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Abstract — In this work a novel radar simulation concept
is introduced that allows to simulate realistic radar data for
Range, Doppler, and for arbitrary antenna positions in an efficient
way. Further, it makes it possible to automatically annotate the
simulated radar signal by allowing to decompose it into different
parts. This approach allows not only almost perfect annotations
possible, but also allows the annotation of exotic effects, such
as multi-path effects or to label signal parts originating from
different parts of an object. This is possible by adapting the
computation process of a Monte Carlo shooting and bouncing
rays (SBR) simulator. By considering the hits of each simulated
ray, various meta data can be stored such as hit position, mesh
pointer, object IDs, and many more. This collected meta data can
then be utilized to predict the change of path lengths introduced
by object motion to obtain Doppler information or to apply
specific ray filter rules in order obtain radar signals that only
fulfil specific conditions, such as multiple bounces or containing
specific object IDs. Using this approach, perfect and otherwise
almost impossible annotations schemes can be realized.

Keywords — Automotive Radar, Radar Simulation, Data
Annotation

I. INTRODUCTION

Radar sensors have become one of the most important type

of sensors when it comes to automated or autonomous driving

applications. Compared to lidar sensors, they are cheap, robust

and can also operate under various weather conditions such

as rain and fog [1]. Furthermore, radar sensors can directly

measure the radial speed of objects by utilizing the Doppler

effect. Since radar sensors are especially unobtrusive and

compact they can even be employed in domains such as human

activity recognition [2], [3] or for medical tasks [4].

In all of these domains, detection and classification for

various cases plays a major role. For example, entities in

automotive scenarios such as pedestrians, cyclists, and cars

have to be detected and classified reliably [5]–[7]. For activity

recognition, various tasks such as hand gesture recognition [8]

or breathing and fall detection exist [9]–[11]. Also the

detection of ghost targets caused by multi-path reflections is

important in all of these applications, since it can lead to

false detections and classifications. Various machine learning

approaches exist to alleviate this effect, see [12]–[14].
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Fig. 1. A launched ray collects meta data in the simulation process, which
can be used to generate Doppler simulations and efficiently annotate radar
images in the post processing step. In this illustration, the meta data consists
of a a mesh id, a triangle index of the mesh, and the ray hit position.

In order to train potential classifiers, commonly the data

has to be annotated beforehand. This can either happen

manually or self-supervised using reference sensors, such as

lidar or camera sensors [15], [16]. However, conducting real

measurements and annotating data manually is expensive,

time consuming, and often error-prone. Compared to natural

images, radar data is very unfamiliar for the the human eye

and expert knowledge is required for manual annotation. Even

with the help of reference sensors, the problems of generating

enough corner cases remain. Further, neither lidar nor camera

sensors share the same physical and data processing principles,

which leads to an unreliable data base for self-supervised

learning.

To overcome this problem, a digital twin of the real

world and the sensor itself can be created [17]. This digital

reality can serve as ground truth and allows for an improved

annotation. Even the car manufacturer Tesla, Inc. created a

digital resemblance of San Francisco to train its autonomous

driving algorithms1, which underlines the importance of this

topic.

For radar data, several simulation approaches exist, starting

from point-scattering models [18], generative machine learning

approaches [19] to very accurate ray tracing based physical

1https://www.teslaacessories.com/blogs/news/virtual-san-francisco-tesla
-tests-autopilot-with-simulation-from-large-game-engine-unreal
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Fig. 2. The contribution of this work is shown in the upper part of the image
(a). Compared to conventional approaches (b) path lengths and ray data is only
simulated once and are adjusted afterwards for different chirps and antenna
positions. Below each box the respective section is referenced, which explains
the processing step in more detail.

models [20]–[23]. Especially physical models can obtain very

versatile and accurate simulations and are successfully used in

classification tasks [24]. However, even in simulations it is hard

to determine which part of the signal belongs to which specific

object. This is because the reflectance at an object also causes

sidelobes or creates multi-path targets besides the correct

signal part. In the examplary case of a walking pedestrian

obscured by a car, a ghost target can be created in the radar

signal due to multi-path effects. For safety considerations it is

essential to detect that this signal actually originates from a

human and, at the same time, that it is caused by multi-path

effects. Another simpler example is that even in simulations

an object may be occluded by another one and therefore is not

visible in the signal at all. The simulator should therefore be

able to detect this effect in order to avoid annotating this part

in the radar image wrongly.

In this contribution, a concept is proposed that solves

these issues by collecting ray meta data during the simulation

process with a radar ray tracing simulator. These meta data

include pointers to the meshes and triangles that the rays hit

on their way from transmitter to receiver. Moreover, the meta

data can be augmented by even more attributes such as normal

vectors or material information. This process is illustrated in

Fig. 1.

With this meta data, it is possible to efficiently simulate

Doppler characteristics as well as signals for large antenna

arrays. It is further possible to automatically generate (almost)

perfect and precise labels for an annotation of the simulated

radar signal.

II. CONCEPT

In this section, the complete simulation workflow is

explained from the radar signal model, to the utilization of ray

meta data, up to the efficient simulation for different antenna

positions, as depicted in Fig. 2.

A. Radar Simulation And Signal Model

The contribution of this paper is based on the simulator

we presented in [23]. It features an implementation of the

shooting and bouncing rays (SBR) approach and uses a

probabilistic material model to account for specular and diffuse

reflection types. In order to account for realistic multi-path

simulations and to achieve realistic material behavior, a large

amount of rays is shot into the simulation environment.

This is computationally expensive but tolerable with modern

hardware and a standard procedure for visual ray tracing

approaches [25] [26].

Conventionally, each ray with index i sums up its path

length di from the transmitting (TX) antenna, to one or more

objects and finally the receiving (RX) antenna. This process is

also illustrated in Fig. 1. The delay τi for each ray is defined

by

τi =
di(j)

c
, (1)

with c is being speed of light. Due to the large number of rays,

this information is sufficient to compute a good representation

of the beat or intermediate frequency (IF) signal of a frequency

modulated continuous wave (FMCW) radar signal as shown in

the equation below

sIF(t, j) =

N∑

i=0

A(α, β) exp(2πj(µtτi(j) + fcτi(j))). (2)

With A(α, β) modelling the direction-depending antenna

radiation pattern and fc representing the carrier frequency of

the signal. The frequency slope µ is defined by the ratio of the

bandwidth B and the chirp duration Tc, see equation below

µ =
B

Tc

. (3)

A more detailed description of FMCW radar signal processing

can for example be found in [27].

In order to simulate multiple Doppler shifts, so called

chirps have to be simulated. The time between two chirps

is given by Td and is often close to Tc but not necessarily

equal. Each chirp simulation is indicated by the index j as

used in (1) and (2). If an object is in motion during the

radar measurement, the path length and therefore also τ will

slightly change during each chirp. The time variable t of

a single chirp is commonly named fast time and the time

variable across all chirps with index j is called slow time.

A complete measurement consisting of several chirps is called

chirp sequence.

Ordering the chirp sequence into a two dimensional array

and computing a discrete Fourier transform results in a

Range-Doppler spectrum

SIF(fr, fd) = DFT2d(sIF(t, j)). (4)

Zero padding and windowing is omitted in this short

description. The resulting frequency axes represent the range

frequency fr and the Doppler frequency fd.

B. Ray Meta Data

In this subsection, the extension of the aforementioned

simulation approach is described. The simulator will be

adapted, so that it not only stores a ray’s path length during

the simulation, but also relevant additional information, every

time it hits a triangle.



In general, the type and amount of meta data is arbitrary

and only limited by the computing resources e.g. video

memory. However, in this work the meta data consists of a

list of tuples. Each list entry represents a single ray hit and

each tuple consists of the following elements:

• mesh ID ak
• triangle index bk
• barycentric triangle coordinates uk and vk

Whereby, a mesh represents an object consisting of multiple

triangles and each triangle consists of three vertices, see Fig. 3.

The index k determines the entry position in the list. Since

the complete scene consists of several meshes, which again

are made up of several triangles, identifiers for both have to

be stored. To obtain the exact hit position after the ray tracing

process, the barycentric coordinates of the hit position of the

triangle have to be stored as well.

It is also possible to store the Cartesian position of the

hit position directly, but by using this approach, it simplifies

the computation of Doppler information, as shown later in

section II-D. Having a unique mesh ID is also required to

decompose or to automatically label objects in the processed

radar signal, as described in the next section.

C. Radar Signal Decomposition

Having stored all rays including their meta data, it is now

possible to decompose the IF-Signal in the following way:

sIF(t, j) =
h=M∑

h=0

shIF(t, j, τh). (5)

Here, h depicts a ray span or region that consists of several

rays generating an IF-Signal part shIF. Each ray span may be

generated by arbitrary filter rules, such as:

• Any list entry that includes the mesh ID of a pedestrian

• Has more than one list entry to account for ghost-targets

• Has only one list entry and a specific mesh ID to account

for line of sight detections of a specific object

• . . .

With this technique, radar images including only specific

properties can be created and labels can be automatically

generated by applying very simple binary segmentation

techniques in the processed radar image.

D. Efficient Doppler Simulation

Assuming that the motion across the slow time is small

enough so that each ray would hit the same triangle at each

chirp snapshot, one simulation run is sufficient as long as

the initial ray hit positions are stored. Since the position of

each animated triangle is known at every specific point in

time, the stored hit positions can be updated and new path

lengths can be calculated. This is much more efficient than

running a complete simulation for each snapshot, because ray

tracing requires a lot of expensive collision checks and most

traced rays never hit any object or reach the receiver. This

idea has already been utilized in a similar way by [28] by

considering the objects velocity and computing the Doppler

shift directly. An extension of this was proposed in [29] for

a image-based ray tracing simulation for multiple bounces.

However, this extension is implemented for an SBR approach

and also supports non-linear motion in general. In fact, it

still performs virtual snapshots but since the initial rays were

already sampled, the remaining computation time turned out

to be negligible.

This Doppler simulation process can be described as

follows: after an initial ray sampling, the hit positions for each

ray are known as barycentric coordinates u and v. After the

time Td, the positions of each vertex of each animated object

are updated. Since the hit positions should be moved by the

same transformation as the vertices while still being placed on

the triangle, the updated hit position can then the computed

by

~pi = (1− u− v) · ~v1 + u · ~v2 + v · ~v3, (6)

where the vectors ~v1, ~v2, and ~v3 representing the three

vertices of the stored triangle and ~pi is the updated hit position

in Cartesian coordinates after Td. Updating each ray for the

selected chirp, new path lengths and a new IF-Signal can be

computed for each chirp.

E. Simulating Different Antenna Positions

By assuming that the objects are sufficiently far away and

the array aperture is small enough, path lengths for other

antennas can be computed directly, as already done in a similar

way in our initial work [23] for the displacement of TX

antennas. There, it was directly implemented in the ray tracing

process, which is less efficient and consumes a significant

higher amount of video memory.

Since the ray hit positions include the first and the last hit

point, the path lengths caused by antenna displacement can

easily be adjusted by the following formula

li = li−|~pfi −~xtx|+ |~pfi −~x′

tx|− |~pli−~xrx|+ |~pli−~x′

rx|, (7)

with ~p
f
i being the first hit position and ~pli being the last

hit position for the simulated TX and RX antenna pair with

positions ~xtx and ~xrx. The positions for the displaced antennas

are denoted as ~x′

tx and ~x′

rx, respectively.

The idea is that, by subtracting the path lengths from

the TX antenna to the first hit position and the path length

from the RX antenna to the last hit position, only the path

lengths, which originated through the environment remain.

Assuming that the antenna array is small enough and objects

are sufficiently far away, the reflection behavior of the objects

does not change and the path lengths only have to be adjusted

for the antenna displacement. This process is illustrated in

Fig. 4. This approximation typically holds for automotive

applications in the millimeter wave regime.

III. RESULTS

In the first experiment, we simulated a typical

Range-Doppler map of a walking pedestrian and compared
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Fig. 3. This scheme shows an example of how a mesh with its assigned
triangles moves through time. After Td a new snapshot has to be taken and the
hit position has to be updated. Since the hit position and the hit triangle share
the same transformation, a single simulation run is sufficient to compute the
barycentric coordinates pi(u, v) of the hit position. For all subsequent chirps,
only the vertices have to be updated to compute the correct hit position.

Fig. 4. The process of computing path lengths of multiple antennas without
re-simulating the scene is depicted. Only the inner path length (red) remains
equal, path lengths directly connected to the antennas can be adjusted
afterwards. This depiction should not be scaled as in typical real measurement
scenarios the antennas are much closer and the objects are placed much farer
away from the antennas.

it with our measurement data. The measured and simulated

range-Doppler image, as well as a camera image, can be

seen in Fig. 6. Clearly, a micro-Doppler signature of the

pedestrian can be seen, as highlighted by red ellipses. There

also exist multi-path effects leading to ghost targets, which

can also reproduced by the simulator. However, there are

still some differences between simulation and measurement,

which might originate from an insufficient 3D description and

from a too simple noise simulation.

Since we can manipulate the ray meta data, it is possible

to create a simulated range-Doppler image that only shows

the ghost targets. As already mentioned, this is especially

helpful for machine learning algorithms to learn to differentiate

between real and ghost targets for automotive applications.

This technique is demonstrated in Fig. 7 for different types of

multi-path effects. As can be seen in image (c) the Doppler

signal from the legs, assuming having the largest Doppler

extent is mainly visible indirectly through reflections by the

O��� Arms All but Arms

Fig. 5. In the left image, the complete scene was simulated as in Fig. 6,
but afterwards only rays that hit the arms of the pedestrian were used for the
signal generation. In the right image, it is vice versa everything but the arms
were kept during signal generation.

floor, while ghost-targets far away are generated by reflections

from the side-walls.

As mentioned before, it is also possible to decompose the

signal into different parts of an object. For example, in hand

gesture recognition tasks only the signals reflected by hands

or arms should be used for further processing. In Fig. 5, it

is demonstrated how to separate the signal originated from

the arms from the rest of the body. Here, the same pedestrian

object and 3D environment was used as before. As can be seen,

the Doppler signal that only stems from the arms does overlap

with the signal from the rest of the body but has significantly

lower extend in Doppler direction, which is otherwise assumed

to be caused by legs.

IV. DISCUSSION AND FUTURE WORK

In this work, a radar simulation approach was presented

that is based on a single TX and RX-antenna pair. This is

sufficient to generate simulated data for larger arrays and

Doppler information. Consequently, a complete radar cube can

be simulated. For objects, which are close to the antennas some

assumptions may not hold since the reflection behavior of the

surfaces is angle-dependent. In future work, also the normal

vector of these surfaces shall be stored in the ray meta data,

so that the received power for each antenna may be adjusted

accordingly. Further, it was shown how the meta data of the

simulated rays can be used to decompose the signal according

to predefined filter rules. With this technique, simulation

data can be automatically labeled in a way that would be

mostly impossible by common simulation approaches and also

extremely challenging for real measurement data.

Future work could potentially improve the simulation

process by creating more diverse 3D worlds and compare the

simulation with more complex measurement environments. It

should also be further evaluated to which extent simulation

data can help to train machine learning algorithms.
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Fig. 6. The real measurement from a walking pedestrian is shown in the upper part of the figure (a) with its simulated counterpart in the lower part of the
figure (b). As can be seen, both range-Doppler maps show the same geometrical behavior and two ghost targets originating from multi-path effects are visible.
Since the radar signal hits the walls in the simulation environment in a sharp angle, the signal is reflected away from the RX antennas making them invisible
in the simulated radar image. The walls in the real measurement are consisting of metal poles and bars, which can directly reflect the signal and are therefore
visible. Since we focus mainly on multi-path effects, we did not take the effort to create such a detailed simulation environment.
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Fig. 7. Ray meta data was filtered in three different ways. In the left image (a) only direct rays without multiple bounces were considered during the signal
generation. In the center image (b) rays with at least one bounce hitting the side-walls were used and in the right image (b) multi-path effects including the
floor were considered.
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