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Abstract. We present a new symbolic execution semantics of probabilistic pro-
grams that include observe statements and sampling from continuous distributions.
Building on Kozen’s seminal work, this symbolic semantics consists of a countable
collection of measurable functions, along with a partition of the state space. We
use the new semantics to provide a full correctness proof of symbolic execution
for probabilistic programs. We also implement this semantics in the tool symProb,
and illustrate its use on examples.

1 Introduction

Probabilistic programming languages are designed to make probabilistic computations
easier to express for a broader scientific community. They can be used to model behaviour
based on data that carries uncertainty or randomness, as found in, e.g., robotics [30],
machine learning [12, 23], statistics [11], and cryptography [14]. Besides traditional
programming constructs, a key aspect of a probabilistic language is the ability to sample
random values, in order to represent the uncertainty that occurs in the real world. It
is essential that these programming languages have a rigorous foundation, such that
correctness and safety properties can be guaranteed when designing and implementing
tools for probabilistic program analysis, optimization, and compilation.

Probabilistic semantics was first studied by Kozen [19], using measure theory to
relate denotational and operational semantics of imperative probabilistic programs. The
denotational semantics represents states as probability measures over program vari-
ables and programs as measure transformers. It enables one to effectively reason about
programs as a whole. The operational semantics, on the other hand, is a computation
model describing step-by-step computation in terms of a measurable function. A correct-
ness theorem for the operational semantics states that the produced sets of outputs are
distributed correctly according to the measure transformer of the denotational semantics.

To enable more detailed reasoning about probabilistic programs, we introduce a new
semantics, inspired by symbolic execution techniques. For non-probabilistic programs,
symbolic execution [1, 18] has been very successful in program analysis techniques such
as debugging, test generation, and verification (e.g., [3, 5–8, 13, 15, 16]). Its appeal arises
from the fact that one symbolic execution is an abstraction of possibly infinitely many
executions in the concrete state space, that all share a single execution path through
the program. Symbolic execution interprets program variables symbolically, such that
assignments update a symbolic substitution and conditional statements produce so-called
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path conditions that must be true for the program’s input variables to execute each path.
Thus, symbolic execution generates pairs consisting of a symbolic substitution and a
path condition. If the Boolean path condition holds in some initial state, then running
the program is the same as applying the corresponding substitution to the initial state.

We use the new semantics to provide a full correctness proof of symbolic execution
of probabilistic programs with respect to a denotational semantics à la Kozen. The
correctness proof is highly nontrivial: one semantics deals with the program’s symbolic
execution traces, the other interprets programs as measure transformers. Our approach is
to first prove a one-to-one correspondence between traces and the elements of our new
symbolic semantics. The latter is equivalent to the operational semantics first introduced
by Kozen [19], and hence to the denotational semantics. The full details of this proof are
included in the appendices.

We consider a language with observe statements: in some interpretations of Bayesian
inference, a programmer can express to have observed a value as a sample from some
discrete or continuous distribution [28]. In others, including the imperative language
that we consider, observe statements are given the semantics of asserting the truth of a
provided Boolean formula. Observe statements were not studied in Kozen’s work, and
an operational semantics for probabilistic programming with observe statements has
not been formally defined in that setting. For our correctness proof, therefore, we must
extend both denotational and operational semantics with an interpretation of observe,
and state and prove the corresponding correctness theorem anew.

Intuitively, observe statements in an operational semantics can be modelled by rejec-
tion sampling. That is, any execution that violates the observed formula is aborted. The
probability mass will then reside in execution traces where the observe condition holds,
and the probability of the set of traces where it does not hold will be annihilated. We for-
malize this semantics and prove its correctness with respect to a denotational semantics
that interprets observe b as a measure transformer that restricts measures to the set corre-
sponding with the Boolean formula b. This is an interpretation based on Bayes’ theorem.

Contributions and Overview. We start the paper by introducing the language using an
example program and discussing the challenges in the technical development (Section 2).
The subsequent technical sections of the paper present the following contributions:

– An in-depth description of symbolic execution of probabilistic programs (Section 3),
which supports discrete and continuous sampling as well as Bayesian inference
through observing Boolean formulas of positive-measure sets. In symbolic execution,
sampled values will be represented by symbolic variables.

– As a main contribution we provide a full correctness proof of symbolic execution
of probabilistic programs (Section 4) by introducing a new symbolic semantics for
imperative probabilistic programs and proving correspondence with established
semantics (which we extend to support observe statements).

– To showcase symbolic execution of probabilistic programs, we have developed
the tool symProb that performs bounded symbolic execution according to our new
symbolic semantics (Section 5). At the end of a symbolic execution, symProb reports
the path condition, the substitution mapping, and the set of Boolean formulas which
correspond to the program’s observe statements. We report on running symProb on a
series of examples to show how our semantics can be applied.
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2 Probabilistic Programming

We introduce the language through an example and then present its grammar.

2.1 Example Program

gender ∼ bern(0.51);
if (gender = 1) {

height ∼ norm(175,72);
} else {

height ∼ norm(161,50);
}
observe (height >= 200);

Consider the probabilistic program on the right, modelling
the gender distribution among people taller than 200 cen-
timeters. In the Bernoulli sampling statement bern(0.51)
for the variable gender we assume that 51% of the total
population is male. Among men, height is normally dis-
tributed with mean 175 and variance 72, and among women
with mean 161 and variance 50. The last line conditions
the distribution on people taller than 200 centimeters.

Symbolic execution has been very effective in analysis of non-probabilistic programs.
The technique builds variable substitutions by analyzing assignments, and resolves
conditional branching and iteration by use of nondeterminism. The conditionals are
stored under variable substitution as a Boolean formula – called the path condition –
that needs to be satisfied by the initial state for the corresponding substitution to be a
representation of the program. Some problems arise when programs have discrete and
continuous sample and observe statements, such as the above.

Consider for example a Bernoulli sampling statement xi ∼ bern(e). One could
introduce additional sets of symbolic variables for sampling statements, but it is prac-
tically infeasible to do so for each possible bias e, especially if one allows parameters
to be arithmetic expressions. In our approach, we assume a finite number of primitive
distributions (that is, unparameterized) and encode parameterized distributions using
these primitives. A Bernoulli sampling statement xi ∼ bern(e) is then encoded by
use of uniform continuous sampling from the unit interval [0, 1], written xi ∼ rnd, as
follows:

xi ∼ rnd; if (xi < t) {xi := 1} else {xi := 0}

A denotational semantics can be used to show soundness of such encodings.
For Gaussian distributed samples, the primitive distribution used is the standard

Gaussian distribution, which has mean zero and variance one. To obtain a sample from a
Gaussian distribution with mean e1 and variance e2 – both arithmetic expressions – a
standard Gaussian sample is scaled (multiplied by

√
e2) and translated (add e1).

With these encodings, one trace through the example program above has final
substitution σ and path condition ϕ, given by

σ = {gender 7→ 1, height 7→ z0
√
72 + 175} ϕ ≡ y0 < 0.51 ∧ 1 = 1

Here, y0 is a symbolic variable that is uniformly distributed over the interval [0, 1]. As it
turns out, the probability of the path condition as measured by the input measure is the
prior probability 0.51 of the trace.

The obtained Boolean formula from observe statements in this symbolic execution is

ψ ≡ z0 ·
√
72 + 175 ≥ 200,
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where z0 is a symbolic variable representing a standard Gaussian sample. Measuring
the set represented by this Boolean formula with the input measure yields exactly the
likelihood of the model we have in mind. To keep the prior and the likelihood separate,
we collect Boolean conditions under observe statements in what we coin the path
observations.

This paper formally describes the procedure above for general probabilistic pro-
grams, and proves correctness with respect to a denotational semantics. Building on
work by Kozen [19], we choose to interpret substitutions from symbolic execution as
measurable functions on the value space, and path conditions and path observations as
measurable sets of values for the program variables. These can then be compared against
Kozen’s denotational semantics, where program states are subprobability measures over
the domain of values for the program variables, and a program p is a transformer of
input to output measures JpK : M(Rn) → M(Rn). The use of measure theory is un-
avoidable in order to handle continuous random variables. For example the semantics of
height ∼ norm(175,72), given an input µ ∈ M(R), is the measure:

Jheight ∼ norm(175,72)K(µ) : A 7→ γ175,72(A)

Here, γ175,72 denotes the Gaussian measure with expected value 175 and variance 72.
After defining the language formally in Section 2.2, we provide a detailed descrip-

tion of symbolic execution of probabilistic programs in Section 3. There, towards a
correctness proof, we also introduce the symbolic semantics. This is a big-step semantics
for symbolic execution—this is stated in Theorem 4. Section 4 is aimed at proving
correctness with respect to a measure-transforming semantics. The correctness state-
ment (Theorem 5) says that the sum of probabilities of all symbolic execution paths, as
measured by the input measure, expressed using the final substitutions, path conditions,
and path observations, is the same as the probability under the denotational semantics.
The technical contribution is concluded with a proof of concept tool that implements
symbolic execution and we perform some experiments with it (Section 5).

2.2 Language

To express programs like the above example, we consider a language that contains
basic imperative constructs (assignments, sequential composition, conditionals, and
loops) together with constructs to manipulate random variables (sampling) and observe
statements that allow conditioning on an observation defined by a Boolean condition:

E ∋ e ::= q ∈ Q
| xi
| op(e1, . . . , e♯op)

xi ∈ X
♢ ∈ {<,≤,=, ! =,≥, >}

B ∋ b ::= False
| True
| e♢ e
| b || b
| b && b
| !b

P ∋ p ::= Skip
| xi:= e
| xi ∼ rnd
| observe b
| p # p
| if b p else p
| while b p

It defines expressions e ∈ E over program variables xi ∈ X (where i ∈ N) and constants
q ∈ Q using operators op of arity ♯op. Expressions e ∈ E are interpreted as functions
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e : Rn → R that compute the value of e given a valuation v : {0, 1, . . . , n− 1} → R of
the program variables. Formally, op is a function op : Rm → R where m = ♯op, and

q(v) = q, xi(v) = v(i), op(e1, . . . , e♯op)(v) = op(e1(v), . . . , e♯op(v))

The grammar also defines Boolean expressions b ∈ B that can relate expressions and ap-
ply the standard Boolean operators. We slightly overload notation and interpret Boolean
expressions b as subsets b of Rn where the formula holds. For example, True = Rn and
if b = e1 ♢ e2 then

b = {v ∈ Rn | e1(v)♢ e2(v)}.

Boolean conjunction, disjunction, and negation are respectively interpreted as set inter-
section, union, and complement in Rn.

The Boolean expressions are used in the if and while conditions and in observe
statements of program statements p ∈ P. Whenever some program p ∈ P is fixed, there
is also a fixed amount of n variables.

Sampling statements xi ∼ rnd draw uniform random samples from the unit interval
[0, 1]. For presentation purposes, we sample from only one primitive distribution in
the formal grammar, and we do so at the level of statements rather than in expressions.
Expressions can be made probabilistic, however, by first sampling and then using the
variable in a (Boolean) expression. We also stress again that the language can be extended
to support sampling from a multitude of other primitive distributions, both discrete and
continuous, without affecting any of the results in this paper.

With the extensions described in Section 2.1, the probabilistic program presented
there is in the language generated by our grammar.

3 Symbolic Execution

The inductive rules that define a transition system implementing symbolic execution
of probabilistic programs are presented in fig. 1. The symbolic states in this transition
system are quintuples consisting of the following data: (i) a program p that is to be
executed; (ii) a substitution σ of program variables to symbolic expressions (defined
shortly), which captures past program behavior; (iii) a sampling index 1 k ∈ N; (iv) the
path condition as a precondition for this symbolic trace; and (v) the path observation as
a means to bookkeep which states will be accepted by observe statements throughout
execution. Progression of the system depends only on the program syntax (i). Below we
provide a detailed description of the components (ii)-(v). The substitutions (ii) and path
conditions (iv) follow established methods from symbolic execution [3]; the notion of
path observation (v) is novel.

The program Skip cannot make a transition and represents the terminated program.
The system is nondeterministic due to the pairs of rules for if and while statements. The
system has infinite symbolic traces due to Rule iter-T. Customarily, ∗−→ denotes the
reflexive-transitive closure of −→.

1 One for each primitive distribution: we use one in this paper for presentation purposes. Two
sampling indices are used in the tool symProb.

5



asgn
(xi:= e, σ, k, ϕ, ψ) −→ (Skip, σ[xi 7→ σe], k, ϕ, ψ)

smpl
(xi ∼ rnd, σ, k, ϕ, ψ) −→ (Skip, σ[xi 7→ yk], k + 1, ϕ, ψ)

obs
(observe b, σ, k, ϕ, ψ) −→ (Skip, σ, k, ϕ, ψ ∧ σb)

seq-0
(Skip # p, σ, k, ϕ, ψ) −→ (p, σ, k, ϕ, ψ)

(p, σ, k, ϕ, ψ) −→ (p′, σ′, k′, ϕ′, ψ′)
seq-n

(p # q, σ, k, ϕ, ψ) −→ (p′ # q, σ′, k′, ϕ′, ψ′)

if-T
(if b p1 else p2, σ, k, ϕ, ψ) −→ (p1, σ, k, ϕ ∧ σb, ψ)

if-F
(if b p1 else p2, σ, k, ϕ, ψ) −→ (p2, σ, k, ϕ ∧ σ!b, ψ)

iter-F
(while b p, σ, k, ϕ, ψ) −→ (Skip, σ, k, ϕ ∧ σ!b, ψ)

iter-T
(while b p, σ, k, ϕ, ψ) −→ (p # while b p, σ, k, ϕ ∧ σb, ψ)

Fig. 1: Inductive transition rules for symbolic execution

3.1 Symbolic Substitutions

To capture the behavior of a symbolic trace, a substitution assigns to every program
variable a symbolic expression. Symbolic expressions are generated by the following
grammar (recall that ♯op denotes the arity of op):

SE ∋ E ::= q ∈ Q | xi ∈ X | yk ∈ Y | op(E, . . . , E♯op)

SE extends E with the set Y = {y0, y1, . . . } as base cases, representing the random
samples that may be drawn during execution. When the language samples from more
than one primitive distribution, a set of symbolic variables YD is used for every primitive
distribution D. For each such distribution D, one will need a sampling index kD in
the transition system. We use Z = {z0, z1, . . . } for symbolic variables representing
standard normal samples in our examples and in the tool.

Thus, formally, substitutions are maps σ : X → SE. We sometimes write σ(i)
in lieu of σ(xi). The updated substitution σ[i 7→ E] denotes the substitution σ′ such
that σ′(j) = σ(j) for j ̸= i and σ′(i) = E. Any substitution σ inductively extends to
expressions e ∈ E by σ(op(e1, . . . , e♯op)) := op(σ(e1), . . . , σ(e♯op)).

If symbolic execution is to conform with a denotational semantics, the symbolic
substitutions have to be interpreted as concrete state transformers. For this, first, symbolic
expressions are interpreted as functions Rn+ω → R, where the first n arguments are
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the values of the program variables, and the rest is an infinite stream of samples to be
drawn. Here, one may use extra streams of sample spaces for any additional primitive
distributions in the language. The mapping |·| : Rn+ω → R equips symbolic expressions
with a formal interpretation as follows:

|q| : ρ 7→ q, |xi| : ρ 7→ ρi, |yk| : ρ 7→ ρn+k,

|op(E1, . . . , E♯op)| : ρ 7→ op(|E1|(ρ), . . . , |E♯op|(ρ))

The symbols yk thus pick the k-th sample available in Rω . Symbolic expressions free of
yk are just program expressions, and their interpretations agree in the following way:

Lemma 1 (Substitution lemma for expressions). For all e ∈ E, |e|(ρ) = e(ρ
∣∣
n
).

This interpretation of E ∈ SE as a function Rn+ω → R extends naturally to symbolic
substitutions σ ∈ SEn as functions Rn+ω → Rn, by mere point-wise application after
substitution. However, since we want to compose substitutions (their interpretations) due
to sequencing, the codomain must be extended from Rn to Rn+ω:

Definition 2 (Interpretation of symbolic substitutions). Let σ : X → SE be a
substitution and k ∈ N a sampling index. The interpretation of σ at sampling index k,
denoted |σ|k, is the function Rn+ω → Rn+ω defined by

|σ|k : ρ 7→ (|σ(x0)|(ρ), . . . , |σ(xn−1)|(ρ), ρn+k, ρn+k+1, ρn+k+2, . . .)

The first n values of |σ|k(ρ) are just pointwise applications of |·|. The remaining elements
of |σ|k(ρ) are the same as those of ρ, but left-shifted k positions. This formalizes the
idea that |σ|k has already drawn k samples.

3.2 Path Conditions and Path Observations

The Boolean formulas for the condition in branching and iteration statements are
aggregated under substitution to build the path condition of a symbolic trace. The path
condition represents the unique part of the input space that triggers the symbolic trace.
Similarly, observed Boolean formulas under substitution make up the path observation,
and represent the part of the input space that will lead to acceptance of observe statements
in this trace.

Path conditions and observations are expressed as symbolic Boolean expressions:

SB ∋ B ::= ⊥ | ⊤ | E♢ E | B ∨ B | B ∧ B | ¬B

Subtitutions σ : X → SE extend through E → SE further to Booleans, as in B → SB,
in a completely trivial way. For example, σ(e1 ♢ e2 && True) = σ(e1)♢σ(e2) ∧ ⊤.

Path conditions and path observations – their symbolic Boolean expressions – are
interpreted as subsets of Rn+ω where the formula is satisfied. The mapping |·| equips
symbolic Boolean expressions with a formal interpretation as follows:

|⊥| = ∅, |B1 ∨ B2| = |B1| ∪ |B2|,
|⊤| = Rn+ω, |B1 ∧ B2| = |B1| ∩ |B2|,
|¬B| = Rn+ω \ |B|, |E1 ♢ E2| = {ρ ∈ Rn+ω | |E1|(ρ)♢ |E2|(ρ)}.

Here we overload notation of |·| to use it for both expressions and Boolean expressions.
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3.3 Final Configurations

Let σ0 denote the initial substitution {xi 7→ xi}xi∈X . We call the quadruple (σ, k, ϕ, ψ)
the (symbolic) configuration of a state (p, σ, k, ϕ, ψ) and (σ0, 0,⊤,⊤) is the initial
configuration. The configurations we are mostly interested in result from a finite symbolic
execution trace starting from the initial configuration:

Γp := {(σ, k, ϕ, ψ) | (p, σ0, 0,⊤,⊤)
∗−→ (Skip, σ, k, ϕ, ψ)}

is called the set of final configurations of p.
For a program p ∈ P and a configuration (σ, k, ϕ, ψ) ∈ Γp, p transforms inputs

ρ ∈ |ϕ| ∩ |ψ| to the output |σ|k(ρ). That is, p behaves like |σ|k on |ϕ| ∩ |ψ|. Execution
of p on inputs from |ϕ| \ |ψ| leads to an unsatisfied observe statement.

Example 3. Consider the example program in Section 2.1 (call it p) that models the
gender distribution among people taller than 200 centimeters. Due to Bernoulli sampling,
it contains an additional if statement hidden in the encoding. The program has thus four
symbolic traces; their respective final configurations γ1, γ2, γ3, γ4 ∈ Γp are:

Final Substitution σ ky kz Path condition ϕ Path observation ψ

γ1 {g 7→ 1, h 7→ z0
√
72 + 175} 1 1 y0 < 0.51 ∧ 1 = 1 z0

√
72 + 175 ≥ 200

γ2 {g 7→ 1, h 7→ z0
√
50 + 161} 1 1 y0 < 0.51 ∧ 1 ̸= 1 z0

√
50 + 161 ≥ 200

γ3 {g 7→ 0, h 7→ z0
√
72 + 175} 1 1 y0 ≥ 0.51 ∧ 0 = 1 z0

√
72 + 175 ≥ 200

γ4 {g 7→ 0, h 7→ z0
√
50 + 161} 1 1 y0 ≥ 0.51 ∧ 0 ̸= 1 z0

√
50 + 161 ≥ 200

The final configurations γ2 and γ3 have unsatisfiable path conditions. Path conditions
represent the priors in the model and path observations represent likelihoods.

3.4 Symbolic Semantics

Now we introduce symbolic semantics for probabilistic programs with the main pur-
pose of proving correctness of symbolic execution, which we just described. The new
semantics is a set of functions, and can in fact be considered a denotational semantics for
symbolic execution of probabilistic programs. Defined directly on the syntax of programs,
the semantics consists of the interpretations of all final symbolic configurations—this is
Theorem 4 below.

For a triple (F,B,O) in the definition below, F is the final substitution of a trace,
B is the path condition, and O is the path observation. Recall that B(X) is the Borel
σ-algebra ofX and let B(X,Y ) denote the space of Borel measurable functionsX → Y .
Then, for programs p ∈ P in n variables, the sets

Fp ⊂ B(Rn+ω,Rn+ω)× B(Rn+ω)× B(Rn+ω)

are defined inductively on the structure of p as follows:
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– For inaction Skip, the state remains unaltered and there is no restriction on the path
condition or the path observation:

FSkip := {(ρ 7→ ρ,Rn+ω,Rn+ω)}

– An assignment has no restriction on the precondition, but the state is updated
according to the assignment:

Fxi:= e := {(ρ 7→ ρ[i 7→ e(ρ
∣∣
n
)],Rn+ω,Rn+ω)}

Only the first n values ρ
∣∣
n

of the state ρ are needed to evaluate e, and ρ[i 7→ a]
denotes the state ρ′ where ρ′(j) = ρ(i) if j ̸= i and ρ′(i) = a.

– When sampling we also merely perform an appropriate state update:

Fxi∼rnd := {(ρ 7→ samplei(ρ),R
n+ω,Rn+ω)}

Here, samplei(ρ) is an updated stream ρ′ that has drawn one sample:

samplei(ρ) = (ρ0, . . . , ρi−1,ρn, ρi+1, . . . , ρn−1, ρn+1,ρn+2, . . .)

– Observing a Boolean formula only updates the path observation:

Fobserve b := {(ρ 7→ ρ,Rn+ω, b× Rω)}

– When sequencing two programs p1 and p2, range over all pairs of executions
(F1, B1,O1) ∈ Fp1 and (F2, B2,O2) ∈ Fp2 and compose them. The first path
condition B1 should be satisfied and, after executing the first component F1, the
second path condition B2 should be satisfied (and sim. for the path observation):

Fp1#p2 := (F2 ◦F1, B1∩F−1
1 [B2],O1∩F−1

1 [O2]) | (Fi, Bi,Oi) ∈ Fpi , i = 1, 2}

– The two branches of an if statement are put together in a binary union of sets. The
path conditions are updated accordingly (− ∁ denotes complement):

Fif b p else q := {(F,B ∩ (b × Rω),O) | (F,B,O) ∈ Fp}
∪ {(F,B ∩ (b

∁ × Rω),O) | (F,B,O) ∈ Fq}

– In a while statement, the union is over every possible number of iterations m. For
m = 0, the behavior is that of Skip and the precondition is the negation of the
Boolean formula. Every next number m + 1 of loop iterations takes all possible
executions of m iterations, pre-composes all possible additional iterations, and
updates the preconditions accordingly:

Fwhile b p :=

∞⋃
m=0

Fmb,p{(v 7→ v, b
∁
,Rn+ω)},

where Fmb,p denotes m applications of the mapping Fb,p from B(Rn+ω,Rn+ω) ×
B(Rn+ω)×B(Rn+ω) to itself that pre-composes an additional iteration of the loop:

Fb,q : F 7→ { (F ◦ Fq, (b× Rω) ∩Bq ∩ F−1
q [B],Oq ∩ F−1

q [O])
| (F,B,O) ∈ F , (Fq, Bq,Oq) ∈ Fq}

9



The sets Fp form a big-step semantics for symbolic execution of probabilistic programs:

Theorem 4. For any program p ∈ P, there is a one-to-one correspondence between
final configurations (σ, k, ϕ, ψ) ∈ Γp and triples (F,B,O) ∈ Fp such that F = |σ|k,
B = |ϕ|, and O = |ψ|.
In this correspondence, we consider all final configurations (σ, k, ϕ, ψ) ∈ Γp with
unsatisfiable path condition, i.e., |ϕ| = ∅, equivalent. Similarly, all triples (F,B,O) for
which B = ∅ are considered equivalent. The proof is in Appendix A.2.

4 Correctness

The symbolic execution engine described in the previous section is now proven correct
with respect to a denotational semantics. Following Kozen [19], probabilistic programs
are mappings of measures on the Borel measurable space of Rn, where n is the number
of program variables. Observe statements were not considered in his work. They have
been studied [4] in this context of measure transformer semantics, but in the absence of
unbounded loops.

To be fully precise, we need to recall some definitions from measure theory. A
measurable space (X,Σ) is a set X equipped with a σ-algebra Σ, i.e., a set Σ ⊆ P(X)
that (i) contains the emptyset, (ii) is closed under complements in X , and (iii) is closed
under countable union. Elements of Σ are called measurable sets. The Borel σ-algebra
B(X) is the one generated by the open sets of X . Whenever we say that functions or
sets are measurable, we mean with respect to the Borel σ-algebras. A (sub)probability
measure on (X,Σ) is a function µ : Σ → [0, 1] such that µ(∅) = 0 and µ(

⋃
i∈I Ai) =∑

i∈I µ(Ai) for any countable disjoint family of sets (Ai)i∈I ⊆ Σ. We let M(X)
denote the set of measures on the Borel σ-algebra of X; this makes M(Rn) the state
space in the denotational semantics.

The denotational semantics of a program p is a function JpK : M(Rn) → M(Rn),
pushing a measure corresponding to the current program state forward, according to the
statement being interpreted. The inductive definition is as follows:

– Skip does not change the given measure: JSkipK(µ) = µ.
– For an assignment, let αie be the function that updates the i-th value appropriately:

αie : Rn → Rn, (x1, . . . , xn) 7→ (x1, . . . , xi−1, e(x1, . . . , xn), xi+1, . . . , xn)

This function is measurable, so its preimages can be measured by µ. Thus, the
semantics of assignments as pushforward measures Jxi:= eK(µ) := µ ◦ (αie)

−1 is
well-defined. Intuitively, the measure Jxi:= eK(µ) measures with µ the set of values
in Rn that lead to appropriately updated values for the i-th variable.

– Sampling updates the measure component of the corresponding variable with the
distribution measure λ to be sampled from:

Jxi ∼ rndK(µ) : A1×· · ·×An 7→ µ(A1×· · ·×Ai−1×R×Ai+1×· · ·×An)·λ(Ai).

For λ, we use the Lebesgue measure on the unit interval for uniform continuous sam-
pling. Other measures can be used for other primitive sampling statements. The mea-
sure Jxi ∼ rndK(µ) here is defined on the rectangles of Rn, and by Carathéodory’s
extension theorem, defines a unique measure on all of Rn.
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– When observing, we restrict the measure to the observed measurable set. For measur-
able B ⊆ Rn, let eB(µ) denote the subprobability measure A 7→ µ(A ∩B). Then
Jobserve bK(µ) := eb(µ). Note that this measure is not normalized.

– Sequencing is just composition: Jp # qK = JqK ◦ JpK.
– Branching restricts the measure of one branch (resp. the other) to the measurable

subset where the condition is true (resp. false). Formally,

Jif b p1 else p2K(µ) = (Jp1K ◦ eb)(µ) + (Jp2K ◦ e!b)(µ)

This sum of measures is setwise. The measure is first restricted by eb (or e!b) to a
subprobability measure over the part of the state space where the condition is true
(or false) and then passed on to be transformed by Jp1K (or Jp2K).

– Interpreting iterations as repeated unfolding of if statements, the infinite sum

Jwhile b pK(µ) =
( ∞∑
m=0

e!b ◦ (JpK ◦ eb)
m
)
(µ)

describes the semantics of while loops.

Now JpK is a positive operator of norm at most one for all p defined by the grammar in
Section 2.2. This means that any subprobability measure is mapped to a subprobability
measure [2]. Without while and observe statements, this norm would be exactly one.
Intuitively, this is because programs would then always terminate, and no probability
mass would ever be lost either by diverging while loops or by conditional probability.
The measure semantics is not normalized.

Recall that Γp is the set of final configurations of symbolic execution of a program p.

Theorem 5 (Correctness of Symbolic Execution of Probabilistic Programs). Let
p ∈ P be a program, µ ∈ M(Rn) a distribution measure over the input variables, and
A ⊆ Rn a measurable set. Then

JpK(µ)(A) =
∑

(σ,k,ϕ,ψ)∈Γp

(µ⊗ λω)
(
|σ|−1

k [A× Rω] ∩ |ϕ| ∩ |ψ|
)

A friendly reminder that the measure λ was some chosen measure implicitly used in the
denotational semantics; λω denotes the product measure of infinitely many copies of it.

Proof (Sketch). For every program p, there is a function fp such that

– (µ⊗ λω)
(
f−1
p [A× Rω]

)
= JpK(µ)(A), and

– (µ⊗ λω)
(
f−1
p [A× Rω]

)
=

∑
(F,B,O)∈Fp

(µ⊗ λω)(F−1[A× Rω] ∩B ∩ O).

The function fp is basically the operational semantics defined in [19], but extended to an
observe construct that rejects unsatisfied observed formulas. The theorem is proven by
chaining these two equalities and applying Theorem 4. See Appendix A.3 for the full
proof.
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Number of Paths

Case Study Actual Discarded Samples Lines Time (sec.)

BurglarAlarm 4 12 4 26 0.31
DieCond 20 0 20 17 2.15
Grass 28 36 6 21 0.80
MurderMystery 2 2 2 12 0.06
NeighborAge 4 4 4 14 0.10
NeighborBothBias 7 5 4 19 0.24
NoisyOr 256 – 8 37 2.33
Piranha 3 1 2 12 0.07
Random Z2 Walk (1) 16 – 4 14 0.19
Random Z2 Walk (2) 52 – 6 14 0.60
Random Z2 Walk (4) 712 – 10 14 8.37
Random Z2 Walk (8) 159,436 – 18 14 2167.90
SecuritySynthesis 1 0 8 14 0.04
TrueSkillFigure9 1 0 9 20 0.03
TwoCoins 3 1 2 6 0.05

Table 1: Performance metrics for symProb on a series of case studies. For the “Random
Z2 Walk (i)” cases, i refers to the number of times the main while loop was unrolled.

5 Implementation and Experiments

We have developed symProb as a prototype implementation of the symbolic execution
technique presented in Section 32. symProb takes as input a probabilistic program written
in the language described in Section 2.2 (up to some natural imperative-style syntac-
tic additions such as keywords for else and delimiter use of parentheses and braces).
symProb performs bounded symbolic execution, meaning that all while loops are unrolled
a finite number of times, to ensure termination. Finite loops are fully unrolled while all
other loops are unrolled a configurable, yet fixed, number of times. symProb reports the
final configuration: the final substitution σ, the amount of samples, the path condition
ϕ, and the path observation ψ. All symbolic configurations reported by symProb are
expressed as uninterpreted symbolic expressions. symProb is written in Rust in around
2,000 lines of code and uses Z3 [22] for real numbers to determine branch satisfiability.

We have executed symProb on a series of examples sourced from PSI [10], R2 [24],
“Fun” programs from Infer.NET [21], and Barthe et al. [2]. We summarize our findings in
Table 1. All the experiments were done on a machine with 3.3GHz Intel Core i7-5820K
and 32 GB of RAM, running Linux 6.3.2-arch1-1.

One feat of symbolic execution of probabilistic programs that symProb implements,
is that paths with an unsatisfiable observe statement can be filtered out, since they have
zero likelihood in the probabilistic model. symProb therefore discards such paths.

For each experiment, we report the following metrics: the number of traces explored,
the number of traces which were discarded due to a failed observe statement (‘–’ if there
were no observe statements in the program), the maximum number of random samples
drawn, the number of lines of code, and the time symProb took to explore all paths.

2 Source code for symProb and all experiments are available on Zenodo [31].
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We make a few general observations about the results. Outside of the DieCond, Grass,
NoisyOr, and Random Z2 Walk (4,8) examples, symProb terminates in under a second.
While these are relatively small examples, they still showcase a range of path counts and
number of random samples drawn. Additionally, of the case studies that had observe
statements present, many paths were discarded due to reaching an unsatisfiable observe
statement. The Grass case study, for example, which involves six Bernoulli samples
about weather conditions and such, had 36 paths discarded. In Section 7, we discuss
how we might utilize this information in future work to optimize the performance of
probabilistic programs with observe statements.

6 Related Work
Symbolic transition systems as described in this work have recently been formalized
in a non-probabilistic setting by de Boer and Bonsangue [3]. From that starting point,
this work extends to sampling in probabilistic programming by incorporating sym-
bolic random variables {y0, y1, . . . } in the symbolic substitutions and path conditions.
Furthermore, we introduced path observations to keep track of observe statements.

Denotational semantics for Bayesian inference is an active research area [9,17,27,28].
Mostly, the focus has been on discrete probabilistic programs [17, 25], whereas we
support sampling of both discrete and continuous distributions, thereby generalizing the
probabilistic choice based on discrete sampling used in these works.

Staton [27, 28] describes observe-from statements in his denotational semantics as
an encoding for a score construct used to attach a likelihood scoring to an execution
trace. The construct observe e from D, where D is some distribution, is then sugar
for score fD(e), where fD is the probability density function for the distribution D.
The score value in that semantics is therefore akin to the probability measure of our
path observation. Staton’s work considers language semantics of a functional nature,
where the difficulty mainly lies in handling higher-order functions. In an imperative
language, this is generally not a major concern. This allows us to consider the more
general construct of observing Boolean formulas (of positive measure), rather than
observing fixed samples (which may have zero measure). To the best of our knowledge,
our work provides the first semantics for Boolean observe statements as a forward state
transformer (as proposed by Kozen [19]) for an imperative probabilistic programming
language in the presense of unbounded loops.

Sampson et al. [26] used symbolic execution to transform probabilistic programs into
a Bayesian network. Their semantics was aimed at verification of certain probabilistic
assertions, however, and lacked a formal foundation in measure theory. Luckow et al.
combined symbolic execution with model counting to analyze programs with discrete
distributions and nondeterministic choice [20]. Their work used schedulers to reduce
Markov Decision Processes to Markov Chains, in contrast to our work with continuous
distributions and observe statements, founded in measure theory. Susag et al. [29]
considered symbolic execution for programs with random sampling to automatically
verify quantitative correctness properties over unknown inputs. While they also used
symbolic random variables, they were more focused on verifying correctness properties
of “real-world” programs (e.g., written in C++) that use random sampling. They solely
considered discrete distributions and did not support observe statements.
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Gehr et al. [10] developed PSI, probabilistic symbolic inference, a tool that enables
programmers to perform posterior distribution, expectation, and assertion queries through
symbolic inference. Their symbolic reasoning engine works on symbolic representations
of probability distributions, whereas we have symbolic terms which are interpreted as
random variables of which we do not know the distribution in principle. By default,
PSI computes a symbolic representation of the joint posterior distribution represented
by the given probabilistic program. In contrast, symProb explores all paths through a
given probabilistic program and reports on the path condition, substitution map, and path
observation of each path. We see these two tools as complementary, as inference is only
one aspect of probabilistic programming.

7 Conclusion and Future Work

We have defined new symbolic semantics for imperative probabilistic programs sup-
porting forward execution and conditioning (Bayesian inference), which we proved to
be a big-step semantics for symbolic execution of probabilistic programs. To support
Bayesian inference, we extended Kozen’s denotational semantics to include observe
statements of positive-measure events. Significantly, the symbolic semantics thus theo-
retically supports implementation of a symbolic executor for imperative probabilistic
programs with continuous domain variables. We introduced path observations to keep
track of the part of the initial state space that lead to acceptance of observe statements
for each symbolic trace. The symbolic transition system is implemented in our prototype
tool symProb. Its effectiveness has been demonstrated on example programs, producing
results with path conditions and path observations that correctly represent (prior) path
probabilities and likelihoods of the symbolic traces, as expected in light of Theorem 5.
Since path conditions represent priors and path observations represent likelihoods, we
believe it to be beneficial to conceptually separate the two in a symbolic executor.

Interestingly, our semantics and its accompanying correctness results enable one to
prove the correctness of certain program transformations. More generally, we believe
the symbolic semantics has potential applications in model checking tools, deductive
proof systems, optimizations, and reasoning about termination. For example, one can
exploit this theory to commute sample and observe statements under appropriate sub-
stitutions. In complex probabilistic models, the placement of observe statements may
then become an optimization problem. We plan to explore such program transformations
both theoretically and experimentally in the future. Moreover, we intend to investigate
the limiting behavior of our correctness result, which contains an infinite sum in the
presence of unbounded loops. One naturally wonders how fast the sum approximates the
true posterior of the program, and how different structures in a program influence the
speed of this approximation.

A shortcoming of our semantics for observe statements is that zero-measure events
cannot be observed in our language. Denotationally, the measure would then always
yield zero; operationally, almost all simulations will be aborted. Zero-measure observed
Boolean conditions may be included in future work, for example by considering measure
couplings and disintegrations [9].
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Data availability. The source code for symProb and the experiments we performed with
it are available on Zenodo [31].
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A Proofs

A.1 Proof of Lemma 1

Lemma 1 (Substitution lemma for expressions). For all e ∈ E, |e|(ρ) = e(ρ
∣∣
n
).

For Boolean expressions, we moreover have the following:

Lemma 6 (Substitution lemma for Boolean expressions). For all b ∈ B, |σ0b| =
b× Rω .
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Proof. By induction on the structure of expressions e ∈ E and Boolean expressions
b ∈ B as presented in Section 2.2. There are two base cases for e:

– For e = xi, we have |xi|(ρ) = ρi = xi(ρ
∣∣
n
).

– For e = q: |q|(ρ) = q = q(ρ
∣∣
n
).

There is an induction step for every operator op of arity ♯op. Each induction step applies
♯op induction hypotheses:

|op(e1, . . . , e♯op)|(ρ) = op(|e1|(ρ), . . . , |e♯op|(ρ)) definition of |·|
= op(e1(ρ

∣∣
n
), . . . , e♯op(ρ

∣∣
n
)) IH ♯op times

= op(e1, . . . , e♯op)(ρ
∣∣
n
) definition of ·

We proceed now with structural induction on b. The base cases:

– b = True: ρ ∈ |σ0(True)| = |⊤| if and only if ρ ∈ (True× Rω).
– b = False: |σ0(False)| = |⊥| = ∅ = False× Rω .
– b = e1 ♢ e2: ρ ∈ |σ0(e1 ♢ e2)| if and only if |e1|(ρ)♢ |e2|(ρ) (by def.) if and only

if e1(ρ
∣∣
n
)♢ e2(ρ

∣∣
n
) (by Lemma 1) if and only if ρ ∈ e1 ♢ e2 × Rω (by def.).

We thus conclude this case with the identity |σ0(e1 ♢ e2)| = e1 ♢ e2 × Rω .
– b = b1 || b2: simply apply IH twice to show that their respective binary unions are

equal, and then conclude that

|σ0(b1 || b2)| = b1 || b2 × Rω

– b = b1 && b2 is analogous.
– b =!b1 idem.

This completes the proof.

A.2 Proof of Theorem 4

Recall that Γp = {(σ, k, ϕ, ψ) | (p, σ0, 0,⊤,⊤)
∗−→ (Skip, σ, k, ϕ, ψ)}.

Throughout all the proofs in this appendix, the fixed initial symbolic configuration
(σ0, 0,⊤,⊤) is denoted by γ0 and γ, γ′, γ′′, γ1, γ2 respectively abbreviate configurations
(σ, k, ϕ, ψ), (σ′, k′, ϕ′, ψ′), (σ′′, k′′, ϕ′′, ψ′′), (σ1, k1, ϕ1, ψ1), and (σ2, k2, ϕ2, ψ2).

Theorem 4. For any program p ∈ P, there is a one-to-one correspondence between
final configurations (σ, k, ϕ, ψ) ∈ Γp and triples (F,B,O) ∈ Fp such that F = |σ|k,
B = |ϕ|, and O = |ψ|.

Proof. For every p, define the mapping

Φp : Γp → Fp, (σ, k, ϕ, ψ) 7→ (|σ|k, |ϕ|, |ψ|)

Proposition 7 says that this mapping is well-defined for all p, i.e., (|σ|k, |ϕ|, |ψ|) is
actually an element of Fp. Indeed, take q = Skip and use that FSkip is the singleton
{(idRn+ω ,Rn+ω,Rn+ω)}. Proposition 10 says that these mappings are all surjective.
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For injectivity, there are some technical subtleties to be addressed. Consider the
following example program p:

if(x<0){ if(1=0) x:=42 else x:=0 } else { if(1=0) x:=42 else x:=1 }

The program contains an if statement with a nested if statement in both branches.
Symbolic execution of this program will thus yield four execution paths. Two of these
paths have an unsatisfiable path condition due to the Boolean tests 1=0. Furthermore,
these two paths both transform the input variable x to the value 42. Hence, the big-step
semantics, in contrast, has three elements:

Fp = {(x 7→ 42, ∅,R1+ω), (x 7→ 0, {x < 0},R1+ω), (x 7→ 1, {x ≥ 0},R1+ω)}

where the two branches with unsatisfiable path conditions have “collapsed” to the first
triple. Hence, technically speaking there is no bijection between Γp and Fp for this edge
case.

This problem could perhaps be solved by considering disjoint union of branching
in the symbolic semantics, or multisets. But this would also require loop iterations
and sequencing to be done in a disjoint union manner and would result in a lot of
bookkeeping. To avoid this, we choose instead to identify all program executions (on the
side of Γp as well as on the side of Fp) that have unsatisfiable path conditions. This does
not influence the well-definedness property, nor the established surjectivity.

By analysis of the rules in Figure 1, two traces (p, γ0)
∗−→ (Skip, γ) and (p, γ0)

∗−→
(Skip, γ′) in Γp are different iff there is a symbolic Boolean expression B such that ϕ
contains B and ϕ′ contains ¬B as a conjunct. This immediately entails |ϕ| ∩ |ϕ′| = ∅.
Then, either both are empty, hence ϕ and ϕ′ are unsatisfiable and therefore considered
equal, or their image under Φp is distinct. This shows injectivity of all mappings Φp.

Proposition 7 (Multi-step backward assimilation into symbolic semantics). For all
p, q ∈ P, if (p, γ0)

∗−→ (q, σ, k, ϕ, ψ) then for all (F,B,O) ∈ Fq:

(F ◦ |σ|k, |ϕ| ∩ |σ|k−1
[B], |ψ| ∩ |σ|k−1

[O]) ∈ Fp (1)

Proof. The proof is by induction on the length of the transition chain (p, γ0)
∗−→

(S′, σ, k, ϕ, ψ), where, in the inductive step, we analyze the first rule that was used.
If (p, γ0)

∗−→ (q, γ) has length zero (from reflexivity) then we know that q = p and
γ = γ0. With this, we may observe that |σ|k = |σ0|0 = idRn+ω , and |ϕ| = |ψ| = |⊤| =
Rn+ω. Now let (F,B,O) ∈ Fq. The result follows since the triple in (1) in this case is
just (F,B,O), and (F,B,O) ∈ Fq = Fp. For the inductive step let (F,B,O) ∈ Fq be
arbitrary and let

(p, γ0) −→ (p′, γ′)
∗−→ (q, γ)

be a transition chain of length ℓ+ 1. We cannot immediately apply IH to the transition
chain of length ℓ, since γ′ may not be the initial configuration. Instead, we use Lemma 9
to obtain the chain

(p′, γ0)
∗−→ (q, γ′′)

of length ℓ such that γ′′ has the following properties:
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(i) |σ|k = |σ′′|k′′ ◦ |σ′|k′ ;
(ii) |ϕ| = |ϕ′| ∩ |σ′|k′−1

[|ϕ′′|]; and
(iii) |ψ| = |ψ′| ∩ |σ′|k′−1

[|ψ′′|].

Now, by IH, since (p′, γ0)
∗−→ (q, γ′′) is a chain of length ℓ and (F,B,O) ∈ Fq:

(F ′, B′,O′) := (F ◦ |σ′′|k′′ , |ϕ′′| ∩ |σ′′|k′′
−1

[B], |ψ′′| ∩ |σ′′|k′′
−1

[O]) ∈ Fp′

From the one-step Lemma 8, using the transition (p, γ0) −→ (p′, γ′), then

(F ′ ◦ |σ′|k′ , |σ′|k′
−1

[B′] ∩ |ϕ′|, |σ′|k′
−1

[O′] ∩ |ψ′|) ∈ Fp
We rewrite each of the three components appropriately as follows:

(i) F ′ ◦ |σ′|k′ = F ◦ |σ′′|k′′ ◦ |σ′|k′ = F ◦ |σ|k;
(ii) |σ′|k′−1

[
|ϕ′′|∩|σ′′|k′′−1

[B]
]
∩|ϕ′| = |σ′|k′

−1
[|ϕ′′|] ∩ |ϕ′|︸ ︷︷ ︸
|ϕ|

∩ |σ′|k′
−1

[|σ′′|k′′
−1

[B]]︸ ︷︷ ︸
|σ|k−1[B]

,

and this is just |ϕ| ∩ |σ|−1
k [B].

(iii) Analogous to the previous item, |σ′|k′−1
[O′] ∩ |ψ′| = |ψ| ∩ |σ|−1

k [O].

We have thus verified that

(F ◦ |σ|k, |ϕ| ∩ |σ|−1
k [B], |ψ| ∩ |σ|−1

k [O]) ∈ Fp
and so the inductive step, and the whole proof with it, is finished.

Lemma 8 (One-step backward assimilation into symbolic semantics). If (p, γ0) −→
(q, γ) and (F,B,O) ∈ Fq then

(F ◦ |σ|k, |σ|−1
k [B] ∩ |ϕ|, |σ|−1

k [O] ∩ |ψ|) ∈ Fp (2)

Proof. By induction on the height of the proof tree that justifies the transition rule
(p, γ0) −→ (q, γ). All except Rule seq-n are base cases.

– For Rule asgn, we have the following transition from the initial configuration:

(xi:= e, σ0, 0,⊤,⊤) −→ (Skip, σ0[xi 7→ σ0e], 0,⊤,⊤)

By definition of FSkip, which is the singleton {(idRn+ω ,Rn+ω,Rn+ω), it must be
that F = idRn+ω , and B = O = Rn+ω. Thus, since σ0e = e, with σ = σ0[i 7→ e]
and k = 0, we need to verify that

(idRn+ω ◦ |σ|k, |σ|k−1
[Rn+ω] ∩ |⊤|, |σ|k−1

[Rn+ω] ∩ |⊤|) ∈ Fxi:= e

and recall that Fxi:= e = {(ρ 7→ ρ[i 7→ e(ρ
∣∣
n
)],Rn+ω,Rn+ω)}. Since |σ|k is total

and |⊤| = Rn+ω, the only thing to show is that |σ|k : ρ 7→ ρ[i 7→ e(ρ
∣∣
n
)]. Let us

look at |σ|k(ρ):

(|σ(x0)|(ρ), . . . , |σ(xn−1)|(ρ), ρn, ρn+1, . . .) def. of |σ|k
= (|x0|(ρ), . . . , |xi−1|(ρ), |e|(ρ),

|xi+1|(ρ), . . . , |xn−1|(ρ), ρn, ρn+1, . . .) def. of σ
= (ρ0, . . . , ρi−1, |e|(ρ), ρi+1, . . . , ρn−1, ρn, ρn+1, . . .) def. of |·|
= (ρ0, . . . , ρi−1, e(ρ

∣∣
n
), ρi+1, . . . , ρn−1, ρn, ρn+1, . . .) Lemma 1

= ρ[i 7→ e(ρ
∣∣
n
)] notation
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This concludes the case.
– We continue with Rule smpl, for which we have the following transition:

(xi ∼ rnd, γ0) −→ (Skip, σ0[xi 7→ y0], 1,⊤,⊤)

and by definition, we have Fxi∼rnd = {(ρ 7→ samplei(ρ),Rn+ω,Rn+ω)} and
FSkip = {(idRn+ω ,Rn+ω,Rn+ω)}. Similar to the previous case, here it suffices to
show that |σ|1(ρ) = samplei(ρ) (where now σ = σ0[i 7→ y0]):

|σ|1(ρ) = (|σ(x0)|(ρ), . . . , |σ(xn−1)|(ρ), ρn+1, ρn+2, . . .) def. of |σ|k
= (|x0|(ρ), . . . , |xi−1|(ρ), |y0|(ρ),

|xi+1|(ρ), . . . , |xn−1|(ρ), ρn+1, ρn+2, . . .) def. of σ
= (ρ0, . . . , ρi−1, ρn, ρi+1, . . . , ρn−1, ρn+1, ρn+2, . . .) def. of |·|
= samplei(ρ) notation

This case is now finished.
– Rule obs: the transition has the following shape:

(observe b, γ0) −→ (Skip, σ0, 0,⊤,⊤ ∧ σ0(b))

Again, (F,B,O) ∈ FSkip means F = idRn+ω and B = O = Rn+ω. Note that
Fobserve b = {(idRn+ω ,Rn+ω, b× Rω)}.
(i) F ◦ |σ0|0 = idRn+ω ◦ idRn+ω = idRn+ω ;

(ii) |σ0|−1
0 [B] ∩ |ϕ| = |σ0|−1

0 [Rn+ω] ∩ |⊤| = Rn+ω ∩ Rn+ω = Rn+ω; and
(iii) |σ0|−1

0 [O]∩|ψ| = |σ0|−1
0 [Rn+ω]∩|⊤∧σ0(b)| = Rn+ω∩|⊤|∩|σ0(b)| = b×Rω .

Here, we used Lemma 6 in the last equality. This case is now finished.
– For Rule seq-0, we have the following transition:

(Skip # p, γ0) −→ (p, σ0, 0,⊤,⊤)

We recognize that if (F,B,O) ∈ Fp, then

(F ◦ |σ0|0, |σ0|−1
0 [B] ∩ |⊤|, |σ0|−1

0 [O] ∩ |ψ|) = (F,B,O)

Now, since (F,B,O) ∈ Fp and (idRn+ω ,Rn+ω,Rn+ω) ∈ FSkip, by definition,
FSkip#p also contains (F,B,O), so this case is done.

– Rule seq-n: the only inductive step. The derivation tree for the transition is the
following:

(p, γ0) −→ (p′, γ)

(p # q, γ0) −→ (p′ # q, γ)

The induction hypothesis is the following: if (p, γ0) −→ (p′, γ) and (F,B,O) ∈ Fp′
then (F ◦ |σ|k, |σ|−1

k [B] ∩ |ϕ|, |σ|−1
k [O] ∩ |ψ|).

Now let (F,B,O) ∈ Fp′#q. Then, by definition, there are (F1, B1,O1) ∈ Fp′ and
(F2, B2,O2) ∈ Fq such that (i) F = F2 ◦ F1, (ii) B = B1 ∩ F−1

1 [B2], and (iii)
O = O1 ∩F−1

1 [O2]. We can apply the IH to (F1, B1,O1) ∈ Fp′ with the transition
(p, γ0) −→ (p′, γ) to learn that

(F1 ◦ |σ|k, |σ|−1
k [B1] ∩ |ϕ|, |σ|−1

k [O1] ∩ |ψ|) ∈ Fp

But then, by definition, Fp#q contains (F ′, B′,O′), where
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(i) F ′ = F2 ◦ (F1 ◦ |σ|k) = F ◦ |σ|k;
(ii) B′ = |σ|−1

k [B1] ∩ |ϕ| ∩ (F1 ◦ |σ|k)−1[B2] = |σ|−1
k [B] ∩ |ϕ|; and

(iii) O′ = |σ|−1
k [O1] ∩ |ψ| ∩ (F1 ◦ |σ|k)−1[O2] = |σ|−1

k [O] ∩ |ψ|.
This is exactly what we need to show in this case!

– Rule if-T: analogous to Rule if-F.
– For Rule if-F, we have the following shape of the transition:

(if b p1 else p2, γ0) −→ (p2, σ0, 0,⊤ ∧ σ(!b),⊤)

Now let (F,B,O) ∈ Fp2 . Using that |σ0|0 = idRn+ω , we recognize that
(i) F ◦ |σ0|0 = F ;

(ii) |σ0|−1
0 [B] ∩ |⊤ ∧ σ0(!b)| = B ∩ (b

∁ × Rω), by Lemma 6; and
(iii) |σ0|−1

0 [O] ∩ |⊤| = O.
Indeed, by definition, (F,B∩(b ∁×Rω),O) ∈ Fif b p1 else p2 , so the case is finished.

– Rule iter-F: we have the transition rule

(while b p, γ0) −→ (Skip, σ0, 0,⊤ ∧ σ0(!b),⊤)

and (F,B,O) ∈ FSkip means F = idRn+ω and B = O = Rn+ω. With these data,
we recognize that
(i) F ◦ |σ0|0 = idRn+ω ;

(ii) |σ0|−1
0 [B] ∩ |⊤ ∧ σ0(!b)| = b

∁ × Rω (Lemma 6); and
(iii) |σ0|−1

0 [O] ∩ |⊤| = Rn+ω .
Recall the definition of Fwhile b p:

∞⋃
m=0

Fmb,p{(idRn+ω , b
∁ × Rω,Rn+ω)

Consider m = 0 to finish the case.
– Rule iter-T: we have the transition rule in the following shape:

(while b p, γ0) −→ (p # while b p, σ0, 0,⊤ ∧ σ0b,⊤)

Consider (F,B,O) ∈ Fp#while b p. By definition, then, there is (Fp, Bp,Op) ∈ Fp
and (F ′, B′,O′) ∈ Fwhile b p such that (i) F = F ′◦Fp, (ii)B = Bp∩F−1

p [B′], and
(iii) O = Op ∩ F−1

p [O′]. Furthermore, by definition of Fwhile b p, there is m ∈ N
such that (F ′, B′,O′) ∈ Fmb,p{(idRn+ω , b

∁ × Rω,Rn+ω)}. We now recognize that
(i) F ◦ |σ0|0 = F = F ′ ◦ Fp;

(ii) |σ0|−1
0 [B] ∩ |⊤ ∧ σ0(b)| = Bp ∩ F−1

p [B′] ∩ (b× Rω) (Lemma 6); and
(iii) |σ0|−1

0 [O] ∩ |⊤| = O = Op ∩ F−1
p [O′].

Now, since (F ′, B′,O′) ∈ Fmb,p{(idRn+ω , b
∁×Rω,Rn+ω)} and (Fp, Bp,Op) ∈ Fp,

it follows by definition of Fb,p that

(F ′ ◦ Fp, (b× Rω) ∩Bp ∩ F−1
p [B′],Op ∩ F−1

p [O′]) ∈ Fm+1
b,p {(idRn+ω , b

∁ × Rω,Rn+ω)}

which is a subset of Fwhile b p, so we are done.
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Induction has finished for the small-step semantics −→, and so the proof is done.

Lemma 9 (Canonical Symbolic Execution). For all statements p and configurations γ,
(p, γ)

∗−→ (q, γ′) if and only if (p, γ0)
∗−→ (q, γ1) (of the same length) such that:

(i) |σ′|k′ = |σ1|k1 ◦ |σ|k,
(ii) k′ = k1 + k,

(iii) |ϕ′| = |ϕ| ∩ |σ|−1
k [|ϕ1|], and

(iv) |ψ′| = |ψ| ∩ |σ|−1
k [|ψ1|].

In case γ, γ′, and γ1 satisfy properties Items (i) to (iv), we write γ′ ∼ γ1 • γ. We call
(p, γ0)

∗−→ (q, γ1) a canonical symbolic execution from p to q.

Proof. First some observations. If γ′ ∼ γ1 • γ then |σ′|k′(ρ) = |σ1|k1
(
|σ|k(ρ)

)
for all

ρ, and we have the following four facts that we will use throughout the proof:

(A) For all ρ ∈ Rn+ω and i ∈ {0, . . . , n− 1}, |σ′(xi)|(ρ) = |σ1(xi)|(|σ|k(ρ));
(B) For all ρ ∈ Rn+ω and ℓ ∈ N,

|σ′|k′(ρ)(n+ ℓ) = ρk1+k+n+ℓ = |σ1|k1(ρ)(k + n+ ℓ) = |σ1|k1(|σ|k(ρ))(n+ ℓ)

(C) For all expressions e ∈ E and all ρ ∈ Rn+ω:

|σ1(e)|(ρ) = |σ′(e)|(|σ|k(ρ))

(D) For all Boolean expressions b ∈ B we have the following equality of sets:

|σ|−1
k [|σ1(b)|] = |σ′(b)|

Items (A) and (B) are element-wise equalities of |σ′|k′(ρ) = |σ1|k1(|σ|k(ρ)). Item (C)
is proven by induction on the structure of expressions:

– The base case xi is Item (A).
– The case e = q ∈ Q is trivial.
– The inductive step with e = op(e1, . . . , e♯op) is as follows:

|σ1(op(e1, . . . , e♯op))|(|σ|k(ρ)) = op(|σ1(e1)|(|σ|k(ρ)), . . . , |σ1(e♯op)|(|σ|k(ρ)))
IHs
= op(|σ′(e1)|(ρ), . . . , |σ′(e♯op)|(ρ))
= |σ′(op(e1, . . . , e♯op))|(ρ)

Item (D) is proven by induction on the structure of Boolean expressions:

– b = True: both sides equal Rn+ω (since |σ|k is total).
– b = False: both sides equal ∅.
– b = e1 ♢ e2: write ρ′ := |σ|k(ρ). Then

ρ ∈ |σ|−1
k [|σ1(e1 ♢ e2)|] ⇐⇒ ρ′ ∈ |σ1(e1)♢σ1(e2)|

⇐⇒ |σ1(e)|(ρ′)♢ |σ1(e2)|(ρ′)
⇐⇒ |σ′(e1)|(ρ)♢ |σ′(e2)|(ρ) Item (C)
⇐⇒ ρ ∈ |σ′(e1 ♢ e2)|
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– b = b1 || b2: then

ρ ∈ |σ|−1
k [|σ1(b1 || b2)|] ⇐⇒ |σ|k(ρ) ∈ |σ1(b1)| ∪ |σ1(b2)|

and the two IHs will conclude this case.
– b = b1 && b2, and
– b =!b1 are analogous to the case for || .

The proof of the lemma is by induction on the length of the transition chain, with an
analysis of the last rule that was used. The base case (length of zero) is from the reflexive
closure, which tells us that γ1 = γ0 for the canonical execution, and γ′ = γ for all other
γ. With these data, Items (i) to (iv) are thus verified:

(i) |σ1|k1 ◦ |σ|k = |σ0|0 ◦ |σ|k = idRn+ω ◦ |σ|k = |σ|k = |σ′|k′ .
(ii) k1 + k = 0 + k = k = k′,

(iii) |ϕ| ∩ |σ|−1
k [|ϕ1|] = |ϕ′| ∩ |σ|−1

k [|⊤|] = |ϕ′| ∩ |σ|−1
k [Rn+ω] = |ϕ′| ∩ Rn+ω = |ϕ′|.

(iv) Similar to the above item.

This finishes the base case for the induction. For the inductive step, we prove the
statement for the pairs of transition chains

(p, γ0)
∗−→ (q, γ1) −→ (r, γ2) (p, γ)

∗−→ (q, γ′) −→ (r, γ′′)

of length ℓ + 1, where IH gives us that γ′ ∼ γ1 • γ, and the goal is to show that
γ′′ ∼ γ2 •γ. This in turn is done by induction on the height of the proof tree that justifies
the two transitions

(q, γ1) −→ (r, γ2) (q, γ′) −→ (r, γ′′)

So we continue with a case analysis of the rules in Figure 1 that may justify the outgoing
transition from q—all except Rule seq-n are base cases:

– For Rule asgn, we have the following data:
(i) σ2 = σ1[i 7→ σ1(e)] and σ′′ = σ′[i 7→ σ′(e)];

(ii) k2 = k1 and k′′ = k′ (so by IH: k2 + k = k1 + k = k′ = k′′);
(iii) ϕ2 = ϕ1 and ϕ′′ = ϕ′. Then, by IH:

|ϕ| ∩ |σ|−1
k [|ϕ2|] = |ϕ| ∩ |σ|−1

k [|ϕ1|] = |ϕ′| = |ϕ′′|

(iv) Analogously to the above item we see that |ψ| ∩ |σ|−1
k [|ψ2|] = |ψ′′|.

The only non-trivial item we have to verify to conclude γ′′ ∼ γ2 • γ is that

|σ′′|k′′ = |σ2|k2 ◦ |σ|k (3)

Let ρ ∈ Rn+ω be arbitrary. Then

|σ′′|k′′(ρ) = (|σ′′(x0)|(ρ), . . . , |σ′′(xn−1)|(ρ), ρn+k′′ , ρn+k′′+1, . . . )
= (|σ′(x0)|(ρ), . . . , |σ′(e)|(ρ), . . . , (i-th var.)

|σ′(xn−1)|(ρ), ρn+k′ , ρn+k′+1, . . .)
IH
= (|σ1(x0)|(ρ′), . . . , |σ′(e)|(ρ), . . . , (i-th var.)

|σ1(xn−1)|(ρ′), ρ′n+k1 , ρ
′
n+k1+1, . . .)

(4)
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Here, we have put ρ′ := |σ|k(ρ) and used Items (A) and (B) for all elements except
the i-th. On the other hand, we have, for the RHS of the goal (3):

|σ2|k2(ρ′) = (|σ2(x0)|(ρ′), . . . , |σ2(xn−1)|(ρ′), ρ′n+k2 , ρ
′
n+k2+1, . . .)

= (|σ1(x0)|(ρ′), . . . , |σ1(e)|(ρ′), . . . (i-th var.)
|σ1(xn−1)|(ρ′), ρ′n+k1 , ρ

′
n+k1+1, . . .)

So we may identify this with (4) if indeed |σ′(e)|(ρ) = |σ1(e)|(ρ′), and this follows
from Item (C), using IH, i.e., γ′ ∼ γ1 • γ.

– We continue with Rule smpl, for which we have the following data:
(i) σ2 = σ1[i 7→ yk1 ] and σ′′ = σ′[i 7→ yk′ ];

(ii) k2 = k1 + 1 and k′′ = k′ + 1, from which we deduce

k2 + k = k1 + 1 + k = (k1 + k) + 1
IH
= k′ + 1 = k′′

(iii) and (iv): we have ϕ′′ = ϕ′ and ϕ2 = ϕ1, and similarly for the path observations.
Apply the same reasoning as in the case Rule asgn to observe that

|ϕ′′| = |ϕ| ∩ |σ|−1
k [ϕ2] and |ψ′′| = |ψ| ∩ |σ|−1

k [ψ2]

Again, the only truly interesting item we have to verify is that |σ′′|k′′ = |σ2|k2 ◦ |σ|k.
This is handled in exactly the same way as in the case for Rule asgn with the
following exception: instead of having to show |σ1(e)|(ρ′) = |σ′(e)|(ρ), we have to
prove that |yk1 |(ρ

′) = |yk′ |(ρ) for all ρ ∈ Rn+ω . But this is easy:

|yk1 |(ρ
′) = ρ′n+k1 = ρn+k1+k = ρn+k′ = |yk′ |(ρ)

Thus, we concluded this case since |σ′′|k′′ = |σ2|k2 ◦ |σ|k and so γ′′ ∼ γ2 • γ.
– We continue with Rule obs, for which we have the following data:

(i) σ2 = σ1 and σ′′ = σ′, and thus (using (ii)):

|σ2|k2 ◦ |σ|k = |σ1|k1 ◦ |σ|k = |σ1|k1 ◦ |σ|k = |σ′|k′ = |σ′′|k′′

(ii) k2 = k1 and k′′ = k′, from which we deduce k2 + k = k1 + k
IH
= k′ = k′′.

(iii) ϕ2 = ϕ1 and ϕ′′ = ϕ′, so that |ϕ| ∩ |σ|−1
k [ϕ2] = |ϕ′′| by IH.

(iv) ψ2 = ψ1 ∧ σ1(b) and ψ′′ = ψ′ ∧ σ′(b).
In this case, the non-trivial item we have to verify is (iv), so we set out to prove that

|ψ| ∩ |σ|−1
k [|ψ2|] = |ψ′′| (5)

For this, we first observe that
• |ψ′′| = |ψ′| ∩ |σ′(b)|;
• |ψ2| = |ψ1| ∩ |σ1(b)|; and
• by Item (D) and IH, we have |σ|−1

k [|σ1(b)|] = |σ′(b)|.
• The IH also tells us that |ψ′| = |ψ| ∩ |σ|−1

k [|ψ1|].
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We can now make the following derivation:

|ψ| ∩ |σ|−1
k [|ψ2|] = |ψ| ∩ |σ|−1

k

[
|ψ1| ∩ |σ1(b)|

]
= |ψ| ∩ |σ|−1

k

[
|ψ1|

]
∩ |σ|−1

k

[
|σ1(b)|

]
= |ψ′| ∩ |σ|−1

k

[
|σ1(b)|

]
= |ψ′| ∩ |σ′(b)|
= |ψ′′|

and we have thus concluded γ′′ ∼ γ2 • γ.
– In the case for Rule seq-0, where r = Skip # q, there is nothing to prove, because
γ2 = γ1, and γ′′ = γ′. Thus, γ′′ ∼ γ2 • γ directly by IH γ′ ∼ γ1 • γ.

– Rule seq-n: the only inductive step. Here q = q1 # q2 and r = q′1 # q2, and so

(q1, γ1) −→ (q′1, γ2)

(q1 # q2, γ1) −→ (q′1 # q2, γ2)

(q1, γ
′) −→ (q′1, γ

′′)

(q1 # q2, γ′) −→ (q′1 # q2, γ′′)

Here, we may assume that the transitions from q1 to q′1 are not by Rule seq-n
or Rule seq-0, by observing that sequencing is associative, so we can evaluate
right-associatively, without loss of generality. The analyses from all other cases
for the transition from q1 to q′1 (and using the chain (q1, γ0)

∗−→ (q1, γ0) of length
ℓ = 0) can now be repeated. This will establish that (q1, γ0) −→ (q′1, γ

′
0) for some

γ′0 = (σ′
0, k

′
0, ϕ

′
0, ψ

′
0) that satisfies (1) γ2 ∼ γ′0 • γ1 and (2) γ′′ ∼ γ′0 • γ′. With this,

we verify that γ′′ ∼ γ2 • γ.
(ii) k2 + k

(1)
= k′0 + k1 + k

IH
= k′0 + k′

(2)
= k′′;

(i) |σ2|k2 ◦ |σ|k
(1)
= |σ′

0|k′0 ◦ |σ1|k1 ◦ |σ|k
IH
= |σ′

0|k′0 ◦ |σ
′|k′

(2)
= |σ′′|k′′

(iii) We can make the following derivation of sets:

|ϕ| ∩ |σ|−1
k

[
|ϕ2|

] (1)
= |ϕ| ∩ |σ|−1

k

[
|ϕ1| ∩ |σ1|−1

k1

[
|ϕ′0|

]]
IH
= |ϕ′| ∩ |σ|−1

k

[
|σ1|−1

k1
[|ϕ′0|]

]
IH
= |ϕ′| ∩ |σ′|−1

k′

[
|ϕ′0|

]
(2)
= |ϕ′′|

This concludes this item.
(iv) The path observation ψ′′ is done in exactly the same way as the path condition.
Conclude that for every p and γ, (p, γ0)

∗−→ (r, γ2) (of length ℓ+ 1) if and only if
(p, γ)

∗−→ (r, γ′′) (of length ℓ+ 1) such that γ′′ ∼ γ2 • γ in case the last transition
rule of the chains was proven by Rule seq-n.

– Rule if-T: looking at the rule, we know that
(i) and (ii): k2 = k1 and k′′ = k′, and σ2 = σ1 and σ′′ = σ′, so there is nothing to

prove again.
(iii) the interesting case, where ϕ2 = ϕ1 ∧ σ1(b) and ϕ′′ = ϕ′ ∧ σ′(b).
(iv) ψ2 = ψ1 and ψ′′ = ψ′, so nothing to prove here.
We check item (iii), and prove that

|ϕ| ∩ |σ|−1
k [|ϕ2|] = |ϕ′′|

For this, we observe
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• |ϕ′′| = |ϕ′| ∩ |σ′(b)|;
• |ϕ2| = |ϕ1| ∩ |σ1(b)|; and
• by Item (D) and IH, |σ|−1

k [|σ1(b)|] = |σ′(b)|.
• by IH, |ϕ′| = |ϕ| ∩ |σ|−1

k [|ϕ1|].
With this, we derive:

|ϕ| ∩ |σ|−1
k [|ϕ2|] = |ϕ| ∩ |σ|−1

k

[
|ϕ1| ∩ |σ1(b)|

]
= |ϕ| ∩ |σ|−1

k

[
|ϕ1|

]
∩ |σ|−1

k

[
|σ1(b)|

]
= |ϕ′| ∩ |σ|−1

k

[
|σ1(b)|

]
= |ϕ′| ∩ |σ′(b)|
= |ϕ′′|

and we have thus concluded γ′′ ∼ γ2 • γ in this case.
– Rule if-F is analogous to Rule if-T, where we just take complements.
– Rule iter-F: we have that

(i) and (ii) k2 = k1 and k′′ = k′, and σ2 = σ1 and σ′′ = σ′; nothing to prove,
(iii) ϕ2 = ϕ1 ∧ σ1(!b) and ϕ′′ = ϕ′ ∧ σ′(!b); the interesting case, and
(iv) ψ2 = ψ1 and ψ′′ = ψ′, so nothing to prove.
This case is again concluded analogously to Rule if-T.

– Rule iter-T: perhaps surprisingly, this case is exactly the same as Rule if-T. This is
because we are doing forward induction on the length of the transition chain, so the
symbolic execution is inherently finite. Indeed, it follows from the fact that γ2 = γ1
and γ′′ = γ′, with the exception of the path conditions, that checking item (iii) is
the only relevant task, and this is done exactly as in Rule if-T.

This finishes induction on the rules in Figure 1, and concludes the proof of Lemma 9.

Proposition 10 (Surjectivity of the Bijection). If (F,B,O) ∈ Fp then there is a
configuration γ such that (p, γ0)

∗−→ (Skip, γ) and (i) |σ|k = F , (ii) |ϕ| = B, and (iii)
|ψ| = O.

Proof. By induction on the structure of p.

– p = Skip: we have (F,B,O) = (idRn+ω ,Rn+ω,Rn+ω) and, indeed, (Skip, γ0)
∗−→

(Skip, γ0) where γ0 satisfies (i)-(iii);
– p = xi:= e: we have (F,B,O) = (ρ 7→ ρ[i 7→ e(ρ

∣∣
n
)],Rn+ω,Rn+ω) and

(S, γ0)
∗−→ (Skip, γ) with γ = (σ0[i 7→ σ0(e)], 0,⊤,⊤) and one verifies in exactly

the same way as in the proof of Lemma 8 that |σ|k = F in this case.
– Idem for p = xi ∼ rnd, where (F,B,O) = (ρ 7→ samplei(ρ),Rn+ω,Rn+ω) and
(S, γ0)

∗−→ (Skip, γ) with γ = (σ0[i 7→ y0], 1,⊤,⊤).
– Now if p = observe b, then (F,B,O) = (idRn+ω ,Rn+ω, b × Rω) and γ =
(σ0, 0,⊤, σ0b). Again, checking that these data satisfy (i)-(iii) is done in the same
way as in the proof of Lemma 8.

– Consider now the case where p = p1 #p2, where we have two IHs, namely one for all
(F1, B1,O1) ∈ Fp1 and the other for all (F2, B2,O2) ∈ Fp2 . So let (F,B,O) ∈
Fp = Fp1#p2 . Then, by definition, there are (F1, B1,O1) ∈ Fp1 and (F2, B2,O2) ∈
Fp2 , such that
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• F = F2 ◦ F1;
• B = B1 ∩ F−1

1 [B2]; and
• O = O1 ∩ F−1

1 [O2].
and by the two IHs, we obtain two canonical symbolic executions

(p1, γ0)
∗−→ (Skip, γ1) and (p2, γ0)

∗−→ (Skip, γ2), (∗)

By repeatedly applying Rule seq-n and finally Rule seq-0, we then also have

(p1 # p2, γ0)
∗−→ (Skip # p2, γ1) −→ (p2, γ1)

∗−→ (Skip, γ)

for some γ. Then, using the canonical symbolic transition chain (*), and by Lemma 9,
we have γ ∼ γ2 • γ1. We conclude this case by showing that properties (i)-(iii) are
satisfied by exactly this γ:
(i) |σ|k = |σ2|k2 ◦ |σ1|k1 = F2 ◦ F1 = F ;

(ii) |ϕ| = |ϕ1| ∩ |σ1|−1
k1

[ϕ2] = B1 ∩ F−1
1 [B2] = B; and

(iii) |ψ| = |ψ1| ∩ |σ1|−1
k1

[ψ2] = O1 ∩ F−1
1 [O2] = O.

And so the case for sequencing is finished.
– Now let p = if b p1 else p2, and (F,B′,O) ∈ Fp. This can happen in either of

two ways:
1. (F,B,O) ∈ Fp1 andB′ = B∩(b×Rω). In this case, by the IH for p1, we have
γ1 such that (p1, γ0)

∗−→ (Skip, γ1) with the required properties (i)-(iii). This
is the canonical execution, so we have (if b p1 else p2, γ0) −→ (p1, γ

′)
∗−→

(Skip, γ′′) for some γ′ with γ′′ ∼ γ1 • γ′ by Lemma 9. But we know σ′ = σ0,
k′ = 0, ϕ′ = ⊤ ∧ σ0b, and ψ′ = ⊤. With this we verify (i)-(iii) for γ′′:
(i) |σ′′|k′′ = |σ1|k1 ◦ |σ′|k′ = |σ1|k1 ◦ idRn+ω = |σ1|k1 , and by IH for p1, this

equals F .
(ii) |ϕ′′| = |ϕ′| ∩ |σ′|−1

k′

[
|ϕ1|

]
= |⊤ ∧ σ0b| ∩ id−1

Rn+ω

[
|ϕ1|

]
, and by Lemma 6

and the IH that |ϕ1| = B, this is (b× Rω) ∩B = B′.
(iii) |ψ′′| = |ψ′| ∩ id−1

Rn+ω

[
|⊤|

]
= |ψ′| = O.

Thus, in the case that (F,B,O) ∈ Fp1 and B′ = B ∩ (b× Rω), we have

(S, γ0)
∗−→ (Skip, γ′′)

where γ′′ satisfies the properties (i)-(iii), so we are done.
2. The case that (F,B,O) ∈ Fp2 and B′ = B ∩ (b

∁ × Rω) is analogous; just
replace ϕ′ = ⊤ ∧ σ0b by ϕ′ = ⊤ ∧ σ0!b.

We have thus finished the inductive step in case p = if b p1 else p2.
– We conclude the proof with iteration; let p = while b q. Then, for (F,B,O) ∈ Fp

means there is m such that (F,B,O) ∈ Fmb,q(F0) (where F0 = {(idRn+ω , b
∁ ×

Rω,Rn+ω)}). We therefore proceed by induction on m that the following holds: for
all (F,B,O) ∈ Fmb,q(F0), there is γ such that (while b q, γ0

∗−→ (Skip, γ).

The base case is when m = 0, in which case we have (F,B,O) = (idRn+ω , b
∁ ×

Rω,Rn+ω), and, indeed, (while b q, γ0) −→ (Skip, σ0, 0,⊤ ∧ σ0!b,⊤. In this
setting, it is routine to verify that properties (i)-(iii) hold.
We now prove the statement for m + 1. (F,B,O) ∈ Fm+1

b,q (F0) means there are
(Fq, Bq,Oq) ∈ Fq and (Fm, Bm,Om) ∈ Fmb,q(F0), such that
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• F = Fm ◦ Fq;
• B = (b× Rω) ∩Bq ∩ F−1

q [Bm]; and
• O = Oq ∩ F−1

q [Om].
Now apply the IH for the subterm q of p for (Fq, Bq,Oq) ∈ Fq , and for the case m
in the induction on m for (Fm, Bm,Om) ∈ Fmb,q(F0), to obtain canonical symbolic
executions

(q, γ0)
∗−→ (Skip, γq) (∗) and (while b q, γ0)

∗−→ (Skip, γm) (∗∗)

where γq = (σq, kq, ϕq, ψq) and γm = (σm, km, ϕm, ψm) with the properties that
• |σq|kq = Fq and |σm|km = Fm;
• |ϕq| = Bq and |ϕm| = Bm; and
• |ψq| = Oq and |ψm| = Om.

Using Lemma 9 twice, we have an outgoing transition chain from (while b q, γ0) as
follows:

(while b q, γ0) −→ (q # while b q, γ′0) Rule iter-T
∗−→ (Skip # while b q, γ′) Rule seq-n and Lemma 9 with (*)
−→ (while b q, γ′) Rule seq-0
∗−→ (Skip, γ) Lemma 9 with (**)

where, γ′0 = (σ0, 0,⊤ ∧ σ0(b),⊤), and (1) γ′ ∼ γq • γ′0 and (2) γ ∼ γm • γ′. We
verify the properties (i)-(iii) for this γ:

(i) |σ|k
(2)
= |σm|km ◦ |σ′|k′

(1)
= |σm|km ◦ |σq|kq ◦ |σ0|0

IH
= Fm ◦ Fq ◦ idRn+ω = F ;

(ii) |ϕ| (2)= |ϕ′|∩|σ′|−1
k′ [|ϕm|] (1)= |⊤∧σ0(b)|∩|σ0|−1

0 [|ϕq|]∩(|σq|kq ◦|σ0|0)−1[Bm].
It is routine to equate this to (b× Rω) ∩Bq ∩ F−1

q [Bm] = B.
(iii) Analogous to the above property
We have thus verified that there is γ such that (while b T, γ0)

∗−→ (Skip, γ) for
(F,B,O) ∈ Fm+1

b,T (F0) such that |σ|k = F , |ϕ| = B, and |ψ| = O.

Induction on p has finished, and we finished the proof of Proposition 10. A notable
consequence of this is that the mappings Φp defined in the proof of Theorem 4 are
surjective.

Proposition 11 (Injectivity of the Bijection). Let p ∈ P. If (p, γ0)
∗−→ (Skip, γ1) and

(p, γ0)
∗−→ (Skip, γ2) then either γ1 = γ2 or |ϕ1| ∩ |ϕ2| = ∅.

A.3 Proof of Theorem 5

We restate the theorem for convenience:

Theorem 5 (Correctness of Symbolic Execution of Probabilistic Programs). Let
p ∈ P be a program, µ ∈ M(Rn) a distribution measure over the input variables, and
A ⊆ Rn a measurable set. Then

JpK(µ)(A) =
∑

(σ,k,ϕ,ψ)∈Γp

(µ⊗ λω)
(
|σ|−1

k [A× Rω] ∩ |ϕ| ∩ |ψ|
)
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Proof. For every program p, there is a function fp such that

(i) (µ⊗ λω)
(
f−1
p [A× Rω]

)
= JpK(µ)(A), and

(ii) (µ⊗ λω)
(
f−1
p [A× Rω]

)
=

∑
(F,B,O)∈Fp

(µ⊗ λω)(F−1[A× Rω] ∩B ∩ O).

The function fp is given in Definition 12 below. Item (i) is Lemma 13 (takeB = A×Rω).
Item (ii) follows from Lemma 14, which gives

f−1
p [A× Rω] =

⋃
(F,B,O)∈Fp

F−1[A× Rω] ∩B ∩ O,

and measuring the union on the right-hand side is the same as summing all the individual
measures – as in Item (ii) – because it is a disjoint union by Lemma 15. The theorem is
proven by chaining the two equalities in Items (i) and (ii) and applying Theorem 4.

Q.E.D.

Definition 12 (Operational semantics [19], extended to support observe statements).
For programs p ∈ P in n variables, the partial functions fp : Rn+ω ⇀ Rn+ω ∪ {∗}

are defined inductively on the structure of p as:

fp : ρ 7→



ρ if p = Skip
ρ[i 7→ e(ρ

∣∣
n
)] if p = xi:= e

samplei(ρ) if p = xi ∼ rnd
ρ if p = observe b and ρ

∣∣
n
∈ b

∗ if p = observe b and ρ
∣∣
n
̸∈ b

fp(ρ) if p = if b p1 else p2 and ρ
∣∣
n
∈ b

fp2(ρ) if p = if b p1 else p2 and ρ
∣∣
n
̸∈ b

fmq (ρ) if p = while b q, m := min{j ∈ N | f jq (ρ)
∣∣
n
̸∈ b}

(fp2 ◦ fp1)(ρ) if p = p1 # p2

where fm denotes m-fold iterated applications of f (identity for m = 0).

In this definition, ∗ indicates an aborted execution due to an observe statement. The
functions may be partial because loops might diverge: for certain ρ ∈ Rn+ω there may
not be j ∈ N for which f jq (ρ) ̸∈ b × Rω; we write fp(ρ)↑ if p diverges on input ρ. A
failed observe yields the explicit aborted state ∗ (not the same as divergence!) to which
the domain naturally extends.

The distribution of outputs through this operational semantics is the (possibly unnor-
malized) one defined by the denotational semantics:

Lemma 13 (Correctness of operational semantics [19], extended to support observe
statements). Let p ∈ P be a program in n variables and µ ∈ M(Rn) a probability
measure over the input variables. Then, for every B ∈ B(Rn+ω),

(JpK(µ)⊗ λω)(B) = (µ⊗ λω)(f−1
p [B]) (6)
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Proof. For arbitrary p ∈ P, define

Hp := {B ∈ B(Rn+ω) | (JpK(µ)⊗λω)(B) = (µ⊗λω)(f−1
p [B]) for all µ ∈ M(Rn)}

Assume now that Hp contains all the cylinder sets for every p. It is not hard to see that
every Hp is also a Dynkin system:

– Hp always contains the emptyset.
– If B ∈ Hp, then

(JpK(µ)⊗ λω)(B ∁) = (JpK(µ)⊗ λω)(Rn+ω)− (JpK(µ)⊗ λω)(B)

and, since Rn+ω ∈ Hp as a cylinder set, and B ∈ Hp, this is equal to

(µ⊗ λω)(f−1
p [Rn+ω])− (µ⊗ λω)(f−1

p [B]) = (µ⊗ λω)(f−1
p [B ∁]),

so Hp is always closed under complement.
– Both (JpK(µ)⊗ λω) and (µ⊗ λω) ◦ fp−1 are measures, so Hp is obviously closed

under countable unions of pairwise disjoint sets.

By the π-λ-theorem, Hp therefore contains all Borel sets.
It remains to show the assumption that Hp contains the cylinder sets for every p.

Thus, we show (6) by induction on the structure of p, where we may assume that B is a
cylinder set, i.e., it can be written as

B = B0 × · · · ×Bn−1︸ ︷︷ ︸
=:B(n)

×Bn ×Bn+1 × · · · ×Bn+p × Rω︸ ︷︷ ︸
=:B(ω)

for some p ∈ N.

– For p = Skip, we have JpK(µ) = µ, so the LHS of (6) is just (µ⊗ λω)(B) for any
measurable set B. Also f−1

p [B] = B, so the RHS equals (µ⊗ λω)(B) as well.

– For p = xi:= e, for the LHS (6) we have JpK(µ) = µ ◦ αie
−1, where

αie(x0, . . . , xn−1) = (x0, . . . , xi−1, e(x0, . . . , xn−1), xi+1, . . . , xn−1)

For this αie, we can compute the following preimage:

(αie)
−1[B(n)] = (B0 × · · · ×Bi−1 × R×Bi+1 × · · · ×Bn−1) ∩ e−1[B(n)] (7)

Hence, the LHS of (6), which is (JpK(µ) ⊗ λω)(B(n) × B(ω)), becomes the µ
of this set (7), multiplied by λω(B(ω)). For the RHS, the preimage of B under
fp : ρ 7→ ρ[i 7→ e(ρ

∣∣
n
)] is

f−1
p [B] =

(
(B0 × · · · ×Bi−1 ×R×Bi+1 × · · · ×Bn−1) ∩ e−1[B(n)]

)
×B(ω),

and measuring this with (µ⊗ λω) establishes this case.
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– Now let p = xi ∼ rnd. We have, on the LHS of (6),

JpK(µ)(B0×· · ·×Bn−1) = µ(B0×· · ·×Bi−1×R×Bi+1×· · ·×Bn−1) ·λ(Bi)

and (JpK(µ)⊗ λω)(B) is exactly this, multiplied by λω(B(ω)).
For the RHS, fp(ρ) = samplei(ρ), where

samplei(ρ) = (ρ0, . . . , ρi−1,ρn, ρi+1, . . . , ρn−1,ρn+1,ρn+2, . . .)

so that

f−1
p [B] = B0 × · · · ×Bi−1 × R×Bi+1 × · · · ×Bn−1 ×Bi ×B(ω)

and measuring this with (µ⊗ λω) establishes the case.
– The last base case is p = observe b. We have, for the LHS,

(JpK(µ)⊗ λω)(B) = µ(B(n) ∩ b) · λω(B(ω))

On the RHS, fp(ρ) = ρ if ρ ∈ b × Rω (and undefined otherwise), so f−1
p [B] =

(B(n) ∩ b)×Bω . Measuring this last set with (µ⊗ λω) establishes this case.

The base cases of the structure of p are established, and we continue with the
induction steps. The induction hypotheses for substatements p′ of p (these are p1 and
p2 in the case for if and sequencing, and q in the case for while) are that Hp′ contains
all cylinder sets. By the reasoning above, the IH therefore entails that Hp′ moreover
contains all Borel sets.

– If p = if b p1 else p2, we have two induction hypotheses (IH), which we apply
respectively using the measures eb(µ) and e!b(µ) in the following derivation:

(JpK(µ)⊗ λω)(B)
= (JpK(µ)⊗ λω)(B(n) ×B(ω))
= JpK(µ)(B(n)) · λω(B(ω))

=
(
Jp1K(eb(µ))(B

(n)) + Jp2K(e!b(µ))(B
(n))

)
· λω(B(ω))

= Jp1K(eb(µ))(B
(n)) · λω(B(ω)) + Jp2K(e!b(µ))(B

(n)) · λω(B(ω))
= (Jp1K(eb(µ))⊗ λω)(B) + (Jp2K(e!b(µ))⊗ λω)(B)
IH
= (eb(µ)⊗ λω)(f−1

p1 [B]) + (e!b(µ)⊗ λω)(f−1
p2 [B])

(*)
= (µ⊗ λω)

(
f−1
p1 [B] ∩ (b× Rω)

)
+ (µ⊗ λω)

(
f−1
p2 [B] ∩ (b

∁ × Rω)
)

= (µ⊗ λω)
((
f−1
p1 [B] ∩ (b× Rω)

)
∪
(
f−1
p2 [B] ∩ b ∁ × Rω)

))
= (µ⊗ λω)(f−1

p [B])

In the last equality we apply the definition of fp. In the second to last equality,
the sum of the measures is the measure of the union, because the sets are disjoint.
Indeed, one is contained in b × Rω and the other in b

∁ × Rω. At (*), we use the
fact that if (X,ΣX , µX) and (Y,ΣY , µY ) are σ-finite measure spaces and A ∈ ΣX ,
then (eA(µX) ⊗ µY )(E) = (µX ⊗ µY )(E ∩ (A × Y )) for all E ∈ ΣX ⊗ ΣY .
(Here, ΣX = B(Rn) and ΣY = B(Rω).) This case is now finished.
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– Now let p = while b q. The LHS of (6) is

(JpK(µ)⊗ λω)(B) = JpK(µ)(B(n)) · λω(B(ω))

=
(∑∞

m=0 e!b ◦
(
JqK ◦ eb

)m)
(µ)(B(n)) · λω(B(ω))

=
∑∞
m=0 e!b

(
(JqK ◦ eb)m(µ)

)
(B(n)) · λω(B(ω))

=
∑∞
m=0(e!b

(
(JqK ◦ eb)m(µ)

)
⊗ λω)(B)

=
∑∞
m=0((JqK ◦ eb)m(µ)⊗ λω)(B ∩ (b

∁ × Rω))

(8)

Looking at the RHS, we derive the following expression:

f−1
p [B] = {ρ ∈ Rn+ω | fp(ρ) ∈ B}

= {ρ ∈ Rn+ω | ∃m . fmq (ρ) ∈ B ∩ (b
∁ × Rω)

∧∀j ∈ {0, . . . ,m− 1} . f jq (ρ) ∈ b× Rω}
= {ρ ∈ Rn+ω | ∃m . ρ ∈ f−mq [B ∩ (b

∁ × Rω)]
∧∀j ∈ {0, . . . ,m− 1} . ρ ∈ f−jq [b× Rω]}

=
⋃∞
m=0

{
f−mq [B ∩ (b

∁ × Rω)] ∩
m−1⋂
j=0

f−jq [b× Rω]
}

︸ ︷︷ ︸
=:Um

(9)

Here, f−mq [A] denotes the m-th preimage, i.e., f−mq [A] = A for m = 0 and

f−mq [A] = f−1
q [f−1

q [. . . [︸ ︷︷ ︸
m times

A] . . . ]

The family of sets (Um)m∈N in (9) are pairwise disjoint. That is, if m ̸= m′ then
Um ∩ Um′ = ∅. Indeed, without loss of generality, m′ > m, and then

ρ ∈ Um′ =⇒ ρ ∈ f−mq [b× Rω] =⇒ ρ ̸∈ f−mq [b
∁ × Rω] =⇒ ρ ̸∈ Um

Hence, for the RHS, we have

(µ⊗ λω)(f−1
p [B]) = (µ⊗ λω)

( ∞⋃
m=0

Um

)
=

∞∑
m=0

(µ⊗ λω)(Um)

Comparing this with the derivation of the LHS (8), it will suffice to show the
following holds for every m and every C ∈ B(Rn+ω):

(
(JqK ◦ eb)

m(µ)⊗ λω
)
(C) = (µ⊗ λω)(f−mq [C] ∩

m−1⋂
j=0

f−jq [b× Rω]) (10)

Indeed, using C = B ∩ (b
∁ × Rω) in (10) will establish the result for this case.

The claim (10) can be proved by induction on m.
• The base case m = 0 is easy, since both sides are obviously (µ⊗ λω)(C).
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• For the inductive step, we use the IH (*) for the substatement q in p = while b q,
and another IH (**) for m = ℓ. We prove the statement for m = ℓ+ 1.(

(JqK ◦ eb)ℓ+1(µ)⊗ λω
)
(C)

= (JqK
(
eb
(
(JqK ◦ eb)ℓ(µ)

))
⊗ λω)(C)

*
= (eb

(
(JqK ◦ eb)ℓ(µ)

)
⊗ λω)(f−1

q [C])

=
(
(JqK ◦ eb)ℓ(µ)⊗ λω

)
(f−1
q [C] ∩ (b× Rω))

**
= (µ⊗ λω)(f−ℓq [f−1

q [C] ∩ (b× Rω)] ∩
⋂ℓ−1
j=0 f

−j
q [b× Rω])

= (µ⊗ λω)(f
−(ℓ+1)
q [C] ∩

⋂ℓ
j=0 f

−j
q [b× Rω])

The inductive proof shows that (10) holds for all m and every C ∈ B(Rn+ω).
Conclude that (JpK(µ)⊗ λω)(B) = (µ⊗ λω)(f−1

p [B]) for all B ∈ B(Rn+ω) and
all µ ∈ M(Rn) in the case that p = while b T .

– For the case where p = p1 # p2, we have

(JpK(µ)⊗ λω)(B) = (Jp2 ⊗ λω)(Jp1K(µ))K(B)

Now we apply the IH for p2 with Jp1K(µ) and then for p1 with µ, to rewrite this
further as

. . . = (Jp1K(µ)⊗ λω)(f−1
p2 [B]) = (µ⊗ λω)(f−1

p1 [f−1
p2 [B]]) = (µ⊗ λω)(f−1

p [B])

Here, we again use the crucial fact that Hp1 is a Dynkin systems that contains the
cylinder sets, so they contain the Borel sets. In particular, Hp1 contains f−1

p2 [B].
This concludes the case for sequencing.

We have covered all cases for p, and the proof is done.

Lemma 14 (Correspondence between symbolic and concrete semantics). Let p ∈ P
be a program in n variables and ρ ∈ Rn+ω. Then fp(ρ) = ρ′ for some ρ′ ∈ Rn+ω iff
there is (F,B,O) ∈ Fp such that ρ ∈ B ∩ O. In this case, F (ρ) = ρ′ = fp(ρ).

Proof. The proof is by induction on the structure of p. The base cases are trivial, because
the symbolic semantics Fp are the singletons {(F,B,O)} where F is just fp, B is the
entire space, and so is O, except in the case for observe, where it is the measurable set
corresponding to the observed Boolean formula.

• If p = Skip then fp = idRn+ω and Fp = {(idRn+ω ,Rn+ω,Rn+ω)}.
• If p = xi:= e then also Fp = {(fp,Rn+ω,Rn+ω)}.
• Idem for p = xi ∼ rnd.
• If p = observe b then fp is the identity on b and fp(ρ) = ∗ in case ρ ∈ b

∁
.

Also, (F,B,O) ∈ Fp iff (F,B,O) = (idRn+ω ,Rn+ω, b). Thus, fp(ρ) = ρ iff
ρ ∈ b = B ∩ O and in this case, F (ρ) = ρ = fp(ρ).

In the inductive steps, the ‘if’ and ‘only if’ parts are proven separately.
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• First sequencing: let p = p1 # p2.
=⇒ : By definition, fp(ρ) = fp2(fp1(ρ)). If fp(ρ) = ρ′′ for some ρ′′ ∈ Rn+ω
then fp1(ρ) = ρ′ for some Rn+ω and fp2(ρ

′) = ρ′′. By IHs, then, there are
(F1, B1,O1) ∈ Fp1 and (F2, B2,O2) ∈ Fp2 such that ρ ∈ B1 ∩ O1 and ρ′ ∈
B2 ∩ O2. Moreover, fp1(ρ) = F1(ρ) and fp2(ρ

′) = F2(ρ
′). By definition of Fp,

(F,B,O) := (F2 ◦ F1, B1 ∩ F−1
1 [B2],O1 ∩ F−1

1 [O2]) ∈ Fp. It can be straightfor-
wardly verified that ρ ∈ B ∩ O and F (ρ) = fp(ρ).
⇐= : Let (F,B,O) ∈ Fp. By definition, it is composed of two (Fi, Bi,Oi) ∈
Fpi(i = 1, 2) such that F = F2 ◦F1, B = B1∩F−1

1 [B2], and O = O1∩F−1
1 [O2].

For ρ ∈ B, we have ρ ∈ B1 and F1(ρ) ∈ B2. If ρ ∈ O then ρ ∈ B1 ∩ O1

so ρ′ := F1(ρ)
IH
= fp1(ρ) for some ρ′ ∈ Rn+ω. In addition, ρ′ ∈ B2 ∩ O2, so

ρ′′ := F2(ρ
′)

IH
= fp2(ρ

′) for some ρ′′ ∈ Rn+ω. Hence, ρ′′ = fp2(fp1(ρ)) = fp(ρ)
and obviously F (ρ) = ρ′′.

• Now consider p = if b p1 else p2.
=⇒ : There are two cases to consider for the given ρ: ρ ∈ b× Rω or ρ ̸∈ b× Rω .
We prove only the second; the first is analogous. In that case, fp(ρ) = fp2(ρ).
If fp2(ρ) = ρ′ for some ρ′ ∈ Rn+ω then by IH there is (F,B,O) ∈ Fp2 such
that ρ ∈ B ∩ O and F (ρ) = ρ′. By definition, (F,B ∩ (b

∁ × Rω),O) ∈ Fp and,
obviously, ρ ∈ B ∩ (b

∁ × Rω) ∩ O.
⇐= : Let (F,B,O) ∈ Fp. Then either (i) B = B1 ∩ (b× Rω) and (F,B1,O) ∈
Fp1 , or (ii) B = B2 ∩ (b

∁ × Rω) and (F,B2,O) ∈ Fp2 . We prove only case
(i); case (ii) is analogous. Suppose ρ ∈ B ∩ O then, since ρ ∈ B1 ∩ O, by IH,
F (ρ) = fp1(ρ) = fp(ρ), where the last equality uses ρ ∈ b× Rω .

• Finally, iteration: p = while b q.
=⇒: If fp(ρ) = ρ′ then there ism ∈ N such that fmq (ρ) ∈ b

∁×Rω and for all j <
m in N, f jq (ρ) ∈ b×Rω . By induction on m, we show that for every such m and for

every ρ, there is (F,B,O) ∈ Fmb,q(F0), where denotes {(idRn+ω , b
∁ × Rω,Rn+ω)},

such that ρ ∈ B ∩ O and F (ρ) = fmq (ρ). Verifying the base case m = 0 with
(F,B,O) ∈ F0 is routine.
Suppose now, for the inductive step, that fm+1

q (ρ) ∈ b
∁ ×Rω and for all j < m+1

in N, f jq (ρ) ∈ b× Rω. Then, putting ρ′ := fq(ρ) this just says fmq (ρ′) ∈ b
∁ × Rω

and for all j < m in N, f jq (ρ
′) ∈ b× Rω .

• by the IH onm, now, there is (F ′, B′,O′) ∈ Fmb,q(F0) such that fq(ρ) ∈ B′∩O′

and F ′(fq(ρ)) = fmq (fq(ρ)), and
• by the IH on the subterm q, there is (Fq, Bq,Oq) ∈ Fq such that ρ ∈ Bq ∩ Oq

and Fq(ρ) = fq(ρ), and
It is now mechanically verified that the element

(F,B,O) := (F ′ ◦ Fq, Bq ∩ F−1
q [B′] ∩ (b× Rω),Oq ∩ F−1

q [O′]) ∈ Fm+1
b,q (F0)

satisfies ρ ∈ B ∩ O and F (ρ) = fm+1
q (ρ).

⇐=: Conversely, for (F,B,O) ∈ Fp we must have m ∈ N such that (F,B,O) ∈
Fmb,q(F0), and we proceed again by induction on m. For m = 0, if ρ ∈ B ∩ O, then
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we know that ρ ∈ b
∁ × Rω and so, indeed min{j ∈ N | f jq (ρ) ∈ b

∁ × Rω} = 0, so
fp(ρ) = f0q (ρ) = ρ = F (ρ).
In the inductive step, let (F,B,O) ∈ Fm+1

b,q (F0). Then, by definition of Fb,q ,

(F,B,O) = (F ′ ◦ Fq, Bq ∩ F−1
q [B′] ∩ (b× Rω),Oq ∩ F−1

q [O′])

for some (F ′, B′,O′) ∈ Fmb,q(F0) and (Fq, Bq,Oq) ∈ Fq. For all ρ ∈ B ∩ O, we
also have ρ ∈ Bq ∩ Oq and so fq(ρ) = Fq(ρ) by IH. Now Fq(ρ) ∈ B′ ∩ O′ so by
IH on m, we have fp(Fq(ρ)) = fmq (Fq(ρ)) and m = min{j ∈ N | f jq (Fq(ρ)) ∈
b

∁ × Rω} = 0. Since Fq(ρ) = fq(ρ) and also ρ ∈ b× Rω , this means that

m+ 1 = min{j | f jq (ρ) ∈ b
∁ × Rω}

and we conclude that fp(ρ) = fm+1
q (ρ) = fmq (fq(ρ)) = F ′(Fq(ρ)) = F (ρ).

This finishes induction over the structure of p; we are done with the proof of Lemma 14.

Lemma 15 (Disjoint Path Probabilities). If (F,B,O), (F ′, B′,O′) ∈ Fp are two
distinct elements, then B ∩B′ = ∅.

Proof. The proof is by induction on the structure of p. Fp is a singleton for all base
cases of p, so there there is nothing to prove there.

– Suppose p = p1 # p2 and let (F,B,O) and (F ′, B′,O′) ∈ Fp. By definition of Fp,
there are (F1, B1,O1), (F

′
1, B

′
1,O′

1) ∈ Fp1 and (F2, B2,O2), (F
′
2, B

′
2,O′

2) ∈ Fp2
such that F = F2 ◦ F1 and F ′ = F ′

2 ◦ F ′
1; B = B1 ∩ F−1

1 [B2] and B′ =
B′

1 ∩ F ′
1−1[B′

2]; and O = O1 ∩ F−1
1 [O2] and O′ = O′

1 ∩ F ′−1
1 [O′

2].
1. If (F1, B1,O1) and (F ′

1, B
′
1,O′

1) are distinct, B1 and B′
1 are disjoint by IH on

p1. Thus B and B′ are disjoint, as B ⊆ B1 and B′ ⊆ B′
1.

2. Otherwise, F1 = F ′
1 and B1 = B′

1, but B2 and B′
2 must be disjoint by IH

on p2, since (F2, B2,O2) and (F2, B2,O2) are distinct (otherwise (F,B,O)
and (F ′, B′,O′) are equal). Then F−1

1 [B2] and F ′−1
1 [B′

2] are disjoint (since
F1 = F ′

1) and so B ∩B′ = ∅, since B ⊆ F−1
1 [B2] and B′ ⊆ F ′−1

1 [B′
2].

We have concluded that B ∩B′ = ∅ in both cases, thus finishing this step.
– For p = if b p1 else p2, let (F1, B

′
1,O1), (F2, B

′
2,O2) ∈ Fp be distinct. There are

two possibilities for B′
1:

1. B′
1 = B1 ∩ (b× Rω) and (F1, B1,O1) ∈ Fp1 . Two cases also for B′

2:
(a) B′

2 = B2 ∩ (b × Rω) and (F2, B2,O2) ∈ Fp1 . In this case, B1 and
B2 are disjoint because of the IH. Since B′

1 and B′
2 are subsets of these

(respectively), the required disjointness follows.
(b) B′

2 = B2 ∩ (b
∁ × Rω) and (F2, B2,O2) ∈ Fp2 . Then B′

1 and B′
2 are

disjoint because one is a subset of b× Rω and the other of b
∁ × Rω .

2. B′
1 = B1 ∩ (b

∁ × Rω) and (F1, B1,O1) ∈ Fp2 . The rest of this case is a
reasoning that is completely symmetrical to the above.

In all cases, B′
1 ∩B′

2 = ∅, so the inductive step is finished.
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– Finally, the case where p = while b q. Let (F1, B1,O1), (F2, B2,O2) ∈ Fp. Then
there are m1 and m2 such that

(F1, B1,O1) ∈ Fm1

b,q (F0) and (F2, B2,O2) ∈ Fm2

b,q (F0),

where F0 = {(idRn+ω , b
∁ × Rω,Rn+ω)}. Proceed by a case analysis:

• Ifm1 = m2 = 0 then (F1, B1,O1) = (F2, B2,O2) = (idRn+ω , b
∁×Rω,Rn+ω),

so there is nothing to prove.
• For the case m1 = m2 > 0, we proceed by induction on m := m1 = m2:

* The base case is m = 1. There are two (Fq,i, Bq,i,Oq,i) ∈ Fq, i = 1, 2

such that Fi = Fq,i, Bi = Bq,i ∩ F−1
q,i [b

∁ ×Rω] ∩ b×Rω , and Oi = Oq,i,
by definition of Fb,q . These two (Fq,i, Bq,i,Oq,i), i = 1, 2 must be distinct,
otherwise (Fi, Bi,Oi), i = 1, 2 are equal. Then the sets Bq,1 and Bq,2 are
disjoint by the IH for the subterm q of p. A fortiori, B1 and B2 are disjoint.

* We now prove the statement form+1. So let (Fi, Bi,Oi) ∈ Fm+1
b,q (F0), i =

1, 2. Then there are, for i = 1, 2, (Fq,i, Bq,i,Oq,i) ∈ Fq and (F ′
i , B

′
i,O′

i) ∈
Fmb,q(F0), such that
(i) Fi = F ′

i ◦ Fq,i;
(ii) Bi = (b× Rω) ∩Bq,i ∩ F−1

q,i [B
′
i]; and

(iii) Oi = Oq,i ∩ F−1
q,i [O′

i].
So we consider the following two cases:
1. (Fq,1, Bq,1,Oq,1) and (Fq,2, Bq,2,Oq,2) are distinct. By IH on q,

Bq,1 ∩Bq,2 = ∅

2. Otherwise, if (Fq,1, Bq,1,Oq,1) = (Fq,2, Bq,2,Oq,2) then (F ′
1, B

′
1,O′

1)
and (F ′

2, B
′
2,O′

2) must be distinct. But then by, by IH for m, we have
B′

1 ∩B′
2 = ∅, and since Fq,1 = Fq,2, we also have

F−1
q,1 [B

′
1] ∩ F−1

q,2 [B
′
2] = ∅

In both cases B1 and B2 are disjoint, a fortiori.
Induction on m has finished.

• The last possibility is m2 ̸= m1 > 0, or, w.l.o.g., m2 > m1 > 0.
We will use the following claim; write F0 = {(idRn+ω , b

∁ × Rω,Rn+ω)}:

∀m ∈ N≥0 .∀(F,B,O) ∈ Fmb,q(F0) .∃(F1, B1,O1), . . . , (Fm, Bm,Om) ∈ Fq
(*)

s.t.
(i) F = Fm ◦ · · · ◦ F1;

(ii) ∀j ∈ {0, 1, . . . ,m− 1} . B ⊆ F−1
1 [. . . F−1

j [(b× Rω) ∩Bj+1] . . . ];

(iii) B ⊆ F−1[b
∁ × Rω].

Here, Item (ii) for j = 0 is just B ⊆ (b× Rω) ∩B1. We prove all three items
by induction on m.

* Form = 1 we know (F,B,O) = (Fq, Bq ∩ (b×Rω)∩F−1
q [b

∁×Rω],Oq)
for some (Fq, Bq,Oq) ∈ Fq . It is straightforwardly verified that by putting
(F1, B1,O1) := (Fq, Bq,Oq), Items (i) to (iii) are satisfied.
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* Now let (F,B,O) ∈ Fm+1
b,q (F0). Then there are (Fq, Bq,Oq) ∈ Fq and

(F ′, B′,O′) ∈ Fmb,q(F0) such that F = F ′ ◦ Fq, B = Bq ∩ (b × Rω) ∩
F−1
q [B′], and O = Oq ∩F−1

q [O′]. By the induction hypothesis, then, there
are (F ′

1, B
′
1,O′

1), . . . , (F
′
m, B

′
m,O′

m) ∈ Fq such that
(i) F ′ = F ′

m ◦ · · · ◦ F ′
1;

(ii) B′ ⊆ F ′−1
1 [. . . F ′−1

j [(b×Rω)∩B′
j+1] . . . ] for all j ∈ {0, 1, . . . ,m−

1}; and
(iii) B′ ⊆ F ′−1

[b
∁ × Rω].

Put (F1, B1,O1) := (Fq, Bq,Oq) and (Fj+1, Bj+1,Oj+1) := (F ′
j , B

′
j ,O′

j)
for 1 ≤ j ≤ m. Then every (Fj , Bj ,Oj) ∈ Fq , and
(i) F = F ′ ◦ Fq = F ′

m ◦ · · · ◦ F ′
1 ◦ Fq = Fm+1 ◦ Fm ◦ · · · ◦ F2 ◦ F1;

(ii) B′ ⊆ F ′−1
1 [. . . F ′−1

j [(b×Rω)∩B′
j+1] . . . ] for all j ∈ {0, 1, . . . ,m−

1}. And so, for all j ∈ {0, 1, . . . ,m− 1}:

B ⊆ F−1
q [B′] ⊆ F−1

1 [F ′−1
1 [. . . F ′−1

j [(b× Rω) ∩B′
j+1] . . . ]]

= F−1
1 [F−1

2 [. . . F−1
j+1[(b× Rω) ∩Bj+2] . . . ]]

This is to say that for all j ∈ {1, . . . ,m}:

B ⊆ F−1
1 [. . . F−1

j [(b× Rω) ∩Bj+1] . . . ]

The case j = 0 is trivially verified:B ⊆ (b×Rω)∩Bq = (b×Rω)∩B1.
(iii) B′ ⊆ F ′−1

[b
∁ × Rω] so B ⊆ F−1

q [F ′−1
[b

∁ × Rω]] = F−1[b
∁ × Rω].

We have verified all three properties for (F,B,O) ∈ Fm+1
b,q (F0), finished induc-

tion on m, and proved the claim (∗), which we will use now.
Now let (F,B,O) ∈ Fm1

b,q (F0) and (F ′, B′,O′) ∈ Fm2

b,q (F0) (recall m2 >
m1 > 0). Then by the claim (∗) above, there are

(F1, B1,O1), . . . , (Fm1
, Bm1

,Om1
),

(F ′
1, B

′
1,O′

1), . . . , (F
′
m2
, B′

m2
,O′

m2
) ∈ Fq

with the properties of Items (i) to (iii).
* Suppose first that

(F1, B1,O1) = (F ′
1, B

′
1,O′

1), . . . , (Fm1
, Bm1

,Om1
) = (F ′

m1
, B′

m1
,O′

m1
)

By property Item (iii), then,

B ⊇ F−1[b
∁ × Rω] = F−1

1 [. . . F−1
m1

[b
∁ × Rω] . . . ]

On the other hand, by property Item (ii), since m1 ∈ {0, . . . ,m2 − 1},

B′ ⊇ F ′−1
1 [. . . F ′−1

m1
[b× Rω] . . . ]

and since Fj = F ′
j for all j ∈ {1, . . . ,m1},

F−1
1 [. . . F−1

m1
[b

∁ × Rω] . . . ] ∩ F ′−1
1 [. . . F ′−1

m1
[b× Rω] . . . ] = ∅
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* Otherwise let M be the smallest integer in {1, . . . ,m1} such that we have
(FM , BM ,OM ) ̸= (F ′

M , B
′
M ,O′

M ). Then

FM−1 ◦ · · · ◦ F1 = F ′
M−1 ◦ · · · ◦ F ′

1

By property Item (ii),

B ⊇ F−1
1 [. . . F−1

M−1[BM ] . . . ] and B′ ⊇ F ′−1
1 [. . . F ′−1

M−1[B
′
M ] . . . ]

By IH on q, BM ∩B′
M = ∅, so that now

F−1
1 [. . . F−1

M−1[BM ] . . . ] ∩ F ′−1
1 [. . . F ′−1

M−1[B
′
M ] . . . ] = ∅

In both cases we conclude B ∩B′ = ∅.
We have considered all possible values for m1 and m2.

Inductive proof of Lemma 15 is now finished.
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