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ABSTRACT: It is increasingly widely recognized that ensemble-
based approaches are required to achieve reliability, accuracy, and
precision in molecular dynamics calculations. The purpose of the
present article is to address a frequently raised question: what is
the optimal way to perform ensemble simulation to calculate
quantities of interest?

In a recent Editorial on “Guidelines for Reporting Molecular
Dynamics Simulations in JCIM Publications”,1 the editors

put forward recommended guidelines concerning the manner
in which classical molecular dynamics (MD) simulations are
performed which are important to the scientific community in
general and computational chemistry in particular. We have
demonstrated2 that the MD method exhibits an intrinsically
chaotic nature and hence is prone to produce unreliable or
unreproducible results. We are therefore obliged to use a
probabilistic representation for all quantities of interest (QoIs)
computed using the method. One point in the JCIM editors’
checklist is “Replica simulations and convergence”, a concept
we have been advocating for several years. JCIM now requires
that studies reporting on MD simulations should include “at
least three replica copies”. Indeed, the common practice in
many experimental procedures, and to some extent now at last
catching on in molecular simulation, is to perform “three
repeats” so that one can estimate the first and second moments
of the underlying statistical probability distribution, namely the
mean and variance respectively of a QoI. This requirement
turns on the assumption that distributions are normal, but
while the first two moments completely characterize a normal
distribution, more moments are required to characterize a non-
normal distribution. We explain below why three measure-
ments are not acceptable in general and recommend against
using them as a standard.

Studies have reported non-Gaussian behavior for different
QoIs in various applications.3−8 In the context of MD
simulations, we have reported on numerous occasions the
observation of non-Gaussian distributions in binding free
energies calculated from both equilibrium9−14 and non-
equilibrium15 approaches. The observation of non-Gaussian
distributions from simulations led to the investigation of
exceptionally extensive experimental data the results of which
we published recently in JCIM.14 The distributions of

experimental binding free energies exhibit non-normal proper-
ties as well for the compounds reported.14

A question frequently raised is what is the optimal way to
perform MD-based calculation of one or more QoIs? To
illustrate the general situation, we select binding free energy as
the QoI to answer the above question. It must be pointed out
that our findings are in no way exclusively applicable to this
case. In materials science, for example, we have demonstrated
their applicability just as convincingly as in biomolecular
simulations.11 We investigate the distributions of calculated
binding free energies and test different ensemble simulation
protocols while holding the computational resources constant.
Suppose we have 60 ns of simulation time available for one
compound. What is the most appropriate way to divide these
60 ns to get the most reliable binding free energy estimations?
Is it 1 × 60 ns, 6 × 10 ns, 12 × 5 ns, 20 × 3 ns, or 60 × 1 ns
runs?

■ NON-GAUSSIAN DISTRIBUTIONS
In a typical binding free energy study using ESMACS
(enhanced sampling of molecular dynamics with approxima-
tion of continuum solvent) protocol,16,17 we found that the
free energy distributions reject the null hypothesis of a normal
distribution for >20% of the 400 ligand-protein complexes
studied.11 The conclusion, however, is not definitive for some
molecular systems even from 25-replica ensembles.18 To
provide conclusive proof of the nature of the distributions, we
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selected nine complexes from the data set, labeled as “a” to “i”
in Figure 1 and Table 1, and increased the number of replicas
to 500.

The distributions of the predicted absolute binding free
energies (ABFE) are summarized graphically in Figure 1. The
probability plots manifest the following: 1) differences between
means and modes, 2) skewness, 3) kurtosis, 4) long and fat
tail(s), and 5) the presence of multimodal distributions. The
convergence of skewness and excess kurtosis with the number
of replicas is also definitive, showing the two quantities
unambiguously deviating from 0 in ensemble simulations with
a sufficiently large number of replicas (Figure 1j). The

skewness and excess kurtosis are definitively nonzero from
500-replica simulations for most of the systems studied here
(Table 1). The Shapiro-Wilk and D’Agostino/Pearson normal-
ity tests unequivocally reject the normal null hypothesis for all
9 systems with very high confidence. These statistics require a
very large ensemble size to provide a cast-iron answer. The
need for such large quantities of data was pointed out by Succi
and Coveney.19

■ OPTIMAL ENSEMBLE SIZE
Our standard ESMACS protocol employs an ensemble of 25
replicas, with each replica undergoing a 4-ns production

Figure 1. Non-Gaussian characteristics of predicted binding free energies. The distributions of binding free energies (ΔG) are obtained from 500-
replica ensembles for nine ligand-protein complexes (a-i). The best-fit Gaussian distributions are shown by black solid lines, while the red dashed
lines indicate average values. The convergence of the skewness and excess kurtosis (j), with means (solid lines) and standard errors of the mean
(shaded region), is shown for one of the ligand-protein complexes investigated (a). The quantile-quantile (Q-Q) plot (k) shows that the quantiles
(dots) substantially deviate from an ideal Q-Q plot from a normal distribution (line with shadow showing 95% confidence interval).

Table 1. Skewness and Excess Kurtosis of the Calculated Binding Free Energy Distributions and the Confidence (p-Value)
That the Null Hypothesis Is False from Shapiro-Wilk and D’Agostino/Pearson Normality Testsa

Complex Skewness Kurtosis p-value (Shapiro-Wilk) p-value (Pearson)

a −0.84 [−1.11, −0.57] 1.36 [0.50, 2.14] 5.58 × 10−11 1.60 × 10−14

b −0.43 [−0.57, −0.29] −1.18 [−1.39, −1.03] 3.46 × 10−16 5.59 × 10−64

c −0.15 [−0.30, 0.00] −1.18 [−1.36, −1.03] 6.03 × 10−13 1.17 × 10−60

d −0.87 [−1.72, −0.24] 4.84 [2.28, 8.47] 2.96 × 10−15 8.90 × 10−25

e −1.73 [−1.93, −1.50] 2.57 [1.39, 3.51] 3.16 × 10−24 1.90 × 10−36

f 1.27 [1.03, 1.50] 2.03 [1.15, 2.78] 8.48 × 10−18 2.05 × 10−25

g 1.07 [0.68, 1.53] 3.08 [1.70, 4.55] 2.51 × 10−13 2.07 × 10−24

h 0.44 [0.26, 0.63] −0.14 [−0.59, 0.28] 6.65 × 10−6 4.21 × 10−4

i −0.10 [−0.24, 0.03] −0.69 [−0.89, −0.52] 9.62 × 10−5 5.25 × 10−6

aErrors of the skewness and kurtosis are given in brackets, calculated at the 95% confidence interval using bootstrapping.
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run.16,17 Our extensive studies over several years demonstrate
good convergence and reproducibility from these proto-
cols.11,16 When computational resources are limited, as they
often are, one may be obliged to “cut corners” on these
rigorous protocols.20 One would like to know whether to
reduce the ensemble size, the temporal duration of the
simulation, or a combination of both. Here, we revisit one of
our recent simulation studies,21 by selecting a subset of
ensembles and/or a reduced duration of production runs. The
“12×5 ns” protocol, for example, resamples 12 randomly
selected replicas and uses only the first 5 ns trajectories to
calculate the binding free energies. Many studies have shown
that single simulations are not reproducible,2,6,9,22,23 while a 1-
ns production run is usually too short to produce converged
results. We therefore exclude the 1 × 60 ns and 60 × 1 ns
options.

Figure 2 illustrates our findings. Several observations may be
drawn: 1) the differences between calculated binding free
energies from different protocols are not statistically significant
for most of the molecular systems investigated; 2) the
uncertainties increase when the number of replicas is reduced;
3) the free energies typically exhibit a monotonic increase or
decrease when the simulation duration is increased. It is
evident that no significant differences are observed for the
proposed simulation durations (2, 3, 5, or 10 ns). As large
ensemble size and short simulations enjoy the benefit from
small error bars and short wall-clock run times, we recommend
30 × 2 ns and 20 × 3 ns protocols in order to maximize
sampling for a fixed amount of computational time−captured
in the phrase “run more simulations for less time”.

It should be noted that whether “for less time” works will
depend both on the QoI one is assessing and the conforma-
tional space that needs to be sampled. Sufficient sampling of
the relevant conformations is important when the properties
are determined by multiple minima corresponding to distinct
conformations. To capture these in this manner, one would
need to start from ensembles which have replicas not only
differing in terms of their initial velocities but also
corresponding to different initial spatial structures which
represent states near these conformations,11,24 a recommen-
dation in line with the Editorial guidelines.1 Longer ensemble
simulations are needed to capture the temporal and spatial

characteristics of molecular systems, such as the process of
ligand binding.25

To investigate the distributions of relative binding free
energies (RBFEs) from alchemical methods, we select a subset
of a data set from our original TIES (thermodynamic
integration with enhanced sampling) study.26 We have
extended TIES simulations with ensembles of up to 958
replicas;18 the results demonstrate that there is a small but
significant non-Gaussian behavior in the distribution for one of
the five systems. The negative kurtosis for the system, with a
95% confidence interval, can be observed only for ensembles of
around 400 replicas. Based on the small absolute value of this
kurtosis, −0.29 [−0.47, −0.08], and the lack of a non-Gaussian
signal in other observed distributions, we conclude that the
non-Gaussian nature may be less common in RBFEs as
compared to ABFEs. One significant distinction between
RBFE and ABFE calculations lies in the cancellation of
numerous large and fluctuating energy contributions within
RBFE. Furthermore, RBFE methods rely on shared common
atoms between compound pairs, compelling the compounds to
adopt the same binding pose simultaneously. Consequently,
multiple modes are rarely present in the RBFE distributions.
While we recommend an ensemble of 5 or more replicas in
general for TIES simulations,13,26 one may begin with 3
replicas if cutting corners is required20 and then add more
replicas for cases where error bars are greater than a chosen
threshold.

■ CONCLUDING REMARKS
Ensemble simulations are necessary to ensure reliability,
accuracy, and reproducibility, enabling us to connect ergodic
theory and uncertainty quantification. To provide certification
for a verification, validation, and uncertainty quantification
(VVUQ) standard practice and to make it simpler to quantify
uncertainties, a number of toolkits have been developed. One
of these is the open-source EasyVVUQ application,27

contained within the VECMA28 and SEAVEA29 toolkits.
When there are limitations on computational resources
available, we recommend performing a minimum of 10 replicas
for ESMACS-style and 3 replicas for TIES-style protocols. We
recommend setting a desired level of precision in terms of a
predefined threshold for error bars on predictions (say 0.5
kcal/mol). Initially, all calculations can be performed using the

Figure 2. Binding free energies calculated from different protocols. Bootstrapped errors, given to 67% confidence, are provided for the predicted
energies.
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minimal number of replicas suggested here to reduce
computational costs. Thereafter, further replicas may be
included for those systems that do not satisfy the chosen
precision threshold criterion. Following such a stepwise
procedure allows one to reduce computational costs without
compromising substantially the accuracy and precision of
results.

■ DATA AND SOFTWARE AVAILABILITY
All input structures and AMBER-format topology files along
with the predicted ΔG values for the 9 compounds binding to
the key proteins of SARS-CoV-2 from 500-replica ESMACS
simulations are available at 10.23728/B2SHARE.
CDD9F8363F364B5682987CD02520B7E3. The data set for
the investigation of optimal ensemble sizes was taken from a
previous study, which can be found at 10.23728/b2share.
1c42a67a73e9424b8192ba65c81077e1.
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