, therefore, could not be used handheld;
moreover, its error rate was about 5‰ which was at least
10 times worse than our approach. Laser tachometer [6], [7]
measures the rotational speed by detecting the small and
lightweight retro-reflective labels attached on the surface of
the target. However, the use of labels may cause inconve-
nience during measurement and the laser tachometer cannot
provide accurate measurement when used as a handheld
device.
Vision-based Rotational Speed Estimation. There have
been a number of non-contact approaches being proposed
for rotational speed estimation. Wang at el. [8] calculated
the structural similarity and two-dimensional correlation
between the consecutive frames, and then the similarity-
related parameters were used to reconstruct a continuous
and periodic signal of time-series. Fast Fourier transfor-
mation was applied to calculate the period of the signal
which was used to infer the average speed of rotation.
Other approach [12] was also proposed to utilize the pe-
riodical change of similarity between frames and the differ-
ence was Chirp-Z transform and the parabolic interpolation
based auto-correlation were applied to estimate the period
in other domain. To improve the accuracy and range of
measurement, Natali at el. [11] obtained the coefficients
sequence of correlation between the reference and each of
the following frames. Then the rotational speed could be
calculated through the short-time Fourier transform (STFT),
which enabled more accurate measurement of the rotational
speed of non-stationary and disturbing systems. Instead
of directly calculating the complete period of the rotation,
there are some works to obtain the rotational speed by
calculating the instantaneous angular speed (IAS). Zhu at
el. [10] extracted two adjacent frames from the video of
a rotating objects, then the Hough transform was applied
to detect straight lines, and the angular changes of these
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lines could be calculated. Since the interval time of the two
frames was known, the angular velocity of the object could
be easily obtained. However, these methods above were
limited by the frame rate of the conventional RGB cameras
and can only accommodate the rotational speed less than
900rpm and the accuracy is far from our approach: the error
rate is over 10‰ which is about 25 times worse than our
proposed EV-Tach. In order to obtain a larger measurement
range of rotational speed, some researchers used high-speed
cameras [14], [9] to measure the instantaneous angular
speed of rotating object. However, the cost of the high-speed
cameras is prohibitive for embedded platforms and both of
these methods required special-style markers attached on
the rotating targets.
Dynamic Vision Sensors. Processing of event streams is
a new topic to study. To facilitate existing methods, event
streams were converted to other familiar formats, including
images, graphs and 3D pointclouds. Image-like represen-
tations of event streams were introduced by accumulating
the event points for each pixel overtime and correspond-
ing methods were proposed for gesture recognition [24],
gait recognition [25] and estimating optical flow of event
streams [26]. However, the image-like representation ig-
nored the temporal information of event stream. Graph-
based representations were proposed to preserve the spatial-
temporal information of event streams. 2D-Graphs [27] or
3D-Graphs [28] were built by selecting and connecting event
points via nearest neighbor search, then graph-based convo-
lutions were applied to extract higher-level information. The
spatial-temporal event streams could also be processed as
3D pointclouds then the PointNet [29] and PointNet++ [30]
were applied, e.g., for gesture recognition [31].
Most relevant work. In [19], the authors pointed out that
DVS has the potential to capture high-speed rotational
motion, but they did not give a specific rotational speed
measurement method, nor evaluated its performance under
different challenging practical settings. Gallego at el. [32]
proposed an approach to estimate the rotation of event cam-
era by processing the event streams. They applied contrast-
maximizing edge alignment algorithm to estimate the an-
gular velocity which was relevant to our work. However,
it measured the rotation of the event camera itself, which
was fundamentally different from the goal of our work,
meanwhile it produced significantly lower measurement
accuracy (the error rate is around 2%) and sensing range
(less than 167rpm) than our approach. In [22], the authors
proposed a method to calculate the optical flow of moving
object in event stream and showed its application on es-
timating rotational speed of a plate. Though it also utilized
the DVS as sensing modality for rotational speed estimation,
the design of algorithm was not sophisticated enough to
deal with the non-structural and noisy event stream to
obtain accurate measurement on high-speed rotation nor
showed any evidence for working under practical setting:
the method in the paper only estimated the rotational speed
of a white plate with a black straight line and the method
could only provide reasonable measurement for rotational
speed less than 500rpm (the accuracy was also far from
our method even within the sensing range). Moreover, the
approach above only considers single rotating object while
it becomes challenging when multiple targets are recorded

simultaneously, e.g, a drone with multiple blades. To adopt
DVS for rotational speed estimation in practical scenarios,
a number of challenges still remain unexplored: how to
separate complex event streams caused by multiple objects,
how to obtain accurate estimation from noisy event streams
caused by vibration from subtle movement of handheld and
vibrating object, and how to process thousands of events
efficiently on resource-constrained devices. In this paper,
EV-Tach is proposed to bridge the gap above.

3 SYSTEM DESIGN

In this paper, we propose an event-based rotational speed
measurement system, EV-Tach. The overall system design
of EV-Tach is presented in Fig. 2 and can be vastly divided
into three components, i.e., rotating object extraction, event
stream downsampling and ICP-based registration.
Rotating objects extraction: it starts with recording a short-
period of event stream. To accommodate multiple rotat-
ing objects scenarios, the event stream is separated into
multiple clusters corresponding to different rotating targets
through a series of event stream processing components.
Specifically, the centroid-initialization component initializes
the locations of centroids for clusters based on the heatmap
of events to avoid the clustering algorithm falls into local
optimal. Then the K-means-based approach is used to clus-
ter thousands of events and automatically determining the
number of rotating targets without the prior knowledge. At
last, to suppress the interference of events not belonging
to the rotating object, the outlier events are removed by
comparing the distance of the events to the cluster centroid
to find out noisy events caused by subtle movement.
Event stream downsampling: when the event stream is
separated into multiple clusters according to different rotat-
ing objects. The event stream downsampling component is
triggered to save the computation and energy consumption
of the whole system. It takes a cluster with thousands of
events as input and applies VoxelGrid filtering [33] to reduce
the number of events by merging multiple events within the
same voxelgrid. As the VoxelGrid filtering can preserve the
spatial-temporal structure of the cluster, the accuracy will
not experience noticeable drop.
ICP-based registration:At last, the downsampled clusters
of events are feed to the ICP-based registration to obtain the
rotational speed of each object. The event stream in spatial-
temporal domain is similar to 3D pointcloud, we propose
an ICP-based registration method to estimate the trans-
formation (i.e., how to align two slices of event streams)
between the two slices of event streams to obtain the angle
of rotation. Then the rotational speed can be calculated by
dividing the angle of rotation with the time difference. A
two stage coarse-to-fine alignment strategy is also applied
to improve the accuracy in which the initial alignment
provides important hints for the second alignment to refine
the estimation.

3.1 Event Stream Processing

In this section, we will describe the event stream processing
algorithms in details. The algorithms aim to extract high
quality and low-dimensional event stream with single rotat-
ing target for the rotational speed estimation in next section.
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Event-streams
Rotating objects

extraction
Event stream

downsampling
ICP-based registration for

rotational speed estimation

Fig. 2. System overview of EV-Tach

3.1.1 Rotating Objects Extraction
One of the important merits of EV-Tach over electromag-
netic and laser tachometer is its capability on sensing multi-
ple rotating targets simultaneously. For example, in drones
manufacturing, the four independent electric-motors need
to be calibrated. If electromagnetics and laser tachometers
are exploited, the number of sensors needs to be the same
as the electric-motors. The manpower and material con-
sumption during the settings of the measurement will be
a challenge. On the contrary, with EV-Tach, only one DVS is
needed without changing the settings of the measurement.
To separate different rotating targets, we propose a K-
means-based rotating objects extraction algorithm to isolate
the events belonging to different rotating targets for further
processing.
Heatmap-based Stream-centroids Initialization: K-means
is widely used clustering algorithm in euclidean space. It
iteratively merges the points to the nearest clusters and
update the centroids accordingly until it converges. For
rotary motion sensing, the resultant centroids are the lo-
cations of the rotation axes of all rotating targets. The
computational complexity of K-means is low and can run in-
situ on resource-constrained platforms. However, it suffers
from instability and sensitivity to the initial location of
centroids [34]: the poor choice of initial centroids may lead
the algorithm fall into local optimal and result in incorrect
clusters.

(a) initial centroids on heatmap (b) clustering result

Fig. 3. The initial locations of the centroids on the heatmap and the
clustering results of four-propellers drone.

Considering the characteristics of event streams pro-
duced by rotating targets, we propose a lightweight stream-
centroids initialization method based on the heatmap of
accumulated events to enable reliable rotating objects ex-
traction. After caching a fixed-length of event stream, e.g.,
150ms, the number of events on each pixel are accumulated
into a heatmap. The size of the grid in our setting is
4 ⇥ 4 pixels. Figure 3(a) presents the locations of the initial
centroids on the heatmap of an event stream collected from

a four-motor drone. From the heatmap, we can observe,
more events are generated near the center of the rotating
target. We find the grid with the highest value (denoted as
h) in the heatmap as the centroid of the first cluster i.e.,
c1. Then the remaining centroids are chosen from the grids
whose values larger than ✏h (✏ = 0.3 in our evaluations and
experiments). Specifically, the second initial centroid c2 is
the most distant grid from the set S = {c1}, the (i + 1)-th
initial centroid ci+1 is chosen as the most distant grid from
the set S = {c1, c2, ..., ci} and so on, where the distance
between a grid g and a set S is defined as:

D(g, S) = min
ci2S

d (g, ci) , (2)

d (g, ci) is the euclidean distance between grid g and i-th
initial centroid ci from set S.

Figure 3(a) shows an example of the four initial centroids
chosen by our method. The principal behind this strategy
is to maximize the inter-cluster distance to avoid the local
optimal of K-means algorithm. Figure 3(b) demonstrates
the clustering results of the event stream generated by a
four-propeller drone, where the four rotating objects are
separated correctly.
Spatial Clustering on Event Streams: After the centroids
initialization, the event stream should be segmented into
multiple clusters corresponding to each individual rotating
target. In each iteration, K-means-based clustering is applied
to associate each event ei to one of the clusters with the
nearest centroid in euclidean space and then update the
centroid of each cluster by:

ĉi =
1

|Qi|
X

ej2Qi

l(ej) (3)

where ĉi is the updated centroid location, |Qi| is the total
number of events and l(ej) is the location of the event ej .
The events clustering and centroids updating procedures
are executed alternatively until the location of the centroids
remain (almost) the same, which indicates a stable clustering
result has been achieved.
Choice of k: As the number of rotating objects in an event
stream can be various, the choice of k is of importance for
the K-means clustering. However, it is inconvenient to man-
ually determine the number of rotating targets. To address
this challenge, we apply Davies-Bouldin Index (DBI) [35] to
evaluate the quality of the clustering. Then k can be deter-
mined without the prior knowledge. Specifically, we assume
the candidate values of k are {k1, k2, k3.., ki, ...}. When k =
ki, a collection of ki clusters Qki = {Q1, Q2, ..., Qi, ..., Qki}
are obtained from K-means clustering. Then the DBIs of the
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clustering results with different value of k are calculated
and the minimal DBI is desired to maximize the inter-
cluster distance and minimize the intra-cluster distance. To
calculate DBI when k = ki, we need first estimate the
dispersion of each cluster and the separation between any of
the two clusters. The dispersion of cluster Qi when k = ki
is

Disp(Qi) =
1

|Qi|
X

ej2Qi

d (ej , ci) (4)

where d(ej , ci) is the euclidean distance between any event
and the centroid of the cluster. Then the separation between
cluster Qi and Qj in Q is:

Sep(Qi, Qj) = d (ci, cj) . (5)

With the dispersion and separation, we can obtain the
similarity between the two clusters Qi and cluster Qj ,

Sim(Qi, Qj) =
Disp(Qi) +Disp(Qj)

Sep(Qi, Qj)
. (6)

Then the similarity between Qi and the whole collection Q
is defined as maximum similarity between Qi and any other
cluster from the collection:

SIM(Qi,Q) = max
j=1..ki,j 6=i

Sim(Qi, Qj) (7)

Then DBI of the clustering result when k = ki can be
expressed as,

DBIki =
1

ki

kiX

i=1

SIM(Qi,Q). (8)

Finally, the value of k bringing the smallest DBI is chosen
and the corresponding clustering extracts multiple rotating
targets from the event stream.
Post-processing for Outliers Removal: After the rotating
objects extraction, a post-processing module is triggered to
remove the outliers of each event stream caused by the
movement irrelevant to the rotating objects. Except for the
rotating targets, the subtle movement of users (in handheld
measurement) and vibration of the host devices will also
cause noticeable events in DVS and these events are re-
garded as outliers. Figure 4(a) presents the accumulated
event stream in pixel domain recorded by a user holding an
event-camera in front of a rotating target (the ring in red).
Due to the subtle movement of user’s hand, the outliers of
the hosting device and edges in background (in blue) are
also detected in DVS. As the rotating target causes signif-
icantly larger density of events than the subtle movement
and the outliers are normally far from the centroid. Most
of the valid events should concentrate around the center of
rotation. To remove the outliers, we first estimate the median
distance of the events to the centroid,

Dm = median{d (e1, ci) , d (e2, ci) , ..., d (ej , ci) , ...}, ej 2 Qi

(9)
Then we set distance over three times of the Dm as the
threshold and the events with distance over the threshold
are marked as outliers.
Angle of Rotational Symmetry: For each identified rotating
object, we need to track the amount of rotation precisely
within appropriate period to avoid events generated by

(a) Outliers removal

150 170 190 210 230 250
X

80 

100

120

140

160

Y

Blade 1
Blade 2
Blade 3

(b) Blades detection

Fig. 4. Example of outliers removal (a) and number of blade detection
(b).

different blades entangled spatially causing ambiguity in
the following steps. In many real-world applications, many
rotating objects are of centrosymmetric shapes, such as
propellers of drone, fans of condensing unit and wheels
of automobile etc. To estimate rotational motion of these
objects, we identify certain features on the rotating objects,
e.g. the blades of the propellers/fans, spokes of the wheels,
and track the motion of those features (i.e. angle of rotation)
as a proxy for the rotational motion of the target objects.
Note that for objects without those intuitive features, such
as a plain rotating disk, in practice we can easily annotate
them, e.g. with stickers or patterns, to create such trackable
features. In addition, without loss of generality in this work
we assume the rotating objects are rigid bodies, i.e., there is
no significant deformation during their motion.

In this context, to accurately track the rotational mo-
tion of these features, e.g. the blades of the propellers, an
important parameter to determine is the angle of rotational
symmetry, i.e. the smallest angle for which a feature can
be rotated to coincide with itself or the other features. In
our case, this is used to determine the appropriate length of
event streams for the later ICP-based registration to avoid
ambiguity. For example, Figure 4(b) shows an event stream
caused by a rotating object with three separated blades. K-
means ++ [36] with Davies-Bouldin Index (DBI) evaluation
is applied to separate different blades in event stream with
only a small number of events (e.g., 300). Because when
the number of events become large, the events generated
by different blades will be entangled spatially due to the
rotation. Then the angle of symmetry can be determined by
the number of repeated parts, e.g., blades.

3.1.2 Event Stream Downsampling
EV-Tach is designed as a rotational speed estimation system
on embedded platforms so that it can be used handheld.
However, processing the event streams with tens of thou-
sands events is a huge burden for embedded CPU and
prohibitive for resource-constrained platforms, e.g., Rasp-
berry Pi. To reduce the number of events to be processed,
we downsample the event streams through VoxelGrid fil-
tering [33]. The VoxelGrid filtering starts with dividing the
whole spatial-temporal space of event stream into 3D grids,
termed as voxels, with size (VX , VY , VT ) in each dimension.
VX and VY are sizes of the voxel in pixels along the X
and Y axes respectively while VT is the size of the voxel in
milliseconds along the T axis. EV-Tach applies cubic voxels
so that the sizes of the three dimensions are equal and
denoted as Vs. In each voxel, the events are merged into one
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representative point at the spatial-temporal centroid of them
so that the following ICP-based registration can work on the
representative points directly. Figure 5 presents an example
of VoxelGrid filtering on downsampling an event stream.
Though the number of events are significantly reduced, the
traces of the rotation are still clear and complete.

(a) Before downsampling (b) After downsampling

Fig. 5. VoxelGrid filtering for event stream downsampling.

3.2 Rotational Speed Estimation

After the event streams corresponding to different rotat-
ing targets are extracted, an Iterative Closest Point (ICP)-
based registration approach is proposed to estimate the
rotational speed according to the transformation of event
stream overtime. ICP is a commonly used technique in
computer vision and computer graphics [37], [38], [39] for
aligning two or more pointclouds in 3D space, and has wide
applications in various fields such as object recognition [40]
robot navigation [41] and 3D registration [42]. It aims to find
the optimal transformation (rotation and translation) from
one pointcloud to the other pointcloud by minimizing the
`2-norm error (mean square error, MSE) between the points
from the two pointclouds. The typical steps of the ICP algo-
rithm [43] starts with a nearest neighbor search to find the
correspondence between points from different pointclouds.
Then the euclidean distance between each pair of points are
calculated to derive the MSE of the alignment. The rotation
and translation is obtained by solving the singular value
decomposition (SVD) [44], [45] problem and applied to align
the two pointclouds. The steps are repeated until a desirable
MSE is achieved. To accommodate larger range of rotational
speed, the ICP-based alignment approach applies a two-
stage coarse-to-fine strategy: initial alignment provides a
coarse estimation as a feedback to the refinement stage to
obtain accurate rotational speed.

3.2.1 Initial Estimation
In EV-Tach, the rotational speed is calculated by estimating
the angle that a propeller has rotated around its axis in a
specific time. For example, Figure 6(a) presents two consec-
utive 10ms-slices of event stream generated by a rotating
propeller with three blades. The two slices share 7ms over-
lap and the step between the two slices are 3ms. As the two
slices of event stream are generated by the same propeller,
the angle of rotation between the two slices can be obtained
through aligning the two slices of event stream. In this
paper, we propose an even-stream registration algorithm
based on iterative closest point (ICP).
Rotations in Spatial-temporal Domain: Before touching
the details of the ICP-based registration algorithm, we first

(a) Before registration (b) After registration

Fig. 6. Event stream Registration

briefly introduce the rotation matrix, which is the core out-
put we need from the event stream registration to calculate
the rotational speed. The output of ICP normally consists of
a translation matrix and a rotation matrix. Rotation matrix
R describes the rotation in 3D space and can be decomposed
into roll, pitch and yaw, the three independent rotations
around each axis according to Euler’s rotation theorem [46].
As shown in Figure 7, the spatial-temporal event stream can
be regarded as in three-dimension (X,Y, T ). The overall ro-
tation matrix R can be decomposed into three independent
rotation matrices in the spatial-temporal domain:

R = RX(↵)RY (�)RT (�) (10)

where RX , RY and RT are the rotation matrices to the three
axes and ↵, � and � are the angles in roll, pitch and yaw
respectively. From Figure 7, we can easily identify, the Yaw
rotation around T -axis is directly related to the rotation
of the propeller. Therefore, we only need to focus on the
rotation matrix RT , which can be expressed as,

RT (�) =

2

4
cos(�) sin(�) 0
� sin(�) cos(�) 0

0 0 1

3

5 . (11)

With ICP-based registration, we can obtain the yaw rotation
angle � from RT .

T

X

Y

Yaw

Roll
Pitch

Blade 1

Blade 2Blade 3

Fig. 7. Demonstration of rotation in spatial-temporal space

ICP-based Rotational Speed Estimation: The ICP-based
event stream registration works on two consecutive slices of
event stream P and Q with length tl, overlap tp and step
length tf (tl = tp + tf ), where P is termed as source event
stream and Q is the target event stream. In this paper, we
view source and target event streams as event pointclouds
in the spatial-temporal domain. The ICP-based registration
aligns the two slices of event streams by rotating the source
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event stream to match the target event stream in spatial-
temporal domain such that the rotating angle between the
two slices can be obtained. The objective of our ICP-based
approach is to optimize the `2-norm error E between the
rotated source event stream and target event stream by
solving:

minE(R, Tr) = min
1
N

NX

i=1

kqi � (R · pi + Tr)k2 , (12)

where R and Tr are the optimal rotation and translation,
respectively; qi and pi are samples in Q and P , respectively,
and N denotes the number of event points in P. We solve
the optimal R and Tr by a singular value decomposition
(SVD)-based method [44]. It starts with the nearest neighbor
search, i.e., for each event in P, the closest event from
Q is found in spatial-temporal domain. After the nearest
neighbor search, we can obtain a subset Q0 consisting events
from Q which are nearest neighbors of events in P. Then the
co-variance between the P and Q0 is,

cov =
NX

i=1

(pi � p̄) (q0i � q̄0)
T (13)

where pi and q0i are the spatial-temporal positions of the ith
event from P and Q0 respectively. p̄ and q̄0 are the spatial-
temporal positions of the centroids. Then SVD is applied to
factorizing the co-variance matrix, i.e.,

cov = U⌃V T . (14)

The rotation matrix is R = V UT (according to [44]) and
translation matrix is Tr = q̄0 � Rp̄. Along with Eq (10)
and Eq (11), the yaw rotation angle � can be estimated
and the source event stream is transformed according to the
rotation and translation matrices. Then the operations above
are repeated and � from each iteration is accumulated:

�acc = �acc + � (15)

The iteration terminates when yaw rotation diminishes, i.e.,
�/�acc < 0.001.

It is worth noting that, DVS is noisy and non-structural,
the source and target event streams normally cannot per-
fectly aligned. To reduce the influence of misalignment on
the estimation of rotation, we apply bi-directional regis-
tration by simply switching the source and target event
streams. The average yaw rotation �̄ is adopted to calculate
the rotational speed (in rpm) from initial alignment:

rinit =
�̄

2⇡ts
⇥ 60. (16)

3.2.2 Estimation Refinement
For the initial alignment stage, there is no prior knowledge
on how fast the rotational speed is. Therefore, to accommo-
date high rotational speed and avoid events from different
blades being entangled spatially, we choose a small step
length, i.e., ts = 1ms, in case the event streams from
different blades are overlapped and lead to ambiguity in
rotation estimation. However, when the rotational speed is
slow, e.g., less than 1000rpm, only very few events are gen-
erated by the rotating object within the super short period.
Considering the noisy nature of DVS, the estimation from

initial alignment can be unreliable. To improve the accuracy
of estimation, we propose a simple but effective refinement
approach based on the coarse result from initial alignment.
According to the rotational speed rinit from initial align-
ment, we can extend ts to include more events meanwhile
avoid the ambiguity caused by central symmetry: ts cannot
lead to rotation over the angle of symmetry mentioned
above, otherwise, the ICP-based registration will align two
different parts of the object together and causes incorrect
estimation on rotation. According to above constraints, the
new step length can be inferred as,

t0s = ⌘
60

2rinit
· ✓c
2⇡

(17)

where ✓c is angle of central symmetry determined above,
⌘ is an scale factor (<1) to accommodate the inaccuracy of
initial alignment. Then the new step length t0s is adopted to
run the ICP-based event stream registration again to obtain
a refined estimation on rotational speed.

4 EVALUATION

In this section, we evaluate our proposed EV-Tach on
datasets collected from monitoring the rotation of a cus-
tomized device and compare it with laser tachometer on
accuracy, robustness, convenience, etc. Then a number of
experiments on practical devices including drones, air-
conditioner and automobile are conducted under indoor
and outdoor environments. At last, by implementing it on
Raspberry Pi, the trade-off between accuracy and efficiency,
and the resources consumption will be demonstrated.

4.1 Evaluation Setup

Data Collection: As shown in Figure 8, during data collec-
tion, an event-camera is used to collect raw event streams
of a rotating target on the customized device and laser
tachometer is also deployed as benchmark. The customized
device is equipped with a servo motor whose rotational
speed can be precisely controlled through an interface on a
laptop and the highest rotational speed is 6000rpm. A white
plate is connected to the motor shaft as the rotating target
and “propellers” can be printed and attached on the plate
as requirement. The event-camera is DAVIS346 [20] whose
spatial resolution is 346 ⇥ 260 and temporal resolution is
20µs. DAVIS346 comes with a vari-focal CS-mount lens
which can be used to extend the measurement distance. The
laser tachometer (UNI-T UT372) provides high precision
measurement with relative error of ±0.4‰ and the results
can be easily streamed to a computer via cable. Moreover,
the measurement distance ranges from 20 � 50cm. The
datasets are collected by changing the rotational speed of
the servo motor, distance to the target, different number of
blades, and etc.
Implementation Details: As shown in Figure 9, we im-
plement EV-Tach on an embedded platform, Raspberry Pi
4B [47], as prototype to evaluate the resource consumption
of EV-Tach. Raspberry Pi 4B features a Broadcom BCM2711
embedded CPU with 4⇥ 1.5GHz Cortex-A72 processors and
4GB LPDDR4-3200 SRRAM and the operating system is
ubuntu 20.04. The DAVIS346 is connected to Raspberry Pi
via USB 3.0 so that the EV-Tach running on the embedded
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(a) DAVIS346 and UT372 (b) DAVIS346 handheld

Fig. 8. Experiment setup for data collection

CPU can control the event-camera to conduct dynamic vi-
sion sensing and compute the rotational speed accordingly.
To fully exploit the computational capability of multi-core
processors of Raspberry Pi, multi-threads implementation is
adopted to speed up the processing of EV-Tach. For exam-
ples, when downsampling the event streams by VoxelGrid
filtering, the source and target event streams can be pro-
cessed in parallel. During nearest neighbor search, which is
most time-consuming component of ICP-based registration,
can also be easily paralleled in multiple threads.

Fig. 9. Prototype of EV-Tach on Raspberry Pi 4B

Evaluation Metrics: The evaluations in this section can be
vastly divided into two aspects: the first is to compare the
accuracy of EV-Tach to laser tachometer and the second
is to evaluate its system overhead on embedded system.
Relative mean absolute error (RMAE) is adopted to present
the accuracy of measurement and defined as,

RMAE =
1

M

MX

i=1

|ri � rgt|
rgt

(18)

where M is the number of tests and M = 30 in the following
evaluation; ri is the ith measured rotational speed and rgt
is the ground-truth. Low RMAE means high measurement
accuracy. Then the time and energy consumption of EV-Tach
on Raspberry Pi is profiled by estimating the current and
voltage of the prototype.
Competing Methods: In the evaluations on accuracy, we
consider four different measurement methods to compare
the accuracy of EV-Tach to the state-of-the-art laser tachome-
ter, which are:

• DVS-Fixed: DAVIS346 is fixed on a tripod and placed
on the table while recording event streams via DVS.

• DVS-Handheld:DAVIS346 is held in hand of a user
while recording the event streams. To mitigate sub-
jectivity, we let multiple i.e., ten users perform trials
independently and report the mean RMAEs.

• Laser-Fixed: laser tachometer is fixed on a tripod and
placed on the table. It points to a 1cm ⇥ 1cm reflective
label on one of the blades.

• Laser-Handheld: laser tachometer is held in hand of a
user. The user tries to point to the reflective label while
measuring the rotation. Similar to DVS-Handheld, ten
users are asked to perform the trials independently
similar to DVS-Handheld, and the mean RMAEs are
reported.

4.2 Evaluation on Accuracy of Rotational Speed Esti-

mation

In this section, we will provide extensive evaluations on the
accuracy of EV-Tach against different parameter settings, in-
cluding rotational speed, measurement distance, number of
blades, host vibration and occlusion ratios. Laser tachome-
ter, as the state-of-the-art rotational speed measurement
tool, is chosen as the benchmark to compare with EV-Tach.

4.2.1 Ablation study
We first evaluate the effectiveness of Outliers Removal

and Estimation Refinement through an ablation study.

3 5 7 10 15 20 25 30 40 50 60
RPM(102)

10-2

10-1

100

101

102

103

R
M

A
E(

‰
) Fixed w outliers removal

Handheld w outliers removal
Fixed w/o outliers removal
Handheld w/o outliers removal

(a) Different methods

3 5 7 10 15 20 25 30 40 50 60
RPM(102)

10-1

100

101

102

Initial Alignment
Refinement
Further Refinement

(b) Different components

Fig. 10. Evaluation of the impact of Outliers Removal on EV-Tach(a).
RMAE from different components of event stream registration(b).

Evaluation on Outliers Removal: We first evaluate
the impact of outliers removal module on our system by
comparing the accuracy of EV-Tach with or without out-
lier removal under fixed or handheld measurement. We
demonstrate the RMAEs against different rotational speeds,
from 300rpm to 6000rpm, in Figure. 10(a). From the result,
we can observe, three methods, except for Handheld w/o
outlier removal can produce accurate measurement with
RMAEs less than 1‰, and the average RMAEs of Fixed w
outlier removal) and Fixed w/o outlier removal) are 0.31‰,
0.33‰, respectively. However, in the case of handheld mea-
surement, the average of RMAEs of DVS-Handheld rockets
from 0.38‰ (Handheld w outlier removal ) to 330.72‰
(Handheld w/o outlier removal ). Therefore, outliers re-
moval module is essential for EV-Tach to accommodate the
subtle movement irrelevant to rotating objects, as it can
remove the background noise interference of the rotating
object and guarantee the measurement accuracy of our
system in the case of handheld.

Evaluation on Estimation Refinement:EV-Tach applies
a coarse-to-fine strategy to refine the estimation obtained
from initial alignment. To show the refinement stage really
works and no further refinement is needed, we compute
the RMAE of the outputs of the three different compo-
nents of EV-Tach (DVS-Fixed) including initial alignment,
refinement and further refinement. The further refinement
means to use the rotational speed obtained by refinement to
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Fig. 11. Evaluation of different measurement methods with changing parameter settings

recalculate t0s by equation 16, then a new refined rotational
speed estimation can be obtained by ICP-based event stream
registration. The RMAEs against different rotational speeds,
from 300rpm to 6000rpm, are shown in Figure 10(b). First,
we can observe the RMAEs of initial alignment fluctuates
along RPM, which is due to a small step length, i.e.,
ts = 1ms cannot provide enough events for stable ICP-
based registration results. However, by comparing different
stages, we can observe, the first refinement effectively re-
duces the RMAE for all rotational speeds compared with
initial alignment. For example, via refinement, the average
of RMAEs across all rotational speeds drops significantly
from 7.6‰ to 0.31‰, which means approximately 25 times
improvement on accuracy. Moreover, further refinement
cannot guarantee noticeable improvement and consumes
extra resources, therefore, a two-stage strategy with initial
alignment and one-time refinement is sufficient to obtain an
accurate measurement.

4.2.2 Evaluation on Different Rotational Speeds
From this section, we will compare EV-Tach with the laser
tachometer under different circumstances. First, the four dif-
ferent measurement methods DVS-Fixed, DVS-Handheld,
Laser-Fixed and Laser-Handheld are evaluated against dif-
ferent rotational speeds. The measurement distance is set
as 40cm. By changing the rotational speed of the servo
motor from 300rpm to 6000rpm, we can obtain the corre-
sponding RMAEs of the four different methods as shown in
Figure 11(a). As mentioned before, each RMAE is obtained
from averaging the results of 30 independent tests and five
users are recruited for the handheld measurement. From
the figure, we can observe, three methods, except for Laser-
Handheld, can produce accurate measurement with RMAEs
less than 1‰. Especially, Laser-Fixed achieves the lowest
RMAE (< 0.1‰). However, when the laser tachometer is
held in hand, the average of RMAEs of Laser-Handheld
rockets to 87‰ due to the subtle movement of user’s
hand. When it comes to EV-Tach, the DVS-Fixed and DVS-
Handheld methods produce similar RMAEs and the aver-
age of RMAEs of DVS-Handheld is below 0.4‰ which is
over 210 times better than Laser-Handheld. Therefore, we
can claim that, EV-Tach is robust to the subtle movement.
While the laser tachometer, though designed as a portable
device, is not suitable for handheld measurement. It is worth
noting that, it is very hard to point to the small reflective
label attached on the blade when the target is fast rotating.
It normally takes at least tens of seconds for user to point
to the correct spot then it deviates easily from the label

due to subtle movement of hand. Comparatively, EV-Tach is
significantly more convenient. Users only need to make the
camera approximately face to the front of the rotating target
and the procedure is in no time. By comparing DVS-fixed
and DVS-handheld in Figure 11(a), we find different trends
with the increase of rotational speed. During experiment,
we observe slightly vibration of the servo motor with the
desk when it is fast rotating, which may cause the trivial
performance decrease of DVS-fixed with the growth of the
rotational speed. While for handheld scenario, the subtle
movement from hand and host may cancel out by chance.
Therefore, there is no clear trend on the performance change
with the increase of rotational speed for DVS-Handheld.

4.2.3 Evaluation on Measurement Distance
The distance to the rotating target during measurement
can be various in use. In this section, we evaluate the
accuracy of the four methods against different measurement
distances. Again, RMAEs of the four methods are computed
by gradually increasing the measurement distance from
30cm to 70cm and the results are shown in Figure 11(b).
Each RMAE in the figure is obtained from averaging the
RMAEs obtained under different rotational speeds. From
the results we can observe, Laser-Fixed is not affected by
the measurement distance: as far as the reflection of laser
can reach, it will produce stable and accuracy measurement.
The RMAEs of the remaining methods all increases with
the growth of measurement distance due to different rea-
sons. For Laser-Handheld, with the increase of distance, it
becomes more difficult for users to point the laser to the
small reflective label and keep not deviate from the correct
spot during the measurement. The accuracy of EV-Tach ap-
proaches, DVS-Fixed and DVS-Handheld, declines as the
occupied area of the event stream shrinks with the growth
of distance. However, it can be solved by using a zoom
lens on event-camera. For example, by changing the focal-
length of DAVIS346 from 8mm to 120mm, we can zoom-in
on the rotating target. According to our evaluation, when
the measurement distance is 7m, the average of RMAEs of
DVS-Handheld with 120mm focal-length is below 0.69‰
which is similar to that of DVS-Handheld with 8mm focal-
length in 50� 60cm measurement distance.

4.2.4 Evaluation on View Angle
We evaluated the effect of view angle on EV-Tach. We keep
the distance from the Davis 346 and laser tachometer to
the center of the servo motor to be around 40cm, then
we conduct experiments at 90, 81, 72, 63, and 54 degrees,
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where 90 degrees means that the Davis 346 lens and the
emitted laser is perpendicular to the rotating object. For
each view angle, the average RMAEs of 300rpm to 6000rpm
are showed in Fig. 11(c). Overall, we can see that the fixed-
laser tachometer is not affected by the angle change because
of the special retro-reflective label. It reflects laser directly
back to its source and produce high measurement accuracy
because the source (laser tachometer) is fixed. However, for
the handheld scenario, we can see that, though the RMAE
of DVS-handheld keeps increasing from 90 degrees to 18
degrees, the error is still significantly less than that of Laser-
Handheld: the improvement is at least 75 times (2.25‰ v.s.
166.7‰ when the view angle is 54 degree).

4.2.5 Evaluation on Different Number of Blades
Generally, as three-blade propellers are the most common
rotating targets to be seen [48], in the evaluations above,
we set the number of blades to be three. However, it
is possible the rotating targets are various in number of
blades. For example, most of drones are equipped with two-
blade propellers. We evaluate the accuracy of EV-Tach on
estimating the rotational speed of propellers with two, three
and four blades respectively. By gradually changing the
rotational speed of servo motor, the RMAEs are calculated
and presented on Figure. 11(d). From the results we can
observe, EV-Tach achieves similar accuracy of measurement
for all types of blades and the average of RMAEs are 0.32‰,
0.31‰ and 0.39‰. Therefore, EV-Tach can work on the
rotating propellers with different number of blades.

4.2.6 Evaluation on Robustness to Host Vibration
In real-world scenarios, the hosting devices are sometimes
not stable, e.g., vibrating. To obtain accurate measurement,
the tachometer should be able to accommodate the slight
motion of the hosting device to some extent. Therefore,
we simulate and quantify the vibration of host to evaluate
the robustness of EV-Tach and laser tachometer to vibra-
tion. To generate vibration with different frequencies and
amplitudes precisely, we utilize two vibration generators,
namely the AUBO Robotics i16 [49] and the Modal Excite
SA-JZ002 [50], to control the vibration amplitude and fre-
quency, respectively. AUBO Robotics i16 provides vibration
amplitude from 0 to 2.5cm at fixed frequency of 2Hz while
Modal Excite SA-JZ002 can vibrate between 0 to 10Hz with
fixed amplitude of 0.5cm. However, because the servo motor
is too heavy to be carried by the vibrating platforms, we
utilize the intelligent fan management software, Fan Xpert
4 intelligent, on the ASUS Z790 motherboard [51] to control
the rotation speed of the TL-C12 PRO-G case fan[52]. The
average RMAEs of different host vibration amplitudes and
frequencies for different measurement methods are shown
in Figure 12(a) and Figure 12(b). The average RMAEs of
DVS-Handheld are 2.6 ‰ and 2.7‰, for different vibrating
amplitudes and frequencies. While the average RMAEs of
Laser-Handheld are 322 ‰ and 272‰. It is worth noting
that as the motherboard does not control the fan speed
as precisely as the servo motor, we are unable to obtain
an accurate groundtruth. Therefore, the RMAEs of DVS-
Handheld were slightly higher than the servo motor mea-
surement results. However, the accuracy of DVS-Handheld
is still 123.8 and 100.7 times better than Laser-Handheld on

changing vibration amplitudes and frequencies scenarios,
respectively.

0  0.5 1  1.5 2  2.5
Vibration amplitude(cm)

10-2

10-1

100

101

102

103

DVS-Handheld
Laser-Handheld

(a) Different amplitudes

0 2 4 6 8 10
Vibration frequency(hz)

10-2

10-1

100

101

102

103

DVS-Handheld
Laser-Handheld

(b) Different frequencies

Fig. 12. Relative error vs. different host vibration amplitudes and fre-
quencies for different measurement methods.

4.2.7 Evaluation on Occlusion

(a) The experiment setting
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‰
) W/o occlusion
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1/3 occlusion
Laser-Handheld

(b) Different ratios of occlusion

Fig. 13. The experiment setting of object occlusion and the measure-
ment results of different ratios of occlusion

It is possible part of the rotating object is occluded
when measured. Thus, we evaluate the accuracy of EV-Tach
when part of the rotating object is occluded. As shown in
figure 13(a), a cardboard is placed in front of the servo
motor to cover part of rotating disc. We change the ratio
of occlusion by moving the cardboard from edge to the
center of the disc and the ratio refers to how much the
diameter of the disc is occluded. By gradually changing the
rotational speed, the RMAEs of different ratio of occlusion
from handheld DVS and handheld laser tachometer are
calculated and presented in Figure. 13(b). From the results
we can observe, the accuracy of the measurement decreases
gracefully. For examples, the average RMAEs EV-Tach with
1/5 occlusion and 1/4 occlusion are 0.73‰ and 1.73‰,
respectively. However, when the occlusion is significant,
e.g., 1/2, EV-Tach will fail to determine the correct number
of blades which is the limit of our system. It is worth noting
that, when both of the host and tachometer are in fixed state,
the laser tachometer can obtain promising measurement
results as long as the reflective label is not occluded during
rotating. However, when the laser tachometer is held in
hand, which is the practical scenario concerned in this paper,
the average of RMAEs of Laser-Handheld rockets to 87‰,
which is significantly higher than DVS-Handheld as shown
in Figure 13(a).

4.2.8 Evaluation on Practical Devices
The previous evaluations are based on our customized
device with servo motor and the blades are printed. To
prove our methods work on practical devices, we set up new
experiments to measure the rotational speeds of propellers
of drone, fans of air-conditioner and automobile wheels.
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(a) The experiment setting
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(b) The measurement results

Fig. 14. The experiment setting of measuring the rotational speeds of
propellers of drone and the measurement results from laser tachometer
and handheld DVS.

(a) DVS-Handheld(drone hover) (b) DVS-Handheld(sunny days)

Fig. 15. The DVS-Handheld measurement results for drone propellers
(a) and condensing unit of air-conditioner (b), respectively, where laser
tachometer cannot work in those case.

Drone propellers: The personal drones normally have four
propellers and the motions of drones are determined by
changing the rotational speed of one or more propellers. As
personal drones cannot provide precise rotational speed, we
use laser tachometers as the tools to obtain benchmarking
results. During measurement, the drone first is landing on
the floor while its propellers are fast rotating for the laser
tachometers cannot handle the movement of drone in the
air (see Figure 14(a) for reference). To measure the four
propellers with DVS and laser at the same time, four laser
tachometers are screwed on the tripod arms and each laser
tachometer is calibrated to one of the propellers with a
reflective label attached, while a DVS is held in hand of
a user as shown in the figure. The measured rotational
speeds from laser tachometers and DVS are synchronized
and shown in Figure 14(b). From the results, we can find
the rotational speeds of the four propellers are different and
those obtained from DVS match well with those from laser
tachometers and the average relative difference between the
two methods is less than 1‰. Another important merit of
using DVS in this experiment is only one DVS is needed
to measure the four rotating propellers at the same time.
In addition, we also measure the rotational speeds of the
propellers when the drone is hovering. As the hovering
drone is too wobbly for the laser tachometer to obtain any
reading, we only demonstrate the results from handheld
DVS in Figure 15(a). Though the “groundtruth” is missing,
we can observe the rotational speeds of the propellers are
quite steady when the drone is hovering and are signifi-
cantly higher than the landing status to lift the drone in the
air.

DVS

on ensin  nit

Laser

Reflective Label

(a) The experiment setting (b) The experiment results

Fig. 16. The experiment setting of measuring the rotational speeds of
the fan of condensing unit and the measurement results from laser
tachometer and handheld DVS.

Condensing unit of air-conditioner: We also measure the
rotational speed of the fan of condensing unit which is
an important indicator to determine if the air-conditioner
is working properly. The experiment is conducted outdoor
as shown in Figure 16(a). One laser tachometer is screwed
on tripod arm and faced to the rotating fan with reflective
label, while DVS is held in hand of a user. The measured
results shown in Figure 16(b) demonstrate the handheld
DVS can produce almost the same rotational speeds as
laser tachometer. Moreover, according to our experience in
this experiment, the DVS-based approach shows superior
convenience and robustness than laser tachometer. First,
before using laser tachometer, we have to dissemble the
grill of condensing unit to attach the reflective label onto the
fan, and then re-assemble it during measurement for safety
consideration. While the DVS can obtain the measurement
directly. Second, the performance of laser tachometer is
largely affected by outdoor lighting condition: it fails to
produce any results during sunny days from morning to
afternoon as it is too bright outside. While the DVS is robust
to the outside lighting conditions. As shown in Figure. 15(b),
though the “groundtruth” is missing, we can observe that
handheld DVS can produce reasonable rotational speeds on
a sunny day.

It is worth noting that, the evaluation also indicates
the robustness of EV-Tach to the occlusion under practical
scenario. Though the grill of the condensing unit poses
significant occlusion on the blades of the fan, EV-Tach
can achieve comparable accuracy to laser tachometer. It is
because the occlusion is evenly distributed with the frames
and the shape of the rotating object is preserved well which
is the key for EV-Tach.

DVS

ar eel
Laser

Reflective Label

(a) The experiment setting (b) The experiment results

Fig. 17. The experiment setting of measuring the rotational speeds
of the wheels of automobile and the measurement results from laser
tachometer and handheld DVS.

Automobile wheels: The rotational speed of car wheels
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is an important item to check during car maintenance. As
shown in Figure 17(a), we set up a practical experiment in
an indoor car workshop. The rotational speeds are measured
when the car is lifted and wheels are rolling in the air. From
the results in Figure 17(b), we can observe the deceleration
and acceleration of the engine, and the results from both
approaches match each other.

4.3 Evaluation on System Overhead

By implementing EV-Tach on Raspberry Pi, we can eval-
uate its performance on embedded platform including the
trade-off between the accuracy and efficiency, and resource
consumption on time and energy.

4.3.1 Trade-off Between Accuracy and Efficiency
As embedded platforms are resource-constrained, the trade-
off between the accuracy and efficiency needs to be care-
fully tuned during implementation. Specifically, in EV-Tach,
VoxelGrid filtering [53] is adopted to significantly reduce
the number of events to be processed so that the computa-
tion time and energy consumption can be saved. However,
it may also bring negative influence on the accuracy of
ICP-based registration. Therefore, the size of voxel Vs for
downsampling should be determined for implementation.
To adapt to the sizes of rotating target and measurement
of distance, Vs is calculated by the diameter of the rotat-
ing target DX�Y in spatial domain (the coordinate plane
formed by X and Y axes) and the number of division
� in each dimension, i.e., Vs = DX�Y /�. The diameter
is obtained by finding the minimum squared bounding
box [54] containing the whole rotating target. For example,
when � = 2, the rotating target in spatial domain (the
plane of X-Y axes) are divided into four equal areas and
the corresponding size of voxels in spatial-temporal domain
is (DX�Y /2, DX�Y /2, DX�Y /2). By decreasing � from
14 to 1, we estimate the corresponding RMAEs and time
consumption of EV-Tach running on Raspberry Pi. The av-
erage of the results from different rotational speeds (300 to
6000rpm) are reported in Figure 18(a). There are two special
cases in the figure: � = none means no VoxelGrid filter
is applied and � = 1 mean no division in spatial domain.
From the results, except the special cases, VoxelGrid filtering
does not bring noticeable influence on the accuracy while
time consumption drops significantly with the decrease of
�. Therefore, � = 2 is chosen to reduce the computation
time of EV-Tach on embedded platforms while preserving
the accuracy. Figure 18(b) shows the detailed impact of
downsampling on measurement accuracy when � = 2 is
chosen by comparing the RMAEs of EV-Tach with and
without VoxelGrid filtering on measuring rotational speeds
from 300rpm to 6000rpm. The results show that EV-Tach
with filter provides accurate and stable results over different
rotational speeds.

4.3.2 Resource Consumption on Raspberry Pi
At last, we profile the computation time and energy con-
sumption of EV-Tach with and without VoxelGrid filter on
Raspberry Pi to show how significant the VoxelGrid filtering
improves the efficiency of EV-Tach on resource-constrained
systems.

(a) Accuracy v.s. Time

3 5 7 10 15 20 25 30 40 50 60
RPM(102)

10-2

10-1

100

101

102

With VoxelGrid Filter
Without VoxelGrid Filter

(b) � = 2

Fig. 18. RMAEs and time consumption of EV-Tach on Raspberry Pi.

Computation Time: The computation time can be easily
obtained from the console of the system. Figure 19(a) shows
the computation time of EV-Tach with or without the Vox-
elGrid filtering on measuring different rotational speeds.
From the results, we can observe, the filter can effectively
speed up the processing of EV-Tach by up to 10.5 times, i.e.,
when the rotational speed is 5000, the computation time
can be reduced from 1765.5ms to 167.5ms. The average im-
provement on computation time is approximately 8 times,
by shortening the average computation time from 1381.6ms
to 176.6ms. Accounting data collection, the average time
consumption of one measurement is approximately 326ms.
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(a) Time consumption
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(b) Energy consumption

Fig. 19. Computation time and energy consumption of EV-Tach (w or w/o
VoxelGrid Filter) on Raspeberry Pi.

Energy Consumption: Then we estimate the energy con-
sumption of EV-Tach on Raspberry Pi with or without the
VoxelGrid filtering. External tool is plugged in the micro-
USB of Raspberry Pi to monitor the voltage and current in
different states. Table 1 presents the voltage and current of
Raspberry Pi under different states, including idle, sensing
and processing (with or without filter).

TABLE 1
Current and voltage of Raspberry Pi under different running states.

STATE idle sensing processing processing (filter)
Current 680mA 750mA 1050mA 780mA
Voltage 5.02V 5.02V 5.01V 5.02V

The energy consumption (Ec) can be approximated by
multiplication of Current, Voltage and running time (RT),
i.e., Ec = Current ⇥ V oltage ⇥ RT . Then the energy
consumption of system in idle state should be extracted to
obtain the actual cost introduced by EV-Tach. Figure 19(b)
presents the energy consumption of sensing (data collec-
tion) and processing (running EV-Tach) on Raspberry Pi. By
comparing the processing cost of the two approaches of EV-
Tach, we can observe, the VoxelGrid filtering significantly
reduces the energy consumption by up to 40 times, i.e., from
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3.28J to 0.084J when rotational speed is 5000rpm. The actual
cost of obtaining one measurement in average, including
both sensing and processing, is about 141.3mJ (52.7mJ for
sensing and 88.6mJ for processing). .

5 DISCUSSION ON ADVANTAGES AND LIMITA-

TIONS

Advantages over laser tachometer: As the description and
evaluation in this paper, EV-Tach shows a number of
superior characteristics on the task of rotational speed mea-
surement over the state-of-the-art laser tachometer which is
dominant in the market. First and foremost, EV-Tach is a real
handheld tachometer and it is robust to subtle movement
of user’s hand and even vibrating host of the rotating
objects. While, though the laser tachometer is designed as a
portable device, its accuracy drops significantly when used
as handheld. Second, the use of EV-Tach is more convenient
than laser tachometer and no preparation is needed before
measurement; while laser tachometer must be pointed to
the small reflective labels or spot in high-contrast paint in
few occasions). When used as handheld, it takes users tens
of seconds to obtain a valid (but not necessarily accurate)
reading when the target is fast rotating or in long dis-
tance. Third, EV-Tach is robust to the vibrating host of the
rotating target which causes failed measurement for laser
tachometer. Fourth, the EV-Tach is able to measure multiple
rotating targets at the same time, which is impossible for
laser tachometer. Finally, compared with the other vision-
based method, it achieves significantly higher range of
measurement than those with conventional RGB cameras
and is more cost-effective than those applying high-speed
cameras.

Limitations: However, as the principal of DVS, EV-Tach
also shares some similar limitations to the vision-based ap-
proaches. First of all, it requires the rotating targets in form
of propellers or with uneven texture so that different phases
of rotation can be detected. However, like the reflective label
for laser tachometer, the usability of EV-Tach can be ex-
tended if unique pattern or labels are allowed to be attached
on the rotating object. For example, when the rotating object
is a flat disc with uniform texture, a label (e.g., a straight
line), which is high contrast to the disc, can be attached to
aid the measurement. Second, constrained by the hardware
design, the accuracy and range of measurement of EV-Tach
in this paper is lower than laser tachometer. However con-
sidering the spatial resolution of DAVIS346 is only 346⇥240,
the performance of EV-Tach is expected to be improved
by using event-cameras with higher spatial and temporal
resolution. Third, EV-Tach may fail when the occlusion is
significant as it cannot determine the correct number of
blades. On the contrary, for laser tachometer, when both of
the tachometer and host are in fixed-state, it is able to obtain
accurate measurement as long as the reflective label is not
occluded while rotating. However, as laser tachometer is not
robust to vibration, EV-Tach can achieve higher accuracy
than laser tachometer when used as handheld when over
half of the rotating objects are disclosed.

6 CONCLUSION

In this paper, we propose, EV-Tach, a rotational speed
measurement system based on dynamic vision sensing on
mobile devices to achieve efficient high-fidelity and conve-
nient estimation when used handheld. EV-Tach starts with
extracting multiple rotating targets via K-means clustering
and a heatmap-based initial centroids selection method is
propose to improve the robustness of the clustering. Then
angle of rotation is estimated via a coarse-to-fine ICP-based
event streams registration method and rotational speed can
be calculated afterwards. Extensive evaluations are con-
ducted and the results show that the accuracy of EV-Tach
is comparable to laser tachometer in fixed deployment but
is over 210 better in handheld measurement mode, which
is the focus of this work. EV-Tach is robust to vibrating
host of rotating target in which the laser tachometer fails
to provide reasonable results. At last, we implement EV-
Tach on Raspberry Pi and apply the VoxelGrid filtering to
improve its efficiency. By profiling the energy and time con-
sumption, we can find the VoxelGrid filtering significantly
reduces the time consumption by up to 10 times and energy
consumption by 40 times to make EV-Tach run in-situ on
embedded devices.
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