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A B S T R A C T 

Ongoing ground-based radial-velocity observations seeking to detect circumbinary planets focus on single-lined binaries even 

though o v er 9 in ev ery 10 binary systems in the solar neighbourhood are double lined. Double-lined binaries are on average 
brighter, and should in principle yield more precise radial velocities. Ho we ver, as the two stars orbit one another, they produce 
a time-varying blending of their weak spectral lines. This makes an accurate measure of radial velocities difficult, producing a 
typical scatter of 10 –15 m s −1 . This extra noise prevents the detection of most orbiting circumbinary planets. We develop two 

ne w data-dri ven approaches to disentangle the two stellar components of a double-lined binary, and extract accurate and precise 
radial velocities. Both approaches use a Gaussian process regression, with the first one working in the spectral domain, whereas 
the second works on cross-correlated spectra. We apply our new methods to TIC 172900988, a proposed circumbinary system 

with a double-lined binary, and detect a circumbinary planet with an orbital period of 150 d, different than previously proposed. 
We also measure a significant residual scatter, which we speculate is caused by stellar activity. We show that our two data-driven 

methods outperform the traditionally used TODCOR and TODMOR, for that particular binary system. 

Key words: techniques: radial velocities – planets and satellites: detection – planets and satellites: gaseous planets – planets and 

satellites: individual: TIC172900988 – binaries: eclipsing – binaries: spectroscopic. 
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 I N T RO D U C T I O N  

lanets orbiting around both stars of a binary star system are 
alled p-type or circumbinary planets. The disco v ery of Kepler-16 
Doyle et al. 2011 ) marked the first confirmation of the existence of
hese long-theorized planets (Borucki & Summers 1984 ; Schneider 
994 ). Since then, the Kepler and TESS missions have identified 
n additional 13 transiting circumbinary planets in 11 binary star 
ystems (e.g. Martin 2018 ; Kostov et al. 2020 ; Socia et al. 2020 ;
ostov et al. 2021 ). While the radial velocity method is a highly
f fecti ve way to detect exoplanets since Mayor & Queloz ( 1995 ),
nly two circumbinary planets have been detected using this method: 
epler-16 b (Triaud et al. 2022 ) and TOI-1338/BEBOP-1 c (Standing 

t al. 2023 ). 
Ground-based radial-velocity surveys of binary stars are more 

fficient, and less biased than transit surv e ys (Martin et al. 2019 )
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nd thus can construct a more insightful picture of the properties of
he circumbinary planet population. The BEBOP surv e y (Binaries 
scorted By Orbiting Planets; Martin et al. 2019 ) began in 2017 as
 dedicated, blind, radial-v elocity surv e y of single-lined eclipsing
inary stars. The surv e y reaches a precision of a few metres per
econd (Triaud et al. 2022 ). Ho we v er, the BEBOP surv e y currently
emains confined to highly unequal stellar-mass pairs where the 
econdary’s mass is usually less than 30 per cent of the primary
tar (Triaud et al. 2017 ; Martin et al. 2019 ). These single-lined
inaries represents only around 8 per cent of all binaries; ho we ver, the
emaining 92 per cent of binaries are double-line binaries (Kov ale v a
t al. 2016 ). Prior to the BEBOP surv e y, an e xtensiv e surv e y of
ouble-line binaries was carried out by the TATOOINE surv e y
Konacki et al. 2009 , 2010 ). Ho we ver, TATOOINE did not yield
ny circumbinary planets and reported a 10 –15 m s −1 scatter in
he data, enough to hide most exoplanets. Konacki et al. ( 2009 )
ad to first deconvolve their spectra to remo v e an iodine-cell
bsorption spectrum, then they use TODCOR (Zucker & Mazeh 
994 ) to obtain a guess radial velocity for each component of the
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inary. Then they perform their tomographic deconvolution method
o accurately measure the radial velocity for each of the stellar
omponents. 

Radial velocities are also often extracted by cross-correlating the
bserved spectrum with a template spectrum, or with a line-list mask
the method we use; e.g. Baranne et al. 1996 ). When the template
atches the observed spectrum a strong signal is recorded. The

ross-correlation method is convenient to understand what might
elp address radial velocity scatter. 
In addition to the large cross-correlation function (CCF) signal,

eaker signals on either side of the main signal are also recorded.
hey are caused by coincidental correspondence between the tem-
late and the spectrum, which we call wiggles . The wiggles exhibit
seudo-static behaviour o v er time in relation to the main CCF
ignal. We refer to these wiggles as pseudo-static because their
haracteristics may vary depending on the observation conditions.
s an example, Fig. 1 depicts a CCF time-series showing the strong

tellar signal for HD 189733 but also its weaker, and stable wiggle
ignals. 

In the context of double-line binary stars, the presence of two
right stars leads to two distinct, and strong CCF signals that vary
n time based on the respective masses and orbital parameters of the
inary system. Fig. 2 illustrates this time-varying signal, as well as
he accompanying wiggles. Because there are two stars, there are
wo sets of wiggles. Each can interact with the strong CCF signal
f the other star, and blending of a wiggle from star A with the
CF of star B, can lead to an error in estimating the radial velocity
f star B (and vice versa). This effect also happens on the spectral
ide, where weak lines from star A can blend with strong lines of
tar B. If the template used for deconvolution is incomplete, this
ill cause a similar issue when estimating radial velocities. This
henomenon, which we refer to as the double-lined binary problem ,
s likely the issue that prevents the disco v ery of circumbinary
lanets. 
With this effect in mind, it is obvious that a data-driven approach

eeds to be taken since no template can properly reproduce every
pectral feature. Any error on the spectrum/template spectrum of
ne star can affect the radial-velocity measurement of the other
tar. 

In this paper, we present two new methods to derive precise
adial velocities of double-lined binaries. We treat the wiggles as a
orrelated signal. Such correlated signals are typically and accurately
reated in a data-driven way using Gaussian processes (GP; Aigrain,
arviainen & Pope 2016 ). This method has had several successes
e.g. Czekala et al. 2017 ; Rajpaul, Aigrain & Buchhave 2020 ) within
he exoplanet field. 

The structure of the paper is as follow: Section 2 we introduce
he GP framework. We then describe the two new techniques we
e veloped for deri ving radial velocities of double-lined binary stars.
n Section 3 , we choose to apply our two methods to the double-lined
inary system TIC 172900988 because of the presence of a planet in
he system that allows to test for the reco v ery of a Keplerian signal. In
ection 4 , we describe how we analyse the resulting radial velocities

o model a binary’s Keplerian motion, search for a circumbinary
lanet and infer its orbital parameters. Finally, we compare the
adial v elocities deriv ed from our two new methods, and compare
hem to traditional and publicly available methods of measuring
adial velocities (TODCOR and TODMOR; Mazeh & Zucker 1994 ;
ucker & Mazeh 1994 ; Zucker et al. 2004 ). We also discuss the

mplication of detecting a circumbinary planet in TIC 172900988
inary system. We conclude the paper with a summary of our key
esults in Section 5 . 
NRAS 527, 2261–2278 (2024) 
 GP-BASED  R A D I A L  VELOCI TY  

X T R AC T I O N  

n this section, we provide a brief overview of the GP framework,
hich is a non-parametric Bayesian modelling technique that we
se to infer the spectra of double-lined binary star systems. A GP
s a type of stochastic process that describes the distribution of a
roup of random variables. It can be thought of as an extension of
ernel regression to probabilistic models. Using non-parametric GPs
o model the unknown wiggle function of double-lined binaries is a
owerful and flexible approach (Rasmussen & Williams 2006 ). 
A normal distribution is often represented as N ( μ, σ 2 ). If a

andom variable x is normally distributed with mean and variance, it
an be expressed as 

 ∼ N ( μx , � xx ) , (1) 

ith μx represents mean vector and � xx represents the covariance
atrix. The covariance matrix describes the pairwise covariance

etween the different elements of the input data x . 
The likelihood that a set of observations y is drawn from GP can

e written as 

ln L = ln p( y | x , φ, θ ) , (2) 

= −1 

2 
( y − μ) T K 

−1 ( y − μ) − 1 

2 
ln | K| − N 

2 
ln (2 π) , (3) 

here φ and θ are hyperparameters of the mean and covariance func-
ions. In equation ( 3 ), K refers to the covariance matrix associated
ith the GP. The elements of the covariance matrix depend on the

hosen covariance function and the values of the hyperparameters θ .
 represents the number of elements in the vector y , which contains

he observ ations. Ev aluating this likelihood provides a posterior
istribution of the hyperparameters. 

.1 Method 1: efficient spectral decomposition using GP 

SD-GP) 

he observed spectra of a double-line binary star system can be
odelled as a GP (e.g. Czekala et al. 2017 ). The spectrum of a single

tar can be represented as a function f ( λ), where λ is the wavelength.
f λ > 0, the observed spectrum of a single star can be modelled as a
unction f ( λ) with a mean function μ( λ) and a covariance kernel k ( λ,
′ ). If the observed spectrum has finite inputs 0 < λ1 < λ2 < ...... <
w , then the vector [ f ( λ1 ), f ( λ2 ),..... f ( λw )] has a multi v ariate Gaussian
istribution with a mean function [ μ( λ1 ), μ( λ2 ),..... μ( λw )] and a
ovariance matrix with k ( λi , λj ) as its elements, where k is the kernel
unction and i , j = 1, 2,..., w. Therefore, the intrinsic continuous
pectrum of a star can be assumed to be a function f generated from
 GP: 

 ( λ) ∼ GP 

(
μ( λ) , k( λ, λ′ ) 

)
. (4) 

The observed spectra of a spectroscopic binary are composed of
pectral lines from both stars as a composite. Due to the orbital
otion of each stars in the binary, a Doppler shift is induced to the

est-frame stellar spectra that are observed in the composite spectra
imultaneously. For a star moving with radial velocity v, the rest-
rame wavelength of the observed spectra are shifted to 

( v) = 

(
c + v 

c − v 

) 1 
2 

λ0 , (5) 

here c is speed of light. 
We describe the radial velocities of binary stars as a function of

ime using seven parameters: the semi-amplitude of the primary star
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Figure 1. Left panel: A time-series of CCF for HD 189733. The bright profile shows the stellar profile. The wiggles appear on either side of bright profile. 
The black profile is the median CCF of all epochs. Right panel: Residual map of time-series on removal of stellar profile. Wiggles are seen as alternating static 
bands. Overlaid in black is the median wiggle of all epochs. 

Figure 2. Schematic diagram showing the double-line binary problem and 
our solution to the problem using method 2 (CCF-GP). 
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 K A ), the binary stars mass ratio 
(

q = 

M B 
M A 

= 

K A 
K B 

)
, binary orbital 

eriod ( P ), the eccentricity ( e ), the argument of periastron ( ω), the
poch of periastron ( T 0 ), and systemic v elocity ( γ ). The v elocity of
he primary and secondary stars as a function of time is 

 A = K A [ cos ( ω + f ( t)) + e cos ω] + γ (6) 

nd 

 B = −K A 

q 
[ cos ( ω + f ( t)) + e cos ω] + γ, (7) 

espectively. 
For a single-epoch observation of a double-line binary star, we 

ssume that the observed composite spectrum ( s ) is a sum of
ealization f for the primary star and g for the secondary star along
ith N , the noise process realization: 

 = f + g + N, (8) 

∼ N ( μf , � f ) + N ( μg , � g ) + N (0 , � N ) , (9) 

∼ N ( μf + μg , � f + � g + � N ) , (10) 

here � f and � g are covariance matrices describing the primary 
nd secondary star. We e v aluate the cov ariance matrix � f and � g 

sing the wavelengths corresponding to the primary and secondary 
omponents in their rest frame with the kernel function (equation 
1 ). In Fig. 3 , we show the realization f and g for both components
f the binary star. 
Similar to Rajpaul, Aigrain & Buchhave ( 2020 ), we choose the
at ́ern kernel to model our spectra. The Mat ́ern kernel is often

sed when modelling spectra because it is a flexible and versatile
ovariance function that can capture a wide range of smoothness and
orrelation properties. The Mat ́ern covariance kernel specifies the 
ovariance between two pixels λi and λj as 

 ij ( r ij | θ ) = σ 2 
f 

( 

1 + 

√ 

3 r 

σl 

) 

exp 

( 

−
√ 

3 r 

σl 

) 

, (11) 

here r ij has units of km s −1 

 ij = r( λi , λj ) = 

c 

2 

∣∣∣∣λi − λj 

λi + λj 

∣∣∣∣ , (12) 

ith c as the speed of light, σ l is the characteristic length-scale, and
f is the signal standard deviation. 
MNRAS 527, 2261–2278 (2024) 
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M

Figure 3. Depicted in the top two panels are the multi v ariate realization 
vector from prior distribution draw for GP hyperparameters of the primary 
and the secondary stars. The realizations are not constrained by the data. 
The bottom panel depicts the mean prediction (in green) from the posterior 
predictive distribution of GP drawn by conditioning on the observed data 
from a single-epoch observation. The orange and blue in the bottom panel 
represents the primary and the secondary star with an arbitrary offset. The 
bottom panel also includes the residuals. 
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In practice, we analyse our spectra with the following steps and
ssumptions: 

(a) The observed composite spectra are divided into smaller
avelength subsets, which we call chunks . The radial velocity shift

s computed separately for each chunk. In principle, this step is
ot necessary, but GPs are computationally intensive and without
reaking each spectrum into smaller components, the calculation
ecome intractable. 
(b) We allow separate values for GP hyperparameters σ f and σ l 

i.e. { σ f , σ l } f , { σ f , σ l } g ) for each star of the binary system. This
llows an optimal reconstruction of the spectrum taking into account
he different spectral types of the stars. The mean function that is
btained by drawing samples from the GP distribution is shown in
ig. 3 (bottom panel). 
(c) Rather than forcing a single set of hyperparameters to model

 spectrum, we allo w dif ferent sets of hyperparameters for different
egions of a spectrum. 

(d) To set reasonable initial values for the radial velocities of the
rimary and secondary stars, we first fit simple Gaussian functions
o the CCFs of each component. We then use that result to define
 flat/uniform prior distribution on the radial velocities of each
omponent. A flat prior distribution assigns equal probability density
o all values within a specified range. The bounds of the flat prior
istribution can be defined as the minimum and maximum values
f the range, which would depend on the expected range of radial
NRAS 527, 2261–2278 (2024) 
elocities for each component. We chose the bounds carefully to
 v oid assigning unrealistic probabilities to certain values. We then
se a χ2 likelihood function to refine these estimates. 
(e) We simultaneously explore the posterior distribution of the

adial velocities and the GP hyperparameters using a Markov
hain Monte Carlo (MCMC) sampler (the EMCEE PYTHON package;
oodman & Weare 2010 ; F oreman-Macke y et al. 2013 ). 
(f) We reiterate these steps for each chunk, and then filter bad

adial velocity estimates caused by telluric absorption, stellar activity
ontamination, or instrumental systematics. 

(g) The radial velocities from individual chunks are combined by
omputing a weighted average. The weights used for computing the
eighted average of the radial velocities from individual chunks are
etermined by the uncertainties associated with the radial velocity
stimates obtained from each chunk. 

(h) We normalize the observed spectra, and for the GP, we set the
ean function to a constant value of 1.0 ( μ = 1). 

.2 Method 2: CCFs modelled using GP (CCF-GP) 

ethod 1 involves dividing the observed spectrum covering a
arge wavelength range into smaller chunks and applying a GP
egression on each chunk. This process involves computing the
ernel matrix, inverting it, and multiplying it by the training set
ata. The computational complexity of GP regression is O( N 

3 ),
here N is the number of data points in each chunk. Therefore, the
 v erall comple xity of method 1 would be O( MN 

3 ), where M is the
umber of chunks in the spectrum. This can be computationally very
 xpensiv e. Hence, we also develop an alternative method. 

This alternative approach is similar to the previous one but instead
f modelling the entire spectrum chunk by chunk, we instead model
he cross-correlated spectra, which are a typical output of instruments
uch as HARPS, SOPHIE, and ESPRESSO (Baranne et al. 1996 ;
epe et al. 2002 ; Perruchot et al. 2008 ). We assume that the CCFs
re samples of GP. The mean function ( μ( x )) is constructed as the
um of two Gaussian functions. The covariance kernel function
s used to model the correlated wiggle signal found within the
CF. 
We employ a Gaussian fit jointly with a GP model for each of

he components of binary. The baseline mean-function is a Gaussian
unction for each of the component of the binary 

( x) = 1 − A 1 exp 

(
− ( x − B 1 ) 2 

2C 

2 
1 

)
− A 2 exp 

(
− ( x − B 2 ) 2 

2C 

2 
2 

)
, 

(13) 

here A 1 , B 1 , C 1 , A 2 , B 2 , C 2 are free hyper-parameters. A 1 and A 2 

orrespond to the amplitude of the Gaussian, which represents the
ontrast of primary and secondary components. B 1 and B 2 represent
he radial velocities of primary and secondary stars, while C 1 and
 2 correspond to the standard deviation of the Gaussian, which

epresents the full width at half-maximum (FWHM). 
We create a custom model class that inherits from

elerite .modeling .Model , which is used to define the mean function
f the GP. We use a Mat ́ern covariance kernel (equation 11 ),
mplemented in celerite (F oreman-Macke y et al. 2017 ) to model
he correlated wiggle signal. We set bounds on the input parameters
or the model and the hyperparameters of the Mat ́ern kernel, and
hen creates two Mat ́ern kernels, one for each Gaussian component,
hich are combined into a single kernel. 
We optimize the GP model using the L-BFGS-B method (Byrd

t al. 1995 ), which allows us to impose bounds on the parameters
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hile minimizing the ne gativ e log-likelihood of the model. We 
se MCMC sampling to explore the posterior distribution of the 
yperparameters. For this, we also use the EMCEE PYTHON package 
Goodman & Weare 2010 ; F oreman-Macke y et al. 2013 ) with 50
 alk ers and a burn-in of 100 iterations. We set broad uniform priors

or each hyperparameter, and run the final MCMC with 5000 itera- 
ions to converge on a solution. We take the median of the posterior
istribution as the optimum solution for each hyperparameter. We 
hen compute the 16th, 50th (median), and 84th percentiles of the 
osterior distribution. The uncertainties of the hyperparameters are 
aken as the difference between the 84th and 50th percentile (upper 
ound) and 50th and 16th percentile (lower bound). 
The most intensive part of this method is the optimization of

P hyperparameters which is performed by L-BFGS-B method. 
o we ver, for this method the main computational bottleneck could 

ikely be the MCMC sampling step, which has a complexity that 
cales with the size of the CCF. 

 APPLICATION  TO  TIC  1 7 2 9 0 0 9 8 8  

IC 172 900 988 is an eclipsing double-lined binary system con- 
isting of two stars with spectral types F9 and G0. The orbital
eriod of the system is approximately ∼19.7 d. Kostov et al. ( 2021 )
eported the first disco v ery of a circumbinary planet via what is
ometimes called the ‘1–2 punch technique,’ where multiple transits 
ccur during one conjunction event, the planet transits once over the 
rimary and once o v er the secondary. Kostov et al. ( 2021 ) used a
hotodynamical analysis but did not find a single solution. The plan- 
tary radius is constrained at R p = 11 . 25 ± 0 . 44 R ⊕. The planetary
asses are proposed within a range of 823 < m p < 981 m ⊕, and

he orbital period within 188 < P p < 204 d. 
We have collected radial-velocities with SOPHIE on 10 double- 

ine binaries (including six from Konacki et al. 2009 , 2010 ) in order
o test our methods to different spectral types, orbital solutions, 
elativ e v elocities, etc., and observ e their limitations. Giv en the
resence of a planet within the TIC 172 900 988 system, it serves
s a good first testbed to demonstrate our ability to extract radial-
 elocities without remo ving a Keplerian signal. By focusing first on
 known circumbinary planet host, we can evaluate the effectiveness 
nd accuracy of our approaches. We plan to follow this paper with
nother paper analysing the rest of the sample that will show how
recise our new methods are. 

.1 Obser v ation 

e collected 62 epochs of high-resolution spectra between 2020 Oc- 
ober 16 and 2023 May 05 using the SOPHIE spectrograph mounted 
n the 1.93 m telescope at Observatoire de Haute Pro v ence (OHP) in
rance (Perruchot et al. 2008 ). The spectra co v er a wavelength range
f 3872–6943 Å in 39 spectral orders, with a resolving power of δλ/ λ

75 000. The exposure times ranged from 600 to 1800 s depending
n the seeing conditions at OHP. They have an median signal-to-noise 
atio (SNR) of 32 at 5500 Å. These are SNR for the composite spectra
f the TIC 172 900 988 with an average flux fraction of 0.86. This
orresponds to an SNR of ∼17 and ∼14 at 5500 Å for the primary
nd the secondary , respectively . SOPHIE was designed to detect 
xoplanets with a long-term stability of 2 m s −1 . The observations
ere taken in objAB mode, where one fibre is used to observe the

tarlight and another fibre is used to observe the sky brightness to
stimate the background contamination such as that produced by 
oonlight. The wavelength calibration was performed before the 

ight starts using a Thorium–Argon lamp and a Fabry–P ́erot, fed 
nto both fibres. Additional Fabry–P ́erot calibrations are obtained 
oughly every 2 h within the night. The spectra are extracted using
he SOPHIE automatic pipeline (Bouchy et al. 2009 ) and the resulting 
avelength-calibrated spectra are correlated with a numerical binary 
ask to obtain the CCFs (Baranne et al. 1996 ; Pepe et al. 2002 ). We

sed a G2 mask for the correlation. 

.2 Method 1 – SD-GP 

e first obtain the spectra and cross-correlate them using the 
OPHIE Data Reduction Software. To ef fecti vely apply Method 
, we work with two-dimensional spectra (e2ds) at the instrument 
esolution instead of using 1D spectra (s1d), which operate at the
ix el sampling lev el. We measure the radial velocities of both stellar
omponents at the time of observation using a Gaussian fit to their
ross-correlated spectra. Each SOPHIE spectrum co v ers from 3872 

to 6943 Å. We divide each observed spectrum into chunks of 5 Å
ach, totalling to 615 chunks. For each chunk, we apply the SD–GP
ethod to measure the radial velocities of both stars at each epoch.
sing the calculated velocities and the parameters of the GP, we
econvolve the composite spectra into the individual spectrum of 
oth individual stars for each epoch, by optimizing the parameters 
f the model to fit the observed spectra. In Fig. A1 (left panels), we
iv e e xamples of this step of our analysis, where we show median of
osterior predictive distribution of the predicted composite spectrum 

nd the reconstructed spectra of each component of the binary. For
etter visualization, we have arbitrarily included an offset to each 
pectrum. Note that the reconstructed spectrum matches the shape of 
he input composite spectrum. It is important to note that there may
e chunks where the spectral lines are not present, possibly due to the
ontinuum dominating the spectrum (Fig. A1 , right panels), resulting 
n large uncertainties in the radial velocity (RV) measurements. After 
epeating this process for each chunk of spectra, we obtain the radial
elocities for each star in the binary system at each epoch. We then
pply outlier removal using a Student’s- t distribution to remove any
adial velocities that lie outside of the 95 per cent confidence interval.
he remaining radial velocities are assigned weights considering 

he associated uncertainties to estimate the weighted average radial 
elocities for the binary system (see Section 2.1 ). We then estimate
he uncertainty of the combined radial velocity by propagating the 
ncertainties of each individual chunk through the weighted average. 

.3 Method 2 – CCF-GP 

ll 62 epochs of spectroscopic data from SOPHIE were cross- 
orrelated with a G2 mask. To determine the radial velocities of
he primary and secondary star in the binary system TIC 172900988,
e apply the CCF-GP to the resulting CCFs. To measure the radial
elocities of the primary and secondary stars, we fit the CCF with a
ouble Gaussian function, with the two Gaussians representing the 
rimary and secondary stars, and two GPs to model each of wiggles
aused by coincidental correspondence with the mask. In Fig. 4 (left
anel), we show the CCF time-series along with the wiggles. We
xplore the posterior distribution of hyperparameters using MCMC 

ampling. We then calculate the 16th, 50th, and 84th percentiles of
he samples of the radial velocity, FWHM, and contrast obtained 
rom the MCMC simulation. These percentiles correspond to the 
ower uncertainty limit, the median value, and the upper uncertainty 
imit of the hyperparameters, respectively. The residuals following 
he subtraction of each component of the binary and the wiggles are
hown in Fig. 4 (right panel). 
MNRAS 527, 2261–2278 (2024) 
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Figure 4. Left panel: A time-series of cross-correlation for double-line binary star showing the strong signals for each components. The wiggles appear as dark 
bands on either sides of the strong signal. Right panel: The wiggles as modelled by method 2 (CCF-GP). 
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.4 TODCOR and TODMOR 

e also compute radial velocities using traditional methods such
s Two-Dimensional Correlation (TODCOR) and TODMOR (Two-
imensional Modelling and Reconstruction). TODCOR is a method

hat uses a two-dimensional cross-correlation function (2D-CCF) to
easure the radial velocities of the primary and secondary stars

n a binary system (Mazeh & Zuck er 1994 ; Zuck er & Mazeh
994 ). A modern implementation of TODCOR for multiorder spectra
s TODMOR (Zucker et al. 2004 ). TODMOR also uses a two-
imensional model of the observed spectra. To measure the radial
elocities of the primary and secondary stars TODMOR compares
ach stellar component with a template spectrum matching their
pectral type. 

In the next section, we compare our two new methods to results
roduced by TODCOR and TODMOR. As such we apply TODCOR
nd TODMOR to the same observed spectra that we used for our
wn approaches. To apply TODCOR and TODMOR, first we need to
orrect the SOPHIE spectra for the instrumental blaze function, and
etrend the pseudo-continuum. We then use the PHOENIX stellar
odel (Husser et al. 2013 ) to determine the best-matching theoretical

pectra for the primary and secondary stars, and use these to optimize
he 2D-CCF for each order of the spectra. We apply TODMOR
o each SOPHIE order and determine the radial velocities of both
omponents, discarding orders strongly influenced by telluric lines. 

T ODCOR and T ODMOR use template spectra for primary and
econdary stars and cross-correlate them to the observed composite
pectrum to determine the radial velocities. Neither TODCOR nor
ODMOR treat the wiggles. 

 RESU LTS  

.1 Binary model 

ach of the measured radial velocities obtained from method 1
Sections 2.1 and 3.2 ), method 2 (Sections 2.2 and 3.3 ), TODCOR,
nd TODMOR (Section 3.4 ) are independently modelled. We utilize
IMA , an open-source software package for fitting radial velocities,
NRAS 527, 2261–2278 (2024) 
o determine the physical parameters of the binary (Faria et al. 2018 ).
pecifically, an updated KIMA package is used, which now includes
imultaneous fitting of both components of double-lined binaries,
orrection for General Relati vity ef fects, and that can fit for apsidal
recession of the binary (Baycroft et al. 2023 ). For sampling, KIMA

mploys a dif fusi ve nested sampling algorithm (DNest4, Brewer &
 oreman-Macke y 2018 ). To account for stellar variability effects, a
adial velocity jitter term is incorporated. Outliers are included in the
rocedure, and are handled by fitting with a student’s t distribution.
he system’s derived parameters using radial velocities from both of

he new approaches are provided in Table 1 (columns 1 and 2). 
The precision reached thanks to method 1 and 2 means we have

o take the circumbinary planet into account in order to properly
ompare them between one another and to T ODCOR/T ODMOR. As
 nested sampler KIMA can fit for the number of orbiting objects in
 system (in our case binary and planet), and naturally marginalizes
 v er all parameters, including the number of orbiting bodies and their
ossible orbits. We discuss the planet’s parameters in Section 4.3 . 

.2 Comparison of radial velocities 

fter removing all Keplerian signals, we find that the residuals’ root
ean square (RMS) scatter of method 1 (SD-GP) is 39 . 9 m s −1 for

he primary star and 50 . 9 m s −1 for the secondary star, while the
MS scatter of method 2 (CCF-GP) is 48 . 8 m s −1 for the primary

tar, and 72 . 2 m s −1 for the secondary star. 
It is worth mentioning the RMS v alues achie ved by our new

pproaches are larger compared to the current state of the art, a
catter of 10 –15 m s −1 reported by Konacki et al. ( 2009 ). Ho we ver,
t is crucial to recognise that this increased scatter is likely inherent
o the characteristics of the star itself. We have tested our methods
n other double-lined binary systems, where we find that the scatter
an reach down to photon noise. 

Individual measurement uncertainties for the primary and
econdary stars, measured by each method, range between
 . 8 and 7 . 5 m s −1 for method 1 and 4 . 7 and 13 m s −1 for method
. In Fig. 5 , we plot radial velocities measured using method 1
gainst radial velocities measured using method 2. We find the
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Table 1. Best-fitting parameters for each methods both including and not including the 1–2 punch into the fit. Solutions that cross the instability 
limit (Holman & Wiegert 1999 ) are excluded here (parameters from the full posteriors can be found in Table A1 ). The parameters are determined 
along with their corresponding 1 σ uncertainties. 

ADOPTED 

Parameters Method 1 Method 2 Method 1 (with 1–2 punch) Method 2 (with 1–2 punch) 
SD-GP CCF-GP SD-GP CCF-GP 

Binary parameters 
P B (d) 19 . 657878 + 0 . 000029 

−0 . 000034 19.657861 ± 0.000040 19 . 657874 + 0 . 000030 
−0 . 000037 19 . 657869 + 0 . 000048 

−0 . 000051 
e B 0 . 448234 + 0 . 000090 

−0 . 000071 0.44823 ± 0.00010 0 . 448230 + 0 . 000081 
−0 . 000083 0.44819 ± 0.00013 

ω B (rad) 1 . 23147 + 0 . 00019 
−0 . 00027 1 . 23136 + 0 . 00035 

−0 . 00038 1 . 23142 + 0 . 00022 
−0 . 00024 1 . 23112 + 0 . 00049 

−0 . 00036 

K B (km s −1 ) 58 . 5494 + 0 . 0079 
−0 . 0054 58 . 5279 + 0 . 0076 

−0 . 0074 58.580 ± 0.011 58 . 5428 + 0 . 0104 
−0 . 0092 

q B 0 . 97196 + 0 . 00016 
−0 . 00022 0 . 97106 + 0 . 00025 

−0 . 00023 0.97211 ± 0.00022 0 . 97121 + 0 . 00029 
−0 . 00027 

ω̇ B (arcsec yr −1 ) 215 + 56 
−59 279 + 72 

−70 229 + 62 
−71 250 + 120 

−110 
T 0, B (BJD) 2 459 566 . 00250 + 0 . 00044 

−0 . 00061 2 459 566 . 00210 + 0 . 00079 
−0 . 00088 2 459 566 . 00267 + 0 . 00053 

−0 . 00062 2 459 507 . 02830 + 0 . 00113 
−0 . 00094 

Planet parameters 
P pl (d) 151.2 ± 1.8 149.3 ± 2.2 151.4 ± 1.7 149 . 9 + 2 . 4 −2 . 2 

e pl < 0.11 < 0.11 0 . 1243 + 0 . 0183 
−0 . 0090 0 . 1251 + 0 . 0124 

−0 . 0083 
ω pl (rad) 6.0 ± 1.8 4.9 ± 2.0 5 . 00 + 0 . 31 

−0 . 49 4.76 ± 0.41 
K pl (m s −1 ) 40 . 1 + 5 . 1 −5 . 3 44.0 ± 6.8 39 . 1 + 4 . 5 −4 . 3 40 . 5 + 6 . 3 −6 . 6 
T 0, pl (BJD) 2 459 442 + 40 

−45 2 459 425 + 45 
−49 2 459 419 . 7 + 7 . 8 −12 . 0 2 459 421 ± 10 

Derived parameters 
M A ( M �) 1 . 23681 + 0 . 00037 

−0 . 00039 1 . 23765 + 0 . 00051 
−0 . 00046 1.23670 ± 0.00036 1 . 23831 + 0 . 00060 

−0 . 00063 

M B ( M �) 1 . 20207 + 0 . 00033 
−0 . 00026 1 . 20184 + 0 . 00035 

−0 . 00031 1 . 20221 + 0 . 00032 
−0 . 00028 1 . 20264 + 0 . 00048 

−0 . 00046 
m pl ( M Jup ) 1.90 ± 0.25 2.07 ± 0.32 1.84 ± 0.21 2.09 ± 0.27 
a bin (au) 0 . 191879 + 0 . 000016 

−0 . 000018 0.191894 ± 0.000021 0.191879 ± 0.000016 0 . 191931 + 0 . 000026 
−0 . 000028 

a pl (au) 0 . 7474 + 0 . 0057 
−0 . 0061 0 . 7410 + 0 . 0069 

−0 . 0075 0 . 7479 + 0 . 0051 
−0 . 0056 0 . 7433 + 0 . 0079 

−0 . 0072 

Other parameters 
V sys, A (km s −1 ) 25 . 9865 + 0 . 0045 

−0 . 0047 26.0252 ± 0.0057 26.0144 ± 0.0045 26.0573 ± 0.0067 
V sys, B (km s −1 ) 26 . 0456 + 0 . 0062 

−0 . 0060 26 . 0969 + 0 . 0087 
−0 . 0089 26 . 0636 + 0 . 0059 

−0 . 0061 26.116 ± 0.010 

Figure 5. Top panel: Radial velocities extracted using method 1 versus the 
radial velocities from method 2, along with 1 σ error bars. The red and 
blue colours represent the primary and the secondary stars along with their 
respective 1:1 identity lines. Bottom panel: The residual radial velocities after 
removing the binary signal for method 1 versus the residual radial velocities 
for method 2. 
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ean absolute difference between the two approaches to be 26.9 
nd 29 . 2 m s −1 for the primary and secondary stars, respectively.
hese mean differences are lower than the measured scatter, but 
xceed the uncertainties estimated by the GP fits, which suggests the
resence of a systematic bias between them. 1 This bias could be due
o various factors, such as the differences in the templates used for
ross-correlation in method 2. In addition, method 1 might be more
usceptible to the effects of stellar activity, which affect the accuracy 
f the radial velocities. Further analysis may be necessary to fully
nderstand and quantify the sources of the observed differences. 
In Fig. A2 , we show the radial velocity time-series for each
ethod, along with the binary + planet Keplerian models applied 

o them. We find radial velocities measured by our approaches 
re consistent with those measured by TODCOR and TODMOR 

ithin uncertainties. This suggests that our approaches are able to 
ccurately measure the radial velocities of the primary and secondary 
tars. The distribution of residuals (Observed − Calculated; O–C) 
or TODCOR, TODMOR, method 1, and method 2 is presented in
ig. 6 using violin plots. Each violin plot represents the distribution
f velocities clustered around mean O–C values in m s −1 , and the
idth of each plot functions like a histogram. Our proposed methods
utperforms TODCOR and TODMOR in terms of root–mean–square 
RMS) scatter (Fig. 6 ), producing an impro v ement of a factor of ∼4
MNRAS 527, 2261–2278 (2024) 

 We tested method 1 and 2 on bright double-lined binaries from Konacki 
t al. ( 2009 , 2010 ), observed with SOPHIE, and achieved accuracies of order 
 –4 m s −1 , which will be the object of a follow-up paper. 
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Figure 6. The distribution of O-C values for the primary (red) and secondary stars (blue) in TIC172900988, as determined by TODCOR, TODMOR, method 
1 (SD-GP), and method 2 (CCF-GP), are displayed using violin plots. Note that the vertical scale is different on every panel. 

Figur e 7. Lomb–Scar gle periodogram of TIC172900988 radial velocities for 
method 1 (top) and method 2 (bottom). The radial velocities for the primary 
(red) and the secondary (blue) are plotted after removing the binary motion. 
The three horizontal dashed lines indicate 10 per cent, 1 per cent and 0.1 
per cent false alarm probabilities. The vertical dotted lines indicates the highly 
significant peak around 150 d and its harmonics. 
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nd ∼2, respectively. This indicates the effectiveness of our new
pproaches in measuring double-lined binary radial velocities more
recisely than before. Since both our methods agree between one
nother, we are also confident our measurements gained in precision
ithout compromising in accuracy. 

.3 The circumbinary planet within the TIC 172 900 988 system

he circumbinary planet is naturally detected and fitted by the Nested
ampler; ho we ver, we first describe a more frequentist approach as

t might be closer to methods used in the binary star literature. 
We initially compute a generalized Lomb–Scargle (GLS) peri-

dogram (Zechmeister & K ̈urster 2009 ) for the radial velocities
easured from the primary and the secondary stars, after having

emo v ed the best-fitting Keplerian motion for the binary star. In
ig. 7 , we display the resulting periodogram for method 1 SD-GP
top panel) and method 2 CCF-GP (bottom panel). Using 10 000
NRAS 527, 2261–2278 (2024) 
ootstrap randomization of the input data, we compute the false
larm probability (FAP) levels of 10, 1, 0.1, and 0.01 per cent.
his calculation can be done independently for the primary and
econdary radial velocities. The periodogram for radial velocities
sing both method 1 and method 2 show excess power at P pl ∼ 151 d
ith a FAP = 0 . 005 per cent . After subtracting the signal P pl , the
eriodogram has no significant peak (Fig. A3 ). 
We perform a more thorough analysis of the data using the

IMA analysis package which uses dif fusi ve nested sampling (Faria
t al. 2018 ; Baycroft et al. 2023 ). KIMA allows for Bayesian model
omparison by computing the Bayes factor between a model with a
inary and one planet to one with a binary but no planet from posterior
amples generated by the algorithm. Using the Jeffrey’s scale (Kass &
aftery 1995 ), a Bayes factor (BF) o v er 150 is considered strong
vidence in fa v our of the more complex model (here binary + planet).
herefore, we use this value as our confident detection threshold. In
ig. 8 , we show the phased radial velocity data with the best-fitting
eplerian model for the circumbinary planet (the binary having been

emo v ed). This is done for the data from method 1 (top panel) and
ethod 2 (bottom panel). 
The version of KIMA we use fits for all the orbital elements of the

inary, except � and i , but i is known from the eclipsing geometry
Kostov et al. 2021 ). A different systemic velocity parameter is fit
or each of the two stars. Keplerian models of the planet also include
ll orbital parameters except � and i . Two jitter terms are also fit
y KIMA , one for the primary and one for the secondary. To include
utliers properly in our fit, we use Student’s t statistics. 

KIMA ’s fit of the SOPHIE data obtained on TIC 172 900 988 yields
F = 2300 000 using the SD-GP method (method 1) and BF =
6 000 using the CCF-GP method (method 2). Both approaches
xceed the detection threshold and imply a confident detection of
 circumbinary planet. The parameters for the planet (as well as the
inary) are shown in Table 1 . Since TIC 172 900 988 is a double-
ined eclipsing binary, we obtain the absolute mass of each stellar
omponent at high precision. Since the planet’s orbital plane at the
ime of the observations is close to perpendicular to the line of sight
Kostov et al. 2021 ), we measure a mass that could be considered
n absolute mass as well. Ho we ver, it is likely the planetary orbital
lane inclination has precessed, and might be out of transitability
e.g. Martin & Triaud 2014 ). We use the median of posteriors from
IMA and their 1 σ confidence region to produce our fit’s parameters
nd uncertainties. We find all binary parameters to be statistically
onsistent with the analysis of (Kostov et al. 2021 ), with a few
aveats. The binary period ( P B ) we find is inconsistent with any
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Figure 8. The residual RVs phase folded with corresponding best-fitting 
Keplerian circumbinary model (Table A1 ). The top and bottom panels 
correspond to our method 1 (SD-GP) and method 2 (CCF-GP), respectively. 
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Figure 9. Orbital configuration of TIC 172 900 988 showing the orbits of the 
binary and the planet. The green orbits are a random sample of 1000 posteriors 
from kima fitting the radial velocities from SD-GP. The blue orbits are the 
six suggested solutions from Kostov et al. ( 2021 ), the dashed grey line is the 
stability limit as calculated by Holman & Wiegert ( 1999 ). The radial velocity 
data alone are fit (not including the 1–2 punch transit data). 
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f the six solutions proposed by Kostov et al. ( 2021 ), but it does
ie within the range that these solutions co v er. 2 The argument of
eriastron ( ω B ) that we measure is not consistent, at first glance.
o we ver, our measurements were taken some time after the Kostov

t al. ( 2021 ) paper. If we correct for the apsidal precession of the
inary orbit, our value of ω B is consistent with Kostov et al. ( 2021 ).
he value we get for the apsidal precession rate ( ̇ω B ) is also consistent
ith the value quoted in Kostov et al. ( 2021 ). This precession rate
 xceeds that e xpected from General Relativity, and is attributed to
he third-body perturbations produced by the planet. Fig. A4 shows 
he area of parameter-space a third body needs to have to produce and
psidal precession rate consistent with the observations. We o v erplot 
he location of the planetary parameters presented in this work and 
he solutions proposed by Kostov et al. ( 2021 ). All solutions can
eproduce the detected precession rate well. 
 These six solutions consist of osculating elements and the binary periods are 
nternally inconsistent with each other. 

i  

p  

z  

T  
For the planet, we find P pl ≈ 150 d and a mass m pl ≈ 2 M jup ( ≈
00 M ⊕). While these are inconsistent with any of the six solutions
roposed by Kostov et al. ( 2021 ), we fit the planet with a Keplerian
odel and report mean parameters, where Kostov et al. ( 2021 ) fit
ith a dynamical model and report osculating parameters. In such a
ynamically complex orbit, it is difficult to compare these parameters 
roperly. We note an additional important caveat here: We fit a static
eplerian to the planetary orbit and obtain a mean orbital period.
ther parameters such as the semimajor axis and the mass are then

alculated using Kepler’s la w. Howev er, due to the proximity of this
rbit to the binary it is expected that non-K eplerian ef fects (such as
psidal precession of the planetary orbit) are present and the orbit
ould not conform to Kepler’s law. Hence, it is possible that the
lanet’s true orbital distance and true mass are slightly larger than
tated here. 

Orbital parameters between both methods (SD-GP and CCF-GP) 
re internally consistent and are presented in Table 1 (columns 1
nd 2). Any posterior samples where the proposed planet crosses 
nto the instability region (calculated using the formula in Holman &

iegert 1999 ) are excluded, as described in Standing et al. ( 2022 ).
e adopt the parameters in column 1 of Table 1 as our preferred

olution. We chose this solution as the SD-GP method results in a
igher Bayes Factor than the CCF-GP. The method used for the
arameters reported in columns 3 and 4 is described in Section
.4 . Table A1 shows the parameters obtained from the posterior
ample with the ‘unstable’ solutions left in. These are therefore 
he parameters simply consistent with the data without dynamical 
tability being considered. 

Fig. 9 shows the orbital configuration of TIC 172900988, display- 
ng the orbits of the binary and the planet. A subsample of 1000
osterior samples are drawn: if a sample crosses into the instability
one it gets shown in red, otherwise in green. The parameters in
able 1 and the distributions shown in Fig. 11 correspond therefore
MNRAS 527, 2261–2278 (2024) 
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Figure 10. Detection sensitivity to planets plotted as semi-amplitude as a 
function of orbital period of planets. The density of posterior samples are 
depicted as gre y he xagonal bins. The solid green, red, orange, and blue lines 
show the detection limit from posterior samples for TODCOR, TODMOR, 
method 1, and method 2, respectively. The diagonal lines are anticipated 
signals of Saturn and Jupiter mass planet. 
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o the orbits shown in green. The six solutions from Kostov et al.
 2021 ) are also shown for comparison. 3 

The KIMA algorithm can generate detection limits for any further
ignals, following the method presented in Standing et al. ( 2022 ):
rst, all planetary detected signals are remo v ed from the data (but

he binary’s orbital signature is kept), then KIMA is run once more
nd forced to fit a planetary signal (when presumably there are none
eft in the data). The resulting set of posterior samples corresponds to
ll signals that are compatible with the data, but have no statistically
etectable signals. This method is an alternative to injection-reco v ery
ests (e.g. Konacki et al. 2009 , 2010 ; Martin et al. 2019 ) that allow
o compute a detection limit efficiently o v er a large parameter space,
hile marginalizing o v er all orbital elements. The detection limits

or TIC 172 900 988 are sho wn in Fig. A5 and re veal that the SOPHIE
ata analysed using our two new methods produce very similar results
nd that those are sensitive to planets with masses of order Jupiter’s
ut to periods as large as 1000 d except for orbital periods around
he 1 yr alias. 

Finally, we run the same analysis on the T ODCOR and T ODMOR-
roduced radial velocities. These produced BF = 0.8 and 0.7, respec-
i vely, well belo w the accepted detection threshold, demonstrating
hat our new approaches out-performed TODCOR and TODMOR.

e show a comparison of all the resulting detection limits in Fig. 10 .
he detection limits here are a little different than in Fig. A5 , since

he planet is not formally detected with all approaches. To allow for
 proper comparison between the detection limits generated using
he different methods we do not remo v e the planetary signal when
alculating the detection limits on data from the SD-GP and CCF-
P methods. To ensure that the parameter space was well-co v ered in

hese cases we then force KIMA to fit two signals instead of the usual
ne signal. 
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 These may not be a full representation of the solutions from Kostov et al. 
 2021 ) since they quote osculating elements and we plot them as if they were 
ean elements. 

c
5

(
a
D
s

.4 Including the 1–2 punch technique 

he detection of the planet, and the posteriors of its orbital and
hysical parameters can be impro v ed by combining the radial
elocity data with some aspects of the transit data. Ultimately, a
ull photodynamical analysis would need to be performed, but this is
eyond the scope of our paper. 
TIC 172 900 988 was disco v ered using the ‘1–2 punch’ method

Kostov et al. 2021 ). Two transits within the same conjunction give
n estimate of the planet’s orbital period. The distance the planet has
o v ed can be calculated from the position in its orbit of the transited

tar, at the time of each transit. The time between the transits and
he distance travelled then allow us to calculate an estimate of the
lanet’s orbital period (as in Kostov et al. 2020 ): 

 pl = 

2 πGM bin 

v 3 

(
e sin ω + sin ( φ + ω) √ 

1 − e 2 

)3 

, (14) 

here M bin is the total mass of the binary, e and ω the eccentricity
nd argument of periastron of the planet, φ is the true anomaly at the
oint in the orbit that we are measuring and v the average velocity
n the plane of the sky with which the planet mo v ed between both
ransit mid-points. Since we know the planet is at conjunction, we
an use sin ( φ + ω) ≈ 1. 4 

We alter our version of KIMA and add an extra feature, to
nclude the ‘1–2 punch’ information as part of the the sampling
rocess. When a solution is proposed by the sampler, the predicted
eriod from the ‘1–2 punch’ is calculated and compared to the
roposed period. This is then included in the likelihood calculation
f the sample in the same way as an extra data point would
e, assuming a Gaussian distribution. Our new log-likelihood is
herefore: 

log ( L ) = log ( L RV ) − 1 

2 
log (2 πσ 2 

P 12 
) − ( P 12 − P pl ) 2 

2 σ 2 
P 12 

, (15) 

here log ( L RV ) is the log-likelihood from the radial velocity data, P pl 

s the period for the planet proposed as part of the sampling process,
 12 is the orbital period calculated using equation ( 14 ) using all other
arameters proposed in the sample (e.g. M bin , e , etc.). Finally, σ 2 

P 12 

s the variance of P 12 , which is derived from the uncertainty in the
ransit times propagated through equation ( 14 ). 

We run the analysis on TIC 172 900 988 again, with the extra
nput of two transits with mid-times at 2 458 883 . 390879 ± 0 . 006188
nd 2 458 888 . 309427 ± 0 . 003904. 5 We fix the number of planets
earched for in KIMA to 1. The parameters for the planet and binary
btained are shown in Table 1 (columns 3 and 4). As with the previous
nalysis, any posterior samples where the proposed planet crosses
nto the instability are excluded. 

A Keplerian fit of the radial velocity data probes the average
arameters of the orbit o v er the time baseline, notably the average
rbital period. A circumbinary planet, especially one like TIC
72900988 b which is quite close to the inner binary will see its
rbital parameters vary throughout its orbital path meaning that
hen parameters of the orbit are measured o v er a short time frame,
hoice of reference frame. 
 The transit mid-times were determined using the Eclipsing Light Curve 
ELC) code. The segment of the data containing a single event was isolated, 
nd a model was fitted to the transit (or eclipse) profile. Then we e x ecute the 
E-MCMC code, and the median along with 1 σ uncertainties of the posterior 

ample was considered as the best-fitting transit time. 
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Figure 11. Corner plot showing the distributions and correlations of the planetary parameters from the simultaneous fit of the radial velocity data and the 1–2 
punch transit times. The contours are the 50th and 90th percentiles. Orange shows the results using the radial velocity data using SD-GP, and blue from the 
CCF-GP. 
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hey may not be representative of the average orbit. The 1–2 punch,
ethod calculates the velocity and therefore the orbital period, o v er
 short time frame. Using this method to constrain the average period
ight bring in a poorly understood bias. We therefore present the 

esults from the combined radial velocity and 1–2 punch fit out of
nterest, but do not adopt these parameters as our preferred solution. 

The posterior samples for the planet parameters are shown as a 
orner plot (F oreman-Macke y 2016 ) in Fig. 11 for both the CCF-GP
ethod and the SD-GP method. We note that the crescent-shaped 

orrelations involving the eccentricity are expected. We also note that 
hile we report the median and 1 σ in Table 1 , some of the parameters
ave non-Gaussian distributions [in particular the eccentricity ( e pl ) 
nd argument of periastron ( ω pl )]. 

We find these new solutions are consistent with solutions of 
tting just the radial velocities or just the average orbital velocity 
t conjunction between the transits. The combined fit suggests the 
ircumbinary planet’s orbit must have an eccentricity e pl > 0.1 and 
n argument of periastron 4 . 35 ≤ ω pl ≤ 5 . 31 rad. 

Fig. A6 shows the orbital configuration of TIC 172900988. This is
he counterpart to Fig. 9 generated from posterior samples obtained 
rom the KIMA analysis which included the 1–2 punch and using the
D-GP radial velocities. 

 C O N C L U S I O N S  

n this work, we focus on the development of two new data-driven
pproaches to accurately measure radial velocities in double-lined 
inary systems. Despite being brighter and more precise in principle, 
he time-varying blending of the two stars’ spectral lines makes 
ccurate radial velocity measurement challenging. Previous methods 
Konacki et al. 2009 ) been shown to have a typical scatter of
0 –15 m s −1 that prevents the detection of most orbiting circumbi-
ary planets. 
In this paper, we introduce two new methods based on GP

egression inspired by Czekala et al. ( 2017 ). The first method
pplies the GP in the spectral domain and the second is applied
n cross-correlated spectra. We compare the precision and accuracy 
f our radial-velocity to two widely used methods: TODCOR and 
ODMOR (Mazeh & Zucker 1994 ; Zucker et al. 2004 ). 
MNRAS 527, 2261–2278 (2024) 
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To perform the comparison, we analyse 62 SOPHIE spectra of the
inary TIC 172900988, a binary system which was also proposed
o host a circumbinary planet (Kostov et al. 2021 ). We show that
ur two methods outperform both TODCOR and TODMOR, neither
f which could reco v er the planet whereas both our GP approaches
uccessfully detect a circumbinary planet. Ho we ver, its parameters
re found statistically different from previously published solutions
Kostov et al. 2021 ). TIC 172900988 b will now integrate the BEBOP
atalogue for circumbinary exoplanets detected with radial-velocities
s its second entry. 

The RMS achieved by our new approaches are ≈50 and 70 m s −1 

or the primary and secondary stars of TIC 172900988, respectively,
re larger than our measurement uncertainties, and larger than the
ypical scatter reported for double-lined binaries in Konacki et al.
10 − 15 m s −1 ; 2009 , 2010 ). We speculate this increased scatter is
ost likely of stellar origin. Both stellar components are fairly high-
ass stars. We note that TODCOR and TODMOR, both recognized
ethods of radial v elocity e xtraction, also produce a high scatter. In

hose cases, TODCOR and TODMOR remain unable to detect the
lanetary signal which has a semi-amplitude K pl ∼ 42 m s −1 . The
act our approaches both manage to o v ercome some of that scatter
mphasizes the limitations of existing techniques when dealing with
ystems characterized by substantial scatter. The detection of a
ircumbinary planet in TIC 172 900 988 showcases the ef fecti ve-
ess of our data-driven methods in uncovering planetary signals
ven in challenging double-lined binary systems. We highlight
ere that should a circumbinary planet similar to the parameters
f TIC 172900988 b have been present in a quieter binary star
ystem, traditional methods such as T ODCOR, T ODMOR and the
omographic disentangling method have the nominal accuracy to
etect it. 

Our two new methods are a step forward, but there is always room
or impro v ement. Further refinements and optimizations to these
ethods may lead to even more accurate and precise radial velocity
easurements, particularly with the spectral decomposition. 
Firstly, we recognize that our analysis does not account for possible

ontamination in the radial velocities obtained from each chunk of
he spectra. Specifically, we do not consider the effects of stellar
ctivity on our results. Also the chunking can be impro v ed to a v oid
reas that are poor in absorption lines, and a v oid areas that include
and known to be highly variable such as H α. In order to impro v e the
ccuracy and precision of our measurements, we plan to develop a
ore sophisticated approach that can identify regions of the spectra

hat are affected by these factors. 
Secondly, we recognize that there is still much to be learned about

he astrophysical properties of the binary stars themselves. In the
ase of TIC 172900988, both stars are of equal mass. The CCF and
pectral decomposition methods might need to be adapted to non-
qual mass binaries to account for the their differing spectral types. 

In addition, we expect that the spectral deconvolution method
ill yield accurate spectra for both stars individually when all
avelength chunks are combined together. Such a spectrum could
e used to constrain their properties such as their temperature, vsin i
nd metallicity, an important parameter to relate planet presence to
lanet formation (e.g. Santos, Israelian & Mayor 2004 ; Adibekyan
t al. 2013 ). 

Our methods open the door to extend the search for circumbi-
ary planets using the radial-velocity method beyond single-lined
inaries. With our two new approaches, it is highly probable that
he disco v ery of circumbinary planets will be enhanced in the
uture. Finally, we highlight the success of our two new methods
n being the first to detect a circumbinary planet using radial-
NRAS 527, 2261–2278 (2024) 
elocities in a double-lined binary . Importantly , this detection is made
ndependently of any other data. Interestingly our results produce
lanetary parameters different from those previously published
emonstrating the need for radial-velocity follow-up of circumbinary
lanet candidates identified with the transit method. 
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M

Figure A1. Seven epochs of composite spectra for two chunks between 5379–5384 Å and 5437–5443 Å are shown in grey with composite model in green. The 
mean realization drawn from posterior predictive distribution are show in red and blue for the primary and secondary , respectively . The residuals are shown at 
the bottom of each panel. The first chunk shows several lines and the second chunk shows no lines in the composite spectra. The redial velocities from such 
chunks are weighted. 
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Figure A2. SOPHIE radial velocities as a function of time and the corresponding residuals for the method 1 (SD-GP), method 2 (CCF-GP), TODCOR, and 
TODMOR (top to bottom). The o v erplotted magenta and orange curves are the medial value of the posterior distribution models for the primary and the 
secondary stars corresponding to 2000 random MCMC steps. 
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Figure A3. The residual periodgram after removing the signal P b for both 
method 1 (top panel) and method 2 (bottom panel). The red and blue curves 
represent the primary and the secondary components of the binary. The grey 
vertical line indicates the period of P b . 

Figure A5. The density of posterior samples from kima run on 
TIC172900988 with N p fixed to 1. The orange and blue lines indicate the 
detection limits for method 1 and method 2. 

Figure A4. Left panel method 1 (SD-GP) and right panel method 2 (CCF-GP): Grey the scatter plot showing the planets consistent with the posterior distribution 
on the apsidal precession rate, the GR precession rate is accounted for both this and the third-body dynamical precession rate are calculated using the equations in 
Baycroft et al. ( 2023 ). Blue the locations of the solution presented in this work. Red the 6 suggested solutions from Kostov et al. ( 2021 ). Dashed line the 
HW-stability limit. Blue line the detection limit with planet b remo v ed. 
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Table A1. Best-fit parameters for each methods both including and not including the 1–2 punch into the fit. Solutions that cross the instability 
limit (Holman & Wiegert 1999 ) are not excluded here so these parameters are from the full posterior (parameters from the posteriors excluding 
unstable samples can be found in Table 1 ) The parameters are determined along with their corresponding 1 σ uncertainties. 

Parameters Method 1 Method 2 Method 1 (with 1–2 punch) Method 2 (with 1–2 punch) 
SD-GP CCF-GP SD-GP CCF-GP 

Binary parameters 
P B (d) 19 . 657878 + 0 . 000030 

−0 . 000035 19.657861 ± 0.000039 19 . 657872 + 0 . 000033 
−0 . 000038 19 . 657865 + 0 . 000037 

−0 . 000049 

e B 0 . 448234 + 0 . 000090 
−0 . 000071 0.44823 ± 0.00010 0.448232 ± 0.000083 0.44821 ± 0.00011 

ω B (rad) 1 . 23146 + 0 . 00020 
−0 . 00027 1 . 23136 + 0 . 00034 

−0 . 00038 1 . 23142 + 0 . 00022 
−0 . 00026 1 . 23132 + 0 . 00042 

−0 . 00038 

K B (km s −1 ) 58 . 5494 + 0 . 0079 
−0 . 0054 58.5278 ± 0.0076 58 . 5557 + 0 . 0067 

−0 . 0075 58.5320 ± 0.0085 

q B 0 . 97196 + 0 . 00016 
−0 . 00022 0.97106 ± 0.00025 0.97211 ±0.00022 0.97118 ± 0.00026 

ω̇ B (arcsec yr −1 ) 215 ± 59 279 + 73 
−69 230 + 62 

−68 279 + 87 
−77 

T 0,B (BJD) 2 459 566 . 00248 + 0 . 00044 
0 . 00060 2 459 566 . 00209 + 0 . 00080 

−0 . 00087 2 459 566 . 00267 + 0 . 00053 
−0 . 00067 2 459 566 . 00236 + 0 . 00089 

−0 . 00086 

Planet parameters 
P pl (d) 151.3 ± 1.8 149 . 2 + 2 . 2 −2 . 5 151 . 7 + 1 . 4 −1 . 7 148 . 6 + 2 . 1 −2 . 4 

e pl <0.21 <0.19 0 . 153 + 0 . 095 
−0 . 034 0 . 141 + 0 . 059 

−0 . 019 

ω pl (rad) 6.0 ± 1.5 4 . 9 + 1 . 8 −2 . 0 5 . 37 + 0 . 34 
−0 . 69 4 . 57 + 0 . 75 

−0 . 61 
K pl (m s −1 ) 40.0 ± 5.2 43.8 ± 6.9 39.1 ± 4.4 44.6 ± 5.9 
T 0,pl (BJD) 2 459 442 ± 36 2 459 425 + 43 

−45 ± 36 2 459 428 . 6 + 8 . 2 −16 . 4 2 459 417 + 17 
−14 

Derived 
parameters 
M A ( M �) 1 . 23681 + 0 . 00037 

−0 . 00039 1 . 23766 + 0 . 00051 
−0 . 00047 1.23670 ±0.00036 1 . 23763 + 0 . 00056 

−0 . 00052 

M B ( M �) 1 . 20207 + 0 . 00032 
−0 . 00027 1 . 20184 + 0 . 00035 

−0 . 00031 1 . 20221 + 0 . 00032 
−0 . 00029 1 . 20196 + 0 . 00046 

−0 . 00036 
m pl ( M Jup ) 1.88 ± 0.25 2.05 ± 0.33 1.82 ± 0.21 2.08 ± 0.28 
a bin (au) 0 . 191879 + 0 . 000016 

−0 . 000018 0 . 191894 + 0 . 000021 
−0 . 000019 0.191879 ± 0.000017 0 . 191896 + 0 . 000026 

−0 . 000020 

a pl (au) 0 . 7478 + 0 . 0056 
−0 . 0060 0 . 7408 + 0 . 0073 

−0 . 0082 0 . 7488 + 0 . 0046 
−0 . 0057 0 . 7388 + 0 . 0070 

−0 . 0080 

Other parameters 
V sys,A (km s −1 ) 25.9867 ± 0.0047 26 . 0254 + 0 . 0056 

−0 . 0058 26.0146 ± 0.0045 26.0531 ± 0.0057 
V sys,B (km s −1 ) 26.0459 ± 0.0060 26 . 0970 + 0 . 0088 

−0 . 0090 26 . 0639 + 0 . 0058 
−0 . 0060 26 . 1144 + 0 . 0087 

−0 . 0089 

Figure A6. Orbital configuration of TIC 172900988 showing the orbits of the binary and the planet. The green orbits are a random sample of 1000 posteriors 
from kima fitting the radial velocities from SD-GP. The blue orbits are the 6 suggested solutions from Kostov et al. ( 2021 ), the dashed grey line is the stability 
limit as calculated by Holman & Wiegert ( 1999 ). The radial velocity data are fit along with the 1–2 punch transit times. 
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Table A2. Radial velocities for TIC 172900988 from method 1 (SD-GP). 

Time Primary velocity (km s −1 ) Secondary velocity (km s −1 ) 

2459147.672 52.79199671 ± 0.006297356 − 1.341327759 ± 0.006306834 
2459171.636 91.97097921 ± 0.005992599 − 41.7090222 ± 0.006286077 
2459175.691 − 23.52844488 ± 0.00644886 77.15182984 ± 0.006474733 
2459181.596 7.347251678 ± 0.006376945 45.27023063 ± 0.006680279 
2459190.691 92.70303819 ± 0.006187038 − 42.5376363 ± 0.006332743 
2459239.365 − 1.129883138 ± 0.006176608 53.91700289 ± 0.006657609 
2459241.492 14.08887308 ± 0.005837241 38.29504511 ± 0.00627873 
2459244.379 37.5613718 ± 0.006226358 14.18090136 ± 0.005747394 
2459266.368 60.76693256 ± 0.005976897 − 9.64611818 ± 0.006047371 
2459267.47 73.56029354 ± 0.006017367 − 22.86220394 ± 0.006961391 
2459273.489 − 21.54275388 ± 0.005940911 75.02796022 ± 0.005957771 
2459275.417 − 20.68023758 ± 0.006389657 74.17527381 ± 0.006500415 
2459277.469 − 9.111063764 ± 0.006309079 62.28799085 ± 0.006159118 
2459279.412 3.98339319 ± 0.006324967 48.82902088 ± 0.006526375 
2459298.342 − 1.020137615 ± 0.006330255 54.01401655 ± 0.006227837 
2459303.354 37.55683484 ± 0.0074648 14.27880206 ± 0.006027881 
2459306.305 67.86532276 ± 0.006444953 − 16.94025943 ± 0.006238535 
2459349.348 73.62773529 ± 0.006983177 − 22.86640098 ± 0.006296323 
2459500.669 44.32693159 ± 0.006540338 7.125655004 ± 0.006049167 
2459503.676 77.25865033 ± 0.006945358 − 26.80055497 ± 0.006602366 
2459505.66 92.93966618 ± 0.005800538 − 42.7710604 ± 0.006673939 
2459520.677 47.73082394 ± 0.006196444 3.716136893 ± 0.006353854 
2459538.668 32.37888203 ± 0.006456517 19.38534042 ± 0.00619455 
2459540.703 51.37790001 ± 0.005821974 − 0.173462113 ± 0.006350227 
2459547.591 − 3.063614773 ± 0.006373649 55.9661014 ± 0.006367542 
2459549.642 − 23.7319162 ± 0.006405175 77.21294787 ± 0.006348954 
2459551.67 − 15.38293878 ± 0.00663949 68.53497782 ± 0.005787423 
2459554.647 4.143067667 ± 0.006584258 48.46498983 ± 0.006984549 
2459561.567 64.5010298 ± 0.006332341 − 13.53132504 ± 0.006124583 
2459564.581 93.16248364 ± 0.006361619 − 42.99898808 ± 0.005963061 
2459593.454 0.683072938 ± 0.006046486 52.26118897 ± 0.006787273 
2459594.52 8.129553129 ± 0.007271555 44.54464934 ± 0.006443498 

Table A2 – continued 

Time Primary velocity (km s −1 ) Secondary velocity (km s −1 ) 

2459595.551 15.80628424 ± 0.006564392 36.64180076 ± 0.00590492 
2459601.498 71.67462121 ± 0.006331687 − 20.77559905 ± 0.006184636 
2459603.604 93.11739363 ± 0.005906311 − 42.88178153 ± 0.005967396 
2459606.465 0.153346735 ± 0.00681785 52.83101539 ± 0.006158358 
2459620.521 64.26088258 ± 0.00619908 − 13.29834682 ± 0.006548925 
2459622.461 87.01039359 ± 0.00627504 − 36.66314116 ± 0.006265194 
2459633.431 5.236038169 ± 0.006660511 47.48907668 ± 0.006490337 
2459639.522 56.92154995 ± 0.006093159 − 5.735897826 ± 0.006651901 
2459641.539 80.41509092 ± 0.006584094 − 29.84720911 ± 0.006356079 
2459644.369 67.1501422 ± 0.006394344 − 16.30315308 ± 0.006183854 
2459648.487 − 22.40190367 ± 0.006323709 75.85843987 ± 0.005795921 
2459689.378 − 14.79066973 ± 0.006230134 68.00513033 ± 0.00637691 
2459700.34 78.32983042 ± 0.006419625 − 27.75129827 ± 0.006155616 
2459703.361 66.33099669 ± 0.006216234 − 15.43700494 ± 0.005620311 
2459866.605 − 12.90221977 ± 0.005845783 66.08328391 ± 0.006040523 
2459867.575 − 6.810615935 ± 0.005947117 59.73342189 ± 0.005773165 
2459883.659 − 23.8159665 ± 0.00648577 77.31777816 ± 0.006012319 
2459883.678 − 23.774671 ± 0.006567066 77.31375696 ± 0.006051184 
2459885.631 − 16.60526503 ± 0.006354589 69.98110091 ± 0.005834438 
2459887.693 − 3.678472876 ± 0.006754954 56.62591044 ± 0.00647946 
2459903.653 − 23.40576746 ± 0.006284945 77.00199673 ± 0.005950399 
2459921.561 − 14.17031488 ± 0.006465102 67.36293503 ± 0.006204055 
2459955.49 73.37103301 ± 0.006235832 − 22.72623035 ± 0.006626476 
2459956.447 84.73111962 ± 0.006153014 − 34.38022166 ± 0.006084119 
2459956.553 85.91070219 ± 0.006025253 − 35.6867799 ± 0.006509933 
2459957.585 93.21325513 ± 0.00645166 − 43.09054178 ± 0.006232159 
2460040.371 − 22.81230331 ± 0.006385354 76.3388599 ± 0.006613679 
2460041.4 − 23.15597144 ± 0.00728653 76.62366086 ± 0.006686246 
2460070.347 40.62749601 ± 0.006123952 11.0440643 ± 0.006351236 
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