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Abstract—In this paper, a stochastic geometry based analytical
framework is proposed for secure simultaneous transmitting
and reflecting reconfigurable intelligent surface (STAR-RIS)
assisted non-orthogonal multiple access (NOMA) transmissions,
where legitimate users (LUs) and eavesdroppers are randomly
distributed. Both the time-switching protocol (TS) and energy
splitting (ES) protocol are considered for the STAR-RIS. To
characterize system performance, the channel statistics are first
provided, and the Gamma approximation is adopted for general
cascaded κ-µ fading. Afterward, the closed-form expressions for
both the secrecy outage probability (SOP) and average secrecy
capacity (ASC) are derived. To obtain further insights, the
asymptotic performance for the secrecy diversity order and the
secrecy slope are deduced. The theoretical results show that 1)
the secrecy diversity orders of the strong LU and the weak LU
depend on the path loss exponent and the distribution of the
received signal-to-noise ratio, respectively; 2) the secrecy slope
of the ES protocol achieves the value of one, higher than the slope
of the TS protocol which is the mode operation parameter of TS.
The numerical results demonstrate that: 1) there is an optimal
STAR-RIS mode operation parameter to maximize the secrecy
performance; 2) the STAR-RIS-NOMA significantly outperforms
the STAR-RIS-orthogonal multiple access.

Index Terms—Non-orthogonal multiple access, performance
analysis, physical layer security, reconfigurable intelligent sur-
face, stochastic geometry

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) have been re-
garded as a promising technique to support the smart radio
environment and efficient secure transmissions in future com-
munication networks [2]–[4]. One typical RIS is a uniform
planer array with a large number of low-cost elements. By
equipping with advanced beamforming controllers, the phase
shifts of reflected signals on each RIS element can be changed
independently, which helps to adjust the propagation of signals
[5]. Benefiting from this feature, the RIS is able to improve
the communication quality of legitimate users (LUs) while
limiting eavesdropping by appropriate design on beamforming
[6], thereby enhancing physical layer security (PLS).
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For the conventional reflecting-only RIS, PLS performance
within half of the space in front of the RIS can be con-
trolled, while the LUs in another half of the space still suffer
from uncontrollable eavesdropping. To address this issue,
the concept of simultaneous transmitting and reflecting RIS
(STAR-RIS) has been proposed [7], [8]. With three operation
protocols, i.e., time switching (TS), energy splitting (ES), and
mode switching [7], different beamforming approaches can
be implemented at both sides of the STAR-RIS, and hence
the full-space PLS enhancement is realized. Note that STAR-
RISs serve LUs at different sides by the same signal source,
a multiple access scheme is indispensable for splitting unicast
reflected and transmitted signals. The non-orthogonal multiple
access (NOMA) scheme can be a competent candidate due to
its high spectral efficiency and user fairness. By employing the
superposition coding at the transmitter for power multiplexing
and the successive interference cancellation (SIC) at the re-
ceiver for detection, STAR-RIS-NOMA protects multiple LUs
within the same time-frequency resource block [9], [10].

A. Related Works

Due to the broadcast nature of wireless communications, the
concept of PLS was proposed from an information-theoretical
perspective [11] and has attracted wide attention in recent
years. In general, PLS leverages the inherent characteris-
tics of the propagation environment (e.g., fading, noise, and
interference) to provide secure transmissions. One common
method is to employ the jamming and artificial noise (AN)
aided technique to depress the wiretapping of the potential
eavesdroppers (Eves) [12], [13]. By deploying jammers that
emit jamming signals to confuse the Eves, the information
loss due to eavesdropping can be reduced. Another popular
method is to improve the received signal quality at the LUs
and to reduce the information leakage to the Eves with the
aid of multi-antenna technology [14], [15]. Therefore, it is
natural to use the RIS which is a passive multi-antenna device
for PLS enhancement. The authors of [16] focused on a
challenging case in downlink RIS-assisted secure transmission,
where the Eve has better channel conditions than the LU.
The design of beamforming is based on the global channel
state information (CSI) of the Eve and the LU. In [17],
the authors proposed a novel design on RIS beamforming
to eliminate the signals received by the Eve, and hence
the global CSI of the Eve is required. In [18], the secrecy
data rate in a RIS-aided massive multiple-input multiple-
output system was studied and the statistical CSI of the Eve
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was considered. These works assumed that the perfect CSI
of the Eve is known for beamforming design. In practice,
however, it is difficult to acquire perfect knowledge of the
CSI of the eavesdropping channels because potential Eves are
not continuously communicating with the BS and are even
passive to hide their existence. In [19], the authors utilized
the imperfect CSI of the Eves to jointly design the transmit
beamformers, AN covariance matrix, and RIS phase shifters.
In [20], the theoretical SOP was derived under the assumption
that Eve’s CSI is unknown. The above works investigated
PLS in the presence of fixed LUs and Eves. To capture
the randomness property in the considered space, stochastic
geometry is a powerful tool [21] and has been widely utilized
to study the PLS in traditional communication systems [22],
[23]. The authors in [24] considered the spatial effect in a RIS-
assisted multiple-input multiple-output system and modeled
the locations of LUs by a homogeneous Poisson point process
(HPPP). Then the theoretical secrecy performance expressions
were derived.

Sparked by the potential advantages of combining STAR-
RIS and NOMA, research contributions have been devoted
to STAR-RIS-NOMA recently. In [25], the authors focused
on the coverage performance and illustrated the superiority of
NOMA over orthogonal multiple access (OMA) in STAR-RIS-
aided transmissions. In [26], bit error rate expressions were
derived in STAR-RIS-NOMA and the results revealed that the
STAR-RIS-NOMA outperforms the classical NOMA system
in terms of error performance. The authors in [27] solved
a joint optimization problem for maximizing the achievable
sum rate. Simulation results demonstrated the better perfor-
mance of STAR-RIS-NOMA than the conventional RIS-aided
transmissions. Works [28] and [29] investigated the theoretical
performance of STAR-RIS-NOMA in large-scale networks. In
[28], the authors proved that for three STAR-RIS operation
protocols, the accurate diversity orders depend on the number
of STAR-RIS elements that form the passive beamforming.
In [29], a general analytical framework was provided for the
multi-cell networks, where LUs, BSs, and STAR-RISs are
randomly distributed. Furthermore, a few works started to pay
attention to the PLS in STAR-RIS-NOMA. In [30], the authors
focused on the AN-assisted downlink transmission for the
improved secrecy rate. In [31], residual hardware impairments
were considered and analytical expressions of the SOP were
provided for the paired NOMA LUs. In [32], the authors aimed
to maximize the minimum secrecy capacity in STAR-RIS-
aided uplink NOMA networks by joint secrecy beamforming
design. However, these initial works considered simplified
settings with fixed eavesdropping as the location of the Eve is
predefined.

B. Motivations and Contributions

As we have discussed, although STAR-RIS-NOMA has the
capability of providing full-space security enhancement, the
impact of eavesdropping from the full space needs to be
investigated. The security performance of STAR-RIS-NOMA
transmissions considering randomly distributed Eves in the full
space is important but has not been studied in previous work
to our knowledge. Motivated by the above, in this work, we

focus on the theoretical security performance of the STAR-
RIS-NOMA in the presence of randomly distributed LUs and
Eves.1 The main contributions are summarized as follows:
• We propose an analytical framework for STAR-RIS-

NOMA in terms of PLS, where both LUs and Eves
are randomly deployed. In this framework, the paired
NOMA LUs are randomly selected from two sides of
the STAR-RIS, and the distribution of Eves is modeled
by a HPPP. A mapping method is introduced for unifying
the performance at different sides of the STAR-RIS. The
beamforming of the STAR-RIS is designed to enhance the
channels of LUs. Moreover, a general κ-µ distribution is
used to characterize the small-scale fading.

• We derive the analytical expressions of the SOP for the
NOMA LUs when the CSI of Eves is unavailable at
the BS. The ordering channel statistics are obtained by
exploiting the Gamma distribution to fit the cascaded
small-scale fading of STAR-RIS-aided links. We further
derive the asymptotic SOP expressions in the high signal-
to-noise-ratio (SNR) regime. The analytical results show
that the secrecy diversity order for the strong LU is related
to the path loss exponent while the error floor exists for
the weak LU in the considered scenario.

• We derive the analytical expressions of the average se-
crecy capacity (ASC) performance for the NOMA LUs
when the CSI of Eves is available at the BS. The
asymptotic ASC is also derived to obtain the secrecy
slope. The analytical results demonstrate that the secrecy
slopes for the ES protocol and the TS protocol are one
and the mode operation parameter of TS, respectively,
and hence the ES protocol outperforms the TS protocol
in ASC performance when the SNR is high.

• We use the numerical results to validate the analysis and
to show that: 1) there is an optimal STAR-RIS mode
operation parameter to maximize the SOP performance
and the ASC; 2) the secrecy performance of the ES
protocol always outperforms that of the TS protocol in
the considered system; 3) NOMA is able to achieve the
higher ASC than the OMA in the STAR-RIS-assisted
transmission.

C. Organization and Notations

The remainder of this paper is organized as follows. In
Section II, the system model of the secure STAR-RIS-aided
NOMA networks is introduced. In Section III, we derive the
theoretical SOP for the pair of NOMA LUs, and then the
secrecy diversity order is investigated. In section IV, we derive
the theoretical ASC and then obtain the secrecy slope. The
numerical results are presented in Section V. Finally, we draw
the conclusions in Section VI.

Notation: (·)T denotes the transpose operation. |x| is
the amplitude of x. E[·] denotes the expectation operator.
Gamma(k, θ) is the Gamma distribution with shape k and
scale θ. Γ(x) =

∫∞
0
tx−1e−tdt is the Gamma function.

γ(α, x) is the lower incomplete Gamma function [33, eq.
(8.350.1)]. Kt(x) represents is the tth-order modified Bessel

1In this work, we only consider the impact of external Eves.
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function of the second kind [33, eq. (8.432)]. pFq(ap; bq;x)
denotes the generalized hypergeometric function [33, eq.

(9.14.1)]. We denote [x]+ = max{x, 0}. Gm,np,q

(
(·)

∣∣∣∣∣(ap)(bq)

)
is the Meijer G-function [33, eq. (9.301)]. For a cumulative
distribution function (CDF) F (x), we denote its complemen-
tary CDF as F̄ (x) = 1− F (x).

II. SYSTEM MODEL

As shown in Fig. 1, we consider a secure downlink trans-
mission scenario, where a BS communicates with LUs assisted
by a STAR-RIS in the presence of Eves. The STAR-RIS with a
random orientation is fixed at the origin of a two-dimensional
plane R2. We fix the BS at (−lBR, 0), while the locations
of LUs obey a HPPP Φu within a disc area with radius
RU centered at the origin. The spatial distribution of Eves
is modeled by another HPPP Φe with the density λe in the
considered plane.2 We consider that the BS, LUs, and Eves
are equipped with a single antenna. The STAR-RIS consists of
N elements, and these elements are capable of simultaneously
transmitting and reflecting signals.

Those LUs located at the same side of the STAR-RIS as
the BS are the reflecting LUs; otherwise the transmitting LUs.
We randomly select a reflecting LU UR and a transmitting
LU UT to form a typical LU pair. The NOMA transmission
scheme is invoked for the typical LU pair. All Eves have
powerful detection capabilities and are able to overhear the
messages of all available resource blocks. Moreover, multiuser
detection techniques are adopted at Eves, and the Eves can
distinguish signals of different LUs when applying the NOMA
scheme. For tractable theoretical expressions, simple setups are
employed, and all assumptions are concluded as follows.

Assumption 1: We consider an urban environment for the
secure STAR-RIS-NOMA transmission, so all direct transmis-
sion links between the BS and LUs/Eves are blocked.

Assumption 2: The STAR-RIS is antenna empowered and
has the capability of independently controlling the transmitted
and reflected signals [35].

Assumption 3: The STAR-RIS is a planar antenna array. We
assume that the inter-antennas spacing is volume-unlimited,
and the angle difference of the signal transmitted and received
can be neglected. In this case, we approximately regard that
channel gains of N different channels are independently and
identically distributed [36].

A. Channel Model

In this work, we mainly focus on the STAR-RIS-aided links
between the BS and LUs/Eves. The channel model of the
considered STAR-RIS-aided transmission includes the path
loss model and the small-scale fading model. For clarity, we
use the subscript ε = {T,R} to denote the transmitting LU
and the reflecting LU, respectively. For LUs, the path loss

2The HPPP is a uniform distribution in this space, which can be regarded
as the steady-state distribution in the random direction mobility model [34].
Therefore, the LUs and Eves are moving as the random direction model.

of the STAR-RIS-aided link is related to the product of two
distances, which can be expressed as

Lε = Cr (lBRdε)
−α

, (1)

where dε is the distance between the STAR-RIS and the LU.
Cr is the reference distance based intercept. α refers to the
path loss exponent. Similarly, the path loss of the Eve i ∈ Φe

is

Le,i = Cr (lBRde)
−α

. (2)

As in previous works, all channels of the STAR-RIS-aided
transmission suffer from cascaded small-scale fading. Specifi-
cally, we denote the small-scale fading vectors of the BS-RIS
link and the RIS-LU/Eve link as hr1 = [hr1,1, ..., hr1,N ]T and
hr2 = [hr2,1, ..., hr2,N ]T , respectively. For LUs, the power of
the equivalent overall small-scale fading for the STAR-RIS-

aided cascaded channel is given by |hε|2 =
∣∣∣hr2T Θ̃εhr1

∣∣∣2,

where Θ̃ε = diag
(
ejθε,1 , ..., ejθε,N

)
is the normalized phase-

shifting matrix of the STAR-RIS, where j =
√
−1 and

θε,n ∈ [0, 2π) for n ∈ {1, ..., N}. To maximize the received
signal power at LUs, the STAR-RIS reconfigures the phase
shifts according to the instantaneous exact CSI so that phases
of all channels can be aligned at the LUs, i.e., for ε ∈ {R,T}
we have

|hε|2 =

(
N∑
n=1

|hr1,n||hr2,n|

)2

. (3)

Different from the LUs, phases of different channels are
random and independent at the Eves. The overall small-scale
fading power is

|he|2 =

(
N∑
n=1

|hBR,n||he,n|ejθn
)2

, (4)

where θn is uniformly distributed in [0, 2π). In this work, the
small-scale fading is characterized by the κ-µ distribution [37],
which is a general model including some classical distributions
such as the Rayleigh, Nakagami-m, and Rician as special
cases. The transmission from the BS to the LUs through
the STAR-RIS element n is the double κ-µ distribution. The
probability density function of the BS-RIS link and the RIS-
LU/Eve link is respectively given by

f|hr1,n|(x) =
2µ1(1 + κ1)

µ1+1
2 xµ1e−µ1(1+κ1)x2

κ1
µ1−1

2 eµ1κ1

×Iµ1−1

(
2µ1

√
κ1(1 + κ1)x

)
, (5)

f|hr2,n|(x) =
2µ2(1 + κ2)

µ2+1
2 xµ2e−µ2(1+κ2)x2

κ2
µ2−1

2 eµ2κ2

×Iµ2−1

(
2µ2

√
κ2(1 + κ2)x

)
, (6)

where I0(·) is the modified Bessel function of the first kind
with order zero.
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Fig. 1. System model for downlink secure STAR-RIS-NOMA transmissions.

B. STAR-RIS Operation Protocol

This work considers the TS protocol and the ES protocol
to operate the STAR-RIS. Here, We introduce these operation
protocols. Since the received signal is highly relative to the
change of phases and amplitudes by the STAR-RIS, we
provide the transmission- and reflection-coefficient matrixes
in two protocols.

1) Time Switching Protocol: In TS protocol, the STAR-
RIS operates in the reflecting mode or transmitting mode
in different time periods. Let Tε denote the percentage of
communication time allocated to the LU ε, where TR+TT = 1
and Tε ∈ [0, 1]. In the reflecting mode, the transmission-
and reflection-coefficient matrix is ΘTS

R = Θ̃R while in the
transmitting mode, we have ΘTS

T = Θ̃T.
2) Energy Splitting Protocol: In ES protocol, the energy of

the signal incident on each element is split into two parts for
transmitting and reflecting with energy splitting ratios βT and
βR, respectively, and we have βR + βT = 1 according to the
law of energy conservation. We consider the same βε on all
elements of the STAR-RIS. Therefore, the transmission- and
reflection-coefficient matrix for LU ε is ΘES

ε =
√
βεΘ̃ε.

In this work, we call Tε and βε the mode operation
parameters of TS and ES, respectively.

C. Signal Model

We focus on the typical LU pair in this work. The remaining
LUs use resources that are orthogonal to the typical LU pair, so
only intra-cluster NOMA interference occurs in the considered
system. In STAR-RIS-NOMA, the SIC process is employed as
in traditional NOMA systems. Without loss of generality, the
SIC is employed at the LU with the better channel condition in
the typical NOMA LU pair to achieve high rate performance.
Let Us and Uw denote the strong LU and the weak LU in
the LU pair, respectively. The power allocation coefficient for
Us is as and that for Uw is aw, where as + aw = 1. For user
fairness, the higher power level is always allocated to Uw, i.e.,
aw > as.

We consider the BS transmits Gaussian signals for both
LUs. If the reflecting LU is the strong LU, i.e., UR = Us, UR

decodes the massage of UT first. For the operation protocol
XS ∈ {TS,ES}, the signal-to-interference-plus-noise ratio
(SINR) of the SIC process is given by

γXS
SIC =

cXS
R awρbLR |hR|2

cXS
R asρbLR |hR|2 + 1

, (7)

where cTS
ε = 1 and cES

ε = βε for ε ∈ {T,R}. ρb is the
transmit SNR for LUs.

After the successful SIC, UR removes the messages of UT.
Then UR decodes its required messages with the following
SNR

γXS
R = cXS

R asρbLR |hR|2 . (8)

Since UT decodes its message by treating the message of
UR as interference, the decoding SINR at UT is expressed as

γXS
T =

cXS
T awρbLT |hT|2

cXS
T asρbLT |hT|2 + 1

. (9)

For the case that the transmitting LU is the strong LU, the
expressions can be obtained similarly, and we skip it here.
Since the SIC order in NOMA depends on the order of channel
gains, we focus on the performance of the strong LU and the
weak LU in the rest of the paper. Thus the subscript ε ∈ {s, w}
related to the type of LUs.

We consider the worst-case of the secure transmission, and
hence we focus on the most detrimental Eve which has the
highest detecting SNR of Uε. When the most detrimental
Eve is at the LU τ ∈ {s, w} side of the STAR-RIS, the
instantaneous SNR of detecting the information of Uε at the
Eve can be presented as

γXS
Eε = cXS

τ aερe max
i∈Φe

{
Le,i |he|2

}
, (10)

where ρe is the transmit SNR for the Eve.

III. SECRECY OUTAGE PROBABILITY

In this section, we consider the scenario where the CSI
of Eves is unavailable at the BS. In this case, we employ
the SOP as the performance metric. We first obtain new
channel statistics for STAR-RIS-aided links. Then we derive
the theoretical SOP expressions of the typical NOMA LU pair
in the considered networks. Finally, the asymptotic SOP in the
high SNR regime is provided.

A. New Channel Statistics

The STAR-RIS assisted transmission introduces cascaded
small-scale fading. For the fading channel from the BS to the
LU/Eve through the STAR-RIS element n, we denote ∆n =
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TABLE I
TYPICAL FADING MODELS IN CASCADED CHANNEL

Model Channel parameters PDF expression f|hu|2 (x)

double
Rayleigh

κ1 → 0, κ2 → 0,
µ1 = 1, µ2 = 1

4xK0 (2x)

double
Nakagami

κ1 → 0, κ2 → 0,
µ1 = m1, µ2 = m2

4xm1+m2−1

Γ(m1)Γ(m2)
(m1m2)

m1+m2
2 Km1−m2 (2x

√
m1m2)

double Rician κ1 = K1, κ2 = K2,
µ1 = 1, µ2 = 1

∞∑
r=0

∞∑
t=0

4xr+t+1Kr
1Kt

2(∆1∆2)
r+t

2
+1

eK1+K2 (r!)2(t!)2
Kr−t

(
2x

√
∆1∆2

)

|hr1,n||hr2,n|. The probability density function (PDF) of ∆n

can be expressed as [37]

f∆n(x) =
2φ1φ2x

eµ1κ1+µ2κ2

∞∑
q=0

∞∑
t=0

ρq,t

×G2,0
0,2

(
φ1φ2x

2 |q + µ1 − 1, t+ µ2 − 1
)
, (11)

where φi = µi(κi+1) and ρq,t = (µ1κ1)q(µ2κ2)t

q!t!Γ(q+µ1)Γ(t+µ2) . The k-th
order moment of the product ∆n is given by

E[(∆n)k] =
(µ1) k

2
(µ2) k

2

eµ1κ1+µ2κ2φ1
k
2 φ2

k
2

1F1

(
k

2
+ µ1;µ1;κ1µ1

)
× 1F1

(
k

2
+ µ2;µ2;κ2µ2

)
, (12)

where (x)m = Γ(x+m)
Γ(x) is the pochhammer symbol.

Some widely known fading distributions including Rayleigh
distribution, Nakagami-m distribution, and Rician distribution
are the special cases of the κ-µ distribution. In Table I, we
conclude the parameters and the simplified PDFs for those
typical fading models in the cascaded channel. Allowing κi =
Ki and µi = 1 for i ∈ {1, 2}, we are able to obtain the double
Rician distribution with the shape parameter Ki and the scale
parameter 1. When Ki → 0, the distribution becomes the
double Rayleigh distribution. If we set κi → 0 and µi = mi,
the double Nakagami-m distribution with the shape parameter
mi and the spread parameter 1.

Lemma 1. When the number of STAR-RIS elements is large
enough, the overall small-scale fading power for the LUs
obeys a Gamma distribution

|hu|2 ∼ Gamma

(
(mr

2N + σr
2)2

Ωr
,

ΩrN

mr
2N + σr2

)
, (13)

where Ωr = 4mr
2σr

2N + 2σr
4, mr = E[∆n], and σr

2 =
E[(∆n)2]−E[∆n]2. The overall small-scale fading power for
the Eves obeys

|he|2 ∼ Gamma (1,We) , (14)

where We = N(mr
2 + σr

2).

Proof: Based on the results in our previous work [29], if
mr and σr2 are the mean and the variance of ∆n, respectively,
the overall small-scale fading power |hu|2 can be approxi-
mately fitted by a Gamma distribution Gamma

(
Mu

2

Vu
, VuMu

)
,

where Mu = mr
2N2 + σr

2N and Vr = 4mr
2σr

2N3 +
2σr

4N2. Moreover, the overall small-scale fading power for
the Eves fulfills |he|2 ∼ N(mr

2 + σr
2) × Gamma (1, 1).

According to the property of the cascaded κ-µ distribution,
this lemma is proved.

Lemma 2. In the NOMA LU pair, CDFs of the channel
power for the strong LU and the weak LU can be respectively
expressed as

FHs(x) = [F̂Hu(x)]2, (15)

FHw(x) = 2F̂Hu(x)− [F̂Hu(x)]2, (16)

where F̂Hu(x) = δ
Γ(kr)G

1,2
2,3

(
RU

αx
ALθr

∣∣∣∣∣ 1− δ, 1
kr, 0,−δ

)
, δ = 2

α ,

AL = CrlBR
−α, kr = (mr

2N+σr
2)2

4mr2σr2N+2σr4 , and θr =
4mr

2σr
2N2+2σr

4N
mr2N+σr2 .

Proof: See Appendix A.

B. Secrecy Outage Probability Analysis
For the protocol XS ∈ {TS,ES}, let CXS

Uε
denote the chan-

nel capacity of the pair of LUs and CXS
Eε

represent the channel
capacity of the most detrimental Eve with the data of Uε. Then
the secrecy capacity of the NOMA LUs can be expressed as[
CXS
Uε
− CXS

Eε

]+
which is non-negative. For a target rate Rε,

if CXS
ε ≥ Rε, the information can be transmitted to Uε in

perfect secrecy. Otherwise, the information-theoretic security
is compromised. Therefore, the SOP of Uε can be defined as

PXS
ε = Pr

([
CXS
Uε − C

XS
Eε

]+
< Rε

)
. (17)

We can observe from (17) that to calculate the SOP, it is
important to derive the probability distribution of CXS

Uε
and

CXS
Eε

. In the following, we first provide the statistics of CXS
Uε

and CXS
Eε

. On this basis, the SOP expressions are derived.
Note that the most detrimental Eve is at either the strong

LU side or the weak LU side, we provide the channel statistics
of the most detrimental Eve at the LU τ ∈ {s, w} side.

Lemma 3. For the protocol XS ∈ {TS,ES}, the CDF of
the received SNR γXS

Eε,τ
at the most detrimental Eve Eτ (τ ∈

{s, w}) in terms of the message of Uε is given by

FγXS
Eε,τ

(x) = exp

(
−mε

(
x

cXS
τ

)−δ)
, (18)

where mε = 1
2πδλe(ρeaεALWe)

δΓ(δ) and δ = 2
α .

Proof: The CDF of the channel gain for the most detri-
mental Eve can be calculated as follows

FγXS
Eε,τ

(x) = EΦe

[∏
Φe

F|he|2

(
de
αx

ρeaεALcXS
τ

)]
. (19)
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We apply the probability generating functional [21, eq.
(4.3)] and utilizing the property that Gamma(1,We) =
WeExp(1). The (19) can be rewitten as

FγXS
Eε,τ

(x) = exp

(
− πλe

∫ ∞
0

r

×
(

1− F|he|2
(

rαx

ρeaεALcXS
τ We

))
dr

)
(a)
= exp

(
−πλe(ρeaεALc

XS
τ We)

δΓ(δ)

αxδ

)
, (20)

where (a) is obtained by applying [33, eq. (3.326.10)]. This
completes the proof.

When adopting the TS protocol, the channel capacity for the
pair of LUs is CTS

Uε
= Tε log2(1+γTS

ε ), while the capacity for
the reflecting/transmitting Eve is CTS

Eε,τ
= Tτ log2(1 + γTS

Eε,τ
).

To obtain neat expressions, we propose a mapping method
to unify the SNR at different sides of the STAR-RIS. We
introduce the equivalent received SNR for Eves as follows.

Definition 1. For the TS protocol, we deploy an equivalent Eve
Eτ→ε of the most detrimental Eτ , which locates at the same
side of the STAR-RIS as the Uε and has the same capacity as
Eτ . The equivalent received SNR at Eτ→ε is

γ̂TS
Eτ→ε =

(
1 + γTS

Eτ

)Tτ
Tε − 1. (21)

Then the PDF of the equivalent received SNR of the most
detrimental Eve in all reflecting and transmitting Eves can be
calculated.

Lemma 4. For the TS protocol, the PDF of the equivalent
received SNR for the most detrimental Eve in terms of the Uε
data is given by

fγ̂TS
Eε

(x) = δmεe
−me

∑
τ∈{s,w}

(
(x+1)T̃ε,τ−1

)−δ
×

∑
τ∈{s,w}

T̃ε,τ (x+ 1)T̃ε,τ−1

×
(

(x+ 1)T̃ε,τ − 1
)−δ−1

, (22)

where T̃ε,τ = Tε
Tτ

.

Proof: Based on Definition 1 and the results in Lemma 3,
the CDF of the equivalent received SNR for the Eve is
expressed as

Fγ̂TS
Eε

(x) = FγTS
Eε,T

((x+ 1)
Tε
TT − 1)FγTS

Eε,R

((x+ 1)
Tε
TR − 1)

= e
−mε

((
(x+1)

Tε
TT −1

)−δ
+

(
(x+1)

Tε
TR −1

)−δ)
. (23)

By taking the derivative of Fγ̂TS
Eε

(x), we obtain the PDF of
γ̂TS
Eε

. Note that τ ∈ {R,T} is equivelent to τ ∈ {s, w} in the
expression of Fγ̂TS

Eε
(x), the lemma is proved.

Theorem 1. For the TS protocol, the SOPs of the two NOMA
LUs are given by

PTS
s =

∫ ∞
0

FHs

(
2
Rs
Ts (x+ 1)− 1

asρb

)
fγ̂TS
Es

(x)dx, (24)

PTS
w =

∫ BTS
up

0

FHw

 1

ρb

2
Rw
Tw (x+ 1)− 1

aw − as
(

2
Rw
Tw (x+ 1)− 1

)


×fγ̂TS
Ew

(x)dx+ F̄γ̂TS
Ew

(
BTS
up

)
,

(25)

where BTS
up = 1

2Rw/Twas
− 1.

Proof: For both LUs, the SOP is related to fγ̂TS
Eε

(x) and
the CDF of received SNR of the LU. The SOP for the strong
LU can be expressed as

PTS
s =

∫ ∞
0

fγ̂TS
Es

(x)FγTS
Us

(
2Rs/Ts(x+ 1)− 1

)
dx. (26)

Based on the fact that γTS
Us

= asρbHs, (24) is obtained. For the
weak LU, since the outage probability is 1, i.e., FγTS

Us
(x) = 1

when aw−
(

2
x
Tw (γ̂TS

Es
+ 1)− 1

)
as ≤ 0, the SOP for the weak

LU consists of two parts

PTS
w =

∫ BTS
up

0

fγ̂TS
Ew

(x)FγTS
Uw

(
2Rw/Tw(x+ 1)− 1

)
dx

+

∫ ∞
BTS
up

fγ̂TS
Ew

(x)dx. (27)

Utilizing γTS
Uw

= awρbHw
asρbHw+1 , the proof is completed.

From Theorem 1, we can easily observe that with the
increase of Ts, the secrecy outage performance for the strong
LU is improved monotonically while the trend is the opposite
for the weak LU. Therefore, there is a trade-off between the
SOPs of the strong LU and the weak LU.

When considering the ES protocol, the channel capacity of
the legitimate LUs is expressed as CES

Uε
= log2(1 + γES

ε ) and
that for the Eves is CES

Eε
= log2(1+γES

Eε
). Similarly, we utilize

the mapping method for the equivalent received SNR in this
case as follows.

Definition 2. For the ES protocol, we deploy an equivalent
Eve of Eτ located at the same side as the Uε, and the
equivalent received SNR is

γ̂ES
Eτ→ε =

βτ
βε
γES
Eε . (28)

Lemma 5. For the ES protocol, the PDF of the equivalent
received SNR at the Uε side for the most detrimental Eve is
given by

fγ̂ES
Eε

(x) = δmεe
−mε

∑
τ∈{s,w}(β̃ε,τx)

−δ ∑
τ∈{s,w}

β̃−δε,τx
−δ−1,

(29)

where β̃ε,τ = βε
βτ

.

Proof: We have the CDF of γ̂ES
Eε

expressed as Fγ̂ES
Eε

(x) =

e−mε(β̃ε,sx)
−δ−mε(β̃ε,wx)

−δ

based on Lemma 3, then this
lemma is straightforwardly proved.

Theorem 2. For the ES protocol, the SOPs of the two NOMA
LUs are given by

PES
s =

∫ ∞
0

FHs

(
2Rs(βsx+ 1)− 1

βsasρb

)
fγ̂ES
Es

(x)dx, (30)
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PES
w =

∫ BES
up

0

FHw

(
1

ρbβw

2Rw(βwx+ 1)− 1

aw − as (2Rw(βwx+ 1)− 1)

)
×fγ̂ES

Ew
(x) + F̄γ̂ES

Ew
(BES

up ),

(31)

where BES
up = 1

2Rwasβw
− 1

βw
.

Proof: The proof is similar to Theorem 1 and hence we
skip it here.

Corollary 1. For the protocol XS ∈ {TS,ES}, the SOPs of
two LUs in the NOMA LU pair have the approximated closed-
form expressions

PXS
s ≈

Ms∑
m=1

ξmG
XS
s (ξm)

(Ms + 1)2[LMs+1(ξm)]2 exp(−ξm)
, (32)

PXS
w ≈

Mw∑
m=1

πBXS
up

2Mw

√
1− ϕm2GXS

w

(
BXS
up

2
ϕm +

BXS
up

2

)
+F̄γ̂XS

Ew
(BXS

up ),

(33)

where GXS
s (x) = fγ̂EXS

s
(x)FHs

(
1
ρb
gXS
s (x)

)
, Gw(x) =

fγ̂EXS
w

(x)FHw

(
1
ρb
gXS
w (x)

)
, gTS

s (x) = 2
Rs
Ts (x + 1) − 1,

gES
s (x) = 2Rs (βsx+1)−1

βs
, gTS

w (x) = 2
Rw
Tw (x+1)−1

aw−as
(

2
Rw
Tw (x+1)−1

) ,

and gES
w (x) = 2Rs (βsx+1)−1

aw−as(2Rs (βsx+1)−1)
. ϕm = cos

(
2m−1
2Mw

π
)

and ξm is the m-th root of Laguerre polynomial LMs
(x).

Ms and Mw are parameters to ensure a complexity-accuracy
trade-off.

Proof: By applying the Gauss–Laguerre quadrature and
the Chebyshev–Gauss quadrature to the SOP expressions for
the strong LU and the weak LU, respectively, the corollary
can be proved.

Similar to the conclusion of the TS protocol, with a larger
βs the better SOP for the strong LU is obtained while the
secrecy performance becomes worse for the weak LU in the
ES protocol.

Remark 1. When adjusting the STAR-RIS mode operation
parameters Tε or βε, there is a trade-off between the SOP
performance of the strong LU and the weak LU. In practice
implementation, we should decide the STAR-RIS mode opera-
tion parameters according to different LU requirements.

C. Diversity Order Analysis
To show further insights into the system implementation, we

investigate the SOP in the high-SNR regime. Eves are assumed
to have a powerful detection capability as the above analysis.
The asymptotic performance is analyzed, especially when the
difference of the channel SNR between the BS and LUs is
sufficiently high, i.e., ρb →∞. Note that when Eve’s transmit
SNR ρe → ∞, the probability of successful eavesdropping
tends to unity. We define the secrecy diversity order as

DXS = − lim
ρb→∞

log2

(
PXS
out,∞

)
log2(ρb)

, (34)

where PXS
out,∞ is the asymptotic SOP.

It can be observed from Theorem 1 and Theorem 2 that
the SOP is the integral of the product of fγ̂XS

Eε
(x) and FHε(x).

The expression is quite complex, so the relationship between
ρb and the SOP expression is not straightforward. We first
derive the asymptotic CDF of the unordered channel power
gain F̂Hu(x) which is related to FHε(x).

Lemma 6. When x→ 0+, the CDF of unordered LU channel
power gain is given by

F̂ 0+

Hu(x) = Lux
µ̂N , (35)

where Lu = 2Au
NRU

αµ̂N

ALµ̂N
, µ̂ = min{µ1, µ2} and Au =

Kuρ0,0(φ1φ2)µ̂Γ(|µ1−µ2|)Γ( 1
2 +µ̂)Γ(µ̂)√

πeµ1κ1+µ2κ2
. Ku = 2 when µ1 = µ2;

otherwise, Ku = 1.

Proof: See Appendix B.
Based on (A.5) in Appendix A, the asymptotic CDF

of ordered LU channel power gain is F 0+

l (x) =∑K
k=l

(
K
k

)
[Lux

µ̂N ]k[1 − Lux
µ̂N ]K−k ≈ Lu

lxµ̂Nl for the l-
th weakest LU. If the signal is transmitted to LUs without
being eavesdropped, i.e., ρe → 0, the outage probability can
be expressed as FHε

(
1
ρb
gXS
ε (0)

)
. Therefore, the diversity

orders for the weak LU and the strong LU are µ̂N and 2µ̂N ,
respectively.

Remark 2. When considering the STAR-RIS-assisted trans-
mission in the no-eavesdropping scenario, the diversity order
for the NOMA LUs has a linear correlation with the number of
elements on the STAR-RIS. Therefore, the outage performance
can be improved by increasing the number of elements in this
case.

When considering the PLS, however, we cannot ignore the
impact of fγ̂XS

Eε
(x) on the SOP performance. Since γ̂XS

Eε
may

have a long-tail PDF, it is unreasonable to calculate the secrecy
diversity order by utilizing the asymptotic CDF obtained in
Lemma 6 as in [22]. Therefore, we employ the method of
changing variables to calculate the secrecy diversity order of
the strong LU as follows.

Corollary 2. In STAR-RIS-NOMA, the secrecy diversity order
of the strong LU is expressed as

DXS
s =

{
T̂ δ XS = TS

δ XS = ES,
(36)

where T̂ = min
τ∈{s,w}

T̂τ,s.

Proof: Noticed that only FHs

(
1
ρb
gXS
s (x)

)
includes ρb

while the accurate expression of FHs
(

1
ρb
gXS
s (x)

)
is quite

complicated, we calculate the SOP by changing the variable
t = x

ρb
. For the TS protocol, the SOP for the strong LU is
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rewritten as

PTS
s = δmsρb

∫ ∞
0

FHs

(
1

ρb
gTS
s (ρbt)

)
×e−ms

∑
τ∈{s,w}

(
(ρbt+1)T̂s,τ−1

)−δ
×

∑
τ∈{s,w}

T̂s,τ (ρbt+ 1)T̂s,τ−1

×
(

(ρbt+ 1)T̂s,τ − 1
)−δ−1

dt. (37)

Setting ρb →∞, we have

PTS
s,∞ ≈δmsρb

∫ ∞
0

FHs

(
2
Rs
Ts t
)

×
∑

τ∈{s,w}

T̂s,τ (ρbt+ 1)−T̂s,τδ−1dt. (38)

Then we are able to obtain the secrecy diversity order by using
its definition. For the ES protocol, the derivation procedure is
similar and hence we skip it here. The proof is completed.

Remark 3. Since T̂ ≤ 1, the secrecy diversity order of the
strong LU in the TS protocol is no higher than that in the ES
protocol.

Different from the scenario without Eves, the secrecy di-
versity order for the strong LU is unrelated to the number of
STAR-RIS elements. Furthermore, by properly adjusting the
STAR-RIS mode operation parameter, the best secrecy diver-
sity order for both protocols is δ, which is only determined
by the path loss exponent.

For the weak LU, intra-cluster interference may degrade
the secrecy performance. As we have discussed in the proof
of Theorem 1, if

aw −
(

2
Rw
Tw (γ̂TS

Es + 1)− 1
)
as ≤ 0, (39)

holds, the SOP of the weak LU is one for the TS protocol. In
this case, the SOP has an error floor due to Fγ̂TS

Es
( 1

2Rw/Twas
) <

1. A similar conclusion can be obtained for the ES protocol.

Remark 4. Considering the PLS in the NOMA scheme, the
error floor of the weak LU in terms of the SOP depends on
the CDF of the received SNR for the Eve, i.e., Fγ̂TS

Es
(x). When

Fγ̂TS
Es

(BXS
up ) = 1, the error floor can be avoided. This usually

happens when the SNR is high and the required threshold is
low.

Based on the characteristic of fγ̂TS
Es

(x), we are able to
calculate the error floor in the following corollary.

Corollary 3. The secrecy error floor of the weak LU is
expressed as

EFXS
w = F̄γ̂XS

w

(
BXS
up

)
. (40)

Therefore, the secrecy security order of the weak LU is zero.

Proof: When ρb → ∞, the received SINR for the weak
LU tends to a constant aw

as
. Let us take the TS protocol as an

example. Based on the definition of the SOP, in the high SNR,

we have

PTS
s = Pr

(
CTS
Ew > Tw log2

(
1 +

aw
as

)
−Rw

)
= Pr

(
log2

(
γ̂XS
w + 1

)
> log2

(
1 +

aw
as

)
− Rw
Tw

)
,

(41)

then the corollary is proved.

Remark 5. In the considered secure STAR-RIS-NOMA trans-
mission, the SOP of the NOMA LU pair has the error floor
due to the error floor of the weak LU. Therefore, the secrecy
diversity order of the NOMA LU pair is zero.

IV. AVERAGE SECRECY CAPACITY

In this section, we consider the scenario where the CSI
of Eves is available at the BS. Here we employ the ASC as
the principal secrecy performance metric because the BS can
adapt transmission rate according to CSI of the LUs and the
Eves to achieve perfect secure transmission. The closed-form
expressions are derived first, and then the asymptotic ASC,
i.e., the secrecy slope, is investigated for further insights.

A. Average Secrecy Capacity Analysis

The ASC is defined as the expectation value of the non-
negative secrecy capacity over the fading channel and the
spatial effect [38]. In the considered networks, the ASC for
the protocol XS ∈ {TS,ES} is expressed as

CXS
ε = E

[[
CXS
Uε − C

XS
Eε

]+]
. (42)

We observe that the theoretical expression of ASC can be
obtained based on the derivation of the SOP. The analtyical
expressions of the ASC for the TS protocol and ES protocol
are given in Theorem 3 and Theorem 4.

Theorem 3. For the TS protocol, the ASC expressions for the
two NOMA LUs are given by

CTS
s =

Ts
ln 2

∫ ∞
0

F̄γUs (x)FγEs (x)

1 + x
dx, (43)

CTS
w =

Tw
ln 2

∫ aw
as

0

F̄γUw (x)FγEw (x)

1 + x
dx. (44)

Proof: See Appendix C.

Theorem 4. For the ES protocol, the ASC expressions for the
two NOMA LUs are as follows

CES
s =

1

ln 2

∫ ∞
0

F̄γUs (x/βs)FγEs (x/βs)

1 + x
dx, (45)

CES
w =

1

ln 2

∫ aw
as

0

F̄γUw (x/βw)FγEw (x/βw)

1 + x
dx. (46)

Proof: By utilizing similar proof of Theorem 3, this
theorem can be proved.

Remark 6. For the TS protocol, the ASC is linearly related
to the STAR-RIS mode operation parameter Tε. For the ES
protocol, however, the ASC is non-linear with βs.
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TABLE II
SECRECY DIVERSITY ORDER AND SECRECY SLOPE FOR DIFFERENT

STAR-RIS PROTOCOLS

Protocol LU Secrecy Diversity Secrecy
Slopeρe > 0 ρe → 0

TS SU 2T̂ /α 2µ̂N Ts
WU 0 µ̂N 0

ES SU 2/α 2µ̂N 1
WU 0 µ̂N 0

Afterwards, the derived ASC can be further written as
closed-form expressions in the following corollaries.

Corollary 4. For the TS protocol, the closed-form approx-
imations of the ASC for the two NOMA LUs are expressed
as

CTS
s ≈ Ts

ln 2

Ms∑
m=1

ξmF̄γUs (ξm)FγEs (ξm) /(1 + ξm)

(Ms + 1)2[LMs+1(ξm)]2 exp(−ξm)
, (47)

CTS
w ≈ Tw

ln 2

Mw∑
m=1

πaw
√

1− ϕm2

(awϕm + as + 1)Mw
F̄γUw

(
aw(ϕm + 1)

2as

)
× FγEw

(
aw(ϕm + 1)

2as

)
. (48)

Proof: By applying the Gauss-Laguerre quadrature and
Chebyshev-Gauss quadrature to (43) and (44), respectively,
the closed-form approximations can be obtained.

Corollary 5. For the ES protocol, the closed-form approxi-
mations of the ASC for the two NOMA LUs are given by

CES
s ≈

1

ln 2

Ms∑
m=1

ξmF̄γUs (ξm/βs)FγEs (ξm/βs) /(1 + ξm)

(Ms + 1)2[LMs+1(ξm)]2 exp(−ξm)
,

(49)

CES
w ≈

1

ln 2

Mw∑
m=1

πaw
√

1− ϕm2

(awϕm + as + 1)Mw
F̄γUw

(
aw(ϕm + 1)

2asβw

)
× FγEw

(
aw(ϕm + 1)

2asβw

)
. (50)

Proof: The proof is similar to Corollary 4.

Proposition 1. The ASC of the typical NOMA LU pair is given
by

CXS = CXS
s + CXS

w . (51)

B. Secrecy Slope Analysis

Similarly, to gain insights into the ASC performance, the
secrecy slope in the high-SNR regime is considered, which is
defined as

SXS = lim
ρb→∞

CXS
∞

log2(ρb)
, (52)

where CXS
∞ is the asymptotic ASC when ρb →∞. The asymp-

totic expressions for the pair of NOMA LUs are provided in
the following propositions.
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Ana., strong LU, N = 25

Ana., strong LU, N = 50
Sim., strong LU

Ana., weak LU, N = 25

Ana., weak LU, N = 50

Sim., weak LU

Fig. 2. CDF of the maximum received SNR at LUs with ρb = 50 dB.

Proposition 2. For the TS protocol, the asymptotic ASC in the
high-SNR regime can be expressed as (53) and (54), where
σs = E[log2(Hs)].

Proof: When ρb → ∞, (42) can be simplified as
CXS
ε = E

[
CXS
Uε

]
− E

[
CXS
Eε

]
= CXS

ε,max − Tε
ln 2

∫∞
0

F̄γEε
(x)

1+x dx.
The term CTS

s,max and CTS
w,max can be expressed as CTS

s,max ≈
E [Ts log2(asρbHs)] = Ts log2(asρb) + Tsσs and CTS

w,max ≈
Tw log2

(
1 + aw

as

)
, respectively. Then the proposition is

proved.

Proposition 3. For the ES protocol, the asymptotic ASC in
the high-SNR regime can be expressed as (55) and (56).

Proof: The proof is similar to Proposition 2.

Remark 7. In the considered networks, the secrecy slopes of
the TS protocol are STS

s = Ts and STS
w = 0 for the strong

LU and the weak LU, respectively. For the ES protocol, the
secrecy slopes are SES

s = 1 and SES
w = 0. Therefore, the ES

protocol achieves a higher ASC than the TS protocol at a high
SNR.

For clarity, we summarize all results of the secrecy diversity
and the secrecy slope for two STAR-RIS protocols in Table
II, where SU represents the strong LU and WU is the weak
LU.

V. NUMERICAL RESULTS

In this section, we present the numerical results to demon-
strate the performance of STAR-RIS-NOMA. Our theoretical
results are validated and then some interesting insights are
provided. We mainly focus on the TS and the ES protocols
of the STAR-RIS. Unless otherwise stated, the simulation
parameters are defined as follows. Consider line-of-sight (LoS)
transmissions, the small-scale fading channel is modeled as the
cascaded Rician channel [16], and hence we set κ1 = κ2 = 3
and µ1 = µ2 = 1. The density of Eves is λe = 10−4 m−2.
The path loss exponent is α = 3. The outage threshold for
both LUs is Rs = Rw = 0.1 bit per channel use. The number
of elements on the STAR-RIS is N = 25. The radius of the
disc area is RU = 50 m. The transmit SNR ρb = 80 dB
and ρe = 50 dB. The power allocation coefficients for the
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CTS
s,∞ = Ts log2 (asρb) + Tsσs −

Ts
ln 2

Ms∑
m=1

ξmF̄γEs (ξm/βs) /(1 + ξm)

(Ms + 1)2[LMs+1(ξm)]2 exp(−ξm)
, (53)

CTS
w,∞ = Tw log2

(
1 +

aw
as

)
− Tw

ln 2

Mw∑
m=1

πaw
√

1− ϕm2

(awϕm + as + 1)Mw
F̄γEw

(
aw(ϕm + 1)

2as

)
, (54)

CES
s,∞ = log2 (asβsρb) + σs −

1

ln 2

Ms∑
m=1

ξmF̄γEs (ξm/βs) /(1 + ξm)

(Ms + 1)2[LMs+1(ξm)]2 exp(−ξm)
, (55)

CES
w,∞ = log2

(
1 +

aw
as

)
− 1

ln 2

Mw∑
m=1

πaw
√

1− ϕm2

(awϕm + as + 1)Mw
F̄γEw

(
aw(ϕm + 1)

2asβw

)
. (56)
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Fig. 3. Validation of the analytical SOP expressions: (a) strong LU; (b) weak LU.
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Fig. 4. SOP of two NOMA LUs versus the number of STAR-RIS elements
with Ts = βs = 0.7, where “SU” represents strong LU, “WU” stands for
weak LU, and “UP” is the performance for the NOMA LU pair.

NOMA LUs are as = 0.3 and aw = 0.7. The complexity-
accuracy trade-off parameter Mu = 30. The numerical results
are verified via Monte Carlo simulations by averaging the
obtained performance.

To illustrate the derived channel statistics in Lemma 2, Fig.
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Fig. 5. SOP of the NOMA LU pair versus the STAR-RIS mode operation
parameter of the strong LU.

2 plots the CDF of the maximum received SNR of the paired
LUs, where the maximum received SNR is the product of
transmit SNR ρb and the channel power of LU Hε for ε ∈
{s, w}. Here we set ρb = 50 dB for ease of observing different
curves. Since Lemma 2 is based on Lemma 1, the accuracy
of the approximation in Lemma 1 is validated. In addition,
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Fig. 6. Validation of the theoretical ASC: (a) strong LU; (b) weak LU.
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Fig. 7. ASC versus the number of STAR-RIS elements.

we observe that the STAR-RIS-aided channel model with a
large number of elements has a higher channel power than the
model with a few elements. Therefore, the enhanced received
SNR at LUs can be obtained by deploying large-scale STAR-
RISs.

Fig. 3 plots the SOP performance of the paired NOMA
LUs versus the transmit SNR ρb. The theoretical curves fit
the simulation results quite well and hence Theorem 1 and
Theorem 2 are validated. Moreover, the asymptotic SOP is
presented. As we have discussed in Corollary 2 and Corollary
3, the secrecy diversity order of the strong LU is a positive
constant related to the path loss exponent while the SOP of
the weak LU has an error floor at the high SNR. For the TS
protocol, when the time allocation coefficient Ts < 0.5, the
secrecy diversity order of the strong LU is linear with Ts. In
this case, the ES protocol has a larger secrecy diversity order
than the TS protocol for the strong LU.

Fig. 4 illustrates the impact of the number of STAR-RIS
elements N on the SOP performance. Although the Gamma
approximation is adopted to characterize the overall small-
scale fading power of STAR-RIS-aided links, it can be ob-
served that the analytical results match the simulation marks

even when N is small. Moreover, the SOP of the NOMA
LU pair is highly dependent on the worst performance in the
paired LUs at a high SNR. With the increase of N , the SOP
of the NOMA LU pair decreases first but finally keeps at a
constant value. This is due to the error floor of the weak LU.
Therefore, the increase in the number of elements is able to
improve the SOP performance within a certain range, but a
large number of elements cannot reduce the error floor of the
secure STAR-RIS-NOMA transmission.

Fig. 5 plots the SOP of the NOMA LU pair versus the
STAR-RIS operation coefficients Ts and βs in the TS protocol
and ES protocol, respectively. One can observe that the ES
protocol outperforms the TS protocol when Ts = βs. Another
observation is that there exists an optimal Ts or βs between 0
and 1 to realize the lowest SOP. When Ts = βs = {0, 1}, the
secrecy rate of one of the NOMA LUs is zero, and the SOP
for the LU pair is one in this case. When Ts = βs ∈ (0, 1),
the SOP is smaller than 1 and hence a minimum value
exists. Thus a design guideline is provided that the SOP
performance can be improved by adjusting the STAR-RIS
operation coefficients. Furthermore, the optimal Ts or βs is
reduced as RU increases. Since the SOP of the LU pair mainly
depends on the worst performance in two LUs as shown in
Fig. 4, the optimal Ts or βs is approximated as the crosspoint
of the SOP curves of two LUs. With the increase of RU , the
gap of best SOP performance of two LUs is bridged and the
crosspoint moves to the larger Ts or βs.

Fig. 6 shows the ASC of two NOMA LUs versus the
transmit SNR ρb. The analytical results are from Theorem
3 and Theorem 4. The approximation results are obtained
in Corollary 4 and Corollary 5. We can observe that the
approximation results of the weak LU fit the simulation curves
well while there is a small performance gap for the strong LU
especially at a high SNR. This is because the Chebyshev-
Gauss quadrature is accurate even with a small Mu. However,
the parameter Mu is not large enough to ensure the accuracy
of the Gauss–Laguerre quadrature. In Fig. 6(a), the secrecy
slope for the strong LU in the TS protocol is smaller than
the ES protocol as discussed in Remark 7. In Fig. 6(b), with
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the increase of the transmit SNR ρb, the ASC of the weak
LU achieves an upper bound. In the ES protocol, the capacity
upper bounds for two NOMA LUs are the same. Moreover,
the ES protocol has a higher ASC performance than the TS
protocol since extra flexibility from the space is utilized by
the ES protocol.

Fig. 7 plots the ASC of the NOMA LU pair versus the
number of STAR-RIS elements for two protocols. Different
from the observation in the SOP performance, the ASC keeps
growing linearly as the number of elements increases. The
reason is that the achievable rate of the strong LU can be im-
proved by strengthening the RIS-assisted channel. Therefore,
a high ASC can be achieved by employing a STAR-RIS with
a large number of elements.

Fig. 8 compares the ASC performance among different
scenarios under different STAR-RIS mode operation parameter
values. We observe that the ASC of NOMA obtains a signifi-
cant improvement over OMA. This illustrates the efficiency of
adopting the NOMA scheme in STAR-RIS-aided systems. To
show the efficiency of the phase aligned scheme at the paired
NOMA LUs, we plot curves of the Eve depression scheme and
the random phase setup for comparison. In the Eve depression
scheme, the STAR-RIS suppresses the eavesdropping of the
most detrimental Eve and reduces its capacity to zero as in
[17]. We can observe that the phase aligned scheme is able to
improve the secrecy rate performance remarkably, while the
enhancement of the Eve depression scheme is negligible in the
considered multi-Eve system. Moreover, when we set Ts = βs,
the rate performance of the ES protocol always outperforms
the TS protocol due to the extra degree of freedom in the
space domain. By adjusting Ts or βs, the highest ASC can be
achieved. One should be noted that the ASC of the TS protocol
is linear with Ts (Remark 6), and hence Ts = 1 is optimal.
However, the optimal βs depends on the system settings.

VI. CONCLUSION

In this paper, the PLS of the STAR-RIS-NOMA has been
investigated. The stochastic geometry based tool has been
utilized to model the random locations of NOMA LUs and

the Eves. Considering the TS protocol and the ES protocol,
we have derived the analytical expressions of the SOP and
the ASC when the SIC order of the NOMA LUs is based on
the channel gains. In the high SNR regime, the asymptotic
secrecy performance has been obtained. The analytical results
have revealed that the error floor exists for the SOP in the
secure STAR-RIS-NOMA transmission. The numerical results
have provided design guidelines for the considered system: 1)
the optimal secrecy performance can be achieved by adjusting
the mode operation parameters of the STAR-RIS; 2) the
ES protocol has a better secrecy performance than the TS
protocol; 3) the STAR-RIS with a large number of elements
can be employed for the high ASC.

APPENDIX A: PROOF OF LEMMA 2

In this work, the overall channel power consists of path
loss and small-scale fading. We denote Hu = XY , where
X = |hε|2 and Y = ALd

−α represent the power of small-
scale fading and path loss at the LU, respectively. According
to (13), the CDF of the small-scale fading X is

FX(x) =
γ (kr, x/θr)

Γ(kr)
. (A.1)

Noticed that the locations of LUs obey a HPPP in the disc
area, the PDF of the path loss Y is given by

fY (x) =

{
2AL

2/α

αRU 2 x−2/α−1, x > ALRU
−α

0, x ≤ ALRU−α.
(A.2)

For an arbitrary LU in Φu, we can formulate the CDF of
the channel power Hu as follows

F̂Hu(x) =

∫ ∞
0

FX(
x

y
)fY (y)dy

(a)
=

2

RU
2

∫ RU

0

γ
(
kr,

xrα

ALθr

)
Γ(kr)

rdr, (A.3)

where (a) is from the change of variable r = (y/AL)−1/α. By
employing the meijer G-function of lower incomplete Gamma
function, we rewrite F̂Hu(x) as

F̂Hu(x) =
2

RU
2Γ(kr)

∫ RU

0

rG1,2
1,1

(
xrα

ALθr

∣∣∣∣∣ 1

kr, 0

)
dr

(b)
=

δ

Γ(kr)
G1,2

2,3

(
RU

αx

ALθr

∣∣∣∣∣ 1− δ, 1
kr, 0,−δ

)
, (A.4)

where (b) is obtained by utilizing [33, eq. (7.811.2)].
For the LU pair, according to order statistics theory [39], if

total of K LUs have the same statitical channel characteristic,
the ordered CDF of the channel power of the lth weakest LU
is given by

Fl(x) =

K∑
k=l

(
K

k

)
[F̂Hu(x)]k[1− F̂Hu(x)]K−k. (A.5)

By substuting (A.4) into (A.5), this lemma is proved.
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Lf∆n
(ω) =

2
√
φ1φ2

eµ1κ1+µ2κ2

∞∑
q=0

∞∑
t=0

ρq,t

∫ ∞
0

e−ωxG2,0
0,2

(
φ1φ2x

2

∣∣∣∣q + µ1 −
1

2
, t+ µ2 −

1

2

)
dx

=
2
√
φ1φ2√

πeµ1κ1+µ2κ2

∞∑
q=0

∞∑
t=0

ρq,t
ω

G2,2
2,2

(
4φ1φ2

ω2

∣∣∣∣∣ 0, 1
2

q + µ1 − 1
2 , t+ µ2 − 1

2

)
︸ ︷︷ ︸

Jq,t

. (B.1)

APPENDIX B: PROOF OF LEMMA 6

To obtain the accurate asymptotic performance, we consider
the accurate expression rather than the Gamma approximation
for the small-scale fading power |hu|2. Note that all channels
of the STAR-RIS are independent, we employ the convolution
method to derive the distribution of the overall small-scale
fading power |hu|2. Based on (11), we first calculate the
Laplace transform of f∆n(x) as in (B.1). We denote Jq,t =

G2,2
2,2

(
4φ1φ2

ω2

∣∣∣∣∣ab
)

. By utilizing the relationship between the

meijer G-function and the generalized hypergeometric func-
tion, Jq,t is rewritten as

Jq,t =

2∑
m=1

(
4φ1φ2

ω2

)bm
2F1

(
4φ1φ2

ω2

∣∣∣∣∣1 + bm − a

1 + bm − b

)
︸ ︷︷ ︸

H1

×
2∏
i=1

Γ(bi − bm)

2∏
i=1

Γ(1 + bm − ai). (B.2)

We observe that (B.1) is so complicated that it is difficult
to obtain the tractable expression of the inverse Laplace
transform for

∏N
n=1 Lf∆n

(ω). Therefore, we consider the case
ω →∞ to calculate the PDF of the overall channel gain near
0. When ω →∞, H1 → 1 holds. We only keep the dominant
item in (B.1), i.e., the item with r = t = 0, and we have

L∞f∆n
(ω) = Auω

−2µ̂, (B.3)

where µ̂ = min{µ1, µ2} and Au is a constant unrelated to
ω. Since all channels of the STAR-RIS are i.i.d., the Laplace
transform of the PDF for the overall small-scale fading gain
|hu| is

L∞f|hu|(ω) = Au
Nω−2µ̂N . (B.4)

We are able to obtain the PDF of |hu| by conducting the
inverse Laplace transform of L∞f|hu|(x), which is given by

f0+

|hn|(x) =
Au

N

Γ(2µ̂N)
x2µ̂N−1. (B.5)

Then we obtain the CDF of |hu| as follows

F 0+

|hu|(x) =
Au

N

Γ(2µ̂N + 1)
x2µ̂N . (B.6)

Afterwards, the CDF of the overall small-scale fading power
|hu|2 can be easily calculated, which is given by

F 0+

|hu|2(x) =
Au

N

Γ(2µ̂N + 1)
xµ̂N , (B.7)

where µ̂ = min{µ1, µ2} and Au =
Kuρ0,0(φ1φ2)µ̂Γ(|µ1−µ2|)Γ( 1

2 +µ̂)Γ(µ̂)√
πeµ1κ1+µ2κ2

. Ku = 2 when µ1 = µ2;
otherwise, Ku = 1. Based on (A.3), we are able to obtain the
CDF of the asymptotic unordered channel Hu

F̂ 0+

Hu(x) =
2

RU
2

∫ RU

0

Au
N (x/AL)µ̂N

Γ(2µ̂N + 1)
rαµ̂N+1dr = Lux

µ̂N .

(B.8)

Then the proof is completed.

APPENDIX C: PROOF OF THEOREM 3

Based on the definition in (42), the ASC for the strong LU
is expressed as

CTS
s =

∫ ∞
0

∫ x

0

Ts log2

(1 + x)

(1 + y)
fγTS
Us

(x)fγTS
Es

(y)dydx

=

∫ ∞
0

∫ ∞
0

Ts log2(1 + x)fγTS
Us

(x)fγTS
Es

(y)dydx

−
∫ ∞

0

Ts log2(1 + x)fγTS
Us

(x)F̄γTS
Es

(x)dx

−
∫ ∞

0

Ts log2(1 + x)F̄γTS
Us

(x)fγTS
Es

(x)dx

=
Ts
ln 2

∫ ∞
0

F̄γUs (x)

1 + x
dx︸ ︷︷ ︸

CTS
s,max

− Ts
ln 2

∫ ∞
0

F̄γUs (x)F̄γEs (x)

1 + x
dx︸ ︷︷ ︸

CTS
s,loss

,

(C.1)

where CTS
s,max is the ASC without eavesdropping, CTS

s,loss is the
ASC loss due to the most detrimental Eve.

For the weak LU, the ASC is zero when aw − γTS
Us
as ≤ 0.

Thus the ASC is given by

CTS
w =

Tw
ln 2

∫ aw
as

0

F̄γUw (x)

1 + x
dx︸ ︷︷ ︸

CTS
w,max

− Tw
ln 2

∫ aw
as

0

F̄γUw (x)F̄γEw (x)

1 + x
dx︸ ︷︷ ︸

CTS
w,loss

. (C.2)

Then the proof is completed.
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