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Abstract 

This work attempts to bring together knowledge of different pathways 

associated with cellular ageing and create connections between them using 

both machine learning and experimental methods. Initially, I describe the 

development of a novel proxy for chronological lifespan as part of the analysis 

pipeline of a high-throughput chronological lifespan assay in fission yeast. I then 

use this technique to go on to develop novel machine learning models that can 

predict lifespan, a complex phenotype, from simple traits, and identify ageing-

associated phenotypes in fission yeast.  

Complementary to this, I investigate a transcription factor of interest, Hsr1, for 

its involvement in cellular ageing and ageing-associated processes. I describe 

direct regulatory targets and how it forms a network with at least four other 

ageing-associated transcription factors which bridges the gaps between models 

of ageing, and suggest mechanisms for these interactions.  

In this way, this work provides novel links between cellular ageing mechanisms 

and ageing-associated processes from both machine learning and experimental 

sources.  
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Impact Statement  

Ageing is one of the biggest socioeconomic challenges faced by the developed 

world today. Interventions for health decline in ageing populations and ageing-

related diseases, such as cancer and Alzheimer’s, can benefit from deeper 

understanding of the mechanisms which cause and control the ageing process. 

Current models of such mechanisms are widely disputed and generally thought 

to only tell part of the story. This project aims to develop machine learning 

approaches, integrated with experimental techniques, to give insights into the 

overarching mechanisms of the ageing process and attempt to elucidate how 

known pathways are linked.  

This thesis describes the application of high-throughput methods to determine 

the lifespan of natural strains of fission yeast for a machine learning model 

which predicts the chronological lifespan of non-dividing cells from simple 

phenotypes in response to multiple environmental conditions. The model aims 

to objectively identify which phenotypes are most predictive of ageing and, 

therefore, which molecular pathways are most involved with the ageing process. 

In contrast to more traditional methods, this approach might provide a broader 

understanding of multi-pathway involvement in ageing.  

Additionally, this project contributes to developing insights into the 

transcriptional control of ageing cells in fission yeast. The transcription factor 

Hsr1 is shown to have a resistant phenotype in the ageing-associated stress of 

caffeine and rapamycin and is then further characterised including binding 

targets, binding motifs, and genome-wide genetic interactions. 

Reference: 
Romila, A., Townsend, S., Malecki, M., Kamrad, S., Rodríguez-López, M., Hillson, O., Cotobal, C., Ralser, 
M., Bähler, J. (2021). Barcode sequencing and a high-throughput assay for chronological lifespan uncover 
ageing-associated genes in fission yeast. Microb Cell, 8, 146-160.  
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Preface 

Ageing is a multifactorial process spanning cellular damage, loss of biological 

function, disease, and death (Fontana et al., 2010). The overarching goal of any 

treatment is healthy lifespan increase without reduction in the quality of life. The 

UK is faced with an ageing population and many of its major medical challenges 

are ageing-related diseases such as dementia, diabetes, and cancer. While 

lifespan has been increasing in the UK, healthspan has not been increasing at 

the same rate which creates the medical and socioeconomic challenge of a 

large population left in a prolonged state of declining health (Olshansky, 2018). 

As a result, research which develops an understanding of the elusive 

mechanisms underpinning this process is of great relevance to many of the 

medical and socioeconomic challenges faced by the UK today. Lifelong health 

is also a key challenge area for the funding body BBSRC, the sponsor of my 

studentship.  

When it comes to determining the causes of ageing, there are a range of 

models in use today, all with evidence for and against their accuracy. The 

evolutionary model of ageing is a popular and widely accepted theory which 

postulates that the force of natural selection is stronger in younger, 

reproductively active individuals than in older individuals. This means that 
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genes expressed when an individual is younger are more subject to selective 

pressures than those expressed when an individual is older (Hughes and 

Reynolds, 2005). This theory, however, does not constitute a mechanistic 

explanation for the process of ageing, rather an explanation as to why the 

process of ageing is occurring. Being non-mechanistic means the theory 

provides little scope for ageing interventions based on it, which is the focus of 

today’s ageing research. 

Since ageing is a multifactorial process, mechanistic models developed to 

describe it have thus far had serious failings. They have also been wide 

reaching, involving entirely different pathways to each other (Davidovic et al., 

2010). Current mechanistic theories can be split loosely into two groups, models 

of programmed ageing and models of ageing caused by damage and error. The 

programmed models deal with the idea of a program of changes taking place to 

cause senescence such as the control of genes or programmed endocrine and 

immunological changes. The models involving damage and error include 

theories surrounding the damage to cells from ‘wearing parts’, metabolic speed, 

free radicals, and DNA damage (Jin, 2010). 

Programmed theories of ageing are an intuitive way of describing what is often 

seen as an unavoidable and inexorable decline towards death. They include 

theories of programmed genetic changes, hormonal control, and immune 

decline to describe an ordered series of changes in an organism which leads to 

senescence (Cornelius, 1972, Hayflick, 2007, van Heemst, 2010). However, as 

more and more evidence accumulates to describe the effect of random damage 

events on lifespan, it seems likely that the idea of programmed ageing is a 

theory which is predicated on an comforting but oversimplified narrative that 

ageing is an ordered and controlled process (Hayflick, 2007). 
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The wearing parts theory is an idea that certain cells and tissues have 

components which wear and tear over time with repeated use in a similar way 

to wearing parts of a car (Jin, 2010). However, this theory is countered by 

evidence showing that organisms protected from these damages show no 

difference in lifespan (Park and Yeo, 2013).  

Arguably, one of the most popular mechanistic models is the free radical model 

of ageing. Developed in the 1950s, this theory suggests that ageing is caused 

by the damage accumulated from reactive oxygen species. This theory has 

some success in accurately representing the strong impact of oxidative stress  

on ageing: a decrease in reactive oxygen species production has been shown 

to increase lifespan in numerous studies across multiple model organisms 

(Gladyshev, 2014). However, a study in C. elegans showed that increasing 

oxidative stress within an organism did not necessarily decrease its lifespan 

(Van Raamsdonk and Hekimi, 2009). This kind of evidence suggests that 

oxidative stress accumulation can be a life-limiting factor in some circumstances 

but that it is not a simple cause-and-effect relationship.  

The rate of living theory is closely related to the free radical theory. This model 

suggests that an organism’s lifespan is inversely correlated to its rate of 

metabolism (Jin, 2010). Increased rate of metabolism would increase the rate of 

cellular processes and occurrence of damage, thus shortening the lifespan. This 

theory seems to integrate oxidative stress pathways and the target of rapamycin 

nutrient response pathway which is another popular candidate for ageing 

involvement (Brys et al., 2007, Rollo, 2010). The rate of living theory has 

evidence to suggest a strong correlational relationship but is lacking in evidence 

for a direct causal link (Park and Yeo, 2013). It is possible that this theory is 
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more descriptive of an increased rate of life and ageing as opposed to a 

mechanistic model.  

DNA damage theory is a strongly evidenced theory of ageing. Multiple studies 

have shown that increased DNA damage shortens lifespan and increased DNA 

damage repair extends it (Park and Yeo, 2013). Interestingly a recent study into 

the transcriptional profile of the ‘immortal jellyfish’ Turritopsis dohrnii at different 

life cycle stages strongly supports this theory. As the only known organism to 

‘reverse’ it’s ageing process, transcriptional changes in T. dohrnii offers a 

unique perspective on transcriptional changes for ageing. It has been shown 

that genes involved in DNA integration, transposition and repair, and telomere 

maintenance and organisation are strongly upregulated in the life cycle stage 

during which the organism metamorphoses back into the preceding lifecycle 

stage (Matsumoto et al., 2019). However, DNA damage could also be 

contributing to ageing by the damage of ageing related genes specifically as 

opposed to just the process itself.  

The combination of contradictory and complementary theories and evidence 

around ageing models suggests a far more complex interplay between 

pathways and processes than has currently been described. This idea is also 

intuitive since ageing-associated diseases involve a wide range of organs and 

processes from diabetes to cardiovascular issues to neurodegeneration (Jaul 

and Barron, 2017). Combined, the current evidence is pointing to a need for a 

mechanistic model which envelops these global processes and describes how 

they interact to contribute to ageing. 

The PhD project aims to investigate molecular mechanisms involved in cellular 

ageing in S. pombe. To identify the candidates, a machine learning tool which 



Preface 

17 

 

predicts the complex phenotype of lifespan from simple, easily screenable 

phenotypes has been developed. This will help to elucidate which phenotypes 

are heavily predictive of lifespan and therefore more strongly involved in ageing. 

The project will also provide insight into the ageing-related transcription factor 

Hsr1, including its specific binding sites and genetic interactions, as well as its 

place in a network of ageing related transcription factors.  

Chapter 1 characterises the training datasets developed and repurposed for use 

in a machine learning tool to predict lifespan, as well as detailing methodology 

for a lifespan proxy developed for this work. Chapter 2 then describes the 

process of building machine learning models to predict lifespan from simple 

phenotypes and identify the most predictive phenotypes. Chapter 3 explores the 

role of the transcription factor Hsr1 in cellular ageing and ageing-associated 

processes, including characterisation of Hsr1 binding and genome-wide genetic 

interactions of hsr1.  
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1 Characterising the Training Datasets for 

Prediction of Lifespan from Simple 

Phenotypes in Yeast 

1.1 Introduction 

1.1.1 Fission yeast as an ageing model  

Yeasts have long been used as models for other eukaryotes, including human 

cells, and are a proven, long-standing and reliable system due to the presence 

of highly conserved cellular ageing pathways in higher eukaryotes. 

Schizosaccharomyces pombe, or fission yeast, has been a popular yeast 

ageing model, second only to the traditional use of Saccharomyces cerevisiae, 

or budding yeast. Fission yeast is an appealing model organism due to some 

conserved processes not found in S. cerevisiae such as mRNA splicing (Lin and 

Austriaco, 2014). As an ageing model, fission yeast has the advantage of a 

short generation time of only 2.5 hours, along with being an easily manipulated 

organism with a commercially available deletion library of all non-essential 

genes. These benefits make it an excellent model choice over multicellular 

ageing models such as mice and zebrafish, whose generation time is many 

months.  
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1.1.2 Lifespan measurement in fission yeast 

Ageing research in fission yeast usually involves measuring the yeast cellular 

lifespan. This measurement can be considered a complex phenotype, affected 

by a range of variables, many of which are poorly understood. The two main 

ways to measure lifespan in fission yeast are chronological lifespan and 

replicative lifespan.  

The replicative lifespan measures the number of divisions a cell has before 

death and is widely used in similar models such as S. cerevisiae but is not a 

good measure of ageing in S. pombe as their ageing and lifespan does not 

seem to be connected to their replicative ability (Spivey et al., 2017). 

Alternatively, the chronological lifespan (CLS) assay is a technique for 

analysing cellular lifespan by measuring the loss of cell viability over time. CLS 

assays can be carried out in multiple model organisms and are a well-

established technique for fission yeast (Chen and Runge, 2009). During a CLS 

experiment, cells are grown to stationary phase and a measurement of colony 

forming units (CFUs) is taken at timepoint 0 and subsequent timepoints until the 

number of CFUs is <0.1% of the initial cell survival at timepoint 0 (Rallis et al., 

2013).  

In budding yeast, the CLS survival curve shows an initial loss of viability 

followed by a regrowth and death cycle which can continue for months, caused 

by the budding of new cells. However, in fission strains which cannot mate (h- 

or h+ strains) this is not possible and a smooth decline in viability is observed. 

This makes fission yeast ideal for determining chronological lifespan without the 

interference of regrowth (Runge and Zhang, 2018). 
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Despite the gold standard nature of CLS assays, they are not without 

limitations. Importantly, CLS experiments show a significant inter- and intra-

experimental variability, possibly due to the large number of variables which 

need to be controlled, some of which remain poorly understood e.g. flask size 

(Lithgow et al., 2017). In addition, CLS is measuring the strain’s ability to 

survive under high stress and low nutrient conditions, and this ability to survive 

could be biologically distinct from the yeast’s natural lifespan. For example, 

fission yeast could enter stationary phase and decline in a nutrient starved 

environment but then regrow from only one cell back into a large competitive 

population if nutrients became available. Because of this, it is possible that 

measuring lifespan only until 1% of the starting cell density is reached would be 

more appropriate for estimating cellular ageing, and thus more applicable to 

other organisms such as humans (Runge and Zhang, 2018). Despite these 

limitations, in the absence of a viable alternative, CLS is currently the standard 

method of measuring lifespan.  

Since one of the major advantages of using fission yeast as a model is the 

ability to design experiments to screen large strain collections, the time-

consuming nature of CLS has previously held back research from larger 

lifespan screens. However, recent research by StJohn Townsend in the lab has 

developed higher-throughput CLS methods including a high-throughput Bar-seq 

screen to identify altered CLS and a medium-throughput colony forming unit 

(CFU) assay (Romila et al., 2021). The Bar-seq screen, a high-throughput 

method capable of screening entire collections at once, was shown to be able to 

identify long- and short-lived mutants. This presents a novel opportunity for 

quick identification of strains of interest to ageing for future experiments (Romila 

et al., 2021). 
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The medium-throughput CFU assay (also referred to in this thesis as the high-

throughput CLS assay) reported in this paper, offers a method to collect more 

traditional CLS data with a much higher capacity with the use of automated 

robotics and modelling. In a traditional CLS method, each sample would be 

plated to three solid media plates, this method allows for 8 samples to be plated 

to only one solid media plate, as well as utilising a RoToR HDA pinning robot 

(Singer Instruments) and a liquid handling robot, further reducing the workload 

per sample.   

1.1.3 Flocculation and longevity 

When measuring the lifespan of fission yeast via CLS, the potential for 

flocculation must be considered. Flocculation is a natural process of yeasts, 

including S. pombe where the cells clump together to form what is known as a 

floc (Kwon et al., 2012). This clumping is achieved through cell-to-cell adhesion 

where cell surface glycoproteins, known as flocculins, bind to cell surface 

carbohydrates, quickly creating larger structures of many cells, which precipitate 

out of the liquid media (Soares, 2011, Stratford, 1989).  

This precipitation creates a fundamental challenge for the CLS protocol, 

increasing variability in the step of collecting samples for the cell viability assay. 

If the yeast cells have flocculated, they may not be easily re-homogenised 

within the media, meaning that the sample taken would not be representative of 

the population of viable cells in the culture as a whole. Additionally, performing 

mixing to re-homogenise the culture could result in added stress to the cells 

which may also affect cell viability. While flocculation has not been observed 

during CLS with the fission yeast 972 h- lab strain, it is possible, or even likely, 

that it could be observed in other strains, especially wild type strains which 
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arguably retain more natural S. pombe phenotypes (Kwon et al., 2012, Jeffares 

et al., 2015). 

Investigation of flocculating S. pombe mutants has shown that similarly to other 

yeasts, fission yeast flocculation is calcium dependant but, differing from S. 

cerevisiae, cell adhesion relies on galactose residues rather than mannose or 

glucose (Tanaka et al., 1999). In S. pombe, it is thought there is a network of 

transcriptional control for flocculation affecting both when flocculation occurs 

and the size of the flocs. This network has been shown to include the 

transcription factors Mbx2 and Rfl1 as key regulators of flocculation alongside 

several other genes, pointing towards multifaceted and nuanced transcriptional 

control (Kwon et al., 2012).  

Though the transcriptional control of flocculation has not been fully elucidated in 

S. pombe, it is understood that yeast form flocs in response to environmental 

stresses as the cells within the floc are protected by a barrier of the external 

cells (Smukalla et al., 2008). With this in mind, we can theorise that flocculation 

may occur during a CLS assay when the cells experience the stress of low 

nutrients, and that this flocculation could lead to longer lifespan measurements 

with the internal floc cells being protected from the environmental stress, 

increasing their longevity.  

1.1.4 Ploxine B as a novel lifespan measure  

While CLS is considered the gold standard lifespan measure it cannot be 

considered the most natural. In the wild, fission yeast would not live in shaking 

liquid media and has been shown to survive for longer when able to form colony 

structures. It has even been suggested that fission yeast colonies are so 

beneficial they form an almost multicellular-like structure. Cell viability assays 
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such as the one used for CLS would not be possible from a colony so a different 

measure of cell death would be needed.  

Recently the dead-cell stain phloxine B has been used with success to measure 

cell death in colonies within a high-throughput screen context (Kamrad et al., 

2020). Phloxine B is a chemical which only stains dead S. pombe cells red. If 

phloxine B is added to solid media, it is actively pumped out of live cells but 

accumulates in dead cells meaning that ‘redness’ can be used as a measure of 

the proportion of live cells (Kwolek-Mirek and Zadrag-Tecza, 2014). The 

‘redness’ measure of a colony is shown to be directly proportional to the number 

of dead cells. In this way it could be possible to use redness over time in the 

same way as cell viability over time is used to create a lifespan curve. 

Measuring cell survival within a colony could be a novel, more intuitive method 

of measuring lifespan. 
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1.2 Methodology 

1.2.1 Design principles 

This research aims to develop a machine learning model which predicts the 

complex phenotype of lifespan from simple phenotypes in fission yeast. Insights 

gained from this model could then be applied to higher eukaryotes due to the 

large number of conserved pathways in fission yeast. In this chapter, the 

training data chosen for creating this model is characterised and discussed to 

demonstrate that the research questions of the model are being appropriately 

addressed. 

The first step in any modelling requires a sound and reliable training dataset. As 

discussed in the introduction, the training dataset defines what is ‘true’ for the 

model and determines what any output is able to tell us. Therefore, it is 

important to ensure that the training data provides a strong foundation for the 

model which is specific to answering the research questions we have set out: 

1. Can the complex phenotype of lifespan be predicted from simple phenotypes? 

2. Which simple phenotypes are most predictive of lifespan? 

3. Based on these phenotypes, which cellular processes are most predictive of ageing? 

In this case, as with many ageing models, the ‘true’ data input that must be 

clearly defined and specific to the research questions is the ‘lifespan’. The 

training dataset for lifespan will define to the model what ‘lifespan’ and ‘ageing’ 

are in our research questions, so we must ensure that the data is specific for 

this purpose.  

To achieve this, the methodology for this research uses a collection of wild-type 

yeast strains, sampled from over 20 countries across the globe, to give a 

normally distributed dataset which is representative of fission yeast as a species 
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(Jeffares et al., 2015). A more commonly used, and much larger, dataset would 

be the commercially available Bioneer deletion library. However, deletion 

mutants often have unusual lifespans, often extremely short lived, so this kind of 

data may not be appropriate for machine learning applications.  

As well as this, keeping in mind the specific questions the model is designed to 

answer, wild type yeast is the better choice for training. The lifespan of a 

deletion mutant is often directly impacted by the gene deletion, and this would 

interfere with forming connections between the lifespan and more subtle 

phenotypes. Wild type yeast is less likely to have any extreme phenotypes so 

offers a greater chance of identifying these subtle connections.  

The Bioneer deletion library also does not offer any natural genetic diversity, as 

the library is all transformed from a single strain. Using a genetically diverse 

collection of wild type yeast allows the addition of more species representative 

data into the model. Consequently, while the Bioneer deletion library would offer 

a significantly larger dataset, which would be better for modelling, the collection 

cannot address the research questions in the same way the wild type collection 

can.  

Chronological lifespan assay (CLS) was then chosen to define the complex 

phenotype of lifespan, due to its long-standing and reliable history in both 

fission yeast and the field of ageing research. The availability of a high-

throughput, robot based, method for CLS assays within the lab was a major 

advantage for the method, as it allows for the collection of the quantity of data 

necessary for modelling. 



Characterising the Training Datasets for Prediction of Lifespan from Simple Phenotypes in Yeast 

26 

 

1.2.2 Wild type fission yeast strain collection  

The collection used in this research contains a total of 161 S. pombe isolates, 

published by Jeffares et al. (2015). The strains were collected from more than 

20 different countries during the last 100 years. Most of the strains were 

collected from cultivated fruit and fermentations and once analysed, the 161 

samples had 57 non-clonal strains. These 57 strains have ≥1,900 different 

SNPs to each other which accounts for 99.6% of the SNPs found in all 161 

strains in the original collection (Jeffares et al., 2015). The collection has also 

been shown to have large structural variations which contribute to the 

collection’s rich phenotypic diversity (Jeffares et al., 2017). This collection of 

strains presents an opportunity to investigate the genetic and phenotypical 

differences between natural fission yeast strains and Jeffares et al. showed that 

this collection had rich genetic and phenotypic variations which could be further 

investigated. 

1.2.3 Chronological lifespan testing of h+, h- and h90 strains 

An initial problem with the wild type collection was that many of the strains had 

a homothallic mating type of h90 rather than h+ or h- meaning it was possible 

for them to mate during the lifespan and seriously affect the results. Even 

though the CLS experiment would be carried out using nutrient-rich YES media 

there was a possibility of the h90 strains mating once they were under stress. 

To test this, the lifespans of three lab strains, a h+ strain (JB32), a h- strain 

(JB972) and a h90 strain (JB50), were measured.  

Two replicates of the strains were woken up from cryostock by streaking on to 

YES agar and grown at 32˚C for two days. Single colonies were then picked 

from each plate and resuspended in 1ml YES in a UV-sterilised cuvette. The 
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ODs of each colony were taken and 10ml OD corrected YES precultures were 

set in 25ml conical flasks and left shaking at 32˚C overnight. YES cultures 

(10ml) of OD 0.002 were then set in 25ml conical flasks and left shaking to grow 

for two days at 32˚C. After 48 hours, or at ‘Day 0’ of the lifespan assay, 150µl of 

each culture was serially diluted in YES and spotted four times on to a YES 

plate. These plates were scanned once they were grown, and in-house R 

scripts were used to calculate the number of colony forming units in each 

culture. This process was repeated until Day 7. 

1.2.4 Chronological lifespan data for wild type strains 

Lifespan data of the wild type strains was collected in three batches to allow for 

three complete, independent biological repeats and high-throughput CLS was 

performed as follows: 

57 wild type strains were woken up from cryostock by spotting on to a YES agar 

PlusPlate using a RoToR HDA robot (Singer Instruments) and long-pin 96-

density pads. These spots were left to grow for 2 days and then used to set 57 

precultures in 10ml YES media in 25ml volumetric flasks which were left to grow 

overnight, shaking, at 32˚C. Cultures were then set from in 10ml YES in 25ml 

volumetric flasks, corrected to OD 0.002 and then placed in the shaking 

incubator at 32˚C.  

After two days of growth, when the cultures had reached stationary phase, the 

reading for Day0 was taken. For this, a 150µl sample from each culture was 

transferred to the first column of a 96-well plate and a serial dilution in YES was 

performed using an Integra Assist automated multichannel pipette (Integra 

Biosciences Ltd.). The dilutions were then spotted in quadruplicate on to a YES 

agar PlusPlate using the RoToR HDA robot (Singer Instruments) and long-pin 
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96-density pads, making sure to revisit the source plate before each pin. The 

plates were incubated at 32˚C for 2-4 days, until suitable growth was seen.  

Once grown, stress plates were imaged using a conventional scanner and a 

custom Unix script within the lab to crop (figure 1A). Our R package 

DeadOrAlive (Romila et al., 2021) was used to process the spot plates into 

lifespan curves. Image analysis, based on the R package, grids the images to 

show every available location for a spot. Locations containing a spot were 

marked in red and those not containing a spot were marked in blue. This blue-

red step, shown in figure 1B, is useful for quality control to ensure that the spots 

have been correctly identified. The number of repeat pins (0-4) which show a 

spot is then calculated as shown in figure 1C. The number of spots out of the 

four repeat pins for each dilution factor creates an array which predicts the most 

likely number of colony forming units (CFUs) per droplet which would make that 

array. It also allows the computer to perform some quality control by excluding 

spots which occur in a serial dilution after several dilutions of no spots such as 

the point highlighted in yellow in figure 1B and C.  

During the second biological repeat of the full lifespan set, a sample of each 

culture was checked under the microscope on each read day to look for 

evidence of mating in the form of asci or spores. Qualitative flocculation data 

was also recorded during the second repeat. 
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Figure 1: Example of image processing and maximum likelihood estimation for the wild type 
lifespan data 

A) The serial dilution spot plate is scanned; colonies appear dark on a light background. B) The 
plate image is overlaid with a grid over each potential spot on the plate, these are then coloured 
red if they contain a spot on the image and blue if they do not. C) This image is then processed 
to show how many of the four replicate spots has grown. These number arrays are then used to 
calculate the number of CFUs per droplet expected to create this array pattern. The spot 
highlighted in yellow in B and C was excluded data. D) The likelihood function for JB22, day 0, 
repeat 1: blue dashed lines indicate the maximum likelihood, and red dashed lines show the 
bounds of the confidence interval for the desired probability. E) The expected number of cells 
per droplet at each dilution based on the maximum likelihood estimate for JB22, day 0, repeat 1. 
The shaded green area shows the expected informative region (the region in which there is 
reasonable probability that some positions will contain a colony and some will not). F) The 
pattern of observed colonies for JB22, day 0, repeat 1: the blue line indicates the expected 
distribution based on the maximum likelihood estimate. G) The likelihoods of observing each 
particular data point for the maximum likelihood estimate for JB22, day 0, repeat 1. The red 
dashed line shows the tolerance: if there any data points for which the probability of observing 
them is less than the tolerance, then it is assumed that something has gone wrong. In this case, 
the most troublesome data point will be excluded, and the maximum likelihood estimation will be 
performed again. 

A B C 
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1.2.5 Cell adhesion phenotype data for wild type strains  

Cell adhesion phenotype data was produced by Bence Kover (2023, UCL, 

personal communication).  

The 57 non-clonal wild type strain collection was woken up from cryostock onto 

a YES PlusPlate using the RoToR HDA robot and long-pin 96-density pads 

(Singer Instruments). The cells were incubated for 3 days at 32°C. Cells were 

then resuspended in 100µl of EMM + nitrogen media in a 96 well plate using the 

RoToR HDA robot and long-pin 96-density pads and ensuring mixing in both the 

source and target plates. The liquid resuspension was pinned on to EMM + 

nitrogen agar in 96 format using the RoToR HDA robot and long-pin 96-density 

pads. Each sample is pinned in a 7x7 square to allow for wide adhesion to the 

agar, ensuring the source plate was revisited before each pin, and then 

incubated for 4 days at 32°C.  

Plates were imaged using a conventional scanner and a custom Unix script to 

crop. The cells were then washed from the plate using water with a constant 

flow rate of 35ml/sec for 1 second on each 7x7 square. Following the washing 

they were imaged a second time. The ratio of pixel intensity between the 

washed and unwashed plates is the cell adhesion score, measuring cell 

adhesion to the agar. Pixel intensity was processed with a custom python-

based pipeline making use of scikit-image.  

1.2.6 Lifespan proxies for wild type strains 

Lifespan proxies were calculated using the DeadOrAlive package (Chen and 

Runge, 2009, Rallis et al., 2014, Roux et al., 2006). The package defines the 

proxy as the square root of the number of days to 5% viability, but to achieve 

the wider spread of data preferred by machine learning models, simply the 
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number of days to 5% viability was used in this research. The proxy was 

checked for reproducibility using ANOVA and Tukey’s post hoc analysis, 

performed in R.  

Because this proxy is a new protocol it was important to check for the 

intuitiveness of this novel method. To achieve that, a proxy was also calculated 

in a way to avoid the spline fitting, the most likely area to introduce bias. Here a 

linear regression line was constructed between the closest datapoints above 

and below 5% viability and the proxy was calculated along this regression line. 

The lifespan proxy data was also used to create a categorised dataset by 

binning the proxy data into the three categories around the average of the 

dataset in R.  

1.2.7 Phloxine B lifespan as a novel lifespan measure 

57 strains were woken up from cryostock by spotting on to a YES agar 

PlusPlate using a RoToR HDA robot and long-pin 96-density pads (Singer 

Instruments). The plates were incubated for three days at 32˚C and then pinned 

on to YES (0.1% glucose) and phloxine b agar PlusPlates in quadruplicate (384 

format) using a RoToR HDA robot and long-pin 96-density pads. The plates 

were incubated at 32˚C and imaged for redness at days 2, 4, 7, 9 and 11. 

Imaging was performed using a conventional scanner and a custom Unix script 

to crop. Pyphe (Kamrad et al., 2020) was then used to quantify the redness of 

each colony. 

To normalise the data and fully capture the meaning of the redness scores the 

redness scores were divided by the mean redness score for each timepoint. 

This allows the data to represent higher or lower redness than the average. The 



Characterising the Training Datasets for Prediction of Lifespan from Simple Phenotypes in Yeast 

32 

 

relative change in redness between day 2 and day 11 was calculated and used 

as the proxy score for lifespan. 
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1.3 Results 

1.3.1 Chronological lifespans of wild type strains 

During the test of h+ h- an h90 strain lifespans, the cells of both h90 repeats 

showed some evidence of mating under the microscope in the form of a few 

spores. There was little evidence of mating and the h90 strain lifespan showed 

no significant difference from the h- strain, suggesting that the mating had no 

significant effect on the overall lifespan. The h+ strain, JB32, showed a much-

decreased lifespan in both biological replicates but this was attributed to a strain 

characteristic since the h90 strain was not different from the h- strain. 

Three full biological repeat lifespans of all 57 strains in the collection were 

generated. Some scans resulted in the analysis script calculating infinite CFUs 

per droplet for a small number of time points. At this point the number of CFUs 

cannot be calculated by the program as they are effectively out of the range of 

the experiment. The issue was worked around by removing infinite values and 

imputing the missing data with k-nearest neighbour.  

Figure 2 shows the reproducibility of the lifespan between repeats for each 

strain with real data shown in grey and imputed datapoints shown in red. This 

figure also highlights that the k-nearest neighbour imputed values lay intuitively 

in the lifespans and do not introduce any outlying datapoints. 

Qualitative observation data showed that only JB871 had any evidence of 

mating during the lifespan. The evidence was limited with only a few spores and 

asci observed in the final days of the lifespan. Strains 32, 34 and 36 all 

flocculated during the lifespans, with 36 flocculating enough to form one solid 

mass in visibly clear media towards the end of its lifespan. All flocculation was 

carefully homogenised by gentle pipetting before the sample was taken.  
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Figure 2: Graphs to show 57 wild type stain lifespans in triplicate. 

Graphs showing normalised colony forming units per droplet over time in days for all 57 strains. 
Repeats are indicated in black, blue and green respectively and values imputed using k-
nearest-neighbour imputation are shown in red. 

 

1.3.2 Lifespan proxies for wild type strains 

Initial experimentation with alternative proxy calculations yielded limited results 

for the purposes of this study. The implementation of area under the curve 

(AUC) calculations is shown in figure 3. While the AUC proxies to both 5% and 

50% viability using the trapezoid and spline fitting methods were highly 

correlated between repeats, the data was clustered towards small proxies and 

lacked an even spread from short to long lived.  
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Figure 3: Pairwise correlation scatterplots for area under the curve (AUC) based proxies.  

AUC to 5% viability correlations fitted with trapezoid method between (A) repeat 1 and repeat 2 
(coefficient = 0.81***), (B) repeat 1 and repeat 3 (coefficient = 0.64***), and (C) repeat 2 and 
repeat 3 (coefficient = 0.84***). AUC to 5% viability correlations fitted with spline method 
between (D) repeat 1 and repeat 2 (coefficient = 0.80***), (E) repeat 1 and repeat 3 (coefficient 
= 0.67***), and (F) repeat 2 and repeat 3 (coefficient = 0.86***). AUC to 50% viability 
correlations fitted with trapezoid method between (G) repeat 1 and repeat 2 (coefficient = 
0.81***), (H) repeat 1 and repeat 3 (coefficient = 0.64***), and (I) repeat 2 and repeat 3 
(coefficient = 0.84***). AUC to 50% viability correlations fitted with spline method between (J) 
repeat 1 and repeat 2 (coefficient = 0.80***), (K) repeat 1 and repeat 3 (coefficient = 0.67***), 
and (L) repeat 2 and repeat 3 (coefficient = 0.86***). ***p-value<0.001. 
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The lifespan proxy from our DeadOrAlive package and the linear proxy were 

performed on all three repeats of the lifespans, and these were plotted against 

each other. Figure 4A shows how the proxy developed for DeadOrAlive 

correlates strongly with the linear proxy for all three repeats of the lifespan. A 

histogram of the proxy results for all three repeats (figure 4B) combined was 

also produced and shows the dataset has a normal distribution of lifespans with 

a slight skew towards short lived strains. 

ANOVA analysis of the lifespan proxies showed significant difference between 

strains (p=<0.0001) and no significant difference between repeats (p=0.334). 

This was followed by Tukey’s multiple comparison post hoc analysis showing no 

statistically significant difference between repeats for all comparisons (p=0.94, 

p=0.52, p=0.33). 

The mean DeadOrAlive lifespan proxy was plotted in a pairwise correlation with 

the cell adhesion score from the data generated by Bence Kover 

(supplementary figure 1). This plot showed that there was no correlation 

between the lifespan and the cell adhesion score.  
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Figure 4: Quality control for lifespan proxy training data 

A) Scatter plots to show the strong positive correlation 
between the linear proxy and our proxy for repeats 1, 2 
and 3 respectively. B) Histogram to show the spread of 
the training data lifespan proxies. There is a normal 
distribution skewed slightly towards the shorter-lived 
strains.  

 

 

 

1.3.3 Phloxine B as a novel lifespan measure 

The phloxine B data was incomplete once the scans had been processed in 

Pyphe as the program failed to identify many colonies leading to lots of missing 

datapoints. The data also suffered from a lot of noise and irreproducibility 

problems between repeats. After normalisation and the calculation of rate of 

redness, this rate of redress lifespan proxy was plotted in a pairwise correlation 

with the DeadOrAlive lifespan proxy mean of the wild type lifespans (figure 5). 

This shows a negative correlation, as rate of redness increases the lifespan of 

the strain decreases. The correlation has a small negative coefficient and a 

relatively high p-value, but it does indicate that there may be a negative 

correlation with less noisy and more reproducible data.  

 

 

B 
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Figure 5: Preliminary insights into 
the use of Phloxin B as a lifespan 
measure.  

Correlation of rate of redness over 
time proxy with the mean of the 
lifespan proxies (coefficient = -0.22, 
p-value = 0.16), showing redness 
increases as lifespan decreases. 
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1.4 Discussion 

1.4.1 CLS and lifespan proxies of wild type strains 

The lifespans of the 57 wild type yeast strains show an expected level of noise 

and despite this are highly reproducible, especially considering that 

irreproducibility issues are commonplace in this technique. When plotted (figure 

2), it can be visualised that the lifespans are similar to each other between 

repeats, and statistical analysis showed that the repeat proxies were 

reproducible to within a 99% confidence limit.  

While some data needed to be imputed due to infinite predictions, this occurred 

in only a small number of datapoints and visualisation of the lifespans (figure 2) 

showed that these imputed datapoints sat intuitively within the lifespan curve 

and did not introduce outliers to the data. In data such as lifespans where the 

trend is highly predictable a knn imputation is often a reliable form of imputation.  

The infinite values were, on two occasions produced by bacterial contamination 

of the plate, and on other occasions likely due to either high cell density or cell 

stickiness. There is a large range of cell morphology within the wild strain 

collection, owing to its generic diversity, this could lead to strains with smaller 

cells having much higher cell densities than the JB22 strain on which the high-

throughput CLS assay was designed. Several of the strains in the wild type 

collection flocculate indicating that they have high levels of sell stickiness. This 

stickiness could cause the strains to stick to the pipette tips during the serial 

dilution, introducing systematic error.  

This theory of systematic error causing infinite values highlights a concern that 

cell stickiness could also be causing artificially long lifespan results in the CLS 

by the same mechanism. To account for this, observational data and 
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quantitative data from a cell stickiness assay was correlated to the lifespan data 

to look for a relationship between stickiness and longer lifespan. None of the 

strains which were observed to flocculate during the lifespan were especially 

long lived, and a pairwise correlation of the cell stickiness score to the mean 

lifespan proxy did not show any relationship (supplementary figure 1). In this 

way we can be confident that flocculation and cell stickiness did not significantly 

affect the reliability of the lifespan data.  

Despite the positive indication from the h+, h- and h90 test lifespans, during the 

second biological repeat of lifespans, qualitative data of mating was recorded. 

JB871 showed some evidence of mating towards the ends of the lifespan in the 

form of small number of spores and asci seen under the microscope. However, 

there were very few spores and asci observed and the strain was not especially 

long-lived, so it is not thought that enough mating took place to alter the 

chronological lifespan results in any meaningful way.  

1.4.2 Lifespan proxies for wild type strains 

For use in machine learning the lifespan curve needed to be translated into a 

representative single number proxy. Although there are standardised ways of 

achieving this with lifespans of multicellular organisms, within S. pombe or 

yeasts overall the methods used for this in the literature are sparse and 

extremely variable. This meant that it was necessary to develop a novel, 

intuitive method. Much of the literature used numbers of days as the final single 

number description of a lifespan, often by simply discussing the difference in the 

graph at a certain number of days or the number of days to a percentage 

viability, e.g. 50% or maximal lifespan (Chen and Runge, 2009, Rallis et al., 

2014, Roux et al., 2006). 
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In line with the literature, we developed a proxy based on the number of days to 

maximal lifespan. Due to the nature of the high-throughput CLS analysis, at the 

end of a lifespan, cell survival can be calculated as less than one colony 

forming unit per droplet. Since this a measurement of less than a single cell the 

data is more robust before these miniscule final calculations. To account for this 

issue, maximal lifespan was defined as 5% of the maximum cell survival (day 0) 

ensuring that cell survival rates were always above one colony forming unit per 

droplet.  

Since the literature sets a precedence for variable percentage survivals to be 

used as the final output of a CLS (Kalita et al., 2021, Rodríguez-López et al., 

2020, Lee et al., 2021), a range of percentage survivals were trialled as the 

proxy for this research: 

• 5% survival (representing maximal lifespan for this data) 

• 10% survival (representing close to maximal lifespan but with the very end of the curve 
not considered) 

• 50% (representing only the first half of the lifespan curve) 

• 70% (representing only the beginning of the lifespan curve)  

Each percentage survival has its own advantages and disadvantages due to 

what it represents. While 5% viability (in this case maximal lifespan) represents 

the entire lifespan and therefore takes all the data into account there are 

disadvantages to its use. Since the measure includes the entire lifespan curve, 

it can be skewed by any noise at the end of the lifespan. By using 5% rather 

than the absolute maximal lifespan, we are effectively trimming data from very 

small populations of long-lived cells which will help reduce the impact of end of 

lifespan noise but there is still a risk. A 10% viability could be used in place of a 

5% viability to give a larger margin around any potential end of lifespan noise in 
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the data and more reliably eliminate it. However, taking more from the end of 

the data risks loss of insights found at the end of the lifespan curve. 

Along with maximal viability, 50% viability is a commonly used metric within the 

literature (Kalita et al., 2021, Rodríguez-López et al., 2020, Lee et al., 2021). 

This survivability measure only represents the first half of the lifespan curve, but 

this is generally considered to be the part of the lifespan curve which is most 

rich in biological insights. Many lifespans will diverge most noticeably in the first 

half of the lifespan due to the initial drop in viability which occurs immediately 

after the cells exit stationary phase. This initial fall in viability slows as the 

lifespan continues before levelling off by the end, so the differences in lifespans 

can often be captured by the initial drop alone. To capture only the initial drop in 

viability 70% viability can be used, this measure works similarly to the 50% 

viability measure but has less risk of being affected by any noise after the initial 

drop in viability.  

In the literature, often more than one metric is used at the same time to 

describe a lifespan e.g., 50% and maximal viability (Rallis et al., 2021, Mirzaei 

et al., 2014). However, for the purpose of the proxy it was necessary to use only 

one. The best measure was chosen based on the appropriateness of the output 

data as training data measured by: 

• Reproducibility – If a measure is particularly affected by noise in this lifespan data, then 
the proxies will be less reproducible between the lifespans. 

• Spread of datapoints – A measure is more appropriate for machine learning modelling if 
it can be representative of the large range of lifespans in this data and capture where 
the lifespan curves diverge.   

Experimentation with using 70%, 50% and 10% survival did not produce proxies 

with as high reproducibility or the desired spread of datapoints and so 5% 

viability was decided on as the best metric. 
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From here there are two main options for lifespan calculation with precedence 

in the literature:   

• A simple measure of the number of days it takes to reach 5% viability. 

• A calculation of the area under the lifespan curve (AUC) to 5% viability.  

Calculating the AUC as opposed to simply reading the x axis for a defined y 

value can often create a more robust description of the data by taking the entire 

lifespan curve until this point into account. However, for the same reason AUC 

measurements can be greatly affected by noisy data within the curve. With this 

data in particular, the AUC proxies did not perform as well, with clustering of 

datapoints in smaller proxies and a lack of an even spread of proxies for short 

to long lived strains (figure 3). This spread of data was seen in AUC proxies 

using both trapezoid and spline fitting methods, calculated to both 5% and 50% 

viability, and renders the proxy inappropriate for machine learning applications.  

The resultant proxy, available in the DeadOrAlive R package and published in a 

previous paper from the lab (Romila et al., 2021) draws a smooth spline through 

the lifespan data to create a lifespan curve and then uses this curve to calculate 

the number of days taken to reach 5% viability. Several spline fitting methods 

were trialled during the proxy’s development including second- and third-degree 

polynomials to ensure the lifespan curve struck the balance of being true to the 

original datapoints while eliminating noise which would skew the proxy 

calculation. 

Initially, polynomials were fitted to the lifespan curve but neither second- nor 

third-degree polynomials fitted the data as closely as would be necessary and 

so attention turned to spline fitting packages. Ideally, the spline needs to be 

smooth enough to be unaffected by any noise in the data but also fit the data 

tightly enough that it is fully representative of the lifespan. Attempting to fit 
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defined shapes on the data such as sigmoid curves also failed to be properly 

representative. One of the major obstacles in fitting the spline was the noise at 

the beginning of the lifespan which often led to fitted splines going up at the 

start of the lifespan when we know, intuitively, that the viability always 

decreases.  

The R package Cobs (Ng and Maechler, 2007) computes constrained quantile 

curves using linear or quadratic splines. The constraint options in this package 

allowed a spline to be fitted with the constraint ‘decrease’ which meant that the 

spline will always decrease as we know the lifespan does, in spite of noise. It 

outputs a median spline which is a robust smoother and sits intuitively over the 

lifespan data (figure 6).  

For the purpose of the previous research paper (Romila et al., 2021), the 

DeadOrAlive package defines the proxy as the square root of the number of 

days to 5% viability, but to achieve the wider spread of data preferred by 

machine learning models, simply the number of days to 5% viability was used in 

this research. The proxy was checked for reproducibility using ANOVA and 

Tukey’s post hoc analysis, performed in R.  
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Figure 6: Example of spline fitting for lifespan proxy 

Graph showing the actual data points for the lifespan of JB22 in the first repeat (black points), 
the spline fitted by the ‘cobs’ package with the constraint that it must always decrease (blue 
line), and the maximum prediction of the number of days to 5% viability (red dotted lines). These 
figures can be generated in the DeadOrAlive package by using the plotProxy() function.  

 

Because this proxy is a new protocol, it was important to check for the 

intuitiveness of this novel method. To achieve that, a proxy was also calculated 

in a way to avoid the spline fitting, the most likely area to introduce bias. Here a 

linear regression line was constructed between the closest datapoints above 

and below 5% viability and the proxy was calculated along this regression line. 

This method would be more vulnerable to the effects of any noise in the data 

but should correlate well with the spline fitted proxy if it is intuitive. As seen in 

figure 4A our proxy strongly correlates with the linear proxy (with some noisy 

outliers) showing the accuracy of our proxy calculation.  
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After showing that the proxy calculation is an intuitive method, attention turned 

to the quality of the lifespan training data. During the proxy calculation one 

strain was found to be so long lived that it did not reach 5% viability in any of the 

repeats. This strain was removed as a quality control both because it was not 

possible to calculate the proxy and because the strain was such an outlier that it 

would skew the training data. As shown in figure 4B, the data has a relatively 

normal distribution, this is necessary for training data as a skewed dataset will 

usually preferentially predict the extreme it is skewed towards. The training data 

has a slight skew towards shorter lived strains, but it is very minor and therefore 

unlikely to affect the performance of any machine learning models trained on it. 

1.4.3 Phloxine B as a novel lifespan measure 

The initial data shows that this phloxine B measure of lifespan is correlated with 

the traditional measure, but the data was very noisy and not that reproducible. 

While the measure shows promise, the assay would need to be repeated and 

optimised to create more reliable and reproducible data. Future experiments 

should focus on increasing the quality of the scanned images so that less data 

is lost during the image analysis pipeline as well as introducing a gridded plate 

layout similar to the one used in the phenotype screen of the wild type strains. 

This would allow for downstream normalisation to positional bias and likely 

reduce noise and increase reproducibility. 

It is, however, important to remember that the phloxine B assay is a different 

measure of lifespan compared to CLS data. Since the assay measures lifespan 

within a colony on solid media as opposed to within a liquid culture, it may not 

correlate directly to CLS data and this would not necessarily be a measure of 

the assay’s validity. Arguably, the assay has the potential to be a more natural 

measure of strain lifespan which could be used for further insights in the future.  
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1.4.4 Training datasets 

Due to the level of noise and irreproducibility issues in the phloxine B data, this 

dataset was excluded from model building at this time. If the experiment was to 

be repeated to produce a more reliable dataset, this could be used in modelling 

in the future, but in its current state it is likely to decrease the performance of 

the model due to the quantity of outlying datapoints it contains. The 

chronological lifespan proxy data and the phenotype data were used to produce 

training datasets for modelling.  

The lifespan proxies were used to produce two sets of training data: 

1. Mean lifespan for the 56 strains (56 incidences) 

2. Individual inputs of each repeat for the 56 strains (168 incidences) 

Due to the relatively small dataset of lifespans available, the mean lifespan 

might not be the best way to input this data into a model. Therefore, a dataset 

where the repeats were used as individual datapoints within the models rather 

than averaged was produced. This has two potential advantages. Firstly, it 

triples the number of examples available to input into a machine learning model 

mitigating the issue that this dataset is small. Secondly, the aim of this 

modelling is to find insights into how the stress response phenotypes of a strain 

are related to its lifespan. In this instance all the lifespans recorded, even ones 

that vary more from their replicates, are lifespans of the strain and carry 

biological meaning. All the lifespans and phenotypes recorded carry their own 

biological significance for this question, perhaps most importantly in their 

variation from their replicates. By using each datapoint as an example instead 

of as a repeat, we are capturing and showing the model the biological range 

involved in this question rather than eliminating it.  
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As well as this, it is interesting to consider how we usually talk about lifespan 

data for S. pombe in the literature. For discussions surrounding lifespan 

experiments as well as descriptions of strain characteristics, commonly lifespan 

is talked about in terms of strains being short- or long-lived. The exact 

measurement of the lifespan carries less interest for ageing scientists than the 

meaning of that measurement. Considering that this distinction is important 

when we look at lifespan data, it would follow that the distinction may also be 

important to the model. Because of this, two more training datasets were 

produced by categorising the lifespan proxy datasets into ‘short’, ‘average’, and 

‘long’ lived.  

The lifespan data was categorised using R by binning the proxy data into the 

three categories around the average of the dataset. Initially, it was considered 

that the lifespans could be binned around the JB22 standard lab strain, but this 

produced skewed training data which would not have been appropriate for 

model building. As well as this, the JB22 strain does not necessarily have an 

‘average’ lifespan: according to this wild type data set it has either an ‘average’ 

or a ‘short’ one with a mean on the shorter end of the ‘average’ bin. While JB22 

is the appropriate lifespan standard control for lifespans of deletions in the JB22 

strain such as the deletion library, it does not follow that it is the appropriate 

standard for ‘average’ lifespan in fission yeast as a species.  

To achieve a more appropriate average, with specific relevance to this dataset, 

the average and range of the dataset was used to define three equally spaced 

bins into which the datapoints were sorted. The data produced is slightly 

uneven, with 19 short, 25 average, and 12 long in the mean lifespan proxy 

dataset, but this spread is representative of the skew towards short-lived strains 

we can see in the continuous lifespan dataset (figure 4B) 
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For the phenotype data, three training datasets of phenotypes were produced: 

1. Mean phenotype for the 55 strains with three repeats (55 incidences) 

2. Individual inputs of each repeat for the 55 strains with three repeats (165 incidences) 

3. Individual inputs for all strains where 55 strains have three repeats and JB942 has two 
repeats (167 incidences) 

These datasets consisted of continuous colony size ratio data which can be 

noisy and arguably is not the best input for this model. If we keep in mind the 

way in which we usually talk about colony size phenotypes in yeast, the 

language we use is often categorical. For this assay, it is usual to discuss 

results in terms of smaller colonies indicating a sensitive phenotype and larger 

colonies indicating a resistant phenotype, without too much weight being given 

to exact measurements and numbers. Because of this, three more training 

datasets were produced, identical to the original three but this time with the data 

categorised into sensitive, resistant or no change.  

These training datasets are the final output which will be used to train the 

models detailed in chapter 2.   
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2 Developing Models to Predict Lifespan 

from Simple Phenotypes and Identify 

Ageing-Associated Processes in Yeast 

2.1 Introduction 

2.1.1 The rise of machine learning in ageing research 

One way researchers can attempt to tackle overarching biological questions is 

the use of machine learning. In almost a complete U-turn from studying the 

minutiae of how individual biological pathways are involved in ageing, machine 

learning can be used as a kind of top-down method to look at ageing as a 

whole. Machine learning and artificially intelligent models are used to search 

data for patterns which are not accessible by traditional analysis methods, as 

such they can be applied to ageing to find connections in data without needing 

the exact biological mechanisms.  

The use of machine learning models in ageing has gained huge popularity in 

recent years. Since the inception of the DNA methylation ageing prediction 

model, the Horvath Clock, in 2013, the use of machine learning to predict 

ageing or lifespan has snowballed. The attraction is clear, if we can predict 

ageing and lifespans through these models, we can simultaneously create 
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useful tools and identify what data we should be looking at for the mechanisms 

(Horvath, 2013). 

With the Horvath Clock in particular, it has use as both a predictive tool and as 

evidence that DNA methylation was directly involved in the ageing process, 

since it was possible to predict lifespan from DNA methylation. The Horvath 

Clock also highlighted another reason machine learning is so popular within 

ageing, in fact within biology as a whole: it can make new use of pre-existing 

datasets. The model leveraged large pre-existing datasets of 8000 DNA 

methylation samples which allowed him to identify 353 CpG regions that could 

be used to predict chronological age (Horvath, 2013). 

This early successful attempt at ageing prediction relied on linear regression 

techniques, looking for linear relationships between DNA methylation and 

chronological age (Horvath, 2013), but the field of machine learning and AI has 

advanced at an unprecedented rate in the last 20 years and many more 

sophisticated ageing prediction models have been built. In 2021, the DeepMAge 

clock was published. This was a first attempt at using the more sophisticated 

modelling technique of neural networks to create a DNA methylation ageing 

clock (Galkin et al., 2021). 

DeepMAge was able to more accurately predict chronological age from DNA 

methylation data than the Horvath Clock, and with the addition of further data it 

was also able to account for the effect of diseases on chronological age, 

including ovarian cancer and multiple sclerosis (Galkin et al., 2021). This is an 

important step in the modelling of ageing since accounting for how diseases 

affect the relationship between DNA methylation and chronological age means 
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that the model is beginning to gain insights into the differences between 

chronological age and biological age.  

These clocks can also be put to use in other areas of ageing research. The 

CellAgeClock, currently in preprint, aims to harness the power of the CpG 

methylation clocks to measure ageing of human cells in vitro and facilitate anti-

ageing drug development. In their paper, the authors demonstrate how 

CellAgeClock validated known anti-ageing drugs and discovered novel anti-

ageing drugs when used as a measure of their pharmacological effects in vitro. 

The identified novel anti-ageing drugs were then validated in vivo, completing 

this accelerated drug development pipeline (Lujan et al., 2020). 

With constant development into machine learning models in ageing research, 

the area presents an exciting opportunity to gain new insights into the ageing 

process. Novel applications of this technology have the potential to facilitate 

leaps forward in our understanding of ageing and ageing related diseases.  

However, despite the many advantages of the use of machine learning in the 

ageing field, it is important to be careful of exactly how the modelling is 

constructed. When a lifespan or ageing machine learning model is trained, the 

‘true’ training data used is most often chronological age. The performance of the 

ageing model is measured based on its ability to accurately predict biological 

age as close as possible to the ‘true’ chronological age. Since we would not 

consider all humans of the same chronological age to be suffering equally from 

the ageing process or ageing related diseases, this is potentially not the most 

biologically informative design. Arguably, the nuances between subjects of the 

same chronological age contain the most valuable biological information.  
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When the success of biological age predictions is measured by how closely 

they align to the measurable chronological age, models are actively trained to 

ignore the biological differences between people of the same chronological age 

as opposed to highlighting these insights. Any modelling results will be directly 

impacted by the ability of the training data to fully address the core scientific 

questions, therefore, it is important to ensure that training data are based upon 

as few assumptions as possible and that it directly addresses the research 

questions. 

2.1.2 Linear regression  

Linear regression is a popular first step in machine learning modelling due to its 

simplicity. At its core, linear regression investigates data for a linear relationship 

and then makes predictions based on this (Casson and Farmer, 2014). 

Because of this, linear regression requires there to be a linear relationship 

within the data to make any predictions and prediction accuracy is directly 

impacted by the strength of that linear relationship. Lasso (least absolute 

shrinkage and selection operator) regression is a popular kind of regularised 

linear regression, lasso regression still assumes a linear relationship between 

inputs but includes a penalty which shrinks coefficients that do not contribute to 

the prediction (Brownlee, 2021). It allows all the phenotypes to be inputted into 

the model without skewing the results as non-predictive phenotypes can have 

their coefficients shrunk. If the model deems it necessary, they can even be 

shrunk all the way to zero, effectively removing them from the model. In this 

way lasso regression can be thought of as an automatic feature selection 

process for linear regression which will make the models more reliable and 

allow them to perform better. In this way, LASSO regression can be used on the 
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training data in this model without concern that any potentially non-predictive 

phenotypes are preventing the model from building.  

2.1.3 Random Forest 

Decision tree classifier models are the classic initial step for predicting 

categorised data which are built upon to create random forest models. A 

decision tree is an intuitive form of classification where the data is put through a 

set by step process, where each feature contributes to a yes or no decision to of 

the data belonging to a specific classification. In such data, each step on the 

decision tree would contribute to an overall decision of the data belonging to a 

category (Song and Lu, 2015). As it trains, the model will also weight each 

feature depending on how much that feature should contribute to the overall 

decision. Random forest models build on this concept by creating a collection of 

decision trees which all work together on the same decision, arrived at by 

committee. This means that one, or even multiple, individual trees can be wrong 

but overall, the committee decision is still correct. In this way, random forest can 

be far more accurate than a decision tree and can unearth connections in the 

data missed by them (Yiu, 2019). Since random forest is a classification model, 

it is ideal for predicting the categorised lifespan data. It is able to do this most 

straightforwardly from the categorised phenotype data, but predicting from 

continuous phenotype data is also possible. 

2.1.4 Neural Networks 

Neural networks are a highly sophisticated form of machine learning model 

which are loosely based on the structure of the human brain (Choi et al., 2020, 

Schmidhuber, 2015). They are structured as layers of nodes where connections 

are built between the data within each layer. These weighted connections are 
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improved with each pass of the model creating the concept of network learning. 

The networks have architecture of an input layer with a number of nodes 

defined by the shape of the training data, an output layer with a number of 

nodes defined by the shape of the prediction data and any number of hidden 

layers with any number of hidden nodes.  

At each layer, an activation function is used to make connections in the data, in 

this work the activation function of rectified linear unit (ReLU) was used. ReLU 

is a piecewise linear  function which outputs the input directly if it is positive or 

will output zero (Brownlee, 2020a). This makes it an almost linear function as it 

works in a linear manner for any input greater than 0, but it is non-linear as it 

reverts any negative input to 0. It is a highly popular activation function for most 

types of neural networks due to its computational simplicity, linear behaviour, 

and its ability to output zero unlike some other non-linear functions such as 

sigmoid functions.  

Neural networks train by repeated passes through the network, during each 

pass the attributes and weights of the network are fractionally changed to 

improve prediction by reducing loss. Each of these passes through the network 

is known as an epoch. Epochs are a hyperparameter which need tuning since 

too few epochs will mean the network never trains fully and too many epochs 

will mean the network overtrains. Optimisation algorithms (optimisers) change 

attributes of the network to reduce loss over each pass. For epoch optimisation 

in this work, two different optimisers were used to be compared: stochastic 

gradient descent and adaptive moment estimation.  

Stochastic gradient descent (SGD) is one of the most commonly used 

optimisers for neural network regression problems, which utilises both gradient 
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descent and momentum algorithms. It is the fastest of the gradient descent 

optimisers but can run the risk of becoming stuck in local minima instead of 

steadily decreasing loss. Adaptive moment estimation (Adam) is also commonly 

used for regression problems and utilises momentum and adaptive learning rate 

algorithms. It is generally considered to optimise faster than SGD but can be 

computationally intensive, slowing the model down. However, for our small 

dataset there should be no issue with speed of the model (Doshi, 2019). 

To further decrease the network’s error rate and the likelihood of overfitting it is 

necessary to optimise the learning rate. The learning rate, also known as the 

step size, is the amount by which the weights can be updated by the optimiser 

during each epoch. It is usually a small number between 0 and 1, and can be 

optimised anywhere within this to create a smooth loss and error reduction over 

the epochs (Brownlee, 2020c). A combination of tuning all the hyperparameters 

of a neural network can help to achieve high performance and accurate 

predictions.  

2.1.5 Feature Selection 

Once a model has been built, or during the building process, feature selection 

can be used to eliminate non-predictive features which reduces the 

computational intensity and often the performance of the model (Brownlee, 

2019). In this work, feature selection would also identify the most predictive 

phenotypes and therefore the phenotypes most involved in cellular ageing and 

lifespan. One of the most popular forms of feature selection is recursive feature 

elimination (RFE) (Brownlee, 2020b). RFE functions by repeatedly training the 

model and recording the predictive importance of each feature. It then uses 

these feature importances to select the least predictive feature in the model and 

remove it. This process is repeated until a defined number of features or model 
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accuracy has been reached. RFE can be used on both linear regression and 

random forest models but not neural networks. The hidden layers of a neural 

network have been historically treated as a ‘black box’ in machine learning 

whose mechanisms are not to be understood. However, with the upsurge in 

neural network use, feature selection methods are beginning to be developed 

but are not yet widely used (Luíza da Costa et al., 2021, Figueroa Barraza et 

al., 2021).  
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2.2 Methodology  

To create a model for predicting lifespan, there are several different avenues to 

explore. Since the generated training data can be both continuous and 

categorical in nature, both linear and classification machine learning modelling 

options can be explored. Starting from initial linear regression models, this 

chapter will go on to explore random forest classifier models and neural 

networks before addressing the question of predictive phenotype identification 

using feature selection.  

One key advantage of machine learning techniques is that it often provides 

researchers with the opportunity to repurpose already existing datasets. This 

saves the time and money necessary for new lab-based experiments and helps 

researchers to make the fullest possible use of the data they have collected. 

Breathing new life into old data is a common application for machine learning 

and in this work, it was possible to make use of a pre-existing dataset of yeast 

phenotypes. 

2.2.1 Colony size phenotype data for wild type strains 

The dataset was collected from a high-throughput colony size assay showing 

how the growth of the collection of 161 wild type strains from the Jeffares 

collection alters under 82 different stress conditions. The dataset was available 

within the lab and was generated by Gorjan Stojanovski (2018, UCL, personal 

communication).  

The strains were randomised and pinned in triplicate across two YES 

PlusPlates (SINGER Instruments) in 384 format using a RoToR HDA robot 

(SINGER Instruments). This 384 format also contained a grid of 96 JB22 control 

strains across the plates to allow for positional bias to be corrected. In addition 
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to the JB22 control grid, the plates also contained random strains along the 

bottom and right edges to allow for correction of edge bias, as well as blank 

positions used for ease of identification.  

These plates were pinned on to stress plates for growth using a RoToR HDA 

robot. The stress conditions used in the experiment can be found in table 1. 

Stress plates were based in either YES or EMM media and a plain YES or EMM 

plate was used as the control plate for each experiment, respectively. For 

alternative carbon/nitrogen sources, glucose/nitrogen in the YES/EMM media 

was replaced with the alternative carbon/nitrogen source.  

Exhausted media stress plates were prepared by growing the respective strain 

in YES liquid media for either 2 or 7 days at 32°C. The cells were removed from 

the media by centrifugation (5min at 500g) and filtering the liquid through a 

0.22µm filter. 3% glucose was added back into the broth and 3x agar was 

added in a 2:1 ratio before the media was poured into solid plates. The strains 

used to exhaust the media differ in growth rate and species with S. cerevisiae 

S288C and S. pombe strains JB762 (fast growing), JB889 (slow growing), 

JB1197 (similar to JB22) and JB22 (standard lab strain).  

Pinned stress plates were incubated for 2 days at 32°C before imaging.  

Table 1: Summary of stress conditions used in the phenotype screen of the wild type strains. 

Condition Type Compounds  Concentration 

 

Alternative Nitrogen 

Sources  

Glycine  20mM 

Isoleucine  20mM 

Lysine  20mM 

Proline  20mM 

Arginine  20mM 

Serine  20mM 

Aspartate  20mM 

Glycine + Isoleucine  20mM + 20mM 

Proline + Lysine 20mM + 20mM 

Aspartate + Serine 20mM + 20mM 

Arginine + Serine  20mM + 20mM 

Aspartate + Lysine  20mM + 20mM 
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Alternative Carbon 

Sources 

Galactose  2% 

Sucrose 2% 

Maltose 2% 

Fructose 2% 

Glycerol + Glucose  2% + 0.01% 

Galactose + Glycerol  2% + 3% 

Maltose + Sucrose  2% + 3% 

Ethanol  2/10 % 

Glycerol + NaAc 2% + 2.5g/l 

 

Salt Stressors 

LiCl 5mM 

NaCl 150mM 

MgCl2 200mM 

KCl 0.6M 

LiCl + NaCl 5mM + 150mM 

LiCl + MgCl2 5mM + 200mM 

NaCl + MgCl2 150mM + 200mM 

KCl + MgCl2 0.6M + 200mM 

 

Oxidative Stressors 

H2O2 2/3/4.5/6mM 

Oligomycin 250/500/1000µg/l 

Antimycin 250/500/1000µg/l 

tert-Butyl hydroperoxide (TBH) 1/1.5mM 

 

Exhausted Media 

S. cerevisiae  2/7days 

JB22 2/7days 

JB769 2/7days 

JB889 2/7days 

JB1197 2/7days 

 

Additional Stressors 

Hydroxyurea (HU) 10mM 

Methyl methanesulfanoate (MMS) 0.0025%/0.0075% 

Caffeine  10mM 

Rapamycin  100ng/ml 

Calcofluor 2/10μg/ml 

NaN3 0.00025% 

LiCl + Calcofluor 5mM + 2/10μg/ml 

NaCl + Calcofluor 150mM + 2/10μg/ml 

MgCl2 + Calcofluor 200mM + 2/10μg/ml 

HU + Calcofluor 10mM + 10μg/ml 

HU + MMS 10mM + 0.0025%/0.0075% 

HU + LiCl 10mM + 5mM 

NaCl + MMS 150mM + 0.0025%/0.0075% 

Caffeine + Rapamycin  10mM + 100ng/ml 

Caffeine + LiCl 10mM + 5mM 

Maltose + Rapamycin  3% + 100ng/ml 

Sucrose + Rapamycin  3% + 100ng/ml 

Glycerol + MMS 3% + 0.0075% 

Glycerol + NaAc + Arginine  2% + 2.5g/l + 20mM 

Antimycin + Arginine  10x + 5.7mM 

EMM Low agar  

 

Once grown, stress plates were imaged using a conventional scanner and a 

custom Unix script within the lab to crop. Solid media growth was measured by 
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colony size, determined by number of pixels. Quantification was achieved 

through the R package gitter (Wagih and Parts, 2014), similarly to the high-

throughput lifespan method. After quantification, the colony size data was 

normalised for positional bias using each plate’s JB22 grid. The grid was used 

to interpolate a ‘growth’ value for each position on the plate and all colony sizes 

were divided by their positional ‘growth’ values. Quality control was then 

performed to remove all colony sizes with a circularity of <0.8 or >1.1, and all 

those with pixel sizes <100, to remove data from colonies with abnormal 

growth, and bubbles within the media. Colony size values were then normalised 

for plate differences by dividing by the plate median. The final output of this 

dataset is the colony size ratio between the stress plate and the control plate, 

with >1 being a larger colony than the control and <1 being a smaller colony 

than the control. 

As is expected with repurposing datasets, the data required trimming and 

formatting to suit the needs of this model. After this process the phenotype data 

consisted of 76 phenotypes for all 57 strains of the wild type yeast used in this 

research. 56 of these strains had three repeat readings and one strain (JB942) 

had two repeat readings.  

These datasets consisted of continuous colony size ratio data which was 

converted into ternary encoding using a median phenotypic value threshold: 

phenotypes showing a reduction of ≥10% on the phenotypic score were coded 

as -1, those showing an increase of ≥10% were coded as +1, and the weaker 

phenotypes in between were coded as 0. 
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2.2.2 Correlations and clustering 

Pairwise correlations and heatmapping were performed in R using custom 

scripts. Heatmapping made use of the R package heatmap2 and used 

Euclidean distance. 

2.2.3 Linear regression  

Linear regression was performed by a custom script in python version 3 using 

train_test_split, and lasso regression from scikit learn (Pedregosa et al., 2011). 

Training datasets can be found summarised in table 2 and from these, training 

and test data was defined using train_test_split at 80/20.  

Models were assessed using root mean squared error and r-squared score 

metrics as well as plotting lifespans predicted by the model against the actual 

recorded values for both seen training data and unseen test data.  

Table 2: Summary of training datasets used for linear regression models. 

Including descriptions of which lifespan and phenotype datasets were used to create the 
training dataset and how many instances there are within it.  

 Lifespan Data Phenotype Data Training Dataset 

Instances 

LR1 Mean lifespan (days) for 

the 56 strains (56 

incidences) 

Mean phenotype (colony 

size) for the 55 strains with 

three repeats (55 incidences) 

 

55 

LR2 Lifespan (days) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (colony size) as 

individual inputs of each 

repeat for the 55 strains with 

three repeats (165 

incidences) 

165 

LR3 Lifespan (days) as 

individual inputs of each 

Phenotype (colony size) as 

individual inputs for all strains 

167 
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repeat for the 56 strains 

(168 incidences) 

 

where 56 strains have three 

repeats and JB942 has two 

repeats (167 incidences) 

 

LR4 Mean lifespan (days) for 

the 56 strains (56 

incidences) 

Mean phenotype 

(categorised) for the 55 

strains with three repeats (55 

incidences) 

 

55 

LR5 Lifespan (days) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (categorised) as 

individual inputs of each 

repeat for the 55 strains with 

three repeats (165 

incidences) 

165 

LR6 Lifespan (days) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (categorised) as 

individual inputs for all strains 

where 56 strains have three 

repeats and JB942 has two 

repeats (167 incidences) 

 

170 

 

2.2.4 Random forest 

Random forest was performed by a custom script in python version 3 using 

RandomForestClassifier from scikitlearn (Pedregosa et al., 2011). Training 

datasets can be found summarised in table 3 and from these, training and test 

data was defined using train_test_split at 80/20.  

Hyperparameters of max_features and n_estimators were tuned for the model 

using a 10-fold cross validated grid search. max_features defines the number of 

features which should be considered at each split, there are 77 features 
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available within the training data and at each split, the number of features 

defined by max_features will be randomly selected from these 77. n_estimators 

defines the number of trees in the forest. For the grid search, the models are 

built on a range of max_features and n_estimators and the most parameters 

producing the most accurate model were chosen. The max_features searched 

were 7, 17, 27, 37, 47, 57, 67, and 77 and the n_estimators searched were 30, 

40, 50, 100, 200, 300, 400 and 500. 

Models were assessed using the out of the bag error score and the accuracy 

score metrics as well as visualising accuracy using confusion matrices.  

Table 3: Summary of training datasets used for random forest models. 

Including descriptions of which lifespan and phenotype datasets were used to create the 
training dataset and how many instances there are within it.  

 Lifespan Data Phenotype Data Training Dataset 

Instances 

RF1 Mean lifespan 

(categorised) for the 56 

strains (56 incidences) 

Mean phenotype (colony 

size) for the 55 strains with 

three repeats (55 incidences) 

55 

RF2 Lifespan (categorised) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (colony size) as 

individual inputs of each 

repeat for the 55 strains with 

three repeats (165 

incidences) 

165 

RF3 Lifespan (categorised) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (colony size) as 

individual inputs for all strains 

where 56 strains have three 

repeats and JB942 has two 

repeats (167 incidences) 

167 
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RF4 Mean lifespan 

(categorised) for the 56 

strains (56 incidences) 

Mean phenotype 

(categorised) for the 55 

strains with three repeats (55 

incidences) 

55 

RF5 Lifespan (categorised) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (categorised) as 

individual inputs of each 

repeat for the 55 strains with 

three repeats (165 

incidences) 

165 

RF6 Lifespan (categorised) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (categorised) as 

individual inputs for all strains 

where 56 strains have three 

repeats and JB942 has two 

repeats (167 incidences) 

167 

 

2.2.5 Neural networks 

All neural networks were performed by a custom script in python version 3 using 

tensorflow and keras. The architecture for the neural network was chosen 

based on the constraints of the shape of the training data and the convention 

that hidden layer size should be between input and output layer size. The input 

layer has 77 nodes to correspond with the 77 features of X and the output layer 

has 1 node corresponding to the single feature of y. The convention for smaller 

datasets and simpler problems is to use only one hidden layer with a number of 

nodes between the input and output, after testing a range, 40 nodes was 

chosen. Sigmoid, linear and rectified linear unit (ReLU) activation functions 

were initially tested in combinations with a network only using ReLU activation 

performing best.  
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The optimisers adaptive moment estimation (Adam) and stochastic gradient 

descent (SGD) were used to build networks at a range of learning rates 

(0.0001, 0.0003, 0.0005, 0.0007 and 0.001) and the number of epochs was 

optimised on a model-by-model basis. For training neural networks, training 

datasets using continuous lifespan data and both continuous and categorised 

phenotype data were developed, summarised in table 4. From these, training 

and test data was defined using train_test_split from scikitlearn at 80/20. 

Models were assessed using root mean squared error. 

Table 4: Summary of training datasets used for neural network models. 

Including descriptions of which lifespan and phenotype datasets were used to create the 
training dataset and how many instances there are within it.  

 Lifespan Data Phenotype Data Training Dataset 

Instances 

NN1 Mean lifespan (days) for 

the 56 strains (56 

incidences) 

Mean phenotype (colony 

size) for the 55 strains with 

three repeats (55 incidences) 

 

55 

NN2 Lifespan (days) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (colony size) as 

individual inputs of each 

repeat for the 55 strains with 

three repeats (165 

incidences) 

165 

NN3 Lifespan (days) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (colony size) as 

individual inputs for all strains 

where 56 strains have three 

repeats and JB942 has two 

repeats (167 incidences) 

 

167 
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NN4 Mean lifespan (days) for 

the 56 strains (56 

incidences) 

Mean phenotype 

(categorised) for the 55 

strains with three repeats (55 

incidences) 

 

55 

NN5 Lifespan (days) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (categorised) as 

individual inputs of each 

repeat for the 55 strains with 

three repeats (165 

incidences) 

165 

NN6 Lifespan (days) as 

individual inputs of each 

repeat for the 56 strains 

(168 incidences) 

 

Phenotype (categorised) as 

individual inputs for all strains 

where 56 strains have three 

repeats and JB942 has two 

repeats (167 incidences) 

 

170 

 

2.2.6 Feature selection 

Feature elimination was performed by a custom script in python version 3 using 

k-fold cross validation and tensorflow. The script was designed to allow for 

building up features one by one and selecting the feature which created the 

most accurate model at each step. The training data, architecture and 

hyperparameters of the neural networks used in feature selection was identical 

to that of the best neural network from 2.3.4 Neural networks (NN1, optimiser = 

Adam, learning rate = 0.0005), except the input layer which was changed to 

match the shape of the data each time.  

Initially, k-fold cross validation was used to split the training data into 10 

training/test datasets, where the test data is a new subset of the full dataset 
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each time. These subsets were then used to train neural networks on each of 

the single features. The root mean squared error of the test predictions for each 

of the ten models for each feature was averaged and the feature with the lowest 

average root mean squared error was chosen as the ‘best feature’. This feature 

was then added to a dataset of ‘chosen’ features and the remaining features 

created a dataset of ‘leftover’ features.  

Next, one feature from the ‘leftover’ features was added to the ‘chosen’ features 

dataset at a time, creating datasets of the ‘chosen’ feature plus one of the 

‘leftover’ features for each ‘leftover’ feature. These datasets were again split into 

10 training/test datasets using k-fold cross validation to train neural networks. 

Again, the scores from the cross validation were averaged and the ‘best feature’ 

selected as the feature from the ‘leftover’ features in the model with the lowest 

average root mean squared error. This feature was then removed from the 

‘leftover’ features dataset and added to the ‘chosen’ features dataset. 

The process was repeated until all the features had been selected and added to 

the ‘chosen’ dataset, at each point the best feature was recorded with their 

rank, feature name, and average root mean squared error of the 10-fold cross 

validated networks. In this way it was possible to select the most predictive 

phenotypes within the neural network one by one as well as record how adding 

features affected the model’s root mean squared error.   
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2.3 Results 

2.3.1 Correlations  

Before building machine learning models, it was necessary to search the 

lifespan and phenotype data for any structure which is visible without machine 

learning. This would help inform the selection and design of the machine 

learning models.  

Initially, the data was searched for any simple pairwise correlations between 

chronological lifespan (proxy) and each of the simple phenotypes. The pairwise 

correlation plots (figure 7) show that no single phenotype has any significant 

correlation with the lifespan data, but there is some structure which suggests a 

more complicated non-linear relationship. 

To further search for any structure within the data, clustering was used, to 

cluster the phenotypes against the lifespans in order from short- to long-lived. 

Clustering the phenotypes against the chronologically ranked lifespans (figure 

8) produced horizontal structure in the heatmap showing that some phenotype 

datasets are similar to each other and can cluster together which is to be 

expected. However, the heatmap doesn’t show any horizontal structure. This 

shows that there is no evident structure in the data even when considering the 

relationship between lifespan and multiple phenotypes. 
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Figure 7: Pairwise plots of mean lifespan proxy data against mean phenotype data. 

The scatter plots with fitted smooth spline show there are no obvious correlations between the 
mean lifespan data and the mean phenotype data for any phenotype measured, across the 56 
available strains. 
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Figure 8: Heatmap of clustered phenotype datasets against lifespan data. 

The heatmap shows horizontal structure with clusters of similar phenotypes but no vertical 
structure of clusters found within strains of particular lifespans.  

 

2.3.2 Linear regression 

Initially, I used LASSO regression to ensure that there was no artificial signal 

from the pairing of a particular lifespan repeat with a particular phenotype 

repeat in the data where the lifespans and phenotypes were used as individual 

inputs (training datasets LR2, 3, 5 and 6). 

For this, training dataset LR5, a dataset with individual inputs of all strains with 

three repeats of continuous lifespan and categorised phenotypes, three 

combinations were created: each lifespan repeat paired with each phenotype 

repeat. The three data combinations were used to produce LASSO regression 

models. As shown by the almost identical metrics (table 4) and scatterplots 

(figure 9), there was no difference between models built with the different 

combinations.  

Short 
Lived 

Long 
Lived 

Phenotypes 
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The metrics in table 5 also show that these regression models had high root 

mean error and low r-squared scored for predicting both seen training and 

unseen test data, with unseen test data performing even worse. This means 

that none of the models successfully predicted lifespan from phenotypes.  

A 

 
B 

 
C 

 
Figure 9: Scatterplots to show actual vs fitted data for training and testing of each data 
combination.  

Plots show that the model trains similarly for combination 1(A), 2(B) and 3(C) of the training data 
with poor but better than random performance on the seen training data but no significant 
performance on the unseen test data. 
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Table 5: Metrics for training and testing LASSO regression models on data in the three different 
combinations for training dataset 5. 

Data 

Combination 

Root Mean Squared Error R Squared Score 

Train Test Train Test 

1 5.37 5.55 0.20 0.09 

2 5.17 5.94 0.25 -0.09 

3 4.88 6.00 0.34 0.06 

 

The six training datasets (defined in table 2 in 2.2.2 Linear regression) were 

then used to create LASSO regression models. The metrics of root mean 

squared error and r squared score can be found in table 6. These metrics 

showed that all the models had high root mean squared error and low r squared 

scores, meaning that they do not predict lifespan from simple phenotypes well 

enough to be considered successful and there is not a simple linear relationship 

in the data.  

However, the models built on training datasets using the mean lifespan and 

phenotypes for both continuous (LR1) and categorised (LR4) phenotype data 

did clearly outperform those built on training datasets with individual inputs of 

the repeats, with much lower root mean squared error for predicting both seen 

training and unseen test data.  

Table 6: Metrics for training and testing LASSO regression models on all 6 training datasets. 
The models made with training datasets LR1 and LR4 are the most accurate and these are 
highlighted in grey. 

Training 

Dataset 

Root Mean Squared Error R Squared Score 

Train Test Train Test 

LR1 3.36 3.45 0.48 -0.08 

LR2 5.46 5.97 0.17 -0.18 

LR3 5.64 5.47 0.12 0.02 

LR4 2.85 3.45 0.61 -0.08 
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LR5 5.37 5.55 0.20 0.09 

LR6 5.11 6.02 0.23 0.10 

 

The scatterplots in figure 10 show the lifespans fitted by the LASSO regression 

models built on training datasets LR1 (A) and 4 (B) vs the actual lifespans for 

seen training data and unseen test data. Both models performed better on the 

seen training data but still better than random on the unseen test data, despite 

the weak linear relationship shown by their low r-squared scores.  

A 

 
B 

 
Figure 10: Scatterplots show actual vs fitted data for training and testing of training datasets 
LR1 and LR4.  

The plots show the linear regression models for dataset 1(A) and dataset (4) have some 
correlation between the fitted and actual lifespans in both seen training data and unseen test 
data. Both datasets LR1 (colony size phenotype) and LR4 (categorised phenotype) show higher 
performance on seen data but they perform better than random on unseen data.  
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2.3.3 Random forest  

Moving on from linear regression models, the training datasets using 

categorised lifespan data (defined in table 3 in 2.2.3 Random forest) were used 

to train random forest models. Initially the best hyperparameters of 

max_features and n_estimators were tuned for the model using a 10-fold cross 

validated grid search. The best parameters selected by this grid search for each 

training dataset can be found in table 7, and these parameters were used in the 

final random forest models for each training dataset.  

Table 7: Summary of best hyperparameters selected by cross validation parameter search for 
the random forest models for each training dataset. 

Training Dataset max_features n_estimators 

RF1 47 40 

RF2 17 30 

RF3 7 40 

RF4 57 50 

RF5 67 50 

RF6 7 200 

 

During training, the out of the bag error (OOB) score was calculated for each 

model and after testing on unseen data, the accuracy score was calculated for 

each model. These scores were used as metrics to define the success of the 

model. All the models predicted better than random with accuracy scores of 

above 33% and therefore were all able to successfully categorise lifespan 

based on phenotypes. There appeared to be little difference in error or accuracy 

between the models using continuous colony size phenotype data and those 

using categorised phenotypes, but the models built on training datasets using 

the mean lifespan and phenotype data (RF1 and RF4) were the most 
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successful models with accuracy of above 50%. The model built on RF4 

(categorised mean phenotypes) was able to correctly categorise lifespan 64% 

of the time.  

Table 8: Out of the bag error and accuracy score metrics for random forest models built on each 
training dataset. The models made with RF1 and RF4 are the most accurate and have the 
lowest OOB error and these are highlighted in grey.  

Training Dataset OOB Score Accuracy Score 

RF1 0.39 55% 

RF2 0.56 42% 

RF3 0.51 50% 

RF4 0.34 64% 

RF5 0.47 46% 

RF6 0.55 47% 

 

Figure 11 further analyses the models built on RF1 and RF4 using confusion 

matrices. Here, the model built on RF1 predicted 100% of the seen training data 

correctly (figure 11A) but correctly categorised only 6/11 of the unseen test data 

(figure 11B). In one case it misidentified, a long-lived strain as short and in 

another a short-lived strain as long which are complete opposite classes. 

The model built on RF4 misclassified 2 of the seen training data (figure 11C) but 

went on to correctly classify 7/11 of the unseen test data (figure 11D). Its 

misclassifications were classifying a long-lived strain as average in 3/4 cases 

and misclassifying one average strain as short. 

 

 

 

 



Developing Models to Predict Lifespan from Simple Phenotypes and Identify Ageing-Associated Processes in Yeast 

77 

 

A                                                              B 

 
C                                                              D 

 
Figure 11: Confusion matrices for training and testing of random forest models on training 
datasets RF1 and RF4.  

The model on training dataset RF1 (categorised mean lifespans and mean colony size 
phenotypes) shows high performance on the seen training data (A) and lower performance by 
still better than random performance on unseen test data (B). The model on training dataset 
RF4 (categorised mean lifespans and categorised mean colony size phenotypes) shows slightly 
less high performance in the seen training data than the model built on training dataset RF1 (C) 
but slightly higher performance on unseen test data than the model built on training dataset RF1 
(D).  

 

2.3.4 Neural networks 

The neural networks were initially built to test the performance of each training 

dataset (defined in table 3 in 2.2.4 Neural networks) across three learning rates 

and two different optimisers Adam (adaptive moment estimation) and SGD 

(stochastic gradient descent). The epochs were adjusted on a model-by-model 

basis to ensure that the model had enough passes to fully train but not enough 

to overfit, the epochs for each model were then recorded in tables 9 and 10. 
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The models were assessed based on the root mean squared error of the 

network, which shows how far predicted values fall from measured true values, 

The summaries of these models can be found in table 9 for models using the 

Adam optimiser and table 10 for models using the SGD optimiser.  

During this initial modelling, most of the neural networks were able to predict 

lifespan from simple phenotypes but using both the Adam and the SGD 

optimisers, training dataset NN1 using a learning rate of 0.0005 performed best, 

with the lowest root mean squared error as highlighted in tables 9 and 10.  

Table 9:  Summary of neural networks trained on the training datasets with the use of the 
optimiser Adam and learning rates of 0.0001, 0.0005 and 0.001. The most accurate model with 
the least error is highlighted in grey.  

Training Dataset Learning Rate Epochs Root Mean Squared Error 

NN1 0.0001 350 4.23 

0.0005 100 3.64 

0.001 50 4.03 

NN2 0.0001 250 5.76 

0.0005 60 5.48 

0.001 25 5.64 

NN3 0.0001 200 6.03 

0.0005 50 6.01 

0.001 20 6.59 

NN4 0.0001 250 4.45 

0.0005 60 5.10 

0.001 25 5.54 

NN5 0.0001 150 6.36 

0.0005 40 6.17 

0.001 20 6.62 

NN6 0.0001 200 4.89 

0.0005 50 4.51 
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0.001 20 4.98 

 

Table 10: Summary of neural networks trained on the training datasets with the use of the 
optimiser SGD and learning rates of 0.0001, 0.0005 and 0.001. The most accurate model with 
the least error is highlighted in grey. 

Training Dataset Learning Rate Epochs Root Mean Squared Error 

NN1 0.0001 200 4.19 

0.0005 50 3.52 

0.001 20 3.61 

NN2 0.0001 150 6.11 

0.0005 40 6.09 

0.001 20 5.88 

NN3 0.0001 150 5.90 

0.0005 40 5.79 

0.001 20 5.79 

NN4 0.0001 200 5.49 

0.0005 60 5.41 

0.001 20 5.31 

NN5 0.0001 150 6.31 

0.0005 40 6.13 

0.001 20 6.29 

NN6 0.0001 150 6.41 

0.0005 40 6.30 

0.001 20 6.41 

 

With networks for both optimisers performing best when trained on NN1 

(continuous mean lifespan data and continuous mean phenotype data), the 

networks were fine-tuned by training with NN1 using Adam and SGD optimisers 

at learning rates of 0.0003, 0.0005 and 0.0007. The epochs were informed by 

the pervious networks but were still adjusted on a model-by-model basis to 
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ensure that the model had enough passes to fully train but not enough to overfit. 

Table 11 summarises these models, including the error metrics. 

Table 11: Summary of fine-tuning neural networks trained on the training dataset NN1 with the 
use of the optimisers Adam and SGD and learning rates of 0.0003, 0.0005 and 0.0007. The 
most accurate model with the least error is highlighted in grey. 

 Learning Rate Epochs Root Mean Squared Error 

Adam 0.0003 100 2.84 

0.0005 100 2.83 

0.0007 100 3.13 

SGD 0.0003 50 4.90 

0.0005 50 4.11 

0.0007 50 4.66 

 

The most accurate network, with the lowest root mean squared error and mean 

squared error loss, is a network trained on the dataset NN1 using the optimiser 

Adam, at a learning rate of 0.0005 over 100 epochs. This model can predict 

lifespan to within 2.83 days.  

To further assess these fine-tuning models, the loss and error curves and the 

fitted vs actual lifespans were plotted for each model. The loss and error curves 

for all models built with the Adam optimiser (figure 12A, C and E) and the 

models built with the SGD optimiser with a learning rate of 0.0003 and 0.0005 

(figure 13A and C) show that the model trained smoothly. They also show that 

the number of epochs allows for the model to fully train without overfitting. An 

example of overfitting can be found in supplementary figure 2. The loss and 

error curves for the model built with the SGD optimiser with a learning rate of 

0.0007 (figure 13E) does not have a smooth test data curve, suggesting that the 

model got stuck in local minima, and shows some evidence of overfitting.  
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The predicted lifespans vs actual lifespans scatterplots for all models (figure 

12B, D, E, figure 13B, D and E) show good correlations and no evident 

overfitting. Figure 12D shows the predicted vs actual lifespans for the for the 

most accurate network. This scatterplot shows a strong correlation between 

predicted vs actual lifespans for both the seen training data and the unseen test 

data with a low spread of data and very few outliers.  
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A                                                              B 

  

C                                                             D 

  

E                                                             F 

  

Figure 12: Graphs to show the learning rate fine tuning of a neural network built on training 
dataset NN1 using the Adam optimiser.  

For a network built with a learning rate of 0.0003 the graphs show smooth loss and error curves 
(A) and predicted lifespans for seen training and unseen test data with a strong correlation to 
the actual lifespans (B) both without evidence of overfitting. For a network built with a learning 
rate of 0.0005 the graphs show smooth loss and error curves (C) and predicted lifespans for 
seen training and unseen test data with a strong correlation to the actual lifespans (D) both 
without evidence of overfitting. This network makes the most accurate predictions and has the 
lowest loss. For a network built with a learning rate of 0.0007 the graphs show smooth loss and 
error curves (E) and predicted lifespans for seen training and unseen test data with a strong 
correlation to the actual lifespans (F) both without evidence of overfitting. 
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A                                                              B 

  

C                                                             D 

  

E                                                             F 

  

Figure 13: Graphs to show the learning rate fine tuning of a neural network built on training 
dataset NN1 using the SGD optimiser.  

For a network built with a learning rate of 0.0003 the graphs show smooth loss and error curves 
(A) and predicted lifespans for seen training and unseen test data with a strong correlation to 
the actual lifespans (B) both without evidence of overfitting. For a network built with a learning 
rate of 0.0005 the graphs show smooth loss and error curves (C) and predicted lifespans for 
seen training and unseen test data with a strong correlation to the actual lifespans (D) both 
without evidence of overfitting. For a network built with a learning rate of 0.0007 the graphs 
show loss and error curves with some fluctuations suggesting that the model became stuck in 
local minima (E) and predicted lifespans for seen training and unseen test data with a strong 
correlation to the actual lifespans (F) both without evidence of overfitting.  
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2.3.5 Feature selection 

The feature selection program creates an output file containing the selected 

feature name and the average root mean squared error (RMSE) of the 

predictions from unseen test data from the 10-fold cross validation networks for 

that feature for each rank. By plotting the rank against the RMSE, we can 

visualise how the number of features effects the model performance. Figure 14 

shows that the RMSE initially decreases as the features are added to the 

model, showing an increase in prediction performance. After reaching the 

lowest RMSE at 17 features, adding more features to the model increases the 

RMSE, showing a decrease in performance.  

 

Figure 14: Model performance during feature selection.  

The graph shows the average root mean squared error of the 10-fold cross validation of the 
best model at each step of feature selection. The RMSE declines, showing the models are 
increasing in accuracy until the lowest RMSE of 3.57 at 17 features. The RMSE then increases 
as more features are added to the model.  

 

To investigate this in more detail, the highest ranked features can be 

investigated. Since 17 features were identified as the point at which the model 

stops improving in performance, the top ranked 17 features were subset as 

features of interest. Table 12 shows a summary of the top 17 features including 

the phenotype condition and the effects within the cell that the assay is 
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measuring under this condition. Some phenotype conditions are repeated 

where more than one of the variations (e.g. concentration) ranked within the top 

17. This summary shows that phenotypes describing a wide range of stress, 

drug or nutrient responses are contributing to the lifespan prediction in the 

neural networks.  

Table 12: Summary of the top 17 phenotype conditions ranked by the feature selection and the 
average root mean squared error (RMSE) of the 10-fold cross validation of the model at each 
step.  

Rank Phenotype Condition Effect RMSE 

1 Oligomycin ATP synthase inhibition 6.12 

2 Exhausted Media (2 days) Low nutrients 5.07 

3 Antimycin Mitochondrial respiration inhibition 4.46 

4 Serine Supplemented amino acids 4.45 

5 Exhausted Media (2 days) Low nutrients 4.40 

6 MMS DNA damage 4.10 

7 Proline Supplemented amino acids 3.98 

8 H2O2 Oxidative stress 3.92 

9 Caffeine and Rapamycin TOR inhibition 3.86 

10 Calcofluor Cell wall integrity 3.78 

11 Calcofluor and NaCl Cell wall integrity and osmotic stress 3.99 

12 Proline and Lysine Supplemented amino acids 3.89 

13 NaCl and MMS Osmotic stress and DNA damage 3.98 

14 EMM Essential nutrients 3.74 

15 LiCl Translation inhibition 3.84 

16 H2O2 Oxidative stress 3.89 

17 Isoleucine Supplemented amino acids 3.57 
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2.4 Discussion 

2.4.1 Correlations  

Initially, it was important to establish whether there were any evident 

relationships in the data. This would help to inform the choice of models used 

as well as the interpretation of any results. To begin that process, the mean 

lifespan training data was plotted against the mean phenotype data for each 

phenotype across the 56 strains available. The plots (figure 7) show that no 

single phenotype has any significant correlation with the lifespan data, this 

supports the development of a machine learning model to look for patterns in 

the data that are not otherwise evident. The lack of correlation across all the 

data also shows that none of the phenotypes should be considered more 

predictive than any others at this point and there is no need to introduce pre-

emptive weighting of features into the models. The correlations do appear to 

have some non-linear structure which further supports the idea of a more 

complex relationship within the data. 

To take this one step further, clustering can be used to create a heatmap to 

visualise any more hidden structures within the data. Using the heatmap seen in 

figure 8 we can look for any blocks of structure showing relationships between 

the mean lifespan dataset and the mean phenotype datasets across the 56 

strains available. The clustering produced horizontal structure in the heatmap 

showing that some phenotype datasets are similar to each other and can cluster 

together which is to be expected. However, the heatmap does not show any 

horizontal structure. This outcome reveals that there is no evident structure in 

the data even when considering the relationship between lifespan and multiple 
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phenotypes and further supports the application of more complex machine 

learning models to search for structure and patterns within this dataset.   

2.4.2 Linear regression  

For a first attempt at creating a model to predict lifespan from simple 

phenotypes, linear regression was chosen. This is a relatively simple kind of 

modelling, closely related to the mathematics of pairwise correlations, making it 

the natural next step (IBM, 2023). The model would be able to determine if a 

combination of the linear relationships between the phenotypes and the lifespan 

data could be predictive. While the pairwise correlations suggested this will not 

be successful, it remained important to investigate the data in this way for linear 

relationships before moving on to more complex models.  

Linear regression models are built on continuous data, making it an ideal choice 

for predicting the continuous lifespan data from the continuous, uncategorised 

phenotype datasets. However, alongside these, models were also built on 

training datasets using continuous lifespan data and categorised phenotype 

data. While this data is not traditionally as well suited to linear regression, it may 

provide more accurate biological insight since we usually describe phenotypes 

as sensitive or resistant.  

Using train_test_split at 80/20 allowed for 80% of the data to be used as training 

data while 20% of it was withheld from the model as unseen test data. After 

training, this test data can be used to assess the model’s ability to predict data it 

has never seen before and allow us to spot overfitting. After training, the model 

is asked to predict the lifespan of both the training dataset it has seen and the 

unseen test data and how closely it can predict these to the actual recorded 

lifespans is visualised in scatterplots to look for the correlation between the 
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actual lifespans and fitted (predicted) lifespans. The comparison between the 

seen and unseen data prediction accuracy allows us to check for overfitting, 

where a model has trained to predict the seen data very well but cannot predict 

unseen data. This occurs when a training process has resulted in the model 

learning only the specifics of the training dataset as opposed to an overarching 

connection in the data.  

LASSO regression was chosen for the linear regression modelling in this work 

since it includes a penalty that shrinks coefficients which do not contribute to the 

prediction. It allows all the phenotypes to be inputted into the model without 

skewing the results as non-predictive phenotypes can have their coefficients 

shrunk. This was of particular advantage with our specific training data because 

we were unsure whether each phenotype could contribute to lifespan prediction.  

Initially, LASSO models were built only on the training dataset LR5, a dataset 

with individual inputs of continuous lifespan data and categorised phenotype 

data. This dataset was altered to allow for three variants, one where each 

lifespan was paired to each phenotype. Building models with these three 

variants offered the opportunity to spot if there was any advantage or 

disadvantage to any of the pairings. Since all three models were virtually 

identical (table 5 and fig 9), we are able to conclude that there is no artificial 

signal from any of the pairings. This allows for further modelling to be free of the 

concern that the pairing of a lifespan repeat to a phenotype repeat could be 

affecting the outcome.  

The six training datasets (defined in table 2 in 2.2.2 Linear regression) were 

then used to create LASSO regression models. These models (table 6) were 

assessed by the use of root mean squared error and r-squared score metrics. 
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Root mean squared error is used in this way as a score of the prediction 

accuracy of the model as it describes how far predicted values lie from the true 

recorded values. R-squared is used as a measure of the strength of the linear 

relationship found in the data. By using root mean squared error, we were able 

to identify models built on LR1 and LR4 (based in mean lifespan and phenotype 

data) as much more accurate models. All the models had low or negative R-

squared scores, showing weak to no linear relationship was found for the model 

to train on.  

While the models built on LR1 and LR2 were able to predict lifespan from 

phenotypes better than random, both models performed better on predicting 

seen training data than on the unseen test data (fig 10), suggesting the models 

were overfitting slightly. As well as this, the models did not perform particularly 

well even on the seen training data which, in combination with the low r-squared 

scores, suggests that there is not a simple linear relationship within the data to 

build the model on.  

As suggested by the lack of any visible correlations (fig 7), the linear model is 

not able to capture enough patterns within the data to predict lifespan from 

phenotypes in any meaningful way. However, the presence of some structure in 

the actual vs. fitted graphs for these models does suggest that there is a 

connection to find in this data using more sophisticated modelling techniques.  

2.4.3 Random forest 

As we could argue that the categorised data for both the lifespan and the 

phenotype could be more biologically intuitive, a model designed to predict on 

categorised data was the next choice to investigate the patterns in this data.  
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In the same way as the linear regression datasets, the random forest training 

datasets (defined in table 3 in 2.2.3 Random forest) were subset 80/20 into 

seen training and unseen test data to facilitate analysis of the model’s 

performance. The performance of the models was assessed using out of the 

bag error from training and an accuracy score for the predictions on unseen test 

data. The accuracy of the models was further visualised in confusion matrices, 

a table of the number of correctly categorised instances vs the incorrectly 

categorised ones. Overfitting can again be identified by the difference between 

performance on seen training data and unseen test data.  

Out of the bag (OOB) error is a helpful metric when building random forest 

models since it computes during the training of the model without the need to 

reserve unseen testing data. It describes how much error the model makes 

when categorising yet unseen data within the training dataset. The accuracy 

score is a similar metric but this time on reserved unseen test data, showing the 

percentage of correctly categorised data in this group. When assessing our 

models, we were looking for the lowest OOB scores and the highest accuracy 

metrics.  

Before building and assessing the models, a 10-fold cross validation grid search 

was used to establish the best values for max_features and n_estimators, the 

number of phenotypes to be used for a decision at each split and the number of 

trees in the model. Using 10-fold cross validation to do this allows for a highly 

accurate parameter search which makes the decision based on models built on 

10 overlapping subsets of the data. This helps to remove any bias in the 

parameter selection and choose those most representative of the data.  
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The parameters used in the grid search (max_features: 7, 17, 27, 37, 47, 57, 

67, and 77 and n_estimators: 30, 40, 50, 100, 200, 300, 400 and 500) were 

designed to cover a range so that the chosen parameter was not the highest or 

lowest option indicating that there was a better choice outside of the searched 

range. In no cases were the chosen parameters the highest options in the 

search, however 7 features were chosen twice, and 30 estimators were chosen 

once. While these are the lowest options, fewer than 7 features or fewer than 30 

trees would be considered abnormally small for building a model of this kind, so 

the parameters were limited at this point.  

Using the OOB and accuracy scores, while all the models predicted better than 

random (33%), it stood out that the models trained on RF1 and RF4 have the 

lowest error and the highest accuracy (table 8). This is similar to the 

performance seen in the linear regression models, where the datasets using 

mean lifespans and mean phenotypes performed better, suggesting that using 

the mean of these data is the best way to create meaningful predictions.  

The models built on RF1 and RF4 both had an accuracy of over 50% (table 8), 

the confusion matrices were used for more in depth analysis of this. The model 

built on RF1 predicted 100% of the seen training data correctly (figure 11A) but 

correctly categorised only 6/11 of the unseen test data (figure 11B). In one case 

it misidentified, a long-lived strain as short and in another a short-lived strain as 

long which are complete opposite classes. The model built on RF4 misclassified 

2 of the seen training data (figure 11C) but went on to correctly classify 7/11 of 

the unseen test data (figure 11D). Its misclassifications were classifying a long-

lived strain as average in 3/4 cases and misclassifying one average strain as 

short.  
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Since the RF4 model had a better performance on unseen data and the RF1 

model had a better performance on seen data we can suspect that the RF1 

model may have been slightly overfitted, leading to higher error on unseen data. 

Not only did the RF4 model make less classification errors than the RF1 model 

but the errors it made were also only one class away as opposed to 

misclassifying long to short and short to long as the RF1 model did.  

While this model works fairly successfully, and helps to confirm that the 

prediction is possible, it is not categorising accurately enough to conclude that 

this prediction is fully successful. The random forest models are capable of 

finding more complex patterns in the data than linear regression models, but it 

is likely that an even more sophisticated model is needed to fully capture this 

relationship.   

2.4.4 A model to predict lifespan from simple phenotypes 

Neural networks are one of the most sophisticated machine learning models, 

meaning they present the opportunity to establish patterns within datasets not 

identified by linear regression or random forest. Always structured as layers of 

nodes, the architecture can be configured in many different ways to address the 

problem, but there are some conventions. Based on these conventions, an 

architecture of 77 input nodes, a hidden layer of 40 nodes and an output layer 

of 1 node was created.  

After some initial testing of different activation function, rectified linear unit 

(ReLU) was chosen for the model as this performed best. It is likely that the 

ReLU activation function performed better due to its common advantages over 

linear and sigmoid activation functions. ReLU is more likely to be able to identify 

complex patterns in data than the linear activation function which, given the low 
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success of linear regression models on this data, was a necessity for this 

model. Although sigmoid functions are generally capable of identifying these 

more complex patterns, they have limited sensitivity and saturation which ReLU 

does not suffer from.   

Models were built using both Adam and SGD optimisers as both optimisers are 

appropriate choices for the dataset. SGD is the most commonly used optimiser 

in neural networks, but Adam may have advantages over it. Adam is used less 

commonly because it is more computationally intensive and so can slow down 

larger models. Since the dataset for this research is very small this is not a 

limitation we needed to consider in this work.  

As with previous modelling, the neural network training datasets (defined in 

table 4 in 2.2.4 Neural networks) were subset 80/20 into seen training and 

unseen test data to facilitate analysis of the model’s performance. Performance 

of the models was assessed using root mean squared which is used to 

establish the prediction accuracy of the model on the unseen test data as it 

describes how far predicted values lie from the true recorded values.  

Initial networks focussed on trialling a range of different learning rates to find the 

optimal learning rate for this data. Since the learning rate is usually a small 

number between 0 and 1 after a few pilot trials 0.0001, 0.0005 and 0.001 were 

chosen as a range to test. Using the mean squared error loss of the initial 

networks, it was clear that networks trained on the training dataset NN1 were 

the most accurate using both Adam and SGD optimisers and a learning rate of 

0.0005 (table 9 and 10). This mirrors the results of the linear regression and 

random forest modelling as NN1 is once again a dataset made up of the mean 

lifespan and phenotypes rather than individual inputs.  
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These networks were then fine-tuned for learning rate optimisation. Networks 

were rebuilt using both optimisers but this time with learning rates of 0.0003, 

0.0005 and 0.0007. From the root mean squared error of predictions on unseen 

test data, the model using the Adam optimiser with a learning rate of 0.0005 

was the most accurate. When we look in more detail at these models in figures 

12 and 13, we can see that the Adam optimiser likely performed better as the 

SGD model got stuck in local minima during training (figure 13A, C and E) 

affecting the training quality.  

This most accurate network had smooth loss and error curves which converge 

towards 0 but do not then increase showing that the model trained smoothly 

and did not overfit (figure 12C).  The scatterplot of the predicted lifespans vs the 

actual true value lifespans (figure 12D) shows again that the model did not 

perform overfit and perform better on seen training data than unseen test data, 

as well as visualising the high correlation between predicted and actual values 

for both seen training data and unseen test data. The network, with a root mean 

squared error of 2.83, is able to predict lifespan with a mean error of less than 3 

days. If we consider the range of lifespans in the training data set (0-28 days), 

and that we usually only discuss lifespan as the qualitative labels of long, 

average and short, prediction within 3 days can be considered extremely 

successful.  

Firstly, this result serves as a proof of concept that lifespan can be predicted 

from simple phenotypes. This has far-reaching implications within ageing by 

demonstrating that information within these stress response phenotypes can 

explain almost the entire lifespan phenotype. The ability to make this prediction 

supports current processes and factors though tot contribute to ageing, 

including oxidative stress and DNA damage, while suggesting that these 
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theories are needed in combination to explain the ageing phenotype. Secondly, 

the model serves as a genuine blueprint for a new kind of lifespan prediction. 

Since these kinds of stress response phenotypes can be predictive of yeast 

lifespan to within 3 days, it is possible that this concept could translate to higher 

eukaryotes, including humans, which have conserved stress pathways.  

The concept that environmental stress responses and pathways can predict 

lifespan could inform the discovery of novel ageing and ageing-associated 

disease biomarkers as well as advice about lifespan and healthspan extending 

lifestyle choices. Because of these potential implications, it is an important next 

step to define which stress phenotypes and associated pathways are most 

predictive of ageing and therefore the most promising candidates for future 

study.  

2.4.5 Identification of the most predictive phenotypes  

Feature selection is not routinely performed on neural networks and usually the 

networks are treated as a ‘black box’ where the model intricacies are never fully 

understood. As the use of neural networks has become more widespread, there 

has been some development of feature selection processes to allow for this 

further step. Since the neural network was the much more successful model for 

this data, it was important to attempt to use this model for feature selection to 

allow for the most accurate feature importance rankings.  

A novel method for feature selection in in neural networks  

The feature selection script was based on the concept of the common feature 

selection method recursive feature elimination (RFE), used in other model 

types, including linear regression and random forest. In RFE, models are built 

and a metric for the importance of each feature is recorded during training, this 
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allows for the least important feature to be removed. This process is continued 

until a desired number of features or model accuracy metric has been reached. 

In neural networks there is no metric for the importance of a feature as the 

structure of the model does not allow for it and so RFE is impossible.  

To create a viable alternative the feature selection script works in the opposite 

direction to RFE but with the same premise. At each step the most predictive 

feature is added to the model rather than eliminated, removing the need for a 

metric of feature importance by instead using a metric for model accuracy, root 

mean squared error (RMSE). At each step, the choice of the most predictive 

feature is established using 10-fold cross validation and the average RMSE of 

these networks. Using cross validation at every step increases the reliability of 

the feature selection by decreasing the impact of any outliers.  

The output of the feature selection, a file of each feature ranked for importance 

along with the average RMSE from its 10-fold cross validation models, was then 

used to identify the most predictive phenotypes of lifespan. Initially, the rank 

was plotted against the RMSE (figure 14), which showed that the average 

model RMSE decreased as features were added to the lowest RMSE at feature 

17 and then increased as features were added. This suggests that the first 17 

features are improving the model and very predictive of ageing but that the 

subsequent features are at least redundant to lifespan prediction and possibly 

actively detrimental to it.  

Defining the most predictive phenotypes  

Therefore, the top ranked 17 features were subset as the predictive 

phenotypes. These phenotypes (table 12) are involved in a wide range of 

cellular processes, suggesting that the model is taking information about 



Developing Models to Predict Lifespan from Simple Phenotypes and Identify Ageing-Associated Processes in Yeast 

97 

 

several stress pathways into consideration when predicting lifespan. 

Phenotypes related to mitochondrial function, amino-acid availability, DNA 

damage, oxidative stress, target of rapamycin (TOR) inhibition, cell wall 

integrity, osmotic stress and translational inhibition were all identified as 

predictive phenotypes. Particularly the top 7 ranked phenotypes were 

associated with a steep decline in RMSE (figure 14) and can be considered the 

most predictive phenotypes. These related to ATP synthase inhibition, 

mitochondrial respiration inhibition, low nutrient availability, DNA damage and 

serine and proline supplementation.  

Mitochondrial stress is a most predictive phenotype for cellular lifespan 

The ranking of phenotypes related to ATP synthase inhibition and mitochondrial 

respiration inhibition suggests a strong connection between mitochondrial stress 

and lifespan. This is supported in the literature since mitochondrial stress has 

long been linked to ageing and ageing-associated diseases (Hill and Van 

Remmen, 2014, Lima et al., 2022, Dai et al., 2014). Mitochondrial hormesis is 

believed to have a biphasic response. Mild mitochondrial stress is thought to 

induce beneficial adaptations through metabolic reprogramming and epigenetic 

remodelling leading to mitochondrial import, proteostasis, oxidative 

phosphorylation, mitophagy and antioxidant defences. On the other hand, 

severe mitochondrial stress can lead to long term damage to the cell in through 

the reduction of ATP and the release of reactive oxygen species and 

mitochondrial damage associated molecular patterns leading to oxidative 

damage, inflammation, energetic crisis, cell damage and eventual death 

(Burtscher et al., 2023). In this way, we can consider that potentially the model 

may be identifying cells which have an increased resistance to severe 
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mitochondrial stress or an increased reaction to mild mitochondrial stress which 

lead to lifespan extending cellular processes.  

Nutrient availability is a most predictive phenotype for cellular lifespan 

Low nutrient availability also has long standing ties to ageing in the literature 

(Chen and Runge, 2009, Leitão et al., 2022, Pifferi et al., 2018). Caloric 

restriction has been shown to have extend ageing in many eukaryotes from 

extending chronological lifespan in yeast to extending lifespan by 1-5 years in 

humans (Flanagan et al., 2020, Leonov et al., 2017, Xiang and He, 2011). 

These results are often attributed to nutrient sensing pathways within the cell 

such as TOR or AMP kinase (AMPK) which modulate cellular processes in 

response to nutrient availability, leading to extended lifespan (Davinelli et al., 

2012). We can therefore conclude that the model made associations between 

the ability to grow in low nutrient conditions on exhausted media and the 

lifespan of the strain. Given the extensive nature of the literature surrounding 

low nutrient availability extending lifespan it is most likely that this association 

was between resistance to low nutrient availability and longer lifespan.  

DNA damage is a most predictive phenotype for cellular lifespan 

DNA damage has both strong links to cellular ageing and the ageing-related 

disease cancer within the literature (Lee and Ong, 2021, Pal et al., 2018, 

Burhans and Weinberger, 2012). This process is another key research topic for 

ageing research and so its identification as a highly predictive phenotype for 

lifespan is supported by the literature. DNA damage can be caused by a range 

of processes including UV exposure, mitochondrial stress, and oxidative stress. 

It is thought to trigger cell senescence and even apoptosis by affecting many 

other cellular functions including the cell cycle and the tumour suppressor gene 

p53 which is a mechanism responsible for some types of cancer (Yousefzadeh 
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et al., 2021). It is likely that the model identified a relationship between 

increased resistance to DNA damage or increased capacity for DNA repair and 

longer lifespans.  

Amino-acid supplementation is a most predictive phenotype for cellular lifespan 

Serine and proline supplementation are the least well documented of the highly 

predictive phenotypes, however their involvement in lifespan and ageing is still 

supported by the literature (Rallis et al., 2021, Mirzaei et al., 2014). In budding 

yeast, serine supplementation has been shown to sensitise cells to oxidative 

stress and increased the chronological lifespan (Mirisola et al., 2014), and 

proline has been identified as a nitrogen source, stress protectant and energy 

source (Nishimura et al., 2021). 

A combination of simple phenotypes is needed for cellular lifespan prediction 

The key conclusion of this feature identification does not lie with any one most 

predictive phenotype, and it’s support in the literature. The most interesting 

finding is that the model needed input from all of these phenotypes to be highly 

predictive of lifespan. For instance, prediction with only phenotypes relating to 

ATP synthase inhibition and low nutrient availability had a RMSE of more than 5 

days. Addition of phenotypes relating to mitochondrial respiration inhibition, 

serine supplementation still only reduces the RMSE to more than 4.4 days. To 

bring the RMSE below 4 days, phenotypes relating to DNA damage and proline 

supplementation are needed. The need for input from different cellular 

processes at once to predict lifespan is clear, and this strongly suggests that the 

complex phenotype of lifespan is determined by a complex combination of 

these cellular processes.  
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Subsequent addition of phenotypes related to oxidative stress, TOR inhibition, 

cell wall integrity, osmotic stress and translational inhibition did go on to further 

reduce the RMSE and so improve the predictions of lifespan but in a much 

smaller range. This could be due to these processes being weaker 

determinants of lifespan or it could be due to redundancy. For example, TOR 

inhibition could be redundant to the higher ranked feature of nutrient availability 

as lack of nutrients can inhibit the TOR pathway, or oxidative stress could be 

redundant to the phenotypes relating to mitochondrial stress since mitochondrial 

stress can cause oxidative stress, or to DNA damage since this can be caused 

by oxidative stress. It is a limitation of the feature selection process that we 

cannot establish whether subsequent features have less effect on the RMSE 

due to biological importance or redundancy, but we can consider that all 17 

features contributing to the model with the lowest RMSE are measurable 

determinants of cellular lifespan.  

Combinatory phenotypes for osmotic stress with cell wall integrity and DNA 

damage are predictive of cellular lifespan  

Osmotic stress has been shown to be linked to ageing with a decline in osmotic 

stress as cells age (Dues et al., 2016, Chen et al., 2020), and with 

hyperosmolarity shown to extend lifespan in S. cerevisiae and C. elegans 

(Chandler-Brown et al., 2015). Similarly, cell wall integrity has been shown to 

decrease and undergo remodelling with ageing in yeasts (Silva Vanessa et al., 

2022, Molon et al., 2018). While not in the top 7 most predictive phenotypes, 

osmotic stress phenotypes appear twice in the top 17 predictive phenotypes. 

Both times, osmotic stress from NaCl appears in combination with another 

stress, first with cell wall integrity from calcofluor and then with DNA damage 

from MMS.  
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Since the feature selection filters out redundancy, and both calcofluor and MMS 

were already in the model, the addition of osmotic stress from NaCl must offer a 

new facet to the data. NaCl also appears as a single stress within the 

phenotypes and did not rank within the 17 phenotypes which improve model 

performance so we can infer that it is the combination of osmotic stress with cell 

wall integrity and DNA damage which is predictive. We can be confident that it 

is these combinations specifically which are predictive and not only the addition 

of another stress since NaCl, MMS and calcofluor all appear with other 

combinatory stresses which did not rank. This adds further weight to the 

conclusion that the model is based heavily on the combination of phenotypes 

and how potentially even how these phenotypes interact with each other.  

Future directions  

This model and feature selection has highlighted the complex and combinatory 

nature of the biological mechanisms which underpin ageing, further research 

could build on this by experimentally validating the predictions. By investigating 

the most predictive phenotypes and focussing on uncovering the mechanisms 

by which they are connected we could come closer to creating a more unified 

mechanism of ageing research.  
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3 Exploring the Role of Hsr1 in Cellular 

Ageing and Ageing-Associated 

Processes in Yeast 

3.1 Introduction 

3.1.1 Ageing networks  

One of the obvious candidates for a mechanism by which different ageing 

pathways might interact is transcription factors. Cellular processes are all 

encoded within the DNA, but which ones go on to be expressed is determined 

by which genes are being transcribed. Transcription factors are one way the cell 

can control what genes are being expressed and when. 

Transcription factors are proteins which bind to DNA and control the rate of 

transcription of their target genes. Since they are proteins themselves, and 

therefore transcribed, transcription factors can form feedback loops where one 

acts up or downstream of another. Eventually these interactions can go on to 

form large networks of transcriptional control which dictate how a cell responds 

to certain environmental stresses. This sort of network is a likely candidate to 

connect the many pathways thought to be involved in cellular ageing.  
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Over the last decade there has been mounting evidence for the role 

transcription factors play in cellular ageing. Given that organisms appear to age 

at different points in chronological age and that this process is reversible in 

some organisms (Matsumoto et al., 2019) ageing could be considered to be a 

gene-expression state. Transcription factors have been shown to affect many 

age-related cellular processes such as DNA repair, metabolism, and cell cycle 

control (Jin et al., 2020). This places transcription factor action in control of the 

initiation of many ageing processes, a theory backed up by the large number of 

transcription factor genes reported to have a lifespan effect when either deleted 

or overexpressed within a cell (Vachon et al., 2013, Rallis et al., 2014).  

Consequently, downstream pathway inhibition has been found to alter lifespan 

such as the lifespan extending drugs rapamycin and Torin1, which inhibits the 

target of rapamycin (TOR) pathway (Fontana et al., 2010, Leontieva et al., 

2015). TOR is a metabolic pathway which controls the response environmental 

and physiological conditions, including nutrient availability (Laplante and 

Sabatini, 2009). With this in mind, control of cellular response to nutrient 

availability within a cell is transcriptional in terms of both transcription factors 

and downstream pathways as different transcriptional profiles are found when 

cells are exposed to different conditions.  

Transcription factors can also bridge the gaps between pathways previously 

considered to be independent of each other. In the case of transcription factors, 

different transcriptional pathways can often regulate each other in feedback 

loops. This mechanism is likely integral to a process such as ageing where 

many different pathways seem to play different and often opposing roles. 
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3.1.2 Gaf1 and Php transcription factors  

One recently characterised ageing-associated transcription factor in the lab is 

the GATA factor Gaf1 (Rodríguez-López et al., 2020).  Deletion of gaf1 was 

shown to lead to shortened chronological lifespan and diminished Torin1-

mediated longevity, suggesting Gaf1 involvement with the target of rapamycin 

(TOR) pathway. Gaf1 was found to be inhibited by TOR complex 1 (TORC1) 

and, in TORC1 inhibition by the inhibitor Torin1, Gaf1 was shown to regulate 

metabolism genes, tRNA genes and translation-related genes. The TOR 

pathway is a conserved pathway in eukaryotes which is a key regulator for cell 

growth and metabolism in response to nutrient availability (González and Hall, 

2017, Gonzalez and Rallis, 2017, Valvezan and Manning, 2019). It has 

implications in stress response, protein synthesis, autophagy, and anabolic and 

catabolic processes (Matsuo et al., 2007, Poüs and Codogno, 2011, Weisman 

and Choder, 2001). 

Within the lab, further exploration of ageing-associated transcription factors 

focussed on the Php factors: Php2, Php3, Php4 and Php5. All of these 

transcription factors bind to gaf1 (Rodrígez-López, 2023, UCL, personal 

communication) and therefore help to regulate the downstream ageing-

associated pathways of Gaf1. Php transcription factors have also been shown 

to be involved iron ion availability (Php2, Php3, Php4 and Php5) (Mercier et al., 

2006). Nitrogen starvation has long been associated with extended cellular 

lifespan (Santos et al., 2016) and iron accumulation is associated with ageing 

and age-related diseases including neurodegenerative diseases (Mangan, 

2021). In this way, Php transcription factors are implicated in ageing-associated 

cellular pathways both through regulating Gaf1 and other mechanisms.  
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Expanding our understanding of transcription factors can help to create a 

picture of the network of transcriptional control of ageing which bridges gaps 

between ageing-associated pathways within the cell. Elucidating this 

transcriptional control can lead to discovering new connections between 

theories of ageing and brings us closer to a unified mechanistic explanation. 

3.1.3 Literature review of ageing transcription factor genes of 

interest 

Six transcription factors thought to be involved in ageing or ageing-associated 

pathways, such as the TOR pathway, were selected for this investigation and 

discussed in detail below. Candidates were chosen due to ageing-related 

overexpression phenotypes, recorded long lifespan, resistance to ageing-

related drugs, such as caffeine and rapamycin or Torin1, or interactions with 

other transcription factors studied in the lab: Gaf1 or Phps. Of the six chosen 

factors, four are partially investigated genes (phx1, hsr1, moc3, rsv2) and two 

are unknown and unnamed S. pombe genes whose transcription factor action 

are inferred from sequence models. 

Phx1 (SPAC32A11.03c) 

The gene phx1 (2829bp) codes for the protein Phx1, a large protein with a 

conserved homeodomain. It appears to be highly homologous to Pho2, a known 

transcription factor in S. cerevisiae (Cheng et al., 2000 ), and has been shown 

to bind to DNA with the ability for transcriptional activation (Kim et al., 2012). 

GFP-tagged Phx1 showed that the protein is produced in the late exponential 

phase, then accumulated during stationary phase. Phx1 is located primarily in 

the nucleus. Northern blotting analysis of phx1 mRNA transcripts showed a 

similar expression pattern to that of Phx1 protein suggesting that levels of Phx1 
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protein in the cell are directly driven by phx1 expression (Kim et al., 2012). The 

production of Phx1 at stationary phase is believed to be at least partly due to 

nutrient starvation (Kim et al., 2012). 

The S. pombe deletion strain phx1∆ shows increased viability in stationary 

phase (Kim et al., 2012) and increased fitness during Torin1 inhibition (Lie et al., 

2018), however, it was not highlighted in a screen for caffeine and rapamycin 

resistance (Rallis et al., 2014). Kim et al. (2012) found that phx1∆ has reduced 

viability compared to wild type cells under normal and nutrient starved 

conditions. They also found it to have reduced stress tolerance for oxidative and 

heat stresses and that in wild type cells, phx1 transcription increased in 

response to these stresses. An overexpression study of S. pombe transcription 

factors showed that ectopic expression of phx1 leads to moderately impaired 

fitness and moderately elongated cells with aberrant septal deposition (Vachon 

et al., 2013). 

Because Phx1 levels in the cell appear to be based primarily on phx1 

transcription, it is likely that phx1 is under strict control by other transcription 

factors. The gene phx1 is bound by Php4, an ageing related transcription factor 

of interest in the lab (Rodrígez-López, 2023, UCL, personal communication).  

Hsr1 (SPAC3H1.11) 

The gene hsr1 (1749bp) codes for the transcription factor Hsr1 which functions 

in response to oxidative stress in the cell (Chen et al., 2008). S. pombe hsr1∆ is 

shown to have increased viability in stationary phase (Ohtsuka et al., 2011) but 

not highlighted on screens for resistance to caffeine and rapamycin (Rallis et 

al., 2014) or resistance or sensitivity to Torin1 (Lie et al., 2018). An 

overexpression study of S. pombe transcription factors showed that ectopic 
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expression of Hsr1 leads to moderately impaired fitness and moderately 

elongated cells with no cell cycle phenotype (Vachon et al., 2013).  

Hsr1 requires both Pap1p and Prr1p for induction in response to oxidative 

stress with hydrogen peroxide (Chen et al., 2008), and hsr1 is bound by Gaf1 

with and without Torin1 treatment (Rodríguez-López et al., 2020), Php2, Php4 

and Php5 (Rodríguez-López, 2023, UCL, personal communication) which are 

established ageing-related transcription factors. Hsr1 is of particular interest in 

this work due to the wide binding network to other transcription factors. 

Moc3 (SPAC821.07c) 

The gene moc3 (1527bp) codes for the protein Moc3 containing a zinc finger 

binding motif which is localised in the nucleus involved in sexual development, 

ascus formation, and stress response in S. pombe (Goldar et al., 2005). Moc3 is 

a predicted transcription factor inferred from sequence model and the deletion 

strain moc3∆ leads to increased viability in stationary phase (Rallis et al., 2014). 

Additionally, S. pombe moc3∆ shows lower mating efficiency and forms 

aberrant asci. This deletion strain has been shown to be sensitive to CaCl2 and 

DNA damaging agents, such as MMS and UV (Goldar et al., 2005).  

Moc3, along with Moc1, Moc2, and Moc4, are thought to be positive regulators 

of ste11 as overexpression of Moc3 was shown to lead to efficient induction of 

ste11 (Paul et al., 2009). Ste11 is a key transcription factor responsible for 

positively regulating genes required for the initiation of mitosis. S. pombe 

ste11∆ mutants are completely defective in mating and sporulation whereas the 

overexpression of ste11+ leads to sexual reproduction even in stress conditions 

(Kim et al., 2012) which may be why the strain moc3∆ shows lower mating 

efficiency. Furthermore, the ageing-related transcription factor Gaf1 has been 
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shown to downregulate ste11 (Kim et al., 2012) and therefore might be part of a 

wider ste11 regulation network with Moc3. 

Rsv2 (SPBC1105.14) 

The gene rsv2 (1914bp) codes for the protein Rsv2 which induces stress-

related genes during spore formation induced in middle/late meiosis (Mata et 

al., 2007) and is involved the in amino acid starvation response (Duncan et al., 

2018). The deletion strain rsv2∆ is resistant to caffeine and rapamycin treatment 

(Rallis et al., 2014) and has increased viability in stationary phase (Ohtsuka et 

al., 2011); however, overexpression of rsv2 also leads to increased 

chronological lifespan (Ohtsuka et al., 2011). The transcription factor Fil1 shows 

marginal affinity to rsv2 (Duncan et al., 2018), suggesting further involvement 

with broader network via Php3 (Rodrígez-Lopez, 2023, UCL, personal 

communication). 

Novel transcription factors  

Two previously uncharacterised genes predicted to have transcription factor 

action were also chosen for this study: SPAC2H10.01 (1443bp) and 

SPAC11D3.17 (1758bp). Though neither of them are known to cause long-lived 

mutants in deletion strains, they are both bound by Gaf1(Rodríguez-López et 

al., 2020), Php2 and Php4. SPAC2H10.01 is bound by Php5 (Rodrígez-López, 

2023, UCL, personal communication). This implicates them in a wider ageing-

related transcription factor network. 



Exploring the Role of Hsr1 in Cellular Ageing and Ageing-Associated Processes in Yeast 

109 

 

3.2 Methodology 

3.2.1 Generation of deletion and GFP tagged strains 

DNA was amplified by PCR from the pFA6-NAT-MX6 plasmid for deletion 

constructs and the pFA6a-GFP(S65T)-natMX6 plasmid for the GFP-tagged 

constructs, using primers specific to each gene found in tables 13 and 14. 

Table 13: Sequences of amplification primers for gene deletion 

Gene Forward Sequence Reverse Sequence 

phx1 TTTCTTGGCATACTTTTTGAAGCAAATTTTT

ATTTCTCATAAGGATTTTATTTTCATTTCATT

TTATTTCTAAGAACAATCGGATCCCCGGGT

TAATTAA 

TTCTCGTTATCAAAAGAAAACGAAAATAAGC

AAGCTTCAAGCGAGTTTCAATTGTACCGTTA

ATCATCATATCACAAAATGAATTCGAGCTCG

TTTAAAC 

hsr1 TCTTTTCTTTAGTTGATTTTTTATTTTTGAAA

AGTATTCGCTTACTTTCTTTTTATAATAATT

CTTTTATCTTACTTTGTCGGATCCCCGGGT

TAATTAA 

AAATTATAATTGAAAACATTCTTATAAAACAG

TTCAATGTAAAAAAAACCCGAATTTAGGCAG

TTAATTTATAAAAATGCGAATTCGAGCTCGT

TTAAAC 

moc3 GGCTTTCTTTACTTTTGATTTGTTTAGTTCC

TATTATCTTGTTATTCTTTTTTTTTCTATCTA

TTGTTTCCCTTGCAGTTCGGATCCCCGGGT

TAATTAA 

ATGTTTGATGCGTGATTTTGTCTAGCTATTA

TACAGTTCTATATCAATATTTATTGAAAAGCA

TCAAAATGATTTTAAAAGAATTCGAGCTCGT

TTAAAC 

rsv2 TGACAAGGGTGGTTTTTTCAATCAGACGCT

TGACGTCATTCTTTATATATACATTGCCTCG

CGCATCTTTGCTGGGTAGTCGGATCCCCG

GGTTAATTAA 

AAGCGTAAGAGGTGAAAAATGACAATAGAT

AATGCAATAACCTTTTTTTAATATTTGTGGCA

GAAGAGACTCCTTTCAATGAATTCGAGCTC

GTTTAAAC 

SPAC2H10.01 TACTTCACTAATTGCATTTACTTTTTTTTCC

AACTCTAATTCCCCTTTCTTTCTGTAGGGA

TTTCCTTTAAACTGTTAACCGGATCCCCGG

GTTAATTAA 

TTATTCTCAAAAAACAACGAAGTTAGAGAAA

TAAACGTTTCCCGGTTACAACCAACAAAAAA

GCCATGTCAAAATTTGACGAATTCGAGCTC

GTTTAAAC 

SPAC11D3.17 GTTAACACTTTTTAAAATTTTATACTTATTTA

TGCGTTGGATTTTCTTTGGGAAAGTTTTGT

ATTGATTTCTCCACAAATCGGATCCCCGGG

TTAATTAA 

AATAACTTGTTGTAGAAAGAAGAGAATTAGT

AAAAACAAAACAGAGAAATAATAAATCTAAA

AAAAAATAATATATAAAAGAATTCGAGCTCG

TTTAAAC 
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Table 14: Sequences of amplification primers for gene tagging 

Gene Forward Sequence Reverse Sequence  

phx1 CATTTGAGGATGTTTACTCTCCTTCTGCTG

GTATAGATTTTCAGAAACTTCGTGGTCAAC

AATTTTCTCCGGACATGCAGCGGATCCCC

GGGTTAATTAA 

TTCTCGTTATCAAAAGAAAACGAAAATAAGC

AAGCTTCAAGCGAGTTTCAATTGTACCGTTA

ATCATCATATCACAAAATGAATTCGAGCTCG

TTTAAAC 

hsr1 CTAAACTACCAGTACAAACACCTAACCAAA

AAATGCCTTTAATGAATCCGATGCATCAAT

ATCAACCTTATCCTAGTTCTCGGATCCCCG

GGTTAATTAA 

AAATTATAATTGAAAACATTCTTATAAAACAG

TTCAATGTAAAAAAAACCCGAATTTAGGCAG

TTAATTTATAAAAATGCGAATTCGAGCTCGT

TTAAAC 

moc3 GGGCACAAATCGAATCTCATTTCGGAAGAT

TGATGCTAGAACATTTTATGGATTGCAATG

TCTTAAATCGACCAGTACTTCGGATCCCCG

GGTTAATTAA 

ATGTTTGATGCGTGATTTTGTCTAGCTATTA

TACAGTTCTATATCAATATTTATTGAAAAGCA

TCAAAATGATTTTAAAAGAATTCGAGCTCGT

TTAAAC 

rsv2 GATGTGAGATTTGTGGCGATCAACGCCATT

TCAGTAGACATGATGCCTTGGTTAGGCATC

TCCGTGTGAAACACGGTAGACGGATCCCC

GGGTTAATTAA 

AAGCGTAAGAGGTGAAAAATGACAATAGAT

AATGCAATAACCTTTTTTTAATATTTGTGGCA

GAAGAGACTCCTTTCAATGAATTCGAGCTC

GTTTAAAC 

SPAC2H10.01 TCTCTTCAAATACATCTCTGGATGATATGTT

TTTCTTTATTCGTGATTTCGATGAGGATCAT

CCAATTCAAACTGCATATCGGATCCCCGG

GTTAATTAA 

TTATTCTCAAAAAACAACGAAGTTAGAGAAA

TAAACGTTTCCCGGTTACAACCAACAAAAAA

GCCATGTCAAAATTTGACGAATTCGAGCTC

GTTTAAAC 

SPAC11D3.17 CTGCATTTGTTGCAAGCGCTTTGGATGTTG

AAGGTGGATGGGGTATTGGTCCACTTCTTA

CCAAAGCGTTCCGTCCAACACGGATCCCC

GGGTTAATTAA 

AATAACTTGTTGTAGAAAGAAGAGAATTAGT

AAAAACAAAACAGAGAAATAATAAATCTAAA

AAAAAATAATATATAAAAGAATTCGAGCTCG

TTTAAAC 

 

PCR product was visualised by gel electrophoresis using ethidium bromide to 

ensure correct sizes of PCR product. This DNA was then used for the 

transformation of live yeast.  

Transformation procedure 

A 20ml YES culture of wild type yeast was grown overnight to OD0.2-0.5, 

pelleted and washed with sterile water. The cells were then washed in LiAcTE 
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(0.1M Lithium Acetate, 10mM Tris pH7.5, 1mM EDTA) before resuspension in 

100µl LiAcTE. Then 10µl of DNA was added along with 2µl of 10mg/ml herring 

sperm carrier DNA and the cells were incubated at room temperature for 10 

minutes. 260µl of LiAcTE-40%PEG (0.1M Lithium Acetate, 10mM Tris pH7.5, 

1mM EDTA, 40% Polyethylene Glycol 4000) was added to the cells and they 

were incubated at 32°C for 60 minutes. 43µl of pre-warmed DMSO was added 

and the cells were heat shocked at 42°C for 5 minutes. The cells were pelleted, 

washed with sterile water and then plated in triplicate on YES plates. Plates 

were grown for 2 days at 32°C before replica plating on to YES NAT selective 

plates which were incubated at 32°C for up to two weeks until colonies 

appeared.  

Checking for correctly transformed colonies 

Once the colonies had grown, colony PCR was used to identify correctly 

transformed colonies. For this, checking primers were used in combination with 

internal primers which can be found in tables 15 and 16. All colonies were 

checked with outside-inside primer combinations to ensure correct orientation of 

DNA. 

Table 15: Sequences of checking primers for gene deletion 

Gene  Left-flanking Sequence Right-flanking Sequence 

phx1 TTTGCGTCTCCTCAAGTACTCA TTTTTCGCATCAAAGTTCTTCC 

hsr1 GCTACGTTGTTTGCAGTCAAAA GCCTAAAGATAGCAAAGCAGGA 

moc3 AGACGACCATTGATTTTCACCT CGTAATTCGTAAATTTCGGCTC 

rsv2 TTGGCTCAATCAATGTAAAACG GGATACGATGAAATGAAGAGGC 

SPAC2H10.01 TCGTTTTATTTCCTTTCCGCTA AAATGAACAAAAAGGGGGAAAT 

SPAC11D3.17 TAACATTTTGCAATTGAGCCAC CATCCGGAAGCGTATTTATTTT 

Nat cassette internal checking primer: CGAGTACGAGATGACCACGA 
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Table 16: Sequences of checking primers for gene tagging 

Gene Left-flanking Sequence Right-flanking Sequence 

phx1 GAGCTTCGGGCTACTTATCTCA TTTTTCGCATCAAAGTTCTTCC 

hsr1 TTGTCTCAACAAATTGTCCCAG GCCTAAAGATAGCAAAGCAGGA 

moc3 GGACATTCTCTCTCAACCAACC CGTAATTCGTAAATTTCGGCTC 

rsv2 GGTACCTAATCCAACCAACCAA GGATACGATGAAATGAAGAGGC 

SPAC2H10.01 TTTGGAGATTGACCAAGGAAGT AAATGAACAAAAAGGGGGAAAT 

SPAC11D3.17 AAAATGTGATTTGGGGTTTACG CATCCGGAAGCGTATTTATTTT 

Nat cassette internal checking primer: CGAGTACGAGATGACCACGA 

 

3.2.2 Western blot analysis 

Cells were grown in YES liquid media to OD 0.2-0.5. 25ml of cells were 

harvested, pelleted, washed with 25ml of sterile water and then transferred to 

microcentrifuge tubes for snap freezing with liquid nitrogen. The culture was 

then treated with H2O2 (0.5mM) and the process was repeated at 15 minutes, 

30 minutes and 60 minutes after treatment for each strain. The samples used 

for protein extraction in this experiment are summarised in table 17. 

Table 17: Table to summarise the samples used for protein extraction and western blot in this 
experiment including wild type negative control sample 

Strain Timepoints 

Hsr1:GFP Time 0/ Untreated 15 minutes 30 minutes 60 minutes 

Wild type/JB22 Time0/ Untreated 

 

Protein extraction 

The cell pellets were thawed on ice and resuspended on 100µl of lysis buffer. 

Glass beads were added, and the cells were lysed using a FastPrep 

mechanical lysis machine for 20 second intervals with cooling on ice for 5 
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minutes between. The cells were lysed until 80% of the cells were seen to be 

broken under the microscope (~4 cycles of lysis and cooling). The lysed cells 

were collected from the beads by centrifugation and the beads were eluted with 

another 100µl of lysis buffer to ensure complete collection of lysed cells. The 

elute was centrifuged at top speed for 10 minutes and the supernatant collected 

and saved to remove cell debris and insoluble proteins. The supernatant was 

then quantified by BCA assay and corrected to samples containing 50µg of 

protein for western blotting. NuPAGE LDS sample buffer and 0.1m DDT were 

added to the samples and they were boiled for 5 minutes at 80ºC.  

Western blotting and visualisation  

The samples were loaded into a Bio-Rad Mini-PROTEAN TGX Precast Gel 4%-

20% and run at 200V for 50 minutes. Blots were transferred using a semi-dry 

transfer system for 10 minutes and the nitrocellulose was dyed with Ponceau S 

stain to check for even bands. The stain was washed off with distilled water and 

blocked for 2 hours in 5ml of PBS-T 5% milk. The primary GFP monoclonal 

antibody (Invitrogen, GF28F) was added at 1:1000 in 5ml of PBS-T 5% milk and 

incubated overnight at 4°C. The blot was then washed three times for 5 minutes 

with PBS-T before adding ABCAM Goat anti-mouse IgG at 1:5000 in 5ml of 

PBS-T 5% milk and incubated at room temperature for 2 hours. The blot 

washed three times for 15 minutes in PBS-T, three times for 15 minutes in PBS, 

then visualised using ECL.  

To visualise the Cdc2 loading control protein the blot was then washed 

overnight in PSB-T and blocked again for 1 hour in PBS-T 5% milk. Primary 

pSTAIR antibody was added at 1:5000 PBS-T 5% milk and incubated at room 

temperature for two hours. The blot was washed three times with PBS-T for five 

minutes and then incubated for 1 hour at room temperature with Abcam Goat 
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anti-mouse IgG at 1:10,000 in 5ml of PBS-T 5% milk. The blot was washed 

three times for 15 minutes in PBS-T, three times for 15 minutes in PBS, then 

visualised using ECL.  

3.2.3 Caffeine and rapamycin stress spot tests  

Cells were grown to OD 0.2-0.5 and then corrected to OD 1.5 and serially 

diluted as shown in table 18. These cells were then spotted onto stress plates. 

Plates were prepared a day in advance using YES with 3% glucose and the 

appropriate stressors. 

Table 18: Table of dilution factors for serial dilution of samples for stress spot plates. 

Column 1 2 3 4 5 6 

Dilution 

factor 

None/ 

OD 1.5 

1 in 4.3 1 in 18.5 1 in 79.5 1 in 341.2 1 in 1470.1 

 

3.2.4 Chromatin immunoprecipitation sequencing (ChIP-Seq) 

The experiment was designed as a H2O2 treatment time course using the hsr1-

GFP strain with two repeats, using anti-GFP antibody for the experimental 

samples and anti-HA antibody for control immunoprecipitations (IPs). Samples 

are summarised in table 19. 

Table 19: Summary of samples for ChIP-Seq, including repeat, antibody used for sample, and 
time after treatment with H2O2 the sample was taken.  

Repeat Antibody Time (mins) 

1 Anti-GFP 0 

1 Anti-GFP 30 

1 Anti-GFP 60 

2 Anti-GFP 0 

2 Anti-GFP 30 



Exploring the Role of Hsr1 in Cellular Ageing and Ageing-Associated Processes in Yeast 

115 

 

2 Anti-GFP 60 

1 Anti-HA 0 

1 Anti-HA 30 

1 Anti-HA 60 

2 Anti-HA 0 

2 Anti-HA 30 

2 Anti-HA 60 

 

Extraction of chromatin  

For the control and experimental samples for each repeat 600ml of cells were 

grown to OD 1.0. 200ml were collected as a time 0 control. The remaining 

400ml were subjected to H2O2 (0.5mM) treatment with 200ml collected after 30 

minutes and the last 200ml collected after 60 minutes. Cells were fixed 

immediately upon collection by adding 5.4ml of 37% formaldehyde (1% final) for 

30min at room temperature with gentle shaking. 10ml of 2.5M glycine were then 

added and the sample was incubated for 10min at room temperature. The cells 

were then pelleted by centrifugation at 3000rpm for 3 minutes, then washed in 

40ml of ice cold 1xPBS. The pellet was then resuspended in 4ml of ice cold 

1xPBS and the sample was split into 2 tubes, pelleted again and the 

supernatant was discarded. Pellets were then snap frozen and stored at -70°C. 

The pellets were thawed on ice for 5min and resuspended in 800µl of ice-cold 

lysis buffer (50mM Hepes pH7.6, 1mM EDTA pH8, 150mM NaCl, 1% Triton X-

100 and 0.1% Na-Doc) and 2x Roche EDTA-free Protease Inhibitors 1mM 

PMSF. 600µl of acid washed glass beads were added and the cells were 

broken using a FastPrep with 9-12x 20sec at 5.5 with 5 minute incubations on 

ice in between. 1µl aliquots of cells were visualised under the microscope to 

ensure breaking efficiency of >90%. A hole was poked into the bottom of the 
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tubes using a flamed, sterile needle and they were placed into clean tubes and 

centrifuged for 1min at 1000rpm at 4°C to collect the lysate. The glass beads 

were then washed with 400µl of lysis buffer (with protease inhibitors) and the 

centrifugation repeated so the flow through pooled with the collected lysate. The 

lysate was then centrifuged for 10 min at 20000rcf and the supernatant was 

discarded. The pellets were washed with 800µl of cold lysis buffer and then 

resuspended in 750µl of cold lysis buffer and the split samples were pooled into 

one tube again. PMSF was added to 1mM and the sample was split into 5x 

300µl aliquots for sonication.  

300µl of ceramic beads were added to the aliquots and they were sonicated 

using a Bioruptor for 35min with 30sec on/ 30sec off on high. The sonicated 

material was then spun at 20000rcf for 10min at 4°C and the supernatant was 

collected. This supernatant is the chromatin extract (CE). The CE was stored at 

-70°C.  

5µl of the CE was used in a Bradford assay to check protein concentration and 

50µl of the CE was used to check sonication efficiency using a Bioanalyzer 

before continuing. 50µl of CE was stored at -20°C for ‘input’ library construction.  

Immunoprecipitation 

100µl of Protein G-coated magnetic beads and 1ml of block solution (0.5% BSA 

(w/v) in LB) were added to 1.5ml microfuge tubes, one for each sample. Beads 

were collected using a magnetic stand and the supernatant removed. The 

beads were washed in 1ml of block solution twice more. Beads were then 

resuspended in block solution and 5µg of antibody (anti-GFP or anti-HA 

respectively) was added in a final volume of 250µl. The beads were then 

incubated overnight on a rotating platform at 4°C. 5mg of CE (volume calculated 
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using Bradford results) was then added to 50µl of the antibody/magnetic bead 

mix and these samples were gently mixed by rotating at 4°C overnight. 

The beads were then collected using a magnetic stand and the supernatant was 

removed by aspiration. The beads were then washed in 0.8ml of each of the 

following buffers in semi-cold conditions.  

• 2x in Lysis Buffer (50mM Hepes pH7.6, 1mM EDTA pH8, 150mM NaCl, 1% Triton X-
100 and 0.1% Na-Doc) 

• 2x in Lysis 500 (50mM Hepes pH7.6, 1mM EDTA pH8, 500mM NaCl, 1% Triton X-100) 

• 2x in LiCl/NP-40 (10mM Tris-HCL pH8, 1mM EDTA pH8, 250mM LiCl, 1% NP-40, 1% 
Na-Doc) 

• 1x in TE (10mM Tris-HCl pH8, 1mM EDTA) 

Beads were then resuspended in 200µl of elution buffer (50mM Tris-HCl pH8, 

10mM EDTA, 1% SDS) and incubated at 65°C for 6-18 hours to elute and 

perform reverse crosslinking. 150µl of TES was added to the reserved 50µl of 

‘input’ CE samples and these were incubated alongside the other samples for 

reverse crosslinking and were subsequently treated the same as the samples.  

200µl of TE and 5µl of DNase-free RNase (0.5mg/ml) was added to the 

samples and they were incubated at 37°C for 60min. 7µl of proteinase K 

(20mg/ml) was then added and they were incubated at 55°C for 2 hours. DNA 

was then purified using the MinElute Qiagen kit to the manufacturers protocol 

and these samples were stored at -20. The library was prepared using the NEB 

Next Ultra II library prep kit to the manufacturers protocol and sent for 

sequencing.  

Bioanalyzer analysis of ChIP-Seq samples  

150µl of TES buffer (10mM Tris-HCl pH8, 1mM EDTA, 1% SDS) was added to 

the 50µl samples and they were incubated overnight at 65°C. 200µl of TE buffer 

(10mM Tris-HCl pH8, 1mM EDTA) and 5µl of DNase-free RNase (0.5mg/ml) 
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were added to the samples and they were then incubated at 37°C for 30min. 

Then 7µl of proteinase K (20mg/ml) was then added to the samples and they 

were incubated at 55°C for 2 hours. The samples were then cleaned up using 

the MinElute Qiagen kit to the manufacturers protocol and then 1µl of sample 

was analysed on a Bioanalyzer.  

Mapping the reads 

Initial analysis of the ChIP-Seq reads was performed using the EU galaxy 

cluster (Community, 2022) as follows. First, read quality was assessed using 

FastQC (Andrews, 2010) and the reads were subsequently trimmed using 

FASTQ Trimmer (Blankenberg et al., 2010). The reads were then aligned to the 

S. pombe genome (Wood et al., 2002) using bowtie2 (Langmead and Salzberg, 

2012, Langmead et al., 2009) and filtered to remove non-uniquely mapped 

reads using Filter SAM or BAM (Li et al., 2009). bamCoverage (Ramírez et al., 

2016) was used to create bigWig files and these were viewed on the PomBase 

genome browser (Harris et al., 2021) to view the peaks before the peak call. 

Peak call and annotation  

MACS2 callpeak (Feng et al., 2012, Zhang et al., 2008) was used to call the 

peaks for each time point for each repeat using the samples treated with the 

anti-HA as the control files for the samples treated with anti-GFP. The peak files 

for the repeats were then joined, using Join, to create files containing only the 

peaks which occurred in both repeats, known as the high-confidence peaks. 

Peak annotation was performed in R using ChIPseeker (Wang et al., 2022, Yu 

et al., 2015) and the S. pombe annotated genome (Wood et al., 2002) on the 

high-confidence peaks, exported from galaxy.  
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Binding motifs and gene ontology enrichment  

MEME (Bailey et al., 2015) was used on the high confidence peaks for time 30 

to search for binding motifs and TomTom (Tanaka et al., 2011) was used to 

search for similar motifs in S. cerevisiae and humans. The high confidence 

peaks at all time points were then used for gene ontology enrichment using 

AnGeLi (Bitton et al., 2015).  

3.2.5 Synthetic genetic array (SGA) 

The synthetic genetic array (SGA) experiment was designed to compare the 

growth of double mutants of hsr1∆ and the strains in the deletion library, on both 

YES media and YES with caffeine (10mM) and rapamycin (100ng/l). For each 

of these conditions there were three repeats and a control using the ade6∆ 

strain rather than the hsr1∆, a total of 12 SGA experiments.  

Preparation of the library, query, and control plates  

A prototrophic version of the Bioneer deletion library (h- with kanamycin 

antibiotic resistance markers) was woken up by pinning into 384 plate format, 

using the RoToR HDA robot (Singer Instruments) on to YES PlusPlates (Singer 

Instruments) and 96 long pins (Singer Instruments). Three complete sets of the 

library were woken up to ensure enough material for the whole experiment. 

Plates were incubated at 32°C for 4 days.  

The query strain (hsr1∆) and control strain (ade6∆) (both h+ with nourseothricin 

antibiotic resistance markers) were woken up from glycerol stocks by streaking 

on to YES agar. These plates were incubated at 32°C for 2 days and then 6x 

200ml YES cultures were inoculated for each strain. These cultures were 

incubated at 32°C with shaking overnight. The cultures were then pinned in 384 

format using the RoToR HDA robot (Singer Instruments) on to YES PlusPlates 
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(Singer Instruments) and 384 long pins (Singer Instruments). Each culture was 

pinned on to 9 plates to ensure enough material for the whole experiment and 

plates were incubated at 32°C for 2 days. 

Mating of query and control strains to the library 

Matings were carried out by pinning using the RoToR HDA robot (Singer 

Instruments) on to ME PlusPlates (Singer Instruments) and 384 short pins 

(Singer Instruments). First the library was pinned to the plates with source 

mixing to ensure even material transfer, then this process was repeated with the 

respective query or control plate. After pinning, the RoToR HDA robot (Singer 

Instruments) and 384 long pins (Singer Instruments) were used to add a drop of 

water and pierce the agar at each spot, to increase mating efficacy. Plates were 

incubated at 25°C for 3 days for mating and then moved to 42°C for the 

subsequent 4 days to kill the adult cells and keep only the spores.  

Selection of double mutants  

Spores were woken up by pinning using the RoToR HDA robot (Singer 

Instruments) on to YES PlusPlates (Singer Instruments) with 384 short pins 

(Singer Instruments). Plates were incubated at 32°C for 2 days. The germinated 

spores were then pinned using the RoToR HDA robot (Singer Instruments), with 

384 short pins (Singer Instruments), on to YES with nourseothricin and 

kanamycin or YES with nourseothricin, kanamycin, caffeine (10mM) and 

rapamycin (100ng/l). These plates select for only the double mutants with both 

antibiotic markers and show their growth on the YES control plates and under 

the treatment of caffeine (10mM) and rapamycin (100ng/l).  
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Calculating genetic interactions 

Plates were imaged using a conventional scanner and a custom Unix script 

within the lab to crop and colony size quantification was carried out using the R 

package gitter (Wagih and Parts, 2014). The interactions were then calculated 

using a custom R script within the lab. First, extremely small colonies which are 

likely indicative of a strain not having woken up were identified and excluded 

from further analysis. All plates were then normalised to the plate median to 

account for plate dependant differences in growth and to the row and column 

medians to account for plate positional dependant differences in growth. The 

colonies were then mapped to the library deletion mutants to label each colony 

as it’s respective deleted gene. The genetic interaction as log2 fold change was 

then calculated as log2(mean of hsr1Δ repeats / mean of ade6Δ repeats), using 

the ade6Δ colonies as a control for the hsr1Δ colonies. The p-values for the 

interaction calculations were also recorded.  

Exclusion of linked loci  

To identify the linked loci for both hsr1 and ade6, positional information for all 

genes was extracted from the S. pombe annotated genome (Wood et al., 2002). 

Any genes with a locus less than 500,000bp away from either hsr1 or ade6 was 

identified as a gene with linked loci. Interactions for these genes were 

subsequently removed from the data before any further analysis.  

Identifying positive and negative interaction hits  

Volcano plots were created using the R package EnhancedVolcano (Kevin 

Blighe, 2021) to visualise the interactions with a p-value <0.05 and a log2 fold 

change of >±1 and >±0.5 Any interactions with a p-value of >0.05 was excluded 

from the analysis and lists of positive and negative interactions were created 
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over both log2 fold change thresholds. These lists were analyses for overlap 

using Venn diagrams.  
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3.3 Results 

3.3.1 Generation of deletion and GFP tagged strains 

For use in further experiments, deletion and GFP tagged strains for each of the 

chosen transcription factors were generated by homologous recombination. 

Transformations were carried out to generate twelve strains: phx1∆, hsr1∆, 

moc3∆, rsv2∆, SPAC2H10.01∆, SPAC11D3.17∆, phx1-GFP, hsr1-GFP, moc3-

GFP, rsv2-GFP, SPAC2H10.01-GFP, and SPAC11D3.17-GFP.  

Deletion strains were successfully generated for five of the six chosen 

transcription factors, selected by PCR. As shown in figure 15A, the deletion 

strains for phx1, hsr1, moc3 and rsv2 were all identified as having positive right 

and left flank PCR. The deletion strain for SPAC2H10.01 had only the right 

flank. No successfully transformed deletion strains were generated for 

SPAC11D3.17. GFP tagged strains were successfully generated for all six 

chosen transcription factors, selected by PCR. In figure 15B left and right flanks 

can be seen for all strains. 

Western blot analysis was used to confirm the presence of the GFP tagged 

protein product (Hsr1-GFP) in the hsr1-GFP strain. Figure 16 shows bands at 

30 minutes and 60 minutes after treatment with H2O2 at the correct size for 

Hsr1-GFP (~91kDa). The Cdc2 control band (~34kDa) is visible at all timepoints 

with consistent intensity. 
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A 

 
B 
 

 
 

Figure 15: PCR analysis of mutants to ensure correct transformation.  

Gels show (A) five deletion strains and (B) six tagged strains created. Wild type check was 
performed using SPAC2H10.01 primers in A and SPAC11D3.17 primers in B. For each strain 
the gel shows the PCR products of outside-outside primers, right-flank primers and left-flank 
primers from left to right respectively. Gel A shows that phx1, hsr1, moc3, and rsv2 deletion 
strains have both right and left flanks, while the SPAC2H10.01 deletion only shows a product for 
the right flank. Gel B shows left and right flanks for all six tagged strains, SPAC2H10.01 
denoted as U1 and SPAC11D3.17 denoted at U2. 

 

Figure 16: Western blot analysis of GFP tagged strains. 

hsr1-GFP strain 0.5mM H2O2 treated time course. The band at ~91kDa not seen in the wild type 
control but seen strongly at 30 and 60 minutes after treatment in A shows the GFP tagged Hsr1 
which accumulates in the cell in response to 0.5mM H2O2 treatment. All lanes show bands of 
even intensity for Cdc2 (~34kDa) which was visualised as a loading control. 
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3.3.2 Caffeine and rapamycin stress spot tests  

Stress spot tests were performed on YES plates and YES plates with caffeine 

(10mM) and rapamycin (100ng/ml) to test the deletion strains for sensitivity or 

resistance to caffeine and rapamycin treatment, a key ageing-associated stress. 

As seen in figure 17, the rsv2∆ and hsr1∆ strains were resistant to caffeine and 

rapamycin treatment, showing no growth phenotype on YES but increased 

growth to the JB22 wild type strain on YES plates with caffeine (10mM) and 

rapamycin (100ng/ml). 

 

Figure 17: Stress spot test results.  

YES agar with and without caffeine (10mM) and rapamycin (10ng/ml) showing hsr1∆ and rsv2∆ 
are growing better on the caffeine/rapamycin plate than the JB22 wild type control suggesting 
that these strains are resistant to caffeine/rapamycin treatment. phx1∆, moc3∆ and 
SPAC2H10.01∆ showed no change in growth from the wild type control. 
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3.3.3 Chromatin immunoprecipitation sequencing (ChIP-Seq) 

Following on from the novel fining that the hsr1∆ strain is resistant to caffeine 

and rapamycin treatment, Hsr1 was selected for further study in the form of 

target identification through ChIP-Seq. The ChIP-Seq experiment was 

constructed over a time course of H2O2 treatment. Since hsr1 is known to be 

responsive to oxidative stress (Chen et al., 2008), and the hsr1-GFP strain 

showed increased levels of Hsr1-GFP protein during the western blot (figure 

16), ChIP-Seq was then used to investigate Hsr1 binding during H2O2 

treatment. 

To create the time course, samples for the immunoprecipitations (IPs) were 

taken at time 0 (untreated), time 30 (30 minutes post treatment) and time 60 (60 

minutes post treatment). The experimental IPs consisted of 2 repeats of the 

hsr1-GFP strain using an anti-GFP antibody. As a control, IPs were created 

from two more repeats of the hsr1-GFP strain but using an anti-HA antibody 

which cannot pull the GFP protein specifically. This is used to remove non-

specific background binding during the analysis process.  

The sequencing results from the ChIP-Seq experiment were assessed for read 

quality and trimmed to 75bp to remove the low read quality found at the ends of 

the sequences. These trimmed reads were mapped to the genome using 

bowtie2 and then filtered to remove any non-uniquely mapped reads. Peaks 

were then called using MACS2 where the HA control IPs were used as a 

background control for the GFP IPs for each repeat. The peaks for each repeat 

were then merged to leave only those common to both repeats for each time 

point. This set was used as the high confidence peaks.  
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The high confidence peaks at each time point were then analysed to look for 

overlap and create gene lists of biological interest. As seen in figure 18, there 

were 12 targets common to all time points, 4 exclusive to time 30, 5 common to 

times 30 and 60, and 3 common to times 60 and 0.  

 

 

Figure 18: Venn diagram of high confidence Hsr1 binding sites for each time point.  

Diagram shows the overlap between the high confidence peaks found in the untreated time 0 
sample, the sample taken after 30 minutes of H2O2 treatment, and the sample taken 60 minutes 
after H2O2 treatment. 

 
The first gene list of interest is the 9 targets which appear at 30 minutes post 

treatment but not in the time 0 control. 5 of which also appear at 60 minutes 

post treatment. The details of these targets can be found in table 19, they 

consist of 4 known and 4 unknown genes.  
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Table 20: Summary of targets found at 30 minutes post treatment but not in the time 0 control, 
including gene names, region of binding, and PomBase gene product annotation. The targets 
also found at 60 minutes post treatment are highlighted in grey. 

Gene Region PomBase Product  

SPAP11E10.01 Promoter Ornithine cyclodeaminase-like protein 

SPAC17A2.10c Promoter Unknown 

SPATRNAALA.04 Distal intergenic tRNA Alanine 

pfl2 / SPAPB15E9.01c Promoter Cell surface glycoprotein, flocculin 

tdh1 / SPBC32F12.11 Promoter Glyceraldehyde-3-phosphate dehydrogenase 

ssn6 / SPBC23E6.09 Intron Transcriptional corepressor 

SPCC320.03 Promoter DNA-binding transcription factor 

gcd1 / SPCC794.01c Promoter Glucose dehydrogenase 

SPCTRNAASP.07 Distal intergenic tRNA Asparagine 

 

The mapped reads were also visualised on the PomBase genome browser to 

look at the structure and positioning of the peaks returned by the peak call using 

MACS2. Figures 19 and 20 show the visualised peaks for tdh1 and pfl2 on the 

genome browser. They shows clearly that the peaks lie immediately upstream 

of the genes, in their promoter regions, as identified in the peak call.  

Figure 20 also shows smaller peaks upstream of the pfl2, potentially in the 

upstream promoter region of SPAPB15E9.02c. These peaks don’t appear in the 

HA control IPs, or in the time 0 GFP IPs, but they did not pass the threshold 

during the peak call with MACS2 to be identified as a target.  
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Figure 19: Visualisation of peaks in the promoter region of tdh1.  

Using the mapped reads in the PomBase genome browser, defined peaks are seen in both 
repeats at time 30 and time 60 at the promoter region of gene tdh1.  

 

GFP, Time 30, Repeat 1 

 

 

GFP, Time 30, Repeat 2 

 

 

GFP, Time 60, Repeat 1 

 

 

GFP, Time 60, Repeat 2 



Exploring the Role of Hsr1 in Cellular Ageing and Ageing-Associated Processes in Yeast 

130 

 

 

Figure 20: Visualisation of peaks in the promoter region of pfl2.  

Using the mapped reads in the PomBase genome browser, defined peaks are seen in both 
repeats at time 30 and time 60 at the promoter region of gene pfl2. Smaller peaks are seen 
upstream of SPAPB15E9.02c, potentially in the promoter region but these peaks did not meet 
the threshold for the peak call with MACS2.  

 

Using the mapped reads in the genome browser, it was visually confirmed that 

there was no peak at adh8/SPBC1773.06c and SPAC23D3.05c, two genes 

identified as having a lowered response to H2O2 treatment in hsr1∆ mutants. 

This suggests that their response is not caused by the direct binding of Hsr1. 

GFP, Time 30, Repeat 1 

 

 

GFP, Time 30, Repeat 2 

 

 

GFP, Time 60, Repeat 1 

 

 

GFP, Time 60, Repeat 2 
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The second list of interest is the 3 targets which appear at 60 minutes post 

treatment and in the time 0 control but not at 30 minutes post treatment. The 

details of these targets can be found in table 20, they consist of known and 

unknown genes. 

Table 21: Summary of targets found at 60 minutes post treatment and in the time 0 control, but 
not at 30 minutes post treatment, including gene names, region of binding, and PomBase gene 
product annotation. 

Gene Region PomBase Product  

SPRRNA.43 Promoter 18S ribosomal RNA 

SPRRNA.44 Promoter 18S ribosomal RNA 

SPRRNA.46 Promoter 18S ribosomal RNA 

 
The high confidence target genes at all three time points were used for gene 

ontology enrichment analysis. The Hsr1 targets were found to be enriched for 

flocculation, aggregation of unicellular organisms, cell aggregation and 

cytoplasmic translation (table 22). Flocculation was found to be almost 100 

times more common in the Hsr1 high confidence targets than in the whole 

genome with the related processes of aggregation of unicellular organisms and 

cell aggregation similarly amplified. Cytoplasmic translation was found to be 6 

times more frequent in the targets than in the whole genome and genes with 

this process accounted for almost half of all the high confidence targets.  

Table 22: Gene ontology (GO) enrichment analysis results for a list of the high confidence 
targets of Hsr1 including percentage list frequency and percentage background frequency for 
each biological process found to be enriched in the list.  

GO Biological Process List Frequency Background Frequency 

Flocculation 16.67% 0.17% 

Aggregation of unicellular organisms 16.67% 0.20% 

Cell aggregation 16.67% 0.20% 

Cytoplasmic translation 41.67% 6.58% 
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The list of Hsr1 high confidence binding site targets identified at timepoint 30 

was used to search for binding motifs. One motif appeared in the majority of the 

targets and was identified as a likely binding motif for Hsr1. The motif and the 

details of its occurrences in the first list of interest can be found in figure 21.  

A                                        B

 
Figure 21: Hsr1 binding motif details.  

The binding motif identified for Hsr1 (A), and the binding motifs found within the high confidence 
targets found at t30 but not t0 (B).  

 
This binding motif was then used to search for similar motifs in S. cerevisiae 

and humans. The search found similar binding motifs for the S. cerevisiae 

transcription factors Met32 and Rme1 (figure 22), involved in sulfur metabolism 

and meiosis (Carrillo et al., 2012, Toone et al., 1995), and the human 

transcription factors RUNX1, RUNX2 and RUNX3 (figure 23), involved in cell 

proliferation, differentiation and cell lineage specification (Mevel et al., 2019).   

 

 

 

 

 

 

Gene  

SPAP11E10.01 promoter 

SPAC17A2.10c promoter 

SPATRNAALA.04 distal intergenic  

pfl2 / SPAPB15E9.01c promoter 

tdh1 / SPBC32F12.11 promoter  

ssn6 / SPBC23E6.09 intron  

SPCC320.03 promoter  

gcd1 / SPCC794.01c promoter  

Sequence  

GGGGGTAG 

GGAGGTAG 

TGTGGAAA 

TGAGGAAA 

TGAGGTAG 

GGGTGAAG 

TGGGGTAG 

GGGGGAAG 
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   A                                                B  

 

Figure 22: S. cerevisiae transcription factors with similar binding motifs to Hsr1: Met32 (A) and 
Rme1 (B) 

A                                                      B  

 

C                                                           

  

Figure 23: Human transcription factors with similar binding motifs to Hsr1: RUNX1 (A), RUNX2 
(B) and RUNX3 (C). 
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3.3.4 Synthetic genetic array (SGA) 

After the identification of Hsr1 binding targets, the involvement of Hsr1 in other 

pathways within the cell can be further elucidated with the investigation of 

genetic interactions with hsr1. A synthetic genetic array (SGA) creates an array 

of double mutants with deletions from the hsr1∆ strain and other non-lethal 

deletions from the Bioneer deletion library (Baryshnikova et al., 2010).  

The SGA was carried out under the conditions of both YES and with caffeine 

and rapamycin stress to look for positive and negative genetic interactions with 

hsr1. Caffeine and rapamycin inhibit the ageing-associated target of rapamycin 

(TOR) pathway and can extend lifespan in fission yeast (Hillson et al., 2018), so 

genetic interactions exclusive to the caffeine and rapamycin condition can give 

insight into cellular processes linked to TOR inhibition and lifespan extension.  

The scanned colonies for the SGA are first processed to extract the colony size 

using the number of pixels in the scanned image. These colony sizes are then 

analysed to remove the small colonies which denote spots where there was no 

growth, only the transferred material. These colonies are identified as a peak 

which is detached from the main normal distribution peak of colony sizes for 

each control sample. Figure 25 shows the segregated peak which is removed 

from each control sample. The genetic interactions were then calculated as log2 

fold change between the average colony size of the three repeats of the hsr1∆ 

double mutants and the ade6∆ control double mutants. During the calculation, 

the p-value was also recorded. 
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Figure 24: Small colony exclusions.  

For the SGAs on YES(A) and caffeine and rapamycin (B), the distribution of colony sizes is 
shown as a histogram for each repeat of the control sample. The detached peak of small 
colonies is separated by a dotted line where the exclusion takes place to remove the small 
colonies from the rest of the data.  

 

The linked loci for hsr1 and ade6 were identified as the genes with loci 

±500,000bp from the loci of hsr1 and ade6. Double mutants with linked loci can 

produce artificially strong negative and positive interactions which skew the 
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identification of true positive and negative interactions across the rest of the 

genome. Figure 24 shows the linked genes identified on each chromosome, 

highlighted in red for both the YES and caffeine and rapamycin SGAs. 

Decreased colony fitness can be seen around the locus of hsr1 on chromosome 

I and increased colony fitness can be seen around the locus of ade6 for both 

SGAs. Linked loci genes were then removed prior to the identification of positive 

and negative interaction hits. 

A 

 
B

 

Figure 25: Linked loci to hsr1 and ade6. 

Log2 fold change interaction scores are shown plotted against gene locus for the SGAs under 
YES (A) and caffeine and rapamycin (B) conditions. Highlighted in red are the loci for the genes 
±500,000bp from the loci of hsr1 and ade6. These genes are identified as linked loci for removal 
from the SGA results before identification of positive and negative interaction hits.  
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To visualise positive and negative interaction hits, two volcano plots were 

produced. Both plots had a p-value cut-off of p<0.05 so that only interactions 

with a confidence of 95% or more were considered as hits. Two log2 fold change 

cut-offs were visualised: ±1 (2 times as big or small) and ±0.5 (1.5 times as big 

or small). The volcano plots in figure 26 show the interaction hits for both cut-

offs for the SGA on YES. With the more conservative log2 fold change cut-off of 

±1, only two positive interaction hits were identified. By moving the log2 fold 

change cut-off to ±0.5, the number of positive interaction hits increased 

significantly, giving a less conservative but more inclusive group of interactions.  

The volcano plots in figure 27 show the interaction hits for both cut-offs for the 

SGA on YES plus caffeine and rapamycin. With the more conservative log2 fold 

change cut-off of ±1, only one positive interaction hit was identified. By moving 

the log2 fold change cut-off to ±0.5, the number of positive interaction hits 

increased significantly, giving a less conservative but more inclusive group of 

interactions.  

Hit lists of interactions at both log2 fold change cut-offs (±1 and ±0.5) were 

generated, both with a p-value cut off of p<0.05. These lists were stored for 

further analysis. Initially, the lists were searched for gene ontology enrichment 

against both the background of the genome and the background of all the 

interactions for that SGA, but this returned no enrichment for any of the lists.  
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Figure 26: Volcano plots showing interaction hits for the YES SGA  

Showing interactions for log2 fold change cut-offs of ±1(A) and ±0.5(B) with a p-value cut-off of 
p<0.05. 

A 

B 
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A 
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Figure 27: Volcano plots showing interaction hits for the caffeine and rapamycin SGA  

Showing interactions for log2 fold change cut-offs of ±1(A) and ±0.5(B) with a p-value cut-off of 
p<0.05. 
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The hit lists were then analysed for overlap using Venn diagrams (figure 28). 

For both log2 fold change cut-offs, ±1 and ±0.5, there was no overlap between 

the positive and negative interactions, even between the YES and caffeine and 

rapamycin conditions. There were overlaps between the positive interactions for 

both conditions at the log2 fold change cut-off of ±0.5 and the negative 

interactions for both conditions at the log2 fold change cut-offs of both ±1 and 

±0.5. 

 

Figure 28: Overlap in hit lists using a log2 fold change cut-off of ±1 (A) and log2 fold change cut-
off of ±0.5 (B).  

 

A 

B 
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Gene lists were produced for positive and negative interactions which appear 

under the ageing-associated condition of caffeine and rapamycin but not in YES 

(tables 23 and 24). Since there are far more negative interactions than positive 

interactions, the gene list for negative interactions was created using the more 

conservative log2 fold change cut-off of ±1, producing a list of 4 genes (figure 

28A). For positive interactions, using the conservative cut-off returned only one 

gene (figure 28A), so the more inclusive log2 fold change cut-off of ±0.5 was 

used, creating a list of 22 genes (figure 28B).  

Table 23: Details of genes with negative interactions with hsr1 in caffeine and rapamycin but not 
YES, with a p-value < 0.05, and a log2 >1 

Gene PomBase Product  

rpl26/SPBC29B5.03c 60S ribosomal protein 

fyv7/SPAC8C9.07 rRNA processing protein 

SPAC2G11.09 Calcium ion transmembrane transporter 

fkh1/SPBC839.17c FKBP-type peptidyl-prolyl cis-trans isomerase 

 

Table 24: Details of genes with positive interactions with hsr1 in caffeine and rapamycin but not 
YES, with a p-value < 0.05, and a log2 >0.5 

Gene PomBase Product  

rpp203/SPAC1071.08 60S acidic ribosomal protein 

pfd2/SPAC227.10 Prefoldin subunit 

SPAC22A12.14c BSD domain protein 

amk2/SPCC1919.03c Serine/threonine protein kinase AMPK (beta) regulatory 

subunit 

ubx2/SPAC2C4.15c UBX domain protein 

pub3/SPBC16E9.11c HECT-type ubiquitin-protein ligase E3 

aar2/SPAC3H5.04 U5 snRNP-associated protein 

sxa2/SPAC1296.03c Serine carboxypeptidase 

SPBC887.17 Plasma membrane guanine and adenine transmembrane 

transporter 

SPCC330.03c NADPH-hemoprotein reductase 

SPCC737.05 Peroxin Pex28/29 
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yip11/SPAC19B12.12c SMN complex subunit 

mta1/SPAC16C9.02c S-methyl-5-thioadenosine phosphorylase 

sim3/SPBC577.15c CENP-A chaperone, NASP family 

icp55/SPAC12B10.05 Mitochondrial intermediate cleavage peptidase 

rec24/SPAC1952.15c Meiotic recombination protein 

ale1/SPBC16A3.10 Membrane bound O-acyltransferase, MBOAT 

SPBC428.12c Peptidyl-prolyl cis-trans isomerase E 

gpc1/SPBC776.05 Glycerophosphocholine acyltransferase (GPCAT) 

bun62/SPAC12B10.03 WD repeat protein Wdr20 

mug73/SPCC31H12.02c Multispanning 7TM plasma membrane rhodopsin family 

protein, implicated in signalling 

trk2/SPAC1639.02c Plasma membrane potassium ion transmembrane transporter 

 

Interactions were also searched for all of the genes known to be associated with 

Hsr1 from previous experiments. Many did not overlap with the SGA data either 

due to linked loci, small colony exclusions or high p-value of interactions, but 

the data available for known associates is summarized in table 25. It shows that 

most associated genes had a negative interaction and that php5 and gcd1 had 

significant negative interactions under the YES condition.  

Table 25: SGA results for genes with known hsr1 involvement   

 YES Caffeine and Rapamycin 

Gene Log2 FC P-value Log2 FC P-value 

tdh1/ SPBC32F12.11 0.24 0.04   

SPCC320.03 -0.40 0.04 -0.25 0.04 

gcd1/SPCC794.01c -0.86 0.00   

php2/SPBC725.11c -0.16 0.03   

php5/SPBC3B8.02 -1.19 0.04   

mbx2/ SPBC317.01 -0.34 0.02   
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3.4 Discussion 

3.4.1 Generation of deletion and GFP tagged strains 

Deletion strains for five of the six chosen transcription factors were transformed 

and selected by PCR. As shown in figure 15A the deletion strains for phx1, 

hsr1, moc3 and rsv2 were all identified as having correctly oriented deletion 

constructs due to positive right and left flank PCR. The deletion strain for 

SPAC2H10.01 had only the right flank however this was repeated and 

confirmed. The presence of only one flank band is still enough to suggest this 

deletion construct is correctly orientated. GFP tagged strains were transformed 

and selected for all six chosen transcription factors. In figure 15B left and right 

flanks can be seen for all strains showing that the GFP tag construct is correctly 

orientated in all strains. 

Western blot analysis was used to confirm the presence of the GFP tagged 

protein in the hsr1-GFP strain. Figure 16 shows a band 30 minutes and 60 

minutes after treatment with H2O2 at the correct size for Hsr1-GFP suggesting 

that Hsr1 was produced in the cell in response to H2O2 treatment. The Cdc2 

control band is visible at all timepoints with consistent intensity. The consistent 

intensity of the Cdc2 band shows that the samples all contained a consistent 

quantity of protein and so the increase in Hsr1 has biological significance.   

3.4.2 Caffeine and rapamycin stress spot tests  

Stress spot tests were carried out to check for an ageing-related growth 

phenotype. Growth phenotypes in the presence of caffeine and rapamycin 

suggest an involvement with the ageing-associated target of rapamycin (TOR) 

pathway as caffeine and rapamycin treatment inhibits TOR activity in fission 

yeast.  
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The rsv2∆ strain is seen to have a resistant phenotype to the caffeine and 

rapamycin treatment as it has more growth than the JB22 control despite 

showing identical growth on the untreated YES control plate. This is the 

expected result as the Bioneer deletion of rsv2 had previously been shown to 

be resistant to caffeine and rapamycin (Rallis et al., 2014).  

The spot test also showed that the hsr1∆ strain was resistant to caffeine and 

rapamycin. In this test the resistance was equal to that of rsv2∆ but hsr1∆ had 

not been previously identified as resistant to caffeine and rapamycin, making 

this a novel finding in this work.  

3.4.3 Targets of the transcription factor Hsr1 

Initially, it is important to ensure that the ChIP-Seq data is of high quality so that 

subsequent conclusions can be considered reliable and valid. Quality control of 

the reads showed that all reads were of good quality up to 75bp so the reads 

were trimmed to this length to ensure the quality of the subsequent analyses. 

After mapping to the genome using bowtie2, the mapped reads were filtered to 

remove a small number of non-uniquely mapped reads to ensure the reliability 

of the peak call. The peak call with MACS2 was designed to remove any 

background of non-specific binding by using the samples created using the anti-

HA as a background for those created with ant-GFP and after the peak call, the 

repeats for each time point were joined to keep only targets which appeared in 

both repeats. In this way ‘high confidence’ peaks were created which have 

background removed and two repeats. Use of these high confidence samples is 

a conservative method for analysing ChIP-Seq data which risks loss of peaks 

which have biological significance, but it allows for high-confidence conclusions 

to be drawn about the binding of Hsr1.  
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The annotated high confidence peaks showed that Hsr1 bound to tdh1 at 30- 

and 60-minutes post treatment with H2O2, and to gcd1 and pfl2 at 30-minutes 

post treatment, but not to these genes at the untreated time 0 control. This 

shows that binding to these genes was in response to the oxidative stress 

caused by H2O2, which has been shown to activate Hsr1 (Chen et al., 2008). 

Hsr1 regulates transcription of glycolytic enzyme Tdh1 in response to oxidative 

stress   

tdh1, a high-confidence target gene, was identified as having oxidative-stress 

dependent binding with binding at 30- and 60-minutes post treatment with H2O2, 

but not in the untreated time 0 control. tdh1 is a protein coding gene which 

codes for Tdh1, a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

enzyme which catalyses the sixth step of the glycolytic pathway and has also 

been shown to be involved in the cellular response to oxidative stress 

(Morigasaki et al., 2008, Morigasaki and Shiozaki, 2010, Morigasaki and 

Shiozaki, 2013). During the multistep phosphorelay in response to oxidative 

stress in S. pombe, sensor histidine kinases Mak2 and Mak3 activate the 

phosphotransferase Mpr1 which activates the response regulator Mcs4. Mcs4 

then goes on to trigger a MAPK cascade to activate the MAPK Spc1. Tdh1 has 

been shown to form a complex with Mcs4 in response to oxidative stress, which 

facilitates this phosphorelay. In response to H2O2 treatment, Tdh1 also 

undergoes oxidation of one of its cysteine residues which promotes its 

interaction with Mcs4. This cysteine residue modification is conserved in other 

organisms and may be a mechanism for Tdh1 to avoid irreversible oxidative 

inactivation. Hsr1 binding to the promoter region of tdh1 in this work was 

induced by oxidative stress from H2O2 treatment.  
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Potentially, transcriptional regulation of tdh1 by Hsr1 in response to oxidative 

stress could regulate the availability of Tdh1 for the phosphorelay complex with 

Mcs4, as well as regulating the glycolytic pathway by transcriptomic control of 

Tdh1. During oxidative stress, cells have been shown to redirect glycolysis 

through to the pentose phosphate pathway to generate reducing NADPH which 

can limit oxidation by reducing reactive oxygen species within the cell (Mullarky 

and Cantley, 2015). This redirection would require regulation of glycolysis and 

also of the pentose phosphate pathway. 

Hsr1 regulates transcription of glucose dehydrogenase Gcd1 in response to 

oxidative stress 

gcd1, a high-confidence target gene, was identified as having oxidative-stress 

dependent binding with binding at 30-minutes post treatment with H2O2, but not 

at 60-minutes post treatment or in the untreated time 0 control. gcd1 is a protein 

coding gene which codes for Gcd1, an NAPD+-dependent glucose 

dehydrogenase which has been shown to function as an alternative route into 

the pentose phosphate pathway in S. pombe (Corkins et al., 2017). Gcd1 is 

suggested to function as a shunt into the pentose phosphate pathway which 

bypasses the rate limiting enzyme Glu-6-P dehydrogenase. In this way it would 

be possible to Gcd1 to function as a shunt into this pathway in response to 

oxidative stress in the cell, regulated by Hsr1 transcriptional control. We can 

propose that Hsr1 regulates the redirect from glycolysis to the pentose 

phosphate pathway in fission yeast by increasing transcription of Gcd1 which 

can increase entry to the pathway. This increased capacity for entry into the 

pentose phosphate pathway within the cell would allow for much greater 

NADPH production and offer protection against the reactive oxygen species 

from the oxidative stress (Mullarky and Cantley, 2015). 



Exploring the Role of Hsr1 in Cellular Ageing and Ageing-Associated Processes in Yeast 

147 

 

Hsr1 regulates flocculation and cellular adhesion in response to oxidative stress 

through pfl2 

Flocculation, the process of cell aggregation and separation from the media, 

has been shown to be a protective phenotype for cells under stress (Smukalla 

et al., 2008). The flocculation allows the inner cells of the floc to be protected 

from the environmental stressors by the physical barrier of the external cells of 

the floc. In this way, flocculation can be seen as a response to environmental 

stressors to protect some cells in the population from the effects of the stress. 

pfl2, a high-confidence target gene, was identified as having oxidative-stress 

dependent binding with binding at 30-minutes post treatment with H2O2, but not 

at 60-minutes post treatment or in the untreated time 0 control. pfl2 is a protein 

encoding gene which codes for Pfl2, a cell surface glycoprotein involved in 

flocculation whose overexpression has been shown to produce the second 

highest degree of flocculation of all the pombe flocculins (Kwon et al., 2012). 

Since overexpression of pfl2 causes an increase in flocculation we can assume 

that the transcription levels of pfl2 will affect the degree of flocculation. Hsr1 

binding to the pfl2 promoter in response to oxidative stress regulates this 

transcription and therefore likely regulates the degree of flocculation of the cell. 

pfl2 is also the direct transcriptional target of the flocculation transcription 

factors Mbx2 and Rfl1 (Kwon et al., 2012), meaning that Hsr1 likely functions as 

part of this network of flocculation transcription factors.  

Gene ontology enrichment analysis for the high confidence Hsr1 targets also 

showed enrichment for flocculation, aggregation of unicellular organisms and 

cell aggregation at nearly 100 times that of the background frequency in the 

genome (table 22). This enrichment was caused by four of the Hsr1 targets 

having these associated biological processes. Aside from pfl2, Hsr1 also bound 
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to flocculation related genes SPAPB2C8.01, pfl3 / SPBC947.04, 

SPBPJ4664.02, pfl5 / SPBC1289.15 and gsf2 / SPCC1742.01. This binding 

was not dependent on oxidative stress in the same way as pfl2 binding, but it 

does point to a wider involvement of Hsr1 in regulating cellular flocculation. 

Three of the genes are likely directly involved with the pfl2 pathway: three other 

named pombe flocculins, pfl3 and pfl5 and gsf2, also regulated by Mbx2 and 

Rfl1 (Kwon et al., 2012). From this, it can be inferred that Hsr1 is involved in 

flocculation regulation in both an oxidative stress dependent and independent 

way.   

Hsr1 regulates ribosomal subunit 18s in response to oxidative stress   

8 ribosomal RNA genes were found to be high confidence targets of Hsr1. Of 

these, binding at SPRRNA.43, SPRRNA.44, and SPRRNA.46 was found to be 

responsive to oxidative stress due to Hsr1 unbinding by 30 minutes of H2O2 

treatment and rebinding by 60 minutes of H2O2 treatment (table 21). These 

genes make up the 18s ribosomal subunit (EMBL-EBI, 2021) meaning that Hsr1 

regulates transcription of the 18s ribosomal subunit in response to oxidative 

stress. mRNA levels and protein levels are known to decrease during oxidative 

stress with mRNA returning to baseline ~1h after treatment but protein levels 

continuing to change due to a number of factors (Vogel et al., 2011). Reduced 

transcription upon oxidative stress has been attributed to ribosome stalling on 

tryptophan codons causing ribosome accumulation upstream (Rubio et al., 

2021). With the oxidative stress time-dependant binding of Hsr1 to the genes 

which make up the 18s ribosomal subunit, we can suggest that Hsr1 is another 

mechanism by which translation is stalled during oxidative stress before 

returning to baseline. This mechanism appears to mirror the decrease in 

transcription which also returns to baseline within 60 minutes of treatment.  
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Hsr1 functions as part of a wider network of ageing-associated transcription 

factors 

 

Figure 29: Hsr1 functions as part of a wider network.  

Hsr1 is regulated by ageing-associated transcription factors including Gaf1, Php2, Php4 and 
Php5, and goes on to regulate ribosomal subunit 18s, the glycolytic pathway, the pentose 
phosphate pathway and flocculation.  

 
Since hsr1 is regulated itself by the ageing-associated transcription factors 

Gaf1, Php2, Php4 and Php5, it forms part of a wider network of the 

transcriptional control of ageing-associated pathways in the cell (figure 29). 

Hsr1, through regulation by these transcription factors, goes on itself to regulate 

components of the glycolytic and pentose phosphate pathways. Both of these 

pathways are strongly implicated in ageing-associated stress responses to 

nutrient availability and oxidative stress (Albers et al., 2007, Mullarky and 

Cantley, 2015). Along with the transcription factors Mbx2 and Rfl1, Hsr1 also 

regulates flocculation in fission yeast which can be a protective phenotype for 

cells undergoing stress leading to increased chances of survival and longevity 

(Di Gianvito et al., 2017). Hsr1 also regulates the genes which code for the 
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ribosomal subunit 18s and could be a mechanism by which translation is 

reduced upon oxidative stress.  

This network of transcriptional control helps to provide mechanisms for the 

interplay between the pathways involved in ageing including the target of 

rapamycin pathway, the glycolytic pathway, and the pentose phosphate 

pathway. Building up a picture of the interplay between ageing related 

transcription factors can elucidate the ways in which ageing-associated cellular 

processes are connected and dependent on one another.  

Transcription factors involved in sulfur metabolism and negative regulation of 

meiosis in s. cerevisiae have similar binding motifs to Hsr1 

The suggested TGTGGT binding motif for Hsr1 (figure 21) has high similarity to 

the binding motifs of the S. cerevisiae transcription factors Met32 and Rme1 

(figure 22) which can suggest conserved functionality. Met32 is responsible for 

activation of the sulfur metabolism pathway including sulfate assimilation and 

sulfonate metabolism (Carrillo et al., 2012). Rme1, like Hsr1, is a zinc finger 

transcription factor which has been shown to be a negative regulator of meiosis 

and a positive activator of G1 cyclin gene expression leading to entry initiation 

of the cell cycle in s. cerevisiae (Toone et al., 1995). Sulfur metabolism, meiosis 

and regulation of the cell cycle are all processes associating with ageing 

processes within the cell (Tyers et al., 1993, Gire and Dulic, 2015, Jeon et al., 

2018, Boselli et al., 2009), suggesting that the transcription factors with similar 

binding sites to Hsr1 are also involved with ageing-associated cellular 

pathways. 
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Transcription factors involved in cell proliferation, differentiation and cell lineage 

specification in humans have similar binding sites to Hsr1 

In humans, the RUNX family of transcription factors have a similar binding motif 

to Hsr1 (figure 23). RUNX transcription factors are highly conserved across 

metazoans and are involved in a range of cellular processes (Mevel et al., 

2019). RUNX1 has been shown to be involved in cell differentiation in 

haematopoiesis, RUNX2 in skeletal development and RUNX3 in neurogenesis. 

Mutations in the RUNX transcription factor family have been shown to be 

involved in the proliferation and development of cancers, summarised in table 

26.  

Table 26: Summary of the cancers which have been shown to be contributed to by mutations in 
RUNX transcription factors. 

RUNX1 Epithelial tumours such as skin and oral cancers (Scheitz et al., 2012). 

Tumorigenesis of hormone related organs including breast, ovarian, uterine, 

and prostate cancers (Riggio and Blyth, 2017). 

RUNX2 Osteosarcoma development (Martin et al., 2011). 

Breast and Prostate cancer bone metastasis (Chuang et al., 2017). 

RUNX3 Solid-tissue tumorigenesis in the gastrointestinal system, pancreas, and lungs 

(Chuang et al., 2017, Lotem et al., 2017). 

 

Cancer is widely considered to be an ageing related disease since age is the 

biggest risk factor for the disease, with cell proliferation and differentiation a key 

component to its physiology (Berben et al., 2021). Therefore, the human 

transcription factors with similar binding motifs to Hsr1 are also involved in 

ageing-associated cellular processes.  
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Future directions  

Future research into Hsr1 and its targets should focus on defining its function as 

a repressor or an activator for each of its targets. Notably, published microarray 

data for a hsr1∆ deletion strain (Chen et al., 2008) showed no overlap with 

respect to the differentially expressed genes in the mutant and the stress-

dependant high-confidence targets identified by this ChIP-Seq experiment. This 

discrepancy may reflect differences in the particular oxidative-stress conditions 

which can lead to experimental variaton, so new transcriptional analysis would 

be necessary. Transcriptional analysis such as RNA-seq as well as phenotyping 

of double mutants could help to fully explain the impact of Hsr1 binding on its 

targets and therefore further define its role within cellular ageing and ageing-

associated processes.  

3.4.4 Genetic interactions of hsr1  

In an SGA, negative genetic interactions usually highlight that the protein 

products are involved in parallel or compensatory pathways whereas positive 

interactions usually highlight that the protein products operate in the same linear 

pathway (Ryan et al., 2013). In this way, the SGA can be used to identify other 

components of Hsr1’s linear pathway as well as components of pathways which 

act in a compensatory manner to it. The screen highlighted the genetic 

interactions between hsr1 and two of its known associated genes under the 

YES condition, along with other ageing-associated genes dependent on 

caffeine and rapamycin treatment.  

hsr1 has a negative genetic interaction with its known associates php5 and 

gcd1 

Under YES conditions, hsr1 had negative genetic interactions with php5 and 

gcd1. As discussed in 3.4.3, Php5 binds to hsr1 and Hsr1 binds to gcd1. The 
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negative interaction of hsr1 with these two genes is indicative of the genes 

belonging to the same compensatory network as hsr1. These interactions are 

therefore consistent with the results from Php5 and Hsr1 ChIP-Seq experiments 

which report these bindings. This adds to the evidence of the connections 

between Hsr1 and Php5/Gcd1 as well as providing a positive control which 

helps to reassure that the SGA is producing reliable and valid findings.  

hsr1 has caffeine and rapamycin dependent negative interactions with 

ribosomal associated genes rpl26 and fyv7 

hsr1 showed caffeine and rapamycin dependent negative interactions with the 

60s ribosomal protein encoding gene rpl26 (Leng et al., 2014) and the rRNA 

processing gene fyv7 (Peng et al., 2003). The involvement of these genes 

suggests that Hsr1 is involved in compensatory ribosomal processes within the 

cell, adding to the ChIP-Seq result that Hsr1 regulates ribosomal subunit 18s in 

response to oxidative stress (section 3.4.3). This suggests that Hsr1 is also 

involved with ribosomal processes during TOR inhibition. rpl26 also has a 

human ortholog RPL26, which is implicated in cancer as it regulates the tumour 

suppressor genes p53 and p73 (Gazda et al., 2012, Zhang et al., 2016). This 

adds to Hsr1’s potential involvement in cancer processes through its similar 

binding site to the RUNX genes (section 3.4.3).  

hsr1 has a caffeine and rapamycin dependent negative interaction with the 

ageing related gene fkh1 

hsr1 also showed a caffeine and rapamycin dependent negative interaction with 

fkh1, a conserved forkhead transcription factor required for stress response, cell 

cycle progression and longevity (Malo et al., 2016). A negative interaction 

suggests that Hsr1 and Fkh1 are acting in compensatory biological pathways, 

supporting Hsr1’s involvement in stress- and ageing-associated pathways. fkh1 
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deletion strains show reduced chronological lifespan and increased stress 

sensitivity, likely reflection that Fkh1 is a target of rapamycin in fission yeast 

(Weisman et al., 2001, Malo et al., 2016). Since Fkh1 is a target of rapamycin, 

its deletion would confer a rapamycin resistant strain, with the subsequent 

deletion of hsr1 leading to even greater resistance to rapamycin with the double 

mutant with hsr1 showing a reduction in growth from the ade6 double mutant 

control by more than half. This is strongly suggestive that Hsr1 and Fkh1 

operate in a compensatory manner during TOR inhibition. Operating in a 

compensatory TOR associated pathway could also explain the caffeine and 

rapamycin resistance of the hsr1∆ strain as seen in figure 17.  

hsr1 has a caffeine and rapamycin dependent positive interaction with the 

ageing related gene amk2 

hsr1 showed a caffeine and rapamycin dependent positive interaction with 

amk2, the AMP-activated protein kinase (AMPK). AMPK is closely linked to 

ageing by controlling autophagy through TOR, being involved in cellular stress 

resistance and metabolic regulation (Salminen and Kaarniranta, 2012). A 

decline in AMPK activation in ageing is associated with decreased autophagy, 

increased oxidative stress, increased endoplasmic stress and increased 

apoptotic resistance, all key elements of ageing and ageing-associated disease 

(Salminen and Kaarniranta, 2012). The positive interaction with hsr1 suggests 

that Hsr1 is involved in the same linear pathway as AMPK, this would cement 

Hsr1 as being part of an ageing-associated pathway and confirm its 

involvement with ageing and lifespan. Since AMPK interacts with the TOR 

pathway and the positive interaction was dependent on the condition of TOR 

inhibition it is likely that Hsr1 is involved in the AMPK/TOR cascade.  
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Future directions 

Future studies could look to create SGAs for known associates of hsr1 including 

php5 which also showed a genetic interaction with hsr1 in this work. These 

SGAs could be used to look for overlaps between the genetic interactions and 

create a clearer picture of the relationships between these pathways. To build 

on this further, phenotype tests of double mutants with interaction hits such as 

fkh1 and amk2 could be used to investigate the genetic interaction more 

thoroughly.  
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Conclusions  

The current theories for the mechanism of ageing range across several complex 

pathways and processes, such as mitochondrial stress, DNA damage, and free 

radicals. All these theories have supporting evidence which shows them to be, 

at least in part, an accurate description of the ageing process. However, the 

theories also conflict in ways that make a unified theory of ageing hard to 

define. This evidences that the mechanism which underpins the ageing process 

is likely a process which involves multiple pathways acting in a combinatory 

manner. As with any complex biological process, when we have only part of the 

story, defining a mechanism can seem like an impossible task. However, as 

research progresses, we are collectively able to fill in the blanks and develop a 

clear picture of each new step in the pathway. In the current landscape of 

ageing research, we are likely at this juncture from which we can only see parts 

of a mechanism larger than we can currently conceive.  

There are two ways to approach beginning to fill in the gaps of this problem. 

Firstly, we can look at the mechanism from the bottom, up, and continue to 

define interactions of individual pathways one at a time. This is the traditional 

approach of molecular biology, which has brought the field much of the current 

theories of ageing. However, engaging with this bottom-up approach alone 
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often results in a granular understanding of complex mechanisms, resulting in 

situations such as with ageing where we understand parts in great detail but are 

missing connections. The second approach is to instead study the mechanism 

from the top, down. Here, we would engage approaches like machine learning 

and high throughput screens, which don’t provide the same mechanistic detail 

but instead bring us overarching ideas and provide evidence for connections 

between pathways.  

In scientific research, we are always hampered by the limitations of our 

techniques and our own preconceived understanding. We are only able to look 

at a small part of big answers at any one time and then try to build the 

connections between the evidence to create an understandable narrative. 

Taking on questions as integral to our own lives as ‘what is ageing?’ is an 

enormous responsibility, and we must make every effort to see the problem 

from all angles. To take the fullest advantage of the technologies available to us 

in the ageing field, we can design projects which tackle research questions both 

from the bottom up and the top down, giving us the best opportunity to catch a 

glimpse of the complete picture. With this research, I took the question of ‘how 

are ageing-associated pathways connected?’ and approached it from both a 

bottom-up and top-down direction. Combining machine learning built on high 

throughput lifespan and phenotype screens and traditional molecular biology 

techniques for defining transcriptional control of ageing pathways, I created a 

multi-pronged approach to the research. By doing so, I was able to begin to 

unpick some of the complex and combinatory mechanisms which connect the 

cellular ageing-associated pathways.  

Making use of a phenotypically rich collection of wild type yeast strains from 

around the world, I developed a machine learning model to predict the complex 
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phenotype of lifespan from simple phenotypes to within 3 days. When we 

consider that we usually describe fission yeast lifespans in the relative terms of 

being ‘short’ or ‘long’, a quantitative error of 3 days within a range of 0-28 days 

is negligible, and the model can be described as successfully predicting lifespan 

from simple phenotypes. This is an important step in itself, as it evidences that 

these phenotypes contain all the information necessary for determining lifespan. 

From this, we can infer that several stress response pathways are involved in 

the ageing process, with the combinatory nature of this involvement 

demonstrated by the sophisticated form of machine learning model needed for 

the prediction.  

Further to this question, I then leveraged the model to ask which of these 

phenotypes, and consequently which ageing-associated pathways, are most 

involved in ageing. To do this, I created a custom feature selection script, which 

was able to select the most predictive phenotypes for lifespan by building the 

model in a stepwise manner. This feature selection provided more evidence that 

a combination of data from different stress pathways was necessary for 

accurate lifespan prediction, highlighting the combinatory nature of these 

pathways’ contribution to cellular ageing and lifespan. The feature selection was 

also able to identify mitochondrial stress, nutrient availability, DNA damage and 

amino acid supplementation as the most predictive phenotypes of ageing, and, 

therefore, implicate them as the pathways most closely linked with cellular 

ageing.  

This work then went on to investigate some of the finer mechanisms by which 

these pathways may be connected in the form of the ageing-associated 

transcription factors. Characterisation of the hsr1∆ deletion strain showed it to 

have a resistant phenotype to TOR inhibition by caffeine and rapamycin 
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treatment, and subsequently, Hsr1 was further investigated for its ageing-

related connections. Hsr1 functions as part of a wider network of ageing-

associated transcription factors, including Gaf1 and Phps, and target 

identification by ChIP-Seq revealed that it regulates ribosomal subunit 18s, 

flocculation, the glycolytic pathway, and the pentose phosphate pathway in 

response to oxidative stress. Genome-wide genetic interaction analysis of hsr1 

then uncovered its interaction with multiple ageing-associated genes, including 

components of the TOR pathway.  

In this way, this research was able to highlight the combinatory, complex nature 

of the ageing-associated pathways and their contribution to cellular ageing, 

beginning to provide some clues for how they are connected. The research 

showed from both perspectives that DNA damage and repair are integral to the 

ageing process by highlighting DNA damage from the top-down machine 

learning approach and the pentose phosphate pathway, which is involved in 

DNA synthesis, in the bottom-up ChIP-Seq approach. ChIP-Seq analysis of 

Hsr1 targets also implicated the connection of flocculation to ageing-associated 

pathways, connecting with the machine learning model, which identified amino 

acid and nutrient availability as strongly ageing-associated. While these 

associations are preliminary, the work has highlighted some areas of future 

interest which would allow for further research to build on these results. By 

continuing to approach ageing research questions from multiple angles, it is my 

firm belief that the field will go on to develop the nuanced and unified 

mechanistic model of cellular ageing we have been searching for.   
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Supplementary Figures  

 

Supplementary Figure 1: Pairwise correlation of mean DeadOrAlive lifespan proxy for all 
repeats and cell adhesion score for the wild type strains.  

 

 

A                                                            B 

 

Supplementary Figure 2: Example of overfitting for a neural network built on dataset NN1 using 
the Adam optimiser with a learning rate of 0.0005. The loss and error curves for the test data 
begin to rise after the initial fall (A), and the predicted lifespans for the training data are strongly 
correlated to the actual values whereas the predicted lifespans for the test data are not 
correlated to the actual values (B). Both of these show overfitting. 

 


