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Abstract 

Objectives Dramatic brain morphological changes occur throughout the third trimester of gestation. In this 
study, we investigated whether the predicted brain age (PBA) derived from graph convolutional network (GCN) 
that accounts for cortical morphometrics in third trimester is associated with postnatal abnormalities and neurodevel-
opmental outcome.

Methods In total, 577 T1 MRI scans of preterm neonates from two different datasets were analyzed; the NEOCIVET 
pipeline generated cortical surfaces and morphological features, which were then fed to the GCN to predict brain 
age. The brain age index (BAI; PBA minus chronological age) was used to determine the relationships among preterm 
birth (i.e., birthweight and birth age), perinatal brain injuries, postnatal events/clinical conditions, BAI at postnatal 
scan, and neurodevelopmental scores at 30 months.

Results Brain morphology and GCN-based age prediction of preterm neonates without brain lesions (mean absolute 
error [MAE]: 0.96 weeks) outperformed conventional machine learning methods using no topological information. 
Structural equation models (SEM) showed that BAI mediated the influence of preterm birth and postnatal clinical fac-
tors, but not perinatal brain injuries, on neurodevelopmental outcome at 30 months of age.

Conclusions Brain morphology may be clinically meaningful in measuring brain age, as it relates to postnatal factors, 
and predicting neurodevelopmental outcome.

Clinical relevance statement Understanding the neurodevelopmental trajectory of preterm neonates 
through the prediction of brain age using a graph convolutional neural network may allow for earlier detection 
of potential developmental abnormalities and improved interventions, consequently enhancing the prognosis 
and quality of life in this vulnerable population.
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Key Points •Brain age in preterm neonates predicted using a graph convolutional network with brain morphological 
changes mediates the pre-scan risk factors and post-scan neurodevelopmental outcomes.

•Predicted brain age oriented from conventional deep learning approaches, which indicates the neurodevelopmental status 
in neonates, shows a lack of sensitivity to perinatal risk factors and predicting neurodevelopmental outcomes.

•The new brain age index based on brain morphology and graph convolutional network enhances the accuracy and clinical 
interpretation of predicted brain age for neonates.

Keywords Brain age prediction, Graph convolutional network, Preterm neonates, Brain morphology, Structural 
equation modelling

Introduction
Predicted brain age (PBA) derived from neuroimaging 
and machine learning approaches has emerged as a bio-
logically meaningful index that indicates the status of 
brain development or aging [1]. Estimation of neonatal 
brain age using the PBA measurement may be clinically 
useful in evaluating neurodevelopment and the effects 
of perinatal factors. Studies have demonstrated that 
brain structural and functional maturation is impaired 
by preterm birth, resulting in decreased cerebral volume 
[2], altered cortical surface area [3] and microstructural 
organization [4], and aberrant functional and structural 
connectivity [5, 6]. Moreover, various perinatal factors, 
such as birthweight, brain injuries, gestational age, and 
chronic lung disease of prematurity (CLD), also termed 
bronchopulmonary dysplasia, affect brain development 
and neurodevelopmental outcomes [7]. Thus, it remains 
clinically imperative to identify robust metrics that assess 
how various perinatal factors affect neurodevelopmental 
outcomes. PBA, with its increasing recognition in bio-
logical relevance [8, 9], may provide such clinical utility 
in assessing preterm brain development throughout the 
third trimester.

To derive the PBA measurement, studies to date have 
employed machine learning and deep learning (DL) 
methods [10, 11] that reveal important features without 
prior information or hypotheses. For instance, in aging 
brains, the PBA has been investigated using standard DL 
approaches [12] where an image volume is inputted into 
a convolutional neural network (CNN) and a number 
representing the whole brain age is outputted [13, 14]. 
However, these PBA models that were applied to struc-
tural connectivity data [15, 16] and myelin-based brain 
features [17] showed a lack of sensitivity in predicting 
neurodevelopmental outcomes [18].

Exploring specific morphological features could poten-
tially boost the clinical significance of PBA, given that 
the third trimester is characterized by morphological 

changes that are highly sensitive to both age and pathol-
ogy [19, 20]. Therefore, in contrast to previous brain age 
prediction strategies that directly applied DL models 
on MR images, we specifically focused on highly age- 
and pathology-related features during the third trimes-
ter, such as increases in cortical folding or volume, to 
enhance the clinical interpretation of neonatal brain age 
prediction. Additionally, numerous edges that connect 
neighboring vertices (i.e., points on the cortical surface) 
contain valuable topological information [21], which rep-
resents the location and adjacency among neighboring 
vertices. In this regard, a Graph Convolutional Network 
(GCN) model could be more suitable for the analysis of 
cortical morphological features, as it incorporates these 
topologies.

A brain age index (BAI; PBA minus chronological 
age) in neonates may indicate accelerated or delayed 
neurodevelopment. We hypothesize that the BAI at neo-
natal scan reflects the collective effects of pre-scan (pre- 
and postnatal) clinical factors, including preterm birth, 
perinatal brain injuries, postnatal treatments, neonatal 
infections, and postnatal cardiorespiratory complica-
tions. We also hypothesize that the BAI can predict neu-
rodevelopmental outcomes. Furthermore, we hypothesize 
that these relationships with the BAI can only be uncov-
ered when morphological features are effectively incorpo-
rated into the prediction model. Considering these, we 
explored the accuracy and clinical utility of PBA using 
a GCN model [22]. Cortical thickness, sulcal depth, and 
GM/WM intensity ratio [23] maps were extracted from 
the cortical mesh and inputted to the GCN. To evaluate 
the GCN-based PBA, we assessed (1) whether the PBA 
using GCN reflects the influence of pre-scan clinical fac-
tors on neurodevelopment; (2) whether BAI of neonatal 
MRI is a sensitive predictor of neurodevelopmental out-
come at 30  months; (3) whether BAI at scan mediates 
the relationship between preterm birth-related clinical 
factors and neurodevelopmental outcome at 30 months; 
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(4) whether the GCN approach outperforms other 
deep-learning brain age prediction algorithms that can 
clinically interpreting the developmental trajectories of 
preterm neonates.

Methods
Subjects
Our dataset comprised 129 preterm neonates (gesta-
tional age [GA] at birth range 24–33  weeks) admit-
ted to UCSF (University of California at San Francisco) 
Benioff Children’s Hospital between June 2008 and May 
2017 (Table  1) and 407 neonates from the developing 

Human Connectome Project (dHCP; http:// www. devel 
oping conne ctome. org/; GA at birth range 24–42  weeks; 
Table 2). Most subjects from UCSF were scanned twice, 
but some scans were excluded due to a large amount 
of motion artifact, resulting in a total of 170 MRI scans 
(mean postmenstrual age [PMA] range at  1st scan: 26.7–
35.7 weeks;  2nd scan: 32.1–43.4 weeks). Parental consent 
was obtained through a protocol approved by the Insti-
tutional Committee on Human Research. In the dHCP 
cohort, the MRI images acquired from only singletons 
were included in this study. The images were visually 
inspected, and images with substantial motion on MRI 
or major focal parenchymal lesions at the time of their 
scan were excluded. The final dHCP sample consisted of 
407 (187 female) neonates with a PMA of 29 to 45 weeks 
(mean PMA: 39.7 ± 3.1  weeks) in age at the time of the 
scan.

MRI acquisition and image processing
Newborns enrolled until 2011 (n = 56) were scanned on a 
1.5-Tesla General Electric Signa HDxt system using a spe-
cialized high-sensitivity neonatal head coil built within 
a custom-built MRI-compatible incubator. T1-weighted 
images were acquired using sagittal 3-dimensional inver-
sion recovery spoiled gradient echo (3D SPGR) (TR = 35; 
TE = 6; FOV = 256 × 192  mm2; number of excitations 
[NEX] = 1; and FA = 35°), yielding images with 1 × 1 × 1 
 mm3  resolution. Newborns enrolled between 2011 and 
2017 (n = 73) were scanned on a 3-Tesla General Elec-
tric Discovery MR750 system. T1-weighted images 
were acquired using sagittal 3D IR-SPGR (inversion 
time = 450 ms; FOV = 180 × 180  mm2; NEX = 1; FA = 15°), 
yielding images with 0.7 × 0.7 × 1  mm3 resolution.

All T1 images from dHCP dataset were acquired on a 
Philips Achieva 3.0-T scanner using a 32-channel neo-
natal head coil [25]. All images were collected using an 
IR (inversion recovery) TSE sequence with the same 
resolution with TR = 4.8  s, TE = 8.7  ms, SENSE fac-
tor 2.26 (axial) and 2.66 (sagittal). Motion correction 
and super-resolution reconstruction techniques were 

Table 1 Demographic and clinical characteristics for preterm 
neonates admitted to UCSF

a  Data presented as number (%), or mean ± standard deviation. b All subjects 
with maternal smoking (based on self-report) were exposed to marijuana, two 
were also exposed to tobacco. c It was diagnosed based on Bell’s stage II criteria 
[24]; d Scores were derived from 38 preterm subjects revisiting the center at 
30 months after their birth. PMA: postmenstrual age

Demographic

Subjects (n) 129

MRI scans (n) 170

Sex: male (n) 70

GA at birth (weeks, mean ± SD) 28.2 ± 1.9

Weight at birth (gram, mean ± SD) 1080 ± 311.2

PMA at MRI

   1st scans (n = 129) 31.4 ± 1.9

   2nd scans (n = 41) 36.0 ± 1.9

Characteristica Number (%)

Maternal/antenatal factors

 Maternal age, yrs 29.8 ± 6.5

 Placenta previa 11 (8.5)

 Drug  abuseb 11 (8.5)

 Magnesium sulfate 80 (62.0)

 Exposure to prenatal steroids 109 (84.5)

 Chorioamnionitis 13 (14.0)

Delivery / Perinatal factors

  Twin 58 (44.9)

  Caesarean section delivery 78 (60.5)

 Postnatal factors

  Exposure to postnatal steroids 13 (14.0)

  Hypotension 76 (58.9)

  Infant infection 70 (54.2)

  Patent ductus arteriosus 65 (50.4)

Necrotizing  enterocolitisc 5 (3.9)

  Duration of intubation, days 9.1 ± 13.6

  Chronic lung disease 36 (27.9)

  Neurodevelopmental outcome (Bayley scales III) in 30 monthsd

Cognitive score 103.0 ± 15.45

Language score 92.6 ± 14.0

Motor score 93.7 ± 13.2

Table 2 Demographic characteristics for neonates admitted to 
dHCP dataset

Demographic

Subjects (n) 407

MRI scans (n) 407

Sex: male (n) 220

GA at birth (weeks, mean ± SD) 38.2 ± 3.9

PMA at MRI 39.7 ± 3.0

Weight at birth (gram, mean ± SD) 1080 ± 804.2

http://www.developingconnectome.org/
http://www.developingconnectome.org/
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employed, resulting in isotropic volumes of resolution 
0.5× 0.5× 0.5 mm

3 . All images were collected as part 
of the dHCP and are described in detail in Makropoulos 
et al [26].

Cortical surfaces were constructed using NEOCIVET-
v3 [27–29] (Methods S2). Key steps in the pipeline 
include image denoising, intensity nonuniformity correc-
tion, skull-striping, tissue segmentation, surface recon-
struction, and surface registration. All major steps are 
specifically designed for neonatal MRI. Cortical mor-
phology was quantitatively characterized by measuring 
cortical thickness, sulcal depth, and GM/WM intensity 
ratio [23] on the cortical surface at 81,924 vertices 
(163,840 polygons). Cortical features were harmonized 
using the ComBat method [30] prior to GCN training. 
A comparison of cortical features before and after the 
harmonization can be found in Figure S1. The validation 
of segmentation and surface construction quality using 
NEOCIVET is described in Figure S2.

Clinical factors and neurodevelopmental assessment
Neonatal demographic and clinical variables are 
described in Tables  1 and 2. Clinical variables are not 
publicly available for dHCP, so clinical analyses were only 
conducted on the UCSF dataset. Newborns with cul-
ture-positive sepsis, clinical signs of sepsis with negative 
blood culture, or meningitis were classified as having an 
infection. Newborns with clinical signs of patent ductus 
arteriosus (PDA; prolonged systolic murmur, bounding 
pulses, and hyperdynamic precordium) and evidence of 
left-to-right flow through the PDA on echocardiogram 
were classified as having a PDA. Necrotizing enterocolitis 

(NEC) was diagnosed according to Bell stage II criteria or 
higher.

To assess neonatal brain injuries, two pediatric neu-
roradiologists (A.J.B., H.J.L.) blinded to patient history 
reviewed individual MRI scans from UCSF and dHCP, 
including 3-D T1 and axial T2-weighted sequences. 
Severity of three leading drivers of neurodevelopmental 
deficits, i.e., intraventricular hemorrhage (IVH), ven-
triculomegaly (VM), and periventricular leukomalacia 
(PVL) or white matter injury, were visually scored (Meth-
ods S1). Details on brain injuries are listed in Tables S1-2. 
In the current study, we merged infants with mild inju-
ries and those with no injury into one none-mild injury 
group, since the two groups exhibited no significant dif-
ferences in the following analyses.

All the infants from UCSF were referred to the UCSF 
Intensive Care Nursery Follow-Up Program upon dis-
charge for routine neurodevelopmental follow-up. Neu-
rodevelopment was assessed using the Bayley-III, which 
was performed by unblinded clinicians at 30 months’ age 
corrected to 40 weeks, to assess cognitive, verbal/language 
and neuromotor performance. Follow-up was available in 
38 of the 129 infants who survived to hospital discharge.

Brain age prediction
The proposed PBA model using GCN is illustrated in 
Fig. 1. GCNs [22] are designed to exploit the underlying 
graph structure of the data (Methods S3). We down-sam-
pled 81,924 vertices on cortical surfaces to 1284 vertices 
using the icosahedron downsampling to investigate the 
prediction accuracy while saving computational time in 
training the GCN (Methods S4 and Figure S3). The input 
graphs combined the harmonized cortical features as 

Fig. 1 The proposed graph-based convolutional network for brain age prediction. Importantly, we did not use topology-varying surfaces 
because of the nature of the GCN model applied in this study. Rather, we considered cortical morphological changes that occur in relation to brain 
size and gyrification using cortical thickness, sulcal depth, and GM/WM intensity ratio. The GCN employed in our study requires identical graph/
mesh structures for all individual inputs, while the features on nodes/vertices can vary
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the nodal features at 1284 vertices, with a sparse binary 
adjacency matrix representing the mesh topology, by 
which the edge in the graph was defined as the connec-
tions between each vertex and its neighbor vertices. 
GCNs consider spectral convolutions on graphs defined 
as the multiplication of a signal by a filter in the Fourier 
domain, which is approximated by Chebyshev polynomi-
als. In the pooling operation, the vertices of the graph are 
rearranged to form a 1D pooling to ensure efficiency. The 
GCN used in this study consists of three convolutional 
layers and three pooling layers.

To compare our cortical surface-based GCN model 
with the conventional image-based DL model, we also 
built a PBA model by applying a CNN model [31] to T1 
MR images directly (Methods S5). This model was fed 
a 3D scan as input and encoded each image slice using 
a 2D-CNN encoder. Next, it combines the slice encod-
ings using an aggregation module, resulting in a single 
embedding for the scan. This model has been proven to 
be better than the conventional 3D-CNN-based model in 
adult brain age prediction study [31].

We split the data into k = 5 groups (folds), with 20% 
of data used for testing at each fold. The remain-
ing 80% of the data were further iteratively split for 
training (64%) to fit the models and validation (16%) 
to tune the hyperparameters (in Methods S7 and 
Figure S4).

We added a bias correction as previously described in 
[12, 32] to correct age dependency of the training residu-
als. Briefly, we used a linear model PBA = α ∗ PBA

′
+ β 

to obtain an unbiased estimate of PBA as 
PBA

′
= (PBA− β)/α , where the parameters α and βare 

estimated during training (on both the combination of 
training and validation set) and are thus applied directly 

to the test set. After calculating PBA for each subject, we 
further calculated a metric, brain age index (BAI), that 
reflected a subject’s relative brain health status. BAI was 
measured by subtracting the postmenstrual age at the 
time of the MR scan from the unbiased PBA′ [14].

Statistical analysis
To validate our hypothesis that perinatal clinical factors 
negatively affect brain growth (lower BAI), each variable 
was dichotomized using clinically defined categorization 
or median if arbitrary (Table S1). Necrotizing enterocol-
itis was not included due to the small sample size (n = 5). 
We then tested the group difference in BAI for each vari-
able separately in a univariate fashion while correcting 
for PMA at scan and other clinical factors, using a gen-
eral linear mixed-effect model that addressed changes 
of within- and between-subject effects and removed the 
effects from covariates other than the main variable.

Moreover, we built structural equation models (SEM) 
that impute relationships between latent variables (Meth-
ods S9). Based on the hypothesized latent risk variables 
and timeline in Fig. 2, we analyzed multiple relationships/
paths between severity of preterm birth, perinatal inju-
ries, pre-scan postnatal factors, BAI at postnatal scan, 
and neurodevelopmental outcome scores at 30  months. 
This analysis, which was designed to identify the clini-
cal variables and their paths leading to adverse neurode-
velopmental outcomes, was conducted only on 50 MRI 
images from the UCSF dataset, including baseline and 
follow-up scans at 30 months from 38 preterm survivors.

We executed our GCN and CNN scripts with Pytorch 
1.14.0. The SEM was executed using IBM SPSS Amos 
v24. Brain age bias correction and other statistics 
were performed using MATLAB 2021a. The brain age 

Fig. 2 Hypothesized clinical risk factors and timeline after birth in relation to brain development in preterm infants. Orange: different time stages 
of the conditions, procedures, or measures; Blue: characteristics of the conditions, procedures, or measures
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prediction code is available at https:// github. com/ bigti 
ng84/ Brain- Age- Predi ction. Anonymized data is avail-
able at https:// github. com/ bigti ng84/ Neona tal- surfa ce.

Results
Performance of GCN‑based age prediction
We found that the GCN fed with the true brain mesh 
achieved an accuracy of prediction with a mean absolute 

error (MAE) of 0.963 weeks (5.3% of the total age range) 
and a correlation coefficient r of 0.94, which were smaller 
than the errors of the other two classic predictive mod-
els (random forest [RF] and general linear model [GLM]). 
Our model’s accuracy was also better than the CNN-
based model (MAE = 1.05 weeks, r = 0.89) and the GCN 
on the random connections (MAE = 1.1  weeks, r = 0.89, 
Fig. 3).

Fig. 3 A Comparison of brain age prediction errors among regression models. The height of each bar indicates the mean MAE, and the black line 
indicates the standard deviation of MAE per model. GCN demonstrates the best prediction results. B Scatter plot displaying PBA using GCN model 
vs. chronological brain age. We achieved a correlation coefficient r of 0.94 using GCN, which was significantly higher than the errors of the other 
models (GCN: MAE = 0.963 weeks, r = 0.94; CNN: MAE = 1.05 weeks, r = 0.89; GCN on the random connections: MAE = 1.1 weeks, r = 0.89; RF: 
MAE = 1.27 weeks, r = 0.85; GLM: MAE = 1.84 weeks, r = 0.75)

Fig. 4 Lower BAI, representing impaired brain development, was associated with clinical factors in GCN-based brain age prediction model (A, left) 
rather than CNN-based model (B, right)

https://github.com/bigting84/Brain-Age-Prediction
https://github.com/bigting84/Brain-Age-Prediction
https://github.com/bigting84/Neonatal-surface
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Clinical implications of the brain age index
Univariate analyses showed that various clinical variables 
were associated with lower brain age index (BAI; t > 3.1; 
p < 0.05, false discovery rate [FDR] corrected; Fig.  4A). 
Postnatal steroid exposure (p = 0.007, FDR corrected) 
presented the strongest association with lower BAI. 
Chronic lung disease (CLD; p = 0.031, FDR corrected) 
and birthweight lower than 1000  g (p = 0.021, FDR cor-
rected) were also significantly associated with lower BAI. 
No significant association was found between the BAI 
estimated from the CNN model and any clinical variables 
(Fig. 4B).

Correlation of BAI with cognitive, language, or neu-
romotor scores in Bayley-III Scales (Fig. 5 left) showed 
that a lower BAI at neonatal scan was significantly 

associated with lower cognitive performance (r = 0.41; 
p = 0.0025, FDR corrected) and lower language per-
formance (r = 0.27; p = 0.042, FDR corrected). No sig-
nificant associations were found between the BAI 
estimated from the CNN model and developmental 
outcomes at 30 months (Fig. 5 right).

The outlined SEM is shown in Fig. 6 (with standard-
ized estimates). The χ2 model-fit statistics indicated a 
significantly acceptable model fit (p < 0.001). BAI medi-
ated the pathway from preterm birth to brain func-
tional development at 30  months. BAI also mediated 
the pathway from postnatal factors to brain functional 
development at 30  months (p < 0.05). The relation-
ship between brain injury and brain development at 

Fig. 5 Correlation between BAI and neurodevelopmental outcomes (cognitive and language scores) at 30 months (left: measured using GCN; right: 
measured using CNN)

Fig. 6 Results of path analysis. Rectangles represent manifest variables, and ellipses represent latent variables. Each single-headed arrow 
denotes a hypothesized unidirectional effect of one variable on another. Single-headed arrows represent the impact of one variable on another, 
and double-headed arrows represent covariances between pairs of variables. Numbers associated with effects are standardized regression 
coefficients. Asterisks refer to the paths that are statistically significant
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30  months was not significant, for either the direct 
pathway or the pathway mediated by BAI (p < 0.05).

Discussion
Clinical implications and applications
This study is the first to use structural equation model-
ling (SEM) to provide evidence of the temporal rela-
tionship among three stages of neurodevelopment: the 
context of preterm birth, postnatal brain development, 
and neurodevelopmental outcomes. That is, BAI at scan 
mediated the pathway from preterm birth and post-
natal clinical factors, including birthweight, CLD, and 
exposure of postnatal steroids, to neurodevelopmental 
outcome at 30  months (Fig.  5). This suggests that brain 
morphological growth affected by preterm birth and 
postnatal factors is key to understanding later neurode-
velopmental impairment. SEM did not provide sufficient 
evidence of a significant relationship between perina-
tal brain injuries and neurodevelopment outcomes. The 
underlying pathophysiology of how these clinical fac-
tors impair neurodevelopment may be attributed to both 
exogenous and endogenous factors that lead to brain 
insult from respiratory or circulatory insufficiency, hem-
orrhagic events, hypoxic-ischemic events, and inflamma-
tion [33–37].

Our results demonstrated that CLD has a strong asso-
ciation with impaired BAI. CLD primarily affects pre-
term infants who are exposed to prolonged mechanical 
ventilation and oxygen therapy for pulmonary complica-
tions [38, 39]. Chronic exposure to ventilation can result 
in oxygen toxicity, pulmonary inflammation, and lack of 
perfusion and oxygenation to the brain. Consequently, 
the immature brain becomes susceptible to hypoxia–
ischemia, inflammation, germinal matrix injury, diffuse 
white matter injury, and diffuse gray matter injury [40, 
41]. These complications, particularly diffuse white and 
gray matter lesions, contribute to neurodevelopmental 
impairment [42], consistent with the poor neurodevelop-
mental outcomes of CLD infants, including motor [43], 
language [44], and cognitive deficits [45–47].

Furthermore, our results revealed that postnatal expo-
sure to steroids is associated with BAI impairment. Post-
natal steroid therapy is traditionally provided to preterm 
neonates with BPD to reduce lung inflammation [48]. 
In our previous study, postnatal exposure to clinically 
routine doses of hydrocortisone or dexamethasone was 
associated with impaired cerebellar but not cerebral vol-
umetric growth [49]. Using BAI based on cortical mor-
phometrics and DL algorithms, however, we revealed 
additional adverse effects of postnatal glucocorticoids on 
cerebral growth. These results are consistent with previ-
ous findings demonstrating poor neurodevelopment fol-
lowing postnatal steroid exposure [50–52].

Brain age index as a potential predictor of cognitive 
and language development in preterm children
The clinical utility of BAIs is further supported by their 
relationships with neurodevelopmental outcomes at 
30  months (Figure  S8). BAI metric was not associated 
with neuromotor scores at 30 months. A possible expla-
nation is that the morphology in the motor cortex, par-
ticularly cortical folding, was already relatively mature 
in our cohort, given folding forms earlier than the late 
 3rd trimester of gestation. Therefore, PBA based on cor-
tical morphology extracted from these postnatal scans 
may not be sensitive to neuromotor impairment. Rather, 
previous studies showed that neuromotor impairment is 
associated with perinatal white matter brain injury [53, 
54] and postnatal cerebellar growth [55].

Brain age prediction using GCN
By capturing age-related morphological alterations 
throughout the third trimester, we proposed that GCN-
based deep learning (DL) with surface morphological 
features can better predict individual brain age and neu-
rodevelopmental outcomes. To date, PBA was derived 
from machine learning methods fed with volumetric 
images directly [14] or structural connectome metrics 
[16]. However, image-fed CNNs may not be capable of 
detecting the morphology that varies along the cortical 
manifold, which appears to be a sensitive gauge of early 
neurodevelopment.

To address these limitations, we incorporated morpho-
logical features extracted from the cortical surface and 
surface topology into our GCN and found that its pre-
diction accuracy is superior to state-of-the-art methods, 
including an image-fed CNN model. Our GCN model 
revealed the underlying association of brain maturation 
with clinical variables and developmental outcomes, 
whereas the CNN model did not, likely indicating that 
the CNN requires more samples for training to avoid 
overfitting and enhance prediction.

Limitations, future directions, and conclusions
Alterations in PBA could be a surrogate for brain devel-
opmental status. Notably, the brain age index is fre-
quently influenced by various factors, giving rise to 
significant false positives and false negatives when assess-
ing associations between BAI and other measures [56]. 
In this study, we only corrected the linear bias from the 
brain age index. As suggested by Smith et  al [32], it is 
necessary to not only remove the linear dependency of 
brain age index on age but also the nonlinear depend-
ence, especially the quadratic dependency of brain aging 
(as a function of age).

The data set used in this study was large but composed 
of heterogenous groups from two data sets, and the data 
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from UCSF was acquired with different protocol/strength 
MRI. Although we performed harmonization, the num-
ber of population performed clinical evaluation and fol-
low-up neurodevelopmental assessment were relatively 
small.

Further external validation will be performed in future 
studies. There is a huge time gap between the neonatal 
period and infancy at 30  months, which may limit the 
prediction ability and should be evaluated in a large sam-
ple study in the future.

It is important to approach SEM with a degree of 
caution, particularly when used for exploratory analy-
ses. SEM is best employed when there are well-defined 
hypotheses about the relationships among variables. 
One of the limitations of SEM is that it assumes linear-
ity and normality in the relationships among variables. 
It also requires a large sample size to ensure the stabil-
ity and validity of its results. These are both margin-
ally satisfied in this study. Furthermore, SEM’s capacity 
to provide plausible models does not prove that these 
models reflect true underlying processes. In light of 
these considerations, it would be prudent to moderate 
the claims made about SEM in this study.

Additional limitations in testing DL models in this 
study include the generalizability, and the interpret-
ability of the model (including the use of uncertainty or 
confidence metrics) used in this study was not explicitly 
discussed, which will be guided by a checklist such as 
MAIC-10 in the future.

Despite these limitations, our study proposes a novel 
GCN that uses morphological features and topological 
patterns to predict brain age. The PBA, in turn, better 
explained neonatal developmental trajectory by link-
ing pre-scan clinical factors and post-scan neurodevel-
opmental outcomes. Altogether, these findings provide 
the basis for future investigations aiming to extend the 
PBA measurement to practical clinical applications, 
such as the individualized prediction of neurodevelop-
mental outcomes.

Abbreviations
BAI  Brain age index
CLD  Chronic lung disease of prematurity
CNN  Convolutional neural network
dHCP  The developing Human Connectome Project
DL  Deep learning
FDR  False discovery rate
GA  Gestational age
GCN  Graph convolutional network
GLM  General linear model
GM  Gray matter
IVH  Intraventricular hemorrhage
MAE  Mean absolute error
NEC  Necrotizing enterocolitis
PBA  Predicted brain age
PDA  Patent ductus arteriosus

PMA  Postmenstrual age
PVL  Periventricular leukomalacia
RF  Random forest
ROI  Region of interest
SEM  Structural equation models
VM  Ventriculomegaly
WM  White matter

Supplementary information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s00330- 023- 10414-8.

Below is the link to the electronic supplementary material. Supplementary 
file1 (PDF 1261 KB)

Funding
Open access funding provided by SCELC, Statewide California Electronic 
Library Consortium. This study was supported by the National Institutes of 
Health grants (P50NS035902, P01NS082330, R01NS046432, R01HD072074; 
P41EB015922; U54EB020406; U19AG024904; U01NS086090; 003585–00001). 
HK was funded by the BrightFocus Foundation Award (A2019052S).

Declarations

Guarantor
The scientific guarantor of this publication is Hosung Kim.

Conflict of interest
The authors of this manuscript declare no relationships with any companies 
whose products or services may be related to the subject matter of the article.

Statistics and biometry
One of the authors, Mengting Liu, has significant statistical expertise.

Informed consent
Written informed consent was obtained from all subjects (patients) in this 
study. Parental consent was obtained through a protocol approved by the 
Institutional Committee on Human Research.

Ethical approval
Institutional Review Board approval was obtained.

Study subjects or cohorts overlap
Some study subjects or cohorts have been previously reported in the 
following:
Paper 1: “Hippocampal asymmetry of regional development and structural 
covariance in preterm neonates,” and Paper 2: “Disruption and compensa-
tion of sulcation-based covariance networks in neonatal brain growth after 
perinatal injury.”
The topic of Paper 1 is how preterm birth may exert an impact on hippocam-
pal development in neonates, while Paper 2 is about how brain injury in pre-
term birth may alter the topological organization of brain structural network 
in neonates. Our current study, however, focuses on brain age prediction in 
neonates, which is a completely different research topic compared to the 
previously published work.
The manuscript has a pre-print https:// doi. org/ 10. 1101/ 2021. 05. 15. 444320

Methodology

• retrospective
• cross-sectional study
• multicenter study

Author details
1 School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, 
China. 2 Department of Neurology, USC Stevens Neuroimaging and Infor-
matics Institute, Keck School of Medicine, University of Southern California, 
2025 Zonal Ave, Los Angeles, CA 90033, USA. 3 Guangdong Key Laboratory 

https://doi.org/10.1007/s00330-023-10414-8
https://doi.org/10.1007/s00330-023-10414-8
https://doi.org/10.1101/2021.05.15.444320


Page 10 of 11Liu et al. European Radiology _#####################_

for Biomedical Measurements and Ultrasound Imaging, School of Biomedical 
Engineering, Medical School, Shenzhen University, Shenzhen 518060, China. 
4 Division of Neonatology, Department of Pediatrics, Hanyang University, 
Seoul, Korea. 5 Centre for Medical Image Computing, Department of Computer 
Science, University College London, London, UK. 6 Departments of Neurology 
and Pediatrics, University of California, San Francisco, San Francisco, CA, USA. 
7 Department of Radiology & Biomedical Imaging, University of California, San 
Francisco, San Francisco, CA, USA. 

Received: 31 March 2023   Revised: 6 September 2023   Accepted: 16 
September 2023

References
 1. Jónsson BA, Bjornsdottir G, Thorgeirsson T et al (2019) Brain age predic-

tion using deep learning uncovers associated sequence variants. Nat 
Commun 10:5409. https:// doi. org/ 10. 1038/ s41467- 019- 13163-9

 2. Ment LR, Vohr BR (2008) Preterm birth and the developing brain. Lancet 
Neurol 7:378–379. https:// doi. org/ 10. 1016/ S1474- 4422(08) 70073-5

 3. Ajayi-Obe M, Saeed N, Cowan F, Rutherford M, Edwards A (2000) Reduced 
development of cerebral cortex in extremely preterm infants. Lancet 
356:1162–1163. https:// doi. org/ 10. 1016/ s0140- 6736(00) 02761-6

 4. Ball G, Srinivasan L, Aljabar P et al (2013) Development of cortical 
microstructure in the preterm human brain. Proc Natl Acad Sci U S A 
110:9541–9546. https:// doi. org/ 10. 1073/ pnas. 13016 52110

 5. Pandit A, Robinson E, Aljabar P et al (2014) Whole-brain mapping of 
structural connectivity in infants reveals altered connection strength 
associated with growth and preterm birth. Cereb Cortex 24:2324–2333. 
https:// doi. org/ 10. 1093/ cercor/ bht086

 6. Smyser CD, Snyder AZ, Shimony JS, Mitra A, Inder TE, Neil JJ (2016) Rest-
ing-state network complexity and magnitude are reduced in prematurely 
born infants. Cereb Cortex 26:322–333. https:// doi. org/ 10. 1093/ cercor/ 
bhu251

 7. Ylijoki MK, Ekholm E, Ekblad M, Lehtonen L (2019) Prenatal risk factors for 
adverse developmental outcome in preterm infants-systematic review. 
Front Psychol 10:595. https:// doi. org/ 10. 3389/ fpsyg. 2019. 00595

 8. Franke K, Luders E, May A, Wilke M, Gaser C (2012) Brain maturation: pre-
dicting individual BrainAGE in children and adolescents using structural 
MRI. Neuroimage 63:1305–1312. https:// doi. org/ 10. 1016/j. neuro image. 
2012. 08. 001

 9. Cole JH, Franke K (2017) Predicting age using neuroimaging: innovative 
brain ageing biomarkers. Trends Neurosci 40:681–690. https:// doi. org/ 10. 
1016/j. tins. 2017. 10. 001

 10. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. 
https:// doi. org/ 10. 1038/ natur e14539

 11. Peng H, Gong W, Beckmann CF, Vedaldi A, Smith SM (2019) Accurate 
brain age prediction with lightweight deep neural networks. Med Image 
Anal 68:101871. https:// doi. org/ 10. 1016/j. media. 2020. 101871

 12. Ning K, Zhao L, Matloff W, Sun F, Toga AW (2020) Association of relative 
brain age with tobacco smoking, alcohol consumption, and genetic vari-
ants. Sci Rep 10:10. https:// doi. org/ 10. 1038/ s41598- 019- 56089-4

 13. Huang T-W, Chen H-T, Huang  T-W et al (2017) Age estimation from brain 
MRI images using deep learning. In: 2017 IEEE 14th International sympo-
sium on biomedical imaging (ISBI 2017). IEEE, Melbourne, VIC, Australia, 
pp 849–852. https:// doi. org/ 10. 1109/ ISBI. 2017. 79506 50

 14. Cole JH, Poudel RP, Tsagkrasoulis D et al (2017) Predicting brain age with 
deep learning from raw imaging data results in a reliable and heritable 
biomarker. Neuroimage 163:115–124. https:// doi. org/ 10. 1016/j. neuro 
image. 2017. 07. 059

 15. Kawahara J, Brown CJ, Miller SP et al (2017) BrainNetCNN: convolutional 
neural networks for brain networks; towards predicting neurodevelop-
ment. Neuroimage 146:1038–1049. https:// doi. org/ 10. 1016/j. neuro image. 
2016. 09. 046

 16. Brown CJ, Moriarty KP, Miller SP et al (2017) Prediction of brain network 
age and factors of delayed maturation in very preterm infants. In: Medical 
image computing and computer assisted intervention − MICCAI 2017. 
Lecture notes in computer science, vol 10433. Springer, Cham. https:// 
doi. org/ 10. 1007/ 978-3- 319- 66182-7_ 10

 17. Chen JV, Chaudhari G, Hess CP et al (2022) Deep learning to predict 
neonatal and infant brain age from myelination on brain MRI scans. 
Radiology 305:678–687. https:// doi. org/ 10. 1148/ radiol. 211860

 18. He T, Kong R, Holmes A et al (2018) Is deep learning better than kernel 
regression for functional connectivity prediction of fluid intelligence? In: 
2018 international workshop on pattern recognition in neuroimaging 
(PRNI). IEEE, Singapore, pp 1–4. https:// doi. org/ 10. 1109/ PRNI. 2018. 84239 58

 19. Kim SY, Liu M, Hong S-J et al (2020) Disruption and compensation of 
sulcation-based covariance networks in neonatal brain growth after peri-
natal injury. Cereb Cortex 30:6238–6253. https:// doi. org/ 10. 1093/ cercor/ 
bhaa1 81

 20. Liu M, Duffy BA, Sun Z et al (2020) Deep learning of cortical surface 
features using graph-convolution predicts neonatal brain age and neu-
rodevelopmental outcome. 2020 IEEE 17th international symposium on 
biomedical imaging (ISBI). IEEE, pp 1335–1338. https:// doi. org/ 10. 1109/ 
ISBI4 5749. 2020. 90985 56

 21. Kang SH, Liu M, Park G et al (2023) Different effects of cardiometabolic 
syndrome on brain age in relation to gender and ethnicity. Alzheimer’s 
research & therapy 15:1–10. https:// doi. org/ 10. 1186/ s13195- 023- 01215-8

 22. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural 
networks on graphs with fast localized spectral filtering. Advances in 
neural information processing systems 29. In: 30th Conference on neural 
information processing systems (NIPS 2016). NIPS, Barcelona, Spain. 
https:// doi. org/ 10. 5555/ 31573 82. 31575 27

 23. Lewis JD, Evans AC, Tohka J, Group BDC (2018) T1 white/gray contrast as 
a predictor of chronological age, and an index of cognitive performance. 
Neuroimage 173:341–350. https:// doi. org/ 10. 1016/j. neuro image. 2018. 02. 
050

 24. Kliegman RM, Hack M, Jones P, Fanaroff AA (1982) Epidemiologic study 
of necrotizing enterocolitis among low-birth-weight infants. Absence of 
identifiable risk factors. J Pediatr 100:440–444

 25. Hughes EJ, Winchman T, Padormo F et al (2017) A dedicated neonatal 
brain imaging system. Magn Reson Med 78:794–804. https:// doi. org/ 10. 
1002/ mrm. 26462

 26. Makropoulos A, Robinson EC, Schuh A et al (2018) The developing 
human connectome project: a minimal processing pipeline for neonatal 
cortical surface reconstruction. Neuroimage 173:88–112. https:// doi. org/ 
10. 1016/j. neuro image. 2018. 01. 054

 27. Kim H, Lepage C, Maheshwary R et al (2016) NEOCIVET: Towards accurate 
morphometry of neonatal gyrification and clinical applications in pre-
term newborns. Neuroimage 138:28–42. https:// doi. org/ 10. 1016/j. neuro 
image. 2016. 05. 034

 28. Liu M, Lepage C, Jeon S et al (2019) A skeleton and deformation based 
model for neonatal pial surface reconstruction in preterm newborns. In: 
2019 IEEE 16th International symposium on biomedical imaging (ISBI 
2019). IEEE, Venice, Italy, pp 352–355. https:// doi. org/ 10. 1109/ ISBI. 2019. 
87591 83

 29. Liu M, Lepage C, Kim SY et al (2021) Robust cortical thickness morpho-
metry of neonatal brain and systematic evaluation using multi-site MRI 
datasets. Front Neurosci 15:650082. https:// doi. org/ 10. 3389/ fnins. 2021. 
650082

 30. Fortin JP, Cullen N, Sheline YI et al (2018) Harmonization of cortical thick-
ness measurements across scanners and sites. Neuroimage 167:104–120. 
https:// doi. org/ 10. 1016/j. neuro image. 2017. 11. 024

 31. Gupta U, Lam PK, Steeg  GV, Thompson PM (2021) Improved brain age 
estimation with slice-based set networks. In: 2021 IEEE 18th International 
symposium on biomedical imaging (ISBI). IEEE, Nice, France, pp 840–844. 
https:// doi. org/ 10. 1109/ ISBI4 8211. 2021. 94340 81

 32. Smith SM, Vidaurre D, Alfaro-Almagro F, Nichols TE, Miller KL (2019) Esti-
mation of brain age delta from brain imaging. Neuroimage 200:528–539. 
https:// doi. org/ 10. 1016/j. neuro image. 2019. 06. 017

 33. Dempsey E, Barrington K (2007) Treating hypotension in the preterm 
infant: when and with what: a critical and systematic review. J Perinatol 
27:469–478. https:// doi. org/ 10. 1038/ sj. jp. 72117 74

 34. Galinsky R, Lear CA, Dean JM et al (2018) Complex interactions between 
hypoxia-ischemia and inflammation in preterm brain injury. Dev Med 
Child Neurol 60:126–133. https:// doi. org/ 10. 1111/ dmcn. 13629

 35. Lemmers PM, Benders MJ, D’Ascenzo R et al (2016) Patent Ductus Arte-
riosus and Brain Volume. Pediatrics 137(4):e20153090. https:// doi. org/ 10. 
1542/ peds. 2015- 3090

https://doi.org/10.1038/s41467-019-13163-9
https://doi.org/10.1016/S1474-4422(08)70073-5
https://doi.org/10.1016/s0140-6736(00)02761-6
https://doi.org/10.1073/pnas.1301652110
https://doi.org/10.1093/cercor/bht086
https://doi.org/10.1093/cercor/bhu251
https://doi.org/10.1093/cercor/bhu251
https://doi.org/10.3389/fpsyg.2019.00595
https://doi.org/10.1016/j.neuroimage.2012.08.001
https://doi.org/10.1016/j.neuroimage.2012.08.001
https://doi.org/10.1016/j.tins.2017.10.001
https://doi.org/10.1016/j.tins.2017.10.001
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.media.2020.101871
https://doi.org/10.1038/s41598-019-56089-4
https://doi.org/10.1109/ISBI.2017.7950650
https://doi.org/10.1016/j.neuroimage.2017.07.059
https://doi.org/10.1016/j.neuroimage.2017.07.059
https://doi.org/10.1016/j.neuroimage.2016.09.046
https://doi.org/10.1016/j.neuroimage.2016.09.046
https://doi.org/10.1007/978-3-319-66182-7_10
https://doi.org/10.1007/978-3-319-66182-7_10
https://doi.org/10.1148/radiol.211860
https://doi.org/10.1109/PRNI.2018.8423958
https://doi.org/10.1093/cercor/bhaa181
https://doi.org/10.1093/cercor/bhaa181
https://doi.org/10.1109/ISBI45749.2020.9098556
https://doi.org/10.1109/ISBI45749.2020.9098556
https://doi.org/10.1186/s13195-023-01215-8
https://doi.org/10.5555/3157382.3157527
https://doi.org/10.1016/j.neuroimage.2018.02.050
https://doi.org/10.1016/j.neuroimage.2018.02.050
https://doi.org/10.1002/mrm.26462
https://doi.org/10.1002/mrm.26462
https://doi.org/10.1016/j.neuroimage.2018.01.054
https://doi.org/10.1016/j.neuroimage.2018.01.054
https://doi.org/10.1016/j.neuroimage.2016.05.034
https://doi.org/10.1016/j.neuroimage.2016.05.034
https://doi.org/10.1109/ISBI.2019.8759183
https://doi.org/10.1109/ISBI.2019.8759183
https://doi.org/10.3389/fnins.2021.650082
https://doi.org/10.3389/fnins.2021.650082
https://doi.org/10.1016/j.neuroimage.2017.11.024
https://doi.org/10.1109/ISBI48211.2021.9434081
https://doi.org/10.1016/j.neuroimage.2019.06.017
https://doi.org/10.1038/sj.jp.7211774
https://doi.org/10.1111/dmcn.13629
https://doi.org/10.1542/peds.2015-3090
https://doi.org/10.1542/peds.2015-3090


Page 11 of 11Liu et al. European Radiology _#####################_ 

 36. van Vliet EO, de Kieviet JF, Oosterlaan J, van Elburg RM (2013) Perinatal 
infections and neurodevelopmental outcome in very preterm and very 
low-birth-weight infants: a meta-analysis. JAMA Pediatr 167:662–668. 
https:// doi. org/ 10. 1001/ jamap ediat rics. 2013. 1199

 37. Zonnenberg I, van Dijk-Lokkart E, van Den Dungen F, Vermeulen R, van 
Weissenbruch M (2019) Neurodevelopmental outcome at 2 years of 
age in preterm infants with late-onset sepsis. Eur J Pediatr 178:673–680. 
https:// doi. org/ 10. 1007/ s00431- 019- 03339-2

 38. Gallini F, Coppola M, Umberto De Rose D et al (2021) Neurodevelopmen-
tal outcomes in very preterm infants. The role of severity of Bronchopul-
monary Dysplasia. Early Hum Dev 152:105275. https:// doi. org/ 10. 1016/j. 
earlh umdev. 2020. 105275

 39. Kinsella JP, Greenough A, Abman SH (2006) Bronchopulmonary dysplasia. 
Lancet 367:1421–1431. https:// doi. org/ 10. 1016/ S0140- 6736(06) 68615-7

 40. Albertine KH (2012) Brain injury in chronically ventilated preterm 
neonates: collateral damage related to ventilation strategy. Clin Perinatol 
39:727–740. https:// doi. org/ 10. 1016/j. clp. 2012. 06. 017

 41. Malavolti AM, Bassler D, Arlettaz-Mieth R et al ( 2018) Bronchopulmonary 
dysplasia—impact of severity and timing of diagnosis on neurodevelop-
ment of preterm infants: a retrospective cohort study. BMJ Paediatrics 
Open 2:e000165. https:// doi. org/ 10. 1136/ bmjpo- 2017- 000165

 42. Lean RE, Han RH, Smyser TA et al (2019) Altered neonatal white and gray 
matter microstructure is associated with neurodevelopmental impair-
ments in very preterm infants with high-grade brain injury. Pediatr Res 
86:365–374. https:// doi. org/ 10. 1038/ s41390- 019- 0461-1

 43. Weeke LC, Groenendaal F, Mudigonda K et al (2018) A novel magnetic 
resonance imaging score predicts neurodevelopmental outcome after 
perinatal asphyxia and therapeutic hypothermia. J Pediatr 192(33–
40):e32. https:// doi. org/ 10. 1016/j. jpeds. 2017. 09. 043

 44. Singer LT, Siegel AC, Lewis B, Hawkins S, Yamashita T, Baley J (2001) 
Preschool language outcomes of children with history of bronchopulmo-
nary dysplasia and very low birth weight. J Dev Behav Pediatr 22:19–26. 
https:// doi. org/ 10. 1097/ 00004 703- 20010 2000- 00003

 45. Natarajan G, Pappas A, Shankaran S et al (2012) Outcomes of extremely 
low birth weight infants with bronchopulmonary dysplasia: impact of 
the physiologic definition. Early Hum Dev 88:509–515. https:// doi. org/ 10. 
1016/j. earlh umdev. 2011. 12. 013

 46. Short EJ, Klein NK, Lewis BA et al (2003) Cognitive and academic con-
sequences of bronchopulmonary dysplasia and very low birth weight: 
8-year-old outcomes. Pediatrics 112:e359–e359. https:// doi. org/ 10. 1542/ 
peds. 112.5. e359

 47. Singer L, Yamashita T, Lilien L, Collin M, Baley J (1997) A longitudinal study 
of developmental outcome of infants with bronchopulmonary dysplasia 
and very low birth weight. Pediatrics 100:987–993. https:// doi. org/ 10. 
1542/ peds. 100.6. 987

 48. Malavolti AM, Bassler D, Arlettaz-Mieth R et al (2018) Bronchopulmonary 
dysplasia—impact of severity and timing of diagnosis on neurodevelop-
ment of preterm infants: a retrospective cohort study. BMJ Paediatrics 
Open 2:e000165. https:// doi. org/ 10. 1136/ bmjpo- 2017- 000165

 49. Tam EW, Chau V, Ferriero DM et al (2011) Preterm Cerebellar Growth 
Impairment After Postnatal Exposure to Glucocorticoids. Sci Transl Med 
3:105ra105-105ra105. https:// doi. org/ 10. 1126/ scitr anslm ed. 30028 84

 50. Cheong JLY, Doyle LW (2019) Long-term effects of postnatal corticoster-
oids to prevent or treat bronchopulmonary dysplasia. Balancing the risks 
and benefits. Semin Fetal Neonatal Med 24(3):197–201.https:// doi. org/ 10. 
1016/j. siny. 2019. 03. 002

 51. Jobe AH (2004) Postnatal corticosteroids for preterm infants–do what we 
say, not what we do. New Eng J Med 350:1349–1350. https:// doi. org/ 10. 
1056/ NEJMe 048031

 52. Doyle LW (2021) Postnatal corticosteroids to prevent or treat bronchopul-
monary dysplasia. Neonatology 118:244–251. https:// doi. org/ 10. 1159/ 
00051 5950

 53. Guo T, Duerden EG, Adams E et al (2017) Quantitative assessment of 
white matter injury in preterm neonates: association with outcomes. 
Neurology 88:614–622. https:// doi. org/ 10. 1212/ wnl. 00000 00000 003606

 54. Saha S, Pagnozzi A, Bourgeat P et al (2020) Predicting motor outcome in 
preterm infants from very early brain diffusion MRI using a deep learning 
convolutional neural network (CNN) model. Neuroimage 215:116807. 
https:// doi. org/ 10. 1016/j. neuro image. 2020. 116807

 55. Messerschmidt A, Prayer D, Brugger PC et al (2008) Preterm birth and 
disruptive cerebellar development: assessment of perinatal risk factors. 
Eur J Paediatr Neurol 12:455–460. https:// doi. org/ 10. 1016/j. ejpn. 2007. 11. 
003

 56. Le TT, Kuplicki RT, McKinney BA, Yeh HW, Thompson WK, Paulus MP (2018) 
A nonlinear simulation framework supports adjusting for age when ana-
lyzing BrainAGE. Front Aging Neurosci 10:317. https:// doi. org/ 10. 3389/ 
fnagi. 2018. 00317

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1001/jamapediatrics.2013.1199
https://doi.org/10.1007/s00431-019-03339-2
https://doi.org/10.1016/j.earlhumdev.2020.105275
https://doi.org/10.1016/j.earlhumdev.2020.105275
https://doi.org/10.1016/S0140-6736(06)68615-7
https://doi.org/10.1016/j.clp.2012.06.017
https://doi.org/10.1136/bmjpo-2017-000165
https://doi.org/10.1038/s41390-019-0461-1
https://doi.org/10.1016/j.jpeds.2017.09.043
https://doi.org/10.1097/00004703-200102000-00003
https://doi.org/10.1016/j.earlhumdev.2011.12.013
https://doi.org/10.1016/j.earlhumdev.2011.12.013
https://doi.org/10.1542/peds.112.5.e359
https://doi.org/10.1542/peds.112.5.e359
https://doi.org/10.1542/peds.100.6.987
https://doi.org/10.1542/peds.100.6.987
https://doi.org/10.1136/bmjpo-2017-000165
https://doi.org/10.1126/scitranslmed.3002884
https://doi.org/10.1016/j.siny.2019.03.002
https://doi.org/10.1016/j.siny.2019.03.002
https://doi.org/10.1056/NEJMe048031
https://doi.org/10.1056/NEJMe048031
https://doi.org/10.1159/000515950
https://doi.org/10.1159/000515950
https://doi.org/10.1212/wnl.0000000000003606
https://doi.org/10.1016/j.neuroimage.2020.116807
https://doi.org/10.1016/j.ejpn.2007.11.003
https://doi.org/10.1016/j.ejpn.2007.11.003
https://doi.org/10.3389/fnagi.2018.00317
https://doi.org/10.3389/fnagi.2018.00317

	Brain age predicted using graph convolutional neural network explains neurodevelopmental trajectory in preterm neonates
	Abstract 
	Objectives 
	Methods 
	Results 
	Conclusions 
	Clinical relevance statement 
	Key Points 

	Introduction
	Methods
	Subjects
	MRI acquisition and image processing
	Clinical factors and neurodevelopmental assessment
	Brain age prediction
	Statistical analysis

	Results
	Performance of GCN-based age prediction
	Clinical implications of the brain age index

	Discussion
	Clinical implications and applications
	Brain age index as a potential predictor of cognitive and language development in preterm children
	Brain age prediction using GCN
	Limitations, future directions, and conclusions

	Anchor 24
	References


