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Abstract

Streaming data processing is increasingly playing a central role in enterprise data archi-

tectures due to an abundance of available measurement data from a wide variety of sources

and advances in data capture and infrastructure technology. Data streams arrive, with high

frequency, as never-ending sequences of events, where the underlying data generating process

always has the potential to evolve. Business operations often demand real-time processing

of data streams for keeping models up-to-date and timely decision-making. For example in

cybersecurity contexts, analysing streams of network data can aid the detection of potentially

malicious behaviour. Many tools for statistical inference cannot meet the challenging demands

of streaming data, where the computational cost of updates to models must be constant to

ensure continuous processing as data scales. Moreover, these tools are often not capable of

adapting to changes, or drift, in the data. Thus, new tools for modelling data streams with

efficient data processing and model updating capabilities, referred to as streaming analytics,

are required. Regular intervention for control parameter configuration is prohibitive to the

truly continuous processing constraints of streaming data. There is a notable absence of such

tools designed with both temporal-adaptivity to accommodate drift and the autonomy to not

rely on control parameter tuning. Streaming analytics with these properties can be developed

using an Adaptive Forgetting (AF) framework, with roots in adaptive filtering. The fundamen-

iv



tal contributions of this thesis are to extend the streaming toolkit by using the AF framework

to develop autonomous and temporally-adaptive streaming analytics.

The first contribution uses the AF framework to demonstrate the development of a model,

and validation procedure, for estimating time-varying parameters of bivariate data streams

from cyber-physical systems. This is accompanied by a novel continuous monitoring change

detection system that compares adaptive and non-adaptive estimates. The second contribu-

tion is the development of a streaming analytic for the correlation coefficient and an associated

change detector to monitor changes to correlation structures across streams. This is demon-

strated on cybersecurity network data. The third contribution is a procedure for estimating

time-varying binomial data with thorough exploration of the nuanced behaviour of this esti-

mator. The final contribution is a framework to enhance extant streaming quantile estimators

with autonomous, temporally-adaptive properties. In addition, a novel streaming quantile

procedure is developed and demonstrated, in an extensive simulation study, to show appealing

performance.
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1 Introduction

Data streams, which are composed of an unending sequence of observations arriving at high

frequency, are becoming ubiquitous as advances in data collection technology continue. These

advances are impacting numerous application including telecommunications, marketing, fi-

nance, weather and many more (Muthukrishnan et al. 2005). A particular, though not exclusive

focus of this work is applications in cybersecurity monitoring, which manifests many of the

challenges inherent to modern streaming analytics problems.

There are significant challenges to processing streaming data, and moreover, extracting

statistical insight. For a variety of reasons, streaming statistical procedures are required to

respect a number of constraints. First, the procedure must operate with constant storage

requirement and compute demand per observation. While this can sometimes be achieved using

a contiguous window of data, the approach is inelegant and leaves the problem of determining

the appropriate window size. Second, the data generating mechanism is not considered to be

fixed, but to evolve with unknown dynamics over time. For example, the future behaviour of

a computer network may not reasonably be expected to be similar to the current behaviour.

Third, the algorithmic dependence on control parameters complicates matters. It is impractical

for an unending sequence of high frequency data to assume that control parameters can be

fixed in perpetuity, nor could an analyst intervene to reset parameters. Hence, streaming

analytics must be able to operate in an unsupervised, automatic manner.

Throughout, this research favours methods that operate sequentially on a single datum, and

additionally methods from adaptive filtering (Haykin 2002) to provide some capacity to accom-

modate temporal variation. Notably, this class of procedure forms the basis of an adaptive

forgetting framework used throughout this thesis, and makes extensive use of methods for

stochastic gradient descent optimisation to provide enhanced adaptivity to streaming tools.
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Another reason to favour the single datum approach arises in monitoring applications such

as those in enterprise cybersecurity, where there is a need to detect malicious behaviour imme-

diately. Indeed, a common motivation for streaming methodology is the timeliness requirement

for decision-making in applications.

The extant toolkit for streaming statistical analytics is notably under-developed. While

many frameworks and processing infrastructures exist for recording and processing streaming

data, the statistical toolkit is incomplete. Contributing towards this toolkit is an objective of

this research, by adding a variety of crucial statistical tools to existing components, such as

parametric adaptive estimation (Anagnostopoulos 2010), changepoint detection (Bodenham 2014;

Kifer et al. 2004), classification (Anagnostopoulos et al. 2012; Pavlidis et al. 2011) and anomaly

detection (Ahmad et al. 2017; Talagala et al. 2020).

Enterprise cybersecurity provides a paradigmatic data science challenge. Vast sets of data

referring to numerous types of network or computer events are routinely available within a large

enterprise. Such event data is not usually recorded for the primary purpose of cybersecurity,

but can be re-purposed to support anomaly detection for malicious behaviour (Rubin-Delanchy

et al. 2016; Turcotte et al. 2014). Both the scale of data and the timeliness requirements for de-

tection justify the development and deployment of streaming analytics. As such, cybersecurity

examples provide excellent test cases environment for streaming analytics.

The fundamental objective of the thesis is to expand the toolkit of streaming analytics, with

a focus on using the adaptive forgetting framework. The contributions of the thesis to the

wider body of work are summarised in the next section.

Contributions

Much work has focussed on adaptive forgetting methods for parameter estimation with uni-

variate data streams. Bivariate streams have received much less detailed attention. The work

in Chapter 3 extends the AF framework to a specific bivariate scenario, arising from a cyber-

security problem, at the cyber-physical boundary. This work develops the AF procedure for

a normal-gamma model. As an applied problem, significant attention is given to determin-

ing model adequacy, which presents specific challenges. From the AF estimation procedure,

a changepoint detection method is derived. A novel feature of this method, and used more
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extensively in Chapter 4, is exploiting the relationship between adaptive and non-adaptive

estimators. The method is shown to perform effectively.

The correlation coefficient is a fundamental quantity of interest with bivariate data. Chap-

ter 4 reports Noble and Adams (2018), which extends the AF framework to provide an adaptive

estimator of the correlation coefficient, selecting among a number of design choices for the es-

timator. This estimator is again enhanced with a changepoint detector, and the trick of using

both fixed and adaptive estimators is fruitfully exploited again. This work is motivated by

problems of anomaly detection in enterprise cybersecurity, which further required the invention

of methods to handle coincidental anomalies on multiple streams.

Among the fundamental quantities of a univariate streaming process, quantiles of the dis-

tribution have received much less attention, particularly with respect to AF methods. The

remainder of the thesis is focussed on streaming quantile estimation. As noted above, the AF

approach relies heavily on stochastic gradient descent. These SGD procedures are fragile, and

depend on other control parameters that may be difficult to select. Moreover, when deployed

in adaptive estimation settings, questions about the allowed range of parameters become rele-

vant. Chapter 5 takes a detour into this area, to explore the behaviour of these methods, in the

context of estimating a Bernoulli parameter. This choice is deliberate, since adaptive Bernoulli

estimation is core to the streaming quantile estimation methods developed in Chapter 6. The

investigation reveals a bias in the estimation method and explores the properties of different

choices of cost function and learning rates. A novel modification to alleviate truncation bias

is proposed and some loose implementation guidelines are provided.

The final contribution is the development and refinement of new streaming quantile estima-

tion methods, including a general framework for incorporating temporal adaptivity, demon-

strated on three extant streaming quantile estimators. Chapter 6 also presents the methodol-

ogy and implementation for an additional novel streaming quantile estimator, AFSQE, before

conducting an extensive simulation study. The investigation shows that there is no clear best

procedure in all cases, but the adaptive methods, and AFSQE in particular, perform adequately

across a range of different simulation scenarios, while mitigating the risk of choosing poor

control parameters.
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Thesis Structure

Chapter 2 reports key background material for the thesis. Chapter 3 develops an adaptive

modelling framework for cyber-physical systems. Chapter 4 develops an adaptive correlation

estimator and applies it in detail to enterprise cybersecurity data. Chapter 5 considers the

problem of adaptive estimation for binary data and develops suitable procedures. Chapter 6

further adds to the streaming toolkit by adding highly adaptive streaming quantile estimators.

Publications

This thesis contains research published in the following papers

• The work in Chapter 3 was published in a paper titled “An Adaptive Modeling Frame-

work for Bivariate Data Streams with Applications to Change Detection in Cyber-

Physical Systems” (Plasse et al. 2017) for the 2017 IEEE International Conference on

Data Mining Workshops (ICDMW), pp. 1074–1081.

• The work in Chapter 4 was published in a paper titled “Real-Time Dynamic Network

Anomaly Detection” (Noble and Adams 2018) in IEEE Intelligent Systems, Volume 33,

Issue 2, 2018, pp. 5–18.

4



2 Background

This chapter serves as a technical introduction and summary of prerequisite material for the

remaining content of this thesis. Before introducing any notion of streaming data, we begin

with the existing fundamental statistical theory in a traditional offline setting. In this setting,

observations from a data set are assumed to be instantaneously, readily available. First, we

consider maximum likelihood estimation and relevant probability distributions in Section 2.1,

which all the adaptive estimation procedures proposed throughout this thesis heavily rely on.

Then we look at the definitions and use cases of both statistical correlation, in Section 2.2,

and quantiles, in Section 2.3. The concept of statistical distance is discussed in Section 2.4,

which will serve us later as a basis for assessment quantification and optimisation. Only then

do we move on to introducing data streams and their challenges in Section 2.5.

Every effort has been made to ensure consistent notation throughout this thesis. Since this

section covers a wide amount of prerequisite material, it also establishes elementary notation,

though a comprehensive summary of symbols can be found in the List of Symbols.

2.1 Maximum Likelihood Estimation and Relevant

Distributions

Parametric statistics aims to model a population with a probability distribution that has a

fixed number of parameters. That is, models of the form

M = {f(x | θ) : θ ∈ Θ},

where θ is a vector of unknown parameters, existing in some parameter space Θ ⊆ Rk. Here,

f corresponds to a Probability Density Function (PDF) in the case of continuous data, and a

Probability Mass Function (PMF) in the case of discrete data.
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Most data cannot be adequately modelled this way. Nevertheless, it is a convenient approach

that can often serve as a reasonable approximation to the underlying data generating mecha-

nism. Later in this thesis, we will discuss how adaptive estimation generalises the parametric

modelling approach.

The goal in parametric statistics is to estimate the parameter(s) θ from some data set,

or sample of observations x1:N = (x1, . . . , xN ). The most common approach to parameter

estimation in this situation is maximum likelihood estimation, which, as the name implies, finds

the parameter values that maximises the likelihood function of a model over the parameter

space. This is akin to choosing the parameter values that correspond to the observed data

being most probable under the model. The likelihood function

Ln(θ | x1:N ) = fn(x1:N | θ)

is given by the joint probability density, or mass, fn, but as a function of the parameters θ

with the data x1:N being held fixed. Then we define a maximum likelihood estimator as the

function

θ̂(x1:N ) = arg max
θ∈Θ

Ln(θ | x1:N ),

where a specific θ̂ = θ̂(x1:N ) is referred to as a maximum likelihood estimate. The acronym

MLE is henceforth used for both, where context will disambiguate.

A common modelling assumption is to assume the random sample x1:N is independent and

identically distributed (i.i.d.), with each observation modelled by the same density, or mass,

f . Then the joint likelihood

Ln(θ | x1:N ) =
N∏

i=1
f(xi | θ)

is a product of each individual likelihood function. As the logarithm function is monotonically

increasing for positive values, it is common to maximise the log-likelihood Ln = logLn instead.

Hence, the MLE can now be expressed in its common form as

θ̂(x1:N ) = arg max
θ∈Θ

N∑
i=1

log f(xi | θ).
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Under certain regularity conditions, there are several desirable properties of MLEs that result

in them being generally useful estimators. These include consistency, functional invariance

and asymptotic efficiency (Cox and Hinkley 1979).

Now we introduce some fundamental parametric probability distributions and their associ-

ated MLEs, where relevant, that form some of the core methodology later.

2.1.1 The Gaussian Distribution

The Gaussian, or normal, distribution is an example of a continuous probability distribution.

Its use is ubiquitous throughout all statistical disciplines due to the nature of its convenient

properties and relation to the central limit theorem. It is parameterised by a mean, or location,

µ and standard deviation, or scale, σ, and its probability density function is given by

f
(
x | µ, σ2

)
= 1√

2πσ2
exp

(
− 1

2σ2 (x− µ)2
)
.

The multivariate Gaussian distribution is a generalisation to multiple, say k, dimensions. It is

parameterised by a mean vector µ ∈ Rk and covariance matrix Σ ∈ Rk × Rk with density

f(x | µ,Σ) = (2π)− k
2 det (Σ)− 1

2 exp
(
−1

2(x− µ)T Σ−1(x− µ)
)
.

Note that Σ is symmetric positive semi-definite. For our use cases, we will focus on the

bivariate case, where k = 2. Given a multivariate set of data x1:N , with both mean µ and

covariance Σ unknown, the MLEs are

µ̂ = 1
N

N∑
i=1

xi, (2.1)

Σ̂ = 1
N

N∑
i=1

(xi − µ̂)(xi − µ̂)T . (2.2)

The bivariate Gaussian distribution is an essential basis for the streaming correlation esti-

mation procedure proposed in Chapter 4.
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2.1.2 The Non-Standardised t-Distribution

The t-distribution is a continuous probability distribution parameterised by the number of

degrees of freedom ν > 0. It is a generalisation of the standard normal distribution with

heavier tails that often arises when testing whether the mean of a population differs from a

specified value. Specifically, let x1:N be an i.i.d. normal sample with mean µ and variance σ2.

The sample mean x̄ and sample variance s2 are given by

x̄ = 1
N

N∑
i=1

xi, s2 = 1
N − 1

N∑
i=1

(xi − x̄)2.

Then the sampling distribution of the pivotal quantity, or t-statistic,

t = x̄− µ√
s2

N

, (2.3)

is the t-distribution with N − 1 degrees of freedom.

The t-distribution can be generalised using the location-scale transformation by introducing

a location parameter a and scale parameter b. Let T be t-distributed with ν degrees of freedom.

Then

S = aT + b,

follows the non-standardised t-distribution with parameters ν, a and b. Interestingly, the non-

standardised t-distribution also arises when replacing the sample variance s2 with the MLE

σ̂2 in Equation (2.3). The non-standardised t-distribution has density

f(x | ν, a, b) =
Γ
(

ν+1
2

)
Γ
(

ν
2
)
b
√
πν

(
1 + 1

ν

(
x− a
b

)2
)− ν+1

2

,

and is used as part of a model validation procedure in Chapter 3.

2.1.3 The Bernoulli and Binomial Distributions

The Bernoulli distribution is an example of a discrete probability distribution. It can be

thought of as a model for an event with a binary outcome, such as a potentially biased coin
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flip, or any trial with a chance of success or failure. It is parameterised by π, the probability

of success and its probability mass function is given by

f(x | π) =


π if x = 1,

1− π if x = 0.

= πx(1− π)(1−x).

The binomial distribution is a generalisation of the Bernoulli distribution to multiple i.i.d.

trials, such that a binomial random variable is a sum of finite i.i.d. Bernoulli random variables.

Given the number of trials, say m ∈ Z+, its mass function is given by

f(x|m,π) =

m
x

πx(1− π)(1−x).

Hence, the Bernoulli is equivalent to the binomial distribution for m = 1. Given data x1:N ,

the MLE for π is given by

π̂ = 1
Nm

N∑
i=1

xi.

Later in Chapter 6, the binomial distribution is crucial for the adaptive forgetting procedure

used in streaming quantile estimation.

2.2 Correlation

It is important to understand the association between variables in any statistical modelling

exercise, especially during exploratory data analysis. The extent to which random variables

are related is known as the correlation. Of course, this relationship may not be causal, but

correlation is still a useful tool for prediction purposes. Without explicitly knowing an under-

lying dependence structure, measuring correlation from data is challenging since no measure

can perfectly capture all possible relationships. The most conventional approach is to use

Pearson’s correlation coefficient, which establishes the degree to which two random variables,

or samples, are linearly related. Formally, Pearson’s population correlation coefficient between
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two random variables X and Y , with means µX , µY and standard deviations σX , σY , is given

by

ρ(X,Y ) = Cov (X,Y )
σXσY

= E [(X − µX)(Y − µy)]
σxσY

.

For the purposes of data analysis it is common to consider the correlation between two samples,

say x1:N and y1:N , sampled from X and Y respectively. Pearson’s sample correlation coefficient

is an estimate of the underlying ρ(X,Y ) using the sample means as plug-in estimates. That

is,

r(x1:N , y1:N ) =
∑N

i=1(xi − x̄1:N )(yi − ȳ1:N )√(∑N
i=1(xi − x̄1:N )2

)√(∑N
i=1(yi − ȳ1:N )2

) ,
where x̄1:N = ∑N

i=1 xi and ȳ1:N = ∑N
i=1 yi are the sample means of x1:N and y1:N . Note that∣∣r(x1:N , y1:N )

∣∣ ≤ 1, where values of ±1 correspond to the data existing perfectly on a line with

positive or negative slope respectively.

Later, in Chapter 4, correlation is used to detect anomalous coordinated activity in computer

networks.

2.3 Quantiles

A q-quantile is a value of a distribution that corresponds to a specific proportion q of the

population such that values below and including the quantile are observed with probability q.

For example, the median is the ‘middle’ value of a distribution such that the probability of

being below, and consequently above, the median is equal to 0.5. It is useful to consider the

quantile function Q(q) across all proportions 0 ≤ q ≤ 1, defined as

Q(q) = inf{x ∈ R : q ≤ F (x)},

where F (x) is the Cumulative Distribution Function (henceforth CDF) of the population.

The quantile function can be seen as a generalised inverse of the CDF, since the inverse may

not necessarily exist. In the case where F is continuous and strictly monotonically increas-

ing then F is invertible and Q = F−1. Quantile functions for the majority of parametric

distributions cannot be expressed in closed-form, though some families of distributions are de-

fined through their quantile function, most notably the Tukey lambda distribution. Applying
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transformations to foundational quantile functions provides the basis for a flexible distribu-

tional modelling framework (Gilchrist 2000). Given a sample x1:N , the Empirical Cumulative

Distribution Function (henceforth ECDF) is given by

F̂N (x) = 1
N

N∑
i=1

1{xi ≤ x}.

Sample quantile estimates Q̂(q) can then be defined by inverting the ECDF. More commonly,

and equivalently, they are defined through the order statistics x(1), . . . , x(N). For the case

where Nq ∈ Z, then the sample quantile estimate Q̂(q) = x(Nq). This can be shown to be

asymptotically unbiased normal (Cox and Hinkley 1979). Otherwise, for non-integer Nq, defini-

tions differ between popular statistical software packages, but usually the ECDF is interpolated

using a convex combination between the nearest integer-indexed order statistics (Hyndman and

Fan 1996).

Later, in Chapter 6, streaming quantile estimators are developed to address the challenges

of estimating quantiles in data streams.

2.4 Statistical Distances

Distance metrics play a crucial role in statistical learning theory where they commonly form

the loss functions and empirical risk to be minimised. Choosing an appropriate distance metric

is important in order to exploit any underlying geometrical structure of the data. Distance

metrics operate on a pair of points in some space, i.e. data, but there exist statistical objects,

such as probability distributions, for which it would be useful to have a notion of quantified

distance. Such a distance measure would provide a means to assess model fit, or act as a cost

function in a learning task for example. Throughout this thesis, the term statistical distance

is used to refer to a measure between two probability distributions, and hence probability

measures. There exist various statistical distances, each with their own properties and specific

perspectives on how distributions can differ.

Statistical distances can operate on different representations of the distributions in question.

For this section, consider two continuous probability distributions with PDFs f(x), g(x), and

CDFs F (x), G(x), defined on the same probability space X . The results generalise to discrete
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distributions, which are excluded here for brevity. As is usual, the integrals would be replaced

by summations, with mass functions used in place of densities.

2.4.1 Kullback-Leibler Divergence

With its solid roots in information theory, the Kullback-Leibler divergence (Kullback and Leibler

1951), or relative entropy,

DKL(F ∥ G) = EF

[
log f(X)

g(X)

]
=
∫

X
f(x) log f(x)

g(x) dx,

is frequently used in machine learning and statistics as it can be interpreted as the amount

of information lost by choosing a model that is an approximation of the truth. Similarly,

Bayesians view it as the information gain in updating a prior distribution to a posterior

distribution. Of particular relevance is the relationship to maximum likelihood estimation.

Assuming F represents the true data generating distribution with parameter θ, then finding

the MLE θ̂ that parameterises G is equivalent to minimising DKL(F ∥ G).

Importantly, the Kullback-Leibler divergence is not symmetric and violates the triangle

inequality, and hence, is weaker than a metric. It is a special case of the more generalised

Bregman and f -divergences and is closely related to the Fisher information metric.

2.4.2 Kolmogorov-Smirnov Distance

Typically, the Kolmogorov-Smirnov (KS) statistic is used to non-parametrically test whether

a sample significantly differs from a reference distribution or a different sample. As a statistic

it acts on data through the ECDF, but considered as a statistical distance it acts on the CDFs

and is given by

dKS(F,G) = sup
x

∣∣∣F (x)−G(x)
∣∣∣.

Note that for testing purposes, it is not appropriate for discrete distributions since the KS

statistic then depends on the null hypothesis distribution, but it is still valid as a distance.
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Intuitively, the KS distance reveals the largest amount that two distributions can differ over

the probability space. It is frequently used for assessing the goodness of fit.

2.5 Evolving Data Streams

A data stream is an unending sequence of observations or measurements (xt)t∈N with unknown

generative properties. Note, this work and most work in the streaming analytics is concerned

with discrete time data and assumes the interarrival times between data observations are

constant. A number of challenges arise in analysing streaming data. First, the frequency of

arrival, or velocity, may present challenges in processing, particularly that any procedure on the

data must operate in a single-pass. Second, the volume of data may be high, raising challenges

related to data storage. Third, the unknown stochastic properties and possibility of future

changes to the generating process — the evolving aspect — mean the data cannot be analysed

as if it were i.i.d. Fourth, many modern applications of streaming analytics require up-to-date

precision and decision-making such that the model is required to produce output that describes

the current state of the stream. In building analytical procedures for data streams there is

usually a need for algorithms to have fixed compute and memory requirements, otherwise the

compute burden will increase as more and more data arrives.

Figure 2.1 shows an example of an evolving data stream based on the WISDM activity data

set (Kwapisz et al. 2011). The grey points correspond to x-coordinate measurements from cell

phone accelerometers as the user of the phone performed various activities over time. The red-

dashed vertical lines correspond to points in time when the user was asked to change activity,

e.g. from jogging to walking. It is clear the underlying distribution of the data changes abruptly

at these points. However, even between these changepoints, it is also clear the data shows

non-stationary properties. Note, the black line corresponds to an adaptive estimate of the

0.7-quantile, which can be estimated using the streaming procedures developed in Chapter 6.

To deal with the potential of data streams changing over time, any model for the data must

be able to adapt over time, in a computationally feasible manner. A common approach is

to model the data within sliding windows, where parameter estimates are computed within

each window of data. Sliding windows are relatively simple to implement, but often require

the window size to be specified in advance, which is problematic for data streams where an
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Figure 2.1: Coordinate measurements from a cell phone accelerometer as the user was asked to perform
and change activity over time.

appropriate window size is difficult to determine and will likely change over time, though a

notable exception is the work in Bifet and Gavalda (2007). Indeed, the concern of many methods

developed in this thesis is to remove the burden of setting and fixing a parameter analogous

to a window size.

A final challenge with streaming analytics is algorithm performance assessment. Like any

algorithm, we may be concerned with compute and memory complexity, and as noted above,

these need to be constant in time. We also should address the statistical performance of the

procedure in terms of what the analytic is attempting to generate. For example, computing the

mean of a time-varying process. Finally, we want to quantify the adaptability of a streaming

procedure.

It is convenient to consider the observed data stream is a realisation of a stochastic process

{Xt}t∈N, where in general, the underlying data generating mechanism is unknown and non-

stationary.

2.6 Adaptive Estimation Primer

Through the use of forgetting factors (Haykin 2002), data observations can be assigned weights

to give more emphasis to recent data points compared to older data. This approach can

be viewed as a smooth, continuous generalisation to the discrete nature of sliding windows.

Section 2.6.1 gives historical background into adaptive estimation and related work. Then
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Section 2.6.2 presents an adaptive estimation framework using forgetting factors to develop

temporally-adaptive estimators designed to continuously discard older data as it becomes

irrelevant.

2.6.1 Background and Related Work

In 1959, an oil refinery located in Port Arthur, Texas, introduced the first integrated indus-

trial computer control system (Nof 2009). By the early 1960s and late 1970s, the increasing

prevalence and affordability of minicomputers led to a paradigm shift of factories and plants

using digital computers as system controllers for industrial processes. Examples of industrial

processes at the time include paper machines, ore crushers and heat exchangers.

The surge of computer control systems motivated the design of regulators for the steady

state control of industrial processes. Linear stochastic control theory had already proven to

be a useful tool for regulator design (Åström 1970), but required the laborious collection of

experimental measurements to model system dynamics and disturbances prior to implemen-

tation. In addition, the offline computation of parameter estimates and control strategies had

to be repeated if the underlying system dynamics or disturbances evolved, which was not un-

usual for industrial processes. By reformulating the problem with the parameters considered

both constant and unknown, solutions could be computed using non-linear stochastic control

theory obtainable, but in practice, the computational resources required to do so were not

available. Instead, Åström and Wittenmark (1973) proposed self-tuning strategies that estimate

the model parameters recursively and aim to converge to the optimal strategies in the context

of a known underlying data generating mechanism. Parameter estimates updates are derived

by least squares method, leading to biased estimates. While a general proof of convergence is

not shown, numerical simulations are provided to demonstrate convergence in many examples.

The authors do manage to prove that given convergence to the true parameters, the proposed

regulator has minimal variance.

Later, Åström, Borisson, et al. (1977) considers a recursive maximum likelihood based ap-

proach for Auto-Regressive Moving Average (ARMA) models, which has proven convergence

properties given the order of the ARMA process is estimated correctly. Without citing pre-

vious work, the same paper suggests exponential forgetting is “common when tracking slowly

time-varying system parameters”. In fact, exponential forgetting first appeared in the form of
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discounted multiple regression (Brown 1963), originally motivated by earlier work on exponen-

tial smoothing (Brown 1956). Exponential forgetting relies on forgetting factors to control the

extent to which past data is ‘forgotten’, or discounted.

Adaptive forgetting, where the forgetting factors are allowed to vary, was first considered in

Fortescue et al. (1981), which developed a mechanism for self-tuning regulators. By considering

a weighted sum of squares of the a posteriori errors as a measure of information content, the

forgetting factors were chosen such that this information content was kept constant. The

intuition behind this was to ensure that estimation is always based on the same ‘amount’ of

information. Osorio Cordero and Mayne (1981) prove the convergence of this self-tuning regulator

in an i.i.d. setting, utilising a minor modification that bounds the trace of the covariance matrix.

The first attempt at using gradient descent to choose suitable values for variable forget-

ting factors in the literature occurs in the context of Least Mean Squares (LMS) algorithms

(Benveniste et al. 1990). The gradients used here are approximate, based on a fixed forgetting

assumption. Later, the more general IDBD, or the incremental delta-bar-delta, algorithm and

its close descendant, the K1 DLR algorithm were proposed to adaptively optimise the learning

rate in an LMS context via gain adaptation. These approaches can be considered as meta-

learning algorithms since they effectively learn a learning rate for the drift dynamics rather

than the drift dynamics themselves.

By considering finite differences, Kushner and Yang (1995) are the first to rigorously formalise

the definition of derivatives with respect to variable forgetting factors. Moreover, they prove

convergence prove under weak conditions. Later in Bodenham (2014), these derivatives are

developed from a first-principles approach where they are shown to agree with the approximate

derivatives based on both fixed forgetting factors as in Anagnostopoulos (2010) and Benveniste

et al. (1990).

2.6.2 Forgetting Factor Framework

This section introduces a forgetting factor framework that is the core basis for work in Chap-

ters 3 to 6, where each chapter gives a specific and detailed treatment. Here, only the key

aspects are reviewed.

Let {Xt}t∈N be a stochastic process with time-varying, or drifting, model parameter θt. The

evolution of θt can be modelled by assuming an exponential forgetting relationship on the
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likelihood with fixed θt = θ as in Anagnostopoulos et al. (2012), which places more emphasis

on recent data by smoothly down-weighing past information. Given a sequence of forgetting

factors (λi)t−1
i=1 with each λi ∈ [0, 1], the adaptive forgetting (AF) log-likelihood of a fixed set

of data (x1, . . . , xt) is defined as

L(λ)(θ | x1:t) = λt−1L(λ)(θ | x1:(t−1)) + L(θ | xt) (2.4)

=
t∑

i=1

t−1∏
j=i

λj

L(θ | xi), (2.5)

where the empty product from j = t to j = t− 1 is treated as equivalent to 1. Equations (2.4)

and (2.5) represent the temporally-adaptive likelihood relationship in both sequential and

batch form respectively. Sequential forms for parameter updates are required for memory

efficient implementation, however batch forms are useful for reasoning about statistical prop-

erties. Notice this relationship generalises the log-likelihood under the i.i.d. assumption with

a weighted sum, and in the case of no forgetting, where every λi = 1, it is equivalent to the

i.i.d. case with each data point being given equal weight. This approach can be considered to

be a continuous generalisation of the sliding window approach.

Using this likelihood, and maximising Equation (2.4), by setting the derivative with respect

to θ equal to zero and solving, gives the adaptive forgetting maximum likelihood estimates

(AFMLEs) for θt, as

θ̃t = arg min ∂

∂θ
L(λ)(θ | x1:t). (2.6)

Alternatively, or in the absence of a likelihood, adaptive forgetting factor estimates for the sam-

ple central moments can be estimated using a similar down-weighting scheme as in Bodenham

(2014).

It remains to select the forgetting factors (λt)t∈N. One choice is to set λt = λ for all t; the

fixed forgetting case. The special case where λ = 1 corresponds to no-forgetting and results in

the fixed forgetting factor mean being equivalent to a static sample mean. Interestingly the

fixed forgetting factor mean update step is closely related to the update step for the EWMA

(Exponentially Weighted Moving Average) chart (Bodenham 2014; Roberts 1959). The extreme
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case where λ = 0 results in all past data being forgotten, where only the single, most recent

observation is used.

A more flexible choice is to allow λt to vary; the variable forgetting case, which is always

used in this thesis whenever the term adaptive forgetting is referenced. One way to implement

adaptive forgetting is to use stochastic gradient descent (SGD) to maximise the next-step

negative log-likelihood as in Anagnostopoulos et al. (2012) via the update step

λt+1 = λt − ηt
∂

∂λ
L(θ | xt+1), (2.7)

where the learning rate ηt is a small quantity, often fixed. The derivative taken in Equa-

tion (2.7) is formally defined in Bodenham and Adams (2017) from a first-principles approach

taking limits to determine the instantaneous rate of change. This agrees with the results in

Anagnostopoulos et al. (2012) where the forgetting factor at any time t is not considered a func-

tion of previous forgetting factors, which significantly simplifies the symbolic computation of

the derivative. Following Bodenham and Adams (2017), the forgetting factors are always trun-

cated to the range [0.6, 1]. If this truncation is omitted, the algorithm will become unstable.

This approach restricts the stochastic behaviour of the adaptive estimator. There is some sub-

tlety around this point that is further explored in Chapter 5. Note, another choice for the cost

function in the above SGD step is the next-step squared error, as covered in Bodenham (2014).

Aspects related to this choice are explored in the case of Bernoulli estimation in Chapter 5.

The learning rate, or step-size, ηt controls how quickly the algorithm can accommodate

changes in the underlying process. Choosing ηt is difficult; see Section 3.4.4 of Plasse (2019) for

a detailed discussion, though choosing ηt ∈ [10−5, 10−1] is generally plausible. This plausibility

stems from the result of Bodenham (2014) that shows that for general i.i.d. data with mean µ

and variance σ2 that when using a squared error cost, the expected value of the derivative is

of the order of the variance of the underlying process. Generally a fixed learning rate is used,

however, Chapter 5 provides a more thorough treatment and comparison of both scaled and

constant learning rates.
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3 Adaptive Modelling and Change

Detection for Data Streams in

Cyber-Physical Systems

The work in this chapter is reproduced from Plasse et al. (2017) using the notation in the pub-

lication. This is concerned with applications of streaming methods for changepoint detection

in cyber-physical systems.

A cyber-physical system (CPS) combines physical devices, such as sensors or actuators,

with cyber components to form complex systems. Examples include power grids, self-driving

automobiles, and office buildings. Although the integration of the physical and cyber allows

for the development of advanced technology for operating the system, it also makes the system

more susceptible to attacks (Lokhov et al. 2016). Issues with a CPS, whether it be faults (e.g.,

a broken sensor) or intrusions (e.g., unauthorised entry into the network), can have severe

consequences (Cárdenas et al. 2009), especially if those issues go undetected for too long. This

creates the need for a flexible, general approach for monitoring such a system for faults and

intrusions online, or in real-time.

To address this need, this chapter makes three contributions. First, we introduce an adaptive

modelling framework for the continuous monitoring (Bodenham and Adams 2017) of an arbitrary

CPS in real-time in Section 3.2. This framework builds on a flexible statistical model called

the normal-gamma distribution, described in Section 3.2.1, and treats the data collected from

the CPS as a data stream to enable real-time processing. Second, we develop a novel streaming

validation procedure in Section 3.3 to demonstrate the appropriateness of the normal-gamma

assumption for cyber-physical data collected from an office building at Los Alamos National

Laboratory (Figure 3.1). Third, since the ultimate goal is to support detection of faults and
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intrusions in a CPS, we develop a change detection algorithm in Section 3.4, based on the

adaptive modelling approach, that can be used to detect changes in a CPS in real-time. A

novelty here is that this change detector exploits relationships between static and adaptive

estimators. This change detection scheme is implemented on synthetic normal-gamma data in

Section 3.5 and compared to a state-of-the-art offline change detector.

3.1 Related Work

The detection of cyber-attacks is well studied in the statistics and machine learning communi-

ties, e.g. (Mirkovic et al. 2002) and (Munz and Carle 2007). However, the impact of such attacks

on the physical components has been less studied (Cárdenas et al. 2009), especially in a fully

streaming paradigm with all model hyperparameters tuned adaptively as proposed here. In

Lokhov et al. (2016) the correlations between physical time series are analysed to detect groups

of anomalous behaving sensors. The survey in Zhang, Meratnia, et al. (2010) provides a thor-

ough discussion on anomaly detection in wireless sensor networks, including Gaussian-based

approaches (Wu et al. 2007), non-parametric approaches (Sheng et al. 2007), and clustering meth-

ods (Rajasegarar et al. 2006). The comprehensive discussion in Mitchell and Chen (2014) gives

advantages and disadvantages for many existing detection schemes, e.g., knowledge based

intrusion detection systems. Statistical based approaches can be found in Mitchell and Chen

(2013), which performs intrusion detection using stochastic Petri nets, and in Linda et al. (2009),

which uses neural nets.
Alternative approaches to attack detection utilise techniques from control theory to perform

state estimation under various assumptions. For instance, Pasqualetti et al. (2013) considers

continuous-time linear systems which take an unknown attack signal as input, while Teixeira

et al. (2010) considers a weighted least squares approach to state estimation and assumes an

adversary has a perturbed version of the model available.
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Figure 3.1: Four hours of airflow readings for one sensor in a cyber-physical system (a building) at Los
Alamos National Laboratory. The ticks on the horizontal axis indicate the times at which
the sensor communicated its airflow readings. Notice the irregularity of the reporting rate
and how that rate increases substantially when the airflow rate experiences abrupt changes.

3.2 Adaptive modelling Framework

For the adaptive modelling framework (see Section 2.6.2) we present here, we consider the task

of monitoring bivariate data streams (dt)t∈N where dt = (xt, st). The scalars xt and st, respec-

tively, represent a physical measurement recorded by the CPS (such as the airflow readings

shown in Figure 3.1) and the amount of time elapsed since the last physical measurement was

recorded (the distances between consecutive tick marks in Figure 3.1). Subsequently, st will

be referred to as an interarrival time.

In a typical cyber-physical system, xt and st will not be independent of each other for all t.

For example, many systems will increase their sampling rate if a physical reading xt changes

abruptly, thus decreasing the corresponding interarrival time st as seen in Figure 3.1. Further,

since a goal of this exposition is to monitor a CPS continuously even as the system evolves

(say with time of day or season), it is unrealistic to assume that the distribution generating

the data remains stationary for all time. Figure 3.2 shows an example of this non-stationary

behaviour, with a substantial hour-to-hour difference in the distribution of airflow readings

even within a short (two hour) time window. It is therefore necessary to provide temporally

adaptive estimates for any model parameters monitored on the data stream.
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Figure 3.2: An example of how airflow distributions drift between two consecutive hourly periods for the
sensor shown in Figure 3.1. The lines correspond to non-standardised t-densities (discussed
in Section 3.2.1), fitted via maximum likelihood estimation. The modelling framework is
able to adapt from one fitted density to the next.

Next, Section 3.2.1 introduces a flexible model, the normal-gamma, to address the lack of

independence between xt and st. Then Sections 3.2.2 and 3.2.4 develop an adaptive model

estimation approach based on forgetting factors that addresses the lack of stationarity in the

data.
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Figure 3.3: Histograms of the interarrival time distributions for three different airflow sensors over a one-
hour period. The blue lines correspond to gamma densities fitted via maximum likelihood
estimation to demonstrate the flexibility of the family of gamma distributions.

22



3.2.1 The Normal-Gamma Distribution

The normal-gamma distribution, denoted NG(θt), is a four parameter continuous bivariate

family of distributions with density given by

f(dt | θt) = βαt
t γ

1/2
t

Γ(αt)
√

2π
s

αt−1/2
t exp

[
−βtst −

γtst(xt − µt)2

2

]
, (3.1)

where θt = (µt, γt, αt, βt) are time evolving parameters and Γ(·) is the gamma function.

If (Xt, St) ∼ NG(θt) — an assumption validated on real data in Section 3.3 — we gain

several desirable properties that are useful for monitoring a CPS. First, it can be shown

that Xt | St ∼ N (µt, 1/(γtst)) (the ‘normal’ part of the normal-gamma), which captures the

dependence between the physical readings xt and interarrival times st. Second, the marginal

distribution of St is a gamma distribution, a flexible, continuous distribution whose support

matches that of the interarrival times as seen in Figure 3.3. Interarrival times are often assumed

to be exponentially distributed, a special case of the gamma distribution. Therefore, using a

time evolving gamma distribution for the interarrival times, with shape and rate parameters

given by αt and βt, encapsulates typical assumptions made in the literature. Third, the

marginal distribution of the physical readings xt can be shown to be a non-standardised t-

distribution (as seen in Figure 3.2) whose parameters are a function of the components of θt.

This will be important when developing the streaming validation procedure in Section 3.3.

Now that a model has been postulated for the tuples (Xt, St), a way of efficiently and

adaptively estimating the parameter vector θt must be developed. Such a method, which uses

forgetting factors, is proposed in the sections that follow.

3.2.2 Forgetting Factor Framework

Forgetting factors create temporally adaptive estimators by exponentially down-weighting

older observations as new data arrives. They are commonly used in adaptive filtering (Haykin

2002) and have been studied in Anagnostopoulos et al. (2012) and Bodenham and Adams (2017) and

Pavlidis et al. (2011). This framework can be thought of as a continuous analogue of a sliding

window, a popular technique for streaming inference (e.g., (Bifet and Gavalda 2007)).

In what follows, a frequentist approach is adopted and a weighted version of maximum

likelihood estimation is considered. The evolution of θt is modelled by assuming a fixed θ
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and introducing forgetting factors into the parameter estimation via an exponentially weighted

log-likelihood function of the form

Lλ(θ | d1:t) =
t∑

k=1
wk

[
α log(β) + log(γ)

2 − log
(
Γ(α)

)
+
(
α− 1

2

)
log(sk)− βsk −

γsk(xk − µ)2

2

]
,

(3.2)

where wk = ∏t−1
p=k λp is a function of time and controls how much weight is given to past data,

and each λp ∈ [0, 1] is a forgetting factor.

The values of the forgetting factors regulate how quickly (or slowly) historic data is ‘for-

gotten’. Values of λp closer to zero forget data much faster than values closer to one. In

Section 3.4, where a change detector is presented, the case when λp = 1 for all p — the no

forgetting case — will be important.

3.2.3 Adaptive Parameter Estimation

Now that forgetting factors have been introduced into the estimation procedure, Equation (3.2)

can be optimised with respect to each of the four parameters to produce temporally adaptive

estimators. Since these parameter estimates need to be updated online, it is not computation-

ally feasible to store past observations from the data stream and re-compute the estimates at

each time t. Thus, sequential update equations need to be derived. To simplify the discussion

of these updates, we introduce the notation

mf(x,s),t =
t∑

k=1
wkf(xk, sk),

for x, s ∈ Rt. In this notation, the function f is independent of the forgetting factors, xk

and sk are the kth components of x and s, and wk is as defined previously. Further, the

scalar nt = ∑t
k=1wk will appear in the updates and is referred to as the effective sample size

as it characterises how many observations are contributing to the estimate at any given time

(Bodenham 2014). Lastly, if either x or s does not appear as an argument of f it is omitted from
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the summation. Some examples of this notation, whose sequential counterparts will appear in

the update equations, are:

mlog(s),t =
t∑

k=1
wk log(sk), mxs,t =

t∑
k=1

wkxksk.

Using this notation, as well as optimising Equation (3.2) with respect to the four param-

eters, results in the following set of update equations that produce the adaptive estimates

θ̃t =
(
µ̃t, γ̃t, α̃t, β̃t

)
:

µ̃t = mxs,t

ms,t
, (3.3)

γ̃t = nt

ξt
, (3.4)

α̃t = (3− ζt) +
√

(ζt − 3)2 + 24ζt

12ζt
, (3.5)

β̃t = α̃tnt

ms,t
. (3.6)

The auxiliary variables appearing in Equations (3.3) and (3.6) can be updated recursively via:

nt = λt−1nt−1 + 1, (3.7)

mf(x,s),t = λt−1mf(x,s),t−1 + f(xt, st), (3.8)

ξt = mx2s,t − µ̃tmxs,t, (3.9)

ζt = log
(
ms,t

nt

)
−
mlog(s),t
nt

. (3.10)

The initial values at t = 0 in Equations (3.3) and (3.10) should be taken as zero. As the update

for α̃t is not available in closed form, Equation (3.5) is based on an approximate closed-form

solution (see Appendix A.1). More importantly, these update equations do not require the

storage of any observations prior to time t to maintain up-to-date estimates. Further, at each

time t, these equations require only O(1) floating point operations to update the parameter

estimates. Thus, the adaptive modelling framework is efficient for the data streaming from a

cyber-physical system.
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3.2.4 Tuning the Forgetting Factors

As mentioned in Section 3.2.2 and discussed in Section 2.6.2, the forgetting factors are param-

eters that control how the adaptive estimates θ̃t incorporate older data. Thus, the forgetting

factors directly affect the accuracy of the estimates. These important parameters should

therefore not be chosen subjectively by a user, but rather chosen to optimise some criterion.

Further, since the goal of this work is to continuously monitor a CPS that may experience

several changes of unknown magnitudes, it is unlikely that a single fixed forgetting factor will

suffice for an entire data stream.

As described in Section 2.6.2, the forgetting factors at time t are updated via a stochastic

gradient descent (SGD) step of the form

λt = λt−1 + η ∇λ

[
L
(
θ̃t−1 | dt

)]
,

where η is a small, constant step-size. For statistical learning problems in stationary settings,

it is usual to choose a vanishing ηt → 0 to ensure asymptotic convergence. This is harmful in

a non-stationary setting where the model must retain its adaptivity and so η is chosen to be

non-vanishing, but still sufficiently small to ensure good parameter estimates. Given the range

of the forgetting factors is [0, 1] and magnitude of the gradients observed from experimentation,

it is sensible to consider 0 < η ≪ 1 to control the size of the update as in Anagnostopoulos et al.

(2012). The next-step log-likelihood

L
(
θ̃t−1 | dt

)
= log f

(
dt | θ̃t−1

)
,

is based on the density in Equation (3.1), whose gradient should be taken with respect to all

previous forgetting factors. Following the heuristic argument given in Anagnostopoulos et al.

(2012), as validated by the rigorous approach in Bodenham and Adams (2017), the gradient can
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Figure 3.4: Illustration of adaptive and static estimates on a synthetic stream of physical measurements
with a change in mean at t = 1000. In Section 3.4 we will use deviations between these two
estimates to inform a change detector.

be computed by assuming that the adaptive estimate θ̃t−1 is a function of a single forgetting

factor λ. This results in

∇λ

[
L
(
θ̃t−1 | dt

)]
= γ̃t−1st(xt − µ̃t−1)∇µ̃t−1

+ 1
2

( 1
γ̃t−1

− st(xt − µ̃t−1)2
)
∇γ̃t−1

+
(
log
(
β̃t−1st

)
− ψ(α̃t−1)

)
∇α̃t−1

+
(
α̃t−1

β̃t−1
− st

)
∇β̃t−1,

where ψ(·) is the digamma function and the sequential gradient updates of the parameters can

be computed via direct differentiation of Equations (3.3) and (3.10). See Appendix A.2 for

the full derivation.

This approach, similar to the parameter update equations, can be efficiently implemented on

the data stream without storing any previous values of the forgetting factors other than λt−1.

Additionally, the approach removes the burden of having to subjectively choose the forgetting

factors. These adaptive forgetting factors will allow the parameter estimates to quickly adapt

to changes in distribution; a desirable property of any streaming estimation procedure. As an
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added bonus, the adaptive nature of the procedure ensures it is not sensitive to a poor choice

of starting parameters since it will very quickly forget and learn sensible values based on the

most recent data observed. This is why there is no initial learning period and all parameter

estimates are initially set to zero. In addition, the adaptive estimates can be compared to

static parameter estimates (i.e. estimates with no forgetting) where λp = 1 for every p, and

deviations between these estimates are indicative of changes in the data generating process.

This idea is used in the development of a change detector in Section 3.4, and is demonstrated

by Figure 3.4.

At this stage, a complete adaptive modelling framework has been developed which can be

used to monitor a bivariate data stream collected from an arbitrary CPS in real-time. In the

next section a streaming model validation procedure is proposed and successfully implemented

on real-world cyber-physical data streams (airflow readings) collected from a building at Los

Alamos National Laboratory (LANL).

3.3 Model Validation for Streaming Data

To demonstrate the appropriateness of the normal-gamma model for cyber-physical data, we

need to validate it against measured data. However, assessing model fit in the streaming

paradigm is a challenging problem. Due to the abundance of data, and changes in the data

generating process, classical model diagnostic approaches such as quantile-quantile plots and

the Kolmogorov-Smirnov (KS) test are impractical. Moreover, naively using traditional mea-

sures of goodness of fit produces misleading results. In Kifer et al. (2004), the authors use

the KS test on sliding windows to detect changes in data streams. The main drawback of

this approach is in determining the window size since it is unknown when future changes will

occur. In Lall (2015), an approximate space-efficient KS test is developed which relies on ap-

proximately inverting the output of an online estimation procedure. The storage complexity is

sublinear, but the method as presented does not accommodate non-stationarity. Conversely,

the incremental KS test presented in Reis et al. (2016) is valid for samples that change over time

and runs in logarithmic time with respect to the sample size. However, the issue of choosing

the samples, as with sliding window approaches, remains.
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In this section a streaming validation procedure, which returns a score of model fit, is

developed by exploiting the model presented in Section 3.2. The procedure is based on the

probability integral transform (PIT) (Angus 1994) — a transformation of continuous random

variables to standard uniform space — and returns the KS statistic (see Section 2.4.2) between

the cumulative distribution functions (CDFs) of the transformed data and the standard uniform

distribution. Unlike the aforementioned work, this procedure requires only constant storage

and is designed for non-stationary data streams through the adaptive model. This technique is

then implemented on data from a heating, ventilation, and air conditioning (HVAC) system of

a large office building at LANL, demonstrating the effectiveness of the normal-gamma model

fit.

3.3.1 The Validation Procedure

The validation procedure to be developed is designed to work on univariate data streams and

is not limited to cyber-physical systems. To discuss the method generally, let v1:t represent

observations from an arbitrary data stream whose cumulative CDF is assumed to be FV . In

the CPS setting, v1:t would represent either the interarrival times s1:t or the physical readings

x1:t. The goal of the procedure is to sequentially use the data v1:t to test whether the assumed

CDF, FV , is a reasonable assumption.

Under the normal-gamma model in Section 3.2, the distribution of vt is a non-standardised

t-distribution (see Section 2.1.2) with parameters (2αt, µt, βt/(γtαt)) for the physical readings.

For the interarrival times, the distribution of vt is a gamma distribution with parameters

(αt, βt). If these distributional assumptions are sensible, then applying the PIT sequentially to

v1:t, using the appropriate CDF, will result in realisations from a standard uniform distribution.

By comparing the output of the PIT to a theoretical uniform distribution, we can quantify

how well the particular marginal distribution placed on v1:t fits the data. This idea forms the

basis for the method.

Algorithm 1 presents pseudocode that describes the approach. At each time-step t = 1, . . . , N ,

the parameter vector θ̃t is computed via the recursive updates given in Section 3.2. The PIT
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is then applied to vt and the vector φ̃t, which contains the estimated parameters for the

distribution of vt. In the case of monitoring a CPS via the normal-gamma model,

φ̃t =


(α̃t, β̃t) for interarrival times

(2α̃t, µ̃t, β̃t/(γ̃tα̃t)) for physical readings.

Let U = {ũt}Nt=1 be the set of scalars obtained after applying the PIT to v1:t. As stated before,

if the modelling assumption is correct, these scalars would be realisations from the standard

uniform distribution. Any severe departures from this distribution would be evidence that FV

is not a suitable CDF for the data. To measure ‘how close’ the realisations {ũt}Nt=1 are to the

standard uniform distribution, the empirical CDF of these values is computed, and is denoted

by F̃U . A score can then be computed, based on the maximum KS distance between F̃U and

the standard uniform CDF. This score assumes a value in [0, 1], where values closer to zero

indicate that FV is sensible for the data.

Algorithm 1 Streaming validation procedure
1: Input: Stream of realisations v1:N .
2: Let U = ∅ be a set of approximate uniform mappings.
3: Initialise θ̃0 = (µ̃0, γ̃0, α̃0, β̃0) = (0, 0, 0, 0).
4: for t = 1, . . . , N do
5: Apply Equations (3.3)-(3.10) to obtain θ̃t.
6: Let φ̃t be the estimates for the distribution of vt.
7: Compute ũt by applying the PIT to vt and φ̃t:

ũt ← 1− FV (vt | φ̃t).

8: Add ũt to U : U ← U ∪ {ũt}.
9: end for

10: Compute the empirical CDF F̃U using the elements of U .
11: Return the KS score: max

u∈U

∣∣∣F̃U (u)− u
∣∣∣.

3.3.2 Validation Results with Measured Data

The data we use for the streaming model validation procedure comes from the HVAC system of

a large building at LANL. Throughout the building’s eight floors, 292 sensors are considered,

each reporting the airflow being delivered by the HVAC system to different parts of the building

at different times. These airflow readings, along with their corresponding interarrival times,
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are the two data streams that we seek to validate the normal-gamma modelling assumption

against. In this exercise we tested the validity of the normal-gamma modelling assumption

against 6 million bivariate tuples recorded by the 292 sensors throughout the entire month of

October 2016.

The box plots in Figure 3.5 show the validation scores computed by Algorithm 1 for the 292

sensors split by building floor. Recall that lower scores indicate a better fit of the adaptive

model to the data. The scores show that the fit of the non-standardised t-distribution to

the airflow measurements (bottom panel) is good throughout the building. In general, we

are encouraged by the good fit of the normal-gamma model for the majority of the sensors,

excluding those on floors 3 and 4. Exploratory data analysis suggests that the interarrival

times on these floors behave differently from the rest of the building, and a topic of future

work is to determine the cause of this localised lack of fit.

In summary, the streaming validation procedure has demonstrated that the normal-gamma

modelling assumption is reasonable for most of the cyber-physical data generated by LANL’s

HVAC system. We will therefore use the normal-gamma model in Section 3.5 to generate

synthetic data to evaluate the change detector that we develop below in Section 3.4. This

change detector is based on the adaptive modelling developed throughout Section 3.2 and is

shown to work well for data streams where the modelling assumption is sensible.
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Figure 3.5: Box plots of the validation scores of the adaptive model fit for the airflow readings and
interarrival times of 292 sensors in an HVAC system at Los Alamos National Laboratory
during October 2016. Lower scores indicate a better fit to the model.

3.4 Change Detection

As explained earlier in the introduction to the chapter, the ultimate goal is to support detection

of faults and intrusions in a cyber-physical system. Having validated the adaptive modelling

framework based on the normal-gamma distribution, we will use it to construct a change

detection approach, which will be demonstrated using synthetic data from the normal-gamma

distribution.

Consider modelling two normal-gamma distributions, one with adaptive parameter estimates

given by θ̃t, the other with the static parameter estimates θ̂t. The vector θ̂t can be efficiently

updated on the stream by letting the forgetting factors λt−1 = 1 in Equations (3.7)-(3.8) (the

no forgetting case). In this case the equations become the classical sequential update equations

for the maximum likelihood estimates of the normal-gamma distribution.

In stationary segments, when the stream is not experiencing any changes, θ̃t and θ̂t should

be roughly equal. Now suppose the stream undergoes a change. Since θ̃t is adaptive it will

adjust to the new regime more quickly than the static θ̂t which gives equal weight to older,

non-informative data. Due to this, during periods of non-stationarity, θ̃t and θ̂t will diverge as

32



seen in Figure 3.4. If the divergence can be quantified, a change can be flagged whenever θ̃t

and θ̂t become ‘too far’ apart.

In what follows, the Kullback-Leibler (KL) divergence (see Section 2.4.1) is used to measure

the dissimilarity between the normal-gamma distributions being monitored by the vectors θ̃t

and θ̂t. Let f
(
θ̃t

)
represent the normal-gamma density with estimated adaptive parameters

and f
(
θ̂t

)
be the normal-gamma density with estimated static parameters. The KL-divergence,

at time t, is available in closed form and is given by:

κt = DKL
(
f(θ̃t)

∥∥∥ f(θ̂t)
)

= 1
2

[
log
(
γ̃t

γ̂t

)
+ γ̂t

γ̃t

]
+ γ̂tα̃t(µ̃t − µ̂t)2

2β̃t

+ (α̃t − α̂t)ψ(α̃t)− log(Γ(α̃t)) + log(Γ(α̂t))

+ α̂t

[
log(β̃t)− log(β̂t)

]
+ α̃t

[
β̂t − β̃t

β̃t

]
− 1

2 .

This metric measures the dissimilarity between the adaptive and static distributions and will
be zero if and only if they are identical. Therefore, κt should be small in stationary segments,

and large in non-stationary segments where θ̃t and θ̂t diverge. Using this scheme, a change is

flagged at time t whenever κt > εt, where εt is an adaptive threshold.

Online construction of adaptive thresholds is an under researched topic, and is briefly dis-

cussed in Section 6.5. Here we follow a common practice in the literature (Carter and Streilein

2012) and let εt be some number of standard deviations away from the mean of the quantity

being monitored. At time t, the adaptive threshold is defined as

εt = κ̄t + Cσ(κt) (3.11)

where κ̄t and σ(κt) are the static mean and standard deviation of the KL-divergence computed

up to time t, and C is a positive constant. Both κ̄t and σ(κt) can be computed efficiently online,

similarly to Equations (3.3)-(3.10).

Having validated the use of the normal-gamma distribution and the adaptive modelling

framework, in the next section we demonstrate the changepoint detection approach through

a simulation study using synthetic data generated from a normal-gamma distribution with

changing parameters.
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3.5 Simulation Experiments

In this section the performance of the change detector proposed in Section 3.4 is assessed

and compared to a state-of-the-art offline change detector called PELT (pruned exact linear

time) (Killick, Fearnhead, et al. 2012). Due to the lack of availability of ground-truth anomalies

in the measured LANL cyber-physical dataset, the change detector is assessed via synthetic

normal-gamma data with injected changes.

3.5.1 Performance Measures

To assess the ability of the change detector, as well as compare it to PELT, performance

measures are required.

Two commonly used performance measures in the change detection literature are the average

run lengths ARL0 and ARL1 (Page 1954). The scalar ARL0 is defined as the average number

of realisations that are observed until a change detector flags a false positive and is estimated

via Monte Carlo simulations on a data stream with no changepoints present. ARL1 is defined

as the average number of realisations that are observed after a true changepoint until a change

detector flags a true positive, and is estimated by implementing a change detector on multiple

streams containing a single changepoint.

Although ARL0 and ARL1 are widely used for single changepoint detectors, they are not

sufficient for modelling the performance of a change detector when there are multiple change-

points present (Bodenham and Adams 2017). Since the change detector proposed in Section 3.4

can report multiple changepoints it is important to define the average run length measures

more formally. Suppose a change detector is run M times on a dataset of length N . For each

Monte Carlo iteration, indexed by 1 ≤ m ≤ M , let Dm =
{
τ̂

(m)
1 , τ̂

(m)
2 , . . . , τ̂

(m)
Dm

}
be the set of

time indices for all Dm detected changepoints. For computing ARL0, the simulated data will

have no changepoints, and so

ARL0 = 1
M

M∑
m=1

min(Dm ∪ {N}),
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where the union with {N}, ensures the measure takes into account the ideal scenario where

no changepoints are detected. For computing ARL1, the simulated data will have a single

changepoint at time τ (m). Hence,

ARL1 = 1
M

M∑
m=1

min
({
i− τ (m)

∣∣∣ i ∈ D(m), i > τ (m)
}
∪ {N}

)
,

where the union with {N}, ensures the measure takes into account the worst-case scenario

where no changepoints are detected.

For situations with potentially multiple changepoints, two new measures are introduced in

Bodenham and Adams (2017): the proportion of changepoints correctly detected (CCD) and

the proportion of detections made that are not false detections (DNF). Again, these are mea-

sured over M Monte Carlo simulations. For each Monte Carlo iteration 1 ≤ m ≤ M , let

Dm =
{
τ̂

(m)
1 , τ̂

(m)
2 , . . . , τ̂

(m)
Dm

}
be the set of time indices for all Dm detected changepoints, such

that Tm ≤ Dm are true detections, or detections that are true positives. Then

CCD = 1
M

M∑
m=1

Tm

Dm
, DNF = 1

M

M∑
m=1

Tm

Dm − Tm
.

Both CCD and DNF take their values in [0, 1] with values closer to one being preferable. A

value of one for both CCD and DNF means that the detector correctly detected all changepoints

present without making any mistakes. It should be noted that both CCD and DNF should

be analysed when assessing performance as either can be made optimal at the expense of the

other. Note, these measures are analogous to recall and precision, respectively, in the machine

learning literature.

Together, these four performance measures reveal both the speed (ARL0 and ARL1) and

accuracy (CCD and DNF) of the detections.

3.5.2 Experimental Setup

All streams analysed in this experiment are of length 10,000. For each stream, k ∈ {0, 1, 10}

changepoints are simulated to evaluate the performance measures (ARL0 and ARL1 need to

be assessed on streams with zero and one changepoint respectively, whereas the streams with

ten changepoints are used to assess both CCD and DNF). This breaks up the stream into

(k + 1) stationary segments in which the stream does not experience any changes.
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Figure 3.6: Each panel displays performance measurements for the proposed change detector and PELT,
where a score of 1 is optimal. The points correspond to all fifteen possible combinations
of changes in both the locations and scales of the physical readings X, and the interarrival
times S. Points above the diagonal dashed line indicate where the method outperforms
PELT. Left: a transformation of the average detection delay for a true positive (ARL1).
Center: the average proportion of changepoints correctly detected (CCD). Right: the
average proportion of changepoints that are not false detections (DNF).

To simulate data in each segment, parameters θt = (µt, γt, αt, βt) of the normal-gamma

distribution need to be generated. These are selected uniformly for each segment with µt ∈

[−25, 25], γt ∈
[
1,
√

500
]
, αt ∈ [100, 200], and βt ∈

[
1,
√

400
]
. The chosen parameter ranges

ensure the simulated data covers the range of data observed across the 292 sensors. We

include additional constraints based on the previous segment’s parameter values such that the

magnitudes of the changes are both controlled and bounded.

Accounting for potential changes in both location and scale for the distributions of Xt

and St, there are 24 = 16 possible combinations of how changes may occur: one case where

no parameters change (measured by ARL0), six combinations with changes that affect only

one of the distributions, and nine combinations with changes to both distributions. For this

experiment, a detected changepoint τ̂ is considered a true detection if it is the smallest detected

changepoint that occurs after a true changepoint τi, but before any subsequent changepoints

τj > τi. Then, 1,000 Monte Carlo simulations are run for each of the 16 change combinations

and for each value of m ∈ {0, 1, 10}. We fixed the constant C = 7 in Equation (3.11).

To further assess the change detector’s performance, it is compared with the R implementa-

tion of the PELT change detector (Killick and Eckley 2014). PELT is an offline, univariate change

detection algorithm that improves the time complexity of the optimal partitioning algorithm
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given in Jackson et al. (2005) while preserving the exactness of the method. Exactness here

refers to the fact that, given a cost function and penalty term, PELT will return an optimal

configuration of changepoints. Although reduced compared to optimal partitioning, its time

complexity grows linearly with the number of data points. This makes PELT unsuitable for

streaming change detection; however, it provides a good benchmark to test the online detector

against.

Since the data streams we consider are bivariate, and PELT operates on univariate data,

some care is required. To resolve this, PELT was implemented on two data sets using the

MBIC (Zhang and Siegmund 2007) penalty. The first data set consisted of the physical readings

xt, where PELT was implemented to detect changes in both the mean and variance assuming

the data was generated from a Gaussian distribution. The second data set consisted of the

interarrival times st, where PELT was implemented to detect changes in both the mean and

variance assuming the data was generated from a gamma distribution. This results in two

values for each of the performance measures discussed in Section 3.5.1. For example, on any

given experiment, PELT would have an ARL1,X corresponding to the physical readings and an

ARL1,S for the interarrival times. To directly compare the bivariate method with PELT, the

better set of the univariate performance measurements for PELT were taken, which happened

to be from the physical readings for all change combinations.

3.5.3 Change Detection Results

In this section results are presented that were obtained from running the experiments discussed

in Section 3.5.2 using the performance measures given in Section 3.5.1.

For the single case where no changes are present in the 1,000 simulated data streams of length

10,000, the method makes a false detection on average after 8,123 observations, whereas PELT

makes no false detections; a result that is not surprising since it is an offline method.

Figure 3.6 shows the results for each of the other three performance measurements: ARP1,

CCD, and DNF. Note that ARL1 has been rescaled such that ARP1 = ARL1/N , where

N = 10, 000. This ensures that all panels are scaled to the unit interval where 0 and 1

represent the worst and best performance attainable respectively. Each data point is a tuple

of a performance measurement for both PELT and the change detector, averaged over 1,000

data streams with one of the fifteen specific change combinations described in Section 3.5.2.
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In each panel, the region above the dashed line indicates where the change detector outper-

forms PELT. The change detector outperforms PELT with respect to the speed and accuracy

of true detections, but performs marginally worse for false detections as seen in the right panel.

The left and centre panels demonstrate that PELT appears to struggle with correctly de-

tecting changes in a timely manner when the changes are present in just the interarrival times

st (orange points), or when there are changes in both the interarrival times st and the physical

readings xt, but the changes for xt only affect the scale (the purple points clearly above the

dashed line). Interestingly, both the change detector and PELT perform better for cases where

any changes in the physical readings only occur in location, as seen by the cluster of points

near (1, 1). The single green outlier in these panels represents a change in just the scale of the

physical readings where both detectors perform poorly.

It is striking that in many instances the detector outperforms PELT, an exact offline detector.

The method achieves this by comparing both adaptive and static model parameter estimates,

whereas PELT acts on the raw data.

3.6 Conclusion

By using the adaptive forgetting framework in Section 2.6.2 for Normal-Gamma data, this

chapter presented a framework for monitoring a general cyber-physical system that allows for

temporally adaptive parameter estimation. The difficulties of model validation in a streaming

setting were discussed and addressed with a novel procedure, assessed against measurements

from a real cyber-physical system. Finally, this framework was enhanced with the introduction

of a novel changepoint detection method. The next chapter considers suitable methods for

studying correlation structure in data streams.
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4 Streaming Correlation Coefficients

for Real-Time Network Anomaly

Detection

The work in this chapter is reproduced from Noble and Adams (2018) using altered notation to

ensure consistency throughout this document. This is concerned with applications of stream-

ing methods for correlation estimation and changepoint detection for enterprise cybersecurity

network data.

There is an emerging research effort in enterprise cybersecurity directed toward statistical

anomaly detection procedures (Adams and Heard 2014; Adams and Heard 2016; Neil et al. 2013).

These procedures are intended to provide complementary tools to support the range of packet-

level signature-based enterprise defence systems, such as firewalls and virus scanners.

Signature-based methods are often strong, resulting in low or zero false positive rates. How-

ever, various factors are reducing the efficacy of such methods. First, ubiquitous encryption

will nullify the impact of any procedure designed to query packet payload. Second, sophisti-

cated attackers, typified by advanced persistent threat (Adams and Heard 2016, Ch. 1), are able

to penetrate and traverse enterprise networks despite these defences. This capability suggests

that attacker behaviour is subtle, calling for tools capable of identifying small anomalies.

Statistical anomaly detection methods are designed to detect anomalous behaviour against

a putative “normal” background. As such, alerts raised from an anomaly detector are not

signatures, and are not deemed to be finding malicious behaviour. Instead, such alerts are

finding unusual or surprising behaviour. Careful examination of such alerts provides a means

to detect sophisticated attackers, as strikingly demonstrated in Neil et al. (2013). Naturally,

such alerts need combination, ranking and triage, for presentation to a network analyst.

39



The high volume and velocity of enterprise cybersecurity data, along with the timeliness

requirements of the problem, dictate that streaming analytics are often favoured (Bodenham

and Adams 2017). Such statistical analytics need to meet a number of the requirements of

streaming data (see Section 2.5). Particularly, compute and memory efficient updating on

data arrival, and the ability to adapt to unknown temporal variation. The latter is particularly

important in cybersecurity, since network data can demonstrate significant change over time.

The main contribution of this chapter is ReTiNA (Real Time Network Anomaly-detector);

an unsupervised three-stage framework for detecting anomalous network behaviour on-the-fly.

Prior knowledge of the normal network behaviour is not required, and is instead learned by

continuously monitoring the network traffic. The performance of ReTiNA is compared with

both online and offline competitors using ideas from the changepoint detection literature. We

illustrate the methodology in action on two different large computer networks. The approach

is inspired by SCAD (Noble and Adams 2016), but the core methodology has been consider-

ably enhanced with a novel online change detector, which exploits the difference in rates of

convergence between adaptive and static estimators. In addition, the issue of degeneracy in

covariance estimation is resolved with shrinkage.

The anomaly-based network intrusion detection literature is comprehensive; numerous pa-

pers can be found in network and information security conference proceedings such as the

IEEE Symposium on Security and Privacy and the International Symposium on Research in

Attacks, Intrusions and Defences. There is a wide range of proposed methods with many

adapted to specific cybersecurity problems. Hence, an extensive coverage is not provided here,

but reviews and surveys are thoroughly presented in García-Teodoro et al. (2009), Bhattacharyya

and Kalita (2013), Bhuyan et al. (2014), Ahmed et al. (2016), Buczak and Guven (2016). Notably,

the collection of methods all fall short in at least one of the following ways.

Reliance on a baseline model. Such models are constructed during an initial training phase.

Both normal and anomalous network behaviour is dynamic in nature, which a static base-

line model cannot hope to capture. However, some more recent methods use a sliding

window approach to dynamically model behaviour, where the primary drawback is the

non-trivial choice of an appropriate window size.

40



Not truly real-time. Methods involving some form of offline post-processing. Worse, the

storage and computational complexity grow with the rate of network traffic, violating

the requirements of the streaming domain.

High specificity. Methods designed for a specific type of attack do not always provide a

means of generalisation to alternative attack types.

Simple heuristics. Reliance on single and simple features, ignoring the interaction effects

that could be present.

Our procedure does not suffer from these shortcomings.

4.1 Overview

Netflow is a router-based protocol for assembling summaries of IP connection events between

devices on a network. Originally, this protocol was used for accounting and resource monitoring

activities. A Netflow record has a number of fields, including: start time, duration, source IP

address, destination IP address, source port, destination port, packet count and byte volume.

This summary record is assembled exactly or approximately by enumerating properties of the

packets associated with the connection.

An enterprise network can be conceived of as a network graph, where nodes are devices and

edges correspond to connections between devices. It is natural to distinguish internal nodes,

those devices within the enterprise infrastructure, from external devices.

Connections between devices have finite temporal extent and numerous different connec-

tions can occur between devices. Thus, we have the concept of edge activity, the sequence of

events corresponding to connections on an edge. The objective of this chapter is to explore

relationships in the evolving structure of such events, to identify anomalies.

In the edge activity view of Netflow data, events on an edge can be regarded as realisations of

a marked multivariate stochastic process operating on that edge, where the marks correspond

to Netflow fields. While this is a convenient mathematical abstraction, we prefer to reason

about the events as a sequence, where an event has extra information encoded in the Netflow

fields.
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We are concerned with identifying anomalies occurring in the relationship between the inter-

arrival time of events, and Netflow fields. Given a sequence of events on an edge, the correlation

between the time since the last event, and properties of the current event, such as the byte

count, is a potentially valuable quantity to monitor. There is no particular reason to assume

that these quantities should be correlated on a single edge. We seek to identify anomalies from

the ‘baseline’ correlation process. Events on edges can be subject to a high degree of temporal

variation and hence the methodology we deploy uses an adaptive estimation scheme, which is

intended to handle such variation in a single-pass of the algorithm.

This adaptive estimation procedure is capable of detecting correlation anomalies on a single

edge. More suspicion accrues when a set of edges exhibit contemporaneous anomalies, and fur-

ther suspicion arises if these edges are connected. Sophisticated attack and traversal behaviour

is likely to be concealed in processes on multiple edges. For example, the method in Neil et al.

(2013) is concerned with short paths, or sets of connected edges. Correlation anomalies that

occur over multiple edges in coincident time are thus of particular interest in cybersecurity

since they may indicate coordinated activity.

The entire approach is modular. First, we use an adaptive estimation procedure to compute

temporally-adaptive estimates of the correlation which dynamically model the edge activity.

Second, we develop a statistical hypothesis testing procedure to detect anomalies in the cor-

relation on an edge. Third, these edge anomalies are combined to provide an overall score

for anomalous network behaviour localised in time and network space. The entire approach is

represented schematically in Figure 4.1.
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Figure 4.1: A schematic flow diagram of the three-stage ReTiNA framework.

4.2 Methodology

The core component of the approach in this section is an efficient and adaptive procedure

for sequentially estimating correlation, complemented with a procedure for anomaly detection.

These are the first two stages in Figure 4.1. Adaptive estimation of the correlation is reasonably
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Figure 4.2: A schematic representation of the adaptive estimation and anomaly detection process for
the correlation. The dashed green line represents a flagged anomaly at t = τ⋆, due to
the deviation between the adaptive and static estimates in solid blue and dashed orange,
respectively. At this point, the static estimator is reset, by setting the static sample size
nτ⋆ = 0, where nt in general corresponds to the number of observations seen since the most
recent flagged anomaly.

straightforward, however, extending such estimation for anomaly detection requires craft. As in

Section 3.4 the approach sequentially compares the adaptive estimate against its non-adaptive

counterpart, as schematically illustrated in Figure 4.2.

4.2.1 Stage I: Adaptive Estimation

Let {Zt}t∈N = {(Xt, Yt)}t∈N be a bivariate stochastic process with time-varying, or drifting,

mean µt and covariance matrix Σt. The evolution of µt and Σt can be modelled by assum-

ing an exponential forgetting relationship on the likelihood with fixed µt = µ,Σt = Σ as in

Anagnostopoulos et al. (2012), which places more emphasis on recent data by smoothly down-

weighing past information. Specifically, given a sequence of forgetting factors (λi)t−1
i=1 with each

λi ∈ [0, 1], the adaptive forgetting (AF) log-likelihood of (z1, . . . , zt) is defined as

L(λ)(z1:t | µ,Σ) = λt−1L(λ)(z1:(t−1) | µ,Σ) + L(zt | µ,Σ). (4.1)
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Notice this generalises the log-likelihood under the i.i.d. assumption with a weighted sum, and

in the case of no forgetting (where every λi = 1), it is equivalent to the i.i.d. case with each

data point being given equal weight. Assuming {Zt}t∈N is Gaussian (see Section 2.1.1), the

log-likelihood of a single realisation zi is given by

L(zi | µ,Σ) = 1
2
(
log|Σ|+ (zi − µ)T Σ−1(zi − µ)

)
.

Using this likelihood, maximising Equation (4.1), by setting the derivative (with respect to µ

and Σ) equal to zero and solving, gives the adaptive forgetting maximum likelihood estimates

(AFMLEs) for the moments µt, Σt and Πt = E[ZtZ
T
t ] as

µ̃t =
(

1− 1
wt

)
µ̃t−1 + 1

wt
zt,

Π̃t =
(

1− 1
wt

)
Π̃t−1 + 1

wt
ztz

T
t ,

Σ̃t = Π̃t − µ̃tµ̃
T
t ≡

 σ̃t,X σ̃t,XY

σ̃t,XY σ̃t,Y

,
where

wt = λt−1wt−1 + 1,

is the effective sample size, and is analogous to the full sample size in an i.i.d. setting. Hence,

the forgetting factors control the extent of temporal adaptation of the AFMLEs. The AFMLE

for the covariance, Σ̃t, is guaranteed to be positive semi-definite, but is somewhat noisy,

especially for small wt. To reduce the variance of these estimates, and guarantee positive

definiteness, the oracle approximating shrinkage (OAS) estimator in Chen, Wiesel, et al. (2010)

can be used via

S̃t = (1− γt)Σ̃t + γtVt, (4.2)
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where

γt = min

1,
Tr2

(
Σ̃t

)
nt

(
Tr
(
Σ̃2

t

)
+ 1

2 Tr2
(
Σ̃t

))
,

Vt =

max(ε, σ̃t,X) 0

0 max(ε, σ̃t,Y )

,
nt = nt−1 + 1,

setting 0 < ε << 1 guarantees positive definiteness, and nt is the number of observations since

the last reset as in Figure 4.2.

The matrix S̃t is the adaptive shrinkage estimate of the covariance matrix Σt where

 s̃t,X s̃t,XY

s̃t,XY s̃t,Y

 ≡ S̃t.

The Pearson correlation coefficient ρt can be estimated by

ρ̃t = s̃t,XY√
s̃t,X s̃t,Y

.

The problem of determining suitable values for the forgetting factors (λi)t
i=1 still remains,

and we claim that the rate of forgetting ought to be data driven. This is made possible by

using stochastic gradient descent to maximise the log-likelihood as in Anagnostopoulos et al.

(2012) via the update step

λt+1 = λt − η
∂

∂λ
L
(
zt+1 | µ̃t, Σ̃t

)
, (4.3)

where the learning rate η is a small fixed quantity and the forgetting factors are truncated to the

range [0.6, 1] (see Section 2.6.2). As with most procedures based on stochastic approximation,

early estimates are unreliable due to the small sample size and so it is sensible to disregard

the first B estimates as a burn-in phase.

Note that the derivative involved in Equation (4.3) is formally defined in Bodenham and

Adams (2017) and agrees with the result in Anagnostopoulos et al. (2012) where a one-step fixed
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forgetting assumption is placed on the forgetting factors. The gradient, expressed as a function

of the derivatives of the AFMLEs is

∂

∂λ
L
(
zt+1 | µ̃t, Σ̃t

)
= 1

2(zt+1 − µ̃t)T
(
−2Σ̃−1

t µ̃′
t − Σ̃−1

t Σ̃′
tΣ̃−1

t (zt+1 − µ̃t)
)

+ 1
2 Tr

(
Σ̃−1

t Σ̃′
t

)
,

where, as in Anagnostopoulos et al. (2012), the AFMLE derivatives, denoted with a ′, are also

computed sequentially by

µ̃′
t =

(
1− 1

wt

)
µ̃′

t−1 −
w′

t

w2
t

(zt − µ̃t−1),

Π̃′
t =

(
1− 1

wt

)
Π̃′

t−1 −
w′

t

w2
t

(
ztz

T
t − Π̃t−1

)
,

Σ̃′
t = Π̃′

t − µ̃′
tµ̃

T
t − µ̃t

(
µ̃′

t

)T
,

where

w′
t = λt−1w

′
t−1 + wt−1.

Note, all AFMLEs, and their derivatives, are initially set to 0, with the initial forgetting

factor λ0 = 1.

This sequential approach ensures that the forgetting factors accommodate the evolution of

the distribution of Zt. Specifically, the forgetting factors, and hence the effective sample size

wt, will increase during periods of stability (Bodenham and Adams 2017). Similarly, they will

decrease in the presence of drift or changes in the distribution of Zt.

4.2.2 Stage II: Edge Anomaly Detection

The previous section developed an adaptive estimate for the correlation, ρ̃t. This will be

extended to an anomaly detector in which events on an edge are sequentially flagged as unusual

with respect to their history. Table 4.1 shows the notation used for correlation coefficients

discussed in this section.

Approximate distributional results for transformed correlation estimates are used to devise

a test statistic under the assumption of no change in the correlation, in the spirit of CUSUM

charts (Page 1954).
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Table 4.1: Notation used for the correlation coefficients discussed in Section 4.2.
Symbol Meaning
ρ Pearson population correlation coefficient for the distribution used to generate an

i.i.d. sample.
ρt Pearson population correlation coefficient for the distribution at time t used to

generate a single observation, typically evolving.
ρ̃t An adaptive estimate for the Pearson correlation coefficient ρt.
ρ̂t The sample Pearson correlation coefficient.

Given an i.i.d. sample (zi)N
i=1 = (xi, yi)N

i=1 of a bivariate Gaussian random variable Z = (X,Y )

with population correlation coefficient ρ, the Fisher transformation (Fisher 1915) of the (non-

adaptive) sample correlation coefficient, ρ̂N is asymptotically Gaussian. Specifically,

r̂N = tanh−1(ρ̂N ) approx.∼ N
(

tanh−1(ρ), 1
N − 3

)
.

Note that the non-adaptive correlation estimates are computed sequentially using the same

methodology presented in Stage I, replacing wt with nt, which is equivalent to setting the

forgetting factors λt = 1 for all t.

By relaxing the i.i.d. assumption such that (Zt)t∈N is a bivariate Gaussian stochastic process

with time evolving population correlation coefficient ρt, the Fisher transformation can be

generalised within the sequential forgetting factor framework to give

r̃t = tanh−1(ρ̃t)
approx.∼ N

(
tanh−1(ρt),

1
wt − 3

)
.

The assumption of no change in correlation structure can be expressed as the null hypothe-

sis H0 : ρt = ρ for all t. Hence, under H0, both the adaptive ρ̃t and non-adaptive ρ̂t serve

as estimates of ρ, which after the Fisher transformation, have approximately Gaussian sam-

pling distributions as above. Then the difference between the Fisher-transformed correlation

estimates is also Gaussian and can be scaled to form the test statistic

Tt = (r̃t − r̂t)
( 1
wt − 3 + 1

t− 3 + kt

)− 1
2 approx.∼ N (0, 1), (4.4)
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where

kt = 2
(√

(wt − 3)(t− 3)
)− 1

2
.

Note, if the alternative hypothesis is true, then the adaptive correlation estimates ρ̃t converge

faster to the true correlation ρt than the non-adaptive estimates ρ̂t. This property gives rise to

larger values of |Tt| in situations where the correlation structure changes. The corresponding

two-sided p-value

pt = 1− 2
(
1− Φ(|Tt|)

)
,

where Φ is the CDF of the standard normal distribution, can then be used to flag events as

anomalous if pt < α, for some significance level α. After flagging an event as anomalous, the

non-adaptive estimates need to be reset, setting nt = 0.

4.2.3 Stage III: Scoring Network Anomalies

The previous section developed a sequential anomaly detector for the correlation process on

a single edge. There is particular interest in considering anomalies across multiple edges as

edge activity can be considered to be mutually independent (Neil et al. 2013). Hence, simulta-

neously occurring edge anomalies are indicative of overall anomalous behaviour with respect

to the network. Moreover, there is little concern that false positive edge anomalies will propa-

gate as false positive network anomalies since under the above independence assumption, the

probability of observing a false positive across M edges is αM .

To flag a network anomaly a windowing procedure groups together edge anomalies that

occur within the same time frame T . Edge anomalies that occur between times t1 and t2 are

added sequentially to a window Wt1,t2 of fixed time length T = t2 − t1. Hence, a window

corresponds to a set of flagged edges, with associated timestamps.

We propose two network anomaly scoring measures that act on these windows and report

a measure of how anomalous the network behaviour is in that window. The first, νt1,t2 ,

enumerates the number of unique edges amongst the flagged events in Wt1,t2 . The second,

κt1,t2 , is the number of nodes in the largest connected component of the subgraph constructed

from the flagged edges within Wt1,t2 . It is designed to capture coordinated behaviour, such as

might be observed in a sophisticated attack. Each measure is scaled by the maximum value

the measure could take in the network to ensure sequential comparability.
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It is particularly suspicious to observe windows where both scores agree since this implies

that all flagged edges are connected, which is a strong signal of anomalous behaviour.

4.3 Evaluation

We now turn to the assessment of this anomaly detection methodology. The evaluation of

network intrusion detection systems is a major challenge for in cybersecurity due to the dearth

of ground-truth data. A compromise is to inject anomalies representative of attacks in real

datasets (Sommer and Paxson 2010). In Noble and Adams (2016) the performance of SCAD was

evaluated on real data with contrived anomalies induced by data contamination. Here, a more

rigorous and complete simulation study is conducted to capture all performance aspects of

ReTiNA and its competitors.

4.3.1 Performance Measures

In the classical sequential analysis literature, the focus is on the ability of a detector to accu-

rately detect a single change. In that context, the standard performance measures are ARL0

and ARL1 (Page 1954). The former is the average run length before encountering a false positive

in an environment with no change. The latter is the average number of observations between

the true changepoint and the detected changepoint.

These measures by themselves are flawed when assessing algorithms that report multiple

changepoints as they do not take into account the number of detections made. In Bodenham

and Adams (2017), two complementary performance measures, CCD (proportion of change-

points correctly detected) and DNF (proportion of detections that are not false detections)

are proposed for considering multiple changepoint detectors. Note that these are analogous to

recall and precision in the pattern recognition literature.

4.3.2 Simulation Plan

The performance measures defined in the previous section are computed using Monte Carlo

simulation. For ARL0 a sequence of N0 i.i.d. bivariate standard normal variates is simulated
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and any flagged change is noted. To compute the other measures, data (ai)N1
i=1 is simulated

from

Ai ∼


N2(0,Σ1), if i < τ,

N2(0,Σ2), if i ≥ τ,

where

Σ1 =

 1 −0.5

−0.5 1

, Σ2 =

 1 0.5

0.5 1

,
and τ = N1/2 is the changepoint. The covariance matrices Σ1 and Σ2 are chosen such that

the correlation before the changepoint, ρ1 = −0.5, is different to the correlation after the

changepoint, ρ2 = 0.5. A detected changepoint τ̂ is considered to be a true detection for the

changepoint τ if it is the smallest detected changepoint such that τ ≤ τ̂ , and is considered to

be a false detection otherwise.

For each simulation, the adaptive correlation estimates are computed from the raw data

ai. This sequence provides the input for a selection of competing change detectors proposed

in the literature. Figure 4.2 illustrates a run-through of ReTiNA on the above simulation

environment. ReTiNA is compared with various methods. AFF (Bodenham and Adams 2017)

and SCAD are both sequential anomaly detectors, whereas PELT (Killick, Fearnhead, et al.

2012) and AMOC (Killick and Eckley 2014) are non-sequential procedures intended to provide

a baseline for achievable performance. AMOC is designed to detect a single changepoint and

so the CCD and DNF measures are misleading, whereas the other methods allow for multiple

changepoints.

ReTiNA, SCAD and AFF all assume the pre-change distribution of the data is Gaussian.

PELT assumes the number of changepoints grows linearly with the size of the dataset, whereas

AMOC assumes only a single changepoint is present. Both implementations for PELT and

AMOC require a specified cost function, which for the purposes of this simulation was chosen

to capture changes in both the mean and variance, assuming the distribution of the data is

always Gaussian. For PELT, the MBIC (Zhang and Siegmund 2007) penalty term was included

in the cost function to prevent overfitting.
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4.3.3 Simulation Results and Discussion

Table 4.2 shows the results of 10,000 simulations with N0 = 10, 000 and N1 = 2, 000. The

results clearly show that ReTiNA is comparable even with batch methods and hence shows

great promise as a streaming anomaly detector. In particular, the large ARL0 and DNF values

show that ReTiNA is almost as resilient to false positives as the batch methods and much

more competitive than the competing online methods. In addition, the perfect CCD indicates

that changepoints are always detected.

Table 4.2: Performance measures for the considered anomaly and change detection algorithms over
10,000 simulations of AF correlation estimates. For all measures except ARL1, higher num-
bers indicate better performance.

Method Online ARL0 ARL1 CCD DNF

ReTiNA ✓ 9390.52 48.06 1.0000 0.9978

SCAD ✓ 197.92 124.22 0.9993 0.0970

AFF ✓ 9698.59 161.46 0.9402 0.2436

AMOC ✗ 10000.00 27.35 0.9997 0.9997

PELT ✗ 9996.02 28.14 0.9997 0.9700

4.3.4 Implementation Considerations

The full ReTiNA procedure relies on setting five hyperparameters, which are discussed below.

The stochastic gradient descent update step in Equation (4.3) is sensitive to the choice of

the learning rate η, presenting a trade-off. Larger values of η give rise to noisier estimates,

but choosing too small a learning rate can significantly impact the temporal adaptation of

the model. Some advice regarding the setting of this parameter is given in Bodenham and

Adams (2017), where it is also shown that in the univariate Gaussian case, the magnitude of

the gradient is of the same order as the underlying variance. Here, the value of η = 0.001 was

used throughout, after empirical validation on the simulations and real data.

Both ARL0 simulations for AMOC and PELT often erroneously reported false positives

within the first 25 observations owing to the AF correlation estimates being initially noisy.

For this reason, choosing B = 25 for the simulations seemed sensible. Such a short burn-

in phase is promising evidence that ReTiNA does not need much data to initially learn edge
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behaviour. For the demonstration, the length of the burn-in phase was increased to correspond

to the first hour’s worth of data.

The significance level α, used for flagging edge anomalies, controls the false positive rate.

Larger values of α would lead to larger number of flagged anomalies. Note that the analysis is

not particularly sensitive to the value of α since false positives are likely to be filtered out by

subsequent triage in stage III. The significance level α = 0.01 was used for both simulations and

the demonstration on Netflow data as this value achieved the best results in the simulations.

The kt term in Equation (4.4) accounts for the dependence between the adaptive and non-

adaptive estimators. Practically, assuming no dependence by setting kt = 0 for all t, led to

improved ARL1 results compared to fully accounting for the covariance.

In principle, the network anomaly scores are sensitive to the choice of window length T .

However, in practice, choosing different values of T , ranging from 10 seconds to 15 minutes,

did not substantively change the distributions of the network anomaly scores. For this reason,

the window length was set to T = 1 minute in the demonstration.

4.3.5 Demonstration Plan

A subset (62 edges) of the Los Alamos National Laboratory (LANL) Netflow data was consid-

ered in Noble and Adams (2016) from the “Comprehensive, Multi-Source Cyber-Security Events”

data set (Kent 2015). A key finding in that study was that SCAD revealed multiple network

correlation anomalies at similar times with known suspicious behaviour.

Here, we deploy the improved methodology of ReTiNA on a much larger subgroup of the

LANL Netflow dataset. Additionally, we analyse Netflow data collected from the busiest router

on the Imperial College London (ICL) network. We expect these two networks to be different.

LANL is a US government laboratory, operating under reasonably strict controls. The ICL

network is subject to a much wider variety of activity. Furthermore, the LANL data contains

activity belonging to a group of authorised attackers, referred to as a red team (Adams and Heard

2016, Ch. 2). The ICL data is recorded at millisecond resolution, whereas the LANL Netflow

times are recorded at second resolution, which introduced bias in the adaptive estimation stage

and caused degeneracy issues in SCAD. ReTiNA resolves these degeneracy issues by shrinking

the adaptive covariance estimates, as in Equation (4.2).
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For each network, we run the full ReTiNA procedure on three days of activity related to

internal traffic, considering the busiest edges of each network, specifically those edges with

at least 2,000 events. This corresponds to 2,359 and 2,061 edges, with over 18 and 9 million

events for the ICL and LANL networks respectively.

4.3.6 Demonstration Results and Discussion

Over 20,000 edge anomalies are flagged in the LANL network with over three times that for

the ICL network. The distribution of the number of anomalies on an edge also differs between

the networks; both are zero-inflated, but for the ICL network there is an additional mode.

Figure 4.3 shows the resulting ν and κ scores corresponding to 1-minute windows for the

ICL and LANL network respectively; localising network anomalies in time. The panels for

each network should not be compared against each other, but they share the same horizontal

axis since both networks have 4,320 network anomaly score values (corresponding to 3 days

worth of 1-minute windows). For the ICL network, the rate of network activity is displayed

alongside the ν scores, verifying that the periods of zero score occur when no activity is present.

These panels share the same horizontal axis, which corresponds to the index of the 1-minute

windows.

Note that the red team ‘compromise’ events are separate from the Netflow events (mani-

festing in the “authentication” data) and unknown to the anomaly detector. In fact, none of

the source or destination devices associated with red team activity are present in the selected

LANL network. Given this, it is striking that after the first batch of red team authentications,

two anomalies are clearly revealed in the κ score near window number 2,700. Figure 4.4 shows

the LANL network graph, with flagged edges in these two windows in red; localising network

anomalies in network space. The large cluster of connected flagged edges centred around the

green node is particularly interesting. Though any degree of certainty as to whether these

anomalies are directly related to the red team activity is difficult to obtain given the some-

what independent relationship of the LANL Netflow and authentication data.

Appropriate thresholds for the scoring measures are defined by operational aspects. Fig-

ure 4.3 displays a threshold of the 0.999-quantiles for each scoring measure, leaving the four
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Figure 4.3: Plot of the two network anomaly scores ν and κ for each 1-minute window for the ICL
(top) and LANL (bottom) networks. The horizontal dotted lines correspond to the 0.999-
quantiles of the distribution for each score. The grey background (top) corresponds to a
rate proportional to the number of events over all edges within the window. The vertical
red dotted lines (bottom) correspond to red team authentication events.

highest scoring 1-minute windows of activity over the three days. Note that for the LANL

network, this strict threshold still reveals the interesting aforementioned anomalies.
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Figure 4.4: The LANL network graph for all edges with at least 2,000 events. Red edges correspond
to the edges with flagged anomalies for the two highest scoring time windows after the red
team authorisation events. The node coloured in green is the centre of a large connected
component of flagged edges.

4.4 Conclusion

This work demonstrates a novel approach to detecting anomalies in network traffic using

the ReTiNA framework to identify and aggregate changes in correlation structure on edges.

The method requires constant memory, with respect to the size of the network graph, and

computation time proportional to the rate of edge activity. To achieve this, the adaptive

forgetting framework was extended for the online estimation of the correlation coefficient.

Combined with a novel change detection scheme for correlation coefficients, this developed a

framework for reasoning about anomalies in a network.

The next two chapters seek to explore another interesting aspect of data streams: quantiles.

To achieve this we take a closer look at the adaptive estimation procedure for Bernoulli data

in Chapter 5, which is then used as a basis for constructing streaming quantile estimators in

Chapter 6.
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5 Adaptive Estimation for Bernoulli

Trials

The work in this chapter develops adaptive estimation procedures for binary data, which are

fundamental for developing the adaptive streaming quantile procedures in Chapter 6. For a

historical background of adaptive estimation and discussion of related work see Section 2.6.1.

It turns out that adaptive estimation procedures for binary data are understudied and lead to

peculiar and undesirable estimation behaviour. This behaviour is explored in detail.

As with many procedures dependent on stochastic gradient descent, the implementation

specifics of setting control parameters are as much an art as a science. We aim to get a better

understanding of how to choose the cost function and learning rate. Ultimately, these decisions

depend on the situation, but we make some general recommendations.

Section 5.1 proposes methodology to develop a procedure, AFFB, for estimating a time-

varying Bernoulli parameter. Sections 5.2 and 5.3 explore the behaviour of AFFB when op-

erating on stationary and non-stationary binary data respectively, in addition to assessing

performance on simulated data. Central to the tuning of adaptive forgetting factors, is a

truncation step (see Section 2.6.2). Section 5.4 explores relaxing this truncation. Finally,

Section 5.5 considers the extension of the approach to the case of binomial data.

5.1 Adaptive Parameter Estimation

Let {Ys}s∈N be a stochastic process of Bernoulli random variables with time-varying parameter

θs, such that the probability mass function at any time t is given by

fYt(y) =


θt if y = 0,

1− θt if y − 1.
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Given a sequence of forgetting factors (λs)t−1
s=1 with each λs ∈ [0, 1], treating θs = θ as fixed

allows the modelling of parameter evolution through the adaptive forgetting log-likelihood

relationship in Section 2.6. Specifically,

L(λ)(θ | y1, . . . , yt) = L(λ)(θ | y1, . . . , yt−1) + L(θ | yt)

= mt log θ + wt log(1− θ)−mt log(1− θ),

where

mt = λtmt−1 + yt,

wt = λtwt−1 + 1.

For a full derivation see Appendix A.3. Then differentiating with respect to θ and solving for
d
dθL

(λ)(θ | y1, . . . , yt) = 0 gives the adaptive forgetting maximum likelihood estimate for θt in

closed form as

θ̃t = mt

wt

which is the adaptive forgetting analogue of the sample mean as in Equation (3.11) in Bodenham

(2014), and equivalent to the sequential update

θ̃t =
(

1− 1
wt

)
θ̃t−1 + 1

wt
yt.

5.1.1 Tuning the Forgetting Factors

As discussed in Section 2.6.2, suitable values for the forgetting factors can be determined

by choosing values that minimise a time-dependent cost function Jt suitable for capturing

adaptivity, such as a next-step ahead distance between the arriving data and current model.

Two sensible choices will be considered and compared in this chapter. The first is the next-step

ahead negative log-likelihood (NLL)

J (1)
t = −L

(
θ̃t−1 | yt

)
,
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as frequently used in Anagnostopoulos (2010) and Anagnostopoulos et al. (2012). The second is

the next-step ahead squared error

J (2)
t =

(
yt − θ̃t

)2
,

as used in Bodenham (2014) and Bodenham and Adams (2017). Future references to these cost

functions excludes the “next-step” term, common to both cost functions, for the purpose of

brevity.

Following the nature of the forgetting factor framework, these cost functions can be sequen-

tially optimised by using stochastic gradient descent, provided the gradient is available. In

Bodenham (2014) the author derives similar gradients using first principles, which agrees with

a simpler approach used in Anagnostopoulos (2010) where the derivative is taken assuming the

forgetting factors are fixed one step-ahead. Using the latter approach and denoting J ′
t = ∂

∂λJt

for the gradient, each of the two cost function gradients can be expressed as

J (1)′
t = −θ̃′

t−1

(
yt

θ̃t−1
− 1− yt

1− θ̃t−1

)
,

and

J (2)′
t = 2θ̃′

t−1

(
yt − θ̃t−1

)
,

where the following derivatives are defined sequentially

θ̃′
t =

(
1− 1

wt

)
θ̃′

t−1 −
w′

t

w2
t

(
yt − θ̃t−1

)
,

w′
t = λt−1w

′
t−1 + wt−1.

Note, for implementation purposes it is convenient to define and set J (1)′
s = 0 if θ̃t−1 ∈ {0, 1},

which is the case in the first iteration of the procedure where a single observation is not

sufficient to determine a rate of change.

Algorithm 2 presents AFFB; the overall Adaptive Forgetting Framework Bernoulli estimation

procedure in a general form for implementation purposes. The procedure starts by initialising

parameter values on line 3. Then, as in lines 4–5, as each observation yt arrives, the parameters

are sequentially updated using affb_update, which is defined on line 6. Subscripts denoting
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the time index are intentionally excluded from parameters to emphasise the constant compute

and storage complexity of the procedure. Note the order of steps within affb_update is

crucial to ensuring the sequentially updated values respect all the sequential update equa-

tions above. Also note the bounds of the truncation range are considered variable, where the

truncation step is discussed later in Section 5.4.

Algorithm 2 AFFB: a general adaptive forgetting estimation procedure for Bernoulli data
streams.

1: Input: Stream of realisations ys ∈ {0, 1}, for s = 1, 2, . . . .
2: Let J (y, θ) be an appropriate cost function for any y ∈ {0, 1}, θ̃ ∈ [0, 1]. Let the step-size
ηs be a deterministic function of s and w. Let [λmin, λmax] be the truncation range of the
forgetting factors.

3: Initialise (λ,w,w′, θ̃, θ̃′) = (1, 0, 0, 0, 0).
4: for s = 1, 2 . . . do
5: Set (λ,w,w′, θ̃, θ̃′) = affb_update(ys, λ, w,w

′, θ̃, θ̃′)
6: function affb_update(ys, λ, w,w

′, θ̃, θ̃′)
7: Compute cost gradient: set g = J ′(y, θ)

∣∣∣
y=ys,θ=θ̃

e.g. for the squared-error cost g = 2θ̃′
(
ys − θ̃

)
.

8: Update forgetting factor: λ = λ− ηsg.
9: Truncate forgetting factor: λ = min

(
max(λ, λmin), λmax

)
10: Update effective sample size: w = λw + 1.
11: Update parameter estimate: θ̃ =

(
1− 1

w

)
θ̃ + ys

w .
12: Update auxiliary derivatives: w′ = λw′ + w, and θ̃′ =

(
1− 1

w

)
θ̃′ − w′

w2

(
ys − θ̃

)
13: return (λ,w,w′, θ̃, θ̃′)
14: end function

The remainder of this chapter explores the behaviour of AFFB on simulated Bernoulli data

with a particular focus on comparing the two cost functions. See Figure 5.3 for an example

of AFFB in operation for each cost function. In addition, given stochastic gradient descent

introduces the concern of choosing an appropriate learning rate, the simulations investigate

the behaviour of the procedure under various learning rate schemes. Finally, the adaptive

estimation procedure is generalised for binomial data.

5.2 Stationary Behaviour of AFFB

While adaptive procedures are generally developed to handle non-stationarity, it is often im-

portant that they operate effectively in stationary environments too. For example in change

detection a common objective is to determine when data deviates from a stationary period.
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This section demonstrates peculiar properties of the adaptive forgetting framework in the

context of Bernoulli data, and so studying stationary environments provides the simplest sce-

nario to reason about this behaviour, where theoretical stochastic optimisation convergence

results may apply. Even in the absence of theoretical results, simulation can often provide

counterexamples to reveal if estimators do not behave desirably.

Maximum likelihood estimators are known to be consistent under relatively weak assump-

tions in an offline setting (Cox and Hinkley 1979). For data streams, where the data is usually

non-stationary, the traditional definition of consistency is less useful as model parameters can

be considered as moving targets. However, in the specific case of stationary data streams it is

desirable for adaptive estimators to behave as if they were consistent. That is, as the number

of data samples observed in a stationary environment increases, the adaptive estimates should

get ‘closer’ to the true parameter values. Intuition may suggest that adaptive estimators do

behave in this way, but theoretical results for this do not appear to have been explored in

the literature for adaptive forgetting maximum likelihood estimators. However, it is possible

to demonstrate a striking phenomenon in the Bernoulli case when using the negative log-

likelihood cost. To do so, first consider running simulations over stationary samples of length

n = 2, 000 for four different Bernoulli parameters θ0 ∈ {0.5, 0.75, 0.9, 0.99}, with both cost

functions J (1) and J (2) over a range of learning rates. The effect can be more easily observed

after removing the individual variation in a single simulation, and so m = 1000 simulations

are run, where for a particular simulation run j, the adaptive forgetting maximum likelihood

estimate for θt is denoted θ̃t,j , for 1 ≤ j ≤ m. Then the ensemble average at time t is

θ
(1:m)
t = 1

m

m∑
i=1

θ̃t,m.

If the adaptive estimators exhibit consistent-like behaviour, then θ̃t,j → θ0, and by the law of

large numbers, θ(1:m)
t → θ0, for 1 ≤ j ≤ n, so the ensemble averages should get closer to the

true parameter values as more data is observed.

Figure 5.1 shows the behaviour of the ensemble averages for the stationary simulation de-

scribed above, with Figure 5.2 showing the corresponding ensemble-averaged forgetting factor

values. As one may expect, the ensemble-averaged adaptive mean becomes less volatile over

time as the learning rate η is decreased. However, initially concentrating on the first row of
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Figure 5.1: Ensemble averages of the adaptive mean estimates over m = 1000 stationary Bernoulli data
streams for AFFB, written θ(1:m)

t . Each panel corresponds to a different Bernoulli parameter
θ0, shown by the grey dashed line, and shows the ensemble average for 1 ≤ t ≤ 2000 for four
different learning rates η, shown in different colours. The left-hand side column of panels
all use the negative log-likelihood cost function J (1) to tune the forgetting factors, with the
right-hand side column of panels all using the squared error cost function J (2).
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panels, where θ0 = 0.5, the ensemble-averaged adaptive estimates appear to oscillate evenly

around the true value of θ0. Whereas in the second and third rows it is evident that this not

the case, especially for the larger learning rate values of 0.1 and 0.01. It is as if these estima-

tors have some ‘apparent bias’ that does not appear to decrease over time. Furthermore, the

‘apparent bias’ in the third row of panels is larger than that of the second row. To quantify this

further, consider defining the temporal average of these already ensemble-averaged adaptive

mean after some time t∗ as

θ
(1:m)
t>t∗ = 1

n− t∗
n∑

t=t∗+1
θ

(1:m)
t .

Then the residual θ
(1:m)
t>t∗ − θ0 effectively quantifies the ‘apparent bias’ above, where t∗ should

be chosen after some initial learning period, where for t > t∗ the sampling distribution of the

adaptive mean estimates seems stationary. Conservatively choosing t∗ = 1000, the values of

θ
(1:m)
t>t∗ for the simulations above are displayed in Table 5.1, with corresponding 95% confidence

interval estimates in Table 5.2. Notice how for θ0 = 0.5 the temporal averages for all learning

rates are extremely close, leading to residuals all less than one thousandth. Particularly

interesting behaviour occurs for learning rate values η = 0.1 and η = 0.01 where θ0 ̸= 0.5,

where it is clearly evident that the estimators are biased, with several confidence interval

estimates not containing the true parameter value. While using sufficiently small learning

rates to reduce the impact of this issue may seem like a sensible approach, doing so would

hinder the ability of the adaptive estimators to accommodate drift. In particular this would

most adversely impact abrupt drift scenarios, which benefit from relatively large learning rates,

and are later demonstrated in Section 5.3.

Indeed, further experiments show that this bias grows, and the confidence interval estimate

shrinks, the closer the Bernoulli parameter is to its bound. This may be due to a lower variance

in the underlying data, causing updates in one direction to occur infrequently.

For the simulation setup above, the overall Monte Carlo sample size is mn, with m and n

conveniently chosen for graphical display purposes. However, in general, setting m = 1 for a

sufficiently large n simplifies notation when considering non-graphical results.
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Figure 5.2: Ensemble-mean adaptive forgetting factor values running AFFB over m = 1000 stationary
Bernoulli data streams. Each row of panels corresponds to a different Bernoulli parameter
θ0, and shows the ensemble-mean adaptive forgetting factor λ̄t for 1 ≤ t ≤ 2000 for four
different learning rates η, shown in different colours. The left-hand side column of panels
all use the negative log-likelihood cost function J (1) to tune the forgetting factors, with the
right-hand side column of panels all using the squared error cost function J (2).
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Table 5.1: Temporal-averages of already ensemble-averaged adaptive means computed with two different
cost functions J (1) and J (2) for stationary Bernoulli simulations with parameter θ0, using
different learning rates η. Values are rounded to four decimal places.

Cost function
Negative log-likelihood J (1) Squared error J (2)

Learning Rate η Learning Rate η
0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001

θ0

0.5 0.5005 0.5010 0.5001 0.4998 0.5004 0.5009 0.5006 0.5001
0.75 0.7298 0.7457 0.7482 0.7494 0.7366 0.7469 0.7482 0.7495
0.9 0.8738 0.8908 0.8992 0.9002 0.8900 0.8985 0.9003 0.9008
0.99 0.9831 0.9837 0.9857 0.9894 0.9868 0.9898 0.9902 0.9900

Table 5.2: Lower bound (LB) and upper bound (UB) estimates of the 95% confidence interval for the
stationary Bernoulli parameter θ0 based on temporally-averaging already ensemble-averaged
adaptive means computed with two different cost functions J (1) and J (2), using different
learning rates η. Values are rounded to four decimal places.

Cost function
Negative log-likelihood J (1) Squared error J (2)

Learning Rate η Learning Rate η
0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001

θ0

0.5
LB 0.4813 0.4907 0.4940 0.4963 0.4849 0.4909 0.4957 0.4973
UB 0.5190 0.5135 0.5077 0.5041 0.5173 0.5128 0.5063 0.5032

0.75
LB 0.7116 0.7356 0.7434 0.7474 0.7211 0.7384 0.7440 0.7481
UB 0.7463 0.7537 0.7524 0.7512 0.7500 0.7544 0.7516 0.7517

0.9
LB 0.8590 0.8828 0.8954 0.8973 0.8800 0.8936 0.8968 0.8997
UB 0.8902 0.8993 0.9025 0.9019 0.9008 0.9037 0.9027 0.9015

0.99
LB 0.9732 0.9784 0.9835 0.9887 0.9838 0.9885 0.9898 0.9897
UB 0.9908 0.9878 0.9876 0.9900 0.9893 0.9907 0.9907 0.9903

In particular, the two cost functions can be compared directly across a set of simulations

through a summary performance measure such as the root mean squared error, expressed as

RMSE
(
θ̃1:n

)
=
(

1
n

n∑
t=1

(
θ̃t − θ0

)2
) 1

2

.

Choosing n = 105, the first two rows of Table 5.3 show the RMSE for simulations with θ0 = 0.5

and θ0 = 0.99 for learning rates in decreasing order of magnitude from η = 10−1 to η = 10−4.

As expected, decreasing the learning rate always decreases the RMSE for stationary simulations
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because there is no change in distribution to learn. Interestingly, the squared error cost J (2)

always achieves a lower RMSE than the negative log-likelihood cost J (1) in this case. However,

this is not always the case for non-stationary simulations, as depicted in the subsequent rows

in the table. This is explored further in the next section.

5.3 Non-stationary Behaviour of AFFB for Non-stationary

Data

This section is a limited study to explore and demonstrate scientific aspects of the adaptive

estimation procedure for Bernoulli data streams under different data and drift scenarios. As

is common in the literature (Haykin 2002), two types of drift are covered; smooth and abrupt.

Smooth drift occurs where the parameter evolution is a continuously differential (often smooth)

function, and abrupt drift occurs where the parameter evolution is modelled as a generally

non-continuous piecewise function. In addition to the type of drift, the rate of drift is an

important property to explore. For smooth drift this is governed by the second derivative,

or acceleration, of the parameter evolution. Damped random walks and sinusoidal functions

with varying periodicity are commonly used to represent smooth drift. The latter approach

is favoured here to encourage repeated patterns as suggested in Widmer and Kubat (1996). For

abrupt drift this is usually controlled by changing the lengths of the continuous sub-intervals

for the piecewise function. Examples using these approaches for both abrupt and smooth

cases can be found in Anagnostopoulos (2010), Hammer and Yazidi (2017), Hammer, Yazidi, and

Rue (2019), and Hammer, Yazidi, and Rue (2021).

This study considers these scenarios where Bernoulli data (yi)n
i=1 is then simulated under

different definitions of the true parameter values (θi)n
i=1. The scenarios are stated formally

below, with the stationary setup from the previous section included for completeness.

• Stationary. Set θi = θ0 ∈ (0, 1) for i = 1, . . . , n

• Smooth drift. Set θi = α sin2
(

1
τ 2πi

)
for i = 1, . . . , n where α ∈ [0, 1] controls the

range of θ, and τ ∈ N with 0 < τ ≤ n controls the period, and hence the rate of drift,

where smaller values of τ increase the rate of drift.
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• Abrupt drift. Set

θi =


θ(1) for i such that (i mod B) < B

2 ,

θ(2) for i such that (i mod B) >= B
2 ,

where B controls the rate of drift through the regime length, and θ(k) ∈ [0, 1] for k = 1, 2

controls a regime-dependent Bernoulli parameter.

Two rates of drift (fast and slow) are considered for each type of drift. For smooth drift,

smooth (slow) corresponds to τ = 10000 and smooth (fast) corresponds to τ = 1000. For

abrupt drift, abrupt (slow) corresponds to B = 10000 and abrupt (fast) corresponds to B =

1000. For each drift type, two sets of simulation parameters are explored. Specifically, for

the smooth case both (α, β) = (0.98, 0.01) and (α, β) = (0.5, 0.25) are tested. The for-

mer is designed to explore more extreme values than the latter. For the abrupt case, both

(θ(1) = 0.95, θ(2) = 0.05) and (θ(1) = 0.75, θ(2) = 0.25) are tested. Again, the former is designed

to cover more extreme values, as well as to experience larger parameter changes.

Figure 5.3 shows examples of individual runs of the AFFB procedure, with η = 0.01, when

run on simulated data (n = 2000) from the fast non-stationary scenarios. In these instances,

it is clear the adaptive estimators can track the evolving parameter, though it seems as if the

estimator using the squared error cost experiences more volatility post abrupt change.

Unless otherwise specified, for all simulations in the next section the number of observations

n = 105, the truncation range for the forgetting factors [λmin, λmax] ≡ [0.6, 1] as discussed in

Section 2.6.2, and the default constant learning rate values used are η ∈ {10−k}4k=1.

5.3.1 Simulation Assessment

Table 5.3 shows the RMSE for each simulation scenario and learning rate where the cell with

the lowest RMSE is coloured in grey. It seems surprising that the lowest learning rate value

η = 10−4 gives the best performance for both the fast and slow drift environments. However,

this may arise from the fact that even with a high drift rate, smooth drift tends to restrict

the parameter evolution more than abrupt drift. For the abrupt drift environments, the

lowest RMSE results are obtained from learning rates values of η = 0.01 and η = 0.001. In

particular, for the NLL cost, η = 0.001 leads to the lowest RMSE for the slow abrupt drift
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Figure 5.3: Adaptive estimates for the Bernoulli parameter for an individual run of AFFB for each cost
function on simulated data from a selection of non-stationary environments.

and η = 0.01 leads to the lowest RMSE for fast abrupt drift case. This is to be expected

since the learning rate corresponds to the rate of drift the procedure can adapt to. However,

overall the RMSE results suggest that across all simulation environments, the procedure is not

particularly sensitive to the choice of learning rate, for choices of η < 0.1. Using the learning

rate η = 0.1 is not advisable, even in fast drift environments because this large a step-size

induces too much volatility in the estimators. The RMSE for the NLL cost is larger than

the RMSE for the squared error cost 75% of the time, with the mean RMSE for the NLL

cost being 9.7% larger than that of the squared error cost. This seems counter-intuitive given

the squared error is symmetric and does not respect the bounded parameter space θt ∈ [0, 1],

whereas the NLL cost should capture the properties of the Bernoulli distribution. Regardless,

if the objective is to have as accurate as possible point estimates, or the underlying Bernoulli

parameter is an extreme quantile then the NLL may not be a sensible choice based on the bias

observed in the previous section for AFFB. However, subsequent sections in this chapter present

alternative procedures that exhibit less bias when using the NLL cost. Still, when using AFFB,

these results suggest using the squared error cost. The learning rate should be chosen within

[10−2, 10−4] to match the anticipated rate of drift, but it is important to emphasise that these

results show that the choosing the optimal learning rate is not crucial.
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Table 5.3: Root mean squared error results for AFFB for a selection of stationary and non-stationary
simulation environments.

Cost function
Negative log-likelihood J (1) Squared error J (2)

Simulation Learning Rate η Learning Rate η
Type Parameters 0.1 0.01 0.001 10−4 0.1 0.01 0.001 10−4

θ0 = 0.5 0.110 0.064 0.042 0.024 0.092 0.064 0.036 0.021
Static

θ0 = 0.99 0.049 0.030 0.013 0.005 0.017 0.007 0.004 0.002
α = 0.98, β = 0.01 0.092 0.059 0.057 0.047 0.069 0.061 0.051 0.043Smooth

(slow) α = 0.5, β = 0.25 0.106 0.063 0.057 0.050 0.088 0.063 0.055 0.045
α = 0.98, β = 0.01 0.108 0.110 0.103 0.093 0.111 0.103 0.090 0.090Smooth

(fast) α = 0.5, β = 0.25 0.113 0.102 0.099 0.086 0.106 0.114 0.090 0.086
θ(1) = 0.95, θ(2) = 0.05 0.085 0.050 0.049 0.081 0.049 0.056 0.073 0.064Abrupt

(slow) θ(1) = 0.75, θ(2) = 0.25 0.103 0.059 0.058 0.086 0.084 0.062 0.090 0.083
θ(1) = 0.95, θ(2) = 0.05 0.099 0.099 0.148 0.120 0.098 0.100 0.092 0.092Abrupt

(fast) θ(1) = 0.75, θ(2) = 0.25 0.112 0.093 0.128 0.102 0.102 0.129 0.109 0.100

Though not discussed in this thesis, the choice of cost function used in adaptive estimation

procedures for Poisson data is thoroughly explored in Anagnostopoulos (2010). Surprisingly in

the Poisson case, it is shown that the negative log-likelihood cost considerably outperforms the

squared-error cost instead. The author remarks that this result is seemingly counter-intuitive,

given the performance measure used is square-error based, and suggests this is likely due to

the asymmetric nature of the Poisson distribution. Despite the Bernoulli distribution also

being skewed and discrete, the results differ. It is possible the unbounded range of the Poisson

distribution is also a contributing factor here, though this is not explored further.

5.3.2 Scaled learning rates

This section explores the use of non-constant, scaled, learning rates motivated by the result in

Bodenham (2014) where it is shown that for general i.i.d. data with mean µ, variance σ2, and

squared error cost

E
[
∂

∂λ
J (2)

t+1

]
∼ O(σ2).

In the case of i.i.d. Bernoulli data with parameter θ0, the variance would be θ0(1−θ0) ∈ [0, 0.25).

As the range of the Bernoulli parameter θ0 is bounded, it is possible to exhaustively compute

69



sampling distributions for the gradient of the squared-error cost over a grid of θ0 values.

Consider running 99 separate stationary simulations for θ0 ∈ { i
100}

9
i=1, with n = 105 for the

usual learning rates. Figure 5.4 shows the mean and standard deviation of the cost gradients

as grey points; essentially forming parabolas centred at θ0 = 0.5. It should not be surprising

that the standard deviation is highest at θ0 = 0.5, as is the case for the underlying data,

since the procedure is operating on stationary data. Similarly, a non-constant mean may seem

somewhat surprising, but recall we have observed this behaviour in Figure 5.2 where the mean

adaptive forgetting factor values fluctuate less, the closer θ0 is to 0 or 1. To account for this,

the learning rates were scaled by the reciprocal of the variance such that the new learning rates

νt = η
θt(1−θt) . Using the true value of θt to scale the learning rate is only possible in simulation,

but both the true values and the current estimate θ̃t produced similar results in experiments,

so only the former is considered. Returning to Figure 5.4, the points in black correspond to

simulations with a scaled learning rate of 1
4νt. Notice how this almost completely flattens the

previously observed parabolas, struggling most at the endpoints whenever θt is close to 0 or 1.

This is expected for the mean given the results of Bodenham (2014), but not necessarily for the

standard deviation. Here the learning rate was also scaled by 0.25 for a convenient graphical

contrast between the grey and black points, but in general this constant can be used to control

the roughly constant value of both summary statistics.

At the end of the previous section it was remarked that the cost functions exhibit different

behaviour for Poisson and Bernoulli procedures. Note that for the Bernoulli case, the summary

statistics for the cost gradients are symmetric around θ0 = 0.5. However, no such symmetry

exists for the Poisson case, which is likely also a factor in the poor performance of the squared-

error cost function in the Poisson instance.

Similarly to the assessment in Section 5.3.1, RMSE results were obtained for scaled learning

rates with different values of the constant scale factor taking values in {0.25, 1, 4}, but the

RMSE for every non-stationary scenario is larger than for the unscaled version, though in

many cases not substantially larger. It is not clear exactly why this is the case, but presumably

the procedure benefits from being able to adapt at different rates, depending on the current

value of θt. Based on this observation, scaled learning rates are not recommended.
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Figure 5.4: Mean (top-row) and standard deviation (bottom-row) of the gradient of the squared error
cost function for n = 100, 000 stationary Bernoulli data points. Each column of panels
corresponds to a different learning rate, with the points in each panel corresponding to
Bernoulli parameter values θ0 ∈ {0.01, 0.02, . . . , 0.99}.

5.4 Truncation Bias

Recall from Section 2.6.2 that when tuning the forgetting factor λt, it is customary to truncate

the range of the forgetting factor such that λt ∈ [λmin, λmax] after performing the SGD update

step. The truncation at the lower end is primarily in place to prevent both a delayed recovery

to drift and potential numerical instability in matrix parameter estimates. The lower limit

of the truncation range governs the rate of forgetting for past data and is commonly set to

λmin ∈ [0.6, 0.8] (Anagnostopoulos 2010; Bodenham 2014). Within this range, adaptive estimators

do not appear to be particularly sensitive to the choice of λmin for different distributions and

drift dynamics. Furthermore, without prior knowledge of the future drift dynamics it is difficult

to choose λmin, hence this work does not seek to optimise λmin. Instead, this section directs

attention to λmax, which has avoided close study in all prior work, where it is set to 1. Here, a

novel truncation step is introduced to implicitly allow values of the forgetting factor to exceed

1 in the tuning step. On the surface it may seem almost nonsensical to consider λmax > 1,

especially given the close relationship between forgetting factors and the weight parameter for
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updating EWMA charts (see Section 3.2.5 in Bodenham (2014)). However, the motivation arises

from noticing an inherent bias during this truncation step. Recall during the SGD update step,

the forgetting factors are updated according to

λt+1 = λt − ηt∇Jt,

for some cost Jt. Clearly, the forgetting factors increase when the cost gradient is negative,

and the forgetting factors decrease when the cost gradient is positive. However, the forgetting

factors are also restricted to the bounds of the truncation range. The results in Table 5.1 show

that for stationary binary data, the temporal mean cost gradient is always negative, which is

to be expected since on average the procedure should not be forgetting. However, it is perhaps

more interesting to look at how often the forgetting factors increase and decrease, which

depends on P(∇Jt > 0). This probability is not available in closed form due to the distribution

of the cost gradient being unknown in general, but corresponding empirical frequencies can be

studied instead. Formally, for k ∈ {1, 2} these empirical frequencies can be written as

J̄ (k)
n,+ =

n∑
i=1

1
{
J (k)

i > 0
}
,

J̄ (k)
n,− =

n∑
i=1

1
{
J (k)

i ≤ 0
}
.

Consider running a simple experiment with the AFFB procedure for a stationary simulation

setup with n = 105, θ0 = 0.5, η = 0.01 with both cost functions J (1) and J (2). The results

are shown in Table 5.4 which reveal an almost perfect one-to-one ratio between positive and

negative values. Recall from Section 2.6.2 that setting all forgetting factors fixed to 1 ensures

that adaptive estimators agree with the traditional offline MLEs. However, these empirical

results suggest that even when the forgetting factors are very close to 1, they are going to

decrease on average once every two observations. This is concerning because for λmax = 1,

the forgetting factors cannot increase above 1, which would similarly be expected to happen

roughly once every two observations. As a result, the forgetting factors are restricted from

oscillating around 1 from above. Furthermore, given the mean cost gradient is negative (see

top-row of Figure 5.4), if the truncation did not occur then these forgetting factors would

be increasing on average. Simply put, this truncation introduces a bias in the forgetting
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factor update step that prevents adaptive estimation procedures from performing effectively

in stationary environments. This truncation bias would not be present if the truncation step

Table 5.4: Empirical frequencies of positive and negative cost gradients for both the negative log-
likelihood and squared error cost functions when running the AFFB procedure on stationary
Bernoulli data.

Cost function
Sign Negative log-likelihood J (1) Squared error J (2)

+ 0.50214 0.50125
− 0.49785 0.49874

were removed or relaxed, but unfortunately the sequential parameter updates degrade for

λt > 1, and so allowing values of λt > 1 for the full procedure is not viable. One approach to

address this, somewhat ironically, is to introduce an additional truncation step over a relaxed

forgetting factor λ∗
t , such that the SGD update step becomes

λ∗
t+1 = λ∗

t − ηt∇Jt+1,

with λ∗
t+1 truncated to the range [λ∗

min, λ
∗
max], where λ∗

max > 1. Then as before, truncate again

to determine λt via

λt = min(max(λ∗
t , λmin), 1),

where λt is used for all sequential parameter updates and λ∗
t is only used for the SGD update

step. Here, choose λ∗
min = λmin for convenience since truncation at the lower bound is not

relevant. The procedure when run with this two-step truncation will henceforth be referred to

as AFFB*, and is presented in Algorithm 3.

Figure 5.5 shows trace plots for the forgetting factor values when running this procedure

on the same stationary Bernoulli data simulation above with λ∗
max = 2. The values of λ∗

t

used in the SGD update step are shown in red, which when truncated give the values of λt

shown in black. This is shown in contrast to the grey line which corresponds to the forgetting

factor values for the usual AFFB procedure without the additional truncation step. Notice how

infrequently the black line drops below 1 when compared to the grey line, demonstrating the

desired behaviour of the relaxed truncation approach.
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Algorithm 3 AFFB*: a general adaptive forgetting estimation procedure for Bernoulli data
streams using an additional truncation step.

1: Input: Stream of realisations ys ∈ {0, 1}, for s = 1, 2, . . . .
2: Let J (y, θ) be an appropriate cost function for any y ∈ {0, 1}, θ̃ ∈ [0, 1]. Let the step-size
ηs be a deterministic function of s and w. Let [λmin, λmax] be the truncation range of the
forgetting factors, and [λ∗

min, λ
∗
max] be the range of the relaxed forgetting factors.

3: Initialise (λ∗, w, w′, θ̃, θ̃′) = (1, 0, 0, 0, 0).
4: for s = 1, 2 . . . do
5: Set (λ∗, w, w′, θ̃, θ̃′) = affb*_update(ys, λ

∗, w, w′, θ̃, θ̃′)
6: function affb*_update(ys, λ

∗, w, w′, θ̃, θ̃′)
7: Compute cost gradient: g = J ′(y, θ)

∣∣∣
y=ys,θ=θ̃

e.g. for the squared-error cost g = 2θ̃′
(
ys − θ̃

)
.

8: Update relaxed forgetting factor: λ∗ = λ∗ − ηsg.
9: Truncate relaxed forgetting factor: λ∗ = min

(
max(λ∗, λ∗

min), λ∗
max

)
10: Additional truncation to compute forgetting factor: λ = min

(
max(λ∗, λmin), λmax

)
.

11: Update effective sample size: w = λw + 1.
12: Update parameter estimate: θ̃ =

(
1− 1

w

)
θ̃ + ys

w .
13: Update auxiliary derivatives: w′ = λw′ + w, and θ̃′ =

(
1− 1

w

)
θ̃′ − w′

w2

(
ys − θ̃

)
14: return (λ∗, w, w′, θ̃, θ̃′)
15: end function

The truncation bias pointed out in AFFB is not limited to Bernoulli adaptive estimation pro-

cedures, and can be observed in general for many previously considered adaptive estimation

procedures for other types of data. The same relaxed truncation approach improves perfor-

mance in stationary periods for these procedures too, but showing this is not relevant here.

Care must be taken not to choose a value of λ∗
max too large. Doing so, restricts the rate

at which the procedure can forget past information and adapt accordingly. In all simulation

experiments for Bernoulli data, choosing λ∗
max = 2 worked well, which is used for all future

AFFB* simulations. However, in general it should be set relative to the expected magnitude

of the cost gradients, similar to the scaling argument in Bodenham (2014). One approach that

also proved effective during experimentation is to set this bound on-the-fly to be 1 + δt, where

δt is some chosen scalar multiple of the standard deviation of the sampling distribution of cost

gradients, which can be tracked simply, e.g. via EWMA.

For the same simulation setup described in Section 5.2, the adaptive forgetting factor be-

haviour when using the AFFB* scheme is shown in Figure 5.6. Notice how the ensemble mean

adaptive forgetting factor paths for AFFB* are much closer to 1 than in Figure 5.2 for AFFB,
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which is desirable behaviour in the stationary case. This effect is more pronounced for larger

learning rates and the closer the Bernoulli parameter values θ0 is to 0.5. Additionally, the effect

is even more pronounced when using the NLL cost than for the squared error cost. Interest-

ingly, as a consequence of improved forgetting factor behaviour, the ‘apparent bias’ observed

and discussed in Section 5.2 is less pronounced when using AFFB*. This can be seen in Fig-

ure 5.7 where in each panel the ensemble adaptive mean paths oscillate much closer around

the true value of θ0, relative to the paths in Figure 5.1 for AFFB. Regardless of cost function,

it is still particularly apparent whenever η = 0.1, but otherwise appears to be almost zero in

the case of other learning rates where η < 0.1. Additionally, the volatility in the ensemble

paths has drastically reduced to roughly the same extent for both cost functions. The NLL

cost function benefits most from a reduction in bias, but this may only be because it originally

exhibited the most bias in the AFFB case. Running the AFFB* procedure for the simulation

scenarios in Section 5.3.1 produces the RMSE results shown in Table 5.5. Cells are coloured in

green where the RMSE for AFFB* is less than or equal to the corresponding RMSE for AFFB,

with cells being coloured in red otherwise. The cell entries with bold text correspond to the

lowest RMSE across a row, which represents the lowest RMSE for a specific scenario across

all tested learning rates. While the colours only give a binary indication of relative perfor-

mance, in order to quantify the relative performance it is also useful to consider the relative

RMSE obtained by dividing the AFFB* RMSE by the AFFB RMSE. The mean relative RMSE

across all scenarios is 0.914, but of course that does not necessarily mean AFFB* is always

better. For just the stationary scenarios, using AFFB* always produces a lower RMSE, with

a mean relative RMSE of 0.55, which suggests AFFB* does perform substantially better for

stationary environments as intended. Interestingly the mean relative RMSE across stationary

scenarios for the negative log-likelihood cost is 0.49, whereas it is somewhat surprisingly larger

at 0.61 for the squared-error cost. This suggests the AFFB* procedure substantially improves

performance when using the negative log-likelihood cost function, even more-so than for the

squared-error cost, however the best results are still achieved when using a squared-error cost.

For the smooth drift cases, the RMSE results between the two procedures are very close, with

a mean relative RMSE of 0.98. This may be the most surprising result, since in the smooth

drift scenario there are no stationary periods, though regions near sinusoidal peaks and troughs

could be considered locally stationary. For the abrupt drift scenarios, the data is piecewise
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Figure 5.6: Ensemble-mean adaptive forgetting factor values running AFFB* over m = 1000 stationary
Bernoulli data streams. Each panel corresponds to a different Bernoulli parameter θ0, and
shows the ensemble-mean adaptive forgetting factor λ̄t for 1 ≤ t ≤ 2000 for four different
learning rates η, shown in different colours. The left-hand side column of panels all use the
negative log-likelihood cost function J (1) to tune the forgetting factors, with the right-hand
side column of panels all using the squared error cost function J (2).
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Figure 5.7: Ensemble averages of the adaptive mean estimates over m = 1000 stationary Bernoulli data
streams for AFFB*, written θ(1:m)

t . Each panel corresponds to a different Bernoulli parameter
θ0, shown by the grey dashed line, and shows the ensemble average for 1 ≤ t ≤ 2000 for four
different learning rates η, shown in different colours. The left-hand side column of panels
all use the negative log-likelihood cost function J (1) to tune the forgetting factors, with the
right-hand side column of panels all using the squared error cost function J (2).
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stationary, so it is not unreasonable to expect AFFB* to perform better, however, that is not

evident from the results. For slow abrupt scenarios the mean relative RMSE is 0.98, but for

the fast abrupt scenarios the mean relative RMSE is 1.07, which is likely a consequence of

AFFB* being marginally slower to adapt to the faster abrupt drift. Still, the difference is not

substantial enough to dismiss either approach. It is evident that AFFB* dramatically improves

RMSE when choosing a learning rate of η = 0.1. For the negative log-likelihood cost, the

mean quotient across non-stationary scenarios is 0.80, compared to 0.93 for the squared-error

cost. Again, this suggests the negative log-likelihood cost benefits most from the additional

truncation step, but moreover, can even be considered to mitigate the risks of choosing too

high a learning rate. Indeed, the RMSE results for AFFB* do show less sensitivity to the choice

of learning rate, and hence all things considered, the use of AFFB* over AFFB is recommended

for most situations where the data is expected to go through stationary periods from time to

time.

Table 5.5: Root mean squared error results for AFFB* for a selection of stationary and non-stationary
simulation environments. Cells are coloured in green where the RMSE for AFFB* is less than
or equal to the corresponding RMSE for AFFB, with cells being coloured in red otherwise.

Cost function
Negative log-likelihood J (1) Squared error J (2)

Simulation Learning Rate η Learning Rate η
Type Parameters 0.1 0.01 0.001 10−4 0.1 0.01 0.001 10−4

θ0 = 0.5 0.110 0.064 0.042 0.024 0.092 0.064 0.036 0.021
Static

θ0 = 0.99 0.049 0.030 0.013 0.005 0.017 0.007 0.004 0.002
α = 0.98, β = 0.01 0.092 0.059 0.057 0.047 0.069 0.061 0.051 0.043Smooth

(slow) α = 0.5, β = 0.25 0.106 0.063 0.057 0.050 0.088 0.063 0.055 0.045
α = 0.98, β = 0.01 0.108 0.110 0.103 0.093 0.111 0.103 0.090 0.090Smooth

(fast) α = 0.5, β = 0.25 0.113 0.102 0.099 0.086 0.106 0.114 0.090 0.086
θ0 = 0.95 0.085 0.050 0.049 0.081 0.049 0.056 0.073 0.064Abrupt

(slow) θ0 = 0.75 0.103 0.059 0.058 0.086 0.084 0.062 0.090 0.083
θ0 = 0.95 0.099 0.099 0.148 0.120 0.098 0.100 0.092 0.092Abrupt

(fast) θ0 = 0.75 0.112 0.093 0.128 0.102 0.102 0.129 0.109 0.100
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5.5 Generalisation to Binomial Data

It is interesting to consider the properties of adaptive estimators for generalisations of Bernoulli

data, specifically data from the binomial distribution.

Let {Ys}s∈N be a data stream of binomial random variables with M trials and trial success

probability θs, such that the probability mass function at any time t is given by

fYt(y) =
(
M

y

)
θy

t (1− θt)M−y.

As in Section 5.1, a similar adaptive estimation procedure can be derived by using the adaptive

forgetting log-likelihood. Doing so, the adaptive estimates for θt can be derived sequentially

as

θ̃t =
(

1− 1
wt

)
θ̃t−1 + 1

wt

yt

M
.

Similarly, both cost functions used in Section 5.1 generalise intuitively such that the gradients

become

J (1)′
t = −θ̃′

t−1

(
yt

θ̃t−1
− M − yt

1− θ̃t−1

)
,

for the negative log-likelihood, and

J (2)′
t = 2θ̃′

t−1

(
yt

M
− θ̃t−1

)
,

for the squared error cost. Naturally, the sequential update for θ̃′
t becomes

θ̃′
t =

(
1− 1

wt

)
θ̃′

t−1 −
w′

t

w2
t

(
yt

M
− θ̃t−1

)
.

Though not substantially different from AFFB, for the purposes of removing ambiguity, the

above Adaptive Forgetting Framework Binomial estimation procedure is displayed in Algo-

rithm 4 and is referred to as AFFBinom(M). Note AFFBinom(1) is equivalent to AFFB.

5.5.1 Stationary Behaviour

In Section 5.2, it was shown for stationary Bernoulli data that adaptive estimates for the

negative log-likelihood cost were biased, more volatile, and generally led to worse performance
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Algorithm 4 AFFBinom(M): a general adaptive forgetting estimation procedure for binomial
data streams of fixed trial size M .

1: Input: Stream of realisations ys ∈ {1, 2, . . . ,M}, for s = 1, 2, . . . .
2: Let M be the fixed binomial trial size. Let J (y, θ) be an appropriate cost function for any
y ∈ {1, 2, . . . ,M}, θ̃ ∈ [0, 1]. Let the step-size ηs be a deterministic function of s and w.
Let [λmin, λmax] be the truncation range of the forgetting factors.

3: Initialise (λ,w,w′, θ̃, θ̃′) = (1, 0, 0, 0, 0).
4: for s = 1, 2 . . . do
5: Set (λ,w,w′, θ̃, θ̃′) = affbinom_update(ys,M, λ,w,w′, θ̃, θ̃′)
6: function affbinom_update(ys,M, λ,w,w′, θ̃, θ̃′)
7: Compute cost gradient: g = J ′(y, θ)

∣∣∣
y=ys,θ=θ̃

e.g. for the negative log-likelihood cost g = −θ̃′
(

ys

θ̃
− M−ys

1−θ̃

)
.

8: Update forgetting factor: λ = λ− ηsg.
9: Truncate forgetting factor: λ = min

(
max(λ, λmin), λmax

)
10: Update effective sample size: w = λw + 1.
11: Update parameter estimate: θ̃ =

(
1− 1

w

)
θ̃ + 1

w
ys

M .
12: Update auxiliary derivatives: w′ = λw′ + w, and θ̃′ =

(
1− 1

w

)
θ̃′ − w′

w2

(
ys

M − θ̃
)

13: return (λ,w,w′, θ̃, θ̃′)
14: end function

than when using the squared error cost. This section explores these phenomena for the case of

stationary binomial data, before assessing performance for both stationary and non-stationary

data simulations in the next section. Intriguingly, this same relationship between the cost func-

tions does not appear to manifest with binomial data. As in, Section 5.2, consider simulating

m = 1000 data streams of length n = 2000 for fourth different values of binomial trial size

M ∈ {2, 5, 10, 100}, with fixed success parameter θ0. Here, θ0 = 0.9 is used somewhat arbi-

trarily, but the behaviour observed is also evident for other fixed values of θ0. Figure 5.8 shows

the ensemble means of the adaptive mean estimates for the stationary simulation described

above for various learning rates (in a similar manner to Figure 5.1 for the Bernoulli case),

Each row of panels corresponds to a different binomial trial size M , with the left and right-

hand columns corresponding to the negative log-likelihood and squared error cost functions

respectively. Surprisingly, the phenomena mentioned above are not present in the binomial

case for every trial size tested. The adaptive estimator bias when using the NLL cost appears

to be almost negligible for all combinations of trial size and learning rate, excluding the case

for M = 2, η = 0.1. Furthermore, it looks as if this bias is now lower when using the NLL

cost compared to the squared error cost. Additionally, the ensemble averages are less volatile
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for the NLL cost. For both cost functions, increasing the trial size M decreases the bias and

volatility in the adaptive estimators, with any bias practically non-existent for M = 100.
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Figure 5.8: Ensemble means of the adaptive mean estimates over m = 1000 stationary binomial data
streams, written θ

(1:m)
t . The success probability used to simulate the data is θ0 = 0.9 in

each panel, and is shown by the horizontal grey dashed line. Each coloured line plot within a
panel shows the ensemble mean for 1 ≤ t ≤ 2000 for a different learning rates η. Each row of
panels corresponds to a different binomial trial size M ∈ {2, 5, 10, 100}. The left-hand side
column of panels all use the negative log-likelihood cost function J (1) to tune the forgetting
factors, with the right-hand side column of panels all using the squared error cost function
J (2).

5.5.2 Simulation Assessment

The simulation scenarios described in Section 5.3.1 are also used here to study the behaviour

of AFFBinom(M). However, instead of an exhaustive investigation using various binomial trial

sizes, the experiment is restricted to a single trial size M = 2, with simulation length n = 105

as before. RMSE results for AFFBinom(M) may not seem perfectly comparable with AFFB given

the underlying data processes are different. However, given the RMSE performance measure

is based on the same parameter, which experiences the same drift dynamics across both sets
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of simulations, the RMSE results should be on a similar scale. Though, as the binomial data

can be considered as sums of Bernoulli data, in the binomial case the procedure effectively sees

twice as much data, which intuitively suggests AFFBinom(2) may have an unfair advantage in

achieving lower RMSE results.

Taking the above into consideration, the two procedures may be compared using the relative

RMSE, defined to be AFFBinom(2) RMSE divided by the RMSE for AFFB, where the values for

the denominator are available from Table 5.3. The values for the numerator; the RMSE results

for AFFBinom(2), are shown in Table 5.6, where cells coloured in green indicate a lower RMSE

than for AFFB (or relative RMSE less than 1), with cells coloured in red indicating otherwise.

The cell entries with bold text correspond to the lowest RMSE achieved by AFFBinom(2) for

a specific simulation scenario across both cost functions and all tested learning rates.

Table 5.6: Root mean squared error results for AFFBinom(2) for a selection of stationary and non-
stationary simulation environments. Cells coloured in green indicate a lower RMSE than for
AFFB (see Table 5.3), with cells coloured in red otherwise.

Cost function
Negative log-likelihood J (1) Squared error J (2)

Simulation Learning Rate η Learning Rate η
Type Parameters 0.1 0.01 0.001 10−4 0.1 0.01 0.001 10−4

θ0 = 0.5 0.078 0.048 0.030 0.017 0.097 0.107 0.071 0.044
Static

θ0 = 0.99 0.032 0.018 0.007 0.003 0.037 0.025 0.017 0.011
α = 0.98, β = 0.01 0.060 0.039 0.040 0.030 0.075 0.074 0.050 0.043Smooth

(slow) α = 0.5, β = 0.25 0.073 0.045 0.039 0.033 0.092 0.098 0.065 0.058
α = 0.98, β = 0.01 0.082 0.086 0.075 0.072 0.094 0.094 0.078 0.076Smooth

(fast) α = 0.5, β = 0.25 0.084 0.083 0.074 0.068 0.097 0.110 0.082 0.073
θ0 = 0.95 0.050 0.036 0.042 0.063 0.058 0.053 0.053 0.046Abrupt

(slow) θ0 = 0.75 0.069 0.045 0.051 0.082 0.089 0.093 0.072 0.059
θ0 = 0.95 0.075 0.090 0.119 0.097 0.084 0.080 0.082 0.079Abrupt

(fast) θ0 = 0.75 0.081 0.078 0.104 0.085 0.098 0.109 0.095 0.093

There are two striking remarks regarding the RMSE results for the negative log-likelihood

cost J (1). First, the RMSE is lower for every simulation scenario when using AFFBinom(2) than

AFFB, with a mean relative RMSE of 0.74. Second, the lowest RMSE for a given simulation

scenario is always obtained when using the negative log-likelihood cost J (1). Overall, the

RMSE results for using the NLL cost J (1) are substantially lower than those for the squared-
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error cost J (2). Peculiarly, using AFFBinom(2) has a drastic impact when using J (2) for the

stationary and slow smooth scenarios, where the mean relative RMSE is over 2. Interestingly

J (2) gives a lower mean RMSE over all fast abrupt simulations and generally performs on par, if

not a little better, for most configuration combinations, despite not achieving the lowest among

all combinations. Having seen in the previous section the differences in the consequences of

cost function choice for AFFBinom, it is not unreasonable to expect the RMSE results for the

NLL cost to be lower than those for the squared error cost.

Based on the results and remarks above, using the negative log-likelihood cost for AFFBinom(2)

is generally the better choice, and never a bad choice. Further experimentation suggests these

results are consistent as M increases (see the results for M = 10 and M = 100 in Tables B.1

and B.2 in the appendix). In addition, increasing M consistently lowers the RMSE achieved

using the negative log-likelihood cost, but this is not the case for the squared-error cost. It is

peculiar, and perhaps a little unfortunate, that the negative log-likelihood cost for the Bernoulli

case, where M = 1, does not provide such sure-fire results.

While not perfectly comparable, the results above demonstrate that AFFBinom(M) using

the negative log-likelihood cost leads to considerably lower RMSE results than AFFB for the

explored simulations. When processing Bernoulli data streams, the opportunity to process

the data as a Bernoulli data stream instead is generally available. If not available from the

data source directly, one way to achieve this is to sum a mini-batch of size M of the Bernoulli

observations and assume that the data is i.i.d. within the mini-batch, resulting in the sum

being a binomial observation. Care should be taken to ensure M is not so large that the i.i.d.

assumption is heavily violated due to the underlying drift. However, for many cases, even

choosing M = 2 should benefit the adaptive estimation procedure.

A further generalisation to the multinomial case is not covered here, but a thorough treat-

ment can be found in Plasse (2019). An interesting direction for future work would be to explore

the consequences of the choice of cost function in the multinomial case.

5.6 Conclusion

This chapter developed a procedure for adaptive estimation for binary data. The estimation

behaviour and performance assessment of this procedure was explored in both stationary
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and non-stationary environments, with particular focus on the choice of cost function. A

modification to this procedure was proposed to prevent truncation bias. Finally, the procedure

was extended to operate on binomial data. Some loose recommendations are possible from

this exploration. When choosing the learning rate for binary data, it is not advisable to set

η ≥ 0.1, and more generally, it is not advisable to scale the learning rate based on the variance

of the data. Where possible, processing binomial data should lead to more reliable estimation

than binary data. The NLL cost function is recommended for binomial data and the squared

error cost is recommended for binary data. The next chapter builds on these tools for Bernoulli

estimation to develop adaptive streaming quantile estimation.
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6 Streaming Quantile Estimation

Sample quantile estimates are a central tool for many statistical methods, and for a fixed data

set, are commonly obtained by inverting the empirical cumulative distribution function. This

is equivalent to choosing the appropriate index of the sorted data set. Specifically, for a data

set of size N , the sample q-quantile estimate is given by the order statistic x(k), for integers k =

Nq (or appropriately aggregated otherwise) as discussed in Section 2.3. Both computational

restriction and temporal variation prevent the routine deployment of such procedures against

streaming data. Alternative approaches are needed and this chapter reviews and extends

existing approaches, and provides novel algorithms for streaming quantile estimation (SQE).

Section 6.1 explores the history of sequential quantile estimation starting from its roots

in database technology. Section 6.2 builds on the fundamental methodology developed in

Chapter 5 to develop a general framework for incorporating adaptive forgetting for streaming

quantile estimators. Section 6.3 uses this framework to extend three modern methods in the

literature, and is used in the context of a newly proposed method, AFSQE. Section 6.4 thor-

oughly explores the performance of the methods in a wide range of simulation environments.

Section 6.5 takes a detour to explore deployment of these procedures on real data. Finally,

Section 6.6 explores and assesses methods to estimate multiple quantiles concurrently.

6.1 Background and Related Work

Many procedures in the computer science literature have been developed to sequentially es-

timate quantiles without needing to sort the data beforehand. Munro and Paterson (1980)

showed that any procedure able to estimate a quantile with arbitrary accuracy would require

multiple passes of the data, but managed to reduce the overall storage complexity required.

Later state-of-the-art work in Jain and Chlamtac (1985) and Greenwald, Khanna, et al. (2001)

provide guarantees of estimation accuracy subject to how much of the stream is stored in
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memory. Data sketch methods as in Cormode and Muthukrishnan (2005) propose space-efficient

data structures to store approximate samples or summaries of the data. These procedures are

generally designed with database efficiency in mind, rather than statistical value. Distinct from

such approaches, this chapter focus on methods for which statistical accuracy is paramount.

Many such methods are based on stochastic approximation (SA), as introduced in the semi-

nal paper by Robbins and Monro (1951) which has spawned extensive applications in stochastic

optimisation, especially in both big data and streaming settings. This idea was later devel-

oped into the state-of-the-art procedure in Tierney (1983), which recursively computes quantile

estimates based on recursively computed density estimates. However, the SA framework is

not suitable for streaming environments where the data experiences drift and the almost sure

convergence properties of the estimator no longer hold. Similarly, the previously mentioned

computer science methods are not suitable for drift because they rely on storing buffers of

summary information which quickly becomes stale as the underlying distribution changes over

time. The challenge of drift motivated the development of the EWSA (Exponentially Weighted

Stochastic Approximation) procedure in Chen, Lambert, et al. (2000), which borrows from both

the EWMA (Exponentially Weighted Moving Average) (Roberts 1959) and SA procedures in

order to incorporate temporal adaptivity into estimators for both the density and quantiles.

The SA-based methods suffer from poor estimation in the extreme tails, sometimes even

producing nonsensical estimates outside the observed range. Interestingly, the SL (Stochas-

tic Learning) procedure in Yazidi and Hammer (2016) uses a multiplicative, as opposed to an

additive, probabilistic-update step for quantiles and hence experiences considerably faster con-

vergence than that of EWSA for both stationary and non-stationary data. This is interesting

given the sequential updates in Chapters 3 to 5 all use an additive update step. DUMIQE is a

modified version of SL, which introduces a control parameter to enforce a deterministic update

step of controlled size (Yazidi and Hammer 2017). Both SL and DUMIQE exhibit better extreme

tail performance than SA-based alternatives. Later QEWA (Hammer, Yazidi, and Rue 2019) gen-

eralised this multiplicative update step further to be based on the distance between arriving

data and the current quantile estimates instead of a fixed size. This generalisation considerably

improves the performance of the estimator to the extent that it is considered state-of-the-art

(Hammer, Yazidi, and Rue 2019).
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The aforementioned methods focus on the estimation of a single quantile, and produce con-

tradictory results when used for multiple quantile estimation since monotonicity of the quantile

estimates is not guaranteed in general. The Data Skeleton approach in McDermott et al. (2007)

expands on the method in Liechty et al. (2003) by simultaneously estimating ranks of the data.

This guarantees the ranks are in ascending order, but is deterministic and does not allow for

non-stationarity. The monotoneSA method proposed in Cao et al. (2009), based on EWSA, in-

volves interpolating a globally increasing density function before the standard SA update step.

The MDUMIQE procedure proposed in Hammer, Yazidi, and Rue (2020) is a multiple quantile ver-

sion of DUMIQE, and ensures monotonicity by limiting the rate at which the quantile estimates

can adapt. While this allows the authors to prove a convergence result under stationarity, this

restriction has the disadvantage of not providing sufficient temporal adaptation for a rapidly

changing target distribution. More recently, the same authors presented CondQ; a framework

for extending streaming single quantile estimation procedures for estimating multiple quantiles

(Hammer, Yazidi, and Rue 2021). This framework exploits the conditional ordering of quantiles

to ensure monotonicity of multiple quantile estimates, and when used to extend QEWA is shown

to outperform MDUMIQE in simulation.

A particular flaw of both EWSA, DUMIQE and QEWA is that the rate at which data is forgotten

is controlled by a user-set parameter, or weight, which assumes that the rate of change of

the distribution of the data is constant. This in turn leads to a compromise between the

adaptability of the procedure and the bias of its estimates. In addition, it is often the case

that streaming data can exhibit periods of stability as well as both abrupt and gradual drift,

for example in Figure 2.1. As such, it would be ideal to be able to vary this weight according

to the degree of non-stationarity of the data. The next section introduces an AF framework

for adaptively estimating ECDF values. This creates the opportunity to incorporate adaptive

forgetting into these streaming quantile estimation procedures to allow for a dynamically tuned

weight; removing the need for the user to set parameters that should instead be determined

by the data.
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6.2 Adaptive ECDF Estimation

When the data comes from a known parametric family of distributions it is typical to use

the one-step ahead negative log-likelihood (NLL) as a cost function to sequentially tune the

forgetting factors as discussed in Section 2.6.2. In this case the NLL is evaluated at the data

for the current iteration given parameter estimates for the previous iteration. Clearly, this

approach is not feasible in situations where the family of distributions for the data generating

mechanism is unknown, or changes over time. However, by considering adaptive estimates of

the empirical cumulative distribution function (ECDF), it is possible to learn the underlying

rate of drift, and parameterise the tuning step irrespective of the data generating mechanism.

Given a random sample of realisations (x1, x2, . . . , xN ) of X with CDF FX , the empirical

CDF (ECDF) is given by

F̄N (x) = 1
N

N∑
i=1

1{xi ≤ x}.

Hence, as a sum of i.i.d. Bernoulli random variables, NF̄N (x) ∼ Binomial(N, θ), with θ = P (X ≤ x).

Now consider a data stream (xs)s∈N where each xs is a realisation of Xs with CDF FXs .

Then, Ys,x = 1{xs ≤ x} is a Bernoulli random variable, whose parameter, θs,x, can be esti-

mated as an adaptive ECDF value. After re-framing the quantity of interest from the data to

its corresponding ECDF value, the methodology and procedures developed in Chapter 5 can

estimate θs,x sequentially via

θ̃s,x =
(

1− 1
ws,x

)
θ̃s−1,x + 1

ws,x
1{xs ≤ x},

ws,x = λs,xws−1,x + 1.

Then, as described in Section 5.1.1, the forgetting factors can be tuned by SGD, using either a

binomial NLL or squared error cost function. Notice here that θ̃s,x corresponds to an adaptive

ECDF value at x, where x is some value generally in the range of Xs. Another way to view this

is to consider that x is the q-quantile, where θ̃s,x is an estimate of q. This strategy is employed in

the next section to drive a general AF procedure that can be combined with existing streaming

quantile estimation methods with the purpose of enhancing their adaptability and automating

the setting of control parameters.
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6.3 Adaptive Streaming Quantile Estimation

This section illustrates four adaptive streaming quantile estimation procedures. The first

three approaches are based on existing fixed-weight streaming quantile estimation procedures

in the literature, but have been enhanced with the AF framework. Finally, an entirely novel

streaming quantile procedure is presented. These procedures and properties are summarised

in Table 6.1. The next section considers comparing the performance of these approaches on

simulated data.

Table 6.1: Summary of adaptive streaming quantile estimation procedures.

Method Extension of Novelty Specific Conditions
AFSA EWSA

(Chen, Lambert,
et al. 2000)

AF extension only Requires simultaneous computation of
the lower and upper quartiles to esti-
mate interquartile range.

AFMIQE DUMIQE
(Hammer and
Yazidi 2017)

AF extension only Can only handle positive valued data.

QAF QEWA
(Hammer, Yazidi,
and Rue 2019)

AF extension only —

AFSQE — Entirely novel —

6.3.1 AFSA

Keeping notation consistent with Chen, Lambert, et al. (2000), the EWSA procedure starts with

an initial density estimate f∗(q)
0 at the q-quantile with corresponding initial quantile estimate

S
∗(q)
0 . These estimates are then incrementally updated upon receiving a batch of M data

points {xt,1, . . . , xt,M} at iteration t via the equations

S
∗(q)
t = S

∗(q)
t−1 + 1

wf
∗(q)
t−1

q − 1
M

M∑
j=1

1
{
xt,j ≤ S∗(q)

t−1

},
f

∗(q)
t =

(
1− 1

w

)
f

∗(q)
t−1 + 1

2wc∗
t−1M

M∑
j=1

1
{∣∣∣xt,j − S∗(q)

t−1

∣∣∣ ≤ c∗
t−1

}
,

c∗
t = r∗

t

2M∑
j=M+1

1√
j
,

where r∗
t is the estimated interquartile range (IQR) given by

(
S

∗(0.75)
t − S∗(0.25)

t

)
.
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The EWSA procedure is itself a modification of Tierney’s stochastic approximation (SA) in

Tierney (1983) intended to be able to handle changes in the data over time. Specifically it

uses a fixed weight w to control the rate of forgetting and non-vanishing neighbourhood c∗
t .

These modifications present two new challenges. First, determining a suitable choice for w.

Second, in periods of stationarity, the quantile estimates require a vanishing neighbourhood

for consistency, as is the case in SA, where ct → 0 as t → ∞. The AF framework addresses

both of these issues in that it allows the rate of forgetting to adapt according to the data. This

ensures that the weight w need not be set by the user, and also that under stationarity (with

all forgetting factors equal to 1) the proposed Adaptive Forgetting Stochastic Approximation

(AFSA) procedure below will be equivalent to Tierney’s SA. Notice that after replacing w with

the time-varying wt, the update equations become

S
(q)
t = S

(q)
t−1 + 1

wtf
(q)
t−1

(
q − 1

M
B

(k)
t

)
, (6.1)

f
(q)
t =

(
1− 1

wt

)
f

(q)
t−1 + 1

wt

1
2ctM

A
(k)
t ,

with auxiliary counts

A
(k)
t =

M∑
j=1

1
{∣∣∣xt,j − S(q)

t−1

∣∣∣ ≤ ct

}
, (6.2)

B
(k)
t =

M∑
j=1

1
{
xt,j ≤ S(q)

t−1

}
,

where f (q)
t is the AFSA density estimate at the q-quantile and S

(q)
t is the corresponding AFSA

quantile estimate. Note that the estimates with a ∗ correspond to EWSA, where estimates

without correspond to AFSA. The fixed neighbourhood size can be relaxed such that

ct = rt√
wt
,

where rt is the IQR determined from the AFSA quantile estimates, i.e. rt = S
(0.75)
t − S(0.25)

t .

Despite the claim in Chen, Lambert, et al. (2000), the quantile update in Equation (6.1) can

blow up when the density estimates gets very close to zero, which usually happens if the

data experiences a change of significant magnitude relative to the range of the data. For
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implementation purposes this is undesirable and can be avoided by bounding the density

estimate from below as in Tierney (1983), and using the following update instead

S
(q)
t = S

(q)
t−1 + 1

wt

1
e

(q)
t−1

(
q − 1

M
Bt

)
,

e
(q)
t−1 = max

( 1
100 + w

, f
(q)
t−1

)
.

The AFSA procedure is shown in Algorithm 5, with the update step represented by afsa_update,

Algorithm 5 AFSA: a streaming quantile estimation procedure using adaptive forgetting based
on EWSA (Chen, Lambert, et al. 2000)

1: Input: Stream of mini-batches of realisations (xs,1, xs,2, . . . , xs,M ) where each xs,j ∈ R,
for s = 1, 2, . . ., and j = 1, 2, . . . ,M .

2: Let M be the fixed mini-batch size of arriving data observations. Let S =
(Sq, S(0.25), S(0.75)) be a vector of adaptive quantile estimates for the q, 0.25 and 0.75
quantiles with corresponding vector of adaptive density estimates F = (f q, f (0.25), f (0.75))
respectively.

3: Initialise (λ,w,w′, θ̃, θ̃′) = (1, 0, 0, 0, 0).
4: Initialise S = (S(q), S(0.25), S(0.75)) using an initial sample batch (x0,1, . . . , x0,M ), and F =

(f (q), f (0.25), f (0.75)) according to Equation (6.3).
5: for s = 1, 2 . . . do
6: Set ys = ∑M

j=1 1
{
xs,j < S(q)

}
.

7: Set (λ,w,w′, θ̃, θ̃′) = affbinom_update(ys,M, λ,w,w′, θ̃, θ̃′) (see Algorithm 4).
8: Set (S,F) = afsa_update((xs,1, . . . , xs,M ), q,S,F , w)
9: function afsa_update((xs,1, . . . , xs,M ), q,S,F , w)

10: Compute IQR: r = S(0.75) − S(0.25)

11: Compute neighbourhood size: c = r√
w

12: Compute auxiliary counts: A(k) = ∑M
j=1 1

{
|xs,j − S(k)| ≤ c

}
for k ∈ {q, 0.25, 0.75}.

13: Bound current density estimates: e(k) = max
(

1
100+w , f

(k)
)

14: Compute quantile estimates: S(k) = S(k) + 1
w

1
e(k)

(
k − 1

M ys

)
15: Compute density estimates: f (k) =

(
1− 1

w

)
f (k) + 1

w
1

2cMA(k).
16: return (S,F)
17: end function

which is a function of the parameters with time index subscripts removed to emphasise the

constant memory properties of the procedure. Initial values S(k)
0 for k ∈ {q, 0.25, 0.75} should

be chosen as the relevant sample quantiles from some initial sample of data (x0,1, . . . , x0,M ).

However, the procedure is not particularly sensitive to the initial quantile estimates, so long

as they are reasonably within the true range. Hence, if an initial batch is not available, it
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is usually sufficient to use a single data point, or sensible estimate, x0,0, and set the initial

quantile estimates as

S
(q)
0 = x0,0, S

(0.25)
0 = x0,0 − 1, S

(0.75)
0 = x0,0 + 1.

The initial density estimates should also be determined using from an initial batch using an

initial neighbourhood estimate c0, such that

f
(k)
0 = max

( 1
2c0M

A0, 1
)
, (6.3)

where

c0 =
[
S

(0.75)
0 − S(0.25)

0

] 1
M

M∑
j=1

j− 1
2 ,

as in EWSA, and A
(k)
0 can be computed from Equation (6.2).

For an example of this procedure in operation, see Figure 6.1.

6.3.2 AFMIQE

For strictly positive observations xt > 0 arriving from a data stream (xt)t∈N, the DUMIQE

procedure (Hammer and Yazidi 2017) can be expressed in its simplest form, where quantile

estimates are computed sequentially via

Q̂
(q)
t =


(1 + ωq)Q̂(q)

t−1, if Q̂(q)
t−1 < xt,(

1− ω(1− q)
)
Q̂

(q)
t−1, if Q̂(q)

t−1 ≥ xt,

with ω ∈ (0, 1] fixed, but usually chosen in the range (0, 0.2] to restrict the size of the update

step. Note the authors use λ in place of ω to denote the weight, but this notation is avoided here

to help disambiguate from forgetting factors. Negative-valued data can be handled with addi-

tional effort by using either a location shift or invertible transform, such as g(x) = exp (−x), to

ensure the transformed data is positive (Yazidi and Hammer 2017). This procedure can naturally

be extended using the AF framework by replacing 1−ω with an adaptive forgetting factor λt,

updated as in Section 6.2. Note in this procedure the forgetting factors should be truncated

to the tighter interval with λmin = 0.8 as the update scheme is more sensitive to λmin due
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to its multiplicative update step. Then the novel AFMIQE (Adaptive Forgetting Multiplicative

Incremental Quantile Estimation) procedure estimates individual q-quantiles recursively with

Q̃
(q)
t =


(1 + (1− λt)q)Q̃(q)

t−1, if Q̃(q)
t−1 < xt,(

1− (1− λt)(1− q)
)
Q̃

(q)
t−1, if Q̃(q)

t−1 ≥ xt.

Note that these updates are probabilistically weighted via q to increase or decrease the quantile

estimates accordingly. Here the main difference with the original DUMIQE is the adaptive 1−λt

replaces the fixed ω, which helps regulate the volatility of the estimator, particularly improving

the estimator in stationary periods. The AFMIQE procedure is shown in Algorithm 6 for positive-

valued data streams. It is trivially extended for the full real line by either operating on a

transformed data stream (yt)t∈N where yt = xt+∆, where ∆ ≥ mint (xt) and then transforming

the quantile estimates back by subtracting ∆. This is only possible if the range of values of

the data stream are known in advance, which is not always possible. An alternative is to use

a transformed data stream (g(xt))t∈N where g(xt) > 0 is invertible, such as g(x) = exp (−x)

and then transforming the quantile estimates back using g−1.

For an example of this procedure in operation, see Figure 6.2.

Algorithm 6 AFMIQE: a streaming quantile estimation procedure using adaptive forgetting
based on DUMIQE (Hammer and Yazidi 2017)

1: Input: Stream of realisations (x1, x2, . . . ) where each xs > 0, for s ∈ N.
2: Let Q̃(q) be the adaptive estimate for the q-quantile.
3: Initialise (λ,w,w′, θ̃, θ̃′) = (1, 0, 0, 0, 0).
4: Initialise Q̃(q) using a sample quantile from an initial data sample, or single point x0.
5: for s = 1, 2 . . . do
6: Set ys = 1

{
xs < Q̃(q)

}
.

7: Set (λ,w,w′, θ̃, θ̃′) = affb_update(ys, λ, w,w
′, θ̃, θ̃′) (see Algorithm 2).

8: Set Q̃(q) = afmiqe_update(xs, λ, q, Q̃
(q)).

9: function afmiqe_update(xs, λ, q, Q̃
(q))

10: if Q̃(q) < xs then
11: Set Q̃(q) = (1 + (1− λ)q)Q̃(q).
12: else
13: Set Q̃(q) = (1− (1− λ)(1− q))Q̃(q).
14: end if
15: return Q̃(q).
16: end function
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6.3.3 QAF

In Hammer, Yazidi, and Rue (2019), the authors remark that DUMIQE procedure considers a

binary decision on whether to increase or decrease the quantile estimates by a fixed size, but

does not use the observations to determine an appropriate update size. They propose QEWA:

an incremental Quantile Estimator using a generalised Exponentially Weighted Average, in

the same paper, where the intuition is to use an update step-size that is proportional to the

distance between the most current quantile estimate and the most recent observation. As its

name implies, the sequential update can be shown to be a convex-combination similar to the

update for EWMA, but with a varying weight that encapsulates different update step-sizes.

Specifically, for a data stream (xt)t∈N, the QEWA update step is given by

Q̂
(q)
t =


Q̂

(q)
t−1 + ωct−1

q

µ+
t−1−Q̂

(q)
t−1
|xt − Q̂(q)

t−1|, if Q̂(q)
t−1 < xt,

Q̂
(q)
t−1 − ωct−1

1−q

Q̂
(q)
t−1−µ−

t−1
|xt − Q̂(q)

t−1|, if Q̂(q)
t−1 ≥ xt,

where, as in Algorithm 6, ω is a fixed weight in (0, 1]. Here, µ+
t and µ−

t are estimates corre-

sponding to the underlying conditional expectations of E
[
Xt | Xt > Q̂

(q)
t−1

]
and E

[
Xt | Xt ≤ Q̂(q)

t−1

]
respectively. The quantities

q

µ+
t−1 − Q̂

(q)
t−1

and 1− q
Q̂

(q)
t−1 − µ

−
t−1

are chosen to ensure Q̂(q)
t converges to the true quantile, assuming a stationary data generating

process (Hammer, Yazidi, and Rue 2019). The authors recommend choosing the sequence ct to

normalise the quantities above. That is,

ct =
[

q

µ+
t − Q̂

(q)
t

+ 1− q
Q̂

(q)
t − µ−

t

]−1

,

which allows the update equation to take the simpler generalised EWMA form

Q̂
(q)
t = (1− bt−1)Q̂(q)

t−1 + bt−1xt,
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where

bt = ω
(
at + 1

{
xt ≤ Q̂(q)

t

}
(1− 2at)

)
, (6.4)

at = 1
ct

(
q

µ+
t − Q̂

(q)
t

)
. (6.5)

Estimates for the conditional expectations are obtained using the conditional EWMA update

steps

µ+
t =


Q̂

(q)
t − Q̂

(q)
t−1 + (1− γ)µ+

t−1 + γxt if Q̂(q)
t−1 < xt,

Q̂
(q)
t − Q̂

(q)
t−1 + µ+

t−1 if Q̂(q)
t−1 ≥ xt,

µ−
t =


Q̂

(q)
t − Q̂

(q)
t−1 + µ−

t−1 if Q̂(q)
t−1 < xt,

Q̂
(q)
t − Q̂

(q)
t−1 + (1− γ)µ−

t−1 + γxt if Q̂(q)
t−1 ≥ xt,

with fixed parameter γ ∈ [0, 1], where the authors recommend choosing γ/ω = 0.01.

The QEWA procedure provides perhaps the most interesting comparison with AF procedures

because the update step is data-driven, though the main difference is QEWA chooses the update

step based on the magnitude of changes to data as opposed to AF procedures which attempt to

(meta-)learn a learning rate for the underlying drift. Still, the QEWA procedure depends on two

control weight parameters ω and γ. These parameters effectively control the rate at which the

estimates converge under stationarity and so present a ripe opportunity for the AF framework

to learn and automate the burden of choosing these values. Despite the recommended ratio,

experimentation suggested replacing ω with 1−λt (as in Section 6.3.2) and γ with w−1
t performs

best. This procedure is referred to as QAF (Quantile estimator with Adaptive Forgetting) when

the AF framework is used to determine these weights, and is shown in Algorithm 7.

This procedure performs best when given an initial sample to initialise values for the adaptive

quantile and conditional expectation estimates. If this is not available, a single observation,

or guess, can be used to initialise the quantile estimate, but care must be taken to ensure the

conditional expectations µ+
t and µ+

t are strictly above and below the corresponding quantile

estimate for all t. Lines 21–25 account for an additional practical consideration to prevent at

blowing up and is set to zero if the denominator is close to zero during implementation.

For an example of this procedure in operation, see Figure 6.3.
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Algorithm 7 QAF: a streaming quantile estimation procedure using adaptive forgetting based
on QEWA (Hammer, Yazidi, and Rue 2019)

1: Input: Stream of realisations (x1, x2, . . . ) where each xs ∈ R, for s ∈ N.
2: Let Q̃(q) and Q̃

(q)
−1 be the current and previous adaptive estimates for the q-quantile re-

spectively. Let ε << 1 be some tolerance, e.g. 10−8.
3: Initialise (λ,w,w′, θ̃, θ̃′) = (1, 0, 0, 0, 0).
4: Initialise Q̃(q) using a sample quantile from an initial data sample, or single point x0.
5: Initialise µ+ and µ− based on an initial sample conditional on Q̃(q).
6: for s = 1, 2 . . . do
7: Set ys = 1

{
xs < Q̃(q)

}
.

8: Set (λ,w,w′, θ̃, θ̃′) = affb_update(ys, λ, w,w
′, θ̃, θ̃′) (see Algorithm 2).

9: Set (Q̃(q), µ+, µ−) = qaf_update(xs, λ, q, Q̃
(q), µ+, µ−).

10: function qaf_update(xs, λ, q, Q̃
(q), µ+, µ−)

11: Set Q̃(q)
−1 = Q̃(q).

12: Set Q̃(q) = (1− b)Q̃(q) + bxs.
13: if Q̃(q)

−1 < xs then
14: Set µ+ = Q̃(q) − Q̃(q)

−1 +
(
1− 1

w

)
µ+ + 1

wxs.

15: Set µ− = Q̃(q) − Q̃(q)
−1 + µ−.

16: else
17: Set µ+ = Q̃(q) − Q̃(q)

−1 + µ+

18: Set µ− = Q̃(q) − Q̃(q)
−1 +

(
1− 1

w

)
µ− + 1

wxs.

19: end if
20: Set a1 = q

µ+−Q̃(q) , a2 = 1−q

Q̃(q)−µ− .
21: if |a1 + a2| < ε then
22: Set a = 0.
23: else
24: Set a = a1

a1+a2
.

25: end if
26: if Q̃(q) < xs then
27: Set b = (1− λ)a.
28: else
29: Set b = (1− λ)(1− a).
30: end if
31: return Q̃(q), µ+, µ−.
32: end function
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6.3.4 AFSQE

This approach is entirely novel, in that it is not an AF extension, or generalisation, of an

existing streaming quantile estimation procedure in the literature. The motivation for this

approach is to exploit the fundamental roughly ‘monotonic’ relationship between ECDF values

and corresponding quantile values. That is, if the observed adaptive ECDF value increases,

or decreases, with respect to a specific quantile estimate then a better estimate can generally

be obtained by appropriately decreasing, or increasing, the quantile estimate respectively. In

an ideal situation, values of a suitable cost function between the quantile estimates and the

truth would be available. Given the true quantile values are not available, we instead consider

a proxy cost function that is designed to concurrently optimise an ideal, or oracle, cost.

Scoring functions for pointwise forecasts have received vast treatment in the literature (Gneit-

ing 2011), where for q-quantile forecasts, the following strictly consistent scoring function is

commonly used:

Sq(x, y) =
(
1{x ≥ y} − q

)
(x− y).

With this scoring function as a cost between the true q-quantile Q(q)
t and an estimate Q̃(q)

t ,

the oracle cost can be expressed as a multiple of a proxy cost with

Sq

(
Q

(q)
t , Q̃

(q)
t

)
≈ Sq

(
q, θ̃

(q)
t

)(Q(q)
t − Q̃

(q)
t

q − θ̃(q)
t

)
. (6.6)

This is under the assumption that 1
{
Q

(q)
t ≥ Q̃

(q)
t

}
≈ 1

{
q, θ̃

(q)
t

}
, which is reasonable given the

roughly monotonic relationship between the adaptive ECDF and quantile estimates.

While access to the piecewise-linear function Sq

(
q, θ̃

(q)
t

)
is readily available, the function is

not differentiable everywhere and so it is convenient to consider a concave-up quadratic that

passes through the same minimum point (q, 0). As shown in Appendix A.4, this quadratic is

the squared error cost

S∗
q

(
q, θ̃

(q)
t

)
=
(
q − θ̃(q)

t

)2
.
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Quantile estimates can then be updated sequentially with the SGD update step

Q̃
(q)
t = Q̃

(q)
t−1 − ηt

∂

∂θ̃
(q)
t

S∗
q

(
q, θ̃

(q)
t

)
,

= Q̃
(q)
t−1 + 2ηt

(
q − θ̃(q)

t

)
,

where the step size, ηt, needs to be weighted according to the expected scalar multiple be-

tween the oracle and proxy costs, and should vanish in stationary environments. Some simple

experimentation suggests

ηt = η0
wt

∣∣∣xt − Q̃(q)
t−1

∣∣∣,
where η0 = 1, is a sensible choice. This approach naturally extends to the situation where

observations come from a data stream of mini-batches, with each mini-batch having M reali-

sations ((xt,1, . . . , xt,M ))t∈N, simply by using AFFBinom(M) to drive the AF mechanism instead

of AFFB. In this case, the learning rate ηt should be the mean absolute deviation between

the observations and current quantile estimate. The AFSQE (Adaptive Forgetting Streaming

Quantile Estimation) procedure is displayed for a fixed M in Algorithm 8.

For an example of this procedure in operation, see Figure 6.4.

Algorithm 8 AFSQE: streaming quantile estimation procedure using adaptive forgetting and
stochastic gradient descent.

1: Input: Stream of mini-batches of realisations (xs,1, xs,2, . . . , xs,M ) where each xs,j ∈ R,
for s = 1, 2, . . ., and j = 1, 2, . . . ,M .

2: Let M be a fixed mini-batch size. Let Q̃(q) be the adaptive estimate for the q-quantile,
where θ̃ is the corresponding adaptive ECDF estimate. Let η0 be a fixed learning hyper-
parameter.

3: Initialise (λ,w,w′, θ̃, θ̃′) = (1, 0, 0, 0, 0).
4: Initialise Q̃(q) using a sample quantile from an initial data sample, or single point x0.
5: for s = 1, 2 . . . do
6: Set ys = ∑M

j=1 1
{
xs,j < Q̃(q)

}
.

7: Set (λ,w,w′, θ̃, θ̃′) = affbinom_update(ys,M, λ,w,w′, θ̃, θ̃′) (see Algorithm 4).
8: Set Q̃(q) = afsqe_update((xs,1, . . . , xs,M ), q, w, Q̃(q), θ̃).
9: function afsqe_update((xs,1, . . . , xs,M ), q, w, Q̃(q), θ̃)

10: Set Q̃(q) = Q̃(q) + 2η0
w

1
M

∑M
j=1

∣∣∣xs,j − Q̃(q)
∣∣∣(q − θ̃).

11: return Q̃(q).
12: end function
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6.4 Simulation Study

This section provides a thorough comparison of the performance of the streaming quantile

estimation procedures presented in the previous section on simulated data. Also included are

the non-adaptive, or fixed-weight methods that the AF extensions are derived from.

The simulation scenarios in Hammer, Yazidi, and Rue (2019) are repeated here for the purpose

of reproducibility. There are a total of eight distinct simulation scenarios, or environments,

covering two different probability distributions (normal and chi-squared), with two distinct

types of drift pattern (smooth or switch), with the option of two different rates of drift (fast or

slow). The rate of drift is governed with a single parameter τ , where τ = 100 corresponds to

fast drift and τ = 500 corresponds to slow drift. Then, each of these values of τ is combined

with a distribution and drift model that defines the distribution parameters as a function

of t, for t = 1, 2, . . . , n, where n is the number of simulated realisations. Formally the four

combinations of distribution and drift dynamics considered are listed below.

• Normal Smooth

µt = a sin
(2π
τ
t

)
,

σt = 1.

• Normal Switch

µt =


a if t mod τ ≤ τ

2 ,

−a otherwise
,

σt = 1.

• Chi-squared Smooth

νt = a+ b sin
(2π
τ
t

)
+ b, σ = 1.
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• Chi-squared Switch

νt =


−a+ b if t mod τ ≤ τ

2 ,

−a otherwise
.

Here b > a are simulation parameters, which are chosen to be a = 2, b = 6 as in Hammer,

Yazidi, and Rue (2019). The data is simulated from a stochastic process, where at time t, the

normal location and scale parameters µt, σt respectively. In the chi-squared case, the data is

simulated with degrees of freedom νt. Note that the switch cases are forms of recurring abrupt

drift.

There are a total of 9 specific variations of procedure tested in the simulation, where each

variation is tested for four different learning η ∈ {10−i}5i=2 if the method uses the AF frame-

work, or for four sensible weight parameters if the method is non-adaptive. Specifically, 3 of

these arise from AFSA, AFMIQE and AFSQE using the NLL cost with AFFB to drive the adaptive

ECDF engine. An additional variant comes from using the latter combination with the addi-

tional truncation step using AFFB* (see Algorithm 3), which is referred to as AFSQE*. A further

2 arise from using QAF and AFSQE with the squared error cost. Note that all the variations spec-

ified so far use AF procedures, but the fixed-weight procedures EWSA(w), DUMIQE(ω), QEWA(ω)

are also tested, where the named parameter corresponds to the weight parameter for that

procedure. The weights are chosen to span a range of sensible choices based on a combination

of experimentation and recommendations in the original papers.

Figures 6.1 to 6.5 show individual runs on each of the slow drifting scenarios for all the

procedures considered for comparison. Of course, individual runs do not provide sufficient

evidence to make strong claims about the behaviour or performance of the procedures, but

instead, serve as an illustrative example to observe and understand the basic behaviour. The

simulation length used here is n = 2000, with the learning rates for all AF procedures set

to η = 0.001 using a squared error cost function unless otherwise specified. Each figure is

discussed briefly below.

Figure 6.1 shows adaptive 0.1-quantile estimates from individual runs of AFSA alongside runs

of its fixed-weight counterpart, the EWSA(w) procedure, for w ∈ {0.01, 0.1}. In both switch

cases it is evident that w = 0.01 is set too small for the estimates to keep up. For both smooth

cases, however, the EWSA(0.1) estimator is the most volatile. The adaptive nature of the AFSA
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Figure 6.1: Adaptive estimates for the 0.1-quantile for an individual run of the AFSA, EWSA(0.01) and
EWSA(0.1) streaming quantile estimators.
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Figure 6.2: Adaptive estimates for the 0.5-quantile for an individual run of the AFMIQE, DUMIQE(0.01)
and DUMIQE(0.05) streaming quantile estimators.

estimator is evident as it does not suffer from the same drawbacks in each of the four drifting

scenarios.

Figure 6.2 shows adaptive median estimates from individual runs of AFMIQE alongside runs of

its fixed-weight counterpart, the DUMIQE(ω) procedure, for ω ∈ {0.01, 0.05}. In all four scenar-
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Figure 6.3: Adaptive estimates for the 0.9-quantile for an individual run of the QAF, QEWA(0.1) and
QEWA(0.2) streaming quantile estimators.
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Figure 6.4: Adaptive estimates for the 0.99-quantile for an individual run of the AFSQE streaming quan-
tile estimator on a selection of non-stationary simulated data environments. Here the AFSQE
quantile estimates are shown for both a negative log-likelihood, and squared error cost func-
tion, as used in the adaptive ECDF estimation procedure.

ios, the estimates for AFMIQE and DUMIQE(0.01) are very similar, whereas the DUMIQE(0.05)

estimates are consistently the most volatile. Even if the AF extension does not provide superior

performance, it still removes the burden of choosing ω, which may be difficult in practice.
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Figure 6.5: Adaptive estimates for the 0.5-quantile for individual runs of the AFSQE, QAF, AFMIQE, and
AFSA streaming quantile estimators on a selection of non-stationary simulated data environ-
ments.

Figure 6.3 shows adaptive 0.9-quantile estimates from individual runs of QAF alongside runs

of its fixed-weight counterpart, the QEWA(ω) procedure, for ω ∈ {0.1, 0.2}. Interestingly, while

the estimates for QAF closely resemble those of both QEWA runs, it appears that the QAF

estimates are the further from the true quantile values. Of all the AF-extended streaming

quantile estimation procedures, it does appear that QAF may offer the least benefit to perfor-

mance. This could be due to the base QEWA procedure relying on two separate weights which

the AF extension is not able to fully account for.

Figure 6.4 shows adaptive 0.99-quantile estimates from individual runs of AFSQE. As this

method is novel there are is no fixed-weight counterpart to show alongside. Instead, this figure

shows two distinct runs, one for each of the cost functions considered in the AFFB procedure

that drives the forgetting factors, as discussed in Section 5.1.1. At first glance, the estimator

may appear to be performing particularly poorly, though it is important to realise these are

estimates for an extreme quantile, which is especially challenging, particularly for the chi-

squared distribution where this quantile is the lower-density tail. In fact, all the streaming

quantile estimation procedures explored struggle with extreme quantiles, which will be reflected

in the performance results covered in the next section. Notice the paths are considerably less
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smooth than for the figures with less extreme quantiles, which is a consequence of infrequent,

staggered updates. Regardless of the cost function used, the switch cases seem to prove more

challenging, though the NLL cost seems to have the edge in terms of adapting to the abrupt

changes.

Figure 6.5 shows adaptive median estimates from individual runs for each of the adaptive

streaming quantile estimators AFSQE, QAF, AFMIQE, and AFSA. For the same learning rate (η =

0.001), AFMIQE is noticeably more volatile than the others across all simulations. In the switch

cases, AFSA appears to be the slowest to adapt to new regimes. From these simulations alone it

is difficult to visually determine if the estimates from both AFSQE and QAF differ significantly.

6.4.1 Results

Tables 6.2 to 6.9 display the RMSE for each procedure tested when estimating q-quantiles

for q ∈ {0.5, 0.7, 0.9, 0.99}, where each table corresponds to one of the specific non-stationary

simulation environments described above. The lowest RMSE for a specific q-quantile among

all methods and variants is emphasised in bold text. The results for each table are summarised

in the paragraphs below, with overall results and recommendations summarised at the end of

this section.

Looking at Table 6.2 for the Normal Smooth Fast case, the following observations are worthy

of note. As is to be expected, for every method, the RMSE increases as q increases, and this

holds true for all the simulation environments. In this simulation environment, while AFSA

shows little variability with respect to the choice of learning rate, the RMSE is roughly double

that of its fixed weight counterpart EWSA for most parameter values. This is unusual compared

to most other scenarios where AFSA is usually as good, if not better than EWSA. The RMSE using

the squared error variant of AFSQE for the 0.99-quantile is unusually low, being almost half

of that of every other value. It is peculiar that, except for η = 10−5, the quantile estimates

for q ̸= 0.99 are very similar, yet somehow η = 0.01 gives an exceptionally low RMSE for

q = 0.99. Despite having the lowest RMSE for q ∈ {0.5, 0.7} by a sizeable margin, QEWA(0.2)

has almost the worst performance for q = 0.99.

For Table 6.3 it is not unreasonable to expect similar results to that of Table 6.2 given the

scenario is very similar, just with a slower rate of drift. The lowest RMSE values in this case

are roughly half of those for the Normal Smooth Fast case. Here, QEWA performs best for
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q ̸= 0.99, though the optimal weights for each quantile are different, and smaller than for the

faster drift case, which should be expected. For q = 0.99, AFSQE is best, but this time for

the NLL cost instead of the squared error. In fact, the NLL cost is generally better than the

squared error across all quantiles and learning rates here. Notice that for AFSA with η = 0.01,

and EWSA(0.2) the 0.99-quantile error is many magnitudes larger than for other learning rate

and weight choices, suggesting these procedures may be less reliable for estimating extreme

quantiles, or at least, more care needs to be taken with control parameter configuration.

The results for the Normal Switch Fast case in Table 6.4 are strikingly different from the

previous two scenarios. Here AFSQE using the squared error cost is best, but only performs

adequately for η = 0.01, and otherwise the AFSQE NLL results are lower and show almost no

variation for different learning rates. This is the first scenario where the temporal-adaptivity

in QAF outperforms QEWA in most cases, as long as η > 10−5. Again, AFSA and EWSA show

spurious extraordinarily large RMSE values for q = 0.99 and the largest learning rate, or

weight. For q = 0.99, AFMIQE achieves the lowest RMSE, and also outperforms its fixed weight

counterpart, DUMIQE, across the board. Notice the best RMSE is always achieved by an AF

method here, using the largest learning rate η = 0.01, but despite the fast abrupt drift, results

for the AF methods with η < 0.01 are still competitive.

Again, AFSQE with the squared error cost is best for the Normal Switch Slow case, as shown

in Table 6.5. In this instance, the quantile estimates are still sensitive to the learning rate,

but slightly less so than for the Normal Switch Fast case. Yet again, the NLL cost does not

exhibit the same weakness, except for where it finally shows some slight sensitivity to the

choice of η, when q = 0.99. For q = 0.99, EWSA(0.05) is a clear winner, but the results are

not stable for different weights, whereas AFSA demonstrates stability across all learning rates.

Here, choosing QEWA(ω) for ω ≥ 0.1 will net better results than for QAF, but otherwise QAF has

a slight advantage.

Now considering the Chi-squared Smooth Fast scenario in Table 6.6, QEWA is best for the non-

extreme quantiles, and for w ̸= 0.01 always outperforms QAF. That AFMIQE is best for q = 0.99

with η = 10−5 is surprising, since this is the only best result for such a small learning rate.

It is evident from these results, and those of the previously discussed scenarios, that AFMIQE

works best for smaller learning rates compared to the other AF methods, and generally unlike

the others, is worse for η = 0.01. This is likely due to the multiplicative update of fixed size as
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opposed to the other AF methods. The NLL cost for AFSQE is always better than the squared

error cost here, and this may be due to the distribution being heavy tailed, which a squared

error would penalise more.

The results in Table 6.7 for the Chi-squared Smooth Slow environment deserve the following

remarks. Among all EWSA variants, it is striking that the lowest weight, w = 0.01, has almost

the best performance across all quantiles, even considering the slower drift for this environment.

However, using w ̸= 0.01 is costly, especially when AFSA for η > 0.01 produces competitive and

consistent estimation. For the non-extreme quantiles, QEWA(0.05) performs best, but notice

it has the largest RMSE of all method variants for q = 0.99. Better extreme performance

is achieved using QAF, which is almost as effective for q ∈ {0.5, 0.7}, but strangely struggles

for q = 0.9. So far, the relationship between RMSE results for QEWA and QAF are the least

predictable of all the AF and corresponding fixed weight method pairs. As in the Chi-squared

Smooth Fast case, the NLL cost is best for the AFSQE procedure, where the RMSE is often less

than half that of the RMSE for the squared error cost.

The Chi-squared Switch fast environment, with RMSE results in Table 6.8, provides the

only dominant RMSE for DUMIQE, where ω = 0.2. This choice of ω outperforms all AFMIQE

variants, except for q = 0.99, where AFMIQE demonstrates a clear advantage. Notably, the

AFSA and EWSA methods have the worst extreme quantile performance. This is likely due

to the neighbourhood size being based on the interquartile range (see Algorithm 5), which

may not be appropriate for such heavy tailed data. For the first time, the extreme quantile

performance for QEWA and QAF are among the best. Usually AFSQE gives one of the lowest

RMSE values for the extreme quantile, but that is not the case here, for either cost function.

Worthy of note among the results for the Chi-squared Switch Slow case in Table 6.9, is that

QEWA(0.2) performs best for q ̸= 0.99, which is a large weight value given the slower drift

environment. Despite QAF having the best value for q = 0.99 it is clearly worse than QEWA(ω)

for ω ̸= 0.01. Unlike the case for Chi-squared Switch Fast where both cost functions perform

similarly for AFSQE, the NLL cost is better here. For every slow simulation environment

before this, the best RMSE for q = 0.99 has been lower than that of the best RMSE for

the corresponding fast simulation environment, but here they are within two thousandths of

each other. This suggests the Chi-squared Switch case is particularly challenging for extreme

quantile estimation, irrelevant of the rate of drift.

107



Choosing a procedure for the task of streaming quantile estimation purely based on it achiev-

ing the lowest RMSE in simulation is unwise. In streaming contexts, it is often the case that

with the data evolving over time, the optimal procedure at any point in time will also change.

Perhaps more important, is the property of doing a reasonably good job, most of the time. Or

put another way, rarely displaying poor estimation performance. This often favours adaptive

procedures as opposed to those using a fixed weight, for which the latter tend to be more vul-

nerable to changes in drift patterns, particularly if the rate of drift is also changing over time.

Of course, if some knowledge of the underlying data and drift dynamics are known and not

expected to change over time, then if possible, it may be worth using a fixed-weight method

and optimising its control parameter from an initial burn-in phase. However, this is seldom

the case.

Ultimately the choice of procedure should depend on which quantile is being estimated and

if anything is known about the underlying data generating mechanism and drift dynamics.

Assuming only the former is known, then using one of the AF procedures will help to mitigate

the risk of incorrectly choosing control parameters. Additionally, the value of q plays an

important part as some methods are particularly unreliable for extreme quantiles such as

q = 0.99 (e.g. AFSA and EWSA). Overall, if one method must be chosen, AFSQE is a good choice

based on it almost always demonstrating a RMSE within the best four, and never being the

worst. It also demonstrates considerable resilience to the choice of learning rate, with the

NLL cost being a slightly better safeguard against a poor choice of learning rate than the

squared error cost. Interestingly this difference in the cost function was not apparent in the

simulations results for AFFB in Table 5.3, where both costs appear equally resilient. There are

situations where the squared error cost does manage to achieve slightly better performance

overall (particularly in the Normal Switch cases), and so this decisive trade-off should be

assessed based on the task. If using AFSQE with a squared error cost, then the best results

are achieved using η = 0.01 for the lower quantiles, but do negatively impact estimation for

q = 0.99. It also appears to perform poorly for heavy-tailed data. With the NLL cost, AFSQE is

reliable for all quantiles, and using η = 0.001 is recommended, though the penalty of choosing

a different learning rate is not substantial. It is worth remarking that the RMSE values for

AFSQE* are generally the same, or larger, than for AFSQE, where both are using the NLL cost.

Even though the switch cases provide temporary periods of stationarity, perhaps this is due
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to the duration of the stationary periods being too short for the additional truncation step to

benefit estimation. Hence, overall the NLL-based variant of AFSQE is recommended as a ‘one-

size-fits-all’ procedure. However, there are some basic caveats. Specifically, AFSQE is rarely the

best method when estimating extreme quantiles such as q = 0.99, and when the data is heavily

tailed as in the Chi-squared cases. In the presence of heavy tailed data, the results suggest

that QEWA performs consistently well, provided a suitable value for the control parameter can

be determined.

There are several occurrences where EWSA performs within the best two, but this is often

only for a specific choice of w, with other choices performing drastically worse. However,

AFSA almost always achieves similar, or adequate, performance and is much more resilient

to the choice of learning rate, though using η < 0.01 is advised. The trade-off of optimal

performance for almost always adequate performance is consistently clear for these methods

across all simulation environments. For both, there are also occasions where the RMSE for the

extreme quantile estimate is significantly larger than for other methods. This often happens

when the learning rate or weight is too high, and so avoiding η = 0.01 and w = 0.2 is

recommended when estimating extreme quantiles.

Despite one occurrence where DUMIQE(0.2) resulted in the lowest RMSE (for Chi-squared

Switch Fast with q = 0.9), AFMIQE always performs better or on-par. Hence there is little

reason to justify the use of DUMIQE if AFMIQE is available. If q ̸= 0.99, using η = 0.001 almost

always gives the lowest RMSE for AFMIQE, otherwise a smaller learning rate should be used.

Of all AF extended procedures, QAF benefits the least. It does not particularly enhance the

reliability of the procedure as the performance is often substantially different to the corre-

sponding results for QEWA, whether higher or lower. In the Chi-squared Switch cases QAF does

achieve the best results for the q = 0.99-quantile, but the corresponding QEWA estimates are on

par. This uncertainty makes it difficult to justify the use of QAF over QEWA, especially as the

latter generally performs very well. If a non-adaptive, fixed weight method must be used, then

QEWA(0.1) strikes a good balance and often achieves a competitive RMSE among all methods.

While Tables 6.2 to 6.9 are comprehensive for the simulations covered and the RMSE results

help compare methods, it is difficult to interpret how an RMSE value will affect quantile

estimation performance in practice. This research does not focus on developing an alternative
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measure to address this issue, but such a measure ought to take into account the spread of the

data and the specific quantile being estimated.

As a reminder, all streaming quantile estimation procedures tested have constant storage

complexity and the update step for each procedure has constant computational complexity.
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Table 6.2: Root mean squared estimation error for several streaming quantile estimation procedures
run on data simulated from the Normal Smooth Fast environment.

Quantile
Procedure Cost function Learning rate 0.5 0.7 0.9 0.99

0.01 0.600 0.662 1.180 1.812
0.001 0.714 0.823 1.435 1.901
0.0001 0.746 0.866 1.462 1.902

AFSA NLL

0.00001 0.768 0.888 1.474 1.901
EWSA(0.01) 0.974 1.091 1.562 1.884
EWSA(0.05) 0.349 0.376 0.767 1.892
EWSA(0.1) 0.322 0.334 0.422 1.795
EWSA(0.2) 0.449 0.450 0.448 1.479

0.01 1.412 1.131 0.801 1.226
0.001 1.391 0.922 1.096 1.609
0.0001 1.412 1.086 1.168 1.613

AFMIQE NLL

0.00001 1.413 1.120 1.325 1.888
DUMIQE(0.01) 1.414 1.453 1.661 1.909
DUMIQE(0.05) 1.413 1.126 1.070 1.875
DUMIQE(0.1) 1.412 1.053 0.752 1.725
DUMIQE(0.2) 1.412 1.053 0.599 1.415

0.01 0.549 0.596 0.976 1.989
0.001 0.534 0.637 1.378 1.964
0.0001 0.591 0.721 1.415 1.949

QAF Squared Error

0.00001 0.609 0.742 1.427 1.951
QEWA(0.01) 1.262 1.356 1.522 1.932
QEWA(0.05) 0.524 0.674 1.417 1.960
QEWA(0.1) 0.308 0.381 1.091 1.960
QEWA(0.2) 0.264 0.278 0.618 1.946

0.01 0.481 0.504 0.619 1.124
0.001 0.428 0.459 0.749 1.542
0.0001 0.513 0.547 0.791 1.779

AFSQE NLL

0.00001 0.527 0.572 0.896 1.920
0.01 0.442 0.462 0.526 0.724
0.001 0.445 0.463 0.541 1.898
0.0001 0.474 0.463 0.843 1.925

AFSQE Squared Error

0.00001 1.466 1.668 1.780 1.943
0.01 0.498 0.553 0.850 1.426
0.001 0.429 0.468 0.664 1.706
0.0001 0.513 0.547 0.791 1.814

AFSQE* NLL

0.00001 0.527 0.572 0.897 1.919
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Table 6.3: RMSE performance for several streaming quantile estimation procedures in the Normal
Smooth Slow environment.

Quantile
Procedure Cost function Learning rate 0.5 0.7 0.9 0.99

0.01 0.199 0.211 0.282 2.205
0.001 0.250 0.257 0.313 0.788
0.0001 0.263 0.272 0.313 0.557

AFSA NLL

0.00001 0.288 0.298 0.340 0.504
EWSA(0.01) 0.272 0.277 0.300 0.453
EWSA(0.05) 0.219 0.235 0.333 0.998
EWSA(0.1) 0.329 0.353 0.629 1.866
EWSA(0.2) 1.507 0.928 1.726 3.766

0.01 1.402 1.059 0.607 0.639
0.001 1.404 0.938 0.634 0.983
0.0001 1.380 0.836 0.854 1.457

AFMIQE NLL

0.00001 1.406 0.999 0.848 1.765
DUMIQE(0.01) 1.411 1.114 1.063 1.838
DUMIQE(0.05) 1.405 0.985 0.499 1.157
DUMIQE(0.1) 1.405 0.988 0.451 0.690
DUMIQE(0.2) 1.405 1.017 0.475 0.450

0.01 0.242 0.300 0.855 1.973
0.001 0.383 0.442 0.823 2.132
0.0001 0.376 0.436 1.181 2.109

QAF Squared Error

0.00001 0.431 0.525 1.214 2.097
QEWA(0.01) 0.517 0.632 1.184 2.268
QEWA(0.05) 0.154 0.195 0.447 2.491
QEWA(0.1) 0.168 0.179 0.267 2.469
QEWA(0.2) 0.232 0.226 0.225 2.337

0.01 0.215 0.224 0.281 0.427
0.001 0.262 0.284 0.397 0.771
0.0001 0.300 0.301 0.457 1.391

AFSQE NLL

0.00001 0.357 0.366 0.501 1.363
0.01 0.440 0.459 0.523 0.626
0.001 0.440 0.459 0.517 0.579
0.0001 0.481 0.496 0.445 0.585

AFSQE Squared Error

0.00001 0.380 0.379 0.417 1.893
0.01 0.307 0.328 0.458 0.763
0.001 0.288 0.293 0.496 1.258
0.0001 0.287 0.287 0.447 1.202

AFSQE* NLL

0.00001 0.357 0.366 0.500 1.319
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Table 6.4: RMSE performance for several streaming quantile estimation procedures in the Normal
Switch Fast environment.

Quantile
Procedure Cost function Learning rate 0.5 0.7 0.9 0.99

0.01 1.612 1.672 2.113 4.501
0.001 1.368 1.421 1.909 2.712
0.0001 1.358 1.416 1.885 2.627

AFSA NLL

0.00001 1.398 1.659 2.521 2.614
EWSA(0.01) 2.054 2.295 2.492 2.605
EWSA(0.05) 1.804 1.823 1.946 2.540
EWSA(0.1) 1.366 1.397 1.628 2.551
EWSA(0.2) 1.514 1.425 2.227 4.002

0.01 2.000 1.900 2.102 2.224
0.001 2.000 2.000 2.387 2.444
0.0001 2.000 1.997 2.476 2.517

AFMIQE NLL

0.00001 2.000 2.028 2.524 2.567
DUMIQE(0.01) 2.008 2.331 2.523 2.613
DUMIQE(0.05) 2.000 2.238 2.472 2.637
DUMIQE(0.1) 2.000 2.083 2.346 2.657
DUMIQE(0.2) 2.000 1.887 2.083 2.709

0.01 1.301 1.577 2.533 2.595
0.001 1.260 1.431 2.506 2.509
0.0001 1.275 1.446 2.502 2.460

QAF Squared Error

0.00001 1.413 2.282 2.501 2.426
QEWA(0.01) 2.021 2.295 2.351 2.482
QEWA(0.05) 1.866 2.232 2.464 2.533
QEWA(0.1) 1.604 1.942 2.476 2.557
QEWA(0.2) 1.186 1.392 2.418 2.586

0.01 1.719 1.830 2.248 2.724
0.001 1.510 1.603 2.188 2.675
0.0001 1.506 1.606 2.181 2.640

AFSQE NLL

0.00001 1.565 1.682 2.403 2.622
0.01 0.837 0.897 1.591 2.371
0.001 2.341 2.551 2.635 2.467
0.0001 2.039 2.357 2.543 2.631

AFSQE Squared Error

0.00001 2.011 2.342 2.534 2.615
0.01 1.626 1.648 2.179 2.903
0.001 1.510 1.603 2.187 2.802
0.0001 1.506 1.606 2.183 2.597

AFSQE* NLL

0.00001 1.565 1.682 2.549 2.617
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Table 6.5: RMSE performance for several streaming quantile estimation procedures in the Normal
Switch Slow environment.

Quantile
Procedure Cost function Learning rate 0.5 0.7 0.9 0.99

0.01 0.859 0.891 1.174 2.730
0.001 1.005 0.994 1.583 2.405
0.0001 0.926 0.952 1.075 2.327

AFSA NLL

0.00001 0.937 0.966 1.114 2.503
EWSA(0.01) 1.858 1.869 1.969 2.235
EWSA(0.05) 0.913 0.917 0.984 1.615
EWSA(0.1) 0.686 0.698 0.910 2.202
EWSA(0.2) 1.408 1.046 1.867 3.880

0.01 1.995 1.711 1.444 2.015
0.001 1.994 1.534 1.799 2.273
0.0001 1.999 1.720 2.029 2.468

AFMIQE NLL

0.00001 2.000 1.764 2.097 2.646
DUMIQE(0.01) 2.004 2.253 2.472 2.626
DUMIQE(0.05) 1.998 1.838 1.953 2.604
DUMIQE(0.1) 1.998 1.713 1.606 2.522
DUMIQE(0.2) 1.998 1.666 1.341 2.334

0.01 0.807 0.889 1.910 2.908
0.001 0.921 1.051 2.137 2.874
0.0001 0.941 1.069 2.164 2.872

QAF Squared Error

0.00001 0.999 1.141 2.383 2.883
QEWA(0.01) 1.881 2.099 2.343 2.786
QEWA(0.05) 1.115 1.291 2.276 2.805
QEWA(0.1) 0.788 0.919 1.848 2.787
QEWA(0.2) 0.572 0.662 1.237 2.749

0.01 0.897 0.941 1.147 1.916
0.001 0.987 0.996 1.137 2.439
0.0001 0.939 1.003 1.324 2.678

AFSQE NLL

0.00001 0.966 1.028 1.384 2.645
0.01 0.543 0.570 0.695 2.421
0.001 0.572 0.597 1.363 2.540
0.0001 0.627 0.643 3.309 2.655

AFSQE Squared Error

0.00001 2.381 2.585 2.547 2.689
0.01 1.097 1.136 1.549 2.457
0.001 0.987 0.997 1.151 2.708
0.0001 0.940 1.004 1.323 2.663

AFSQE* NLL

0.00001 0.966 1.029 1.385 2.607
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Table 6.6: RMSE performance for several streaming quantile estimation procedures in the Chi-Squared
Smooth Fast environment.

Quantile
Procedure Cost function Learning rate 0.5 0.7 0.9 0.99

0.01 0.840 1.106 1.728 4.499
0.001 0.920 1.188 1.685 2.932
0.0001 0.811 1.042 1.546 2.757

AFSA NLL

0.00001 0.817 1.023 1.479 2.616
EWSA(0.01) 1.020 1.195 1.581 2.659
EWSA(0.05) 0.960 1.258 1.944 2.786
EWSA(0.1) 1.564 2.031 2.910 3.606
EWSA(0.2) 2.998 3.556 4.716 5.670

0.01 0.883 1.100 1.565 3.546
0.001 0.745 0.920 1.482 3.100
0.0001 0.834 1.029 1.649 2.703

AFMIQE NLL

0.00001 0.884 1.085 1.739 2.555
DUMIQE(0.01) 1.214 1.421 1.943 2.628
DUMIQE(0.05) 0.668 0.837 1.282 2.677
DUMIQE(0.1) 0.783 0.985 1.313 2.651
DUMIQE(0.2) 1.086 1.351 1.767 2.704

0.01 0.680 0.898 1.763 3.323
0.001 0.789 1.031 1.875 3.198
0.0001 0.895 1.160 1.945 2.997

QAF Squared Error

0.00001 0.927 1.193 1.964 2.982
QEWA(0.01) 1.269 1.551 2.346 3.107
QEWA(0.05) 0.623 0.846 1.761 3.220
QEWA(0.1) 0.573 0.754 1.413 3.197
QEWA(0.2) 0.737 0.938 1.273 3.149

0.01 0.842 1.046 1.615 2.887
0.001 0.869 1.104 1.787 2.751
0.0001 0.902 1.179 1.967 2.730

AFSQE NLL

0.00001 0.934 1.228 2.063 2.602
0.01 1.530 1.770 2.355 3.400
0.001 1.528 1.768 2.339 3.135
0.0001 1.435 1.650 2.183 2.649

AFSQE Squared Error

0.00001 1.520 1.732 2.063 2.632
0.01 0.958 1.228 2.097 3.684
0.001 0.879 1.121 1.835 3.797
0.0001 0.903 1.178 1.967 3.154

AFSQE* NLL

0.00001 0.934 1.230 2.067 2.654
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Table 6.7: RMSE performance for several streaming quantile estimation procedures in the Chi-Squared
Smooth Slow environment.

Quantile
Procedure Cost function Learning rate 0.5 0.7 0.9 0.99

0.01 0.625 0.879 1.587 4.450
0.001 0.496 0.667 0.970 2.114
0.0001 0.529 0.683 0.956 1.894

AFSA NLL

0.00001 0.489 0.606 0.962 2.025
EWSA(0.01) 0.417 0.551 0.894 1.740
EWSA(0.05) 0.934 1.246 1.933 2.367
EWSA(0.1) 1.591 2.002 2.861 3.376
EWSA(0.2) 3.018 3.597 4.767 5.592

0.01 0.849 1.064 1.507 3.612
0.001 0.490 0.618 0.858 2.453
0.0001 0.511 0.613 1.006 2.214

AFMIQE NLL

0.00001 0.563 0.695 1.223 2.574
DUMIQE(0.01) 0.471 0.569 1.008 2.543
DUMIQE(0.05) 0.545 0.695 0.868 1.779
DUMIQE(0.1) 0.761 0.968 1.208 1.761
DUMIQE(0.2) 1.089 1.351 1.735 2.278

0.01 0.511 0.654 1.368 3.195
0.001 0.511 0.704 1.397 3.558
0.0001 0.559 0.747 1.613 3.381

QAF Squared Error

0.00001 0.656 0.890 1.763 3.490
QEWA(0.01) 0.595 0.769 1.753 4.914
QEWA(0.05) 0.398 0.512 0.799 6.521
QEWA(0.1) 0.525 0.663 0.803 6.498
QEWA(0.2) 0.736 0.926 1.059 5.960

0.01 0.561 0.673 0.995 2.190
0.001 0.517 0.650 1.046 2.257
0.0001 0.539 0.717 1.199 2.693

AFSQE NLL

0.00001 0.567 0.741 1.247 2.645
0.01 1.542 1.792 2.385 3.370
0.001 1.542 1.793 2.347 2.933
0.0001 1.424 1.636 1.894 2.089

AFSQE Squared Error

0.00001 0.697 0.752 0.891 2.637
0.01 0.645 0.828 1.512 3.311
0.001 0.605 0.767 1.375 3.683
0.0001 0.570 0.679 1.219 2.844

AFSQE* NLL

0.00001 0.564 0.737 1.230 2.636
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Table 6.8: RMSE performance for several streaming quantile estimation procedures in the Chi-Squared
Switch Fast environment.

Quantile
Procedure Cost function Learning rate 0.5 0.7 0.9 0.99

0.01 2.002 2.439 3.277 6.287
0.001 1.815 2.220 3.019 4.608
0.0001 1.784 2.192 2.965 4.011

AFSA NLL

0.00001 1.950 2.342 2.948 3.895
EWSA(0.01) 1.990 2.332 2.973 4.063
EWSA(0.05) 1.801 2.155 2.927 4.682
EWSA(0.1) 1.908 2.429 3.358 5.360
EWSA(0.2) 3.076 3.653 4.929 7.132

0.01 1.831 2.201 2.985 4.459
0.001 1.772 2.129 3.036 3.652
0.0001 1.793 2.144 2.952 3.632

AFMIQE NLL

0.00001 2.004 2.348 2.937 3.577
DUMIQE(0.01) 2.000 2.345 2.958 3.841
DUMIQE(0.05) 1.913 2.240 2.964 4.045
DUMIQE(0.1) 1.728 2.043 2.886 4.259
DUMIQE(0.2) 1.578 1.892 2.780 4.633

0.01 1.663 2.071 3.121 3.575
0.001 1.665 2.080 2.984 3.514
0.0001 1.683 2.131 2.967 3.678

QAF Squared Error

0.00001 1.996 2.207 2.928 3.800
QEWA(0.01) 1.992 2.368 2.888 3.814
QEWA(0.05) 1.889 2.272 2.932 3.545
QEWA(0.1) 1.671 2.076 2.953 3.598
QEWA(0.2) 1.371 1.767 2.915 3.802

0.01 2.124 2.589 3.488 4.802
0.001 2.042 2.567 3.292 4.161
0.0001 2.051 2.593 3.261 3.935

AFSQE NLL

0.00001 2.096 2.603 2.962 3.736
0.01 1.715 2.032 2.879 5.037
0.001 2.244 2.555 3.122 4.740
0.0001 2.039 2.388 3.050 3.963

AFSQE Squared Error

0.00001 2.015 2.366 3.011 3.739
0.01 2.059 2.528 3.328 5.537
0.001 2.042 2.567 3.219 4.733
0.0001 2.051 2.593 3.123 4.729

AFSQE* NLL

0.00001 2.095 2.618 2.949 3.746
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Table 6.9: RMSE performance for several streaming quantile estimation procedures in the Chi-Squared
Switch Slow environment.

Quantile
Procedure Cost function Learning rate 0.5 0.7 0.9 0.99

0.01 1.187 1.479 2.273 5.116
0.001 1.499 1.878 2.562 3.975
0.0001 1.258 1.531 2.189 4.055

AFSA NLL

0.00001 1.243 1.511 2.133 3.940
EWSA(0.01) 1.669 1.946 2.425 3.895
EWSA(0.05) 1.172 1.514 2.186 3.840
EWSA(0.1) 1.647 2.085 2.965 4.302
EWSA(0.2) 3.019 3.608 4.813 5.933

0.01 1.136 1.390 1.949 3.991
0.001 1.239 1.497 2.275 3.900
0.0001 1.311 1.594 2.446 3.552

AFMIQE NLL

0.00001 1.345 1.633 2.537 3.608
DUMIQE(0.01) 1.875 2.188 2.872 3.881
DUMIQE(0.05) 1.183 1.419 2.124 3.965
DUMIQE(0.1) 1.064 1.310 1.852 3.947
DUMIQE(0.2) 1.213 1.490 2.012 3.726

0.01 1.004 1.318 2.354 3.630
0.001 1.207 1.549 2.718 3.512
0.0001 1.288 1.638 2.768 3.552

QAF Squared Error

0.00001 1.335 1.696 2.808 3.551
QEWA(0.01) 1.895 2.243 2.852 3.793
QEWA(0.05) 1.171 1.490 2.600 3.521
QEWA(0.1) 0.933 1.194 2.202 3.547
QEWA(0.2) 0.907 1.158 1.832 3.683

0.01 1.208 1.492 2.199 3.975
0.001 1.346 1.687 2.467 3.899
0.0001 1.338 1.713 2.738 4.031

AFSQE NLL

0.00001 1.363 1.740 2.824 3.746
0.01 1.581 1.844 2.443 3.891
0.001 1.590 1.856 2.442 3.876
0.0001 1.508 1.775 3.064 3.936

AFSQE Squared Error

0.00001 2.124 2.422 2.976 3.741
0.01 1.380 1.722 2.765 4.651
0.001 1.349 1.684 2.485 5.156
0.0001 1.339 1.713 2.738 4.260

AFSQE* NLL

0.00001 1.363 1.741 2.824 3.813
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6.5 Experiments on Real Data

This section explores the deployment of the AFSQE procedure on real data. As a fundamental

statistical quantity, quantiles, and their estimates, have a part to play in many applications.

Here, two brief examples are considered.

6.5.1 Adaptive Thresholding

Many applications in a continuous monitoring (Bodenham and Adams 2017) context require

timely decision-making, where it is common to use a rule based on thresholding a score as

used in the change detector in Section 3.4, which continuously monitors the evolving mean

and standard deviation of KL divergence scores. Then a change is flagged if the current score

exceeds more than a fixed number of standard deviations from the mean. A thresholding

rule is also used in Section 4.3.5 where the network anomaly detector uses an extreme sample

quantile computed over the full time range, such that any score exceeding that quantile is

considered to be sufficiently anomalous.

The motivation for thresholding based on standard deviations originally stems from the

properties of the standard normal distribution, where the 95% quantile is approximately 2

standard deviations from the mean. However, in practice, many of these score samples do not

look normally distributed as they can often be highly skewed and multi-modal. If the intent

of the rule is to alert for some small fixed proportion of events then instead of specifying a

number of standard deviations as a proxy for an extreme quantile, it may be more appropriate

to use the actual quantile. If a static quantile estimate computed from some initial set of scores

is used, then this quantile estimate eventually becomes unreliable. To avoid this, an adaptive

quantile estimate could be used from any of the methods in Section 6.3.

Returning to the example in Section 4.3.5, network anomaly scores ν and κ were introduced

for detecting anomalous activity across a computer network. Figure 4.3 shows the network

anomaly scores within 1-minute bins over a 3-day period for both the LANL and ICL networks,

where it is evident the distribution of network scores is changing over time. Figure 6.6 shows

the same network anomaly scores, but here the black solid line corresponds to the 0.995-

quantile. Notice how for both networks, initially the quantile estimates are large due to some

early outliers, then gradually decrease as the thousands of observations lower than the quantile
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are observed. Then when encountering an additional pair of outliers, that exceed the current

quantile estimate, the subsequent quantile estimates begin to increase accordingly.
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Figure 6.6: Network anomaly scores ν and κ for the ICL (top) and LANL (bottom) networks where
the adaptive thresholds shown as solid black lines correspond to the adaptive 0.995-quantile
estimates of the network anomaly scores. The horizontal dotted black lines correspond to
the static 0.995-quantile estimates over all windows. The vertical red dotted lines (bottom)
correspond to red team authentication events.

6.5.2 Concept Drift Detection

This demonstration closely follows and attempts to reproduce the experiment in Hammer,

Yazidi, and Rue (2019), instead using the AFSQE procedure in place of QEWA.

As discussed in Section 2.5, the statistical properties of data streams generally change over

time, for example the joint relationship between temperature and interarrival times in Sec-

tion 3.3, or the correlation structures in Chapter 4. If the purpose of modelling is for prediction,

or forecasting, then it is common for non-adaptive models to degrade over time. There are

many strategies to overcoming this challenge (Gama et al. 2014), but one approach is to monitor

the prediction error of a model and define a rule for when the model should be retrained.

The SML2020 dataset contains HVAC sensor measurements recorded every 15 minutes over

40 days, for a number of climate related indoor and outdoor variables such as temperature,
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carbon dioxide levels, humidity, and precipitation (Zamora-Martínez et al. 2014). Note the LANL

HVAC system data used in Section 3.3.2, was not available at the time of research into stream-

ing quantile estimation. The focus of this demonstration is not model building, but rather to

see how streaming quantile estimation can be used to deploy an automatic concept drift de-

tection and model retraining procedure.
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Figure 6.7: Absolute forecasting error of predicted temperature 15-minutes into the future using a model
initially trained on the first 8 days of data. The left and right panels correspond to the
dining room and bedroom respectively, where the red solid lines show the increasing linear
trend of the absolute forecasting error over time.

Temperature readings are available for a bedroom and a dining room in the same building,

governed by the same HVAC system. For each room, Hammer, Yazidi, and Rue (2021) suggests

building a LASSO-regularised (Tibshirani 1996) autoregressive (AR) model of order 1 to predict

the room temperature 15 minutes ahead using the current room temperature and all other

current non-temperature measurements. Attempts to reproduce this model led to considerably

lower forecasting errors than those reported, so perhaps the authors did not use the current

room temperature readings, as these are highly autocorrelated and the most useful covariate

to select. Instead, similar forecasting errors were reproduced by constructing linear LASSO-

regularised Regression (LR) models for the current room temperature regressed on only the

previous non-temperature measurements. The regularisation parameter was chosen via cross-

validation to be the largest value that ensures all cross-validation prediction errors are within

one standard error. Figure 6.7 shows the 15-minute ahead absolute forecasting errors using

for static LR models, trained on the first 8 days, or 768 readings. These errors very closely
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resemble Figure 6 in Hammer, Yazidi, and Rue (2019), and similarly, the red solid lines show the

increasing linear trend in forecasting error over time. Observing such behaviour is indicative

of concept drift, and ideally the model should not degrade over time. As the authors remark,

it is common to retrain or update the model by controlling the mean prediction error, but they

suggest a useful and interpretable strategy is to control the prediction error to rarely exceed a

threshold, or some defined upper quantile.

The AFSQE procedure was used to continuously track the 80% quantile of the absolute fore-

casting errors of an LR model initially trained on 24 hours worth of data, or 96 readings.

Then, whenever this quantile exceeded 2 degrees Celsius, the model was replaced with a new

LR model constructed from the previous 24 hours worth of data. Figure 6.8 shows the 15-

minute ahead absolute forecasting error using this retraining strategy. The black points near

the horizontal axis correspond to model retraining events (notice the 80% quantile estimate

shown in the solid blue line exceeds 2). With this approach, there is less linear trend for the

forecasting error, though it is marginally increasing for the dining room, and in fact, slightly

decreasing for the bedroom. Interestingly this approach approximately controls the mean ab-

solute forecasting error at around 1. The clear advantage in comparison to the static model

is that the resulting forecasting errors are roughly constant over time, which is indicative of

consist model performance. The contrast is particularly clear after forecasting 25 days ahead,

where the mean absolute forecast error for each room using the static model starts to exceed 1

degree and continuously increases, however this value is always less than 1 after 25 days using

the concept drift detection retraining strategy.
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Figure 6.8: Absolute forecasting error of predicted temperature 15-minutes into the future using a
model initially trained on the first 24 hours of data, and retrained whenever concept drift is
detected. The left and right panels correspond to the dining room and bedroom respectively,
where the red solid lines show the linear trend of the absolute forecasting error over time.
The blue solid line shows the adaptive 0.8-quantile estimates using AFSQE. Whenever this
quantile estimate exceeded 2, the model was retrained due to a detection in concept drift
and is indicated by the black points along the horizontal axis.

6.6 Multiple Quantile Estimation

Previously the focus has been on the estimation of a single quantile, however, it is often the

case that estimating multiple quantiles is more useful. Estimating multiple points on the

quantile function allows the shape of the distribution to be captured.

Clearly, the most simple approach is to run several of the streaming quantile estimation

procedures in Section 6.3 concurrently over different quantiles. These procedures would be

independent of each other which raises two concerns. First, there is no guarantee that the

quantile estimates will be monotone as is the case for the true quantiles, referred to as the

quantile crossover problem. Second, the joint structure of the quantiles is not being exploited

to essentially ‘calibrate’ the quantiles against each other.

This section explores methods for multiple streaming quantile estimation beginning with

the discussion of three distinct categories of approach for addressing the above concerns. Then

methodology is developed for incorporating these methods into an adaptive streaming multiple

quantile estimation procedure based on AFSQE (see Algorithm 8). Finally, performance of both

the simple and other approaches is assessed in simulation and compared to an approach in

Hammer, Yazidi, and Rue (2021).
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6.6.1 Post-update Ordering

The first type of approach considered orders the quantile estimates after their update steps.

This is perhaps the most trivial approach, but its primary advantages are ease of implementa-

tion and applicability to any SQE procedure. The choice of ordering method for the quantile

estimates implicitly reflects the joint relationship modelled between the quantiles.

Sorting Quantile Estimates

Perhaps the most obvious ordering method is to sort the quantile estimates. Specifically, given

probabilities q1 < q2 < · · · < qk, any streaming quantile estimation procedure gives corre-

sponding potentially unordered quantile estimates Q̃t(q1), Q̃t(q2), . . . , Q̃t(qk) at time t. Writing

the corresponding order statistics for these quantile estimates as Q̃t,(1), Q̃t,(2), . . . , Q̃t,(k), and

setting each Qt(qj) = Q̃t,(j) for j = 1, 2, . . . , k, gives a non-decreasing collection of quantile

estimates Qt(q1), Qt(q2), . . . , Qt(qk).

In general, most efficient sorting algorithms will result in a worst-case running time com-

plexity of O(k log k). Note that there are cases where further optimisation can be made based

on the underlying streaming quantile estimation procedure. For instance, when using a shared

adaptive forgetting factor (or weight) across concurrent instances of the AFMIQE procedure in

Algorithm 6, the update step either preserves order or in the worst case splits the estimates into

two concatenated ordered subcollections. This behaviour arises from the explicit nature of the

update step in that quantile estimates below the most recent observation are increased, whereas

quantile estimates above the most recent observation are decreased. Two concatenated ordered

subcollections, Q̃t(q1) ≤ Q̃t(q2) ≤ · · · ≤ Q̃t(qs) and Q̃t(qs+1) ≤ Q̃t(qs+2) ≤ · · · ≤ Q̃t(qk), can

then be sorted in O(k) by merging.

Monotone Optimisation

Monotone, or isotonic, optimisation enforces estimates to be non-decreasing. In the context

of quantile estimation, the concern is unweighted linear ordering isotonic optimisation, which
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can be expressed formally as the following quadratic program. Given potentially unordered

quantile estimates Q̃t(q1), Q̃t(q2), . . . , Q̃t(qk),

minimize
n∑

i=1

(
Qt(qi)− Q̃t(qi)

)2
,

subject to Qt(q1) ≤ Qt(q2) ≤ · · · ≤ Qt(qk).

Then Qt(q1), Qt(q2), . . . , Qt(qk) is a non-decreasing fit to Q̃t(q1), Q̃t(q2), . . . , Q̃t(qk).

The Pool Adjacent Violators Algorithm (PAVA) solves this program in linear time with

linear memory, with respect to k (Barlow et al. 1972; Mair et al. 2009). PAVA sequentially

combines out of order quantile estimates to their mean, resulting in equal adjacent quantile

estimates. This is not necessarily ideal for reporting the raw quantile estimates, as in general

a non-zero difference between adjacent estimates is expected for continuous data, but this

can be viewed as an intuitive corrective step to account for the uncertainty around unordered

adjacent estimates.

6.6.2 Restricted Quantile Updates

Another approach restricts the quantile update step in some manner that respects the order of

quantile estimates. This is not necessarily applicable to all SQE procedures as it depends on

the form of the update step, but does require tailored implementation. Two examples of this

approach in the literature are monotoneSA (Cao et al. 2009) and MDUMIQE (Hammer, Yazidi, and

Rue 2020). The former shows how the quantile estimates from Tierney’s original SA algorithm

are derived from a local linear approximation, which is then constrained to ensure the linearly

interpolated estimates preserve monotonicity. The latter is a direct extension of concurrent

DUMIQE instances that uses a shared, constrained fixed weight ω, across multiple quantiles.

The fundamental difference is the update step is constrained to prevent updates large enough

to violate monotonicity. The primary drawback of this restriction is that it caps the rate of

forgetting considerably, which can hinder performance for quickly drifting data. In Hammer

and Yazidi (2017) and Yazidi and Hammer (2017), the authors observe, on average, significantly

better performance for MDUMIQE than monotoneSA for a sample of simple stationary and non-

stationary streams. However, it is worth noting that the authors ignore the recommendation

of choosing c in a self-tuned fashion, based on an estimate of the interquartile range (Cao

125



et al. 2009; Chen, Lambert, et al. 2000). Treating c as an adaptive self-tunable parameter, both

procedures depend on a single tunable parameter that controls the rate of forgetting.

Such approaches based on restricting quantile updates are not considered due to properties

that inhibit adaptability.

6.6.3 Conditional Quantile Estimation

The last approach considered ensures the quantile estimates are updated relative to each

other by exploiting properties of conditional distributions of the data. This is based on a

general framework in Hammer, Yazidi, and Rue (2021) which the authors use to extend QEWA.

The framework takes advantage of two key properties. First, transformations that shift the

location of a variable, shift the corresponding transformed quantile function by the same

amount. That is,

Z = X + δ =⇒ QZ(q) = QX(q) + δ.

Second, for probabilities q1 < q2,

Z = X −QX(q2) =⇒ P(Z < QZ(q1) | Z < 0) = q1
q2
,

Z = X −QX(q1) =⇒ P(Z < QZ(q2) | Z > 0) = q2 − q1
1− q1

.

The latter property means the q1 quantile of Z is equivalent to the q1
q2

quantile of Z | Z < 0,

and the q2 quantile of Z is equivalent to the q2−q1
1−q1

quantile of Z | Z > 0. Using this result,

the q1 quantile of X can be obtained from the q2 quantile of X (or the q1 quantile from the

q2 quantile) by first transforming to Z, estimating the conditional quantile, and then shifting

back.

The framework suggests starting with an initial central quantile, e.g. the median, and then

using conditional quantiles to recursively compute adjacent quantile estimates. For this process

to work, it is important that the underlying streaming quantile estimation procedure ensures

the conditional quantile estimates are strictly above and below zero for quantiles above and

below the initial central quantile respectively. This is the case for estimators with a multiplica-

tive update step, but otherwise this can be achieved by truncating the range of the conditional

quantile estimates to prevent negative or positive values respectively. Algorithm 2 in Hammer,
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Yazidi, and Rue (2021) provides an implementation for QEWA, which does not require this trun-

cation due to the multiplicative update step. The same conditional quantile framework can

be used to extend AFSQE (see Section 6.3.4) for multiple quantile estimation; as AFSQE_CondQ

as presented in Algorithm 9. The truncation steps required are represented in lines 14 and 23,

where the tolerance ε = 10−8 proved sufficient in experimentation.

Algorithm 9 AFSQE_CondQ: a streaming quantile estimation procedure for multiple quantiles
using adaptive forgetting and stochastic gradient descent.

1: Input: Stream of realisations (x1, x2, . . . ) where each xs ∈ R, for s = 1, 2, . . ..
2: Let Q̃(qj) be the adaptive estimate for the qj-quantile, and θ̃(j) the corresponding adaptive

ECDF estimate. Let η0 be a fixed learning hyperparameter. Let ε << 1 be some tolerance.
3: Initialise (λ(j), w(j), w(j)′, θ̃(j), θ̃(j)′) = (1, 0, 0, 0, 0) for j = 1, 2, . . . , k.
4: Initialise Q̃(qj) using a sample quantile from an initial data sample, or single point x0 for
j = 1, 2, . . . , k.

5: for s = 1, 2 . . . do
6: Set

(
y

(j)
s

)k

j=1
=
(
1
{
xs < Q̃(qj)

})k

j=1
.

7: Set (λ(c), w(c), w(c)′, θ̃(c), θ̃(c)′) = affb_update(y(c)
s , λ(c), w(c), w(c)′, θ̃(c), θ̃(c)′).

8: Set central quantile estimate Q̃(qc) = afsqe_update(xs, qc, w
(c), Q̃(qc), θ̃(c)).

9: for j = c− 1, c− 2, . . . , 1 do
10: if xs < Q̃(qj+1) then
11: Set transformed observation z

(j)
s = xs − Q̃(qj+1).

12: Set (λ(j), w(j), w(j)′, θ̃(j), θ̃(j)′) = affb_update(y(j)
s , λ(j), w(j), w(j)′, θ̃(j), θ̃(j)′)

13: Update transformed quantile Q̃(qj)
Z = afsqe_update(xs,

qj

qj+1
, w(j), Q̃

(qj)
Z , θ̃(j)).

14: Truncate transformed quantile Q̃(qj)
Z = min

(
Q̃

(qj)
Z ,−ε

)
.

15: end if
16: Set quantile estimate Q̃(qj) = Q̃(qj+1) + Q̃

(qj)
Z .

17: end for
18: for j = c+ 1, c+ 2, . . . , k do
19: if xs > Q̃(qj−1) then
20: Set transformed observation z

(j)
s = xs − Q̃(qj−1).

21: Set (λ(j), w(j), w(j)′, θ̃(j), θ̃(j)′) = affb_update(y(j)
s , λ(j), w(j), w(j)′, θ̃(j), θ̃(j)′)

22: Update transformed quantile Q̃(qj)
Z = afsqe_update(xs,

qj−qj−1
1−qj−1

, w(j), Q̃
(qj)
Z , θ̃(j)).

23: Truncate transformed quantile Q̃(qj)
Z = max

(
Q̃

(qj)
Z , ε

)
.

24: end if
25: Set quantile estimate Q̃(qj) = Q̃(qj−1) + Q̃

(qj)
Z .

26: end for

For affb_update and afsqe_update see Algorithms 2 and 8.

127



6.6.4 Simulation Results

This section seeks to compare the approaches outlined in the previous section when used to ex-

tend the AFSQE procedure for multiple quantile estimation for some set of quantile probabilities

(qj)k
j=1.

In addition to the methods described in the previous section, it is useful to consider a

Default case, where the AFSQE procedure is naïvely run k times; once for each quantile with

no additional methods used. Clearly it is possible for the resulting quantile estimates to vi-

olate monotonicity, but this case serves as a baseline to be compared against for the other

approaches. Each instance of the procedure runs independently, with separate sets of parame-

ters for each instance, i.e. each quantile is estimated using its own set of forgetting factors. It

is worth remarking here that the option to use a shared forgetting factor scheme mechanism

is available by aggregating the forgetting factors across the instances, e.g. by taking the mean,

and then using the shared forgetting factor in the quantile update step. However, during the

experimentation this always led to worse performance than letting each instance use its own

set of forgetting factors, and so a shared forgetting factor scheme is not advocated or used

here for any modification method to deal with multiple quantile estimation.

The post-update methods are implemented in the same way as the Default case to the

AFSQE procedure, with the notable exception that the post-update method is applied to the

quantile estimates after each update step. The Sort method sorts the quantile estimates as in

Section 6.6.1, and the PAVA method uses monotone optimisation as described in Section 6.6.1.

The conditional quantile framework CondQ discussed in Section 6.6.3 is used to extend both

AFSQE (as shown in Algorithm 9) and QEWA, where the latter is included to provide a comparison

against a state-of-the-art method in the literature.

The same non-stationary simulation scenario setups as in Section 6.4 are used to evaluate

the RMSE for each of the above approaches. In addition, a stationary scenario is also tested,

where n = 105 data points are simulated from a standard normal distribution. The main

difference here is that multiple quantiles are estimated instead of a single quantile. Specifically

quantiles are estimated for the 19 quantile probabilities ( i
20)19

i=1, where the RMSE is the mean

RMSE across all 19 quantiles. These results are shown in Table 6.10.
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Perhaps the most surprising result is that in 4 out of the 9 simulation scenarios, the Default

approach gives the lowest RMSE. In all other cases both Sort and PAVA provide marginally

better results. In 7 out of the 9 situations tested, the CondQ extension results in a larger

RMSE than the Default approach, yet performs best in the Normal Switch Slow case. It is

particularly poor in the stationary case where the RMSE is 3–4 times larger than the other

approaches. Perhaps this poor performance is a consequence of starting with the median

as a central quantile to estimate the other 18 quantiles, with estimation errors propagating

all the way from the central quantile estimates to the extreme quantile estimates. Here the

AFSQE_CondQ approach gives a noticeably lower RMSE than the QEWA_CondQ approach in two-

thirds of the tested scenarios.

Table 6.10: Root mean squared estimation error for streaming multiple quantile estimation procedures
run on across a selection of non-stationary smooth and abrupt simulated data. The bot-
tom row shows the additional worst-case computational complexity required relative to the
Default case for each procedure in terms of k, the number of quantiles being estimated.
For all procedures, the storage complexity is O(k).

Streaming Multiple-Quantile Procedure
AFSQE QEWA(0.1)

Simulation Scenario Default Sort PAVA CondQ CondQ

Stationary 0.085 0.083 0.083 0.237 0.344
Normal Smooth Slow 0.472 0.463 0.468 0.387 0.424
Normal Smooth Fast 0.945 0.968 0.954 0.966 1.422
Normal Switch Slow 0.782 0.781 0.781 0.909 0.753
Normal Switch Fast 1.387 1.649 1.648 1.783 2.096
Chi-Squared Smooth Slow 0.947 0.919 0.919 1.136 1.945
Chi-Squared Smooth Fast 1.696 1.703 1.702 2.228 2.011
Chi-Squared Switch Slow 1.289 1.278 1.278 1.510 1.635
Chi-Squared Switch Fast 2.177 2.219 2.217 2.778 2.343

Additional complexity None O(k log k) O(k) O(k) O(k)

6.7 Conclusion

This chapter has contributed to the streaming analytics toolkit by providing fully adaptive

tools for streaming quantile estimation. A variety of existing tools are enhanced with the

adaptive forgetting framework, and a new streaming quantile estimation method is intro-

129



duced. Extensive experiments show that there is no procedure that consistently outperforms

all others, as if often the case with data analytic tools. In the absence of a globally optimal

procedure, it is recommended to choose a model that is adequate in a wide range of scenarios.

Based on this rationale, the AFSQE method is recommended as a preferable default. This rec-

ommendation is further supported by the ability to operate without the burden of configuring

control parameters.
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7 Conclusion

The objective of this research was to enhance the streaming analytic toolkit with methods

based on the adaptive forgetting (AF) framework. The research contributions towards this

objective are as follows.

The work in Chapter 3, focussed on bivariate data streams by extending the AF frame-

work to a specific scenario in the context of cyber-physical systems. This work developed

the AF procedure — formulation, update equations, and algorithms — for estimating the

time-varying parameters of a normal-gamma model. In studying the application, significant

attention is given to assessing model validity, which presents specific challenges. Based on

the adaptive estimation procedure, a method for changepoint detection is constructed. This

change detector exploits the relationship between adaptive and non-adaptive estimators; a

feature not previously used in the literature. This strategy is also adopted more creatively in

Chapter 4, where this tactic is shown to perform effectively.

Chapter 4 extended the AF framework to provide an adaptive estimator of the correlation

coefficient. This estimator is again enhanced with a changepoint detector, and the tactic of

using both fixed and adaptive estimators is further fruitfully exploited. Anomaly detection in

cybersecurity provides the motivating application for this work, where servicing the require-

ments of the application dictated the invention of methods to handle coincidental anomalies

across multiple streams.

Quantile estimation is strikingly under-represented in the streaming analytics toolkit, par-

ticularly in terms of the AF framework. Chapters 5 and 6 both relate to this problem in

different ways. The adaptive estimation of binomial parameters is core to the methods used

for streaming quantile estimation, which motivated the development of an adaptive estimator

for binomial data, AFFBinom(m). In examining this fundamental dependence, aspects of the

fragility of the stochastic gradient descent optimisation procedure required scrutiny. A col-
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lection of experimental studies led to some loose conclusions for implementing AFFBinom(m).

Namely, that the choice of cost function should be based on the trial size; NLL for m > 1,

squared error for m = 1, and that the learning rates should be unscaled and not exceed 0.1.

Finally, Chapter 6 used the procedures developed in Chapter 5 to estimate time-varying

values of the empirical cumulative distribution function. This engine enhanced three stream-

ing quantile estimators with temporal-adaptivity. Additionally, a novel streaming quantile

estimation procedure called AFSQE is developed. An extensive simulation study assessed these

four methods in a range of non-stationary environments. No method emerges as best in all

cases, but AFSQE is recommended for its adequate performance in many situations.

Future Work

There are many avenues of further investigation suggested from this research. Three of par-

ticular interest are

• The trick of using adaptive versus non-adaptive estimates (see Sections 3.4 and 4.2.2) to

construct change detectors in a continuous monitoring context was shown to be effective.

Theoretical analysis of the distances between adaptive and non-adaptive estimates could

lead to better methodology for sequential change detection, and perhaps even a new class

of algorithm.

• The experiments in Section 5.4 reveal that there is potential promise in a deeper study of

the effects of truncating the forgetting factors, not only for the use in adaptive binomial

estimation, but in any adaptive estimation procedure. It was shown that an additional

truncation step improved AFMLE performance in stationary periods and mitigated most

of the AFMLE bias observed in Section 5.2. Further understanding of which classes of

distribution family this AFMLE bias occurs for, and how truncation affects the adaptive

estimation process, could lead to new AF algorithms.

• Section 6.6 explored the task of multiple quantile estimation. This is a step towards reli-

ably estimating an entire ECDF, which could prove useful for developing non-parametric

change detection procedures based on statistical distances like the KS statistic (see Sec-

tion 2.4. These types of procedures would be substantial contributions to the streaming
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toolkit. In fact, (Plasse 2019) derives a time-varying estimate for the ECDF through

temporally-adaptive sequential histograms and constructs a change detector. Under-

standing how these approaches differ could lead to the development of improved change

detectors.
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Appendices

A Derivations

A.1 Adaptive Forgetting Maximum Likelihood Estimates for the

Normal-Gamma Distribution

Recall from Equation (3.1), the bivariate pdf for a normal-gamma random variable (X,S)

parameterised by θ = {µ, γ α, β} is given by

f(x, s | θ) = βαγ1/2

Γ(α)
√

2π
sα−1/2 exp

[
−βs− γs(x− µ)2

2

]
,

where Γ(·) is the gamma function and the marginal distribution of S is a gamma distribution

with shape parameter α and rate parameter β. Then, as in Equation (3.2), the adaptive

forgetting log-likelihood for data d1:t = (xi, si)t
i=1 and forgetting factors (λi)t−1

i=1 is

Lλ(θ | d1:t) =
t∑

i=1

t−1∏
j=i

λj

[α log(β) + log(γ)
2 − log

(
Γ(α)

)

+
(
α− 1

2

)
log(si)− βsi −

γsi(xi − µ)2

2

]
,
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where the empty product when j = t is defined to be 1. Then the derivatives of the AF

log-likelihood with respect to each parameter are

∂

∂µ
Lλ(θ | d1:t) = γ

 t∑
i=1

t−1∏
j=i

λj

xisi

− γµ t∑
i=1

t−1∏
j=i

λj

si

= γ(mxs,t − µms,t), (A.1)

∂

∂γ
Lλ(θ | d1:t) = 1

2γ

t∑
i=1

t−1∏
j=i

λj

− 1
2

 t∑
i=1

t−1∏
j=i

λj

(x2
i si − 2µxisi + µ2si

)
= 1

2

(
nt

γ
−mx2s,t + 2µmxs,t − µ2ms,t

)
, (A.2)

∂

∂α
Lλ(θ | d1:t) = log β

t∑
i=1

t−1∏
j=i

λj

− ψ(α)
t∑

i=1

t−1∏
j=i

λj

+
t∑

i=1

t−1∏
j=i

λj

 log(si)

= nt(log β − ψ(α)) +mlog s,t, (A.3)

∂

∂β
Lλ(θ | d1:t) = α

β

t∑
i=1

t−1∏
j=i

λj

− t∑
i=1

t−1∏
j=i

λj

si

= α

β
nt −ms,t, (A.4)

where

nt =
t∑

i=1

t−1∏
j=i

λj


= λt−1nt−1 + 1,

mg(x,s),t =
t∑

i=1

t−1∏
j=i

λj

g(xi, si)

= λt−1mg(x,s),t−1 + g(xt, st),

and ψ(·) ≡ Γ′(·)/Γ(·) is the digamma function.

Since the precision γ > 0, setting Equation (A.1) equal to zero and solving gives the adaptive

forgetting maximum likelihood estimate (AFMLE) for µ at time t as

µ̃t = mxs,t

ms,t
. (A.5)
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Then substituting µ = µ̃t from Equation (A.5) into Equation (A.2) gives

∂

∂γ
Lλ(θ | d1:t)

∣∣∣∣
µ=µ̃t

= 1
2

(
nt

γ
−mx2s,t + (mxs,t)2

ms,t

)
. (A.6)

Then setting Equation (A.6) equal to zero and solving gives the AFMLE for γ as time t as

γ̃t = nt

(
mx2s,t −

(mxs,t)2

ms,t

)−1

= nt

mx2s,t − µ̃tmxs,t
. (A.7)

Consider Equation (A.4), which is equal to zero at the AFMLE values α = α̃t, β = β̃t, such

that

β̃t = α̃t
nt

ms,t
. (A.8)

Then substituting β = β̃t from Equation (A.8) into Equation (A.3) gives

∂

∂α
Lλ(θ | d1:t)

∣∣∣∣
β=β̃t

= nt

(
log(α̃t)− log

(
ms,t

nt

)
− ψ(α) + mlog s,t

nt

)
, (A.9)

which has no closed form solution when equal to zero. Numerical optimisation schemes such

as Newton’s method can be used to find an AFMLE for α, but these can be slow to con-

verge, often requiring hundreds of iterations. The many iterative steps involved are often too

computationally burdensome to meet the requirements of streaming data. Minka (2002) uses a

generalised Newton scheme that approximates the offline (or no-forgetting) log-likelihood with

a function of the form

g(x) = c0 + c1x+ c2 log(x).

This generalised Newton approach gives an update step that depends on evaluating digamma

and trigamma functions, but impressively tends to converge in just four iterations. However, in

the most stringent of settings, this approach may still be too demanding. One alternative is to

approximate Equation (A.6) with a sufficiently simple function to obtain a closed form solution

when set equal to zero. Grouping and writing the terms involving α as a single function h(α)

gives

h(α) = log(α)− ψ(α) = log
(
ms,t

nt

)
− mlog s,t

nt
. (A.10)
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The Euler-Maclaurin formula can be used to derive the following asymptotic series for the

digamma function (Abramowitz and Stegun 1965):

ψ(α+ 1) = logα+ 1
2α −

1
12α2 +O(α4) (A.11)

In addition, the digamma function has the recurrence property

ψ(α+ 1) = ψ(α) + 1
α
. (A.12)

Hence truncating

ψ(α) ≈ logα− 1
2α −

1
12α2 , (A.13)

such that h(α) can be approximated by

h1(α) = 1
2α + 1

12α2 , (A.14)

ensures Equation (A.10) is a quadratic equation in α for which the solution always exists and

is cheap to compute. The approximation h1(α) is generally effective, but noticeably struggles

for α < 1 where the relative absolute error

|h1(α)− h(α)|
h(α) ,

increases exponentially as α → 0, shown by the red line in Figure A.1. In contrast, the

approximation originally proposed in Minka (2002)

h2(α) = 1
2α + 1

12α2 + 2α, (A.15)

shown by the blue line does not suffer from this issue, where for α ∈ (0, 10], h2(α) is always

within 1.7% of the true value. Using h2(α) as in Equation (A.15) also ensures Equation (A.10)

is a quadratic, specifically of the form

6ζtα
2 + (ζt − 3)α+ 1 = 0,
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Figure A.1: Absolute relative errors of functions h1(α) in red, and h2(α) in blue, which approximate
h(α) = log(α)− ψ(α). Notice that h1 is a particularly poor approximation the closer α is
to 0, whereas the relative error for h2 is bounded from above.

where

ζt = log
(
ms,t

nt

)
− mlog s,t

nt
,

and hence an approximation to the AFMLE for α is

α̃t = (3− ζt) +
√

(ζt − 3)2 + 24ζt

12ζt
,

where the larger root is always chosen as this maximises the log-likelihood which is monoton-

ically increasing with respect to α.

Finally, β̃t can be computed using α̃t in Equation (A.8).

A.2 Gradient of the Next-Step Log-Likelihood for the Normal-Gamma

Distribution

Recall from Equation (3.1), the bivariate pdf for a Normal-Gamma random variable (X,S)

parameterised by θ = {µ, γ α, β} is given by

f(x, s | θ) = βαγ1/2

Γ(α)
√

2π
sα−1/2 exp

[
−βs− γs(x− µ)2

2

]
,

where Γ(·) is the gamma function and the marginal distribution of S is a gamma distribution

with shape parameter α and rate parameter β.
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Then, the next-step log-likelihood is

L
(
θ̃t−1 | xt, st

)
= log f

(
xt, st | θ̃t−1

)
= α̃t−1 log β̃t−1 + 1

2 log γ̃t−1 − log Γ(α̃t−1)− 1
2 log(2π)

+
(
α̃t−1 −

1
2

)
log(st)− β̃t−1st −

1
2 γ̃t−1st(xt − µ̃t−1)2. (A.16)

Then the gradient of the next-step log-likelihood can be computed by assuming that each

component of the adaptive estimate θ̃t−1 is a function of a single forgetting factor λ (see

Section 3.2.4). Differentiating Equation (A.16) with respect to λ gives

∇λ

[
L
(
θ̃t−1 | xt, st

)]
= γ̃t−1st(xt − µ̃t−1) ∂

∂λ
µ̃t−1

+ 1
2

( 1
γ̃t−1

− st(xt − µ̃t−1)2
)
∂

∂λ
γ̃t−1

+
(
log
(
β̃t−1st

)
− ψ(α̃t−1)

) ∂
∂λ
α̃t−1

+
(
α̃t−1

β̃t−1
− st

)
∂

∂λ
β̃t−1,

where ψ(·) ≡ Γ′(·)/Γ(·) is the digamma function.

A.3 The Adaptive Forgetting Log-Likelihood for Bernoulli Data

Recall from Section 2.1.3 the density for the Bernoulli distribution is

f(y | θ) = θy(1− θ)1−y.

So the likelihood for an i.i.d. Bernoulli sample y1, y2, . . . , yt is

L(θ | y1, . . . , yt) =
t∏

i=1
θyi(1− θ)1−yi = θtȳ(1− θ)t−tȳ,

where

ȳ = 1
t

t∑
i=1

yi.
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Hence the log-likelihood is given by

L(θ | y1, . . . , yt) = log(θ)
t∑

i=1
yi + log(1− θ)

t∑
i=1

(1− yi),

or, for a single datum yi is simply L(θ | yi) = yi log(θ) + (1− yi) log(1− θ). Then, the adaptive

forgetting log-likelihood is the exponentially weighted sum

L(λ)(θ | y1, . . . yt) =
t∑

i=1

t−1∏
j=i

λj

L(θ | yi)

=
t∑

i=1

t−1∏
j=i

λj

[yi log(θ) + (1− yi) log(1− θ)
]

= log(θ)
t∑

i=1

t−1∏
j=i

λj

yi + log(1− θ)
t∑

i=1

t−1∏
j=i

λj

(1− yi)

= mt log(θ) + (wt −mt) log(1− θ),

where

mt =
t∑

i=1

t−1∏
j=i

λj

yi = λtmt−1 + yt,

wt =
t∑

i=1

t−1∏
j=i

λj

 = λtwt−1 + 1.

A.4 Quadratic Approximation for the AFSQE Proxy Cost

Recall from Section 6.3.4, the strictly consistent scoring function

Sq(x, y) =
(
1{x ≥ y} − q

)
(x− y),

is chosen as a cost function to sequentially update the quantile estimate Q̃(q)
t as part of the

AFSQE procedure. As Q(q)
t , the true value of the q-quantile at time t, is unknown, Sq

(
Q

(q)
t , Q̃

(q)
t

)
is not available. However, from Equation (6.6), the following proxy cost, is available

Sq

(
q, θ̃

(q)
t

)
=
(
1
{
q ≥ θ̃(q)

t

}
− q

)(
q − θ̃(q)

t

)
=


(1− q)

(
q − θ̃(q)

t

)
if θ̃(q)

t ≤ q,

−q
(
q − θ̃(q)

t

)
if θ̃(q)

t > q.

140



Note that Sq

(
q, θ̃

(q)
t

)
is a piecewise-linear function of θ̃(q)

t with a global minimum of 0 when

q = θ̃
(q)
t . Optimising this function using stochastic gradient descent is non-trivial since this

function is not differentiable at the global minimum. An approach to avoid this issue is to

use an approximation that is differentiable everywhere. One simple approximation is to use a

concave up quadratic function that passes through the same global minimum. Replacing θ̃(q)
t

with γ for notational convenience, let f(γ) = A(γ−B)2 +C be a quadratic that passes through

(q, 0). Then clearly B = q and C = 0. Choosing A = 1 ensures the gradient of the quadratic

is relatively close to the gradient of the piecewise-linear function. Hence, the quadratic used

is of the form

f(γ) = (γ − q)2,

which is equivalent to the squared error cost for q, and is shown alongside the proxy cost in

Figure A.2 for q = 0.4.
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Figure A.2: The piecewise-linear proxy cost Sq(q, γ) and the quadratic approximation used.
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B Tables

Table B.1: Root mean squared error results for AFFBinom(10) for a selection of stationary and non-
stationary simulation environments. Cells coloured in green indicate a lower RMSE than for
AFFB (see Table 5.3), with cells coloured in red otherwise.

Cost function
Negative log-likelihood J (1) Squared error J (2)

Simulation Learning Rate η Learning Rate η
Type Parameters 0.1 0.01 0.001 10−4 0.1 0.01 0.001 10−4

θ0 = 0.5 0.035 0.023 0.013 0.008 0.052 0.069 0.060 0.039
Static

θ0 = 0.99 0.010 0.005 0.002 0.001 0.015 0.016 0.013 0.008
α = 0.98, β = 0.01 0.026 0.022 0.021 0.016 0.059 0.048 0.044 0.029Smooth

(slow) α = 0.5, β = 0.25 0.033 0.024 0.022 0.017 0.050 0.064 0.056 0.037
α = 0.98, β = 0.01 0.046 0.046 0.041 0.041 0.152 0.131 0.054 0.051Smooth

(fast) α = 0.5, β = 0.25 0.045 0.047 0.041 0.040 0.100 0.086 0.063 0.053
θ0 = 0.95 0.025 0.027 0.034 0.038 0.031 0.032 0.035 0.032Abrupt

(slow) θ0 = 0.75 0.033 0.026 0.032 0.048 0.046 0.058 0.059 0.044
θ0 = 0.95 0.066 0.082 0.067 0.058 0.063 0.049 0.050 0.054Abrupt

(fast) θ0 = 0.75 0.049 0.057 0.061 0.055 0.064 0.061 0.068 0.071

Table B.2: Root mean squared error results for AFFBinom(100) for a selection of stationary and non-
stationary simulation environments. Cells coloured in green indicate a lower RMSE than for
AFFB (see Table 5.3), with cells coloured in red otherwise.

Cost function
Negative log-likelihood J (1) Squared error J (2)

Simulation Learning Rate η Learning Rate η
Type Parameters 0.1 0.01 0.001 10−4 0.1 0.01 0.001 10−4

θ0 = 0.5 0.011 0.007 0.004 0.002 0.016 0.019 0.024 0.020
Static

θ0 = 0.99 0.002 0.001 0.001 0.001 0.003 0.004 0.005 0.003
α = 0.98, β = 0.01 0.009 0.009 0.008 0.007 0.189 0.170 0.127 0.014Smooth

(slow) α = 0.5, β = 0.25 0.011 0.009 0.008 0.007 0.108 0.086 0.021 0.019
α = 0.98, β = 0.01 0.020 0.019 0.018 0.018 0.242 0.248 0.232 0.019Smooth

(fast) α = 0.5, β = 0.25 0.020 0.019 0.018 0.018 0.157 0.155 0.084 0.023
θ0 = 0.95 0.020 0.026 0.031 0.019 0.044 0.037 0.014 0.015Abrupt

(slow) θ0 = 0.75 0.015 0.016 0.020 0.019 0.028 0.027 0.020 0.021
θ0 = 0.95 0.064 0.081 0.046 0.034 0.135 0.110 0.035 0.035Abrupt

(fast) θ0 = 0.75 0.037 0.046 0.032 0.028 0.077 0.071 0.029 0.029

142



References

M. Abramowitz and I. Stegun (1965). Handbook of Mathematical Functions: With Formulas, Graphs,

and Mathematical Tables. Applied Mathematics Series. Dover Publications (cit. on p. 137).

N. Adams and N. Heard (2014). Data Analysis for Network Cyber-Security. Imperial College Press

(cit. on p. 39).

N. Adams and N. Heard (2016). Dynamic Networks and Cyber-Security. Imperial College Press (cit. on

pp. 39, 53).

S. Ahmad, A. Lavin, S. Purdy, and Z. Agha (2017). “Unsupervised real-time anomaly detection for

streaming data”. Neurocomputing 262, pp. 134–147 (cit. on p. 2).

M. Ahmed, A. N. Mahmood, and J. Hu (2016). “A survey of network anomaly detection techniques”.

Journal of Network and Computer Applications 60, pp. 19–31 (cit. on p. 40).

C. Anagnostopoulos (2010). “A Statistical Framework for Streaming Data Analysis”. PhD thesis. Lon-

don, UK: Imperial College London (cit. on pp. 2, 16, 59, 66, 69, 71).

C. Anagnostopoulos, D. K. Tasoulis, N. M. Adams, N. G. Pavlidis, and D. J. Hand (2012). “Online

Linear and Quadratic Discriminant Analysis with Adaptive Forgetting for Streaming Classification”.

Statistical Analysis and Data Mining 5:2, pp. 139–166 (cit. on pp. 2, 17, 18, 23, 26, 44, 46, 47, 59).

J. E. Angus (1994). “The Probability Integral Transform and Related Results”. SIAM review 36:4,

pp. 652–654 (cit. on p. 29).

K. J. Åström and B. Wittenmark (1973). “On Self Tuning Regulators”. Automatica 9:2, pp. 185–199

(cit. on p. 15).

K. Åström, U. Borisson, L. Ljung, and B. Wittenmark (1977). “Theory and applications of self-tuning

regulators”. Automatica 13:5, pp. 457–476 (cit. on p. 15).

K. J. Åström, ed. (1970). Index. Vol. 70. Mathematics in Science and Engineering. Elsevier, pp. 295–299

(cit. on p. 15).

R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk (1972). Statistical inference under

order restrictions; the theory and application of isotonic regression. Wiley, London (cit. on p. 125).

A. Benveniste, P. Priouret, and M. Métivier (1990). Adaptive Algorithms and Stochastic Approximations.

Springer-Verlag, Berlin, Heidelberg (cit. on p. 16).

143



D. K. Bhattacharyya and J. K. Kalita (2013). Network anomaly detection: A machine learning perspec-

tive. CRC Press (cit. on p. 40).

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita (2014). “Network Anomaly Detection: Methods,

Systems and Tools”. IEEE Communications Surveys Tutorials 16:1, pp. 303–336 (cit. on p. 40).

A. Bifet and R. Gavalda (2007). “Learning from Time-Changing Data with Adaptive Windowing”. In:

Proceedings of the 2007 SIAM International Conference on Data Mining. SIAM, pp. 443–448 (cit. on

pp. 14, 23).

D. A. Bodenham and N. M. Adams (2017). “Continuous monitoring for changepoints in data streams

using adaptive estimation”. Statistics and Computing, pp. 1–14 (cit. on pp. xiii, xiv, 18, 19, 23, 26,

34, 35, 40, 46, 47, 50–52, 59, 119).

D. Bodenham (2014). “Adaptive estimation with change detection for streaming data”. PhD thesis.

London, UK: Imperial College London (cit. on pp. 2, 16–18, 24, 58, 59, 69–72, 75).

R. G. Brown (1956). “Exponential Smoothing for Predicting Demand”. In: Tenth National Meeting of

the Operations Research Society of America, Florida, US, November 15–16, 1956 (cit. on p. 16).

R. G. Brown (1963). Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice-Hall

international series in management. Prentice-Hall (cit. on p. 16).

A. L. Buczak and E. Guven (2016). “A Survey of Data Mining and Machine Learning Methods for

Cyber Security Intrusion Detection”. IEEE Communications Surveys Tutorials 18:2, pp. 1153–1176

(cit. on p. 40).

J. Cao, L. E. Li, A. Chen, and T. Bu (2009). “Incremental tracking of multiple quantiles for net-

work monitoring in cellular networks”. In: Proceedings of the 1st ACM Workshop on Mobile Internet

Through Cellular Networks. ACM, pp. 7–12 (cit. on pp. xiv, 88, 125).

A. A. Cárdenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry (2009). “Challenges for Securing

Cyber Physical Systems”. Prevention (cit. on pp. 19, 20).

K. M. Carter and W. W. Streilein (2012). “Probabilistic Reasoning for Streaming Anomaly Detection”.

In: 2012 IEEE Statistical Signal Processing Workshop (SSP), pp. 377–380 (cit. on p. 33).

F. Chen, D. Lambert, and J. C. Pinheiro (2000). “Incremental quantile estimation for massive tracking”.

In: Proceeding of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. ACM, pp. 516–522 (cit. on pp. xiv, 87, 90–92, 126).

Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero (2010). “Shrinkage Algorithms for MMSE Covariance

Estimation”. IEEE Transactions on Signal Processing 58:10, pp. 5016–5029 (cit. on p. 45).

G. Cormode and S. Muthukrishnan (2005). “An improved data stream summary: the count-min sketch

and its applications”. Journal of Algorithms 55:1, pp. 58–75 (cit. on p. 87).

D. Cox and D. Hinkley (1979). Theoretical Statistics. Chapman & Hall/CRC (cit. on pp. 7, 11, 61).

144



R. A. Fisher (1915). “Frequency Distribution of the Values of the Correlation Coefficient in Samples

from an Indefinitely Large Population”. Biometrika 10:4, pp. 507–521 (cit. on p. 48).

T. Fortescue, L. Kershenbaum, and B. Ydstie (1981). “Implementation of self-tuning regulators with

variable forgetting factors”. Automatica 17:6, pp. 831–835 (cit. on p. 16).
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