
Empirical Software Engineering (2024) 29:8
https://doi.org/10.1007/s10664-023-10417-5

Insights into software development approaches: mining Q&A
repositories

Arif Ali Khan1 · Javed Ali Khan2 ·Muhammad Azeem Akbar3 · Peng Zhou4 ·
Mahdi Fahmideh5

Accepted: 31 October 2023
© The Author(s) 2023

Abstract
Context Software practitioners adopt approaches like DevOps, Scrum, and Waterfall for
high-quality software development. However, limited research has been conducted on explor-
ing software development approaches concerning practitioners’ discussions onQ&A forums.
Objective We conducted an empirical study to analyze developers’ discussions on Q&A
forums to gain insights into software development approaches in practice.
Method We analyzed 13,903 developers’ posts across Stack Overflow (SO), Software Engi-
neering Stack Exchange (SESE), and Project Management Stack Exchange (PMSE) forums.
A mixed method approach, consisting of the topic modeling technique (i.e., Latent Dirichlet
Allocation (LDA)) and qualitative analysis, is used to identify frequently discussed topics of
software development approaches, trends (popular, difficult topics), and the challenges faced
by practitioners in adopting different software development approaches.
Findings We identified 15 frequently mentioned software development approaches topics on
Q&Asites and observed an increase in trends for the top-3most difficult topics requiringmore
attention. Finally, our study identified 49 challenges faced by practitioners while deploying
various software development approaches, and we subsequently created a thematic map to
represent these findings.
Conclusions The study findings serve as a useful resource for practitioners to overcome
challenges, stay informed about current trends, and ultimately improve the quality of software
products they develop.

Communicated by: Sebastian Baltes

B Arif Ali Khan
arif.khan@oulu.fi

1 M3S Empirical Software Engineering Research Unit, University of Oulu, Oulu FI-90014, Finland

2 Department of Computer Science, School of Physics, engineering and computer science, University
of Hertfordshire, Hatfield AL10 9AB, UK

3 Software Engineering Department, Lappeenranta-Lahti University of Technology, Lappeenranta
15210, Finland

4 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China

5 School of Business, University of Southern Queensland, Springfield QLD 4350, Australia

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10417-5&domain=pdf

 8 Page 2 of 38 Empirical Software Engineering (2024) 29:8

Keyword Software development approaches · Q&A websites · Software process
improvement · Software repositories mining

1 Introduction

To deliver a high-quality software product, it is essential to adopt systematic and quantifi-
able approaches across all software development lifecycle activities (Al-Saqqa et al. 2020).
Careful selection and implementation of appropriate software development approaches can
significantly enhance the business value and user satisfaction of software systems (Bano
et al. 2017). To ensure that the product’s value and quality are maintained, it is imperative
that software development activities are conducted in a formal and controlled manner.

Software development is a complex process that involves a variety of approaches aimed
at improving the quality and efficiency of software products. In this study, we use the
term “development approach" to denote the varied strategies, methodologies, and processes
employed in the field of software development (Pressman 2005). This encompasses tradi-
tionalmethodologies such asWaterfall, aswell asmore recent approaches likeAgile,DevOps,
hybrid, and beyond. The term also includes the practices and procedures that these method-
ologies encapsulate. Moreover, in this study, we did not differentiate between industrial and
academic contexts; instead, it provides a holistic view of development approaches as they
manifest across the software development landscape.

The literature and industry commonly employ various agile and traditional approaches,
including Scrum, DevOps, Kanban, Extreme Programming (XP), Lean Development,Water-
fall, and V-Model (Kuhrmann et al. 2017, 2021). These approaches are based on different
concepts, such as plan-driven, iterative, incremental, or lean development (Kuhrmann et al.
2017). Additionally, a hybrid development approach, defined as any combination of agile and
traditional methodologies is utilized to design complex software systems (Kuhrmann et al.
2017, 2021). In the literature, various studies have focused on specific software development
approaches. For example, (Kuhrmann et al. 2017) discussed the hybrid software development
approaches, (Khan et al. 2021) focused on agile trends in globally distributed software devel-
opment environments, (Kuhrmann et al. 2019) examined software development approaches
in academia, and Riaz (2019) studied the challenges and benefits of Kanban implementation.

However, to the best of our knowledge, there is a paucity of research exploring different
aspects of software development approaches using data mining and analysis of relevant infor-
mation obtained from Q&A online platforms such as Stack Exchange (SE) 1, that includes
SO 2, SESE 3, and PMSE 4. These online platforms offer a valuable source of knowledge for
development teams, where practitioners engage in discussions on diverse software develop-
ment approaches, challenges, and concerns (Ali Khan et al., 2020; Khan et al., 2019).

Recently, researchers have used supervised (deep & machine learning) and unsupervised
learning (topic Modelling) techniques to analyze a wide range of software development-
related issues encountered by developers on Q&A websites (Vidoni 2022). These studies
have proposed automated methods to extract developers’ discussion posts on various topics,
such as challenges in continuous software engineering (Zahedi et al. 2020), identifying chal-
lenges in Docker development (Haque et al. 2020), security vulnerability (Le et al. 2021),

1 https://stackexchange.com/ accessed on 3/04/2022
2 https://stackoverflow.com/ accessed on 3/04/2022
3 https://softwareengineering.stackexchange.com/ accessed on 3/04/2022
4 https://pm.stackexchange.com/ accessed on 3/04/2022

123

https://stackexchange.com/
https://stackoverflow.com/
https://softwareengineering.stackexchange.com/
https://pm.stackexchange.com/

Empirical Software Engineering (2024) 29:8 Page 3 of 38 8

software bug and rationale detection (Ullah et al. 2023; Zhou et al. 2020), developers’ commu-
nications and their implications (Brisson et al. 2020), non-functional requirements (Paixão
et al. 2017), design patterns (Dwivedi et al. 2018), and software maintenance and evolu-
tion (Khan et al. 2022; Sun et al. 2015). Nonetheless, we have not found any research that
specifically investigates developers’ discussions on Q&A platforms with a focus on software
development approaches. Therefore, this study aims to investigate and analyze the devel-
opers’ discussion posts on core relevant SE platforms (including SO, SESE, and PMSE) in
detail, aiming to provide valuable insights into software development approaches.

This study aims to fill this significant gap by critically analyzing and mining the topics,
recent trends, and the challenges reported by the software developers across the three core
platforms of SE previously mentioned. We assume that this work will help address common
challenges developers face. It is harder for practitioners to decide where to focus their efforts
without such information. As a result, we have proposed the following research questions
(RQs) to accomplish our stated objectives:

• RQ1: How successfully the questions related to software development approaches are
answered?

• RQ2: What are the software development approaches discussion topics?
• RQ2.1: What are the most popular and difficult topics?
• RQ3: What challenges arise when practitioners implement software development
approaches, given the identified topics?

In our quest to answer the aforementioned RQs, we have conducted an empirical study,
collected 13903 software development approaches related to posts and used a mixed method
approach that consists of LDA (Blei et al. 2003) topic modeling and qualitative analysis to
achieve the study objective. Furthermore, quantitive measurements are used to portray useful
information for the software developers, which will help in improving software quality and
user satisfaction by promptly incorporating the following research findings of this study:

(1) The number of practitioners’ questions related to software development approaches has
been on a gradual rise. However, the trend of developers’ questions (received accepted
answers) in this research domain has been declining since 2014.

(2) Fifteen commonly discussed software development approaches-related topicswere iden-
tified using the LDA model. In our study, LDA model was utilized purely at the
application level. The objective was to explore software development approach-related
questions from developers, a unique context, leveraging LDA’s capacity to glean insights
from large unstructured text data.

(3) Among the fifteen topicsmentioned above, the popular and difficult oneswere identified,
and the top three most difficult topics exhibited an upward trend over time. A correlation
analysis using Kendall’s Tau correlation test (Kendall 1938) revealed a strong negative
correlation between topic popularity and difficulty, indicating a decline in popularity as
the difficulty of the topic increases.

(4) We identified 49 challenges practitioners faced when deploying the software develop-
ment approach, which were organized into 14 sub-themes and 4 higher-level themes.

The insights gained from the study findings can aid researchers in advancing their investi-
gations to improve software development activities. Furthermore, software practitioners can
leverage the results to better understand the core aspects of software development approaches.
Equipped with this understanding, developers can proactively prepare to establish advanced
practices in software development and tackle challenges that may arise throughout the devel-
opment process.

123

 8 Page 4 of 38 Empirical Software Engineering (2024) 29:8

This paper consists of the following seven sections. The study motivation is discussed in
Section 2. The related work to analyze the existing relevant studies is presented in Section 3.
Section 4 details the research methodology. The findings of this study are presented in Sec-
tion 5 and the implications are reported in Section 6. The threats to the validity are highlighted
in Section 7, and the conclusion, along with future avenues are presented in Section 8.

2 Motivation

Software companies, teams, and individual developers have been searching for effective and
efficient software development approaches for decades. The Waterfall model, established in
1970, was the first mature development approach (Royce 1987), followed by the Spiral model
(Boehm1988), and subsequently, Lean andAgile development approaches (Beck et al. 2001),
also including Scrum and present-day DevOps (Kim et al. 2021). As software development
activities rapidly evolve, an increasing number of development practices and tools have
emerged, drawing from the concepts of the mentioned development approaches. To deliver
high-quality products and stay competitive in the market, software practitioners must not
only conduct development activities well but also possess knowledge of team management
(e.g., the collaboration of developers and operations), time management (e.g., estimation of
user stories), and tools usage (e.g., Kanban tools and Docker) (Kim et al. 2021). Selecting
the appropriate development approach for an organization, team, or project is challenging, as
software development approaches involve a complex set of practices (Kuhrmann et al. 2017).
Due to various development environments and complex software products, it is not feasible
to have a single software development approach that fits all Kuhrmann et al. (2017, 2021).
According toKlünder et al. (2017), software practitioners donot always strictly followdefined
development processes and practices. Their study highlighted that practitioners’ perspectives
on software development approaches differ from academic research and the unpredictable
challenges that arise when using formal software development processes in an industrial
setting. Marco et al. Kuhrmann et al. (2017) suggested that practitioners use traditional
development approaches as a framework and adopt agile methods at specific stages of the
software development life cycle, resulting in hybrid development approaches (Kuhrmann
et al. 2021).

Therefore, understanding various aspects of software development approaches is crucial
for software practitioners to tailor a development approach that aligns with their project’s
unique requirements. However, there is a lack of comprehensive knowledge and guidance that
practitioners and researchers can use to achieve this understanding. This gap prompted us to
investigate the different aspects of software development approaches and provide a structured
understanding that helps practitioners in enhancing software quality and contribute to the
overall project success. In literature, various studies have investigated software development
approaches and practices in the industrial domain (Kuhrmann et al. 2017; Zhou et al. 2021;
Aymerich et al. 2018;Mushashu andMtebe 2019).However, research specifically focusing on
examining developers’ discussions regarding software development approaches across Q&A
sites is lacking. Since software practitioners often seek information for resolving challenges
from Q&A sites, which contain a vast amount of data, exploring these sites with respect to
software development approaches is crucial.

Hypotheticalmotivatingscenario : Prior to rationalising our research questions, we
have devised an exemplar motivating scenario. This scenario serves to contextualize our

123

Empirical Software Engineering (2024) 29:8 Page 5 of 38 8

research problem, validate the necessity of our study, engage our readers, and demonstrate
the real-world consequences and potential advantages of our work.

Imagine a startup, TechInnov, tasked with developing innovative smart home solutions.
The team, a mix of seasoned professionals and recent graduates, brings diverse approaches
to software development. With a fast-paced market waiting and deadlines looming, the team
faces tension due to differing adherence to Waterfall and Agile methodologies, causing mis-
communication and delays.

Sam, the team lead, is caught in a challenging situation, for example:

• How to select a fitting software development approach for his team and project?
• How to balance traditional approaches and Agile practices?
• What tools should the team use for effective workflow?

Sam needs guidance on how software practitioners manage similar situations. He often
turns to repositories mining studies on Q&A sites for guidance based on the practitioners
insights. However, he realizes that these resources fall short of providing a comprehensive
study that examines the various aspects of software development approaches in detail (Storey
et al. 2014; Barua et al. 2014). This is where our research comes in and it aims to bridge this
knowledge gap, providing a structured understanding of software development approaches
and insights from Q&A site discussions, benefiting practitioners like Sam.

3 RelatedWork

We now summarized the related studies focusing on software development approaches (Sec-
tion 3.1), and Q&A software repositories mining (Section 3.2).

3.1 Software Development Approaches

Software development approaches consistently evolve because of the rapid, iterative, and
complex software development environments and domain problems. Bajec et al. (2007)
addresses the issue of software development methods lacking adaptability to project-specific
situations. They reveal that developers often avoid using methods that exist only on paper, as
they fail to cater to the unique needs of different projects. The authors propose a new approach
called “Process Configuration" to create project-specific methods from existing ones, con-
sidering the project’s requirements. The proposed approach offers increased flexibility and
is easier to implement compared to other existing approaches.

Marco et al. Kuhrmann et al. (2021) conducted a large-scale international survey to inves-
tigate the factors that make a software development method agile. They analyze the perceived
degree of agility in various project disciplines, development methods, and practices. Find-
ings indicate that most projects exhibit increasing degrees of agility, with the selection of
practices having a stronger impact than the methods used. The study concludes that agility
cannot be defined solely at the process level, and additional factors must be considered when
implementing or improving agility in a software company.

Bustard et al. (2013) conducted an industrial survey to observe the principles and practices
of agile development approaches adopted in 2010 and 2012. The research offers insights into
the nature and practice of agile development, highlighting key outcomes and trends. The
study findings further reveal that agile practices had been widely used before 2012. Since
then, there has been a growing tendency to adopt agile methods.

123

 8 Page 6 of 38 Empirical Software Engineering (2024) 29:8

The more recent trend of integrating agile and traditional development approaches
(i.e.hybrid development approaches) is becoming more common in practice. Tell et al. (Tell
et al., 2021) explores the construction of hybrid software development methods by analyzing
1467 data points from a large-scale practitioner survey. The findings reveal that modern soft-
ware development consists of eight core approaches and a few practices. The study proposes
a systematic construction approach for hybrid methods, characterized by the practices they
include. Using an 85% agreement level, the researchers present examples of hybrid methods
and introduce an initial construction procedure to define a method frame and incrementally
enrich it with ranked sets of practices.

Additionally, the HELENA study conducted by Klünder et al. (2017) gained insights into
the distribution of hybrid approaches. Preliminary findings suggest that combining traditional
and agile software development approaches provides an opportunity to deliver a software
product in a continuous loop, get frequent feedback, and improve overall productivity. This
study’s findings only cover the German industrial domain.

Khan et al. (2021) conducted an industrial study aims to develop a taxonomy of factors
that positively impact the scaling process of agile methods in the Chinese Global Software
Development (GSD) industry. Factors are identified through a literature review and an indus-
trial empirical study with Chinese agile and GSD practitioners. The resulting factors are
categorized, prioritized, and organized into a taxonomy using the Fuzzy AHPmulti-criterion
decision-making approach. This taxonomy provides a valuable resource for theGSD industry
to assess and improve the scaling process of agile methods.

3.2 Mining Software Issues Across Q&A Repositories

Various studies used an unsupervised learning approach (topic modeling) to mine software
development-related issues from different repositories.

For instance, (Barua et al. 2014) used the LDA approach to analyze the textual content of
SOdiscussions and automatically discover themain topics present in developer conversations.
This approach differs from prior work, which focused on user activities or social interactions
in Q&A websites. By analyzing the discovered topics, their relationships, and trends over
time, the authors gained valuable insights into the development community. They observed
a wide range of topics of interest to developers, including jobs, version control systems, and
C# syntax. Additionally, they found that some questions led to discussions on other topics
and that the most popular topics over time were web development (particularly jQuery),
mobile applications (especially Android), Git, and MySQL. This analysis helps the software
engineering community better understand the thoughts and needs of developers.

In a continuous software engineering (CSE) domain, (Zahedi et al. 2020) used the LDA
approach to empirically investigate the practitioners’ perspectives by mining Q&A discus-
sions on the SO platform. They used a topic modelling approach to identify dominant topics
and conduct qualitative analysis to pinpoint key challenges. The study found that questions
are becoming more technology-specific and harder to answer. Among the 32 identified top-
ics, “Error messages in Continuous Integration/Deployment" and “Continuous Integration
concepts" were the most dominant. The paper also highlights the most challenging areas in
CSE from practitioners’ viewpoints.

Haque et al. (2020) conducted a a large-scale empirical investigation onDocker technology
by mining 113,922 Docker-related posts from the SO community. Using the LDA approach
for topic modeling, the authors identified 30 topics grouped into 13 main categories, with
the majority of posts belonging to application development, configuration, and networking

123

Empirical Software Engineering (2024) 29:8 Page 7 of 38 8

categories. The study found that monitoring status, transferring data, and authenticating
users were particularly popular topics among developers. It also revealed challenges faced by
developers in areas such asweb browser issues, networking errors, andmemorymanagement,
as well as a lack of experts in the domain. The findings are expected to guide future research
on the development of new tools and techniques and help the community focus their efforts
on Docker-related topics.

Le et al. (2021) analyse developers’ Security Vulnerabilities (SVs) discussions on two
major Q&A websites, SO and Security StackExchange (SSE). Using topic modeling, they
examined 71,329 SV posts to identify 13 main discussion topics. The study found that these
topics did not necessarily align with expert-based security sources like Common Weakness
Enumeration (CWE) and Open Web Application Security Project (OWASP). The analy-
sis also revealed that while SV discussions tend to attract more expert answers than other
domains, some difficult topics, such as Vulnerability Scanning Tools, receive limited expert
support. Furthermore, the authors identified seven key types of answers to SV questions,
with SO often providing code and instructions, while SSE offers experience-based advice
and explanations. The findings aim to help researchers and practitioners effectively acquire,
share, and leverage SV knowledge on Q&A websites.

Vidoni (2022) identified the need for guidelines on conducting systematic Mining Soft-
ware Repositories (MSR) studies, as existing research often lacks a systematic approach for
repository selection and data extraction. They conducted a systematic literature review of
MSR studies. The results showed that many MSR studies do not report selection or data
extraction protocols and rarely discuss threats to validity due to the selection or data extrac-
tion steps. The authors concluded that there is a need for guidelines on conducting systematic
MSR studies and proposed new guidelines and a template to consolidate related studies and
strategies for systematic literature reviews in the MSR field.

3.3 Comparative Analysis

The comparative analysis of our work against existing related studies is presented in Table 1.
The results demonstrate a significant distinction between our findings and those of previous
related studies. In contrast to previous studies, our research uniquely bridges the domains of
software development approaches and Q&A repositories mining. For instance, the work of
Tell et al. (2021) focused primarily on the exploration and construction of hybrid software
development approaches, analyzing a large volume of data from a practitioner survey. While
this research significantly contributed to the evolution of software development approaches,
it did not consider the rich insights that can be extracted from Q&A platforms.

Similarly,Marco et al. Kuhrmann et al. (2021) conducted a large-scale international survey
to investigate the factors that make a software development method agile. Their work, which
looked into various project disciplines, developmentmethods, and practices, indeed advanced
our understanding of agility in software development. However, like Tell et al. (2021) they did
not tap into the extensive real-world data available on Q&A platforms, which could provide
further empirical insights and understanding of agile practices in various practical contexts.

On the other hand, studies like that of Zahedi et al. (2020) and Le et al. (2021) brilliantly
harnessed topic modeling techniques to mine Q&A platforms for insights into continuous
software engineering challenges and security vulnerabilities, respectively. Theseworks,while
miningQ&Arepositories, did not specifically target the examination of software development
approaches as their primary research objective.

123

 8 Page 8 of 38 Empirical Software Engineering (2024) 29:8

As indicated in Table 1, our research stands uniquely at the intersection of two crucial
areas: software development approaches and Q&A repositories mining, filling a signifi-
cant gap in the literature. By using mining techniques to scrutinize software development
approaches as reflected in Q&A discussions, we aim to unearth practical insights about these
approaches that are directly tied to developers’ preferences, challenges, and interactions.
This nuanced perspective has the potential to guide future academic research and to inform
practical enhancements in software development methodologies.

4 ResearchMethodology

4.1 Research Questions

This study investigated four research questions to identify common software develop-
ment approaches topics, trends, and challenges to help software practitioners improve their
development activities. To answer these RQs, we retrieved 13903 software development
approaches related to posts from SO, SESE, and SEPM using the approach described in
Section 4.2.

RQ1: How successfully the questions related to software development approaches
are answered?

Rationale : Taking inspiration from existing relevant studies (Zahedi et al. 2020; Pinto
et al. 2014; Treude et al. 2011), RQ1 examines the nature of responses to questions related
to software development approaches. The investigation of successful, ordinary, and unsuc-
cessful questions is a strategic approach to understand the dynamics within the software
development domain. While we value the depth and quality of expert answers, however, our

Table 1 Comparative analysis of related works and our study. Note: (�: included, X: not included, +: simple
overview)

Studies Software
Development
Approaches

Repositories
Mining

Topics popularity
& difficulty

Challenges Approaches
via Q&A

Bajec et al. (2007) � X X X X

Kuhrmann
et al. (2021)

� X X � (+) X

Bustard et al.
(2013)

� X X X X

Tell et al. (2021) � X X X X

Klünder et al.
(2017)

� X X X X

Khan et al. (2021) � X X X X

Barua et al. (2014) X � X X X

Zahedi et al. (2020) X � � � X

Haque et al. (2020) X � � � (+) X

Le et al. (2021) X � � X X

Vidoni (2022) X � X X X

Our Study � � � � �

123

Empirical Software Engineering (2024) 29:8 Page 9 of 38 8

focus ismore to gauge overall community engagement. The number of answers can hint at the
community’s interest and involvement. By categorizing questions as successful, ordinary, or
unsuccessful, we aim to identify trends and areas needing more expert insight. Our rationale
combines both quantity and quality to capture the essence of interactions in the software
development Q&A domain.

Method : Initially, we computed the average number of answers for questions related
to software development approaches and compared it to the respective value, taking inspi-
ration from Zahedi et al. (2020). Additionally, we analyzed the question that received the
most answers to gain a more comprehensive understanding of the success rate of addressing
questions in the software development approaches domain.

Drawing on previous research (Zahedi et al. 2020; Pinto et al. 2014; Treude et al. 2011),
we classified questions related to software development approaches into three categories:

• Successful questions: Resolved questions
• Ordinary questions: those that received answers but no accepted answer
• Unsuccessful questions: Unresolved questions

Following this classification, we performed frequency analysis and counted questions for
each category. To further understand the evolving trends in the data, we applied a third-order
polynomial regression (Hastie et al. 2009). This combined approach allowed us to provide
both a clear overview and detailed insights into the dataset’s dynamics.We then calculated the
distribution of these categories and illustrated the growth trends for all questions- successful
questions, ordinary questions, and unsuccessful questions within this domain.

RQ2: What are the software development approaches discussion topics?
Rationale : Identifying the key discussion topics in Q&A repositories provides an

overview of the current software development landscape, keeping abreast of evolving trends
and practices. This understanding can guide practitioners in choosing and implementing
relevant software development approaches tailored to their projects, fostering efficiency and
success. Thus,RQ2not only illuminates the current state of software development discussions
but also paves the way for more informed decision-making in both research and practice.

Method : Building upon the work of Mansooreh et al. (Zahedi et al. 2020), we employed
the LDA (Blei et al. 2003) topic modeling technique (Section 4.3) to identify most common
discussion topics related to software development approaches. Topic modeling is a Natural
Language Processing (NLP) technique that automatically extracts structured information
from a collection of documents (Chen et al. 2016). For the LDA model, we considered a
question’s title, body, and corresponding answers as a single input document, and the output
consisted of the most frequently occurring topics identified in the text corpus. Moreover, in
our study, LDA model has been utilized purely at the application level. The objective was
to explore questions related to software development approaches raised by developers using
the potential of LDA to extract insights from the large unstructured text data.

RQ2.1: What are the most popular and difficult topics?
Rationale : This RQ is developed with the aim of understanding the types of identified

software development approaches related to topics that are popular (attractive) to practi-
tioners. Moreover, we also look at the topics that the practitioners considered challenging
(difficult) to answer. We investigated the topic’s popularity and difficulty based on similar
previously conducted studies (Peruma et al. 2022; Bagherzadeh and Khatchadourian 2019;
Abdellatif et al. 2020; Zahedi et al. 2020).

The popularity of topics highlights the methodologies or practices that are currently in
high demand or present notable challenges to the developer community. These topics can
guide the allocation of resources, such as targeted training or tool development, to address

123

 8 Page 10 of 38 Empirical Software Engineering (2024) 29:8

the complexities associated with these popular approaches. These topics can also steer the
direction of future research and development in software engineering, ensuring that the focus
remains on improving and innovating the most relevant development approaches.

The aim of examining topic difficulty is to delve into the complexity of responding to
posts within each topic. By discerning if certain topics pose more difficulties in generating
responses than others, we can pinpoint the areas that require increased community engage-
ment. Furthermore, this investigation enables us to underscore the topics that necessitate
the development of improved frameworks or tools, thereby aiding developers in effectively
tackling the challenges associated with these topics.

Method : Drawing from the work of Ahmed and Bagherzadeh (2018); Rosen and Shihab
(2016); Le et al. (2021), we utilized average values of (P1) views, (P2) score, (P3) favorite
count, and (P4) comments to gauge the popularity of developers’ topics. Concurrently, we
computed three metrics-(D1) percentage of accepted answers, (D2) median duration (min-
utes) to receive an accepted answer since creation, and (D3) average percentage of answers
to views-to assess topic difficulty. Intuitively, a more popular developers’ topic would exhibit
higher average views, scores, favorite count, and comments, and vice versa. In contrast, a more
challenging topic would have a higher D2 value but lower D1 and D3 difficulty metric values.

To generate a more uniform and representative value across various developers’ topics, we
calculated the reciprocals of D1 and D3 and then determined the geometric mean (Equation
6) of popularity (1) and difficulty (2) metrics. We opted for the geometric mean over the
arithmetic mean due to the different metric units. To enhance the comparison of all topics’
popularity and difficulty, we normalized the popularity (4) and difficulty values (5) using
Min-max normalization (5).

Populari t yi = G(P1i , P2i , P3i , P4i) (1)

Di f f icultyi = G(1/D1i , D2i , 1/D3i) (2)

Normali zed_Populari t yi = N (Populari t yi) (3)

Normali zed_Di f f icultyi = N (Di f f icultyi) (4)

N (xi) = xi − min(x)

max(x) − min(x)
(5)

G(x1, x2, · · · , xn) = (

n∏

i=1

xi)
1
n (6)

RQ3: What challenges arise when practitioners implement software development
approaches, given the identified topics?

Rationale : RQ3 identified the critical challenges faced by practitioners concerning var-
ious activities within software development approaches. By being aware of the challenges,
practitioners can make informed choices when selecting and adopting software development
approaches, considering potential obstacles, and planning for contingencies to ensure project
success.

Method : We firstly adopted the Accumulated Post Score (AMS) formula (7) proposed
by Bajaj et al. (2014) to rank the collected developer’s posts. AMS is a metric often used
in studies related to online Q&A forums, like SO. It is generally utilized to measure the
rank or significance of a post, which is often determined by user interactions like upvotes,
downvotes, comments, or answer count.

AMSi = 3Ui − 25Di + 10Ci + Ai + Fi (7)

123

Empirical Software Engineering (2024) 29:8 Page 11 of 38 8

Where Ui , Di , Ci , Ai , and Fi represent developersPosti upvotes, downvotes, comment
count, answer account, and favorite count, respectively. The equation considers the above
factors to rank the developer’s posts and identify their importance. By computing AMS
for all collected developer posts in the data set, we selected the top 200 questions with the
highest score for manually analyzing and evaluating.We used the thematic analysis approach
proposed by Braun and Clarke (2006) for qualitative data analysis. The thematic synthesis in
software engineering research is considered flexible and can be used to produce an insightful
synthesis (Cruzes and Dyba 2011).

We employed the AMS metric proposed in Bajaj et al. (2014) and identified the top 200
posts based on their accumulated post score. This selection criterion was chosen as these
posts, by virtue of their high scores, likely represent the most impactful or resonant posts.
After examining these 200 posts, we realised recurring insights, indicating that this subsetwas
rich in information and representative of the selected dataset. Furthermore, considering our
resource constraints, analyzing 200 posts offered an optimal balance between analytical depth
and coverage breadth. Thus, the selected posts reflect a comprehensive and representative
sample to analyze the critical challenges practitioners encounterwhile implementing software
development approaches.

Furthermore, rigorous process involving all authors was implemented to uphold the
integrity and quality of data coding in the thematic process. Primarily, the first two authors
used the MAXQDA5 tool for data analysis. However, to evaluate the interpersonal bias and
degree of agreement, the third and fourth authors were also invited and asked to randomly
select and analyzed 20 posts from the dataset. We then used Cohen’s Kappa test (Cohen
1960) to measure the agreement level between the authors and ensure there were not signif-
icant differences in their data coding approach. Cohen’s kappa coefficient (k) is simply “the
proportion of chance-expected disagreements which do not occur, or alternatively, it is the
proportion of agreement after chance the agreement is removed from consideration” (Cohen
1960). The (k) coefficient assesses the agreement level among a group of raters that evaluate
N-objects into (c) mutually exclusive categories (Cohen 1960). In simple terms, a (k) value of
0 means the agreement could simply be by chance, while a positive score suggests a greater
level of agreement than chance and a negative value means less agreement than what chance
would predict. Perfect agreement level is indicated by a (k) value between 0.81 to +1.00., as
proposed by Landis and Koch (1977) in their seminal study on observer agreement.Wewrote
Python code to conduct the test and run using Google “Colab”6 platform. The sample code
is provided in the replication package (Khan et al. 2022). We obtained the Cohen’s Kappa
coefficient value (k=0.77) which is positive and substantial agreement based on the divisions
provided by Landis and Koch (1977). Thus, we can confidently say that no significant level
of personal bias exists between the authors for the data coding process.

Once the initial codes were generated, all the authors were invited to participate, with the
objective of critically analyzing and discussing the revised set of codes. The intention was
to foster collective knowledge exchange and contribute to the robustness of the coded data.
Throughout the meeting, any disagreements or conflicts related to the final code generation
were addressed through mutual discussion and brainstorming. This served as a platform for
the authors to engage in constructive dialogue, which enhanced collective understanding
and ensured the validity of the final codes. This iterative process, emphasizing the value
of collaboration and open discussion, underpinned the creation of a high-quality thematic
analysis. We finally identified 49 codes, and then these codes were further mapped into

5 https://www.maxqda.com/
6 https://colab.google/

123

https://www.maxqda.com/
https://colab.google/

 8 Page 12 of 38 Empirical Software Engineering (2024) 29:8

SO post 839360: How to automate development
environment setup?

Post

Environment
Configuration

Code

Configuration
Management

Sub-
themes

theme

Branch
Management

SESE post 338436: My office wants infinite branch merges
as policy; what other options do we have?

Build pipeline
�and release
management

SESE post 312183: How do you transition a program from in-
developement to release?

Project
Management

Fig. 1 Translation of codes into themes

14 sub-themes and 4 higher-order themes. The sample analysis of the proposed thematic
synthesis process is depicted in Fig. 1.

4.2 Data Collection

To examine the support provided by Q&A sites for discussions on software development
approaches, we gathered research data from three popular software Q&A repositories: SO,
SESE, and PMSE. SO is the best-known online platform for developers to ask questions,
learn, and share their programming knowledge. SESE is an online community for academics
and developers to ask questions related to the software development activities. Addition-
ally, PMSE is a public platform for project managers to ask questions and receive answers.
Many developers post software development-related queries on these platforms to obtain
recommendations and frequent assistance from experts. Such information can help software
practitioners improve the existing software development process and enhance product quality.

To collect data from the selected Q&A platforms, we embarked on a systematic approach
to identify the relevant tags. The second and fourth authors took the lead in the initial tag
selection process, drawing the commonly recognized software development approaches (e.g.,
Scrum, Domain-Driven Design, and DevOps) from relevant literature studies such as Zhou
et al. (2021); Klünder et al. (2017); Kuhrmann et al. (2017, 2019); Khan et al. (2021);
Kuhrmann et al. (2017); Al-Saqqa et al. (2020); Bajec et al. (2007). To enhance the breadth
of our search, we also incorporated pivotal concepts integral to the software development
realm, including terms like the development process, agile methodologies, and the software
development life cycle. Recognizing the diverse nomenclature in the industry, we expanded
our tag pool by adding commonly used aliases and abbreviations, drawing from various
other online sources using google search. With this comprehensive list, we scoured the
selected Q&A platforms and focused on those tags which had at least one question to ensure
that they were actively relevant within the community. Each tag was reviewed carefully,
where its description was scrutinized to ensure it covers our research objectives. Tags that
deviated from the expected context were excluded. The first and third authors then analyzed
the tags selection process performed by the second and fourth authors, confirming them
based on their expertise and understanding. At the end of this rigorous process, 28 relevant
tags were identified across the selected Q&A platforms as shown in Table 2. The column
“selected tags" represents the software tags against which we collected developers’ questions
from SO, SESE, and SEPM. The columns “SO", “SESE" and “SEPM questions" display the
number of developer queries collected against each tag. The column “Total" indicates the total
number of developer questions across the three Q&A platforms. We excluded developers’

123

Empirical Software Engineering (2024) 29:8 Page 13 of 38 8

Table 2 Selected Tags and Question Numbers (exclude questions that contain code snippet)

No. Selected Tags SO questions SESE questions PMSE questions Total

1 domain-driven-design 3507 835 N/A 4497

2 agile 965 1093 1351 3410

3 devops 3156 73 21 3342

4 Scrum 729 717 1534 2981

5 development-process 31 676 104 813

6 kanban 173 47 309 532

7 waterfall 72 46 68 191

8 sdlc 64 88 11 163

9 extreme-programming 45 55 17 117

10 agile-project-management 77 N/A N/A 77

11 prince2 N/A 3 56 59

12 agile-processes 53 N/A N/A 53

13 mda 47 N/A N/A 47

14 kanban-board N/A N/A 42 42

15 model-driven-development 39 N/A N/A 39

16 rational-unified-process 18 13 N/A 31

17 rup 23 N/A 5 28

18 safe N/A N/A 24 24

19 iterative-development N/A 22 N/A 22

20 Lean N/A 22 N/A 22

21 scrumban N/A N/A 17 17

22 dsdm N/A N/A 12 12

23 scaled-agile-framework N/A 9 N/A 9

24 personal-software-process 7 2 N/A 9

25 nexus N/A N/A 7 7

26 feature-driven 3 N/A N/A 3

27 large-scale-scrum N/A 3 N/A 3

28 dsdm-atern 2 N/A N/A 2

Total (Remove Duplicates) 8486 2978 2439 13903

posts containing code snippets in their bodies to prevent data from leaning towards a specific
technology and code language directions. Furthermore, we removed repeated posts with
multiple selected tags. In summary, we extracted 13,903 developers’ questions along with
their corresponding answers using the software tags mentioned in Table 2 from the Stack
Exchange Data Dump 7 downloaded from the “Internet Archive." The data was retrieved on
July 6, 2022.

4.3 Topic Modelling

Topic Modeling is an approach used in NLP that autonomously pulls out structured data,
like themes, from a collection of documents (Chen et al. 2016). A set of semantically related

7 https://archive.org/details/stackexchange_20211206

123

https://archive.org/details/stackexchange_20211206

 8 Page 14 of 38 Empirical Software Engineering (2024) 29:8

words that frequently co-occur in textual data can be considered a representation of one topic
(Chen et al. 2016; Blei et al. 2003). Using a topic modeling framework to analyze a corpus
of documents allows researchers to efficiently organize and index documents based on their
semantic structure (Chen et al. 2016). LDA (Blei et al. 2003) is a prominent unsupervised
topic modeling algorithm used for identifying underlying topics within a text corpus (Barua
et al. 2014). It operates by assuming each document is a mixture of topics, and each topic
is a distribution of words, thus revealing the hidden thematic structure within the text. It
has been used in different other domains (Jacobi et al. 2016), such as continuous software
engineering (Zahedi et al. 2020), Docker development (Haque et al. 2020), requirements
engineering (Khan et al. 2018), and security vulnerability (Le et al. 2021). Following thework
ofMansooreh et al. (Zahedi et al. 2020), we define a question’s title, body, and corresponding
answers as one input document for the LDA model and output the number of frequently
occurring topics identified in the text corpus.

4.3.1 Preprocessing of Collected Posts

Before applying LDA to the dataset curated from developers’ queries on the SO and SE
platforms, it’s essential to preprocess the collected textual documents to eliminate noise.
First, we removed HTML tags, code snippets, punctuation, and stop words using the NLTK
8 stopwords corpus. For this, we identify and remove code snippets enclosed within the
<code> tags. Specifically, we employed the pattern ‘<code>.∗ < /code >’ to target
and replace such segments with an empty string. Subsequently, to ensure a comprehensive
cleanup, we further applied another regular expression, <.*?>, to remove any residual
HTML tags from the content. We acknowledge that users occasionally overlook proper code
formatting, which might lead to some code snippets being embedded within the main text. To
mitigate this, both first and fourth authors conducted a manual review of a subset of the data
to ensure the accuracy of our preprocessing. Our combined automated and manual efforts
aimed to minimize the presence of unintended code snippets, thereby reducing potential
noise in our dataset. After these steps, we converted all document texts to lowercase. We
subsequently performed lemmatization (keeping only noun, adj, vb, and adv) and word
stemming (converting words to their root form) to remove multi-form and irrelevant words.
Finally,we adopted the approach proposed byYang et al. (2016) thatmade theword frequency
statistics of the data corpus and excluded the words which occurred less than 10 times.

4.3.2 Topic Modelling with LDA

After preprocessing the dataset, we applied the LDA algorithm to the collected textual docu-
ments of developers’ discussions on the Q&A platforms. The number of topics “K" extracted
from the training corpus is one of themost important input parameters in implementing LDA;
if K is too small, the recovered topics may overlap, which is difficult to generalize. On the
contrary, LDA may create excessively fine-grained topics in case of K is too large. In this
regard, we observed a consecutive range of K from 2 to 50 with an increment of 1. Similar
to Barua et al. (2014); Ahmed and Bagherzadeh (2018); Rosen and Shihab (2016); Le et al.
(2021), alongside K, we also set hyper-parameters (α and β) values with an inclusive range
from 0.01 to 1 in the step of 0.2, and an additional value “symmetric” (1.0/numTopics) and
“asymmetric” (1.0/(topicIndex +√

numTopics)) for α, “symmetric” for β. α determines

8 https://github.com/nltk/nltk

123

https://github.com/nltk/nltk

Empirical Software Engineering (2024) 29:8 Page 15 of 38 8

the sparsity of document-topic distribution, andβ controls the sparsity of topic-word distribu-
tion. As proposed in other research studies (Rosen and Shihab 2016; Abdellatif et al. 2020),
wemeasured the coherence score to choose the optimal number of identified topics because it
highly correlates with human comprehensibility (Röder et al. 2015). Topic coherence repre-
sents the semantic correlation between high-scoring words that appeared in the topic. Hence,
we trained the LDAmodel with each tuple of (K, α, β) and chose the top 5 highest coherence
values (with different K values) with corresponding results for comparison. To validate the
results, the first author manually checked the topic words and most related developers’ posts
for 5 candidate K values to assure the optimal K value was selected. After these steps, we
found that a tuple value of (15, 0.41, 0.81) provides relatively granular topics for collected
software development processes-related developers discussion in the Q&A platforms (SO
and SE). Significantly, we filtered out topics with a probability less than 0.1 in a document
to exclude unimportant topics adopted from Barua et al. (2014). To assign descriptive labels
to each discussion topic from the Q&A platforms, we thoroughly examined the top 10 most
recurrent terms. This ensured that the labels were representative of the core essence of the
discussions. Furthermore, to gain a comprehensive understanding and ensure the accuracy
of our interpretations, we carefully reviewed the top 15 developer discussion posts that were
most closely associated with each topic. These posts were selected based on their relevance
(score) to each topic, as reported in Ahmed and Bagherzadeh (2018); Le et al. (2021); Zahedi
et al. (2020). Additionally, we offer a comprehensive list of topics, the top 10 words, the top
15 posts, and assigned labels in the data replication package, which can be found in the our
study Notion repository (Khan et al. 2022).

5 Results

In this section, we summarize the results of the data analysis, which aims to address the core
research questions of this study comprehansively.

5.1 RQ1: Successfully Answered Questions

We investigated how frequently the developers responded to questions related to software
development approaches. Upon performing statistical analysis of practitioners questions that
received answers, we observed that most questions in the software development approaches
domain received fewer than three answers (mean=2.41). However, several developers’ ques-
tions attracted considerable attention from practitioners, with a high number of responses.
The developer question and its accepted answer which received a maximum of 37 responses
from practitioners are presented in Fig. 2. We can observe that this question was published in
2009 on SO and pertained to project management regarding deadlines in software projects.
The accepted answer to this question received many upvotes and stated, “Software is done
when it is done, no sooner and no later." Interestingly, this question was closed in 2012 as it
did not fit the specific topics on SO.

We categorized software development approach-related questions into three types: suc-
cessful, ordinary, and unsuccessful questions, as outlined in Section 4.1 (RQ1). The
distribution of these categories can be found in Table 3. Interestingly, we can conclude that
most of the questions, i.e., 52% in the software development approaches domain are identi-
fied as successful. Also, only 6% developers’ questions are categorized as unsuccessful and
have not received any answer from the community on the SO and SE platforms. In contrast,

123

 8 Page 16 of 38 Empirical Software Engineering (2024) 29:8

Fig. 2 The question that received maximum answers

41% developers’ posts are classified as ordinary questions, where they received responses
from developers but not a successful answer (See Table 3). Furthermore, we depicted the
trends of the developers’ questions (successful, ordinary, and unsuccessful) in Fig. 3.

Our results point out that we need more expert involvement, as some relevant questions
remain unanswered. One way to tackle this is to extend the functionalities of the existing
developers discussion forums like Stack Overflow by employing an automated approach
that identifies topics and their concerned categories that remain unanswered and target them
to the volunteers for possible solutions. Gamification-based approaches can be utilized to
provide incentives, rewards, and social recognition to the frequently contributing developers
on social platforms on challenging and emerging topics or issues (Khan et al. 2019). Fur-
thermore, Machine and deep learning can be employed to automatically group the software
development discussion in the Q&A forums into useful and meaningful categories, such as
DevOps, streamlining the user experience for those seeking information on trending software
methodologies.

In addition, by understanding the difference between questions that get answered (suc-
cessful), those that get responses but not accepted answer (ordinary), and those that get no
responses (unsuccessful), professionals can better identify what topics are popular, which
areas need more exploration, and where the tough challenges lie. Recognizing these patterns
not only helps in solving problems but also keeps everyone updated with the latest trends.
Overall, these steps and insights promote a stronger exchange of knowledge in the software
development community.

Table 3 Distribution of
Questions (Successful, Ordinary,
Unsuccessful)

Successful Ordinary Unsuccessful Total

#Posts 7299 5733 871 13903

%Posts 52% 41% 6% 100%

123

Empirical Software Engineering (2024) 29:8 Page 17 of 38 8

Fig. 3 Trend of Questions

Key Findings of RQ1

Finding 1: In the software development approaches domain, 52% of questions were
successfully answered on Q&A platforms. However, 6% were deemed unsuccessful
as they received no responses from the community. Finding 2: The success rate of
software development approach questions has declined since 2014, indicating a need
for more expert input on Q&A platforms and a potential rise in question complexity.

5.2 RQ2: Software Development Approaches Topics

To address RQ2, we used topic modeling LDA approach (see Section 4.3) and identified
the optimal topics number (K = 15) and parameters (α = 0.41, β = 0.81) by comparing the
coherence score, manually checking the topics keywords, and corresponding documents.
After training the LDA model, we analyzed and inspected the top 10 keywords identified by
the LDA algorithm and read through the top 15 developers’ posts with the highest relevance
to each topic. The relevant developers topics were manually selected based on the identified
keywords using theLDAalgorithm.After performing the above steps,we gave each developer
topic a descriptive label, as shown in Table 4. The complete list of developers topics, top 10

123

 8 Page 18 of 38 Empirical Software Engineering (2024) 29:8

Table 4 Identified topics using LDA

Topic Topic Name Number (Proportion) of questions Trend

T1 Continues integration, build and
deployment

2587 (19%)

T2 Events, bounded contexts and
Microservices in DDD

1819 (13%)

T3 Domain model, design patterns
and layers in DDD

3740 (27%)

T4 DevOps automation tools 2809 (20%)

T5 Project, team and time
management

7933 (57%)

T6 Team role and responsibilities in
Scrum

2462 (18%)

T7 Project managers’ responsibility
and contract management

905 (7%)

T8 Entities, value Objects, and
aggregates in DDD

2889 (21%)

T9 Tools and plugins in agile
software development

2833 (20%)

T10 Software development
methodology concepts

1836 (13%)

T11 Meetings in agile team 499 (4%)

123

Empirical Software Engineering (2024) 29:8 Page 19 of 38 8

Table 4 continued

Topic Topic Name Number (Proportion) of questions Trend

T12 Task management in Kanban
Board

2935 (21%)

T13 Software testing 1479 (11%)

T14 Story estimation in Scrum sprint 2964 (21%)

T15 Software design and
requirements

3561 (26%)

words identified using the LDA algorithm, top 15 practitioners posts’ Id and assigned labels
could be found in the data replication package at Khan et al. (2022). To filter the unimportant
topics, we considered a valid topic in a document whose probability related to the document
was at least 10% (Barua et al. 2014). Table 4 presents a comprehensive list of the identified
topics, while Fig. 4 illustrates the frequency of occurrence of each topic. Our analysis revealed
that “T5: Project, team and Time Management”, “T3: Domain model, design patterns and
layers in DDD” and “T15: Software design and requirement” are respectively the top 3 highly
asked topics in software development approaches related posts.

Fig. 4 Distribution of Dominant Topics

123

 8 Page 20 of 38 Empirical Software Engineering (2024) 29:8

Each identified topic with sample developer’s posts is elaborated as follows- aimed at
facilitating comprehension of their significance.

Continues integration, build, and deployment (T1)We labeled developer topics about
continuous integration (CI), continuous deployment (CD), and automated pipeline building
with tools like Jenkins, Azure DevOps, and GitHub Actions as “T1". CI and CD are essen-
tial components of DevOps development and are favored by agile teams. When examining
developer posts on SO and SE, we found that many practitioners and software developers
struggle to adopt CI, CD, and other automated practices (e.g. VSTS Branching Strategy
& CI/CD pipelines- SO post#50694511)), managing pull requests in workflows like (how
should we handle pull requests into hotfix/* branches?- SO post #39021924) and controlling
CI pipelines (e.g. Run pipeline stages only after the previous stage is completed - GitLab CI-
SO post #62919867).

Events, bounded contexts andMicroservices inDDD (T2)TheCode “T2" is assigned to
the developers’ topic in the Q&A websites that discuss the implementation issues of domain
events, integration events, bounded contexts, and microservices in Domain-Driven Design
(DDD). Domain events are useful for integrating multiple microservices or bounded contexts
by providing a messaging-style communication channel. For example, developers asked
questions like (How to fund transfer between bank accounts DDD style with EventStore?-
SO post #54967846), (CQRS +Microservices Handling event rollback- SO post #46190467)
and (Choreography Sagas in DDD - Chain of Integration Events?- SO post #63597403).

Domain model, design patterns, and layers in DDD (T3) The code “T3" is assigned
to developers’ topics that focus on the domain model, design patterns, and different layers
such as the user interface, application layer, domain layer, and infrastructure layer in DDD.
Some example developers’ posts of T3 are (DDD - How to reuse code in application layer?-
SO post #65114332), (Placing entity framework models in the infrastructure layer in onion
architecture- SO post #65474540) and (Could REST API be considered a presentation layer
in DDD?- SESE post #318186).

DevOps automation tools (T4) The code “T4" relates to developers discussing technical
and configuration matters around DevOps automation tools. Analyzing these discussions,
Docker and Kubernetes are often mentioned as applications that aid in automating software
development for DevOps teams. Examples include questions like: (How to run docker con-
tainers on different machines- SO post #34938674) and (RancherOS + K8s On a single
physical machine with multiple nodes- SO post #58235277).

Project, team, and time management (T5) The code “T5" refers to developers’ dis-
cussions about project management, teamwork, and time management. Common issues on
SO and SE platforms include work in progress (WIP), such as (Team consistently exceeding
their working in progress (WIP) limit- SEPM post #14049), setting development standards
(e.g. Sending out a ’Request for Comment’ when establishing a new guideline- SESE post
#56753) and adopting new technologies in organizations (e.g. Approach to encouraging
organizational adoption of new web dev tools- SESE post #279820) .

Team role and responsibilities in Scrum (T6) The code “T6" pertains to developers’
discussions about the roles and responsibilities of Scrum team members, such as the Scrum
Master, Product Owner, and development team. Analyzing topics on SO and SE platforms,
it is evident that there is confusion regarding the relationship between the ScrumMaster and
Product Owner, as seen in questions: (e.g. In Scrum, is a Scrum Master position higher
than a Product Owner?- SEPM post #15731) and (Can Product Owner + Scrum Master

123

Empirical Software Engineering (2024) 29:8 Page 21 of 38 8

(Team/Kanban Lead) provide combined leadership for a team?- SEPM post #17287). Other
posts explore the Product Owner’s role, for example, (Product Owner role in Scrum- SEPM
post #11613), or address development teams in different locations, such as (A Scrum Master
is working with a development team that has members in different physical locations- SEPM
post #26223).

Projectmanagers’ responsibility and contractmanagement (T7)The code “T7" refers
to developers’ discussions about the responsibilities ofmanagement roles and the significance
of contracts in project assurance. Analyzing topics on SO and SE platforms, it is clear that
many practitioners talk about project managers’ duties in posts such as (Agile management
roles- SEPM post #6769) and (Financial indicators of a project and a project manager’s
efficiency- SEPM post #30733). Additionally, developers often discuss contract management
in posts (e.g. How can a PM manage the contract aspects for Scrum projects with outcome-
based pricing? SEPMpost #29636) and (How is a software development contract concluded?
SEPM post #30284).

Entities, Value Objects, and aggregates in DDD (T8) In DDD, entities have a unique
identity and combine data and behavior, like users or products. Value objects describe char-
acteristics without a unique identity. Aggregates are collections of related entities and value
objects, simplifying themanagement of complexDDD systems. Each aggregate has an entity,
known as the aggregate root, which controls access rights for objects outside the aggregate.
The code “T8" is given to developers’ posts on SO and SE platforms that discuss aggregates
and related concepts. During the analysis, it is noted that developers frequently ask about
concepts (e.g. DDD, Aggregate roots and Entities- SO post #46661591) and practices such
as (DDD: is it correct for a root aggregate to hold a reference to another root aggregate?-
SESE post #328571).

Tools and plugins in agile software development (T9) The code “T9" is given to posts
focusing on commonly used tools and plugins in agile software development approaches.
For instance, developers ask about suitable IDEs (e.g. Javascript IDE for agile development-
SO post #7090013), PHP open-source tools such as (PHP Open Source Tools for Agile
Development- SESE post #86883), or cross-platform project management tools like (Any
agile free cross-platform project management/ALM tools with Mylyn integration out there?-
SO post #3863050).

Software development methodology concepts (T10) The code “T10" is given to devel-
opers’ discussions on SO and SE platforms that focus on concepts of software development
methodologies, including Extreme Programming, Waterfall, and Scrum. For example, devel-
opers ask questions like (What’s the relationship between SDLC and methodologies like XP,
RAD, Scrum, etc.?- SEPM post #15378) and (Software development methodology difference-
SO post #6147478).

Meetings in agile team (T11) The code “T11" is given to posts focusing on common
meetings agile teams hold during product development. These meetings include but are not
limited to, daily stand-ups (e.g. Should we cancel the daily stand-Up if we have another
meeting during the day?- SEPM post #20796) and (Can a daily scrum meeting be replaced
by a status email?- SESE post #210111), sprint reviews, and sprint retrospectives (e.g. What’s
the ideal length of the sprint review/retrospective based on the length of the iteration?- SESE
post #71926).

Taskmanagement inKanban board (T12)Kanban board offers a clearer view of project
workflow by visually displaying the work of all team members in software development. As
a result, we assigned the code “T12" to practitioners’ discussion topics that address problems
or issues related to Kanban Board. Developers need to efficiently organize and manage tasks
on the Kanban board, as seen in questions like (Why in JIRA my field Resolution is labeled as

123

 8 Page 22 of 38 Empirical Software Engineering (2024) 29:8

Unresolved when the status is Resolved?- SEPM post #22987) and (Why are items for other
users on the TFS current iteration task board grey?- SO post #18450086).

Software testing (T13) Software testing helps detect bugs or errors early and offers
solutions before delivery, improving software application quality and increasing user satisfac-
tion. Incorporating software testing in development approaches ensures security, reliability,
and high performance. We assigned the code “T13" to developers’ posts focusing on soft-
ware testing-related issues, including unit testing, integration testing, acceptance testing, and
test-driven development (TDD). Examples of developer discussions include: (Unit testing
- Practicality: Should it pass or fail all or most of the time?- SO post #33205413) and
(test-driven development - Who should write the tests?- SESE post #35610).

Story estimation in Scrum sprint (T14) Story estimation helps the Product Owner gauge
the effort required for each user story to complete the software project on time and within
budget. Each team member provides their perspective on the work during story estimation.
We assigned the code “T14" to practitioners’ discussion posts on selected Q&Awebsites that
address issues or problems related to story estimation. Common story estimation questions
include when to estimate, such as (Should a scrum team estimate time for the user stories
during Sprint Planning, or before it?- SESE post #270689) and (When is it time to do poker
planning - during Story Time or during Sprint Planning?- SEPM post #15545), and how to
use story points for estimation, e.g. (Measuring scale for story points in Scrum framework-
SO post #9017428).

Software design and requirements (T15)Detailed, clear, and accurate software require-
ments help designers, developers, and testers better understand product functionalities and
develop software applications that lead to higher user satisfaction. Improved software require-
ments elicitation, specification, and validation can also streamline the design phase, resulting
in higher-quality software applications.We assigned the code “T15" to developers’ discussion
posts on SO and SE platforms where practitioners discuss challenges related to requirements,
design, or both. Numerous posts cover software design and requirements, such as (Require-
ments with units in Software Design Document- SESE post #332967). Unified Modeling
Language (UML) is also frequentlymentioned in the design and requirement analysis phases,
e.g. (Include Use Case Diagram (UML)- SO post #31759144).

Our analysis of software development approaches related topics on selected Q&A repos-
itories provides valuable insights into the most frequently discussed areas. The identified
key discussion topics bear several interesting implications. With the highest frequency top-
ics being “T5: Project, team and time management”, “T3: Domain model, design patterns
and layers in DDD”, and “T15: Software design and requirements”, these areas stand out as
notable focal points of interest in software development. The development of more effective
project management methodologies could improve team coordination and productivity (Itzik
and Roy 2023; Berntzen et al. 2022) Recognizing these topics can significantly benefit the
Q&A repositories. For instance, understanding the most discussed topics allows Q&A plat-
forms to prioritize and highlight content that addresses these areas. If “T5: Project, team and
time management” is a frequently discussed topic, repositories can prioritize content around
this theme, ensuring that users get immediate access to the most relevant information.

Similarly, standard frameworks for implementing Domain-Driven Design could simplify
complex processes, reducing development time and enhancing software quality (Berntzen
et al. 2022). Further, these findings can help steer the development of new tools and tech-
nologies. With an understanding of what is being most discussed, tool developers can cater
more specifically to the needs of software developers. For example, the frequency of discus-
sions around “T4: DevOps automation tools” and “T9: Tools and plugins in agile software
development” suggest these are areas where new or improved tools could be beneficial. The

123

Empirical Software Engineering (2024) 29:8 Page 23 of 38 8

discussions highlighted can also guide educational efforts by shaping the curricula of training
programs and university courses to better prepare future practitioners. By focusing on these
identified areas, education providers can ensure they are equipping learners with the most
relevant knowledge and skills (Kuhrmann et al. 2019).

The overall findings indicate that an intensified focus on these topics could drive advance-
ments in understanding, strategy, and methodology, leading to more effective software
development. Consequently, these insights not only shape the focus of future software devel-
opment research but also guide the development of practices and tools in the industry. In
summary, these findings offer guidance for the software development field, directing atten-
tion to key areas where greater focus could yield substantial improvements in practice, tools,
and education.

Key Findings of RQ2

Finding 3: The top three highly discussed topics are “T5: Project, team, and time
management," “T3: Domain model, design patterns, and layers in DDD," and “T15:
Software design and requirement", emphasizing the importance of these aspects
in addressing developers’ concerns and challenges. Finding 4: Practitioners often
discuss CI/CD, DevOps tools, and Agile methodologies like Scrum, Kanban, and
Extreme Programming. This suggests that developers actively engage with these
methods and need guidance to effectively incorporate them into their workflows.
Finding 5: Other notable topics include software testing, story estimation in Scrum,
and Kanban task management- highlighting the demand for effective strategies to
ensure quality, precise estimates, and improved task handling in software projects.

5.3 RQ2.1: Popular and Difficult Topics

We further analyzed the topics discussed in Section 5.2 (RQ2) to identify the most popular
and difficult topics to address. As depicted in Fig. 5, we utilized the min-max normalization
technique (see Section 4.1, RQ2.1 (method)) to calibrate the values of both popularity and
difficulty metrics. Comprehensive statistical measures for these metrics are made accessible
in the data replication package (Khan et al. 2022). The analysis led us to identify the following
popular and challenging topics:

Topic popularityThe top threemost popular topics on the SO and SE platforms have been
identified using min-max normalization. These topics are Software development methodol-
ogy concepts (T10), Software design and requirements (T15), and Software testing (T13)
(See Fig. 5). Although T10 is the most popular topic, it ranks 11th in the frequency distri-
bution of all topics, as depicted in Fig. 4. We used Kendall’s Tau correlation test (Kendall
1970) to evaluate the relationship between topic popularity and frequency distribution. The
resulting Tau value is 0.028, with a probability of tau = 0 (no association) and a p-value of
0.923. This suggests no significant correlation exists between the topic’s popularity (Fig. 5)
and its frequency distribution (Fig. 4).

It demonstrates that the frequency of a topic does not accurately represent its popularity-
the number of questions on a topic cannot fully capture user activity on a Q&A website.
By understanding these findings, software practitioners can gain insight into the prevailing
topics in the field of software development approaches. This information can prove valuable
when selecting the most suitable software development approach.

123

 8 Page 24 of 38 Empirical Software Engineering (2024) 29:8

Fig. 5 Popularity and difficulty of topics

Topic difficulty In the dataset, the top three most difficult topics for developers were
identified as Events, bounded contexts, andMicroservices in DDD (T2), DevOps automation
tools (T4), and Task management in Kanban Board (T12) (see Fig. 5). From Fig. 7, it is
evident that the number of posts on any of the top three most difficult topics exhibited an
upward trend. For instance, for DevOps automation tools (T4), the developers’ questions
increased significantly (See Fig. 7). This information is valuable for software practitioners
to continuously monitor developers’ posts on Q&A websites and provide timely solutions
or remedies for questions regarding emerging trends. In contrast, the number of questions
for the top three most popular developers’ topics did not increase, with a downward trend
visible in Fig. 6. Using Kendall’s Tau correlation test (Kendall 1970), we discovered a strong
correlation (tau = -0.600, p-value = 0.001) between topic popularity and difficulty (popularity
decreased as difficulty increased).

The analysis from RQ2.1, which highlights the most popular topics in software devel-
opment, carries profound implications for the trajectory of the software industry. The
prominence of topics such as Software development methodology concepts (T10), Software
design and requirements (T15), and Software testing (T13) indicates a collective emphasis
on refining methodologies, enhancing software design practices, and ensuring robust test-
ing procedures. Given this trend, we can anticipate an increased investment in methodology
research, potentially leading to the emergence of new methodologies or the refinement of
existing ones. This focus suggests that the industry is gearing towards a more structured and

123

Empirical Software Engineering (2024) 29:8 Page 25 of 38 8

Fig. 6 Distribution of top-3 popular topics’ questions over time

systematic approach to software development, aiming for higher quality outputs and more
efficient processes.

Concurrently, the recognition of challenging topics such as Events, bounded contexts, and
Microservices inDDD (T2),DevOps automation tools (T4), andTaskmanagement inKanban
Board (T12) highlights the complexities inherent in these areas. The increasing discussions
around these subjects signify a pressing demand for specialized knowledge and solutions.
Especially in emerging domains likeDevOps automation tools (T4), there is a clear indication
of the industry’s evolving needs. For software professionals, this presents a strategic avenue
to specialize and offer expertise, potentially positioning themselves as thought leaders or
solution providers for these intricate topics, thereby contributing to the advancement of the
field.

Furthermore, the observed correlation between a topic’s popularity and its perceived diffi-
culty reveals an interesting dynamic. As topics becomemore complex, their popularity seems
to decrease, suggesting a potential knowledge gap. This emphasizes the need for industry
experts to focus on these challenging areas, offering solutions and insights. By addressing
these topics, there is potential for significant advancements in software quality and develop-
ment practices. In summary, RQ2.1 findings serve as a guide, highlighting areas in software
development that require attention, innovation, and growth.

123

 8 Page 26 of 38 Empirical Software Engineering (2024) 29:8

Fig. 7 Distribution of top-3 difficult topics’ questions over time

Key Findings of RQ2.1

Finding 6: The top threemost popular topics are Software developmentmethodology
concepts (T10), Software design and requirements (T15), and Software testing (T13).
No strong correlation exists between frequency distribution (Fig. 4) and popularity
(Fig. 5), indicating that question count doesn’t fully represent user activity on Q&A
websites. Finding 7: The top three most difficult topics for developers are Events,
bounded contexts, and Microservices in DDD (T2), DevOps automation tools (T4),
andTaskmanagement inKanbanBoard (T12). A strong negative correlation between
popularity and difficulty indicates that difficult topics are less popular. Finding 8:
Many questions on difficult topics go unanswered, indicating practitioners should
focus on addressing them. Providing solutions for these areas can enhance software
quality and progress development approaches.

5.4 RQ3: Software Development Approaches Challenges

Through an exhaustive qualitative analysis, we identified 49 particular challenges that
practitioners face in software development methodologies (for detailed methodology, see
Section 4.1, RQ3). These identified challenges have been classified and mapped into 14
sub-themes and 4 high-level themes (categories), as demonstrated in Fig. 8.

The summary of the high-level themes (categories) is as follows:

123

Empirical Software Engineering (2024) 29:8 Page 27 of 38 8

Project Management

Software Development related Challenges

Optimization

Project Initialization (31) Scrum
Framework (22)

Requirement analysis
Decision making
Architecture design

challenges Sprint backlog visibility
Synchronizing multiple

scrum projects

Unit test maintainability
Test driven development
Test automation strategy

Resistance to change

Team Management

Adopting Agile Frameworks
and Practices (12)

Team Building and Roles
Management (8)

Team Efficiency
Management (9)

Agile Toolset
(11) Resources (6)

Lack of skilled functional programmers

Learning curve

Software
Testing (14)

Configuration
Management (14)

Ensuring daily stand-up
Creating effective user stories

Branch management
Environment configuration
Version control
Complex dependency chains
Build pipeline and

release management

Inconsistent code review
Evolving code standards
Code refactoring for

maintenance

Code Quality and
Maintenance (10)

Project scope creep

Time estimation

Overly optimistic estimates

Project Estimation (4)

Insufficient training

Cultural barriers

Insufficient feedback loops

Personality conflicts
Lack of trust
Client interaction
Role definition and clarification

Measuring and tracking efficiency

Managing workload

Staying up-to-date with technology
Frequent requirements changes

User adoption

Integration with existing systems

Lack of customization

Concepts complexity

Concepts and Definitions

Agile Definitions and Concepts
Understanding (41) Incomprehension (10) Efficiency (8)

Inconsistent
terminologies

Technical language barriers

Lack of technical knowledge

Algorithm complexity

Poor mathematical skills

Performance optimization

95 Posts

29 Posts 17 Posts

59 Posts

Budget estimation

Communication and cooperatoin Resource allocation and prioritization

Inadequate tools and
libraries

Fig. 8 Mapping of identified challenges

5.4.1 Project Management Challenges

We analyzed developers’ discussions on selected Q&A platforms, focusing on the project
management challenges they encounter when adopting software development approaches
and practices. This category comprises the most significant portion of the dataset, including
95 out of 200 top-ranked developers’ posts. These posts highlight practitioners’ questions for
effective and efficient solutions in software project management. Examining the data from
these 95 posts, we identified 22 project management relevant challenges classified across six
sub-themes (See Fig. 8).

In project management, practitioners face challenges related to project initiation activities
such as requirement analysis, decision-making, and architecture design. For example, (How
can I get things right at the beginning of a software project?- SESE post #324082). These
initial steps provide a fundamental structure; if they go wrong, they can lead to project
failure. Software practitioners should provide guidelines with examples to help in initiating
and executing project activities more efficiently.

A common sub-theme of developers’ questions in this category relates to challenges
when adopting the Scrum framework, such as daily stand-up, user stories, sprint backlog,
and project synchronization. For example, (Developers wonder if bug-fixing tasks should
be assigned story points in Scrum- SESE post #162145). Similarly, developers often seek
technical solutions for software testing (sub-theme), such as unit testing and Test-Driven
Development (Is unit testing or test-driven development worthwhile?- SESE post #140156),
on Q&A platforms.

We also identified configuration management (sub-theme) challenges, e.g., branch man-
agement, environment configuration, version control, complex dependency change, build

123

 8 Page 28 of 38 Empirical Software Engineering (2024) 29:8

pipelines, and release management (See Fig. 8). For instance, (How do you handle integrat-
ing code frommultiple branches/developers each sprint?- SESE post #372716). Furthermore,
developers’ discussions revealed challenges relevant to code quality and maintenance such
as (I’ve inherited 200K lines of spaghetti code - what now? SESE post #155488) and project
estimation (What can I do to get better at estimating how long projects are going to take?-
SESE post #39411).

In summary, practitioners face a variety of project management challenges when adopt-
ing different approaches and practices for software development. The main areas of concern
include project initialization, Scrum framework adoption, software testing, configuration
management, code quality, and project estimation. These insights are vital for software
practitioners to improve their methodologies and better support development activities.
Furthermore, researchers can use these findings to develop novel software development
approaches that address current trends and challenges faced by practitioners in the field.

5.4.2 TeamManagement Challenges

This category includes developers’ posts from the selected Q&A platforms that discuss
challenges to effectivelymanaging a team in software development approaches.We identified
a total of 13 primary challenges, which were subsequently grouped into 3 subcategories (See
Fig. 8).

Upon careful examination of developers’ posts, we noticed that development teams
encounter various challenges when adopting agile frameworks and implementing their prac-
tices. For instance, (How can we make Agile enjoyable for developers that like to personally,
independently own large chunks from start to finish- SESE post #80751), specifically when
shifting the team from Waterfall to Agile.

Developers also encountered challenges relevant to team building and roles management,
such as (Why can’t the Scrum Master and the project manager be the same person?- SEPM
post #4707). Another example of developers’ posts in this category is seeking approaches
to improve team efficiency, e.g. (How can we reduce downtime at the end of an iteration?
SESE post #66708).

We further noticed five core challenges related to team efficiencymanagement (See Fig. 8),
for example, (How to measure software development performance?- SO post #1168131),
(How to tell whether your programmers are under-performing?- SESE post #177167) and
(Product owner and/or scrum master in performance review of developers- SESE post
#439092).

It can be concluded that developers face several challenges when managing teams in
software development approaches, particularly when transitioning from one methodology to
another, such as from Waterfall to Agile. Key concerns include making Agile enjoyable for
developers who prefer to independently own large project portions, managing and defining
team roles, and improving team efficiency. Addressing these challenges is crucial for orga-
nizations to ensure smooth transitions between development methodologies and to enhance
overall team productivity and effectiveness.

5.4.3 Optimization

In this category, developers’ discussion posts related to challenges focusing on agile toolset
and resources. Various posts focuses on Agile tools choice, comparison, and usage, with
examples including Azure Web App (Azure Web App (ASP.NET MVC) becomes cold every

123

Empirical Software Engineering (2024) 29:8 Page 29 of 38 8

ten minutes and takes +10-20s to load- SO post #50115939), Azure DevOps Server (backup
of AzureDevOps repositories - SO post #62174938), KanbanBoard (Where to Find aDesktop
Kanban board application?- SEPM post #829), Jenkins (Is it a good idea to make Ansible
and Rundeck work together, or using either one is enough?- SO post #31152102), Visual
Studio (What is Security Development Lifecycle Checks option in Visual Studio?- SO post
#18304632), and Virtual Machine (Thoughts on Development using Virtual Machines- SESE
post #103501). Additionally, developers also discussed resources-related problems, for exam-
ple, lack of skilled functional programmers (How much functional programming expertise
can programmers be expected to have? SESE post- #209071) and (Is there a software-
engineeringmethodology for functional programming? SOpost- #4852251), inadequate tools
and libraries (Where do I find some good examples for DDD?- SO post #540130) that can
lead to suboptimal project outcomes and hinder overall progress in software development
(See Fig. 8).

These findings are encouraging for both software developers and the research community.
Software developers can provide best practices and post-mortem reports on softwaremethod-
ologies to help in understanding the pros and cons of development approaches. Similarly,
software researchers can seize this opportunity to develop research studies comparing various
software approaches (traditional and Agile) in developing software applications, particularly
considering market-based software products.

5.4.4 Concepts and Definitions

In this category, developers’ discussion posts focus on asking general questions in Q&A
platforms to gather community knowledge on the concepts and definitions of software devel-
opment approaches and practices. We identified 7 relevant challenges, which were further
categorized across three sub-themes (See Fig. 8).

One common sub-theme in the selected posts involves the agile definition and concepts
understanding. For example, practitioners sought information on Domain-Driven Design
(Value objects in DDD -Why immutable?- SO post #4581579), Scrum (What is the difference
between Sprint and Iteration in Scrum and length of each Sprint?- SO post #1227318), Test-
Driven Development (TDD) (Why is agile all about the test-driven development (TDD) and
not development-driven test?- SESE post #326485), Continuous Integration (CI) (What is
the purpose of a dedicated “Build Server"?- SO post #1099133), Scaled Agile Framework
(SAFe), Nexus and Large Scale Scrum (LeSS) (Scaled scrum/agile frameworks (SAFe vs.
Nexus vs. LeSS) comparison - SEPM post #17441).

Incomprehension is also a sub-theme in this category; it revolves around issues in technical
language barriers and lack of technical knowledge, such as (How to sell Agile development
to (waterfall) clients?- SESE post #215562) and (Getting non-programmers to understand
the development process- SESE post #4) .

Efficiency is the third sub-themes of the concept and definition category, where practi-
tioners seek clarification on how algorithms and mathematics efficiently apply to software
development approaches, e.g., (What does mathematics have to do with programming?-
SESE post #136987) and (Is big-O really that relevant when working in industry?- SESE
post #20832). Lastly, several posts in this category aim to optimize the performance of soft-
ware development approaches, e.g., (Why can’t the IT industry deliver large, faultless projects
quickly as in other industries?-SESE post #158640).

The findings from RQ3 underscore the significance of the preliminary phases in software
development. Challenges faced during the inception of projects, particularly in requirement
analysis and decision-making, signal the necessity for an enhanced foundational framework.

123

 8 Page 30 of 38 Empirical Software Engineering (2024) 29:8

It is imperative for organizations to allocate resources towards specialized training modules
that emphasize these initial stages. Ensuring a robust foundation can substantially mitigate
potential issues in subsequent development phases.

The challenges associated with the Scrum framework reveal a potential gap between
academic understanding and its pragmatic implementation. While agile methodologies like
Scrum are widely taught, but applying it in real life can be different. Mentorship initiatives,
where seasoned Scrum professionals guide novices, could offer invaluable insights that con-
ventional training might overlook. Additionally, the issues pertaining to team management
and software testing highlight the importance of the availability of a holistic approach to
software development, emphasizing the significance of team dynamics and efficient testing
methodologies.

In summation, the ongoing discourse on foundational software development approaches
indicates a notable knowledge disparity. This presents not only a challenge but also an oppor-
tunity for the tech industry and academia to collaboratively organise strategies to bridge this
gap. The volume of these discussions indicates a pronounced desire for knowledge among
developers. Addressing these foundational concerns can pave the way for a more informed
and innovative software development future. In conclusion, RQ3 insights contribute to under-
standing of the fundamental challenges and opportunities, serving as a strategic guide for
future endeavors in software development.

Key Findings of RQ3

Finding 9: Practitioners face challenges in various software development
approaches, which are grouped into four high-level themes: Project Management,
Team Management, Optimization, and Concepts and Definitions. Finding 10: Most
challenges in software development are related to project management (See Fig. 8).
Ineffective projectmanagement can lead to delays, budget overruns, and poor-quality
software. Thus, it’s vital for practitioners to identify and overcome project manage-
ment challenges for successful software development project completion.

6 Implications

We now summarised the research and industrial implications of the study findings as follows:

6.1 Research Implications

Examining practitioners’ discussions on popular Q&A sites holds significant value for
researchers in enhancing software development approaches and application quality (Rosen
and Shihab 2016). The trends observed in this study suggest that researchers should devote
more attention to the software development approaches domain by providing comprehen-
sive documentation, case studies, and software post-mortem reports. The strong correlation
between topic popularity and difficulty highlights the need to focus on and invest effort into
various software development process activities that are relatively difficult to understand and
execute. Moreover, the thematic mapping of challenges in software development approaches
offers a valuable framework for researchers to explore key issues faced by practitioners.
By focusing on these challenges, researchers can design targeted studies to understand the

123

Empirical Software Engineering (2024) 29:8 Page 31 of 38 8

underlying causes and develop effective solutions (tools, frameworks, or techniques) tailored
to the specific needs of practitioners.

6.2 Industrial Implications

The research findings on developers’ discussion topics on Q&A sites can be employed by
software practitioners to understand the current state and trends in software development
approaches and the difficulties or challenges developers encounter when adopting soft-
ware methodologies for application development. Practitioners could examine the significant
challenges identified in this study to enhance their development approaches and practices.
Furthermore, the research study emphasizes the importance of practitioners attaching accu-
rate and appropriate tags to posted questions to facilitate effectively identifying challenges
related to software development approaches. Several instances of posts inaccurately tagged
with “development approaches" but asking specific technical questions were found, e.g.,
(What is the opposite of initialize (or init)?- SESE post #163004). It is crucial to understand
the definition of software development approaches. Therefore, future research could consider
automated assistance to help practitioners correctly tag posted questions.Moreover, recogniz-
ing and mapping the challenges associated with different software development approaches
can help practitioners make more informed decisions when selecting methodologies that best
suit their projects, team dynamics, and organizational structure. This can lead to improved
project outcomes and reduced risks of project failure.

7 Threats to Validity

The validity of this study may be affected by a range of potential threats. We have analyzed
the possible threats in terms of the four fundamental types of validity threats, namely internal
validity, external validity, construct validity, and conclusion validity, as outlined by Wohlin
et al. (2012).

7.1 Internal validity

Internal validity refers to the degree to which certain factors influence the results and analysis
of the extracted data. In the context of this study, potential threats to internal validity could
occur during various phases, including:

Data collection limitations A potential threat to internal validity pertains to the data col-
lection for the proposed approach. We gathered data on software development approaches
from SO, SESE, and SEPM using tags assigned by software practitioners on these plat-
forms. Our tag-based method required us to consider all related tags to enhance the proposed
approach’s performance. However, we limited our search to general tags such as “develop-
ment approaches", “agile", “software development life cycle", and some commonly used
software development framework names like “Scrum", “DevOps", and “Kanban". This
approach may have missed some related practitioners’ posts on software development
approaches, although it effectively collected relevant developers’ questions and excluded
false positives. Guaranteeing 100% relevance of over 13k collected posts without compre-
hensive manual validation is challenging. To minimize this threat, we excluded practitioners’
posts containing code snippets and conducted analyses on the remaining data.

123

 8 Page 32 of 38 Empirical Software Engineering (2024) 29:8

Topic modeling subjectivity Topic modeling with LDA has proven effective in analyzing
large amounts of textual data. However, themethod requires subjectivity in assigning labels to
practitioners’ topics based on individual understanding, which could lead tomisinterpretation
risks. To mitigate this threat, we manually reviewed 15 developers’ posts with the highest
relevance to each topic and cross-checked them with the paper’s first three authors.

Temporal Bias in Q&A Analysis The dynamic nature of question frequency in Q&A reposi-
tories like SO presents a challenge to our study’s internal validity. As topics are matured and
common queries answered, the repetitive question tends to decline which could potentially
skew our assessment of topic popularity and difficulty. Furthermore, this phenomenon, along
with platform-specific moderation practices, could limit the applicability of our findings
beyond the specific time frame and platform of our study. Despite this limitation, it provides
a meaningful direction for future work. In further studies, a longitudinal analysis (Menard
2002) can be conducted to track topic evolution over time and across various platforms,
providing a more comprehensive view of topic popularity and difficulty, thus increasing the
study’s reliability. For now, we acknowledge this limitation and interpret our results with it
in mind, ensuring that our conclusions take into account the potential biases introduced by
these factors.

7.2 External Validity

External validity refers to the degree to which the findings of a study can be generalized
to other populations, settings, or conditions beyond the specific sample or context of the
study. The generalizability of the proposed results may pose a threat to external validity. We
performed a qualitative analysis of 200 highly ranked posts to complement the results from
topic modeling with more in-depth insights. However, the findings of this qualitative analysis
were based on a small sample of posts and may not be entirely generalizable. To address
this limitation, we utilized AMS (Bajaj et al., 2014) to select developers’ posts as possible
representatives of practitioners’ discussions on Q&A platforms.

7.3 Construct Validity

Construct validity refers to the degree to which the measures used in a study accurately
measure the intended constructs or concepts of interest. In this study, a potential threat
to construct validity is the operationalization of software development approaches based
on tags and developers’ posts. There might be discrepancies between the actual software
development practices and the tags or posts analyzed in this study. To address this threat, we
gathered data from multiple platforms (SO, SESE, and SEPM) and utilized a combination
of topic modeling and qualitative analysis to provide a more comprehensive understanding
of software development approaches.

Operationalization of Terms The operationalization of terms populaity and difficulty may
pose a threat to construct validity due to their abstract nature and potential measurement
limitations. Popularity, gauged by views, scores, favorites, and comments, may not fully
reflect the nuances like sentiment or depth of engagement. Similarly, difficulty, assessed by
the acceptance rate, response time, and answer-to-view ratio, might inaccurately represent
a question’s complexity, which can be influenced by factors like clarity or niche relevance.
These perceptions can also evolve over time with changes in the field. However, we have
followed the well-defined measurement strategies (Le et al. 2021; Rosen and Shihab 2016;

123

Empirical Software Engineering (2024) 29:8 Page 33 of 38 8

Ahmed and Bagherzadeh 2018) in the existing relevant literature studies (Peruma et al.
2022; Bagherzadeh and Khatchadourian 2019; Abdellatif et al. 2020; Zahedi et al. 2020)
to measure the difficulty and popularity of the identified software development approaches
related topics. We acknowledge the potential incompleteness of our measures. However, by
adhering to these previously validated measurement strategies, we have ensured a robust
and informed approach to our study. We further propose that future studies could enrich the
measurment by incorporating a broader set of indicators, such as sentiment analysis, topic
novelty, and longitudinal changes.

Subjectivity in Tags Selection In this study, we employed a systematic approach to iden-
tify relevant tags. However, given the ever-evolving nature of software development, there’s
a possibility that our tags might not encapsulate emerging terminologies or practices. By
specifically excluding posts with code snippets and limiting our research to three major Q&A
platforms, we might be missing out on a broader spectrum of discussions and insights. How-
ever, to ensure the integrity and relevance of our research, each tag was carefully reviewed
and validated by multiple authors, ensuring a comprehensive and collaborative approach.
This collaborative validation ensured that the tags truly resonated with the intended software
development concepts. Additionally, each tag’s description was meticulously scrutinized to
ensure alignment with our research objectives, with deviations promptly excluded. Further-
more, by drawing from authoritative sources and relevant literature, we ensured that the
tags selected were both contemporary and grounded in established software development
paradigms. This multi-layered, collaborative, and rigorous approach significantly reduced
the chances of false positives and negatives, enhancing the construct validity of our findings.

7.4 ConclusionValidity

ConclusionValidity pertains to the level of credibility or reasonableness of the study’s conclu-
sions. In this study, the conclusions may rely on the subjective interpretation and knowledge
of a sole author, which could result in unaddressed disagreements or discrepancies between
co-authors. To minimize this possibility, the first author conducted the gathering and analysis
of study data. The rest of the authors thoroughly examined the data during several meetings.
Any disparities or conflicts in data analysis were resolved through transparent discussions
and cooperative efforts among all authors. Additionally, the study authors conducted several
brainstorming sessions to arrive at the final conclusions.

8 Conclusions and FutureWork

In our investigation of 13,903 software development posts across SO, SESE, and SEPM
forums, we have provided a comprehensive understanding of contemporary practices and
trends in the domain. We have employed both topic modeling and qualitative analysis of the
collected data, setting our work apart from past research that has primarily examined software
development in a narrower capacity. Our findings have shown a steady rise in the quantity
of queries related to software development approaches, indicating a heightened interest in
this field. However, there has been a decline in the successful response rate to these queries
since 2014, suggesting that software development approaches are becoming more complex
and challenging for developers.

Using the LDA algorithm, we have identified 15 key discussion topics related to software
development approaches, which include more general popular topics such as (e.g., Software

123

 8 Page 34 of 38 Empirical Software Engineering (2024) 29:8

development methodology concepts (T10)) and difficult (e.g., Events, bounded contexts and
Microservices in DDD (T2)). Interestingly, the top three most difficult topics all demon-
strated an upward trend over time, suggesting they are areas of ongoing struggle for many
practitioners. Moreover, we uncovered a negative correlation between topic popularity and
difficulty, as per Kendall’s Tau correlation test (Kendall 1970). It implies that popular top-
ics likely reflect the areas of interest and concern for practitioners and may represent the
field’s most critical concepts and practices. These findings are significant regarding difficult
topics, as they highlight the need for greater attention and focus on improving practitioners’
understanding and ability to apply them effectively.

Additionally,we have identified and categorized 49 challenges faced by practitionerswhen
using software development approaches. These challenges are mapped across 14 sub-themes
and 4 high-level themes, which enhance practitioners’ understanding of the issues in detail
and help them better prepare for overcoming themwhile implementing software development
approaches.

Looking ahead, our intention is to delve deeper into these challenges. We aim to further
explore the additional challenging factors, pinpoint their root causes, and suggest best prac-
tices to tackle them. To accomplish this, our researchwill expand to include other well-known
Q&A repositories such as GitHub. We will also validate our findings and seek additional
insights through industrial surveys and interviews with experts in software development
approaches.

Acknowledgements The authors acknowledge that they used generative AI tools (ChatGPT) and writing
assistant tool (Grammarly) to fix writing issues in this paper. After using this service, the authors extensively
reviewed and modified the content and they take full responsibility for the overall content of the paper.

Author Contributions Arif Ali Khan and Peng Zhou designed the study, collected the data from multiple soft-
ware repositories, and conducted the data analysis. Javed Ali Khan and Muhammad Azeem Akbar interpreted
the results and were reviewed by Mahdi Fahmideh. The manuscript was drafted by Arif Ali Khan, and all
authors provided critical feedback and revisions. The final version was approved for submission by all authors.

Funding Open Access funding provided by University of Oulu (including Oulu University Hospital).

Data Availibility Statement The replication package based on the collected data and analysis is given in the
Notion repository Khan et al. (2022).

Declarations

Conflicts of interest The authors declare that they have no conflict of interest regarding the research presented
in this article. The researchwas conducted in an objective and impartialmanner, and the results and conclusions
were based solely on the data and analysis presented.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2024) 29:8 Page 35 of 38 8

References

Abdellatif A, Costa D, Badran K, Abdalkareem R, Shihab E (2020) Challenges in chatbot development: A
study of stack overflow posts. In: Proceedings of the 17th international conference on mining software
repositories pp 174–185

Ahmed S, Bagherzadeh M (2018) What do concurrency developers ask about? a large-scale study using
stack overflow. In: Proceedings of the 12th ACM/IEEE international symposium on empirical software
engineering and measurement pp 1–10

Ali Khan J, Liu L, Wen L, Ali R (2020) Conceptualising, extracting and analysing requirements arguments in
users’ forums: The crowdre-arg framework. Journal of Software: Evolution and Process 32(12):e2309

Al-Saqqa S, Sawalha S, AbdelNabi H (2020) Agile software development: Methodologies and trends. Int J
Interactive Mobile Technol 14(11)

Aymerich B, Díaz-Oreiro I, Guzmán JC, López G, Garbanzo D (2018) Software development practices in
costa rica: A survey. In: International conference on applied human factors and ergonomics, Springer pp
122–132

Bagherzadeh M, Khatchadourian R (2019) Going big: a large-scale study on what big data developers ask.
In Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering pp 432–442

Bajaj K, Pattabiraman K, Mesbah A (2014) Mining questions asked by web developers. In: Proceedings of
the 11th Working conference on mining software repositories pp 112–121

Bajec M, Vavpotič D, Krisper M (2007) Practice-driven approach for creating project-specific software devel-
opment methods. Inf Softw Technol 49(4):345–365

BanoM, Zowghi D, da Rimini F (2017) User satisfaction and system success: an empirical exploration of user
involvement in software development. Empir Softw Eng 22:2339–2372

Barua A, Thomas SW (2014) Hassan AE, What are developers talking about? an analysis of topics and trends
in stack overflow. Empir Softw Eng 19(3):619–654

Beck K, BeedleM, Van BennekumA, Cockburn A, CunninghamW, Fowler M, Grenning J, Highsmith J, Hunt
A, Jeffries R et al (2001) Manifesto for agile software development. Snowbird, UT

Berntzen M, Hoda R, Moe NB, Stray V (2022) A taxonomy of inter-team coordination mechanisms in large-
scale agile. IEEE Trans Software Eng 49(2):699–718

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(Jan): 993–1022
Boehm BW (1988) A spiral model of software development and enhancement. Computer 21(5):61–72
Braun V, Clarke V (2006) Using thematic analysis in psychology. Qual Res Psychol 3(2):77–101
Brisson S,Noei E, LyonsK (2020)We are family: analyzing communication in github software repositories and

their forks. In: 2020 IEEE27th International conference on software analysis, evolution and reengineering
(SANER), IEEE pp 59–69

Bustard D, Wilkie G, Greer D (2013) The maturation of agile software development principles and prac-
tice: Observations on successive industrial studies in 2010 and 2012. In: 2013 20th IEEE international
conference and workshops on engineering of computer based systems (ECBS), IEEE, pp 139–146

Chen T-H, Thomas SW, Hassan AE (2016) A survey on the use of topic models when mining software
repositories. Empir Softw Eng 21(5):1843–1919

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20(1):37–46
Cruzes DS, Dyba T (2011) Recommended steps for thematic synthesis in software engineering. In: 2011

international symposium on empirical software engineering and measurement, IEEE pp 275–284
Dwivedi AK, Tirkey A, Rath SK (2018) Software design pattern mining using classification-based techniques.

Front Comp Sci 12(5):908–922
Haque MU, Iwaya LH, Babar MA (2020) Challenges in docker development: A large-scale study using

stack overflow. In: Proceedings of the 14th ACM/IEEE International symposium on empirical software
engineering and measurement (ESEM) pp 1–11

Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The elements of statistical learning: data mining,
inference, and prediction, vol 2. Springer

Itzik D, Roy G (2023) Does agile methodology fit all characteristics of software projects? review and analysis.
Empir Softw Eng 28(4):1–89

Jacobi C, Van Atteveldt W,Welbers K (2016) Quantitative analysis of large amounts of journalistic texts using
topic modelling. Digit Journal 4(1):89–106

Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93
Kendall M (1970) Rank correlation methods 4th edition charles griffin. High Wycombe, Bucks
Khan AA, Khan JA, Akbar MA, Zhou P, Fahmideh M (2022) Data replication package for the paper: Insights

into software development approaches: Mining q&a repositories, https://zhoupppp.notion.site/SPRPs-
1da3b78e78234e5293becaaba846ef63 accessed: 23 Aug 2022

123

https://zhoupppp.notion.site/SPRPs-1da3b78e78234e5293becaaba846ef63
https://zhoupppp.notion.site/SPRPs-1da3b78e78234e5293becaaba846ef63

 8 Page 36 of 38 Empirical Software Engineering (2024) 29:8

Khan JA, Liu L, Jia Y, Wen L (2018) Linguistic analysis of crowd requirements: an experimental study, In:
2018 IEEE 7th International workshop on empirical requirements engineering (EmpiRE), IEEE pp 24–31

Khan JA, Xie Y, Liu L, Wen L (2019) Analysis of requirements-related arguments in user forums. In: 2019
IEEE 27th International requirements engineering conference (RE), IEEE pp 63–74

Khan JA, Yasin A, Fatima R, Vasan D, Khan AA, Khan AW (2022) Valuating requirements arguments in the
online user’s forum for requirements decision-making: The crowdre-varg framework. Software Practice
and Experience 52(12):2537–2573

Khan JA, Liu L, Wen L, Ali R (2019) Crowd intelligence in requirements engineering: Current status and
future directions. Foundation for software quality, Springer, In International working conference on
requirements engineering, pp 245–261

Khan AA, Shameem M, Nadeem M, Akbar MA (2021) Agile trends in chinese global software development
industry: Fuzzy ahp based conceptual mapping. Appl Soft Comput 102:107090

Kim G, Humble J, Debois P, Willis J, Forsgren N (2021) The DevOps handbook: How to create world-class
agility, reliability, & security in technology organizations, IT Revolution

Klünder J, Hohl P, Fazal-Baqaie M, Krusche S, Küpper S, Linssen O, Prause CR (2017) Helena study:
Reasons for combining agile and traditional software development approaches in german companies. In:
International conference on product-focused software process improvement, Springer pp 428–434

KuhrmannM, Tell P, Hebig R, Klünder J,Münch J, Linssen O, Pfahl D, FeldererM, Prause CR,MacDonell SG
et al (2021) What makes agile software development agile? IEEE Trans Software Eng 48(9):3523–3539

Kuhrmann M, Diebold P, MacDonell S, Münch J (2017) 2nd workshop on hybrid development approaches
in software systems development. In: International conference on product-focused software process
improvement, Springer pp 397–403

KuhrmannM, Diebold P, Münch J, Tell P, Garousi V, Felderer M, Trektere K, McCaffery F, Linssen O, Hanser
E, et al. (2017) Hybrid software and system development in practice: waterfall, scrum, and beyond. In:
Proceedings of the 2017 international conference on software and system process pp 30–39

KuhrmannM,Nakatumba-Nabende J, Pfeiffer R-H, Tell P, Klünder J, Conte T,MacDonell SG, Hebig R (2019)
Walking through themethod zoo: does higher education reallymeet software industry demands?. In: 2019
IEEE/ACM 41st International conference on software engineering: software engineering education and
training (ICSE-SEET), IEEE pp 1–11

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data, biometrics 159–174
Le THM, Croft R, Hin D, Babar MA (2021) A large-scale study of security vulnerability support on developer

q&a websites. In: Evaluation and assessment in software engineering pp 109–118
Menard S (2002) Longitudinal research, vol 76, SAGE Publications
Mushashu ET, Mtebe JS (2019) Investigating software development methodologies and practices in software

industry in tanzania, In: 2019 IST-Africa Week Conference (IST-Africa), IEEE pp 1–11
Paixão KV, Felício CZ, Delfim FM, Maia MdA (2017) On the interplay between non-functional requirements

and builds on continuous integration. In: 2017 IEEE/ACM 14th International conference on mining
software repositories (MSR), IEEE pp 479–482

Peruma A, Simmons S, AlOmar EA, Newman CD, Mkaouer MW, Ouni A (2022) How do i refactor this? an
empirical study on refactoring trends and topics in stack overflow. Empir Softw Eng 27(1):11

Pinto G, Castor F, Liu YD (2014) Mining questions about software energy consumption. In: Proceedings of
the 11th working conference on mining software repositories, pp 22–31

Pressman RS (2005) Software engineering: a practitioner’s approach, Palgrave macmillan
Riaz MN (2019) Implementation of kanban techniques in software development process: An empirical study

based on benefits and challenges. Sukkur IBA J Comput Math Sci 3(2):25–36
Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures, In Proceedings of

the eighth ACM international conference on Web search and data mining, pp 399–408
Rosen C, Shihab E (2016) What are mobile developers asking about? a large scale study using stack overflow.

Empir Softw Eng 21(3):1192–1223
Royce WW (1987) Managing the development of large software systems: concepts and techniques. In: Pro-

ceedings of the 9th international conference on Software Engineering pp 328–338
Storey M-A, Singer L, Cleary B, Figueira Filho F, Zagalsky A (2014) The (r) evolution of social media in

software engineering. Future of software engineering proceedings 100–116
SunX,LiB,LeungH,LiB,LiY (2015)Msr4sm:Using topicmodels to effectivelymining software repositories

for software maintenance tasks. Inf Softw Technol 66:1–12
Tell P, Klünder J, Küpper S, Raffo D, MacDonell S, Münch J, Pfahl D, Linssen O, Kuhrmann M (2021)

Towards the statistical construction of hybrid development methods. J Software: Evolution and Process
33(1):e2315

Treude C, Barzilay O, Storey M-A (2011) How do programmers ask and answer questions on the web?(nier
track). In: Proceedings of the 33rd international conference on software engineering pp 804–807

123

Empirical Software Engineering (2024) 29:8 Page 37 of 38 8

Ullah T, Khan JA, Khan ND, Yasin A, Arshad H (2023) Exploring and mining rationale information for
low-rating software applications. Soft Computing 1–26

Vidoni M (2022) A systematic process for mining software repositories: Results from a systematic literature
review. Inf Softw Technol 144:106791

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Yang X-L, Lo D, Xia X, Wan Z-Y, Sun J-L (2016) What security questions do developers ask? a large-scale
study of stack overflow posts. J Comput Sci Technol 31(5):910–924

Zahedi M, Rajapakse RN, Babar MA (2020) Mining questions asked about continuous software engineering:
A case study of stack overflow. In: Proceedings of the evaluation and assessment in software engineering
pp 41–50

Zhou C, Li B, Sun X (2020) Improving software bug-specific named entity recognition with deep neural
network. J Syst Softw 165:110572

Zhou P, Ali Khan AA, Liang P, Badshah S (2021) System and software processes in practice: Insights from
chinese industry. In: Evaluation and assessment in software engineering, pp 394–401

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Arif Ali Khan received a Ph.D. degree in software engineering from the
City University of Hong Kong, Hong Kong, in 2017. He is currently
an Assistant Professor with the M3S Empirical Software Engineering
Research Unit, at the University of Oulu, Oulu, Finland. Previously,
he served as a faculty member in the Faculty of Information Technol-
ogy at the University of Jyväskylä, Finland and the College of Com-
puter Science and Technology at Nanjing University of Aeronautics
and Astronautics, China. He has participated in and managed sev-
eral empirical software engineering-related research projects. He has
expertise in software process improvement, quantum software engi-
neering, microservices architecture, artificial intelligence (AI) ethics,
agile software development, DevOps, global software development,
multicriteria decision analysis, soft computing, and evidence-based
software engineering. He has published over 110 articles in peer-
reviewed software engineering journals and conferences. More infor-
mation available at: https://www.oulu.fi/en/researchers/arif-ali-khan.

Javed Ali Khan is working as a senior lecturer, at the Foundation
of Software Engineering (FSE) group, Department of Computer Sci-
ence, University of Hertfordshire, UK. Previously, he worked as an
Assistant Professor cum chairperson in the Department of Software
Engineering, University of Science and Technology Bannu, Pakistan.
He completed his PhD in Software Engineering from Tsinghua Uni-
versity (QS ranked 12th), Beijing, PR. China. He regularly publishes
papers in reputable software engineering journals and conferences.
His areas of interest are Requirements Engineering, CrowdRE, Argu-
mentation and argument mining, mining software repositories, human
values in Software, Quantum Software Engineering, Feedback Anal-
ysis, Empirical Software Engineering, Sentiment and opinion mining,
Requirements Prioritization, Mining fake reviews, sarcasm detection,
and Health Analytics.

123

https://www.oulu.fi/en/researchers/arif-ali-khan

 8 Page 38 of 38 Empirical Software Engineering (2024) 29:8

Muhammad Azeem Akbar received his Ph.D. degree in software
engineering from Chongqing University, Chongqing, China, in 2019.
He previously worked as a Post-Doctoral Researcher at the Nan-
jing University of Aeronautics and Astronautics, Nanjing, China, and
as a Senior Researcher at Lero (the Irish Software Research Cen-
tre), Limerick, Ireland. He is currently an Associate Professor at the
Lappeenranta-Lahti University of Technology, Lappeenranta, Finland.
His expertise includes quantum software engineering, artificial intel-
ligence (AI) ethics, agile software development, continuous software
engineering, and applied soft computing. He has organized multiple
software engineering workshops and served as a guest editor for sev-
eral special issues in major software engineering journals, such as
Information and Software Technology, and Journal of Software: Prac-
tice and Experience.

Peng Zhou Peng Zhou is a Master’s research student at the College of
Computer Science and Technology, Nanjing University of Aeronau-
tics and Astronautics, China. His research in Empirical Software Engi-
neering focuses on repository mining for software processes. Through
his studies, he aims to uncover insights that can enhance software
development approaches.

Mahdi Fahmideh received the Ph.D. degree in information systems
from the Business School, University of New South Wales, Syd-
ney, NSW, Australia. He is currently a Senior Lecturer (equiva-
lent to an Associate Professor in North America) in cyber security
with the School of Business, University of Southern Queensland,
Toowoomba, QLD, Australia. His research aims at providing solutions
based on ABCD technologies (i.e., technologies of artificial intelli-
gence, blockchain smart contracts, cloud computing, and big data), to
help IT-enabled organizations with digital transformation and tackle
business problems. His research outputs can be in the form of con-
ceptual models, system development methodologies, and decision-
making frameworks. Having worked in the software industry prior to
taking up an academic position, he has eight years of first-hand expe-
rience as an analyst programmer and consultant in implementing the
core backend of software systems for different industry sectors such
as publishing, government, and insurance.

123

	Insights into software development approaches: mining Q&A repositories
	Abstract
	1 Introduction
	2 Motivation
	3 Related Work
	3.1 Software Development Approaches
	3.2 Mining Software Issues Across Q&A Repositories
	3.3 Comparative Analysis

	4 Research Methodology
	4.1 Research Questions
	4.2 Data Collection
	4.3 Topic Modelling
	4.3.1 Preprocessing of Collected Posts
	4.3.2 Topic Modelling with LDA

	5 Results
	5.1 RQ1: Successfully Answered Questions
	5.2 RQ2: Software Development Approaches Topics
	5.3 RQ2.1: Popular and Difficult Topics
	5.4 RQ3: Software Development Approaches Challenges
	5.4.1 Project Management Challenges
	5.4.2 Team Management Challenges
	5.4.3 Optimization
	5.4.4 Concepts and Definitions

	6 Implications
	6.1 Research Implications
	6.2 Industrial Implications

	7 Threats to Validity
	7.1 Internal validity
	7.2 External Validity
	7.3 Construct Validity
	7.4 Conclusion Validity

	8 Conclusions and Future Work
	Acknowledgements
	References

