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Stochastic bottlenecks encountered
during infection can have a dispropor-
tionately large influence on successful
parasite colonization.

The relationship between parasite infec-
tion of discrete tissue niches and long-
term persistence or transmission is not
fully understood.

Cellular barcoding combined with spatial
proteomics and transcriptomics has the
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma
gondii, and Trypanosoma spp. are often associated with high-mortality, acute
and chronic diseases of global health concern. For transmission and immune
evasion, protozoans have evolved diverse strategies to interact with a range of
host tissue environments. These interactions are linked to disease pathology, yet
our understanding of the association between parasite colonization and host
homeostatic disruption is limited. Recently developed techniques for cellular
barcoding have the potential to uncover the biology regulating parasite transmis-
sion, dissemination, and the stability of infection. Understanding bottlenecks to
infection and the in vivo tissue niches that facilitate chronic infection and spread
has the potential to reveal new aspects of parasite biology.
potential to connect gene expression
phenotypes with infection outcomes
during colonization.
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Understanding protozoan population dynamics
Parasitic protozoans including Plasmodium spp., Leishmania spp., T. gondii, and Trypanosoma
spp. cause the debilitating diseases of human global health concern ranging from malaria, leish-
maniasis, toxoplasmosis, and sleeping sickness to Chagas’ disease [1]. The success of these
eukaryotic pathogens can be linked to their multifaceted life cycles, which include transmission
between multiple eukaryotic or insect host species (Figure 1) [2]. To facilitate transmission, proto-
zoan parasites have evolved strategies to traffic to tissue niches distal to the site of primary infec-
tion, such as the skin or small intestine [3,4]. Establishing residency in these distal sites is often
linked to changes in parasite gene expression, parasite differentiation, and chronic infection of
permissive tissue niches. For example, the conversion of T. gondii tachyzoites into bradyzoites
within neuronal tissue and skeletal muscle, or Trypanosoma brucei and Plasmodium falciparum
immune evasion via surface antigen variation [5–8]. Infection and inflammation in chronic niches
like the cardiac muscle (Trypanosoma cruzi) or the brain (T. gondii) can have profound negative
consequences for tissue homeostasis. To protect these tissues, elaborate host barrier structures
have evolved to limit the potential for pathogen colonization while facilitating nutrient and immune
cell accessibility [9]. The complexity of protozoan parasite life cycles, coupled with limited
‘druggability’ of many chronic tissue niches has also limited the success of therapeutic tools to
combat protozoan infections [10]. The need for targeted treatment options and a deeper under-
standing of how parasite localization influences fitness has stimulated scientific interest in under-
standing how the host environment shapes the population dynamics of protozoan infections [1].

During an infection, parasite population dynamics are influenced by selective and stochastic
pressures (Figure 1). Host selective pressures (see Glossary) can include nutrition, immune
polarization regulated by host genotype, and environmental inputs like drug treatment or muta-
gen exposure. Distinct from these selective mechanisms are stochastic bottlenecks. These
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Glossary
Arachnoid barrier: the brain meninges
barrier that regulates transport between
the dura and subarachnoid space
composed of tight junction expressing
epithelial-like cells.
Blood–brain barrier (BBB): the barrier
that regulates transport between the
blood and brain parenchyma composed
of endothelial cells connected by tight
junctions, pericytes, and astrocyte
projections.
Blood–cerebrospinal fluid barrier:
the epithelial cell barrier of the choroid
plexus (CNS) regulating small molecule
transport between the vasculature and
circulating cerebrospinal fluid.
Glycosylphosphatidylinositol (GPI):
a post-translational modification where a
phosphoglyceride is attached to the C
terminus of a protein, anchoring it to the
membrane.
Intestinal epithelial barrier (IEB): the
gastrointestinal tract barrier that mediates
selective absorption of nutrients and
restricts pathogen entry consisting of
mucus and epithelial cells connected by
tight junctions.
Next-generation sequencing (NGS):
massively parallel sequencing
technology to determine the order of
deoxyribonucleic acids or ribonucleic
acids in genomes or targeted regions.
Recrudescence: the process of active
parasite exit from a host cell facilitating
cell-to-cell spread.
Selective pressures: external or
environmental circumstances that shape
an organism's ability to survive. Selective
pressures lead to the stabilization of
genome alterations (mutations) that
benefit the fitness of an organism and its
progeny over evolutionary time scales.
Sequence-tagged analysis of
microbial populations (STAMP): a
tool to assess microbial population
bottlenecks and estimate founder
population size based on measuring the
relative frequency of neutral barcoded
alleles across samples.
STAMPR: a successor to STAMP that
utilizes an iterative barcode removal
algorithm to consider the contribution
of clonal expansion to bottleneck
widths.
Stochastic bottlenecks: random
events that limit the diversity of a
population resulting in a limited pool of
founder organisms often leading to
genetic drift. Examples include physical
barriers or limited transfer of organisms
during pathogen transmission.
typically have a physical basis, such as transmission bottlenecks or an endothelial barrier, that
constricts the parasite population in a manner that is often independent of an individual parasite’s
genetic fitness in the previous environment [11]. Whole-genome CRISPR knockout screens have
revealed parasite genes conferring fitness in vivo. This approach is now being combinedwith host
genetic tools and drug treatments to understand the parasite biology that facilitates adaptation to
host selective pressures [12–16]. By contrast, stochastic bottlenecks have been less studied.
Mechanisms typically used by pathogens to overcome selective pressures, include recombina-
tion or horizontal gene transfer, and occur at the level of individual genomes. In this regard,
stochastic population bottlenecks can have an outsized impact on the long-term population
structure of a species by dramatically impacting population size and having nonselective impact
upon total population genetic diversity. Appreciating the magnitude, location, and timing of
stochastic bottlenecks should clue researchers into the infection niches where gene expression
and host effector mechanisms are the most critical for the outcome of infection (Figure 1). This
review explores the ways in which the obligate intracellular parasite T. gondii and the largely
extracellular parasite T. brucei interact with host tissue barriers, how these barriers influence
colonization, and the tools available to study parasite population dynamics within these sites.

Protozoan traversal of host barriers and tissue niche colonization
T. gondii can infect a remarkably wide range of euthermic intermediate hosts, with acute infection
resulting in flu-like symptoms that typically resolve. However, chronic infection is thought to be
lifelong and immune suppression can trigger parasite recrudescence and potentially life-
threatening toxoplasmosis. T. gondii is orally infectious, acquired through the ingestion of meat
containing bradyzoite tissue cysts, or food and water contaminated with oocysts shed from the
feline definitive host (Figure 2) [17]. This obligate intracellular parasite invades the intestinal
epithelial barrier (IEB) and can be visualized replicating within enterocytes as early as 5 days
postinfection [18,19]. It is not known whether T. gondii infects enterocytes by traversing
the F-actin-rich enterocyte brush border directly, by disrupting tight junctions and invading
the basolateral side of these cells, or by first infecting M cells in the villi crypts [20,21].
While this is an important early niche for the parasite, epithelial damage and recognition of
commensal microbiota plays an important role in the activation of a local, protective immune
response [22–24].

In the first week after infection, T. gondii is found in stromal cells of the lamina propria, as well as
infiltrating monocytes, neutrophils, and dendritic cells [25]. Activated innate immune cells can
restrict T. gondii growth via cell-autonomous immunity, however, naive monocytes and dendritic
cells play a critical role in trafficking T. gondii to other tissues, including lymph nodes, spleen,
adipose depots, liver, lung, skeletal muscle, cardiac muscle, and the central nervous system
(CNS) [26–28]. By 4 weeks postinfection, parasites are cleared to levels that fall below PCR or
histological detection in most tissues other than the skeletal muscle, cardiac muscle, and CNS;
however, human organ transplant data indicate that many tissues harbor sufficient parasite
load to induce infection of Toxoplasma-negative transplant recipients, including lung, kidney,
heart, and liver [29]. To access these tissues, T. gondii must traverse the tissue–vascular barrier
which generally consists of endothelial cells in close apposition to pericytes which also interface
with tissue stromal cells or fibroblasts (Figure 2) [30].

For most tissue sites the mechanism of trans-endothelial migration has not been explored, the
exception being the blood–brain barrier (BBB). The brain contains the highest chronic parasite
load per gram of tissue [31], making it a critical site for transmission to the feline definitive host.
Neural infection is associated with parasite differentiation into bradyzoite cysts, a program that
is regulated epigenetically and transcriptionally, and associated with slower parasite growth
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Variant surface glycoprotein (VSG):
the major surface component of
T. brucei mediating immune evasion.
One of over 100 VSG-encoding genes is
expressed at a time. As antibody
responses are raised to one VSG, those
parasites are cleared and clones arising
from recombination and expression of a
new VSG type emerge.
and immune evasion [32]. Immune suppression can lead to severe visual impairment, brain
damage, and death [31]. At the BBB, three mechanisms of parasite entry have been proposed:
transcellular infection of endothelial cells [33], paracellular trafficking of free parasites [26,34,35],
or paracellular trafficking within extravasating immune cells (Figure 3) [36,37]. The precise
anatomical site(s) of parasite entry into the brain and function of the blood–cerebrospinal
fluid barrier and the meningeal arachnoid barrier are currently unknown [38,39]. Both CNS
infection and gastrointestinal infection have been intense areas of interest, however, little is
known about how effective anatomical barriers are at limiting parasite entry and stable niche
colonization, or how they regulate dissemination to other tissues.
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Figure 1. Selective pressures and stochastic bottlenecks shape the population structure of parasites during infection. Parasites frequently encounter
stochastic bottlenecks upon transmission to a new host, these can include physical tissue barriers, or chance introduction of a fraction of a salivary gland population of
parasites by the feeding behavior of a vector. This results in a limited founder population genetic pool that can have long-term consequences for adaptation to a new
environment. Mutagen exposure or drug selection can lead to rapid loss of compromised individuals from the population or stabilization of genetic changes that confer
fitness that can shape long-term population dynamics. By comparison, within-host selective pressures imparted by immune effectors, competition for nutrient
availability operate on longer, evolutionary time scales. Competition between individual pathogens can drive selection of members within a population that can utilize
distinct niches, energy sources, or means of transmission, for example. Figure created using BioRender.
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Figure 2. Toxoplasma gondii and Trypanosoma brucei confront multiple dissemination barriers to establish infection in the host. (A) Felidae species
support the sexual stage of T. gondii development, shedding oocysts into the environment. Warm-blooded intermediate hosts consume oocysts or bradyzoite tissue
cysts. (B) Following ingestion, T. gondii invades the small intestinal epithelium. Parasites grow in endothelial cells and use immune cells as ‘trojan horses’ to access the
vasculature and disseminate through the host. (C,D) T. gondii enters tissues through vascular barrier, including the blood–brain barrier (BBB), skeletal muscle, and
cardiac muscle as the major sites of chronic infection and transmission. (E) T. gondii can be vertically transmitted to fetuses following traversal of the placental barrier.
(1) Trypanosoma spp. are transmitted by bites of the tsetse fly. Trypomastigotes are transferred into the dermis as the fly pool feeds, disrupting blood and lymph
vessels with its proboscis. (2) Trypanosoma migrates extracellularly to the vasculature then (3) disseminates into a range of tissues, including adipose depots, which
may be sites of variant surface glycoprotein (VSG) recombination and chronic infection. Skin and blood colonization may facilitate transmission to the tsetse fly.
(4) Late-stage Trypanosome infection can lead to spinal fluid infection and colonization of the brain via the choroid plexus causing host-maladaptive, lethal
inflammation. Abbreviation: IEB, intestinal epithelial barrier. Figure created using BioRender.
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Figure 3. Models for transvascular dissemination of Toxoplasma gondii and Trypanosoma brucei. Three models have been proposed for T. gondii to traverse
the vasculature. (1) Trojan horse: consists of infected immune cells directly transporting T. gondii into tissue niches during extravasation. (2) Paracellular: extracellular
T. gondii migrates between endothelial cells that have been compromised or have increased permeability (vasodilation). (3) Transcellular: T. gondii infects and replicates
within the endothelium then egresses directly into the tissue parenchyma. T. brucei is thought to traverse the endothelium by penetrating and subsequently rupturing
the endothelial cells, then invading the extravascular space between cells. Figure created using BioRender.
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T. brucei is an extracellular parasite transmitted by bites from tsetse flies, causing human African
trypanosomiasis and nagana disease in livestock. Two main subspecies cause human African
trypanosomiasis: T. brucei rhodesiense is associated with acute disease that lasts days to
weeks and T. brucei gambiense is associated with chronic illness that lasts weeks to months.
Tsetse flies are pool feeders, that use their proboscis to lacerate blood vessels and feed on
blood and lymph fluid in the mammalian host. As a result, T. brucei is deposited in the dermal
layer of the skin [40]. Parasites are observed in connective tissue associated with collagen
bundles [41], which can develop into chancres as early as 2 days postinfection [42,43].
The first wave of macrophage, neutrophil, natural killer (NK) cell, and T cell infiltration, is critical to
control parasite load. However, T. brucei can remain proliferative in the skin, eliciting a secondary
neutrophil response and immunological environment that is beneficial for the parasite in the early
stage of the infection [44]. During the later stages of the infection the skin contains quiescent, trans-
missible parasites which can differentiate into the insect procyclic form, supported by evidence
where teneral tsetse flies fed on mice with low to undetectable parasitemia became infected [45].
Whether this population represents a tissue-resident pool from the initial infection or a secondary
reseeding population from circulation is unclear. Together, these data indicate the dermal
1078 Trends in Parasitology, December 2023, Vol. 39, No. 12
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environment can pose both a barrier to systemic colonization by T. brucei entry as well as a
potential long-term reservoir for transmission.

Blood parasitemia can be detected as early as 1 day postinfection, marking the early
hemolymphatic stage of trypanosomiasis. Hydrostatic pressure and chemokine sensing
have been proposed to underpin parasite migration from the bite site to lymph and blood vessels
although the precise mechanism is not clear [46]. This migratory event may represent an initial
stochastic bottleneck that parasites must overcome to enter the circulation. As the infection
progresses, T. brucei accesses the brain parenchyma, crossing the BBB via the choroid plexus
(Figure 2) [47–49]. If untreated, parasite growth is poorly controlled causing meningoencephalitis
and host death [43]. In contrast to T. gondii infection, the brain is not a transmission niche for
T. brucei [47]. This indicates that the selective pressures shaping the entry of T. gondii and
T. brucei into the brain are likely distinct. T. gondii must access the brain without triggering lethal
inflammation. Hypervirulent strains that kill the host before encystation can occur but cannot be
transmitted. This selective disadvantage is exemplified by the dominance of Type II strains in
Europe and North America relative to hypervirulent Type I T. gondii [50]. In keeping with this
model, CNS infection by T. brucei does not negatively impact the parasite’s ability to be transmitted
from the skin or bloodstream and frequently results in pathological inflammation [51,52]. T. brucei
CNS infection also disrupts the host sleep–wake cycle which has been hypothesized to benefit
T. brucei by giving the insect vector longer to feed and therefore increasing the likelihood of parasite
transmission [53].Historically, T. brucei was thought to traffic from the blood or lymphatic system
directly to the CNS; however, recent studies have discovered that parasites cross the vascular
and/or lymphatic barriers to persist within a range of tissues including adipose tissue (Figure 2)
[54,55], heart [56], lung [57], ovaries [58], testes [59], and spleen [60]. Recent studies evaluating
variant surface glycoprotein (VSG) diversity have revealed that extravascular niches may
seed subsequent rounds of blood infection by clones that have recombined their VSG locus and
are resistant to circulating antibodies raised against the primary infection VSG type [61]. The majority
of parasites isolated from the blood are quiescent [62], suggesting that the replicative niche for VSG
switching is extravascular [63]. Occupying these niches may facilitate host immune evasion and limit
contact with therapeutic agents that cannot efficiently penetrate deep tissues. In addition to the skin,
adipose tissue is colonized early in infection and contains a high load of proliferative parasites.
Adipose parasites present a distinct morphology that is intermediate to the characteristic ‘slender’
and ‘stumpy’ forms found in blood (Figure 2), and it has been suggested that this unique
morphology may facilitate T. brucei migration between cell–cell junctions [54,55,64]. Adipose-
resident parasites also exhibit metabolic shifts that may reflect niche specific-nutrient availability
and parasite persistence [55]. The levels of available nonesterified fatty acids are higher in the
adipose tissue than in the blood [65]. Although T. brucei can synthesize lipids, it scavenges host lipids
for several essential metabolic pathways including biosynthesis of glycosylphosphatidylinositol
(GPI), a membrane-anchoring moiety appended to procyclins and VSGs. To satisfy this
major nutritional requirement, T. brucei has been shown to hijack the adipose T cell response
to liberate fatty acids [66], a response that ultimately leads to adipose wasting and cachexia in
chronically infected mice. Thus, adipose residency may benefit the parasite by providing both
nutritional resources, and a tolerogenic immune environment for persistent infection. These
emerging models highlight a complex interplay of selective and stochastic events, and under-
score the impact that bottlenecks imparted by the infection discrete tissues have on the
composition of parasites available for persistent infection transmission.

Tools to dissect stochastic bottlenecks in protozoan infections
Pooled mutant libraries have emerged as powerful tools to understand genes regulating parasite
fitness. Barcoding is often applied in this context as a unique identifier for the gene conferring
Trends in Parasitology, December 2023, Vol. 39, No. 12 1079
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loss-of-function or gain-of-function phenotypes. By design, these studies link some barcodes to
fitness-conferring phenotypes which means that they cannot be used to assess stochastic
bottlenecks in the population [13–16,67–69]. Furthermore, there is no assurance with these
techniques that a parasite has only integrated a single barcoded cassette rather than multiple
barcoded gene disruptions. Heterogeneous integration of multiple barcodes per parasite would
undercut the utility of using each one as a unique identifier of a parasite lineage. Although an
approach that pairs multiplexing with barcoded pooled-mutant libraries has recently been
developed by the Lourido laboratory [15], this requires extremely high inoculum (lethal during
acute infection) to obtain ample coverage or both multiplex identifiers and barcoded gene
interruption cassettes.

For these reasons, the impact of stochastic bottlenecks have remained mostly unstudied in
protozoan parasite infections. Progress within viral and prokaryotic infection disciplines has
benefited from the cross-pollination of concepts and approaches typically employed by popula-
tion geneticists. Lineage tracing methods, such as cellular barcoding, are notable examples,
recently reviewed in relation to human disease by Sankaran and colleagues [70]. Cellular
barcoding uses naturally occurring allelic variation or engineeredmolecular identifiers to ‘barcode’
cells of interest [71–73]. Experimentally introduced, unique selectable markers, sequences or
tags can serve as ‘alleles’ to quantify changes in frequency within genetically complex populations.
This has been used in lineage tracing [74,75], functional profiling [76–78], and spatiotemporal
profiling of pathogen population dynamics (Table 1).

A recent advance has been the use of wild-type isogenic tagged strains (WITS). Here, a unique
molecular identifier is inserted into a neutral locus therefore having no effect on cell fitness [79].
TheWITS approach has been widely used in bacterial infection studies, such as dissecting stable
niche colonization by Salmonella [80]. One limitation of the original methodologies relates to the
small number of barcoded strains that can be identified, leading to coarse-grain understanding
of stochastic pressures impacting within-post population dynamics. Next-generation WITS
methods seek to overcome this limitation by combining a greater number of markers with
next-generation sequencing (NGS) for quantitative analysis of highly complex barcoded strain
libraries, and population genetic mathematical analyses. In principle, the higher the number of
genetic markers (i.e., barcodes) used, the greater the resolution for discerning the width of the
bottleneck [81]. Exemplifying this, sequence-tagged analysis of microbial populations
(STAMP) and its successor, STAMPR, quantify the relative abundance of individuals in a tagged
isogenic population [82,83]. The method applies mathematical equations derived from popula-
tion genetic theory and NGS to accurately estimate bottleneck sizes within the host, while also
providing information on the spatiotemporal dynamics. For these methods, the bottleneck
width, or the founding population size (Nb), is calculated using initial sample size (i.e., number of
sequences) and sample size at a given sampling time. It is derived from several population genetics
approaches, including effective population size, Ne [84] and equations from Krimbas and Tsakas
[85]. STAMPR improved upon the assumption that changes in allele frequency correspond
to stochastic, homogenous movement of populations through a bottleneck. It incorporates
considerations of complex colonization patterns such as repeated bottleneck events and
heterogenous growth rates after a bottleneck event. As an alternative approach, the genetic
relatedness of populations can be determined by calculating their genetic distance from one
another, using the chord distance equations such those defined by Cavalli-Sforza [86]. Studying
colonization using STAMP and STAMPR revealed complex dissemination patterns in a host in a
temporal manner initially in bacterial species including Vibrio cholerae [83], Salmonella [87], extrain-
testinal Escherichia coli [82], and Listeria monocytogenes [88]. However, there are limitations to the
effectiveness of this approach at low numbers of barcodes, which may be problematic when
1080 Trends in Parasitology, December 2023, Vol. 39, No. 12
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Table 1. Studies investigating population dynamics using cellular barcoding in vivoa

Organism Barcoding technique Integration via Quantification
method

Number of
barcodes

Refs

Borrelia burgdorferi WITS carrying two 20 bp DNA tag Insertion into linear lp25 plasmid PCR 7 [105]

Escherichia coli WITS carrying 20 bp DNA tag (STAMPR) Homologous recombination NGS (Illumina) ~1100 [106]

WITS carrying 40 bp DNA tag Tn7 mediate integration qPCR 10 [107]

Listeria
monocytogenes

WITS carrying ~30 bp DNA tag (STAMP) Phage integrase-mediated recombination NGS (Illumina) 200 [88,108]

WITS carrying 40bp DNA tag Phage integrase-mediated recombination qPCR 20 [109]

Pseudomonas
aeruginosa

WITS carrying ~30 bp DNA tag (STAMP) Integrase-mediated recombination NGS (Illumina) ~4000 [110]

Salmonella WITS carrying 40 bp DNA tag Lambda-Red recombination qPCR 8 [79,80,
111–113]

WITS carrying 40 bp DNA tag Lambda-Red recombination rtqPCR 7 [114–117]

WITS or MITS carrying 40 bp DNA tag Lambda-Red recombination NGS (Illumina) 8 [118,119]

WITS carrying 21 bp DNA tag (STAMP) Lambda-Red recombination NGS (Illumina) 85 [87]

Streptococcus
pneumoniae

Two strains carrying ‘OVA’ or ‘AVO’
peptides each

Janus-cassette mediated recombination rtPCR 2 [120]

Toxoplasma gondii WITS carrying 6 bp DNA tag CRISPR-Cas9 mediated homologous
recombination

NGS (Illumina) 96 [89]

Wild-type RH strains carrying 8 bp UMI CRISPR-Cas9 mediated homologous
recombination

NGS (Illumina) 65 ± 29 per
gRNA

[15]

Trypanosoma brucei WITS carrying 6 bp DNA tag CRISPR-Cas9 mediated homologous
recombination

NGS (Illumina) 96 [89]

Genetically homogenous cells carrying
40 bp DNA tag

Homologous recombination NGS (Roche) 8 [90]

Vibrio cholerae WITS carrying 30 bp DNA tag (STAMP) Homologous recombination NGS (Illumina) ~500 [83,121]

Yersinia
pseudotuberculosis

WITS carrying 40 bp DNA tag Transformation with plasmid containing
tag

Southern blot 33 [122]

aAbbreviations: gRNA, guide RNA; MITS, mutant isogenic tagged strains; rtqPCR, real-time quantitative PCR; UMI, unique molecular identifier.
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studying host–pathogen interactions where a low inoculation dose of pathogen is required. The
application of this approach to protozoan parasites has the potential to reveal dynamics of the
population structure within a host.

Barcoding methods have only recently been applied to study population dynamics in protozoan
infections. Wincott et al. developed an approach to label T. gondii or T. brucei with 96 unique
DNA barcodes and monitor population dynamics in tissue culture and in vivo [89]. This study
challenged the assumption that chronic infection of the CNS is established by a limited number
of T. gondii entry events. Instead of identifying a clonal or near-clonal population in the brain,
the majority of the barcodes identified in the inoculum were found in mouse brains one month
after infection. Although this study was designed to introduce 96 barcodes at an equal ratio,
natural variation in relative abundance was observed in the inoculum. Intriguingly, low abundance
barcodes in the inoculum were able to become highly abundant in the brain at chronic infection,
further supporting the stochastic nature of parasite access to the CNS and niche establishment
[89]. However, host–parasite systems which tolerate a low inoculum pose a challenge for the
application of population genetic tools designed for bacterial systems. For example, STAMPR
requires approximately 500 barcodes and was designed to study pathogen systems where
inocula are generally several logs greater in magnitude.
Trends in Parasitology, December 2023, Vol. 39, No. 12 1081
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Outstanding questions
What are the stochastic bottlenecks
limiting population genetic diversity for
parasitic protozoan infections during
host colonization?

How do coinfections influence the
within-host population dynamics of
parasites?

Does recrudescence of T. gondii
bradyzoites result in clonal infections?

Which host tissue niche contains the
T. brucei population responsible for
vascular reseeding and maintaining
antigenic diversity?

Are parasite replication rates tuned to
the specific nutrient environment of
the colonized tissue niche, and is
this unifying strategy underpinning
persistence?
Most studies evaluating T. brucei colonization of extravascular spaces have relied on bioluminescent
or fluorescent reporters to quantify parasite load. However, the spatiotemporal relations of the
populations within each niche has been difficult to assess until recently. In one pioneering study,
eight barcoded strains of T. brucei were used to assess the population dynamics of parasite transfer
to tsetse flies, following a bloodmeal and transmission to themurine host [90]. This study indicated that
both tsetse flies andmammalian bite recipients can be colonized bymore than one founder allelic type
of T. brucei [90]. As only eight barcoded strains T. bruceiwere used, it is likely that the increased num-
ber of cellular barcodes would reveal new aspects of host colonization. The approach recently devel-
oped byWincott et al. allows for at least 96 unique barcodes to be simultaneously incorporated within
a neutral locus, and should provide greater resolution of the magnitude of stochastic events impacting
T. brucei's within-host population dynamics during colonization [89]. These studies provide the foun-
dations for exploring parasite diversity within discrete tissue niches, the inter-relationship of each
niche over time, and host response mechanisms that regulate niche accessibility.

Concluding remarks
T. gondii and T. brucei survive within the host environment despite encountering immunological
and physical barriers as seen in the IEB and BBB for T. gondii, and in the blood, skin, and BBB
for T. brucei. Cellular barcoding approaches can facilitate quantification of the magnitude of the
population bottleneck encountered at these barrier sites and how residence in protected tissue
spaces regulates parasite virulence strategies are largely open questions (see Outstanding
questions). Less is known about how this biology operates at sites like the placenta, which
facilitates vertical transmission of T. gondii and T. brucei, and barrier sites in definitive hosts (feline
species for T. gondii and the Tsetse fly for T. brucei). Such approaches can be used to under-
stand the ecology and evolution of coinfection dynamics between parasite species or strains
and the host environment [91]. The relevance of the scenario is nicely illustrated for T. brucei,
where field samples indicate that the insect vector is typically coinfected with different trypano-
some species [92,93]. The use of independently barcoded populations of these parasites
would allow for the coinfection dynamics to be ascertained with high spatiotemporal resolution,
and provide insight into the impact of coinfections on parasite biology and disease pathology.

The insertion of unique sequences into the genome, a requisite for cellular barcoding, can now be
readily and widely achieved with other protozoan parasites. Since 2015 PlasmoGEM has provided
vectors for targeted introduction of barcoded alleles into the Plasmodium berghei genome [78].
More recently, a library of uniquely barcoded P. falciparum parasites was generated using the non-
essential prf3 locus and used to study the relationship between fitness and drug resistance [13]. A
strategy for barcode-sequencing has also been developed for Leishmania spp. and applied to
loss-of-function screens [77]. LeishGEdit incorporated a barcoding strategy into a functional
screen for flagellar mutants, which could be adapted for within-host population genetic studies
[67]. The method developed for the cellular barcoding of T. gondii and T. brucei [89], could poten-
tially be applied to other trypanosome species such as Trypanosoma congolensewhere CRISPR-
Cas9 genome editing was recently adapted [94].

The technical application of lineage tracing approaches to study host colonization by these
parasites is still in its infancy. For example, lineage recorder strategies introduce Cas9-generated
‘scars’, either insertions or deletions, that allow the descendants of a particular cell to be deter-
mined [95]. Recorders add temporal information to population genetic studies, allowing new
questions to be posed about infection. For example, when a host becomes immunocompromised
during T. gondii infection, where does the recrudescent population originate from? Are recrudes-
cent parasites mostly cleared or is this process important for maintaining a chronic infection? We
currently lack therapeutic tools to clear parasite cysts. Understanding the biology that sustains the
1082 Trends in Parasitology, December 2023, Vol. 39, No. 12
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chronic population may lead to new intervention strategies for toxoplasmosis in the context of
immune suppression or ocular toxoplasmosis? As generational counters, recorder-type systems
would also provide insight into other basic aspects of parasite biology, such replication rate. Our cur-
rent understanding of parasite replication kinetics is largely based on tissue culture infection. Many
basic questions remain open including what is the in vivo growth rate? Is growth rate tuned to the
specific nutritional state of a primary host cell type or niche environment – as would seem to be
the case for adipose-residence T. brucei – and how does this then feed into ideas of persistence?

Technological advances in whole-tissue imaging (e.g., light sheet microscopy) [96], tools for
multiparameter imaging in situ imaging (e.g., digital spatial profiling) [97], and spatial proteomics
and transcriptomic tools (e.g., 10×/Visium, lightSeq, AutoSTOMP, DeepVisual Proteomics)
[98–103] have the potential to enhance our understanding of the spatial distribution of host–
pathogen interactions [104]. A recent study by Quintana et al. assessed localization, phenotype,
and transcriptional signatures of T. brucei in the mouse brain relative to host cells using 10×/
Visium spatial transcriptomics. They found that ‘slender’ and ‘stumpy’ morphology T. brucei
were present in distinct brain regions and that neural infection led to the recruitment and expan-
sion of follicular-like T cells in the brain parenchyma [7]. One limitation of tissue imaging and
spatial-omic methods is that they typically assess the parasite as a homogeneous population
without considering the relationships between individual parasites in space and as they dissem-
inate over time. Merging cellular barcoding with imaging techniques has the potential to teach us
about host–pathogen interactions. For example, if a niche is occupied by a single parasite clone
does this make that site resistant or permissive to future colonization events? What are the
parasite or local host gene expression programs that facilitate dominant infection by a clone or
clearance of less successful lineages? How does abundance or localization of a parasite clone
relate to successful transmission? Combining burgeoning technologies in this way has the poten-
tial to provide unique insight into potential colonization bottlenecks at host barrier sites, revealing
how and where various pathogens enter tissue niches and the host and parasite gene expression
programs that contribute to pathogen dissemination and/or clearance.

It is apparent that there remains much to be understood about how stochastic bottlenecks shape
protozoan parasite infections, and hopefully with tools to quantify population dynamics, coloniza-
tion, and tissue niche bottlenecks can finally be widened.
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