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Abstract—Accurate detection of objects from LiDAR point
clouds is crucial for autonomous driving and environment
modeling. However, uncertainties in ground truth labels due to
occlusions, sparsity, and truncation can hinder model training
and performance. This paper introduces two strategies to address
these issues: 1) Soft Regression Loss (SoRL) and 2) Discrete
Quantization Sampling (DQS). SoRL utilizes Gaussian distribu-
tions for object predictions, measuring uncertainty based on the
probability of ground truth labels within these distributions. This
method effectively accounts for deviations in object location and
orientation. Meanwhile, DQS introduces uncertainty scores for
dynamic sample selection, aiming to refine the quality of positive
samples for regression. Based on the proposed modules, we design
a lightweight multi-stage object detection framework. Notably,
these modules can enhance existing 3D object detection methods
without affecting significantly inference speeds. Experiments
over benchmark datasets show the effectiveness of our method,
especially for cars in sparse point clouds.

Index Terms—3D object detection, deep learning, point clouds,
soft regression loss, dynamic sample selection

I. INTRODUCTION

ECENT advancements in 3D object detection technol-

ogy, spurred by the growth of autonomous driving and
environment monitoring, have significantly enhanced detection
accuracy. Nevertheless, the task remains challenging and de-
mands further improvement to fulfill the practical requirements
for autonomous driving and environment modeling applica-
tions. While datasets with annotations are commonly used
as benchmarks for object detection method evaluations, the
uncertainty of these annotations is often overlooked, resulting
in a negative impact on their performance.

Traditional object detection methods consider bounding box
label distributions as Dirac Delta distribution [1f], [2]] and
treat ground truth labels as deterministic regression targets.
In 2D image-based detection, uniform pixel-wise labeled ob-
jects and dense pixels surrounding the object are employed
for localization. In contrast, LiDAR-generated point clouds
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exhibit inherent challenges such as sparsity, occlusions, and
truncation. This results in label uncertainties and ambiguities,
and potential gaps in data annotation. Consequently, label un-
certainty often adversely affects the training and performance
of the detection methods.

Fig. 1: Uncertainty in the annotation of potential ground truths
for the cars in green with various sparse point clouds in red
from the KITTI dataset.

To further illustrate the issue of label uncertainty in 3D
object detection, Fig. [I] presents several examples from the
KITTI dataset [3]], where the box denotes the potential
ground truth labels. As point clouds become sparser, the
number of plausible ground truth labels increases. Due to
the incompleteness of the point clouds, the label thus does
not correspond to a definite object/part, complicating the
accurate identification of location and parts on the side of the
object without any points. To investigate this observation, we
statistically analyzed the length and width of the cars in the
KITTT dataset, as depicted in Fig. |2l The z axis represents
the car length, and the y axis represents the car width. Each
point in Fig. 2] demonstrates a ground truth label. Overall, the
distribution can be approximated as a two-dimensional Gaus-
sian distribution, which inspired us to represent the predicted
bounding boxes as Gaussian distributions. Specifically, Fig.
[2] underscores that even the cars with identical lengths can
exhibit varied widths following a Gaussian distribution.

Recent advancements categorize 3D object detection meth-
ods primarily into single-stage and multi-stage detectors.
Single-stage methods extract features directly from the raw
point clouds for box classification and regression, achieving
high inference speed [4]]-[6]. Multi-stage methods [7[|—[9]
adopt a coarse-to-fine pipeline to enhance performance. They
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execute a fine-grained feature extraction algorithm on the
proposals generated in the first stage and jointly optimize
objective functions across all the stages later. Despite the
increased computational consumption, such methods usually
achieve superior performance compared to the aforementioned
single-stage ones. Although these methods utilize different
feature extraction techniques and employ discretized location
deviations for regression, they often do not account for the
ambiguity caused by label uncertainty.
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Fig. 2: The statistics in length and width of the cars in the
KITTI dataset.

Despite their excellent performance, there still exists room
for improvement in terms of incorporating uncertainty in-
formation into the object detection process. While recent
researchers tap into uncertainty information for 2D image-
based object detection enhancement [10]], such methods are
unsuitable for 3D point cloud data, primarily due to inherent
sparsity and unevenness and lack of order in points. To address
these issues, new methods are needed to model the uncertainty
information in 3D point clouds for more robust and accurate
object detection. However, it is challenging to incorporate such
uncertainty information into the multi-stage methods.

To handle the problem of label uncertainty in the multi-
stage method, we propose a novel Soft Regression Loss
(SoRL) designed to model the uncertainty of predicted lo-
calization. This innovative metric computes the similarity
between the predicted bounding box and its corresponding
ground truth while taking the uncertainty information into
account. To consider the impact of uncertainty on sample
selection, we then propose the Discrete Quantization Sampling
(DQS) method. DQS can adjust the Intersection over the Union
(IoU) threshold dynamically, which makes the selection of
positive and negative samples more balanced and diverse.
Specifically, DQS incorporates the uncertainty information
into the confidence scores and sorts the proposals accordingly.
Then, the mean and the variance of the IoU distribution
are employed to dynamically adjust the threshold, thereby
ensuring that the features of various objects are adequately
learned. By combining SoRL and DQS, our method achieves
significant improvements in handling annotation uncertainty
and enhancing localization accuracy while effectively reducing

the impact of low-quality samples.

Our proposed method offers a new perspective on enhancing
3D object detection performance in LiDAR point clouds by
incorporating annotation uncertainty information into the ob-
ject detection framework. The experimental results show that
the consideration of annotation uncertainty can significantly
improve the object detection performance. We believe that our
work will shed light on the future development of 3D object
detection methods and inspire further studies in this field.

In summary, the main contributions of our work are as
follows:

1) We propose an end-to-end framework that takes label
uncertainty into account for accurate object detection in
point clouds.

2) We propose the SoRL approach, which treats the object
predictions as distributions for the measurement of their
uncertainty to obtain a more robust regression loss.

3) We propose a DQS module that can dynamically se-
lect samples within proposals by leveraging uncertainty
scores to acquire higher-quality positive samples for
regression.

4) Both the comparison with the state-of-the-art and ab-
lation studies show the efficacy and potential of the
proposed methods for object detection under various
scenarios.

II. RELATED WORKS

To address the challenges posed by occlusions, sparsity,
and truncation of LiDAR point clouds for object detection,
there are two primary strategies for point cloud analysis: point-
based, and voxel and projection-based methods.

Point-based methods. Hierarchical sampling and feature
aggregation of raw points with accurate coordinates are typi-
cally involved in point-based methods. The advantage is that
the point clouds can be aggregated into a specific number of
points, making it possible to design various feature extraction
algorithms. Early works in this area include PointNet [11] and
PointNet++ [[12]], which map points into high-dimensional fea-
ture space and gradually aggregate them through hierarchical
downsampling. Point-RCNN [13]] uses a Farthest Point Sam-
pling (FPS) to aggregate points, and then refines proposals by
learning the semantic features of each point using foreground
points. 3DSSD [[14] improves point sampling by using farthest
feature distance sampling to better preserve foreground points,
while TASSD [15] leverages the semantics of each point for
downsampling from different categories.

Some recent works have integrated attention mechanisms to
extract more robust features. For example, PointFormer [[16]]
employs the Transformer architecture [[17] as its backbone
network to capture the dependencies between both local and
global point features. CT3D [[18]] applies the Transformer in its
second-stage refinement process and introduces the channel-
wise attention mechanism to extract more sophisticated fea-
tures after random point sampling in the Regions of Interest
(Rols).

The key challenge faced by point-based detectors is how to
balance efficacy and efficiency. Increasing the ball query radius
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Fig. 3: Network structure of our proposed method with the usage of label uncertainty information.

for point aggregation can improve contextual information
capture but lead to low inference speed and increased mem-
ory consumption. For example, FPS is a common sampling
method, but the distance-based principle makes it computa-
tionally inefficient. To address this challenge, 3DSSD and
IASSD have improved their point sampling methods to pre-
serve more foreground points without significantly increasing
computational consumption. As multi-line LiDAR technology
continues to evolve, the number of points in scenes is expected
to increase, further exacerbating computational consumption.
The selection of an appropriate point sampling method is
critical to ensure the effectiveness of the sampled points and
extracted features for object representation.

Voxel and projection-based methods. To reduce sparsity
and improve computational efficiency, voxel-based methods
convert raw points into voxels with regular and discretized spa-
tial distributions. Voxels are then processed using 3D Convolu-
tional Neural Networks (CNNs) for the extraction of semantic
information and the generation of object proposals. VoxelNet
is a pioneering work, that employs 3D convolution for
feature extraction, and then compresses features to Bird’s Eye
View (BEV) for the generation of object proposals. Similarly,
SECOND leverages 3D sparse convolution to improve
efficiency through processing only non-empty voxels. Another
method, PointPillars , converts point clouds into 2D pseudo-
images and performs feature extraction using 2D convolution.
These advances have inspired the development of several
voxel-based two-stage detectors. For example, Voxel R-CNN
builds upon SECOND as the first-stage backbone network
and aggregates multi-scale voxel features for refinement in
the second stage. Meanwhile, CIA-SSD [20] fuses multi-layer
spatial and semantic features and supervises predictions using
IoU. Furthermore, Voxel-FPN aggregates voxel features
of different sizes, demonstrating improved performance over
the methods using a single voxel size.

The challenge of voxel and projection-based methods is the
loss of precise spatial information and the increase in com-
putational complexity and storage memory. After converting
points into voxels or pixels, the precise coordinate information
of each point is inevitably lost, which affects the accuracy of
the detected objects. Additionally, the computational cost of
3D CNNs is significantly higher than that of 2D counterparts.
Therefore, effectively reducing computational complexity and
preserving precise spatial information in point clouds is a
crucial issue for these methods.

Label uncertainty-based methods. Several methods have
been proposed to address label uncertainty. For instance,
General Focal Loss (GFL) proposes Distribution Focal
Loss (DFL) to study the discretized probability distribution
of bounding boxes, resulting in more robust and accurate
bounding box estimates. He et al. model the predictions
and ground truth boxes as Gaussian distributions and Dirac
Delta functions, and then calculate regression loss with the
KL divergence. Xu et al. [24] treat the bounding boxes as two-
dimensional Gaussian distributions and calculate the similarity
between predictions and corresponding ground truth using the
proposed Normalized Wasserstein Distance (NWD). Choi et al.
model the bounding box coordinates as Gaussian param-
eters to estimate localization uncertainty for box regression.
Yang et al. [26] regard the arbitrarily oriented bounding boxes
as Gaussian distributions, then use the proposed Gaussian
Wasserstein Distance (GWD) as IoU loss for object detection.
GLENet first estimates a distribution from the dataset
and then calculates the KL divergence between the predicted
distribution and the target distribution as the loss. However,
due to the sparsity of point clouds and significant differences in
data distribution, directly calculating the differences between
distributions relies on prior knowledge of the dataset distribu-
tion and can lead to difficulties in model training.

Considering the complexity of the 3D object detection task



and the characteristics of the point cloud data, there are
limitations in using uncertainty information to measure the
similarity of ground truth and predictions. The distribution
of bounding boxes can vary significantly due to differences
in object size, aspect ratio, orientation, and the level of
occlusion and truncation. This wide disparity in bounding box
distributions can pose challenges for object detection from
point clouds.

III. METHOD

In this section, we detail the proposed SoRL and DQS
modules, which are part of the framework, as shown in Fig.
Bl Our framework is a voxel-based lightweight multi-stage
detector consisting of a 3D backbone network, a 2D backbone
network, and a detection head. Firstly, the point clouds are
voxelized through quantization and fed into the 3D sparse
CNN for feature extraction. Then, the 3D sparse feature is
mapped to BEV for the generation of object proposals using
the 2D backbone network. Subsequently, the proposed SoRL
module is then used to handle the label uncertainty of each
bounding box. The DQS module is employed to select samples
from the proposals. Finally, an additional uncertainty loss
is added to improve the performance of the box regression
branch. Each of these modules will be explained individually
in the following sections.

A. Symbol Definition

We define the point cloud as P = {p;}V, where p; =
{xi,v:,zi,7;} represents each point with 3-dimensional co-
ordinates z, y, and z, and an additional feature r such as
reflectivity. ¢ denotes the index of each point within a point
cloud. The predicted bounding box Bpr and ground truth
bounding box B¢ can be formulated as {x,y,z,l,w,h, 6},
where x, y, and z denote the box center coordinates; [,
w, and h represent length, width, and height of the box
relative to its center, respectively; 6 denotes the rotation of
the 3D box relative to the x axis. We denote the predicted
box as {zg, YR, 2R, R, WR, hr, g} and the ground truth box
as {z¢,v¢,2a,la, wa, ha,0c}. The subscript notation R
represents the output of the regression branch in the detection
head, and G denotes the ground truth.

B. Backbone network

Voxelization and encoding. Point clouds are characterized
by disorder, irregularity, and permutation invariance, making
it challenging to extract features by using traditional con-
volutional operations. The voxel-based method first divides
the irregular point cloud space into uniformly stacked voxels
and processes the point cloud at the voxel level. Then, 3D
convolution is utilized to extract multi-scale spatial features.
Initially, the point cloud is voxelized as RP?*"*H via quan-
tization, where D = | #mez=fmin [ T} = L%J, and
H = | #mac>2min | represent the number of voxels along z, y
and z directions, respectively. v, vy, and v, denote the sizes
of each voxel along the three directions. During the training
process, the number V' of total voxels is limited to a maximum
of 16,000 following [7]], [8]].
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Fig. 4: Shared MLP for point encoding
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Fig. 5: Efficient sparse and sub-manifold convolution blocks
with multi-scale downsamplings at different resolutions.

Although the point clouds were filtered according to the
range {Zmin, Ymin, Zmin, Lmaz, Ymaz, Zmaz § during the pre-
processing stage, the space still contains a large number of
non-uniformly distributed points. Moreover, after voxelizing
the point clouds, the number of points contained in each voxel
grid is uneven. To reduce the computational complexity of the
voxel encoding, we limit the number of points contained in
each voxel. If the number exceeds the threshold 7', then T
points will be randomly sampled, and the unselected points
will be discarded. Conversely, if the number is less than 7', it
will be padded with zeros to complete. Since the lists of points
contained in each voxel are initialized with 0, we record the
number of points in each voxel, which can serve as a mask to
ensure that the max-pooling is performed only on the original
points. This helps maintain the order invariance of the point
cloud.

The coordinates of individual points are encoded through
a shared Multilayer Perceptron (MLP), and then mapped to
a high-dimensional feature space, as shown in Fig. fi] where
{ai1,a;2...a;, 0} represents the feature vector after feature
transformation.

3D backbone. We apply four convolution blocks consisting
of sub-manifold convolution and 3D sparse convolution to
learn multi-scale voxel features, as shown in Fig. 5} We
utilize four downsampling blocks to obtain multi-scale dense



features. Each block consists of several sparse convolution
layers and sub-manifold layers. Sub-manifold convolution is
used for channel transformation of voxel features to maintain
the sparsity of the point clouds, and 3D sparse convolu-
tion only performs convolution calculations over non-empty
voxels, which is known to improve convolutional efficiency.
Therefore, each block first performs sparse convolution to
obtain features at different scales and then applies channel
transformations with several sub-manifold convolution layers
to enhance the non-linear representation of the features. The
output features from each downsampling block can be denoted
as f, = {fIx, f2%, 3¢ 8%}, where f7* represents multi-
scale voxel features by n-fold downsampling. For example,
L% typically contains more geometric information and f5*
are more semantically informative. Each scale feature is ob-
tained by downsampling the previous feature by a factor of 2.
Therefore, our 3D backbone network is capable of obtaining
features from different levels to form a more comprehensive
representation of the point clouds.

Subsequently, as suggested in [4], we compress f5* onto
BEV as the map-view features, and then feed them into the
2D backbone network to generate object proposals.

1
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Fig. 6: 2D backbone network structure.

2D backbone. Our 2D backbone network architecture con-
sists of two main components: the CNN feature extraction
module and the Swin Transformer [28] as a global feature
aggregation module, as shown in Fig. [f] The CNN feature
extraction module comprises a series of convolutional layers
that extract local features from the BEV feature map. The
output of the CNN feature extraction module is then fed into
the Swin Transformer to capture their global dependencies
with the self-attention mechanism. Specifically, the output
feature maps of the CNN module and the Swin Transformer
module can be denoted as Fen () and Fsr(x), respectively.
We use a skip-connection between the two feature extraction
modules for feature aggregation, which can be represented as

Feat = [Fonn (), Fsr(z)], where [] denotes the concatena-
tion operation.

C. Soft regression loss (SoRL)

Traditional methods often treat the regression target as a
Dirac Delta distribution [[7]], [8], as illustrated in Fig. [/| This
means that the coordinates of both the predicted and ground
truth boxes are treated as fixed values, even though objects
of the same size may result in different regression losses
due to sparsity or truncation in point clouds. In this section,
we propose a Gaussian distribution-based soft regression loss
to assist in training the regression branch that consists of a
probabilistic object detection head and a probability weighted
regression loss function.

1) Probabilistic Object Detection Head: This method can
be employed to quantify the similarity between the predicted
bounding box and its corresponding ground truth, thus mitigat-
ing the inherent uncertainty in the data annotation process from
point clouds. The current 3D detection paradigm is inspired by
Faster-RCNN [29]], which consists of a classification branch
and a regression branch.

The regression loss {Az, Ay, Az, Al, Aw, Ah, A0} of the
target Bp relative to the ground truth Bg can be calculated
as follows:

G — IR Yc — YR 2G — 2R
J; d ) y d ) Z h ?
l h
Al = logﬁ, Aw = log%7 Ah = log-<, (1)
ZR WR hR
AO =0 — O,

where d = /12 + w? is the diagonal length of the ground
truth bounding box. I, wg, and hr denote the output length,
width, and height from the regression branch respectively.

The regression loss is calculated by comparing the predic-
tions and regression targets using the commonly employed
smooth-L1 function for backward propagation.

The common regression branch outputs the estimated co-
ordinates of the bounding boxes, which does not consider
the uncertainty information from the ground truth. Directly
learning the uncertainty from the ground truth labels presents
a challenge, as it requires additional data statistics from the
dataset and hinders the end-to-end training of the model.
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Fig. 7: Dirac delta distribution based target regression.



To elegantly incorporate uncertainty information into our
framework and allow it to be easily integrated into other detec-
tors, we formulate the uncertainty of the predicted bounding
box as the Gaussian distribution Dg. The label uncertainty
is expressed as the probability of appearance within the
predictive distribution. This method provides a quantitative
metric of similarity between the predicted box and the ground
truth, as shown in Fig. [8] The uncertainty can be modeled as:

p(Ba|Dr) = p(Ba|N (1, 0)), @)

where p denotes the probability density, and N denotes the
2D Gaussian distribution. When focusing specifically on the z-
dimension in the ground truth, the equation can be formulated

as:
1 _ <z—um2>2

—e 20 s 3
oL\ 2T )

where p, and o, denote the predicted mean and standard
deviation of the target in the x-dimension, respectively. The
formulations of the other y, z, [, w, h and 6 dimensions are
similar.
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Fig. 8: Detection Head.

Specifically, the output vector of the regression branch is
considered as the expectation p, which consists of a con-
volutional layer with a kernel size of 1 x 1 and a fully
connected layer. We incorporate an additional branch in the
detection head to predict the parameter o as the uncer-
tainty score identical to the regression branch, denoted as
{04,0y,0,01,04,0n,09}, which corresponds to each value
in R, and then estimate the uncertainty of the bounding box by
the distribution of its center and size instead of corner points,
which can better handle variations in object size, aspect ratio,
and orientation. As a result, it becomes easier to achieve more
accurate and reliable object detection across different scenarios
and integrate it into existing object detection frameworks.

2) Probability weighted regression loss: After obtaining p
and o, we can derive the distribution of the predicted box, and
then calculate the probability of the ground truth Bg in this
distribution as the weight of the regression loss. Finally, we
normalize the probability with the Softmax function:

ps = Softmaz(p(Bg|Dr)), S

where ps is used to weight the regression loss in order to
mitigate the problem of being unable to dynamically adjust
based on label uncertainty. Taking the = dimension as an

example, as shown in Fig. 0] Az represents the Euclidean
distance between the ground truth and prediction. We replace
Az with psAz as the final regression loss to train the
regression branch more effectively.

p: Probability
reg: Regression value Ax: Regression target

gt: Ground truth

Fig. 9: Diagram of soft regression loss based on Gaussian
distribution.

D. Discrete Quantization Sampling (DQS)

During the training process, the proposals are divided into
positive and negative samples for classification and regres-
sion, while only positive samples are used for regression.
Conventional methods usually use a fixed IoU threshold to
perform sample selection. Proposals with IoU greater than a
certain positive threshold (¢1) are considered positive, while
those with IoU less than a certain threshold (¢3) are consid-
ered negative. Usually, to is smaller than ¢;, and remaining
unselected proposals are ignored. Subsequently, the positive
samples are used in the calculation of the regression loss for
the improvement of the localization accuracy. Thus, the quality
of positive samples is critical for determining the performance
of the model.

However, the fixed IoU threshold cannot perform effective
sample selection for proposals generated from objects with
different sparsities. Sparsity refers to the density of data points
or samples in a given space for the representation of an object
as a whole or its parts. Different sparsities imply how unevenly
the data points are distributed in the Rol. To address this
issue, we propose the Discrete Quantization Sampling (DQS)
module, which incorporates a discretized sampling strategy
into the training process.

The uncertainty estimation vector o is encoded by fully
connected layers (FC) and a non-linear activation function to
generate proposal-wise quality scores. Subsequently, the clas-
sification scores p.;s+ are recalculated by adding the proposal-
wise quality scores to the original ones p.;s:

Dels* = m(A(F(G)) +pcls)a )

where 91 denotes a normalization function, A denotes the
Sigmoid activation function and F denotes the FC.
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Fig. 10: Sample selection with DQS module.

The proposals are firstly sorted by the p.s« to obtain the
valid proposals associated with each ground truth. Then, we
dynamically calculate the mean and variance of 3D IoUs for
the proposals belonging to the same ground truth as v and ¢.
Finally, we take 7 = v + ¢ as the final IoU threshold of each
ground truth to select positive samples for each point cloud.
So, proposals with ToU greater than 7 can be marked with
positive samples for the calculation of the regression loss.

Our motivation for introducing DQS in sample selection
is to filter out proposals with low-quality scores and low
IoU. These low-quality proposals significantly decrease the
average IoU value, resulting in the selection of an excessive
number of positive samples with low IoU. To capture features
of objects with varying sparsity, we assign IoU thresholds
for each ground truth to maintain diversity among positive
samples. Half of the IoUs are greater than v in Gaussian
distribution. When the points within an object are sparse, the
variance of the IoU distribution increases. To account for this,
we introduce ¢ as a measure of sparsity, which adjusts the
IoU threshold accordingly, preventing the learning of invalid
features. This further enhances the quality of positive samples.

Fig. [I0] presents the sample selection strategies for objects
with both dense and sparse point clouds. The green line
denotes v, representing the mean IoU associated with the same
ground truth. The red line denotes 7, calculated by v+ ¢. The
blue line represents the fixed IoU threshold, widely used in the
previous methods. We set the threshold to 0.55 for comparison,
which is a commonly used threshold in empirical studies. As
shown in Fig. [[0(a)] the proposals for objects with dense

point clouds usually have a more uniform IoU distribution.
If the fixed IoU threshold is set unreasonably high, all the
proposals for some ground truths will be treated as negative
samples, making it impossible for the models to improve their
localization ability. Nevertheless, when using v + ¢, the boxes
with the highest IoU among all the proposals belonging to
the same ground truth can be selected as the positive samples.
This increases the diversity of the positive samples, which is
beneficial for the model to learn features of different objects.
Fig. [T0(b) presents another object with a sparser point cloud,
where the variance of IoUs is larger than that in Fig.
Although v+ ¢ is closer to the fixed IoU threshold, the former
selects two proposals with the highest IoU as positive samples,
while the latter selects only one. This demonstrates that our
DQS can select more balanced positive samples adaptively for
each ground truth.

E. Detection head and loss function

1) Detection head: In this section, we introduce the detec-
tion head utilized in our proposed method, which consists of
classification, regression, and uncertainty estimation branches.
The classification branch employs the Binary Cross Entropy
(BCE) as the loss function, while the regression branch adopts
the smooth-L1 loss function. The overall loss is a weighted
combination of these components. The classification branch
generates a probability distribution over a set of discrete
classes, while the regression branch outputs the offset of
the coordinates between the proposals and the ground truth
according to Equation [I]

2) Loss function: For the classification task, we employ the
BCE loss, a widely used loss function for binary classification
problems. Given the predicted classification score B$® and
the ground truth class label Bgs, the BCE loss is defined as:

Las =y —(B&* xlog(BE*) + (1 — B&*) x log(1 — BR*)).
(6)
This loss function effectively penalizes misclassifications
and encourages the model to output probabilities closer to
the ground truth labels, thereby improving the classification
performance.
We adopt the smooth-L1 loss function for the regression
task, which can be formulated as:

Lyeg = smooth — L1(BR?, B&?)

_ 05w (BT - B, aflBRY - BT <1, )
B |BR9 — Bs?| — 0.5, otherwise,

where BJ;¥ denotes the predicted proposal position and B;?

denotes the ground truth localization label. Then, we weight
L,cq with ps to obtain our soft regression loss L, as:

Lgori = ps * Lreg~ ®)

The overall loss function for our proposed detection head is
a weighted combination of L.;s and L,.;. The weights w;s
and w,,,; are hyperparameters that can be adjusted according
to the specific task and dataset requirements. We use 1 as the
weight here following [7], [8]. The overall loss function is
thus defined as:



TABLE I: 3D AP and mAP in percentage (%) of the original
methods and their SoRL-enhanced counterparts.

3D AP recall 40
Method Easy Mod. Hard mAP
PV-RCNN [8] 92.11 84.39 8250 86.33
SoRL-PV(Ours) 92.27 8522 83.15 86.88
Voxel R-CNN [7] | 92.38 8529 82.86 86.84
SoRL-V(Ours) 92.52 8539 83.04 86.98
CT3D [18] 92.85 8582 8346 87.38
SoRL-C(Ours) 9421 8541 84.79 88.13
Ltotal = Wels * Lcls + Wsory * Lsorl~ (9)

TABLE II: AP and mAP in percentage (%) of different
methods for the car detection on the KITTI test set over
40 recall positions. All results are reported from the KITTI
official benchmark. The top-1 result is in bold and the second
is marked with an underscore.

Car - 3D Detection

Modality Method Easy Mod. Hard mAP
CenterNet3D [6] 88.23 79.23 75.34 80.93

3DSSD [14] 88.36 79.57 74.55 80.83

SA-SSD [30] 88.75 79.79 74.16 80.90

SE-SSD [31] 91.49 82.54 77.15 83.73

CIA-SSD [20] 89.59 80.28 72.87 80.91

Single-stage 3D-CenterNet [32] 86.83 80.17 75.96 80.99
IA-SSD [15] 88.87 80.32 75.10 81.43

VIC-Net [33]] 88.25 80.61 75.83 81.56

HVPR [34] 86.38 77.92 73.04 79.11

SECOND [4] 84.65 75.96 68.71 76.44

PointPillars [5]] 82.58 74.31 68.99 75.29

PVB-SSD [1] 89.99 80.68 76.23 82.30

3D IoU Loss [35]
Associate-3Ddet [36]
Point RCNN [13]]

86.16 76.50 71.39 78.02
85.99 77.40 70.53 77.97
86.96 75.64 70.70 T77.77

CT3D [18] 87.83 81.77 77.16 82.25
Graph-Po [37]] 91.79 83.18 77.98 83.45
Fast Point R-CNN [38] |85.29 77.40 70.24 77.64
STD [39] 87.95 79.71 75.09 80.92
PV-RCNN [§] 90.25 81.43 76.82 82.83
Multi-stage FV2P [40] 88.53 81.58 77.37 82.49
BADet [41] 89.28 81.61 76.58 82.49
VPGA [42] 90.97 81.62 76.90 83.16
Focals Conv [43] 90.20 82.12 77.50 83.27
GraR-Vo [37] 91.29 82.77 77.20 83.75

3D Cascade RCNN [44] [90.46 82.16 77.31 83.31
CasA [45] 91.58 83.06 80.08 84.91

OcTr [46] 90.43 81.86 77.36 83.22

3D HANet [47]] 90.79 84.18 77.57 84.18
GLENet [27]] 91.67 83.23 78.43 84.44
Ours 91.83 82.95 78.12 84.30

IV. EXPERIMENTS

In this section, we first introduce the experimental setup
and training details of the proposed method. Then, we report
comparisons with the SOTA methods on both the KITTI
validation and test sets and the nuScenes dataset [50]]. After
that, we integrate SoRL into several popular baseline models
for the revelation of its effectiveness and universality. Finally,
we conduct ablation studies on the KITTI benchmark for the
demonstration of the validity of the proposed modules.

A. Experiment Settings

1) Dataset: The KITTI dataset contains 7,481 training
images/point clouds and 7,518 test images/point clouds with
several categories such as car, pedestrian, and cyclist. The
level of difficulty is classified as easy, moderate, and hard
according to the number of points contained in the object,
occlusion, and truncation level of each category. A common
way to split the training images/point clouds results in a
training set containing 3,712 point clouds and a validation
set containing 3,769 point clouds. We train our model on the
training set, and then conduct experiments on the validation
and test sets, respectively. For a fair comparison, we use the
average precision (AP) recommended by the official KITTI
with both 11 and 40 recall positions to evaluate performance.

The nuScenes dataset [50] presents a greater level of dif-
ficulty for autonomous driving compared to other datasets.
It comprises 380,000 LiDAR sweeps gathered from 1,000
scenes, with annotations for up to 10 object categories, in-
cluding 3D bounding boxes, object velocity, and attributes,
across the full 360° detection range, which is a considerable
improvement over the 90° range offered by KITTI. This
dataset contains 1,000 scenes for multiple object categories
such as cars, pedestrians, cyclists, and so on. We use the
official metrics for the evaluation of our method, including
mean average precision (mAP), which is similar to the KITTI
dataset, and nuScenes Detection Score (NDS). The NDS is
formulated as a weighted sum of a range of metrics, including
the mean average precision (mAP), thus providing a more
comprehensive evaluation of object detection methods.

2) Setup Details: For the KITTI dataset, the detection
range of point clouds is set as [0, 70.4Jm, [—40.0,40.0]m, and
[—3.0,1.0]m on z, y, and z axes, respectively, and the voxel
size is set as (0.05,0.05,0.05)m. For the nuScenes dataset,
the detection range of point clouds is set as [—51.2,51.2]m,
[-51.2,51.2]m, and [—5.0,3.0lm on z, y, and z axes, respec-
tively, and the voxel size is set as (0.1,0.1,0.2)m instead. We
conduct all the experiments based on the OpenPCDetﬂ toolbox.

3) Backbone Network: We build a multi-stage LiDAR-
based 3D object detection framework. Following previous
works, we voxelize the point clouds via quantization for
resolution reduction, and points within a voxel are represented
by the average coordinates. Subsequently, the voxels are fed
into the 3D sparse CNN for feature extraction following [4]]
which can obtain multi-dimensional features, and then the 3D
sparse features are mapped to BEV for the generation of the
object proposals through a 2D backbone network. Motivated
by the success of Swin Transformer in 2D image downstream
tasks, we incorporate it into our 2D backbone for feature
extraction.

4) Training and Inference: We train the model for 80
epochs on 8 RTX 3090 GPUs with a batch size of 2. During
the training process, we use Adam_onecycle as the optimizer,
set the learning rate as 0.001, the division factor as 10, the
momentum ranging from 0.95 to 0.85, and the weight decay
as 0.01.

Uhttps://github.com/open-mmlab/OpenPCDet



TABLE III: AP and mAP in percentage (%) of CasA and SoRL for the pedestrian and cyclist detection on the KITTI test set

over 40 recall positions.

Method Pedestrian - 3D Detection Cyclist - 3D Detection
Easy Mod. Hard mAP | Easy Mod. Hard mAP
CasA [45] | 48.92 40.29 36.74 4198 | 80.99 63.76 57.35 67.37
SoRL(Ours) | 48.94 41.17 38.81 42.97 | 80.26 65.13 58.76 68.05

TABLE IV: Inference speeds in milliseconds (ms) of our and
other SOTA methods.

Method Speed (ms)
PDV [9] 180
PV-RCNN [8]] 200
CasA [45] 300
Ours 175

To avoid overfitting, four commonly used data augmenta-
tion strategies are employed in our model: 1) ground truth
sampling; 2) global scaling with a random scaling factor in
[0.95,1.05], global rotation around the z-axis with a random
angle in [—7, +7]; 3) rotating the ground truth with a random
angle in [— 7, +7] around the z-axis to simulate steering; and
4) random flipping along the z-axis.

During the inference process, the Non-maximum Suppres-
sion (NMS) threshold is set as 0.7 for the car category and
0.5 for cyclists, respectively. We use predicted boxes with the
top 160 classification scores as input for the second stage of
refinement. When performing post-processing, we remove the
predicted boxes with classification scores below 0.55, and then
filter redundant predicted boxes with an NMS threshold of 0.1.
The inference process is performed on a single RTX 3090 GPU
with a batch size of 1.

5) Base Detectors: To demonstrate the universality of
SoRL, we integrate SoRL into several advanced 3D object
detection frameworks, as shown in Table m Specifically, an
additional detection branch is added to predict the uncertainty
information of the box. Then, the original box regression
branch is replaced by SoRL to improve the box positioning
performance.

B. Experiments on the KITTI Dataset

We submitted our model to the KITTI official server on the
test set for evaluation, which allows us to obtain the 3D AP
with 40 recall positions for the car detection. Table [IIj reports
its performance compared with other advanced LiDAR-based
methods. Our method achieves 91.83%, 82.95%, and 78.12%
in 3D AP at the easy, moderate, and hard difficulty levels,
respectively. It especially outperforms other methods at the
easy difficulty level and exhibits competitive results at the
moderate and hard difficulty levels.

The relatively superior performance of CasA [45] can be
attributed to its multi-stage structure. Table [ITI] presents further
the detection results of SORL and CasA in the Pedestrian and
Cyclist categories on the KITTI test set, with the method re-
implemented as much as possible under the same software and
hardware environment for fair comparison. SORL outperforms
CasA with an average precision improvement of 0.99% and
0.68% for the pedestrian and cyclist detection, respectively.

However, the advantage of CasA comes at the expense of
significantly slower training and inference time as shown in
Table limiting its practical applicability. In contrast, our
proposed SoRL and DQS modules are employed only during
the training phase to assist model training and do not partici-
pate in the inference stage. This results in higher performance
and ease of integration with other methods without incurring
significant computational overhead.
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Fig. 11: The recall-precision curves of different methods for
the car detection over the KITTI test set.

Fig.|11]displays the recall-precision curves of our proposed
method in comparison to other leading approaches for the car
detection over the KITTI test set. Four well-known methods
are chosen for this comparison. Voxel R-CNN [7] is a highly-
performing object detector based on voxel feature aggregation
with a straightforward network architecture, while CT3D [/18]]
is the first technique to employ a Transformer for extracting
point-wise features for object detection. PV-RCNN [8] is
a pioneering method to merge the benefits of points and
voxels for the generation of high-quality proposals. PDV [9]
refines the proposals using point cloud density information,
representing a prominent work that introduces additional data
for object detection. The solid line signifies our method, while



TABLE V: 3D AP and mAP in percentage (%) of different methods for the car detection over the KITTI val set with 11 and

40 recall positions.

. 3D AP recall 11 3D AP recall 40
Modality Method Easy Mod. Hard mAP | Easy Mod. Hard mAP
CenterNet3D [6] 86.27 76.45 T71.11 77.94 - - - -
PVB-SSD 1] - - - - 90.98 82.06 79.34 84.13
SA-SSD [30] 90.15 7991 78.78 8295|9323 8430 81.36 86.30
Single-stage SE-SSD [31] 90.21 85.71 79.22 85.05|93.19 86.12 83.31 87.54
CIA-SSD [20] 90.04 79.81 78.80 82.88 - - - -
3D-CenterNet [32] 86.83 80.17 75.96 80.99 - - - -
TIA-SSD [15] - - - 79.57 - - - -
VIC-Net [33]] 89.58 84.40 78.86 84.28 - - - -
HVPR [34] - - - 91.14 82.05 79.49 84.23
Associate-3Ddet [36]] - - - - 89.29 79.17 7776 82.07
CT3D [18] 89.54 86.06 78.99 84.86 | 92.85 85.82 83.46 87.38
Graph-Po [37]] - - - - 93.27 86.50 83.87 87.88
PV-RCNN [8] 89.35 83.69 78.70 83.91 - - - -
FV2P [40] - - - - 93.00 85.61 83.43 87.35
BADet [41]] 90.06 85.77 79.00 84.94 - - - -
VPGA [42] - - - - 9295 85.31 82.64 86.97
Multi-stage Part-A2 [49] 89.47 79.47 78.54 82.49 - - - -
; Voxel R-CNN [7] 89.41 84.52 78.93 84.29 | 92.38 85.29 82.86 86.84
PDV [9] - - - - 92.56 85.29 83.05 86.97
Focals Conv [43| 89.52 84.93 79.18 84.54 - - - -
GraR-Vo [37] - - - - 93.33 86.12 83.29 87.58
3D Cascade RCNN [44] | 90.05 86.02 79.27 85.11 | 93.20 86.19 83.48 87.62
CasA [45] 89.88 86.58 79.38 85.28 | 93.21 86.37 83.93 87.84
GLENet [27] 89.93 86.46 79.19 85.19 | 93.51 86.10 83.60 87.74
Ours 90.02 86.92 79.54 85.49 | 93.54 86.57 84.21 88.11

TABLE VI: 3D AP and mAP in percentage (%) of different
methods for the cyclist detection over the KITTI validation
set.

3D AP recall 40
Method Easy Mod. Hard mAP
CT3D [18] 9199 71.60 6734 7698
Voxel R-CNN [7] | 91.28 7254 6846 77.43
PV-RCNN (8] 88.88 7195 66.78 7587
PDV [9] 9272 7423 69.60 78.85
Ours 9277 7525 69.95 79.32

the dashed lines represent the others. A curve closer to the top-
right corner signifies a detector with higher accuracy and recall
rates, indicating superior performance. Among the compared
detectors, our proposed method demonstrates the best results.

We also conduct experiments on the KITTI validation set.
Since October 8, 2019, KITTI changed its calculation of
AP from using 11 recall positions to 40 instead. For a fair
comparison with previous methods, we adopt both the 11 and
40 recall positions on the validation set. As presented in Table
the proposed method achieves the highest performances
under almost all the metrics and yields 3D AP of 90.02%,
86.92%, and 79.54% at the easy, moderate, and hard difficulty
levels with 11 recall positions, respectively, which achieves
significant improvement compared with the other SOTA meth-
ods.

To further assess the effectiveness, we present the detection
performance for the cyclist category on the KITTI valida-
tion set in Table The accuracy is computed with 40
recall positions, providing a comprehensive evaluation of the
method’s performance. The experimental outcomes reveal that

our method not only achieves competitive detection results
but also excels across all the three difficulty levels. These
results provide additional evidence of the strong generalization
ability of the proposed method, highlighting its potential for
application in a wide range of object detection tasks.

In addition to the above experiments, we also conduct an
experiment to evaluate the inference speed of our proposed
method. Since our proposed modules are both auxiliary train-
ing components that do not increase the computational com-
plexity during the inference phase, our method has sufficient
potential to exhibit high inference speed. We select three
representative SOTA methods for comparison, including PDV
(an advanced transformer-based detector), PV-RCNN (a classic
point-voxel fusion method), and CasA (a method with high
accuracy).

Table [TV] presents the inference speeds of different methods.
Each model was evaluated with a single GTX3090 GPU, AMD
EPYC 7543 32-Core Processor and the batch size was set
as 1. The experimental results demonstrate that our proposed
method achieves both high accuracy and high inference effi-
ciency, making it more valuable for practical applications.

C. Experiments on the NuScenes Dataset

We conduct experiments on the NuScenes dataset to further
validate the generalisability of the proposed method, which is
a large-scale and diverse dataset for autonomous driving. Table
reports the detection results on the NuScenes validation
set compared with PointPillars, 3D-CVE, 3DSSD and SASA,
which are advanced state-of-the-art (SOTA) methods with
point clouds only as input. In this more challenging multi-
category object detection task, our proposed method achieves
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Fig. 12: Visualization of our proposed method in four different scenarios. The zoomed-in views in each subfigure highlight
the accurate detection of objects in various scenarios, demonstrating the robustness and effectiveness of our proposed method.

superior detection performance in either NDS or mAP, which
demonstrates that it is capable of handling various objects
within large-scale scenarios.

Specifically, our model achieves the best results in NDS
and mAP evaluation metrics at 65.2% and 55.3% without
any ensembling or testing augmentation, respectively, which
indicates the good performance of the model. However, the
model did not perform optimally in the detection of the Car
and Trailer categories. This may be related to the working
principle of SoRL. The nuScenes dataset includes a wide
variety of object categories, and some show small differences
while the others have more significant disparities. The results
shown in Table indicate that the model has a strong
ability to distinguish between different distinct categories,
but the ability to differentiate between similar categories is
somewhat limited. This limitation may be tied to our SoRL,
which uses a distributional form to represent the regression
loss. The distribution can lead to minor dissimilarities being
overlooked, to some extent thus limiting its ability to learn
expressive features. In some instances, the model may struggle

to identify subtle differences, which hinder its feature learning
effectiveness.

D. Integration of SoRL into Existing Models

To further demonstrate the effectiveness and versatility of
the proposed SoRL method, we conduct additional experi-
ments by incorporating SoRL into three widely adopted 3D
object detection models: PV-RCNN, CT3D, and Voxel R-
CNN. The training and evaluation processes are conducted
for the car detection in the KITTI validation dataset, following
the same experimental protocols and settings in the previous
experiments. We compare the performance of the original
models with the enhanced ones, which have incorporated the
SoRL detection head.

Table I presents the results. It can be observed that the inte-
gration of SoRL consistently improves both the AP and mAP
of all the three models. Specifically, the PV-RCNN+SoRL,
CT3D+SoRL, and Voxel R-CNN+SoRL models exhibit an im-
provement of 0.55%, 0.14%, and 0.75% in mAP, respectively.
These results indicate that our proposed SoRL method can be



TABLE VII: Comparison of performance with state-of-the-art methods on the NuScenes validation set. Evaluation metrics
consist of NDS, mAP and AP in percentage (%) across 10 categories. Abbreviations: Pedestrian (Ped.), Traffic cone (T.C.),

Construction vehicle (C.V.).

Method NDS mAP Car Truck Bus Trailer C.V. Ped. Motor Bicycle T.C. Barrier
PointPillars [5] 46.8 282 755 31.6 449 237 40 496 14.6 0.4 8.0 30.0
3D-CVF [51] 498 422 797 37.9 55.0 36.3 - 36.3 37.2 - 40.8 47.1
3DSSD [[14] 564 426 812 472 614 30.5 126 702 36.0 8.6 31.1 479
SASA [52] 61.0 450 768 450 66.2 36.5 16.1  69.1 39.6 16.9 29.9 53.6
Ours 652 553 8I.1 53.1 68.0 28.5 18.8 829 58.1 42.2 62.6 58.4
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Fig. 13:

effectively integrated into existing 3D object detection models,
leading to notable performance gains.

In conclusion, our experiments demonstrate that the pro-
posed method is not only competitive as a standalone method
but also capable of enhancing the performance of various
existing 3D object detection models. The versatility of our
method makes it a valuable addition to the field of 3D
object detection, paving the way for its integration into more
advanced models and applications.

E. Model Visualization Analysis

In this section, we present the visualization analysis of our
model, which consists of two subsections. The first subsection
compares the visualization results of our model under different
scenarios. The second subsection focuses on its comparison
with the state-of-the-art methods: Voxel R-CNN and CT3D.

1) Visualization Experiment: We conduct visualization ex-
periments in which we showcase the performance of our
algorithm in four different scenarios, as shown in Fig. [12]
The point clouds are rendered in red. The blue boxes represent
the ground truths, and the boxes represent the predicted
boxes. The zoomed-in views in each subfigure highlight the
accurate detection of objects in various scenarios. In practical
scenarios, there are significant differences in point cloud

(b) CT3D

(c) Ours

Visualization of detection results for Voxel R-CNN, CT3D, and our proposed method in sparse point cloud scenarios.

distribution, which makes the detector susceptible to missed
and false detections. Meanwhile, it challenges the accuracy of
object localization. As can be seen from the figure, the pro-
posed method has a high detection accuracy for distant objects
and the predicted boxes have a high degree of overlap with
the ground truth label. Additionally, the model demonstrates
strong generalization capabilities, which can even effectively
detect unannotated objects in the scenarios.

2) Comparisons with other SOTA methods: We conduct
visual comparison experiments of our model with Voxel R-
CNN and CT3D to evaluate the performance of each method
in challenging scenarios with sparse point clouds. As shown in
Fig. T3] the blue box and the green box represent the ground
truth and the predicted box, respectively. The dashed lines
in the figure represent false detection cases. Both Voxel R-
CNN and CT3D exhibit a certain degree of false detections
when the point clouds are sparse, particularly at far distances,
highlighted in the larger dashed line boxes, indicating lower
robustness, while the Voxel R-CNN also inaccurately estimates
the orientations of the objects and CT3D misses the detection
of one object. In contrast, our proposed model can accurately
recognize and detect objects even in sparse point cloud con-
ditions at a distance.
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Fig. 14: Experimental results of the number of positive samples at different difficulty levels during training iterations with

different sample selection strategies.

F. Ablation Experiments

In this section, we conduct three ablation experiments to
investigate the contributions of SoRL and DQS to the overall
performance of our model and how DQS would impact the
sample selection process. We first present the ablation study
for SoRL, followed by an analysis of the effect of DQS
on the model’s performance and sample selection in various
scenarios.

As presented in Table [VITI] the SoRL significantly improves
the detection performance compared to the baseline model,
demonstrating its effectiveness in addressing the issue of label
uncertainty in object detection. The DQS also contributes
to the improved performance of the model, indicating its
importance in considering the impact of uncertainty on sample
selection. The combination of SoRL and DQS leads to the
highest detection performance, highlighting the complemen-
tary nature of these two components and their joint contribu-
tion to the overall performance of our proposed method for

TABLE VIII: The impact of different modules over the KITTI
val set with AP in percentage (%) calculated over 40 recall
positions for the car category.

3D AP
SoRL DQS Easy Mod. Hard
92.54 85.32 81.72
v 93.17 86.35 83.51
v v 93.54 86.57 84.21

object detection in point clouds.

We conduct another experiment to investigate the effec-
tiveness of our DQS module. During the training phase, we
recorded the number of positive samples generated at each
iteration, categorized by easy, moderate, and hard difficulty
levels. The experiment was conducted in three scenarios: using
a fixed IoU threshold, our DQS with v only, and DQS with
v+ @.

Fig. [T4] illustrates the results of these experiments, where
the red, green, and blue colors represent the results for the



TABLE IX: The average variance of positive samples at differ-
ent difficulty levels with different sample selection strategies.

Fix IoU Threshold
207.6

DQS with mean IoU only Full DQS
115.8 7.3

easy, moderate and hard difficulty levels, respectively. Fig.
[[4(a)| ~ Fig. illustrate the results using a fixed threshold
of 0.55 [7)], [9)l, [45). Fig. [T4(d)] ~ Fig. [[4(D) illustrate the
results using DQS with the mean IoU only. Fig. ~
Fig. illustrate the results using full DQS. Overall, using
a fixed threshold, the model obtains the highest numbers of
positive samples for all the three difficulty levels. However, the
numbers of positive samples for easy and moderate difficulty
are noticeably higher than that for the hard difficulty, with
the moderate difficulty level having the most. This suggests
that the model pays more attention to the objects of moderate
difficulty. When DQS has been applied only with the mean
IoU, the number of positive samples begins to decrease, and
the quality of the positive samples starts to increase. When the
full DQS has been utilized, the number of positive samples
is significantly reduced, but as seen in Fig. ~ Fig.
the numbers of positive samples for the three difficulty
levels are relatively stable and balanced. Considering the high
accuracy of the model, it can be deduced that the model
has learned more effective features from the selected higher-
quality positive samples.

We also computed the average variance of positive sample
numbers across different difficulty levels with different sample
selection strategies, as shown in Table The fixed thresh-
old produces an imbalance in sample selection, while DQS,
especially with the full method, ensures a more balanced and
stable sample selection. This demonstrates that the model can
effectively focus on various scenarios when calculating the
regression loss, utilizing fewer high-quality positive samples
to train the model, thereby achieving better results. It also
indicates that traditional methods using a fixed threshold to
divide proposals might introduce a larger number of low-
quality positive samples, leading to instability in the model’s
feature learning and object detection.

V. CONCLUSION

This paper has proposed a high-performance 3D object
detector based on raw point clouds, which improves model
performance by taking label uncertainty into account. We
developed two novel strategies to address the issue of label
uncertainty. The Soft Regression Loss was used to account for
uncertainty information in the calculation of regression loss,
and the Discrete Quantization Sampling was used to account
for the uncertainty information in the sample selection process.
We have conducted a series of experiments to demonstrate the
effectiveness of the proposed modules. Although our method
makes progress in mitigating label uncertainty, there are still
many potential research directions to explore in terms of
measuring and utilizing uncertainty information. For example,
uncertainty information can be used as a more effective metric
than IoU, which can be realized through Bayesian neural
networks or reinforcement learning methods. In addition,

combining label uncertainty with prior knowledge is also a
promising research direction. Research in these areas will lead
to more effective models and algorithms in the future for object
detection tasks.
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