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ABSTRACT

Ongoing ground-based radial-velocity observations seeking to detect circumbinary planets focus on single-lined binaries even
though over 9 in every 10 binary systems in the solar neighbourhood are double lined. Double-lined binaries are on average
brighter, and should in principle yield more precise radial velocities. However, as the two stars orbit one another, they produce
a time-varying blending of their weak spectral lines. This makes an accurate measure of radial velocities difficult, producing a
typical scatter of 10—15 ms~!. This extra noise prevents the detection of most orbiting circumbinary planets. We develop two
new data-driven approaches to disentangle the two stellar components of a double-lined binary, and extract accurate and precise
radial velocities. Both approaches use a Gaussian process regression, with the first one working in the spectral domain, whereas
the second works on cross-correlated spectra. We apply our new methods to TIC 172900988, a proposed circumbinary system
with a double-lined binary, and detect a circumbinary planet with an orbital period of 150 d, different than previously proposed.
We also measure a significant residual scatter, which we speculate is caused by stellar activity. We show that our two data-driven
methods outperform the traditionally used TODCOR and TODMOR, for that particular binary system.

Key words: techniques: radial velocities —planets and satellites: detection — planets and satellites: gaseous planets — planets and
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1 INTRODUCTION

Planets orbiting around both stars of a binary star system are
called p-type or circumbinary planets. The discovery of Kepler-16
(Doyle et al. 2011) marked the first confirmation of the existence of
these long-theorized planets (Borucki & Summers 1984; Schneider
1994). Since then, the Kepler and TESS missions have identified
an additional 13 transiting circumbinary planets in 11 binary star
systems (e.g. Martin 2018; Kostov et al. 2020; Socia et al. 2020;
Kostov et al. 2021). While the radial velocity method is a highly
effective way to detect exoplanets since Mayor & Queloz (1995),
only two circumbinary planets have been detected using this method:
Kepler-16 b (Triaud et al. 2022) and TOI-1338/BEBOP-1 ¢ (Standing
et al. 2023).

Ground-based radial-velocity surveys of binary stars are more
efficient, and less biased than transit surveys (Martin et al. 2019)
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and thus can construct a more insightful picture of the properties of
the circumbinary planet population. The BEBOP survey (Binaries
Escorted By Orbiting Planets; Martin et al. 2019) began in 2017 as
a dedicated, blind, radial-velocity survey of single-lined eclipsing
binary stars. The survey reaches a precision of a few metres per
second (Triaud et al. 2022). However, the BEBOP survey currently
remains confined to highly unequal stellar-mass pairs where the
secondary’s mass is usually less than 30 percent of the primary
star (Triaud et al. 2017; Martin et al. 2019). These single-lined
binaries represents only around 8 per cent of all binaries; however, the
remaining 92 per cent of binaries are double-line binaries (Kovaleva
et al. 2016). Prior to the BEBOP survey, an extensive survey of
double-line binaries was carried out by the TATOOINE survey
(Konacki et al. 2009, 2010). However, TATOOINE did not yield
any circumbinary planets and reported a 10-15 ms™' scatter in
the data, enough to hide most exoplanets. Konacki et al. (2009)
had to first deconvolve their spectra to remove an iodine-cell
absorption spectrum, then they use TODCOR (Zucker & Mazeh
1994) to obtain a guess radial velocity for each component of the
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binary. Then they perform their tomographic deconvolution method
to accurately measure the radial velocity for each of the stellar
components.

Radial velocities are also often extracted by cross-correlating the
observed spectrum with a template spectrum, or with a line-list mask
(the method we use; e.g. Baranne et al. 1996). When the template
matches the observed spectrum a strong signal is recorded. The
cross-correlation method is convenient to understand what might
help address radial velocity scatter.

In addition to the large cross-correlation function (CCF) signal,
weaker signals on either side of the main signal are also recorded.
They are caused by coincidental correspondence between the tem-
plate and the spectrum, which we call wiggles. The wiggles exhibit
pseudo-static behaviour over time in relation to the main CCF
signal. We refer to these wiggles as pseudo-static because their
characteristics may vary depending on the observation conditions.
As an example, Fig. 1 depicts a CCF time-series showing the strong
stellar signal for HD 189733 but also its weaker, and stable wiggle
signals.

In the context of double-line binary stars, the presence of two
bright stars leads to two distinct, and strong CCF signals that vary
in time based on the respective masses and orbital parameters of the
binary system. Fig. 2 illustrates this time-varying signal, as well as
the accompanying wiggles. Because there are two stars, there are
two sets of wiggles. Each can interact with the strong CCF signal
of the other star, and blending of a wiggle from star A with the
CCEF of star B, can lead to an error in estimating the radial velocity
of star B (and vice versa). This effect also happens on the spectral
side, where weak lines from star A can blend with strong lines of
star B. If the template used for deconvolution is incomplete, this
will cause a similar issue when estimating radial velocities. This
phenomenon, which we refer to as the double-lined binary problem,
is likely the issue that prevents the discovery of circumbinary
planets.

With this effect in mind, it is obvious that a data-driven approach
needs to be taken since no template can properly reproduce every
spectral feature. Any error on the spectrum/template spectrum of
one star can affect the radial-velocity measurement of the other
star.

In this paper, we present two new methods to derive precise
radial velocities of double-lined binaries. We treat the wiggles as a
correlated signal. Such correlated signals are typically and accurately
treated in a data-driven way using Gaussian processes (GP; Aigrain,
Parviainen & Pope 2016). This method has had several successes
(e.g. Czekala et al. 2017; Rajpaul, Aigrain & Buchhave 2020) within
the exoplanet field.

The structure of the paper is as follow: Section 2 we introduce
the GP framework. We then describe the two new techniques we
developed for deriving radial velocities of double-lined binary stars.
In Section 3, we choose to apply our two methods to the double-lined
binary system TIC 172900988 because of the presence of a planet in
the system that allows to test for the recovery of a Keplerian signal. In
Section 4, we describe how we analyse the resulting radial velocities
to model a binary’s Keplerian motion, search for a circumbinary
planet and infer its orbital parameters. Finally, we compare the
radial velocities derived from our two new methods, and compare
them to traditional and publicly available methods of measuring
radial velocities (TODCOR and TODMOR; Mazeh & Zucker 1994,
Zucker & Mazeh 1994; Zucker et al. 2004). We also discuss the
implication of detecting a circumbinary planet in TIC 172900988
binary system. We conclude the paper with a summary of our key
results in Section 5.
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2 GP-BASED RADIAL VELOCITY
EXTRACTION

In this section, we provide a brief overview of the GP framework,
which is a non-parametric Bayesian modelling technique that we
use to infer the spectra of double-lined binary star systems. A GP
is a type of stochastic process that describes the distribution of a
group of random variables. It can be thought of as an extension of
kernel regression to probabilistic models. Using non-parametric GPs
to model the unknown wiggle function of double-lined binaries is a
powerful and flexible approach (Rasmussen & Williams 2006).

A normal distribution is often represented as N'(u,c?). If a
random variable x is normally distributed with mean and variance, it
can be expressed as

x ~ N(pe, i), M

with u, represents mean vector and X, represents the covariance
matrix. The covariance matrix describes the pairwise covariance
between the different elements of the input data x.

The likelihood that a set of observations y is drawn from GP can
be written as

InL =Inp(y|x, ¢,0), 2

= l( K ) 11 K ﬁ1(2) 3)
=—50-nu Y= =5 In|K| = = In(2m),

where ¢ and 6 are hyperparameters of the mean and covariance func-
tions. In equation (3), K refers to the covariance matrix associated
with the GP. The elements of the covariance matrix depend on the
chosen covariance function and the values of the hyperparameters 6.
N represents the number of elements in the vector y, which contains
the observations. Evaluating this likelihood provides a posterior
distribution of the hyperparameters.

2.1 Method 1: efficient spectral decomposition using GP
(SD-GP)

The observed spectra of a double-line binary star system can be
modelled as a GP (e.g. Czekala et al. 2017). The spectrum of a single
star can be represented as a function f{A), where A is the wavelength.
If A > 0, the observed spectrum of a single star can be modelled as a
function f(A) with a mean function ©(X) and a covariance kernel k(%,
A'). If the observed spectrum has finite inputs 0 < A} < Ay <...... <
A, then the vector [f(A}), f(X2),.....f(Ay)] has a multivariate Gaussian
distribution with a mean function [@(X;), w(A),......(A,)] and a
covariance matrix with k(;, A;) as its elements, where k is the kernel
function and i, j = 1, 2,..., w. Therefore, the intrinsic continuous
spectrum of a star can be assumed to be a function f generated from
a GP:

) ~ GP (1), k(x, 1)) . 4)

The observed spectra of a spectroscopic binary are composed of
spectral lines from both stars as a composite. Due to the orbital
motion of each stars in the binary, a Doppler shift is induced to the
rest-frame stellar spectra that are observed in the composite spectra
simultaneously. For a star moving with radial velocity v, the rest-
frame wavelength of the observed spectra are shifted to

Av) = (”Z)iko, 5)

where c is speed of light.
We describe the radial velocities of binary stars as a function of
time using seven parameters: the semi-amplitude of the primary star
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Figure 1. Left panel: A time-series of CCF for HD 189733. The bright profile shows the stellar profile. The wiggles appear on either side of bright profile.
The black profile is the median CCF of all epochs. Right panel: Residual map of time-series on removal of stellar profile. Wiggles are seen as alternating static

bands. Overlaid in black is the median wiggle of all epochs.
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Figure 2. Schematic diagram showing the double-line binary problem and
our solution to the problem using method 2 (CCF-GP).

Mg
Ma
period (P), the eccentricity (e), the argument of periastron (w), the

epoch of periastron (7)), and systemic velocity (y). The velocity of

(Ka), the binary stars mass ratio (q = = %), binary orbital

the primary and secondary stars as a function of time is

vy = Kalcos(w + f(t)) +ecosw] + y (6)
and

K,
vp = —7[cos(w + f(®) +ecosw] + v, @)
respectively.

For a single-epoch observation of a double-line binary star, we
assume that the observed composite spectrum (s) is a sum of
realization f for the primary star and g for the secondary star along
with N, the noise process realization:

s=f+g+N, ®)
~N(pyg, Zp) + Npg, Zo) + N0, Zy), C)
~Ns+ g, Zp 4 Z, + Zy), (10)

where X, and X, are covariance matrices describing the primary
and secondary star. We evaluate the covariance matrix X and X,
using the wavelengths corresponding to the primary and secondary
components in their rest frame with the kernel function (equation
11). In Fig. 3, we show the realization f and g for both components
of the binary star.

Similar to Rajpaul, Aigrain & Buchhave (2020), we choose the
Matérn kernel to model our spectra. The Matérn kernel is often
used when modelling spectra because it is a flexible and versatile
covariance function that can capture a wide range of smoothness and
correlation properties. The Matérn covariance kernel specifies the
covariance between two pixels A; and A; as

kij(rij|0) = o} (1 + f’) exp (—‘?) , )

where r; has units of km s~!
A=A
A

(ki k)= 5
ri‘ =r i i) = =
J J 2
with ¢ as the speed of light, o, is the characteristic length-scale, and

oy is the signal standard deviation.

; 12)
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Figure 3. Depicted in the top two panels are the multivariate realization
vector from prior distribution draw for GP hyperparameters of the primary
and the secondary stars. The realizations are not constrained by the data.
The bottom panel depicts the mean prediction (in green) from the posterior
predictive distribution of GP drawn by conditioning on the observed data
from a single-epoch observation. The orange and blue in the bottom panel
represents the primary and the secondary star with an arbitrary offset. The
bottom panel also includes the residuals.

In practice, we analyse our spectra with the following steps and
assumptions:

(a) The observed composite spectra are divided into smaller
wavelength subsets, which we call chunks. The radial velocity shift
is computed separately for each chunk. In principle, this step is
not necessary, but GPs are computationally intensive and without
breaking each spectrum into smaller components, the calculation
become intractable.

(b) We allow separate values for GP hyperparameters o and o,
(.e. {0, 01}p {0}, 01},) for each star of the binary system. This
allows an optimal reconstruction of the spectrum taking into account
the different spectral types of the stars. The mean function that is
obtained by drawing samples from the GP distribution is shown in
Fig. 3 (bottom panel).

(c) Rather than forcing a single set of hyperparameters to model
a spectrum, we allow different sets of hyperparameters for different
regions of a spectrum.

(d) To set reasonable initial values for the radial velocities of the
primary and secondary stars, we first fit simple Gaussian functions
to the CCFs of each component. We then use that result to define
a flat/uniform prior distribution on the radial velocities of each
component. A flat prior distribution assigns equal probability density
to all values within a specified range. The bounds of the flat prior
distribution can be defined as the minimum and maximum values
of the range, which would depend on the expected range of radial

MNRAS 527, 2261-2278 (2024)

velocities for each component. We chose the bounds carefully to
avoid assigning unrealistic probabilities to certain values. We then
use a x? likelihood function to refine these estimates.

(e) We simultaneously explore the posterior distribution of the
radial velocities and the GP hyperparameters using a Markov
chain Monte Carlo (MCMC) sampler (the EMCEE PYTHON package;
Goodman & Weare 2010; Foreman-Mackey et al. 2013).

(f) We reiterate these steps for each chunk, and then filter bad
radial velocity estimates caused by telluric absorption, stellar activity
contamination, or instrumental systematics.

(g) The radial velocities from individual chunks are combined by
computing a weighted average. The weights used for computing the
weighted average of the radial velocities from individual chunks are
determined by the uncertainties associated with the radial velocity
estimates obtained from each chunk.

(h) We normalize the observed spectra, and for the GP, we set the
mean function to a constant value of 1.0 (u = 1).

2.2 Method 2: CCFs modelled using GP (CCF-GP)

Method 1 involves dividing the observed spectrum covering a
large wavelength range into smaller chunks and applying a GP
regression on each chunk. This process involves computing the
kernel matrix, inverting it, and multiplying it by the training set
data. The computational complexity of GP regression is O(N?),
where N is the number of data points in each chunk. Therefore, the
overall complexity of method 1 would be O(M N?), where M is the
number of chunks in the spectrum. This can be computationally very
expensive. Hence, we also develop an alternative method.

This alternative approach is similar to the previous one but instead
of modelling the entire spectrum chunk by chunk, we instead model
the cross-correlated spectra, which are a typical output of instruments
such as HARPS, SOPHIE, and ESPRESSO (Baranne et al. 1996;
Pepe et al. 2002; Perruchot et al. 2008). We assume that the CCFs
are samples of GP. The mean function (w(x)) is constructed as the
sum of two Gaussian functions. The covariance kernel function
is used to model the correlated wiggle signal found within the
CCFE.

We employ a Gaussian fit jointly with a GP model for each of
the components of binary. The baseline mean-function is a Gaussian
function for each of the component of the binary

(x — B))? (x — By)?
/J,(x) =1- Al eXp (—27(:%> — Az €Xp (—27@ s

13)

where Ay, By, Ci, Ay, By, C; are free hyper-parameters. A; and A,
correspond to the amplitude of the Gaussian, which represents the
contrast of primary and secondary components. B; and B, represent
the radial velocities of primary and secondary stars, while C; and
C, correspond to the standard deviation of the Gaussian, which
represents the full width at half-maximum (FWHM).

We create a custom model class that inherits from
celerite.modeling.Model, which is used to define the mean function
of the GP. We use a Matérn covariance kernel (equation 11),
implemented in celerite (Foreman-Mackey et al. 2017) to model
the correlated wiggle signal. We set bounds on the input parameters
for the model and the hyperparameters of the Matérn kernel, and
then creates two Matérn kernels, one for each Gaussian component,
which are combined into a single kernel.

We optimize the GP model using the L-BFGS-B method (Byrd
et al. 1995), which allows us to impose bounds on the parameters
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while minimizing the negative log-likelihood of the model. We
use MCMC sampling to explore the posterior distribution of the
hyperparameters. For this, we also use the EMCEE PYTHON package
(Goodman & Weare 2010; Foreman-Mackey et al. 2013) with 50
walkers and a burn-in of 100 iterations. We set broad uniform priors
for each hyperparameter, and run the final MCMC with 5000 itera-
tions to converge on a solution. We take the median of the posterior
distribution as the optimum solution for each hyperparameter. We
then compute the 16th, 50th (median), and 84th percentiles of the
posterior distribution. The uncertainties of the hyperparameters are
taken as the difference between the 84th and 50th percentile (upper
bound) and 50th and 16th percentile (lower bound).

The most intensive part of this method is the optimization of
GP hyperparameters which is performed by L-BFGS-B method.
However, for this method the main computational bottleneck could
likely be the MCMC sampling step, which has a complexity that
scales with the size of the CCF.

3 APPLICATION TO TIC 172900988

TIC 172900988 is an eclipsing double-lined binary system con-
sisting of two stars with spectral types FO and GO. The orbital
period of the system is approximately ~19.7 d. Kostov et al. (2021)
reported the first discovery of a circumbinary planet via what is
sometimes called the ‘1-2 punch technique,” where multiple transits
occur during one conjunction event, the planet transits once over the
primary and once over the secondary. Kostov et al. (2021) used a
photodynamical analysis but did not find a single solution. The plan-
etary radius is constrained at R, = 11.25 4= 0.44 Rgy. The planetary
masses are proposed within a range of 823 < m, < 981 mg, and
the orbital period within 188 < P, < 204 d.

We have collected radial-velocities with SOPHIE on 10 double-
line binaries (including six from Konacki et al. 2009, 2010) in order
to test our methods to different spectral types, orbital solutions,
relative velocities, etc., and observe their limitations. Given the
presence of a planet within the TIC 172900988 system, it serves
as a good first testbed to demonstrate our ability to extract radial-
velocities without removing a Keplerian signal. By focusing first on
a known circumbinary planet host, we can evaluate the effectiveness
and accuracy of our approaches. We plan to follow this paper with
another paper analysing the rest of the sample that will show how
precise our new methods are.

3.1 Observation

We collected 62 epochs of high-resolution spectra between 2020 Oc-
tober 16 and 2023 May 05 using the SOPHIE spectrograph mounted
on the 1.93 m telescope at Observatoire de Haute Provence (OHP) in
France (Perruchot et al. 2008). The spectra cover a wavelength range
of 3872-6943 A in 39 spectral orders, with a resolving power of A/A
275 000. The exposure times ranged from 600 to 1800 s depending
on the seeing conditions at OHP. They have an median signal-to-noise
ratio (SNR) of 32 at 5500 A. These are SNR for the composite spectra
of the TIC 172900988 with an average flux fraction of 0.86. This
corresponds to an SNR of ~17 and ~14 at 5500 A for the primary
and the secondary, respectively. SOPHIE was designed to detect
exoplanets with a long-term stability of 2 ms~'. The observations
were taken in objAB mode, where one fibre is used to observe the
starlight and another fibre is used to observe the sky brightness to
estimate the background contamination such as that produced by
moonlight. The wavelength calibration was performed before the
night starts using a Thorium—Argon lamp and a Fabry—Pérot, fed
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into both fibres. Additional Fabry—Pérot calibrations are obtained
roughly every 2 h within the night. The spectra are extracted using
the SOPHIE automatic pipeline (Bouchy et al. 2009) and the resulting
wavelength-calibrated spectra are correlated with a numerical binary
mask to obtain the CCFs (Baranne et al. 1996; Pepe et al. 2002). We
used a G2 mask for the correlation.

3.2 Method 1 - SD-GP

We first obtain the spectra and cross-correlate them using the
SOPHIE Data Reduction Software. To effectively apply Method
1, we work with two-dimensional spectra (e2ds) at the instrument
resolution instead of using 1D spectra (s1d), which operate at the
pixel sampling level. We measure the radial velocities of both stellar
components at the time of observation using a Gaussian fit to their
cross-correlated spectra. Each SOPHIE spectrum covers from 3872
A to 6943 A. We divide each observed spectrum into chunks of 5A
each, totalling to 615 chunks. For each chunk, we apply the SD-GP
method to measure the radial velocities of both stars at each epoch.
Using the calculated velocities and the parameters of the GP, we
deconvolve the composite spectra into the individual spectrum of
both individual stars for each epoch, by optimizing the parameters
of the model to fit the observed spectra. In Fig. Al (left panels), we
give examples of this step of our analysis, where we show median of
posterior predictive distribution of the predicted composite spectrum
and the reconstructed spectra of each component of the binary. For
better visualization, we have arbitrarily included an offset to each
spectrum. Note that the reconstructed spectrum matches the shape of
the input composite spectrum. It is important to note that there may
be chunks where the spectral lines are not present, possibly due to the
continuum dominating the spectrum (Fig. A1, right panels), resulting
in large uncertainties in the radial velocity (RV) measurements. After
repeating this process for each chunk of spectra, we obtain the radial
velocities for each star in the binary system at each epoch. We then
apply outlier removal using a Student’s-z distribution to remove any
radial velocities that lie outside of the 95 per cent confidence interval.
The remaining radial velocities are assigned weights considering
the associated uncertainties to estimate the weighted average radial
velocities for the binary system (see Section 2.1). We then estimate
the uncertainty of the combined radial velocity by propagating the
uncertainties of each individual chunk through the weighted average.

3.3 Method 2 - CCF-GP

All 62 epochs of spectroscopic data from SOPHIE were cross-
correlated with a G2 mask. To determine the radial velocities of
the primary and secondary star in the binary system TIC 172900988,
we apply the CCF-GP to the resulting CCFs. To measure the radial
velocities of the primary and secondary stars, we fit the CCF with a
double Gaussian function, with the two Gaussians representing the
primary and secondary stars, and two GPs to model each of wiggles
caused by coincidental correspondence with the mask. In Fig. 4 (left
panel), we show the CCF time-series along with the wiggles. We
explore the posterior distribution of hyperparameters using MCMC
sampling. We then calculate the 16th, 50th, and 84th percentiles of
the samples of the radial velocity, FWHM, and contrast obtained
from the MCMC simulation. These percentiles correspond to the
lower uncertainty limit, the median value, and the upper uncertainty
limit of the hyperparameters, respectively. The residuals following
the subtraction of each component of the binary and the wiggles are
shown in Fig. 4 (right panel).
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Figure 4. Left panel: A time-series of cross-correlation for double-line binary star showing the strong signals for each components. The wiggles appear as dark
bands on either sides of the strong signal. Right panel: The wiggles as modelled by method 2 (CCF-GP).

3.4 TODCOR and TODMOR

We also compute radial velocities using traditional methods such
as Two-Dimensional Correlation (TODCOR) and TODMOR (Two-
Dimensional Modelling and Reconstruction). TODCOR is a method
that uses a two-dimensional cross-correlation function (2D-CCF) to
measure the radial velocities of the primary and secondary stars
in a binary system (Mazeh & Zucker 1994; Zucker & Mazeh
1994). A modern implementation of TODCOR for multiorder spectra
is TODMOR (Zucker et al. 2004). TODMOR also uses a two-
dimensional model of the observed spectra. To measure the radial
velocities of the primary and secondary stars TODMOR compares
each stellar component with a template spectrum matching their
spectral type.

In the next section, we compare our two new methods to results
produced by TODCOR and TODMOR. As such we apply TODCOR
and TODMOR to the same observed spectra that we used for our
own approaches. To apply TODCOR and TODMOR, first we need to
correct the SOPHIE spectra for the instrumental blaze function, and
detrend the pseudo-continuum. We then use the PHOENIX stellar
model (Husser et al. 2013) to determine the best-matching theoretical
spectra for the primary and secondary stars, and use these to optimize
the 2D-CCF for each order of the spectra. We apply TODMOR
to each SOPHIE order and determine the radial velocities of both
components, discarding orders strongly influenced by telluric lines.

TODCOR and TODMOR use template spectra for primary and
secondary stars and cross-correlate them to the observed composite
spectrum to determine the radial velocities. Neither TODCOR nor
TODMOR treat the wiggles.

4 RESULTS

4.1 Binary model

Each of the measured radial velocities obtained from method 1
(Sections 2.1 and 3.2), method 2 (Sections 2.2 and 3.3), TODCOR,
and TODMOR (Section 3.4) are independently modelled. We utilize
KIMA, an open-source software package for fitting radial velocities,
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to determine the physical parameters of the binary (Faria et al. 2018).
Specifically, an updated KIMA package is used, which now includes
simultaneous fitting of both components of double-lined binaries,
correction for General Relativity effects, and that can fit for apsidal
precession of the binary (Baycroft et al. 2023). For sampling, KIMA
employs a diffusive nested sampling algorithm (DNest4, Brewer &
Foreman-Mackey 2018). To account for stellar variability effects, a
radial velocity jitter term is incorporated. Outliers are included in the
procedure, and are handled by fitting with a student’s ¢ distribution.
The system’s derived parameters using radial velocities from both of
the new approaches are provided in Table 1 (columns 1 and 2).

The precision reached thanks to method 1 and 2 means we have
to take the circumbinary planet into account in order to properly
compare them between one another and to TODCOR/TODMOR. As
a nested sampler KIMA can fit for the number of orbiting objects in
a system (in our case binary and planet), and naturally marginalizes
over all parameters, including the number of orbiting bodies and their
possible orbits. We discuss the planet’s parameters in Section 4.3.

4.2 Comparison of radial velocities

After removing all Keplerian signals, we find that the residuals’ root
mean square (RMS) scatter of method 1 (SD-GP) is 39.9 ms~! for
the primary star and 50.9 ms™' for the secondary star, while the
RMS scatter of method 2 (CCF-GP) is 48.8 ms~! for the primary
star, and 72.2 ms~! for the secondary star.

It is worth mentioning the RMS values achieved by our new
approaches are larger compared to the current state of the art, a
scatter of 1015 ms~! reported by Konacki et al. (2009). However,
it is crucial to recognise that this increased scatter is likely inherent
to the characteristics of the star itself. We have tested our methods
on other double-lined binary systems, where we find that the scatter
can reach down to photon noise.

Individual measurement uncertainties for the primary and
secondary stars, measured by each method, range between
5.8and7.5 ms~! for method 1 and 4.7and 13 ms~! for method
2. In Fig. 5, we plot radial velocities measured using method 1
against radial velocities measured using method 2. We find the
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Table 1. Best-fitting parameters for each methods both including and not including the 1-2 punch into the fit. Solutions that cross the instability
limit (Holman & Wiegert 1999) are excluded here (parameters from the full posteriors can be found in Table A1). The parameters are determined

along with their corresponding 1o uncertainties.
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Figure 5. Top panel: Radial velocities extracted using method 1 versus the
radial velocities from method 2, along with 1o error bars. The red and
blue colours represent the primary and the secondary stars along with their
respective 1:1 identity lines. Bottom panel: The residual radial velocities after
removing the binary signal for method 1 versus the residual radial velocities
for method 2.

mean absolute difference between the two approaches to be 26.9
and 29.2 ms~! for the primary and secondary stars, respectively.
These mean differences are lower than the measured scatter, but
exceed the uncertainties estimated by the GP fits, which suggests the
presence of a systematic bias between them.! This bias could be due
to various factors, such as the differences in the templates used for
cross-correlation in method 2. In addition, method 1 might be more
susceptible to the effects of stellar activity, which affect the accuracy
of the radial velocities. Further analysis may be necessary to fully
understand and quantify the sources of the observed differences.

In Fig. A2, we show the radial velocity time-series for each
method, along with the binary + planet Keplerian models applied
to them. We find radial velocities measured by our approaches
are consistent with those measured by TODCOR and TODMOR
within uncertainties. This suggests that our approaches are able to
accurately measure the radial velocities of the primary and secondary
stars. The distribution of residuals (Observed — Calculated; O-C)
for TODCOR, TODMOR, method 1, and method 2 is presented in
Fig. 6 using violin plots. Each violin plot represents the distribution
of velocities clustered around mean O-C values in ms~!, and the
width of each plot functions like a histogram. Our proposed methods
outperforms TODCOR and TODMOR in terms of root—-mean—square
(RMS) scatter (Fig. 6), producing an improvement of a factor of ~4

'We tested method 1 and 2 on bright double-lined binaries from Konacki
et al. (2009, 2010), observed with SOPHIE, and achieved accuracies of order
2-4 ms~!, which will be the object of a follow-up paper.
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Figure 6. The distribution of O-C values for the primary (red) and secondary stars (blue) in TIC172900988, as determined by TODCOR, TODMOR, method
1 (SD-GP), and method 2 (CCF-GP), are displayed using violin plots. Note that the vertical scale is different on every panel.
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Figure7. Lomb-Scargle periodogram of TIC172900988 radial velocities for
method 1 (top) and method 2 (bottom). The radial velocities for the primary
(red) and the secondary (blue) are plotted after removing the binary motion.
The three horizontal dashed lines indicate 10 percent, 1 percent and 0.1
per cent false alarm probabilities. The vertical dotted lines indicates the highly
significant peak around 150 d and its harmonics.

and ~2, respectively. This indicates the effectiveness of our new
approaches in measuring double-lined binary radial velocities more
precisely than before. Since both our methods agree between one
another, we are also confident our measurements gained in precision
without compromising in accuracy.

4.3 The circumbinary planet within the TIC 172 900 988 system

The circumbinary planet is naturally detected and fitted by the Nested
Sampler; however, we first describe a more frequentist approach as
it might be closer to methods used in the binary star literature.

We initially compute a generalized Lomb-Scargle (GLS) peri-
odogram (Zechmeister & Kiirster 2009) for the radial velocities
measured from the primary and the secondary stars, after having
removed the best-fitting Keplerian motion for the binary star. In
Fig. 7, we display the resulting periodogram for method 1 SD-GP
(top panel) and method 2 CCF-GP (bottom panel). Using 10000
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bootstrap randomization of the input data, we compute the false
alarm probability (FAP) levels of 10, 1, 0.1, and 0.01 percent.
This calculation can be done independently for the primary and
secondary radial velocities. The periodogram for radial velocities
using both method 1 and method 2 show excess power at P, ~ 151d
with a FAP = 0.005 per cent. After subtracting the signal Py, the
periodogram has no significant peak (Fig. A3).

We perform a more thorough analysis of the data using the
KIMA analysis package which uses diffusive nested sampling (Faria
et al. 2018; Baycroft et al. 2023). KIMA allows for Bayesian model
comparison by computing the Bayes factor between a model with a
binary and one planet to one with a binary but no planet from posterior
samples generated by the algorithm. Using the Jeffrey’s scale (Kass &
Raftery 1995), a Bayes factor (BF) over 150 is considered strong
evidence in favour of the more complex model (here binary + planet).
Therefore, we use this value as our confident detection threshold. In
Fig. 8, we show the phased radial velocity data with the best-fitting
Keplerian model for the circumbinary planet (the binary having been
removed). This is done for the data from method 1 (top panel) and
method 2 (bottom panel).

The version of KIMA we use fits for all the orbital elements of the
binary, except 2 and i, but i is known from the eclipsing geometry
(Kostov et al. 2021). A different systemic velocity parameter is fit
for each of the two stars. Keplerian models of the planet also include
all orbital parameters except 2 and i. Two jitter terms are also fit
by KIMA, one for the primary and one for the secondary. To include
outliers properly in our fit, we use Student’s 7 statistics.

KIMA'’s fit of the SOPHIE data obtained on TIC 172 900 988 yields
BF = 2300000 using the SD-GP method (method 1) and BF =
16000 using the CCF-GP method (method 2). Both approaches
exceed the detection threshold and imply a confident detection of
a circumbinary planet. The parameters for the planet (as well as the
binary) are shown in Table 1. Since TIC 172900988 is a double-
lined eclipsing binary, we obtain the absolute mass of each stellar
component at high precision. Since the planet’s orbital plane at the
time of the observations is close to perpendicular to the line of sight
(Kostov et al. 2021), we measure a mass that could be considered
an absolute mass as well. However, it is likely the planetary orbital
plane inclination has precessed, and might be out of transitability
(e.g. Martin & Triaud 2014). We use the median of posteriors from
KIMA and their 1o confidence region to produce our fit’s parameters
and uncertainties. We find all binary parameters to be statistically
consistent with the analysis of (Kostov et al. 2021), with a few
caveats. The binary period (Pg) we find is inconsistent with any
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Figure 8. The residual RVs phase folded with corresponding best-fitting
Keplerian circumbinary model (Table Al). The top and bottom panels
correspond to our method 1 (SD-GP) and method 2 (CCF-GP), respectively.

of the six solutions proposed by Kostov et al. (2021), but it does
lie within the range that these solutions cover.? The argument of
periastron (wg) that we measure is not consistent, at first glance.
However, our measurements were taken some time after the Kostov
et al. (2021) paper. If we correct for the apsidal precession of the
binary orbit, our value of wg is consistent with Kostov et al. (2021).
The value we get for the apsidal precession rate (wg) is also consistent
with the value quoted in Kostov et al. (2021). This precession rate
exceeds that expected from General Relativity, and is attributed to
the third-body perturbations produced by the planet. Fig. A4 shows
the area of parameter-space a third body needs to have to produce and
apsidal precession rate consistent with the observations. We overplot
the location of the planetary parameters presented in this work and
the solutions proposed by Kostov et al. (2021). All solutions can
reproduce the detected precession rate well.

2These six solutions consist of osculating elements and the binary periods are
internally inconsistent with each other.
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—— Binary orbits

—— Planet (this work, stable)

—— Planet (this work, unstable)

—— Planet (Kostov+ 2021)
= ---- HW stability limit

Figure 9. Orbital configuration of TIC 172 900 988 showing the orbits of the
binary and the planet. The green orbits are a random sample of 1000 posteriors
from kima fitting the radial velocities from SD-GP. The blue orbits are the
six suggested solutions from Kostov et al. (2021), the dashed grey line is the
stability limit as calculated by Holman & Wiegert (1999). The radial velocity
data alone are fit (not including the 1-2 punch transit data).

For the planet, we find Py ~ 150 d and a mass my ~ 2 My, (&
600 M). While these are inconsistent with any of the six solutions
proposed by Kostov et al. (2021), we fit the planet with a Keplerian
model and report mean parameters, where Kostov et al. (2021) fit
with a dynamical model and report osculating parameters. In such a
dynamically complex orbit, it is difficult to compare these parameters
properly. We note an additional important caveat here: We fit a static
Keplerian to the planetary orbit and obtain a mean orbital period.
Other parameters such as the semimajor axis and the mass are then
calculated using Kepler’s law. However, due to the proximity of this
orbit to the binary it is expected that non-Keplerian effects (such as
apsidal precession of the planetary orbit) are present and the orbit
would not conform to Kepler’s law. Hence, it is possible that the
planet’s true orbital distance and true mass are slightly larger than
stated here.

Orbital parameters between both methods (SD-GP and CCF-GP)
are internally consistent and are presented in Table 1 (columns 1
and 2). Any posterior samples where the proposed planet crosses
into the instability region (calculated using the formula in Holman &
Wiegert 1999) are excluded, as described in Standing et al. (2022).
We adopt the parameters in column 1 of Table 1 as our preferred
solution. We chose this solution as the SD-GP method results in a
higher Bayes Factor than the CCF-GP. The method used for the
parameters reported in columns 3 and 4 is described in Section
4.4. Table Al shows the parameters obtained from the posterior
sample with the ‘unstable’ solutions left in. These are therefore
the parameters simply consistent with the data without dynamical
stability being considered.

Fig. 9 shows the orbital configuration of TIC 172900988, display-
ing the orbits of the binary and the planet. A subsample of 1000
posterior samples are drawn: if a sample crosses into the instability
zone it gets shown in red, otherwise in green. The parameters in
Table 1 and the distributions shown in Fig. 11 correspond therefore
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Figure 10. Detection sensitivity to planets plotted as semi-amplitude as a
function of orbital period of planets. The density of posterior samples are
depicted as grey hexagonal bins. The solid green, red, orange, and blue lines
show the detection limit from posterior samples for TODCOR, TODMOR,
method 1, and method 2, respectively. The diagonal lines are anticipated
signals of Saturn and Jupiter mass planet.

to the orbits shown in green. The six solutions from Kostov et al.
(2021) are also shown for comparison.?

The KIMA algorithm can generate detection limits for any further
signals, following the method presented in Standing et al. (2022):
first, all planetary detected signals are removed from the data (but
the binary’s orbital signature is kept), then KIMA is run once more
and forced to fit a planetary signal (when presumably there are none
left in the data). The resulting set of posterior samples corresponds to
all signals that are compatible with the data, but have no statistically
detectable signals. This method is an alternative to injection-recovery
tests (e.g. Konacki et al. 2009, 2010; Martin et al. 2019) that allow
to compute a detection limit efficiently over a large parameter space,
while marginalizing over all orbital elements. The detection limits
for TIC 172900 988 are shown in Fig. A5 and reveal that the SOPHIE
data analysed using our two new methods produce very similar results
and that those are sensitive to planets with masses of order Jupiter’s
out to periods as large as 1000 d except for orbital periods around
the 1 yr alias.

Finally, we run the same analysis on the TODCOR and TODMOR-
produced radial velocities. These produced BF = 0.8 and 0.7, respec-
tively, well below the accepted detection threshold, demonstrating
that our new approaches out-performed TODCOR and TODMOR.
We show a comparison of all the resulting detection limits in Fig. 10.
The detection limits here are a little different than in Fig. AS, since
the planet is not formally detected with all approaches. To allow for
a proper comparison between the detection limits generated using
the different methods we do not remove the planetary signal when
calculating the detection limits on data from the SD-GP and CCF-
GP methods. To ensure that the parameter space was well-covered in
these cases we then force KIMA to fit two signals instead of the usual
one signal.

3These may not be a full representation of the solutions from Kostov et al.
(2021) since they quote osculating elements and we plot them as if they were
mean elements.
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4.4 Including the 1-2 punch technique

The detection of the planet, and the posteriors of its orbital and
physical parameters can be improved by combining the radial
velocity data with some aspects of the transit data. Ultimately, a
full photodynamical analysis would need to be performed, but this is
beyond the scope of our paper.

TIC 172900988 was discovered using the ‘1-2 punch’ method
(Kostov et al. 2021). Two transits within the same conjunction give
an estimate of the planet’s orbital period. The distance the planet has
moved can be calculated from the position in its orbit of the transited
star, at the time of each transit. The time between the transits and
the distance travelled then allow us to calculate an estimate of the
planet’s orbital period (as in Kostov et al. 2020):

2nG My [ esinw + sin(¢ + w) 3
pl — ( /;1 — 62 ) B
where My, is the total mass of the binary, e and w the eccentricity
and argument of periastron of the planet, ¢ is the true anomaly at the
point in the orbit that we are measuring and v the average velocity
in the plane of the sky with which the planet moved between both
transit mid-points. Since we know the planet is at conjunction, we
can use sin (¢ + w) ~ 1.4

We alter our version of KIMA and add an extra feature, to
include the ‘1-2 punch’ information as part of the the sampling
process. When a solution is proposed by the sampler, the predicted
period from the ‘1-2 punch’ is calculated and compared to the
proposed period. This is then included in the likelihood calculation
of the sample in the same way as an extra data point would
be, assuming a Gaussian distribution. Our new log-likelihood is
therefore:

= (14)

(P12 — Py)?

: (15)
20'[2:'12

log(L) = log(Lrv) — % log(Znaf,]Z) —
where log(Lgy) is the log-likelihood from the radial velocity data, P,
is the period for the planet proposed as part of the sampling process,
Py, is the orbital period calculated using equation (14) using all other
parameters proposed in the sample (e.g. My, €, etc.). Finally, 0}2,] R
is the variance of Pj,, which is derived from the uncertainty in the
transit times propagated through equation (14).

We run the analysis on TIC 172900988 again, with the extra
input of two transits with mid-times at 2 458 883.390879 + 0.006188
and 2458 888.309427 4 0.003904.5 We fix the number of planets
searched for in KIMA to 1. The parameters for the planet and binary
obtained are shown in Table 1 (columns 3 and 4). As with the previous
analysis, any posterior samples where the proposed planet crosses
into the instability are excluded.

A Keplerian fit of the radial velocity data probes the average
parameters of the orbit over the time baseline, notably the average
orbital period. A circumbinary planet, especially one like TIC
172900988 b which is quite close to the inner binary will see its
orbital parameters vary throughout its orbital path meaning that
when parameters of the orbit are measured over a short time frame,

4We note a difference from Kostov et al. (2020) where the value of this is
quoted as —1, Kostov et al. (2016) use a value of 1, this may be down to the
choice of reference frame.

3The transit mid-times were determined using the Eclipsing Light Curve
(ELC) code. The segment of the data containing a single event was isolated,
and a model was fitted to the transit (or eclipse) profile. Then we execute the
DE-MCMC code, and the median along with 1o uncertainties of the posterior
sample was considered as the best-fitting transit time.
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Figure 11. Corner plot showing the distributions and correlations of the planetary parameters from the simultaneous fit of the radial velocity data and the 1-2
punch transit times. The contours are the 50th and 90th percentiles. Orange shows the results using the radial velocity data using SD-GP, and blue from the

CCF-GP.

they may not be representative of the average orbit. The 1-2 punch,
method calculates the velocity and therefore the orbital period, over
a short time frame. Using this method to constrain the average period
might bring in a poorly understood bias. We therefore present the
results from the combined radial velocity and 1-2 punch fit out of
interest, but do not adopt these parameters as our preferred solution.

The posterior samples for the planet parameters are shown as a
corner plot (Foreman-Mackey 2016) in Fig. 11 for both the CCF-GP
method and the SD-GP method. We note that the crescent-shaped
correlations involving the eccentricity are expected. We also note that
while we report the median and 1o in Table 1, some of the parameters
have non-Gaussian distributions [in particular the eccentricity (ey)
and argument of periastron (wp)].

We find these new solutions are consistent with solutions of
fitting just the radial velocities or just the average orbital velocity
at conjunction between the transits. The combined fit suggests the
circumbinary planet’s orbit must have an eccentricity ey > 0.1 and
an argument of periastron 4.35 < wy; < 5.31 rad.

Fig. A6 shows the orbital configuration of TIC 172900988. This is
the counterpart to Fig. 9 generated from posterior samples obtained

from the KIMA analysis which included the 1-2 punch and using the
SD-GP radial velocities.

5 CONCLUSIONS

In this work, we focus on the development of two new data-driven
approaches to accurately measure radial velocities in double-lined
binary systems. Despite being brighter and more precise in principle,
the time-varying blending of the two stars’ spectral lines makes
accurate radial velocity measurement challenging. Previous methods
(Konacki et al. 2009) been shown to have a typical scatter of
10-15 ms~! that prevents the detection of most orbiting circumbi-
nary planets.

In this paper, we introduce two new methods based on GP
regression inspired by Czekala et al. (2017). The first method
applies the GP in the spectral domain and the second is applied
on cross-correlated spectra. We compare the precision and accuracy
of our radial-velocity to two widely used methods: TODCOR and
TODMOR (Mazeh & Zucker 1994; Zucker et al. 2004).
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To perform the comparison, we analyse 62 SOPHIE spectra of the
binary TIC 172900988, a binary system which was also proposed
to host a circumbinary planet (Kostov et al. 2021). We show that
our two methods outperform both TODCOR and TODMOR, neither
of which could recover the planet whereas both our GP approaches
successfully detect a circumbinary planet. However, its parameters
are found statistically different from previously published solutions
(Kostov et al. 2021). TIC 172900988 b will now integrate the BEBOP
catalogue for circumbinary exoplanets detected with radial-velocities
as its second entry.

The RMS achieved by our new approaches are ~50 and 70 ms™
for the primary and secondary stars of TIC 172900988, respectively,
are larger than our measurement uncertainties, and larger than the
typical scatter reported for double-lined binaries in Konacki et al.
(10 — 15 ms~'; 2009, 2010). We speculate this increased scatter is
most likely of stellar origin. Both stellar components are fairly high-
mass stars. We note that TODCOR and TODMOR, both recognized
methods of radial velocity extraction, also produce a high scatter. In
those cases, TODCOR and TODMOR remain unable to detect the
planetary signal which has a semi-amplitude Ky ~ 42 ms™'. The
fact our approaches both manage to overcome some of that scatter
emphasizes the limitations of existing techniques when dealing with
systems characterized by substantial scatter. The detection of a
circumbinary planet in TIC 172900988 showcases the effective-
ness of our data-driven methods in uncovering planetary signals
even in challenging double-lined binary systems. We highlight
here that should a circumbinary planet similar to the parameters
of TIC 172900988 b have been present in a quieter binary star
system, traditional methods such as TODCOR, TODMOR and the
tomographic disentangling method have the nominal accuracy to
detect it.

Our two new methods are a step forward, but there is always room
for improvement. Further refinements and optimizations to these
methods may lead to even more accurate and precise radial velocity
measurements, particularly with the spectral decomposition.

Firstly, we recognize that our analysis does not account for possible
contamination in the radial velocities obtained from each chunk of
the spectra. Specifically, we do not consider the effects of stellar
activity on our results. Also the chunking can be improved to avoid
areas that are poor in absorption lines, and avoid areas that include
band known to be highly variable such as Ha. In order to improve the
accuracy and precision of our measurements, we plan to develop a
more sophisticated approach that can identify regions of the spectra
that are affected by these factors.

Secondly, we recognize that there is still much to be learned about
the astrophysical properties of the binary stars themselves. In the
case of TIC 172900988, both stars are of equal mass. The CCF and
spectral decomposition methods might need to be adapted to non-
equal mass binaries to account for the their differing spectral types.

In addition, we expect that the spectral deconvolution method
will yield accurate spectra for both stars individually when all
wavelength chunks are combined together. Such a spectrum could
be used to constrain their properties such as their temperature, vsin i
and metallicity, an important parameter to relate planet presence to
planet formation (e.g. Santos, Israelian & Mayor 2004; Adibekyan
et al. 2013).

Our methods open the door to extend the search for circumbi-
nary planets using the radial-velocity method beyond single-lined
binaries. With our two new approaches, it is highly probable that
the discovery of circumbinary planets will be enhanced in the
future. Finally, we highlight the success of our two new methods
in being the first to detect a circumbinary planet using radial-

1
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velocities in a double-lined binary. Importantly, this detection is made
independently of any other data. Interestingly our results produce
planetary parameters different from those previously published
demonstrating the need for radial-velocity follow-up of circumbinary
planet candidates identified with the transit method.
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Table Al. Best-fit parameters for each methods both including and not including the 1-2 punch into the fit. Solutions that cross the instability
limit (Holman & Wiegert 1999) are not excluded here so these parameters are from the full posterior (parameters from the posteriors excluding
unstable samples can be found in Table 1) The parameters are determined along with their corresponding 1o uncertainties.

Parameters

Method 1
SD-GP

Method 2
CCF-GP

Method 1 (with 1-2 punch)

SD-GP

Method 2 (with 1-2 punch)

CCF-GP

Binary parameters
Pg (d)

€B

wp (rad)

Kg (kms™1)

9B

wp(arcsec yr— 1 )
To (BJD)
Planet parameters
P, pl (d)

€pl

wpl (rad)

Kpi (m s7h)

Topl (BJID)
Derived
parameters

Mx Mo)

Mg (Mo)

mpl (Myyp)

apin (au)

ap) (au)

Other parameters
Veys,a (kms™1)
Veysp (kms™!)

19.6578780:900030
0448234700
1.2314675:500%0
58.549410:007
0.971960 50025
215£59
2459 566.00248 G904

1513+ 1.8
<0.21

6.0+ 1.5
40.0+5.2
2459442 £ 36

123681400003
12020700057
1.88 +0.25
0.19187975-000016
0.74780-0036

25.9867 £ 0.0047
26.0459 £ 0.0060

19.657861 = 0.000039
0.44823 £ 0.00010
0.00034
1.2313610 00038
58.5278 + 0.0076
0.97106 £ 0.00025
27973
2459 566.0020975- 5089

2.2
149.212
<0.19

1.8
49135
438469

245942573 £ 36

1237667000051
1.20184+0:00033
2.05 + 033
0.191894 0000021
0.7408+0.9973

+0.0056
2602547y oo
26.0970*+0-008

0.000033
19.65787210 Coooaa
0.448232 =+ 0.000083
0.00022
1.23142100005%
0.0067
58.5557 0 000
0.97211%0.00022
62
230:38 +0.00053
2459 566.0026710 000e
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0.1537005
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Figure A6. Orbital configuration of TIC 172900988 showing the orbits of the binary and the planet. The green orbits are a random sample of 1000 posteriors
from kima fitting the radial velocities from SD-GP. The blue orbits are the 6 suggested solutions from Kostov et al. (2021), the dashed grey line is the stability
limit as calculated by Holman & Wiegert (1999). The radial velocity data are fit along with the 1-2 punch transit times.
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Table A2. Radial velocities for TIC 172900988 from method 1 (SD-GP).

Table A2 — continued

Time

Primary velocity (km s~')

Secondary velocity (km s™')

Time

Primary velocity (km s~')

Secondary velocity (km s~!)

2459147.672
2459171.636
2459175.691
2459181.596
2459190.691
2459239.365
2459241.492
2459244.379
2459266.368
2459267.47

2459273.489
2459275.417
2459277.469
2459279.412
2459298.342
2459303.354
2459306.305
2459349.348
2459500.669
2459503.676
2459505.66

2459520.677
2459538.668
2459540.703
2459547.591
2459549.642
2459551.67

2459554.647
2459561.567
2459564.581
2459593.454
2459594.52

52.79199671 £ 0.006297356
91.97097921 £ 0.005992599

—23.52844488 £ 0.00644886

7.347251678 £ 0.006376945
92.70303819 £ 0.006187038

—1.129883138 + 0.006176608

14.08887308 + 0.005837241
37.5613718 £+ 0.006226358
60.76693256 £ 0.005976897
73.56029354 + 0.006017367

—21.54275388 £ 0.005940911
—20.68023758 + 0.006389657
—9.111063764 £ 0.006309079

3.98339319 + 0.006324967

—1.020137615 £ 0.006330255

37.55683484 £+ 0.0074648

67.86532276 + 0.006444953
73.62773529 £ 0.006983177
44.32693159 + 0.006540338
77.25865033 £ 0.006945358
92.93966618 £ 0.005800538
47.73082394 £ 0.006196444
32.37888203 £ 0.006456517
51.37790001 £ 0.005821974

—3.063614773 £ 0.006373649

—23.7319162 £ 0.006405175

— 15.38293878 £ 0.00663949

4.143067667 £ 0.006584258
64.5010298 + 0.006332341
93.16248364 £ 0.006361619
0.683072938 £ 0.006046486
8.129553129 + 0.007271555

—1.341327759 £ 0.006306834

—41.7090222 + 0.006286077
77.15182984 + 0.006474733
45.27023063 £ 0.006680279
—42.5376363 + 0.006332743
53.91700289 =+ 0.006657609
38.29504511 + 0.00627873

14.18090136 + 0.005747394
—9.64611818 + 0.006047371

—22.86220394 £ 0.006961391

75.02796022 £ 0.005957771
74.17527381 £ 0.006500415
62.28799085 £ 0.006159118
48.82902088 =+ 0.006526375
54.01401655 + 0.006227837
14.27880206 + 0.006027881

—16.94025943 + 0.006238535
—22.86640098 £ 0.006296323

7.125655004 £ 0.006049167

—26.80055497 £ 0.006602366

—42.7710604 £ 0.006673939
3.716136893 + 0.006353854
19.38534042 + 0.00619455

—0.173462113 £ 0.006350227

55.9661014 + 0.006367542
77.21294787 £ 0.006348954
68.53497782 £ 0.005787423
48.46498983 £ 0.006984549
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