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INTRODUCTION

The Intermodal Preferential Looking task (IPL, e.g., 
Spelke, 1976; Thomas et al., 1981; Golinkoff et al., 1987) 
has been widely used to study linguistic and cognitive 
development during infancy and early childhood. Also, 
commonly referred to as the looking-while-listening 
task (e.g., Fernald et al.,  2001), it has been used to in-
vestigate infant sensitivity to temporal invariances in 
audio-visual relationships (Spelke,  1979), vocabulary 
development (Thomas et al., 1981), phonological devel-
opment (Swingley & Aslin,  2000), semantic develop-
ment (Meints et al., 1999), and conceptual development 
(Sučević et al., 2022), to mention just a few topics.

In a typical IPL task, pictures of objects are displayed 
on a computer monitor and one of them is named over a 
loudspeaker while the eye-movements of the listener are 
monitored either automatically or manually using static 
camera(s). The logic behind the task is that selective vi-
sual attention to the objects can be used to index the lis-
tener's interpretation of the auditory and visual stimuli 
used, thereby gaining insights into the corresponding 

representations and processing of these stimuli. For 
example, selective attention to a picture of a dog in an 
array of other animals upon hearing the word “dog” 
might be used to infer that the listener understands the 
word. Failure to pay selective visual attention to the pic-
ture of a dog upon hearing the sound sequence “tog” 
might be used to infer that the listener has a detailed 
representation of the word “dog,” or conversely if the 
listener still selectively attends to the dog upon hearing 
“tog,” that the listener has a flexible or underspecified 
representation of this lexical item. Similarly, if the lis-
tener only fixates an image of a Labrador but not a Poo-
dle upon hearing the word “dog,” the investigator might 
be tempted to conclude that the listener's understanding 
of the word is deviant, or at least unadult-like. Provided 
appropriate control conditions are incorporated into the 
design of such experiments, the IPL task can be used to 
investigate development across a broad range of linguis-
tic and cognitive domains and ages. A critical advantage 
of this task is that it requires minimal activity (eye move-
ments) from the infant to demonstrate their sensitivity 
to correspondences between auditory and visual stimuli. 
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Furthermore, infant response latencies in this task are 
sufficiently rapid that automatic processing can often be 
assumed.

The IPL task can be considered a special case of the 
Visual World Paradigm (VWP) which has been used to 
investigate psycholinguistic representations and pro-
cesses in adults (Cooper, 1974; Tanenhaus et al., 1995). 
The linking hypothesis of the VWP is the same as IPL: 
selective visual attention to objects in a display are 
used to index the mental processes involved in inter-
preting a linguistic (usually auditory) stimulus. The 
rapid nature of eye movements allows us to monitor 
these mental processes on a millisecond time scale in 
relatively natural contexts. However, in contrast to 
IPL which typically uses just 2 object stimuli, the VWP 
may use many objects in the visual display. In order 
to launch a rapid saccade toward an appropriate ref-
erent in the display, the listener can take advantage of 
their memory for the identity of objects at the various 
locations in the display. However, since the opportu-
nity to preview the display is quite brief (typically a 
few seconds) and the displays vary from trial-to-trial, 
the listener needs to continually update their binding 
of object identities to their locations in working mem-
ory (Huettig et al., 2011) in order to achieve rapid refer-
ent identification. The simpler visual displays used in 
IPL tend to make them more suited to younger partic-
ipants, although more complex displays have also been 
used with toddlers (see Chow et al.,  2017). Nonethe-
less, even with the simpler displays used in IPL, the re-
sponse latencies of infant and toddler listeners benefit 
from maintaining a working memory of the identity of 
the displayed objects and their locations.

The cognitive and linguistic demands of both the 
VWP and IPL are multi-faceted. Magnuson (2019) pro-
vides an excellent summary of these requirements. Fun-
damental skills for successful referent identification in 
IPL are:

1.	 The ability to recognize the word(s) uttered in the 
auditory stimulus.

2.	 The ability to identify the objects represented in the 
visual stimulus.

3.	 An appreciation of the relationships between the per-
ceived auditory and visual stimuli.

4.	 Memory for the unfolding auditory stimulus.
5.	 Memory for the visual stimuli and their locations.
6.	 The ability to launch a saccade to a spatial location 

based on the preceding information.

Each of these skills involves a complex set of con-
stituent parts, which are worthy objects of investiga-
tion in their own right. A proper understanding of 
how individuals behave during the IPL requires us 
to make explicit our assumptions about the mecha-
nisms, representations, and process underlying these 

constituent skills and how they operate together to 
enable meaningful behavior. One way to achieve such 
an understanding is to build a formal model able to 
mimic aspects of human behavior on the task. This 
model should clarify the researcher's theoretical stance 
on these skills, whether they be radical or neutral. To 
be sure, no model will provide a complete account of 
the fundamental skills (1–6) listed above: any model of 
the IPL will focus of some subset of these skills. The 
model presented in this article focuses on components 
3–5 in the above listing.

A common theme raised by many researchers 
using IPL or VWP concerns the impact of context on 
the identification of a referent in the visual array in 
response to an auditory signal. Here, context usually 
refers to both the auditory context and visual context 
and how they interact with each other. Contexts can 
be facilitatory or inhibitory depending on the nature of 
the stimuli used in the task. For example, stimuli in 
the visual array that look alike can interfere with, or 
inhibit, referent identification. Likewise, visual stim-
uli that have similar sounding names can also inhibit 
referent identification. In contrast, extended preview 
of the visual stimuli can accelerate, or facilitate, ref-
erent identification upon hearing a subsequent name. 
Likewise, pre-exposure to the auditory stimuli can also 
be facilitatory, by helping listeners anticipate the likely 
target in a visual array, as well as predict the name of 
the referent: “He is eating a ….” engenders faster sac-
cades to a visible edible item than a neutral phrase such 
as “Look at the ….”. Identification of these facilitatory 
and inhibitory effects provide important clues as to na-
ture of the processes and representations involved in 
these situations.

In this paper, we model the impact of visual and pho-
nological similarity on referent identification in an IPL 
task and identify the processes and representations that 
are needed to reproduce some established findings in the 
development literature regarding context effects in the 
IPL.

Overview

We describe a neural network model of the Intermodal 
Preferential Looking (IPL) task. The model is trained 
on stimuli derived from real-world corpora and is 
shown to mimic toddler behavior in IPL tasks using 
bottom-up processes alone. The model captures an im-
portant characteristic of toddler behavior in this task, 
namely that preferences in later development are domi-
nated by semantic properties of the referent, whereas 
visual properties play a greater role in earlier develop-
ment (Mandler,  2000). In contrast to earlier network 
models of semantic development (see, e.g., Mayor & 
Plunkett, 2010; McMurray, Horst & Samuelson, 2012; 
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Plunkett et al., 1992; Rogers & McClelland, 2004), we 
use realistic and dynamically unfolding representa-
tions of phonological and visual stimuli. The use of 
real-world corpora also distinguishes this model from 
other attempts to simulate adult behavior in the visual 
world task (Smith et al., 2017). This is made possible by 
the recent availability of more powerful architectures 
and learning procedures, as well as the availability 
of pre-trained models for image recognition and co-
occurrence statistics.

Our goal in this work is to demonstrate that the 
pattern of eye fixations toward a named target item 
in a visual scene can be explained by the visual and 
semantic similarity of the items, and the phonological 
relationships between their labels. Furthermore, we 
demonstrate that it is not necessary to postulate top-
down, feedback processes to account for the increas-
ing reliance of the system on semantic information 
over visual information during the course of learning. 
In particular, the learning process itself leads to an 
increasing reliance on the semantic properties of the 
items in the visual scene, despite the system exploiting 
phonological and visual information in an entirely bot-
tom-up fashion. In using the term bottom-up, we mean 
that there are no top-down connections in the network 
whereby activation can flow from higher levels of the 
system to lower levels.

We review some experimental investigations of 
toddler behavior in an IPL task in which the audi-
tory and visual stimuli, and the visual and semantic 
relationships between them, are carefully manipu-
lated in order to identify some of the factors that in-
fluence the regularities in the eye movements observed 
in the task (Angulo-Chavira et al.,  2023; Arias-Trejo 
& Plunkett, 2010; Bergelson & Aslin, 2017). We focus 
on modeling the development of toddler behavior on 
the assumption that studying the manner in which the 
building blocks required to perform the task are as-
sembled during development will provide insights into 
the functioning of the fully mature system. By con-
structing a computer model in which the visual, pho-
nological, and semantic relationships between objects 
and their labels are systematically manipulated, we 
show how these relationships influence referent selec-
tion in a manner that mimics toddler behavior. The as-
sumptions embodied in the model constitute a theory 
about linguistic and cognitive processes involved in 
the VWP. In the empirical part of the paper, we report 
on previously published and unpublished experimen-
tal work that systematically manipulates the categori-
cal (semantic) and visual similarity of the items in the 
visual scene. These experimental data show that both 
semantic and visual factors have an impact on the tod-
dler's ability to identify the target referent of the au-
ditory stimulus. In particular, semantic factors come 
to dominate referent choices as development proceeds. 

We also show how phonological similarity affects per-
formance in the task.

The centerpiece of the manuscript is a neural net-
work model of toddler behavior in the same IPL task 
used by Arias-Trejo and Plunkett  (2010). The model 
receives inputs from real-word corpora reflecting the 
vocabularies of young toddlers and images of typical 
exemplars of the referents of the words in these vocab-
ularies. Each vocabulary item is assigned a dynamic 
phonological representation of the item label corre-
sponding to the unfolding speech pattern. The visual 
inputs are unfolding representations (corresponding to 
sequences of fixations) of two items. The vocabulary 
item always refers to just one of the image inputs. The 
task of the network is to activate a semantic represen-
tation of the item that is named at the target output 
location, and to suppress the semantic representation 
of the visual input item at the distractor output loca-
tion. This training regime forces the network to learn 
the associations between phonological, visual, and se-
mantic representations of an item and to use these as-
sociations to identify the location of the named item by 
activating its semantic representation at the appropri-
ate output location. Anthropomorphizing, we might 
say that the training regime encourages the network to 
pay selective attention to the target output location and 
to suppress attention to the distractor. In this regard, 
the model provides an account of how language can 
drive visual attention in the inter-modal preferential 
looking task.

The visual inputs to the model are vector represen-
tations derived from a deep neural network pre-trained 
on ImageNet (Deng et al., 2009). The semantic outputs 
reflect real-world corpora insofar as they are vector 
representations taken from the GloVe model pre-
trained on aggregated global word–word cooccurrence 
statistics from a 6 billion token corpus (Pennington 
et al., 2014). Phonological inputs consist of an unfold-
ing sequence of standard phonological features used to 
uniquely identify each word in the toddler's vocabulary 
(Karaminis,  2018). These training stimuli have been 
previously used in a neural network model of spoken 
word recognition (Duta & Plunkett, 2021). That model 
captured the phonological preference effect (PPE) 
whereby both toddlers and adults demonstrate an early 
preference to fixate a phonological distractor over a 
semantic distractor in a visual world task. For exam-
ple, on hearing the word “trousers” both adults and 
toddlers will fixate a picture of a “train” before they 
fixate a picture of a “hat” in a target-absent trial (Chow 
et al., 2017; Huettig & McQueen, 2007). The model pre-
sented here builds on this work but introduces the ad-
ditional component of object location which is absent in 
earlier models of referent selection in a visual world 
task (including Plunkett et al.,  1992; Allopenna 
et al.,  1998; Rogers & McClelland,  2004; Mayor & 
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Plunkett, 2010; McMurray et al., 2012; Mayor & Plun-
kett,  2014; Duta & Plunkett,  2021).1 The inclusion of 
location is an important elaboration of the earlier 
model as it requires an account of how the identity of 
an object is bound to a particular location. As we shall 
see, the model must learn these identity-location bind-
ings in order to generalize them to object pairings to 
which it has never previously been exposed. An under-
standing of how infants and toddlers learn object-
location bindings and generalize this knowledge to 
new situations is critical for any theory of child devel-
opment. The neural network model mimics the IPL 
task in that it is presented with audio-visual inputs and 
is directed to select the appropriate semantic represen-
tation and ignore the alternative.

The model is trained on a broad range of audio-visual 
pairings (and their corresponding semantic represen-
tations) using standard machine learning techniques 
from the PyTorch library (Paszke et al., 2019). It is then 
tested on a carefully sculpted set of audio-visual input 
combinations, not used during training, that mimic the 
experimental conditions used in Arias-Trejo and Plun-
kett's (2010) IPL task with young toddlers. In particular, 
we systematically manipulate the phonological (P), vi-
sual (V), and semantic (S) similarity of the test stimuli, 
where each factor (P, V, and S) is either related (R) or un-
related (U) in level of similarity. We compare the model's 
performance with that of young toddlers.

The model is quite successful in mimicking toddler 
behavior. Visual and semantic similarity lead to interfer-
ence effects as observed in toddlers: both visually and se-
mantically similar items reduce preference for the target 
compared to unrelated items (though target preference 
remains above chance in all cases). Likewise, phonolog-
ically similar items, here defined as items having labels 
with identical onsets, suffer interference whereby phono-
logical unrelated items are easier to identify than related 
ones. However, the model demonstrates an unpredicted 
interaction between semantic and phonological related-
ness: semantic similarity overpowers phonological simi-
larity as training progresses.

In addition to providing a formal model of observed 
behavior, the model provides a framework for concep-
tualizing the processes involved in this toddler version 
of the IPL task. The model instantiates an entirely bot-
tom-up, feedforward account of the task. There are no 
top-down, feedback connections from the semantic out-
puts to the auditory and visual inputs. Nevertheless, the 
model exhibits strong semantic category effects which in-
creasingly drown out the impact of visual similarity and 
phonological similarity as training progresses. We show 
how these effects can be attributed to the architectural 

and representational features embedded in the model, 
and outline how these outcomes would change if the as-
sumptions underlying these features were changed. Nev-
ertheless, the model paints a picture of the developing 
toddler, attributing increasing weight to semantic in-
formation as learning proceeds, even to the extent that 
visual and phonological ambiguity is suppressed. We 
speculate about the impact of architectural and repre-
sentational modifications of the model and their impli-
cations for explaining toddler behavior in the IPL task.

Experimental findings

Upon hearing a word describing a visual scene, both 
adult and child listeners selectively attend to the item 
matching the word's referent (Allopenna et al.,  1998; 
Chow et al., 2017). For example, on seeing a display with 
a train and a bear, listeners hearing the word train selec-
tively attend to the image of the train. Previous studies 
with infants and young children show that the propor-
tion of time spent looking at the named target image is 
influenced by the relationships between the target and 
distractor items (Arias-Trejo & Plunkett, 2010). Listeners 
spend proportionally more time looking at the target if 
the distractor is visually dissimilar and this effect is am-
plified if the two items are also from different semantic 
categories. This suggests that both perceptual similarity 
and category membership of the items lead to competi-
tion effects in word recognition and referent identifica-
tion, in the context of the visual world task.

Arias-Trejo and Plunkett  (2010) compared toddler 
(Figure 1b) and adult (Figure 1c) performance in this task 
and found that although adult preference for the target 
is diminished when the target is visually similar to the 
distractor, the impact of visual similarity is much greater 
in toddlers, particularly when target and distractor come 
from the same semantic category. Figure 1b shows that 
for toddlers, target recognition is abolished when item 
pairs are taken from the same semantic category and are 
perceptually similar, for example, for cat and dog.

The outcome of the Arias-Trejo and Plunkett  (2010) 
study converges with results from previous investigations 
of early knowledge of category membership (Mandler 
et al., 1991; Mandler & Bauer, 1988; Mcdonough, 2002) 
and extends these findings to show that infants exploit 
global category information when identifying the ref-
erent of a basic level term. Mandler and Bauer  (1988) 
showed that differences between members of the same 
category are minimized, whereas differences between 
members of different categories are maximized, in a 
categorization task with infants under 2 years of age. 
Arias-Trejo and Plunkett (2010) found that these differ-
ences work in a very similar way when lexical categori-
zation is involved. In other words, when infants see two 
similar items from the same category (e.g., cat and dog) 
and are asked to look at one of them, disambiguation is 

 1A notable exception being Smith, Monaghan, and Huettig (2017). However, 
these authors did not use real-world stimuli in their model which consequently 
did not exhibit any visual or semantic similarity effects which is one of the 
main goals of the current work.
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difficult because their commonalities, at both the per-
ceptual and conceptual levels, are maximized. However, 
when infants are presented with two items from different 
categories (e.g., ball and apple), their similarities are min-
imized. Similar results have been reported by Bergelson 
and Aslin  (2017) with much younger 6-month olds: the 
infants found it easier to identify the named target refer-
ent when the competitor images were semantically unre-
lated than when they semantically related. The nature of 
the mechanism(s) underpinning these effects on catego-
rization and referent identification in infants and young 
toddlers is not well-understand. One of the goals of the 
current work is to demonstrate how these effects could 
emerge mechanistically in a system trained to construct 
semantic representations from visual and phonological 
stimuli.

In a recent study, Angulo-Chavira et al.  (2023) pre-
sented 18–24-month olds with pairs of objects taken 
from the same or different semantic categories. Further-
more, the labels of the objects in a pair could be related 
or unrelated. Related labels share the same phonologi-
cal onset, whereas unrelated labels had no overlap (see 
Figure 2).

As with the Arias-Trejo and Plunkett (2010) study, the 
toddlers readily identified the target referent when the 
objects belonged to different semantic categories, irre-
spective of phonological overlap in the labels of the two 
objects. However, when the objects belonged to the same 
semantic category, phonological overlap in the objects' 
labels had a profound effect on target recognition: Pho-
nological overlap abolished target recognition with ob-
ject pairs taken from the same semantic category. This 
finding highlights the dominance of phonological in-
formation over semantic information in identifying the 
referent of a target word in the earlier stages of lexical 
development.

The general pattern of results emerging from these 
studies suggests that target recognition is easily dis-
rupted in infants and young toddlers when additional 
sources of similarity between target and distractor (ei-
ther visual or auditory) are introduced. Such disrup-
tion occurs despite the fact that the same participants 
can readily identify the same target object when the 
viewing conditions are more distinctive, visually or au-
ditorily. In other words, context can have a dramatic 
impact on performance in such tasks. In contrast, 
adults are much less prone to the deleterious effects 
of similarity (see right-hand panel of Figure  1). We 
suggest that overcoming this tyranny of similarity in 
obstructing target referent identification in IPL tasks 
is achieved by a process of exposure and learning. To 
demonstrate the plausibility of the claim that learning 
itself can lead to the decontextualization of respond-
ing in the IPL task, we present a neural network model 
of the IPL task in which we evaluate network perfor-
mance at different points in learning. Performance is 
evaluated on a training set to demonstrate mastery of 
the task and carefully constructed test sets of stimuli 
to demonstrate generalization of performance to pre-
viously unseen combinations of objects.

M ETHODS

Lexicon

The vocabulary to which the model is exposed consists of 
200 imageable nouns from the toddler lexicon, as docu-
mented by the Oxford Communicative Development In-
ventory (OCDI) data (Hamilton et al., 2000). The OCDI 
consists of a checklist of 416 words that are commonly 
known (understood or used) by infants and toddlers. 

F I G U R E  1   (a) Examples of object pairings in the Arias-Trejo and Plunkett (2010) study (b) Mean increase in the proportion of target 
looking for 18–24 month olds (replotted using the original dataset). Item pairs can be from the same semantic or different semantic categories. 
Furthermore, each item pair is selected to be perceptually similar or dissimilar to yield a 2 × 2 design. (c) Mean proportion of target looking for 
adults using the same 2 × 2 design as the toddler study (replotted using the original dataset).
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Parents are asked to indicate whether their child under-
stands or says each word. Hamilton et al. (2000) provide 
norming data for these words, indicating which words 
are likely to be known at different ages from 10- to 
30 months of age. These norms were used by Arias-Trejo 
and Plunkett (2010) and Angulo-Chavira et al. (2023) to 
select stimuli for their experiments based on the image-
ability of the words and the likelihood that the partici-
pants know the words. Likewise, in this modeling study, 
we chose 200 imageable words from the OCDI that were 
likely to be known by at least 50% of 24-month olds, as 
a representative vocabulary for training our model. The 
words were taken from a range of 12 distinct semantic 
categories, with a majority (64%) belonging to the cat-
egories of animals, food/drink, or household objects. 
Distribution plots for category membership, label length 
and onset phone identity across the entire vocabulary are 
provided in the Appendix (Figures  A1 and A2). Items 
were chosen to facilitate the creation of realistic train-
ing scenarios whereby items could be combined in such 
a way that category membership and visual similarity 
could be manipulated independently of each other.

Each vocabulary item was assigned a dynamic pho-
nological and visual representation and a static semantic 
representation. The dynamic phonological representa-
tion of an item was an unfolding sequence of phonemes 
corresponding to the label. The dynamic visual represen-
tation of an item consisted of an unfolding sequence of 

visual features that gradually revealed all the visual fea-
tures of the image. The dynamic nature of these repre-
sentations is intended to mirror the toddler's real-world 
experience: the toddler hears a word unfold over time 
and fixates different locations of the visual scene over 
time. In contrast, the static semantic representation is in-
tended capture the internal representation of the item's 
meaning, including its relationship to the meanings of 
other items.

The model is trained to take these phonological and 
visual representations as inputs and output the seman-
tic representation of the target item. The target output 
corresponds to the semantic representation of the visual 
item which is labeled (by the phonological representa-
tion) on a given trial. The model must learn to activate 
the target in its correct output location. The model also 
learns to suppress the semantic representation of the un-
labeled visual item (the distractor) in its correct output 
location.

Representations

Dynamic phonological representations

Dynamic phonological representations are constructed 
from encodings of the phones making up the item's 
label. Each phone is assigned a distributed binary 

F I G U R E  2   (a) Examples of object pairs used in Angulo-Chavira et al. (2023) study. Item pairs can be from the same semantic (thematic or 
taxonomic) or different semantic categories. Furthermore, each item pair is selected to have the same or different phonological onset in 3 × 2 × 2 
design. (b) Mean increase in proportion of target looking for toddlers from the pre- to post-naming phases of a trial.
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      |  7A MODEL OF REFERENT IDENTIFICATION

encoding based on 20 articulatory and phonological 
features (Karaminis,  2018). The dynamic phonologi-
cal representation for each vocabulary item is a matrix 
composed of the phonological feature representations 
of its phones in the order in which they appear as the 
spoken word unfolds, in which each row corresponds to 
a time step in the unfolding word. To account for phone 
co-articulation, the transition between two consecutive 
phone representations is achieved via two intermediate 
rows between the phonological representations of the 
two phones, so that the transition between the feature 
values 1 and 0 consists of two intermediate values of 
0.95 and 0.05, and vice versa. A segmentation character 
for which all 20 phonological features are set to 1 was 
introduced to mark the offset of all labels. Ten phone 
slots are assigned to accommodate the longest vocabu-
lary item including the segmentation character. There-
fore, each dynamic phonological representation is a 
20 × 32 feature matrix (10 rows for the phone represen-
tations and 22 rows for intermediate co-articulations 
steps between consecutive phones including ramping 
up to the first phone and ramping down from the seg-
mentation character). For short labels the inputs are 
padded with 0.5 values after the segmentation charac-
ter so that all labels are represented by a 20 × 32 feature 
matrix. These dynamic phonological representations 
are intended to capture the inherent time-dependent 
nature of the auditory input, in a fashion similar to 
that adopted by the TRACE model of speech percep-
tion (McClelland & Elman, 1986).

Dynamic visual representations

The visual representation for each vocabulary item is de-
rived from the response to an illustration of the item of a 
resnet18 deep neural network pre-trained on ImageNet, 
using the 512-dimensional activation vector for the 
avgpool layer (Deng et al., 2009; He et al., 2016; Paszke 
et al., 2019). The raw visual vectors are pre-processed to 
replace outliers (vector values with a z-score >2) with the 
median value for the corresponding dimension. They are 
further processed using principal component analysis to 
reduce their dimensionality to 150 (cumulative variance 
explained: 95%), then digitized using two bins (one below 
and one above the median value).

The 150-dimensional visual vectors are split into five 
30-dimensional chunks stacked into a dynamic visual 
representation matrix in which each 30-dimensional 
chunk lasts for 4 timesteps. The dynamic phonological 
and visual matrices both have 32 rows corresponding to 
the 32 timesteps needed to unfold the longest word in 
the lexicon. After the 20th timestep at which the visual 
representation has completely unfolded, the remainder 
of the dynamic visual representation is padded with 0.5 
values to accommodate the remaining timesteps for the 
unfolding of the phonological representations. These 

dynamic visual representations are intended to capture 
the inherent time-dependent nature of the processing of 
the visual input.

Static semantic representations

The semantic representations are 100-dimensional word 
vectors taken from the GloVe model, pre-trained on ag-
gregated global word-word co-occurrence statistics from 
a 6 billion token corpus composed of the Gigaword5 and 
Wikipedia 2014 dump (Pennington et al., 2014).

The raw semantic vectors are pre-processed to replace 
outliers (vector values with a z score > 2) with the me-
dian value for the corresponding dimension and then 
digitized using two bins (one below and one above the 
median value).

Item similarity

The between-item similarity of the semantic and visual 
representations is evaluated with the Jaccard index. The 
Jaccard index between two representations is given by 
the number of features concomitantly turned on (value 
of 1) in the two vectors as a percentage of all the features 
that have the value of 1—the intersection of the active 
representation values as a percentage of their union. 
The Jaccard index provides a percentage measure of 
similarity between two representation vectors: the larger 
the index, the higher the similarity between the vectors' 
Jaccard indices for pairs of semantic representations are 
narrowly and normally distributed in the range  .12:.69 
with a mean of .35 and a SD of .06. The Jaccard indices 
for pairs of visual representations are similarly distrib-
uted (range = .16:.50, mean = .33, SD = .03). The Jaccard in-
dices for pairs of phonological representations are more 
broadly distributed with a positive skew (range = 0:.93, 
mean = .27, SD = .11), reflecting the variable length of 
words used in the training environment. Semantic and 
visual vectors are defined to have the same lengths, that 
is, 100 and 150, respectively. See the Appendix for a 
graphic of the distribution of Jaccard indices. Two items 
are considered to be semantically or visually related (SR 
or VR) if the Jaccard index of their corresponding repre-
sentations is in the top 15th percentile; they are semanti-
cally or visually unrelated (SU or VU) if their Jaccard 
index is in the bottom 15th percentile.

These definitions of item similarity are important 
because they parallel the manner in which Arias-Trejo 
and Plunkett  (2010) designed their IPL experiment: 
item pairs could be taken from the same or different 
semantic categories and could be visually similar or 
distinct yielding a classic 2 × 2 experimental design (see 
Figures  1 and 2). Judgments about the similarity of 
experimental materials were obtained from adult rat-
ers by Arias-Trejo and Plunkett  (2010). In the current 
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8  |      DUTA and PLUNKETT

model, we define similarity mathematically in terms 
of the Jaccard index between the 2 vectors represent-
ing two items, semantic or visual, and then calculate 
the distribution of Jaccard indices to determine which 
items are most closely related semantically and least 
closely related semantically, and then choose, within 
these semantically related and unrelated groups, the 
items that are most visually similar and least visually 
similar. This yields a modeling analogue of the exper-
imental 2 × 2 design adopted by Arias-Trejo and Plun-
kett  (2010). In the model, we also had the freedom to 
choose items which were phonologically related or un-
related for each of the cells of this 2 × 2 design. Items 
are considered to be phonologically related (PR) if they 
share the onset phone, and phonologically unrelated 
(PU) otherwise. This manipulation mimics the de-
sign of the experiment conducted by Angulo-Chavira 
et al. (2023).

Model architecture

The model is designed to associate the unfolding of the 
dynamic phonological and visual representation of an 
item with its static semantic representation when the 
visual representation of the target item is accompa-
nied by the visual representation of an unnamed dis-
tractor. The real world equivalent is the identification 
of a target item in a two-item visual display (2AFC). 
The functional architecture of the model is displayed 
in Figure 3.

The core of the architecture consists of a layer of Gated 
Recurrent Units (GRU) (Cho et al., 2014) whose inputs are:

•	 A 20-dimensional vector with the encoding of the cur-
rent phone of the target label

•	 A 60-dimensional vector in which the first and the sec-
ond half of the vector contain the current unfolding of 
the visual features of the item on the left and right of 
the visual display, respectively.

The model output consists of a 200-dimensional se-
mantic representation vector, the first and second half of 
which are associated with the left and right visual items, 
respectively (see Figure 3).

A GRU is a recurrent neural network particularly 
well-suited for processing sequential information, such 
as the unfolding over time of the phonological and vi-
sual representations of an item. A more detailed ex-
planation of the architecture of a GRU is given in the 
Appendix.

Model training

A training set with all possible item pairs (each item as 
a target on the left and right for each pair) was gener-
ated. A subset of the target and distractor pairs were set 
aside for the test (6940 trials), while the rest of the pairs 
were used for training (72,052 trials). Test trials were 
designed to test the generality of the model, that is, the 
model was never tested with an item pair on which it 
had previously been trained. However, model training 
ensured that all items were viewed as targets by the 
model in both locations. We used a form of supervised 
learning—back propagation through time—to train 
the model to output the correct static semantic repre-
sentations for the two unfolding inputs. The model was 
trained for 500,000 epochs using batch update and sto-
chastic gradient descent.2 Weights were dumped every 
50,000 epochs, providing a snapshot of the state of the 
network during the course of training. Performance on 
the training set was evaluated at all snapshot points to 
provide an estimation of how well the network had 
learnt the IPL task for the words and picture pairs to 
which it had been exposed. Performance on the test set 
was also evaluated at all snapshot points to estimate 
how well the network could generalize what it had 
learnt to item pairs that it had never seen before.

The processing cycle for an individual visual display 
consists of the number of timesteps required to fully un-
fold the phones in the target item's label (including the 
intermediate steps accounting for phone co-articulation 
and the segmentation character) and the visual features 
of the display items.

In a training trial, the desired model outputs are set 
for the entire duration of the trial as follows: (a) the 

 2One epoch of training consists of the single presentation of all unique 
training pairs. Batch update refers to the updating of connection weights after 
a single epoch of training. It is useful to contrast batch update with pattern 
update when connection weights are updated after the presentation of every 
training pair. Batch update is more efficient that pattern update and generally 
leads to similar learning outcomes.

F I G U R E  3   The functional architecture is a feedforward 
recurrent network starting with a layer of phonological and visual 
(left and right) inputs (Phon, VisL, and VisR), respectively. These 
inputs feed directly into a Gated Recurrent Layer (GRU) which 
generates the semantic representations (SemL and SemR) associated 
with the current input stimuli. The phonological and visual input 
stimuli unfold over time, providing dynamic input to the GRU layer 
at each time step. See text for further explanation. The number of 
units in each layer is indicated in parentheses.
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      |  9A MODEL OF REFERENT IDENTIFICATION

desired model outputs on the side of the target image 
are set to the semantic representation of the target 
item, while (b) the desired semantic representation of 
the side of the distractor image are set to 0.5, corre-
sponding to distractor suppression. Setting the desired 
values of the semantic features on the suppressed (dis-
tractor) side to 0.5 ensures that the desired output on 
the distractor side is equidistant from all potential se-
mantic representations.

In order for the model to activate the correct seman-
tic representation, it must be successful in two respects:

1.	 It must select the visual input vector that matches 
the target word. In other words, it must learn the 
association between the label and its image. The 
matrix of connections feeding into the entire semantic 
output vector is responsible for encoding this set of 
associations for all 200 label-object pairs.

2.	 It must select the correct location of the semantic rep-
resentation. In other words, it must activate the se-
mantic representation of the target-image association 
only for the appropriate output location. Since targets 
can appear on the left or the right, the network must 
encode all label-item associations for both semantic 
output slots, and use the location of the target visual 
input vector to suppress the inappropriate semantic 
output location.

The model achieves this using the error signal gen-
erated at the output (on the semantic representations) 
and back-propagating this error through time to adjust 
the weights in the network until, over repeated training 
trials, the error is reduced to a very small value. Train-
ing was performed on the entire training set using batch 
update and stochastic gradient descent (learning rate: 
0.4, momentum: 0.4 and Nesterov momentum enabled, 
Sutskever et al. (2013)). A training epoch consisted of the 
presentation to the model of all the trials in the training 
set.

Output analysis

To assess the model's likelihood of fixating the named 
target, we evaluated the level of activation of the target 
and distractor semantic vectors in the target output posi-
tion. The activations of the target and distractor semantic 
representations are calculated using the proximity of the 
output vector in the target slot to the target and distrac-
tor semantic representations as defined in the training 
set. To calculate the activation of the semantic represen-
tation of a visual item aI (where the item I can either be 
the target T or distractor D), first the Euclidean distance 
dI from model output to the target or distractor semantic 
representation was calculated. The item activation was 
then calculated as one minus the ratio of dI from the max-
imum possible Euclidean distance between two semantic 

representations dmax (which for the 100-dimensional se-
mantic space is equal to 

√

100 = 10) is given by

At every timestep t of the model's processing of the 
phonological and visual input, the activations of target 
and distractor items on the target output side were cal-
culated (aT(t), aD(t)). The semantic activation levels of 
the displayed items are then transformed into the prob-
ability of fixation following Luce  (1959), an approach 
adopted in other models of looking behavior (e.g., Al-
lopenna et al., 1998; Mayor & Plunkett, 2014). We assume 
that total looking time is split entirely between the target 
and distractor objects, enabling us to convert the activa-
tion strengths into the probability of fixation using the 
Luce choice rule. The probability of looking to the target 
probT(t) at time t is given by

We also calculate how successfully the network has 
learnt to suppress semantic activations in the distrac-
tor slot. Recall that the teacher signal in the distrac-
tor output slot was set to a neutral value of all 0.5 s, 
a value that is equidistant from all valid semantic 
representations. Recall also that the location of the 
suppressed slot depends on the location of the named 
target. Consequently, it is appropriate to ask how well 
during training the network is able reduce the distance 
of the vector in the suppressed output slot to the neu-
tral value. We, therefore, report on the normalized dis-
tance of the output vector in the suppressed slot to the 
neutral value (all 0.5 s) as

U N DERLY ING ASSU M PTIONS

The Methods section provides a fairly detailed account 
of the model's architecture and training environment, as 
well as how model performance is evaluated. The defini-
tion of the architecture imposes constraints on the type 
of computations that the model can use to analyze the 
training set, and the latter further constrains the type of 
structures that the model can discover. Essentially, the 
model is a statistical inference machine: It needs the right 
kind of machinery to discover the underlying regulari-
ties in the environment to which it is exposed. If there 
are no systematic regularities, no amount of mechani-
cal sophistry can discover them. Likewise, regularities in 
the training environment will pass unnoticed if the com-
putational power embodied in the model architecture is 
inadequate to discover them. It is therefore important to 
lay bare the critical features of the architecture and the 

(1)a
I = 1 −

dI

dmax

(2)probT (t) =
e2×a

T (t)

e2×a
T (t) + e2×a

D(t)

(3)d
I

norm
=

dI

dmax
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10  |      DUTA and PLUNKETT

training data that underpin model performance. After 
all, these features characterize the theory underlying this 
model's explanation of performance in the IPL task.

Assumptions underlying the model's architecture

Each of the representations (semantic, visual, and pho-
nological) associated with an object are distributed: 
every item activates multiple units in each of the stimulus 
vectors on every training trial. In order to learn about 
items in the training set and react to items in the test 
set, the network must process the inputs and their con-
stituent units in parallel. This architectural assumption 
is referred to as Parallel Distributed Processing and is 
often used in connectionist modeling. The learning re-
gime employed in the model involves supervised learn-
ing. The target or teaching signal in any training trial is 
the semantic representation. The network must learn to 
produce the correct configuration of semantic outputs 
for any given configuration of phonological and visual 
inputs. This is achieved using a learning algorithm called 
back propagation through time whereby errors in the 
output from the network on any given trial are used to 
change the connections in the network so that a repeti-
tion of the same input configuration will tend to reduce 
the error at the output. Repeated presentations of train-
ing trials eventually reduce the output error to a very 
small value. The generality of the solution discovered by 
the network during training is evaluated using a test set 
of object pairings that the network has never seen before.

Recurrent architecture

The heart of the network architecture is a layer of gated 
recurrent units (GRUs). A GRU is a recurrent layer 
where units are connected to each other as well as them-
selves. This means that the activity of a unit depends 
upon its activity at previous time steps and the activity 
of the other units in the same layer at previous time steps. 
This connectivity is particularly well suited to predicting 
the next stimulus in a sequence of stimuli. In the current 
model, the input stimuli consist of an ordered sequence 
of phonological representations and visual representa-
tions. The GRU is particularly good at solving predic-
tion problems as compared to early recurrent networks 
such as simple recurrent networks (SRNs, Elman, 1993) 
which required manipulation of the training set or 
memory parameters to achieve learning of long distance 
dependencies in any sequence. The GRU is also compu-
tationally more efficient than recent antecedents such as 
long short-term memory (LSTM) architectures.

We assume separate input pathways for the audi-
tory and visual stimuli. The auditory input accepts a 
sequence of phonological representations at the same 
time as the visual input processes a sequence of visual 

representations. The visual input itself is split into 2 
pathways, each pathway corresponding to the left and 
right locations of the visual representations of the 2 
distinct objects used in a given trial. The visual repre-
sentations of each object unfold over time in a fashion 
intended to simulate a sequence of fixations of the visual 
image. Unlike the real world, these fixations are chosen 
at random and both images are fixated in parallel. This 
artificial sequencing of visual fixations simplifies model 
training. We have yet to determine the impact of a more 
lifelike fixation regime on model performance.

Activity from the auditory and visual inputs feeds 
to the GRUs in parallel over a period of 32 time steps. 
Thirty-two time steps are needed to accommodate the 
longest words in the training vocabulary, including the 
ramping up and down of phonological feature activities 
involved in the transition (coarticulation) between pho-
nological segments within a word. An end-of-word sig-
nal (all 1s) provides a segmentation cue to the network 
that the word has ended. This is particularly important 
for identifying words which have lexical embeddings, 
such as (bee in beat). For shorter words, all phonological 
inputs are thereafter set to 0.5 which provides a neutral 
stimulus regarding phonological identity. As can be seen 
in the Appendix, the majority of words were 3–5 pho-
nemes in length so that the unfolding of the visual stim-
uli continued beyond the end of the word in most trials. 
The unfolding of the visual stimuli ceased in all cases 
after 20 timesteps, beyond which the visual inputs were 
padded with neutral inputs (0.5s) so that there were no 
biases toward one object over another.

The relative timing of the auditory and visual stimuli 
is a parameter that can be manipulated in the model. In 
the current simulations (training and test), we have cho-
sen to set the onset of both modalities to be synchronized 
so as not to bias attention to one source of information 
over another. This means that for shorter words, the in-
formative part of the auditory stimulus will complete be-
fore the offset of the visual stimulus. For longer words, 
the opposite will hold. In real-life experiments, synchro-
nous as well as asynchronous stimulus onsets have been 
used to show that the relative timing of auditory and vi-
sual stimuli have an impact on gaze patterns in the visual 
world task. Further work will be needed to determine 
the impact of asynchronous onsets on model perfor-
mance and how this relates to human performance. For 
the moment, it is sufficient to point out that neither type 
of asynchrony (visual before auditory or vice versa) is 
typically used as a cue to referent identity or location in 
experimental research, or in the current modeling work.

Assumptions underlying the training 
environment

The visual and semantic representations used in this 
modeling endeavor are derived from previous statistical 
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      |  11A MODEL OF REFERENT IDENTIFICATION

analyses of real-world stimuli. The visual representations 
are taken from a deep learning model of image identifica-
tion and classification, that include thousands of pictures 
of everyday objects. The algorithm used in the deep learn-
ing model that generated the visual representations guar-
antees that images that have a similar appearance will have 
similar visual representations. Semantic representations 
are taken from co-occurrence statistics of words in a very 
large corpus of utterances. It is assumed that words with 
similar meanings have similar patterns of co-occurrence. 
Note that the referents of words with similar meanings 
need not be similar visually. Hence, there is an assump-
tion of independence (or orthogonality) of semantic rep-
resentations from visual representations inherent in the 
training set used by the model. At the same time, there are 
many objects that appear similar that also belong to the 
same semantic category. The complex (and often opaque) 
relationship between semantic and visual representations 
is thereby honored by the training environment used in the 
model. The phonological representations use a standard 
set of linguistic features to define a phonological segment, 
with a few tweaks to accommodate co-articulation effects. 
An important characteristic of the model is that these seg-
ments are fed to the network one segment at a time, mim-
icking the unfolding of speech in time. In the visual world 
task, speech also unfolds in time and the time course of 
speech recognition is known to have an impact on the pat-
tern of fixations that a listener directs to the objects in a 
visual display from 1 s to the next.

Our model attempts to capture the patterns of fixa-
tions when a dynamic label (an unfolding phonological 
representation) is presented contemporaneously with the 
visual representations of two objects which occupy left 
and right positions in the visual input to the network. 
The network must learn to activate the correct seman-
tic representation in the appropriate output location and 
suppress the semantic representation of the unnamed 
distractor image. To achieve this output, the network 
must be able to activate the target semantics in either lo-
cation. If the target only ever occurred on the left, then 
learning would be relatively trivial: simply activate the 
semantic representation in the left output location cor-
responding to the left phonological signal or left visual 
input signal (assuming that one of the objects is named 
in every trial), and suppress activity in the right output 
location. In our model (and virtually all visual world ex-
periments), the location of the named target varies from 
one trial to the next.

RESU LTS

Performance on the training set

We begin by assessing whether the network can perform 
the task successfully, that is whether at the end of the 
training process it activates the relevant semantic vectors 

in the training set at their appropriate output locations. 
The probability of fixating the named target at each time 
step as the target label and visual inputs unfold, is calcu-
lated using the Luce choice rule (see Equation 2). We re-
port on the two parts of the training set, phonologically 
related pairs (PR) and phonologically unrelated pairs 
(PU), and obtain an average for each of these constitu-
ent parts of the training set. Figure 5 depicts the prob-
ability of fixating the target at each time step in a trial 
after 500,000 epochs of training. Note that chance per-
formance corresponds to 0.5.

Figure 4 shows a rapidly increasing likelihood of fix-
ating the named target, well above chance, as the input 
stimuli unfold for both constituents of the training set 
(PR and PU). However, the target items paired with 
phonologically unrelated distractors produce a more 
robust target preference than those paired with the pho-
nologically related distractors. By the 20th timestep of 
a trial, the probability of fixations has reached an as-
ymptotic level of 0.7 for PU pairs and 0.65 for PR pairs, 
respectively. These results show that the network has 
succeeded in learning the task of fixating the named 
target by the end of training (500,000 epochs) but that it 
is more robust in achieving this for phonologically un-
related pairs than for phonologically related ones.

Figure 5 (left panel) provides a longitudinal picture 
of network performance at different stages in the train-
ing process. During training, the weights are dumped 
every 50,000 epochs providing a snapshot of the state 
of network which can then be used to evaluate perfor-
mance as training proceeds. At each snapshot of the 
training process, we plot the asymptotic level of fixa-
tion probabilities achieved after 20 timesteps of the 
unfolding of the input stimuli (c.f. Figure  4). Again, 
the training set is divided into phonologically related 
pairs (PR) and phonologically unrelated pairs (PU). 
The probability of fixating the named target increases 
monotonically throughout training, until reaching 
the same asymptotic levels reported in Figure  4. By 

F I G U R E  4   Probability of fixating the named item after 500,000 
epochs of training as the target label and image unfold. Grand 
averages over the training set. Each combination of phonological 
relatedness is plotted separately. PR indicates performance on 
phonologically related items and PU indicates performance on 
phonologically unrelated items. Bars: 95% confidence intervals.
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12  |      DUTA and PLUNKETT

150,000 epochs of training, target fixation probability 
for phonologically unrelated pairs (PU) begins to di-
verge and become stronger than that for phonologically 
related pairs (PR). Thereafter, the difference between 
PU and PR increases, indicating that the network pro-
duces higher levels of confidence in selecting the named 
target for phonologically unrelated than related pairs 
throughout most of the training process.

Figure  5 (right panel) plots the normalized Eu-
clidean distance (dI

norm
, see Equation  3) between the 

output vector at the suppressed location and the neu-
tral vector (all 0.5 s) on that side at different points 
during training. Again, phonologically related and 
unrelated pairs are plotted separately. At the start of 
training, the average distance to the neutral vector 
increases but then levels off for the phonologically 
related pairs and decreases again for phonologically 
unrelated pairs. This pattern of results shows that 
the network is successful in suppressing semantic ac-
tivity in the distractor slot but finds this suppression 
more difficult for phonologically related pairs. The 
dI
norm

 distances are lowest at the beginning of training 
because the network starts in a random state. Neu-
tral outputs (our definition of suppression) are there-
fore the natural state at the output at the beginning 
of training. However, as each output slot is equally 
likely to be a target location as be suppressed, the 
network must learn to suppress the appropriate lo-
cation for each trial. This is particularly difficult 
(though achieved) for the phonological related pairs.

Overall, we can conclude that the network has learnt 
to perform the task it has been assigned on the training 
set: it fixates the named target and suppresses the un-
named location.

Performance on the test set

Given the powerful learning algorithms and archi-
tecture employed in this neural network, it is perhaps 

unsurprising that the model succeeds in mastering the 
complex arbitrary mappings defined by the input–
output training stimuli. An important test of any 
model of learning is how well it is able to generalize 
to stimuli that it has not been trained on. In the cur-
rent context, this implies asking how well the model 
performs on stimulus pairs that it has not seen before. 
Note that this is not a test of word learning: the analy-
sis of the performance on the training set has shown 
that the network has succeeded already in learning the 
label-item associations and using these associations to 
identify the location of a named item. The question we 
ask now is whether the network can identify the seman-
tic representation of a named item in an item pair it has 
never seen before, and activate that representation in 
the appropriate location. We evaluate the generaliza-
tion characteristics of the model by comparing its per-
formance on two test sets involving previously unseen 
item pairs. These test sets are intended to parallel ex-
perimental sets used in real IPL studies with infants 
and toddlers that were reviewed in the Introduction 
section. Infant performance in these studies can also 
be considered evaluations of generalization ability as 
it is unlikely that the infants would have previously 
seen the particular combinations of objects used in the 
experiments.

The effect of semantic and visual relatedness

Recall that the picture pairs in the Arias-Trejo and Plun-
kett (2010) study were semantically related (SR) or unre-
lated (SU), and visually related (VR) or unrelated (VU), 
as depicted in Figure 2c. The same division was created 
for the picture pairs used as the input stimuli in a test 
set for the model (as defined in the section on Item simi-
larity), to yield a 2 × 2 design analogous to that used by 
Arias-Trejo and Plunkett (2010).

Figure 6 shows model performance as the target word 
and visual images unfold on these previously unseen 

F I G U R E  5   Probability of fixating the named target (left) and distractor side activation suppression (right) as training proceeds, at regular 
intervals of 50,000 epochs of training. Grand averages over the training set. Each combination of phonological relatedness is plotted separately. 
Bars: 95% confidence intervals.

Target side: probability of target fixation Distractor side: activation suppression

 14678624, 0, D
ow

nloaded from
 https://srcd.onlinelibrary.w

iley.com
/doi/10.1111/cdev.14010 by T

est, W
iley O

nline L
ibrary on [23/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  13A MODEL OF REFERENT IDENTIFICATION

combinations of items at 2 snapshots in the training 
process, after 300,000 epochs and after 500,000 epochs. 
Each condition (SU VU, SR VU, SU VR, SR VR) is plot-
ted separately for these 4 different types of combinations 
of targets and distractors. The probability of fixating the 
named target increases monotonically as the target label 
and image unfold, reaching asymptotic levels of proba-
bility within 20 time steps. The probability of fixating the 
target item is well above chance shortly after target label 
onset. Performance is most robust for stimuli pairs that 
are visually and semantically unrelated, and least robust 
for pairs that are visually and semantically related. Pic-
ture pairs that are visually related and semantically un-
related, or visually unrelated and semantically related, 
result in intermediate levels of target fixation probabil-
ity, although semantic relatedness suppresses fixation 
probability more than visual relatedness, throughout the 
unfolding of the target label and image. The overall lev-
els of target fixation probability increase from 300,00 to 
500,000 training epochs. The impact of visual related-
ness diminishes with greater levels of training.

In Figure 7, we plot the level of network performance at 
successive steps in the training process. The asymptotic 

levels of fixation probability on the named target, for 
each condition, are shown every 50,000 epochs. Figure 7 
shows that performance increases monotonically in all 
conditions, with the relative robustness of fixating the 
named target consistent throughout training, that is, 
SU VU > SU VR > SR VU > SR VR. During the earliest 
stages of training the impact of visual similarity and se-
mantic similarity are equivalent. As training proceeds, 
the impact of semantic similarity becomes stronger than 
that of visual similarity.

These findings demonstrate that semantic and visual 
context have a robust impact on target identification in 
the model, just as we see in infant, toddler, and adult 
performance on this task: The greater the visual and se-
mantic similarity between the objects used in these vi-
sual world tasks, the more difficulty participants have in 
identifying the target referent. In the model, these effects 
are entirely due to competition between semantically 
and/or visually similar representations of the objects in-
volved. Similar competition effects may be at work in the 
infant, toddler, and adult participants.

The effect of phonological and semantic 
relatedness

In a related experiment (see Figure 2), Angulo-Chavira 
et al. (2023) presented toddlers with pairs of objects 
taken from the same semantic category or different se-
mantic categories but instead of systematically varying 
the visual similarity between the objects, they system-
atically varied the phonological similarity of the object 
labels: the object labels could be related or unrelated. Re-
lated labels shared the same phonological onset, whereas 
unrelated labels had no overlap (see Introduction). We 
created an analogous test set of previously unseen item 
pairs using the same definition of semantically related 
and unrelated pairings as given in the section on item 

F I G U R E  6   Probability of fixating the named target as the target label and image unfold: after 300,000 epochs of training (left) and 
after 500,000 epochs (right). Grand averages over the test set. Each combination of visually relatedness and semantic relatedness is plotted 
separately. Bars: 95% confidence intervals.

300,000 Epochs 500,000 Epochs

F I G U R E  7   Probability of fixating the named target as training 
proceeds, at regular intervals of 50,000 epochs. Each combination 
of visual relatedness and semantic relatedness is plotted separately. 
Bars: 95% confidence intervals.
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14  |      DUTA and PLUNKETT

similarity. In addition, for both levels of semantic simi-
larity, the labels of the item pairs were either related (PR) 
or unrelated (PU), again yielding a 2 × 2 design. No at-
tempt was made to control for visual similarity, reflect-
ing the design of the Angulo-Chavira et al. (2023) study. 
Preference for the target item at the target output loca-
tion was calculated in the same manner as the previous 
test set for each of the four conditions: PU SU, PR SU, 
PU SR, PR SR.

Figure 8 shows model performance on these previ-
ously unseen pairs of items, each plotted separately 
for the 4 different types of combinations of targets 
and distractors, as the target label and images unfold. 
Again, the probability of fixating the named target in-
creases monotonically as the target label and images 
unfold, at both levels of training depicted (300,000 ep-
ochs of training and 500,000 epochs of training). As 
before, the most unrelated pairs (PU SU) produce the 
highest probability of fixating the named target, while 
the most related pairs (PV SV) produce the least robust 
fixation probabilities. During the earlier level of train-
ing (300,000 epochs), semantic similarity has a stron-
ger impact on the probability of target fixation than 
phonological similarity (PU SU > PR SU > PU SR > PR 
SR). However, by 500,000 epochs, the impact of pho-
nological and semantic similarity is roughly equivalent 
(PU SU > PR SU = PU SR > PR SR). It is noteworthy, 
however, that there is a transitory period within a trial 
(between time steps 5 and 15) when phonological over-
lap is a greater impediment to target identification 
than is semantic similarity, even after 500,000 epochs 
of training.

Finally, in Figure 9 we plot the level of network per-
formance at successive steps in the training process. As 
before, the asymptotic levels of fixation probability on 
the named target, for each condition, are shown every 
50,000 epochs. Figure  9 shows that performance in-
creases monotonically in all conditions, with the relative 

robustness of fixating the named target quite consis-
tent across conditions throughout training, that is, PU 
SU > PR SU > = PU SR > PR SR.

In contrast to other longitudinal plots, there is a period 
of training between 250,000 and 400,000 epochs when 
PU SR pairs make significant gains on PR SU pairs. This 
indicates the phonologically unrelated pairs are able to 
partially overcome the impact of semantic relatedness as 
training proceeds, mimicking the impact of phonologi-
cal overlap early in a trial, depicted in Figure 8.

Just as we saw in the previous set of simulations, stim-
ulus similarity has a robust impact on the probability of 
target identification in the model, as has been observed 
in infants, toddlers, and adults. In this case, we observe 
the impact of phonological and semantic similarity: The 
more similar the test objects are phonologically and 
semantically, the greater the difficulty the model and 
human participants have in identifying the named target. 
Once again, in the model, these effects are entirely due to 
competition between semantically and phonologically 
similar representations of the objects involved. Similar 
competition effects may be at work in the infant, toddler 
and adult participants. Moreover, the general principle 
that similarities between objects makes referent identi-
fication difficult seems to hold both in the model and 
human participants, even when multiple sources of sim-
ilarity from different modalities (phonological, visual, 
and semantic) are involved.

DISCUSSION

The primary goal in building the neural network model 
of the Intermodal Preferential Looking task presented 
here was to evaluate the adequacy of the assumptions 
underlying the processes, representation and architec-
ture implemented in the model as a theory of aspects of 
human behavior in this task. Insofar as the model is able 

F I G U R E  8   Probability of fixating the named target as the target label and image unfold: after 300,000 epochs of training (left) and after 
500,000 epochs (right). Each combination of phonological similarity and semantic similarity is plotted separately. Bars: 95% confidence 
intervals.

300,000 epochs 500,000 epochs
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      |  15A MODEL OF REFERENT IDENTIFICATION

to mimic successfully aspects of behavior in several ex-
perimental tasks, we may conclude that the model con-
stitutes a plausible theory of the constituent mechanisms 
underlying the task. The model permits the presenta-
tion of dynamic phonological and visual inputs using a 
powerful recurrent architecture (GRU) that maps these 
inputs to static semantic representations. The training 
regime forces the model to learn the associations be-
tween labels and images (word leaning), and use these 
associations to bind the location of the named image to 
a specific location by activating the semantic representa-
tion of the named image in the target output location and 
suppressing the activation of the unnamed image in the 
distractor output location (identity-location binding). 
The learning process itself consists of a standard super-
vised training regime whereby the error at the output is 
used to adjust the weights in the network so that error 
at the output is gradually reduced as training proceeds. 
The training stimuli themselves, visual, phonological, 
and semantic, are all realistic representations of the 
words and objects that young toddlers are likely to know 
during the second half of the second year of life. An im-
portant aspect of using these realistic representations of 
the training stimuli is that they afford the possibility of 
making precise mathematical evaluations of their simi-
larity to each other—an aspect that is far more difficult 
when assessing the perceived similarity between stimuli 
for human observers.

The target characteristics of toddler behavior concern 
the manner in which the phonological, visual, and se-
mantic similarities between items in an IPL task impact 
their ability to identify a target referent. Experimental 
studies with toddlers have shown that similarity between 
items on all three dimensions impairs this ability. The 
simulations reported here demonstrate exactly this char-
acteristic: whether evaluated on a trial-by-trial basis 
(e.g., as the word unfolds over time) or longitudinally (at 
different snapshots in the training process), semantically, 
visually and phonologically unrelated items all produced 
stronger target fixation probabilities than semantically, 
visually and phonologically related items. This finding 
holds true irrespective of whether the model is evaluated 

on the training set or on previously unseen pairings of 
items (the test set). Target fixation probabilities are con-
sistently higher for SU VU pairs than SR VR pairs (see 
Figures  6 and 7) and PU SU pairs consistently higher 
than PR SR pairs (see Figures 8 and 9). This behavior of 
the model mimics the behavior of toddlers in an IPL task 
where it is explained in terms of the competition between 
stimuli. The model provides a formal instantiation of 
this competition. For example, similar semantic vectors 
have more overlap than dissimilar semantic vectors (see 
the discussion of the Jaccard index in the section on Item 
similarity). Likewise, similar image vectors have more 
overlap than dissimilar image vectors. Hence, when 
activity propagates through the network from similar 
pairs, there will be a tendency to produce similar outputs 
(the tyranny of similarity). The Luce Choice Rule (see 
Equation 2) is sensitive to these similarities so that the 
choice of output location is affected both by the similar-
ity of inputs and the output representations.

These well-understood properties of neural network 
models make them well-suited to understanding the im-
pact of similarity on behavior. However, they also en-
able us to understand more nuanced effects of similarity, 
particularly when different levels of similarity are com-
bined in the same trial, such as semantically unrelated 
items with visually related items. Consider first the ef-
fects of semantic and visual relatedness, modeled as a 
simulation of the Arias-Trejo and Plunkett (2010) study. 
Figures 6 and 7 show that SR VU and SU VR pairs re-
sult in intermediate levels of target fixation as compared 
to fully related SR VR or unrelated SU VU pairs. This 
is unsurprising given the sensitivity of these network 
models to similarity relations. However, it is apparent 
from Figure 7 that the impact of semantic similarity in-
creases as training proceeds. After 100,000 epochs the 
effects of semantic and visual similarity are additive and 
approximately equally impactful. However, by 300,000 
epochs, semantic similarity is clearly the most disruptive 
factor affecting target fixation, with visual similarity 
disrupting target fixations to the same albeit minor ex-
tent, irrespective of semantic similarity. This pattern of 
responding remains in the later stages of training while 
overall levels of target fixation probability continue to 
increase across the board until 500,000 epochs. The in-
creasing impact of semantic similarity relative to visual 
similarity is also apparent in the timestep (trial) analyses 
presented in Figure 6.

The experimental data reported by Arias-Trejo and 
Plunkett  (2010) and depicted in Figure  1 demonstrates 
the clear effects of semantic and visual similarity on the 
probability of fixating a target referent in an IPL tasks 
for both adults and toddlers. Figure 1c (for adults) shows 
an overall suppression of target looking for semanti-
cally related pairs, with visual similarity suppressing 
target looking for both semantically related and unre-
lated pairs. For the toddlers' target looking, depicted 
in Figure  1b, the interaction of semantic (category) 

F I G U R E  9   Probability of fixating the named target as training 
proceeds, at regular intervals of 50,000 epochs. Each combination 
of phonological relatedness and semantic relatedness is plotted 
separately. Bars: 95% confidence intervals.
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16  |      DUTA and PLUNKETT

similarity with visual similarity is quite dramatic: If 
the object pairs are taken from different semantic cat-
egories, then these toddlers are relatively impervious to 
perceptual differences. They readily identify the target 
object irrespective of visual similarity. In contrast, if 
the objects are taken from the same semantic category, 
visual similarity essentially abolishes target looking 
whereas visually dissimilar items merely modulate tar-
get looking relative to the other conditions. Mandler and 
Bauer (1988) suggested that this type of result can be ex-
plained by assuming that differences between members 
of the same category are minimized, whereas differences 
between members of different categories are maximized. 
Interestingly, our model does not behave quite like the 
toddlers in the Arias-Trejo and Plunkett  (2010) study 
since it never entirely abolishes target looking for the 
named item. In fact, the model behaves more like the 
adults in that study, where target looking is maintained 
across all conditions but is increasingly attenuated by in-
creasing levels of similarity in the object pairs.

The central demonstration of the model using pairs of 
items that are semantically and visually related and un-
related is the graded impact of overall similarity on the 
probability of target fixations. Perhaps the most important 
aspect of this demonstration is the increasingly dominant 
impact of semantic similarity as training proceeds: the 
main effect of semantic similarity increases whereas the 
main effect of visual similarity becomes proportionally 
smaller. In other words, the network gets better at ignoring 
visual differences and pays increasing attention to seman-
tic differences. The reason for this asymmetry between se-
mantic and visual similarity is that the network is trained 
on semantic targets rather visual targets. Hence, semantic 
differences are more important to the network—semantic 
targets provide the error signal that drives learning in the 
network, including learning to ignore visual differences if 
they are irrelevant to producing the correct output. If the 
network had been designed with visual targets in mind, 
then visual differences would remain a substantial factor 
in determining the probability of target fixations.

The simulations involving item pairs where semantic 
relatedness and phonological relatedness is systemati-
cally manipulated, revealed a convergent story regarding 
the impact of similarity effects. Item pairs that were unre-
lated (PU SU) produced higher levels of target fixations 
than item pairs that were related (PR SR)—see Figure 8 
for trial-based similarity effects and Figure 9 for longitu-
dinal similarity effects, respectively. Intermediate levels 
of similarity (PR SU and PU SR) produced intermediate 
levels of target fixation probabilities. During the earlier 
stages of training (see left-hand panel of Figure 8), the 
impact of semantic and phonological similarity are ap-
proximately additive with phonologically unrelated pairs 
producing consistently higher levels of target fixations 
when semantic similarity is held constant. This finding 
is consistent with the experimental study by Angulo-
Chavira et al.  (2023), reviewed in the Introduction, in 

which phonological overlap had a deleterious effect on 
target recognition. Phonological overlap even eliminated 
target recognition when the visual stimuli were drawn 
from the same semantic category. Again, in the model, 
the probability of fixating the target above chance is 
never abolished in any condition, suggesting that other 
factors are influencing the toddlers' behavior which are 
not included in the model. Nevertheless, the convergent 
impact of phonological similarity in the model and in the 
toddlers remains clear.

It is noteworthy that there is a transient effect of pho-
nological overlap as the target word unfolds in the more 
highly trained network (see righthand panel of Figure 8). 
Between timesteps 7 and 14, phonologically related pairs 
(PR SU) suppress the probability of target fixation more 
than phonologically unrelated pairs (PU SR). This differ-
ence disappears as the target word and images unfold. This 
transient advantage of phonologically unrelated pairs is 
consistent with the experimental literature demonstrat-
ing that toddlers show faster target recognition when the 
picture pairs do not have labels beginning with the same 
sound as compared to picture pairs with onset overlap 
(Swingley et al., 1999). It is also consistent with experimen-
tal findings reporting that toddlers will fixate objects that 
share phonological properties with the referent of a target 
word before they fixate objects that share only semantic 
properties with the target word (Chow et al., 2017).

The behavior of the model described is achieved with 
an architecture that permits activation to flow in one di-
rection only—from input to output. Although the model 
has recurrent connections within a layer of the network 
(the GRU), there are no connections that feedback to 
lower levels in the network. We consider this architecture 
to be a bottom-up processor, lacking in any top-down 
components. Consequently, all the effects observed in 
the model, including the increasing impact of semantic 
similarity on target recognition, are attributable en-
tirely to bottom-up processes. This is not to claim that 
top-down connectivity is absent in the toddler's phono-
lexical-semantic system. Rather we mean to claim that 
much can be explained without appealing to such top-
down processing.

Some limitations of the model

To be sure, the model is far from a perfect implementation 
of toddler behavior in an IPL task. Witness the failure 
of the model to abolish target recognition under certain 
combinations of phonological, visual, and semantic relat-
edness. It is possible that the inclusion of top-down con-
nectivity in the architecture could achieve this outcome. 
Likewise, other modifications of the training set are 
likely to impact behavior. For example, most 24-month 
olds (and probably even 18-month olds) have a vocabu-
lary far exceeding 200 words (Mayor & Plunkett, 2011). 
The composition of the training regime inevitably has a 
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      |  17A MODEL OF REFERENT IDENTIFICATION

major impact on model performance. Hence, future mod-
els should attempt to scale up to larger vocabularies and 
image sets to evaluate the impact of such changes. We 
contend, however, that the impact of phonological, se-
mantic and visual similarity will follow the same general 
principles observed to be at work in the current model.

The model has no output lexicon (target output rep-
resentations of the entire input label that consolidate 
as phonological input unfolds). It is not implausible 
that including an output lexicon will accentuate pho-
nological effects in the model. For example, embedded 
words or cohort or rhyme competitors might well in-
fluence lexical retrieval, as in TRACE (McClelland 
and Elman (1986) or Shortlist (Norris, 1994). Including 
an output lexicon would also enable the evaluation of 
comprehension and production in the model (c.f. Plun-
kett et al., 1992), thereby enabling a broader range of 
comparisons with empirical data and evaluation of the 
adequacy of the model.

Perhaps one of the most striking limitations of the 
current model is its inability to escape the binding of the 
identify of objects to their locations during the training 
process: If the training environment included trials where 
a particular object, say a dog, only ever occurred in a given 
location, say the left location, then it would be unable to 
make reliable predictions about the output location of the 
named target if that object, say dog, always occurred in, 
say, the right location. One might speculate whether infants 
and toddlers also demonstrate similar limitations in identi-
fying target objects that are restricted to a limited range of 
locations within an experimental session. However, visual 
world experiments with infants (and adults) strive to avoid 
these contingencies in the service of good experimental de-
sign. It is possible that exposure to multiple similar objects 
which varied their locations during training would enable 
the model to generalize to those objects with no such vari-
ability in location. The model could piggyback off their 
similarity relations to overcome location-binding limita-
tions. Likewise, if an object occurred in many locations 
during training, it might be able to generalize to absent 
locations. However, in the current model, only 2 locations 
are available. This constraint will mitigate against any such 
generalization. It remains to be seen whether the similar-
ities in identity and location distributions are sufficient to 
overcome the identify-binding constraints inherent in the 
current model. It is also possible that architectural modifi-
cations of the model are needed (Foldiak, 1991; Mareschal 
et al., 1999) for the model to abstract away from restricted 
identity-location binding in target recognition.

Finally, we have avoided investigating the impact of 
the relative timing of auditory and visual signals for the 
time course of target recognition in visual world exper-
iments: Does the auditory signal occur before the onset 
of the visual signal or vice versa. There is an extensive lit-
erature with adults and toddlers demonstrating that tim-
ing matters in this regard (e.g., Apfelbaum et al.,  2021; 
Chow et al.,  2022; Huettig & McQueen,  2007). In the 

current model, the timing of the onset of the auditory 
and visual signals is synchronous. However, the use of 
asynchronous timings in the model is readily achievable 
without any architectural modifications and is a worth-
while avenue for future investigations of the adequacy of 
the model.

CONCLUSION

We conclude that phonological and visual representa-
tions mapped dynamically in a bottom-up fashion to 
semantic representations are sufficient to capture im-
portant aspects of phonological, semantic, and visual 
preference effects often reported in visual world tasks. 
The growing impact of semantics on target preference 
as learning proceeds, as well as the early effects of pho-
nological overlap within a trial do not require top-down 
feedback from a semantic or visual system. The use of 
semantic representations as targets in the learning pro-
cess is adequate to achieve these differences between the 
impact of semantic similarity on the one hand and visual 
and phonological similarity on the other.
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A PPEN DI X A

GRU functionality is achieved via a reset gate and an 
update gate, each a trainable vector used in conjunc-
tion with the GRU's current input and output from the 
previous timestep, to filter out irrelevant information 
and retain pertinent information (Figure A3). The role 
of the update gate vector is to select the information 
from the previous processing timestep to be kept for 
the processing of subsequent timesteps. The role of 
the reset gate is to determine which information from 
the previous timesteps is irrelevant and therefore does 
not need to be kept for the processing of subsequent 
timesteps.

To obtain the update gate vector ut and the reset gate 
vector rt at each time step t, the current input xt and the 
output from the previous timestep ht − 1 are each multi-
plied with their respective gate weights (Wu and Hu for 
the update gate and Wr, and Hr for the reset gate) and 
added together before applying a sigmoidal function σ 
to constrain the vector values between 0 and 1:

The reset gate is used in conjunction with the current 
input and the GRU's output at the previous timestep to 
select the relevant information from the current time step 
in the intermediate memory h′

t
. First, the current input 

xt and the output at the previous timestep ht − 1 are both 
weighted with the W and U weight vectors, respectively. 
The element-wise product between the reset vector and the 
weighted output from the previous timestep are added to 
the weighted current input before applying a tanh function:

The relevant information from the current timestep 
is taken as the element-wise product between one minus 
the update gate vector and the intermediate memory h′

t
, 

while the relevant information from the previous timestep 
is selected as the element-wise product between the up-
date gate vector and the output at the previous timestep 
ht. The output of the GRU at the current timestep ht is 
then the sum of the relevant information from the current 
timestep and the relevant information from the previous 
timestep:

ut = �
(

W
u × xt +H

u × ht − 1
)

rt = σ
(

W
r × xt +H

r × ht − 1
)

h
�

t
= tanh

(

W × xt + rt ⊙U × ht−1
)

ht = ut ⊙ ht−1 +
(

1 − ut

)

⊙ h
�

t

F I G U R E  A 1   Descriptive statistics for vocabulary items: word category membership, word length distribution, and cohort size distribution.
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F I G U R E  A 3   Detailed illustration of the GRU functionality.

F I G U R E  A 2   Distributions for Jaccard index between pairs of phonological, semantic, and visual vectors.
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