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Abstract

This thesis is based on three papers the author wrote while a PhD student [37, 54, 55], which

concern different notions of complexity for dynamical systems arising from random substitutions.

Before presenting our main results, we first provide an introduction to random substitutions.

In Chapter 2, we give the main definitions that we work with throughout, and prove several

basic properties of random substitutions and their associated subshifts. We define the frequency

measure corresponding to a random substitution, and prove a key result concerning such measures

which will be of fundamental importance in our work.

Chapter 3 is based on the solo-author paper [54] and concerns word complexity and topological

entropy of random substitution subshifts. In contrast to previous work, we do not assume that

the underlying random substitution is compatible. In our main results, we show that the subshift

of a primitive random substitution has zero topological entropy if and only if it can be obtained

as the subshift of a deterministic substitution – answering in the affirmative an open question

of Rust and Spindeler [70] – and provide a systematic approach to calculating the topological

entropy for subshifts of constant length random substitutions. We also consider word complexity

for constant length random substitutions and show that, without primitivity, the complexity

function can exhibit features not possible in the deterministic or primitive random settings.

Chapters 4 and 5 are based on the paper [37], which is joint work with P. Gohlke, D. Rust

and T. Samuel. These chapters focus on measure theoretic entropy and its relationship to

topological entropy. In Chapter 4, we introduce a new measure of complexity for primitive

random substitutions called measure theoretic inflation word entropy and show that this coincides

with the measure theoretic entropy of the subshift with respect to the corresponding frequency

measure. This allows the measure theoretic entropy to be explicitly calculated in many cases. In

Chapter 5, we provide sufficient conditions under which a random substitution subshift supports

a frequency measure of maximal entropy and, under more restrictive conditions, show that this

measure is the unique measure of maximal entropy. Notably, we show that random substitutions

can give rise to intrinsically ergodic subshifts that do not satisfy Bowen’s specification property

[10] or the weaker specification property of Climenhaga and Thompson [13], thus providing an



interesting new class of intrinsically ergodic subshifts. We conclude this chapter by showing that

the random period doubling substitution is intrinsically ergodic.

Finally, Chapter 6 is based on the paper [55], which is joint work with A. Rutar. Here, we

consider multifractal properties of frequency measures. Specifically, we study the multifractal

spectrum and Lq-spectrum of frequency measures corresponding to primitive and compatible

random substitutions. We introduce a new notion called the inflation word Lq-spectrum of a

random substitution and show that this coincides with the Lq-spectrum of the corresponding

frequency measure for all q ≥ 0. Under an additional assumption (recognisability) we show that

the two notions coincide for all q ∈ R. Further, under these assumptions, we show that the

multifractal formalism holds. The techniques we develop allow the Lq-spectrum and multifractal

spectrum to be obtained for many frequency measures.
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CHAPTER 1

INTRODUCTION

1.1 Background and context

The discovery of quasicrystals – naturally occurring structures which exhibit long-range order but

lack translation symmetry – came as a surprise to physicists, chemists and materials scientists,

and was honoured with the 1999 Wolf Prize in Physics and the 2011 Nobel Prize in Chemistry.

In 1982, Shechtman [71] discovered an Aluminium–Manganese alloy that exhibits a diffraction

pattern with five-fold rotational symmetry (see Figure 1.1, right). This not possible for crystals,

which always have two-, three-, four- or six-fold rotation symmetry, by the crystallographic

restriction theorem [8]. Since then, many examples of naturally occurring quasicrystals have been

observed, including examples with other symmetries not possible for crystals, such as eight-, 12-

and 20-fold rotational symmetry. This has stimulated a wealth of research in the field of aperiodic

order : the mathematical study of quasicrystals.

Figure 1.1: A Ho-Mg-Zn quasicrystal (left – image credit [32]) and the diffraction spectrum of an
Al-Mn alloy observed by Shechtman (right – image credit [71]).

1



While a complete classification of the possible configurations of crystals is known, a classifica-

tion of aperiodically ordered structures remains distant [5, 6].

It is fair to say that a classification of a hierarchy of (aperiodic) order has not only not

been achieved yet, but is actually not even in sight. — Baake and Grimm [5, Page 9].

One of the primary objectives in aperiodic order research is to establish such a classification.

Central to understanding properties of quasicrystals from a mathematical viewpoint is the

careful analysis of dynamical systems associated with aperiodic sequences. One of the primary

methods for generating such sequences is via substitutions. A deterministic substitution is a rule

that replaces each symbol from a finite set with a concatenation of symbols from the same set.

For example, the Fibonacci substitution θ : a 7→ ab, b 7→ a is the rule that replaces every letter a

in a given string with the word ab and every b with an a. To a given substitution, a dynamical

system (subshift) can be associated in a natural way. Subshifts of deterministic substitutions

are well-studied dynamical systems that possess a high degree of long-range order, have low

complexity, and provide theoretical models for physical quasicrystals. Many of the key topological

and dynamical properties of substitution subshifts are well understood. For instance, subshifts of

deterministic substitutions always have zero topological entropy and, under a mild assumption

(primitivity), support a unique ergodic measure [67].

Random substitutions are a generalisation of deterministic substitutions where the substituted

image of a letter is chosen from a fixed finite set according to a probability distribution. Similarly

to deterministic substitutions, a subshift can be associated to a given random substitution in a

canonical manner. However, in contrast to their deterministic counterparts, subshifts of random

substitutions typically have positive topological entropy [35] and often support uncountably many

ergodic measures [39]. Nonetheless, random substitution subshifts maintain many of the features

of long-range order witnessed for subshifts of deterministic substitutions. While they have positive

entropy, indicating disorder, random substitutions often admit long-range correlations presenting

as a non-trivial pure-point component in their diffraction spectrum [7, 34, 56]. This competition

between order and disorder, and between long- and short-range correlations suggests an intricate

combinatorial structure that warrants careful study. Further, physical quasicrystals are unlikely

to possess perfect order, but instead exhibit local defects. Thus, a good theoretical model should

exhibit features of both long-range order but also local disorder, features often possessed by

subshifts of random substitutions.
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The non-trivial topological entropy of random substitution subshifts provides a new invariant

in their study not available for their deterministic counterparts. Further, to each random

substitution an ergodic measure which captures the underlying probability distribution can be

associated in a natural way [39, 70], the properties of which can provide a means of classifying

random substitutions. In this thesis, we develop techniques to quantify topological entropy and

three measures of complexity for measures arising from random substitutions; namely, measure

theoretic entropy, the multifractal spectrum and the Lq-spectrum. With this work, we make the

first steps towards providing a hierarchical classification of random substitutions in terms of their

complexity.

1.2 Symbolic dynamics

Throughout this thesis, we will be concerned with symbolic dynamical systems. The following

symbolic notation will be standard throughout, and is generally in line with the notation used in

[49, 75].

An alphabet A = {a1, . . . , ad} is a finite collection of symbols, which we call letters. We call a

finite concatenation of letters a word, and let A+ denote the set of all non-empty finite words with

letters from A. For a given word u = u1 · · ·un, where n ∈ N and uj ∈ A for all j ∈ {1, . . . , n},we

write |u| = n for the length of u and, for each ai ∈ A, let |u|ai denote the number of occurrences

of ai in u. To avoid conflicting notation, we denote the cardinality of a given set B by #B

throughout. Given u ∈ A+ and i, j ∈ {1, . . . , |u|}, we write u[i,j] = ui · · ·uj . The abelianisation

of a word u ∈ A+ is the vector Φ(u) ∈ Z#A defined by Φ(u)i = |u|ai for all i ∈ {1, . . . , d}. For

two words u, v ∈ A+, with |v| ≤ |u|, we write |u|v for the number of distinct occurrences v as a

subword of u, namely, |u|v = #{j ∈ {1, . . . , |u| − |v|+ 1} : u[j,j+|v|−1] = v}.

For a given alphabet A, we let AZ denote the set of all bi-infinite sequences of letters in A, and

endow AZ with the discrete product topology. We let S : AZ → AZ denote the (left) shift map,

defined by S(x)j = xj+1 for all j ∈ Z. Note that S is continuous with respect to the topology on

AZ. Since S is invertible on AZ and has continuous inverse, S defines a homeomorphism. We

call the dynamical system (AZ, S) the full shift on the alphabet A. A subshift is a closed and

S-invariant subspace X of the full shift AZ, that is, a subspace for which S−1X = X. We endow

X with the subspace topology inherited from AZ. We highlight that we work with two-sided
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shifts throughout. It is also possible to define the one-sided shift AN of right-infinite sequences of

letters in A; however, we do not concern ourselves with one-sided shifts in this thesis.

If i, j ∈ Z with i ≤ j, and x = · · ·x−1x0x1 · · · is an element of a subshift X, then we write

x[i,j] = xixi+1 · · ·xj . We let L(X) denote the language of the subshift X: namely, the set of all

finite words u ∈ AZ such that there exist x ∈ X and j ∈ Z for which x[j,j+|u|−1] = u. Observe

that if X and Y are subshifts, then X = Y if and only if L(X) = L(Y ). For each n ∈ N, we write

Ln(X) = {u ∈ L(X) : |u| = n} for the subset of L(X) consisting of words of length n.

An example of a subshift is given by the set of all bi-infinite sequences over the alphabet

A = {a, b} that do not admit the word bb as a subword. This subshift is known as the golden

mean shift. The golden mean shift is an example of a shift of finite type; namely, a subshift whose

elements can be defined via a finite set of forbidden words. Shifts of finite type (in one dimension)

are a well-studied class of dynamical systems whose topological and ergodic properties are largely

well understood.

For a given subshift X, u ∈ L(X) and m ∈ Z, the cylinder set of u in position m is the subset

of X defined by

[u]m =
{
x ∈ X : x[m,m+|u|−1] = u

}
.

In the case m = 0, we omit the dependence on m and write [u] for the cylinder set of u positioned

at the origin. Let ξ(X) denote the collection of all cylinder sets that specify the origin; namely,

ξ(X) = {[u]m : u ∈ L(X), 1− |u| ≤ m ≤ 0} ,

together with the empty set ∅. The collection ξ(X) forms a generating algebra for the Borel

sigma-algebra on X. Thus, any pre-measure defined on cylinder sets extends uniquely to a

measure on the Borel sigma-algebra on X by the Hahn–Kolmogorov extension theorem.

The Bernoulli measures are a well-studied family of measures on the full shift. On the full shift

on two symbols X = {a, b}Z, they are defined as follows. Given p ∈ (0, 1), let µp : ξ(X) → [0, 1]

be defined by µp([u]m) = p|u|a(1 − p)|u|b for all u ∈ L(X) and m ∈ {1 − |u|, 2 − |u|, . . . , 0}.

The set function µp defines a pre-measure on the algebra ξ(X), which extends uniquely to a

measure on B(X) by the Hahn–Kolmogorov extension theorem. The measure µp is called the

(p, 1− p)-Bernoulli measure on {a, b}Z. Bernoulli measures can also be defined on the full shift

over larger alphabets in an analogous manner.
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1.3 Topological entropy and word complexity

One of the most well-studied measures of complexity for subshifts is topological entropy, which

quantifies the asymptotic growth rate of words admitted by a given subshift. For a subshift X,

the topological entropy htop(X,S) of X is the quantity defined by1

htop(X,S) = lim
n→∞

1

n
log#Ln(X);

that this limit exists is a routine consequence of Fekete’s lemma [27]. For ease of notation, we

often omit the explicit dependence on S in the notation and write htop(X) for the topological

entropy of a subshift X.

For a subshift X, the function pX : N → N defined by pX(n) = #Ln(X) for all n ∈ N is

called the complexity function of X. If X is a subshift with positive topological entropy, then

the complexity function pX(n) grows exponentially in n. We note that the topological entropy

of a subshift on a finite alphabet A cannot exceed log(#A), so the complexity function cannot

grow super-exponentially [75]. On the other hand, if X has zero topological entropy, then the

complexity function grows sub-exponentially. In many cases, this growth is polynomial, but there

also exist zero topological entropy subshifts with complexity function that grows faster than any

polynomial [11]. In this latter case, we say that the complexity function has intermediate growth.

Classifying the functions that can be obtained as the complexity function of a subshift is a

central problem in symbolic dynamics [9, 30]. One of the most famous results in this direction is

due to Morse and Hedlund [57], which states that the complexity function of a subshift that is

the orbit closure of a bi-infinite sequence either grows at least linearly or is bounded above by a

constant. Ehrenfeucht and Rozenberg [20] later showed that the same holds for every subshift

over a finite alphabet.

Proposition 1.3.1 ([20]). Let X be a subshift over a finite alphabet. Then, the complexity

function pX is either bounded above by a constant or pX(n) ≥ n+ 1 for all n ∈ N.

The dichotomy that the complexity function always grows at least linearly or is bounded

above by a constant is sometimes referred to as the Morse–Hedlund complexity gap [12].
1Topological entropy can be defined more generally for an arbitrary topological dynamical system. We provide

this more general definition in Appendix A.1.
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1.4 Invariant measures and measure theoretic entropy

The classification of measure preserving dynamical systems is an important problem in ergodic

theory. This problem dates back to von Neumann, who asked whether the full shift on three

symbols equipped with the (1/3, 1/3, 1/3)-Bernoulli measure is (measure theoretically) isomorphic

to the full shift on two symbols equipped with the (1/2, 1/2)-Bernoulli measure. In 1959, this

question was answered in the negative by Kolmogorov and Sinai [44, 45, 73], who showed that

these systems have different measure theoretic entropy and that this is an invariant of dynamical

systems. Later, in 1970, it shown by Ornstein [61] that two Bernoulli shifts are isomorphic if and

only if they have the same measure theoretic entropy.2 Thus, entropy provides a powerful tool in

the classification of dynamical systems.

Before we define the measure theoretic entropy of a subshift, we first recall some definitions

from ergodic theory. A measure µ, supported on a subshift X, is called shift-invariant (or

S-invariant) if µ(S−1B) = µ(B) for every Borel-measurable set B. We let M(X,S) denote the

set of all shift-invariant measures supported on X. A shift-invariant measure µ is called ergodic

if whenever S−1B = B, we have µ(B) = 0 or µ(B) = 1. It is well known that every subshift

supports at least one shift-invariant (respectively, ergodic) measure [75]. If a subshift X supports

a unique shift-invariant measure, then we say that X is uniquely ergodic. In this case, the unique

shift-invariant measure is ergodic [75].

For a subshift X and shift-invariant measure µ supported on X, the measure theoretic entropy

hµ(X,S) of X with respect to µ is the quantity defined by3

hµ(X,S) = lim
n→∞

1

n

∑
u∈Ln(X)

−µ([u]) logµ([u]),

where, for each n ∈ N, Ln(X) denotes the set of all words of length n admitted by the subshift.

Again, this limit always exists by Fekete’s lemma [75]. Similarly to topological entropy, we often

suppress the dependence on S in the notation and write hµ(X) for the measure theoretic entropy

of X.

Measure theoretic and topological entropy are related by the variational principle, which
2We note that Ornstein’s theorem only holds in the case of two-sided shifts. The isomorphism problem for

one-sided shifts is more subtle – see [41] for more detials.
3We give a more general definition for an arbitrary measure-preserving dynamical system in Appendix A.1.
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states that

htop(X) = sup
µ∈M(X,S)

hµ(X).

In particular, hµ(X) ≤ htop(X) for every µ ∈ M(X,S). If µ is a measure such that hµ(X) =

htop(X), then we say that µ is a measure of maximal entropy. For subshifts, there always exists

at least one measure of maximal entropy.4 If a subshift X has a unique measure of maximal

entropy, then we say that X is intrinsically ergodic.

Measure theoretic entropy can often be difficult to calculate. However, it is well understood

for many classes of subshifts, such as shifts of finite type. For example, if X is the full shift on

two symbols, p ∈ (0, 1) and µp is the (p, 1− p)-Bernoulli measure, then

hµ(X) = −(p log p+ (1− p) log(1− p)).

In the case p = 1/2, we have hµ(X) = log 2 = htop(X), so the (1/2, 1/2)-Bernoulli measure is

a measure of maximal entropy. Moreover, it can be shown that this is the unique measure of

maximal entropy, so the subshift X is intrinsically ergodic.

Determining conditions under which a subshift is intrinsically ergodic is an important question

in symbolic dynamics and ergodic theory. It was shown by Parry [63] that for all topologically

transitive shifts of finite type, the Parry measure is a measure of maximal entropy. Adler and

Weiss [2] later showed that this is the unique measure of maximal entropy. Hence, all transitive

shifts of finite type are intrinsically ergodic. The approach developed by Parry and Adler and

Weiss was extended by Bowen [10], who showed that all subshifts satisfying the specification

property are intrinsically ergodic. Verifying the specification property has become the prototypical

method for proving intrinsic ergodicity of subshifts, and several relaxations of this property have

been provided in recent years. For a survey of recent progress, we refer the reader to [15].

1.5 Multifractal analysis

The local scaling properties of measures can be studied using tools from multifractal analysis.

For a subshift X, the local scaling behaviour of a measure µ, supported on X, is quantified by

the local dimensions and multifractal spectrum. For each x ∈ X, the local dimension of µ at x is
4We note that this does not hold for dynamical systems in general.
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defined by

dimloc(µ, x) = lim
n→∞

− logµ([x[−n,n]])

2n+ 1
,

provided this limit exists. The multifractal spectrum of µ quantifies the size of the set of points

in X that have a given local dimension. Specifically, for each α ∈ [0,∞), let

Fµ(α) = {x ∈ X : dimloc(µ, x) = α} . (1.1)

The size of the set Fµ(α) is quantified via its Hausdorff dimension, with respect to a metric

defined as follows. If x, y ∈ AZ are such that x ̸= y but x0 = y0, then we let n(x, y) denote the

largest integer such that xj = yj for all |j| ≤ n. The map d : AZ ×AZ → R given by

d(x, y) =


1 if x0 ̸= y0

e−(2n(x,y)+1) if x ̸= y but x0 = y0

0 if x = y

for all x, y ∈ AZ defines a metric on AZ, which generates the discrete product topology – see [49]

for more details. The multifractal spectrum of µ is the function fµ : [0,∞) → [0,∞) given by

fµ(α) = dimH Fµ(α)

for all α ∈ [0,∞).

Computing the local dimensions and multifractal spectrum of a measure is often difficult.

However, there is a related notion, called the Lq-spectrum, which is typically easier to establish

for a given measure. The Lq-spectrum is the function τµ : R → R defined by

τµ(q) = lim
n→∞

− 1

n
log

 ∑
u∈Ln(X)

µ([u])q


for all q ∈ R, provided this limit exists. In some cases, the multifractal spectrum coincides with

the concave conjugate of the Lq-spectrum. If this is the case, then we say that the multifractal

formalism holds. It is an important question in multifractal analysis to determine settings in

which the multifractal formalism holds, and to find qualitative conditions describing its failure.
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1.6 Deterministic substitutions

Sequences associated with deterministic substitutions are the prototypical examples of math-

ematical quasicrystals. A deterministic substitution is a rule which replaces each symbol in a

finite or infinite string over an alphabet A with a finite word over the same alphabet. Typically,

deterministic substitutions are defined via their action on letters, which then extends to finite and

infinite strings by concatenation. Two of the most well-studied deterministic substitutions are

the Fibonacci and period doubling substitutions, which are defined over the two-letter alphabet

A = {a, b} by

θFib :


a 7→ ab,

b 7→ a,
and θPD :


a 7→ ab,

b 7→ aa,

respectively. Observe that powers of a deterministic substitution can be defined by iteration.

Namely, if θ is a deterministic substitution and k ∈ N, the kth power of θ is defined by θk = θ◦θk−1.

For example, for the Fibonacci substitution, we have θ2Fib(a) = θFib(θFib(a)) = θFib(ab) = aba.

A subshift can be associated to a given deterministic substitution θ in a natural way. We say

that a word u ∈ A+ is θ-legal if there exists a letter a ∈ A and a positive integer k ∈ N such that

u is a subword of θk(a). Then, we let Xθ be the subspace of AZ defined by

Xθ = {x ∈ AZ : every subword of x is θ-legal}.

Since the set of θ-legal words defines a language, Xθ is an S-invariant subspace of AZ. Thus, Xθ

defines a subshift. We call Xθ the subshift associated with θ.

A standard assumption in the study of deterministic substitutions is primitivity. We say that

a deterministic substitution θ over a finite alphabet A is primitive if there exists a k ∈ N such

that, for all a ∈ A, every letter in A appears in θk(a). For example, the Fibonacci substitution is

primitive since θ2Fib(a) = aba and θ2Fib(b) = ab, and both of these words contain an occurrence

of an a and a b. Similarly, the period doubling substitution is primitive. Many topological and

dynamical properties of subshifts associated with primitive deterministic substitutions are well

understood. For instance, such subshifts are always non-empty, minimal and either finite or

homeomorphic to a Cantor set [5, 67]. Further, subshifts of primitive deterministic substitutions

are always uniquely ergodic [52, 67].
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One of the most striking properties of deterministic substitution subshifts is that they always

have zero topological entropy [67], which is an indication of low complexity. Moreover, it was

shown by Pansiot [62] that the complexity function of a deterministic substitution never grows

faster than quadratic. In fact, Pansiot provided a complete classification of the possible asymptotic

growth rates the complexity function of a deterministic substitution subshift can exhibit. Thus, for

subshifts of deterministic substitutions, the class of possible complexity functions is significantly

more restricted than is permitted for subshifts in general. In the following, and throughout, we

say that a function g : N → N is Θ(f), for some function f : N → N, if there exist constants

C1, C2 > 0 such that C1 < g(n)/f(n) < C2 for all sufficiently large n ∈ N. We also write g is

O(f) if the ratio g(n)/f(n) is uniformly bounded from above, but not necessarily from below,

and g is o(f) if g(n)/f(n) converges to 0 as n → ∞.

Proposition 1.6.1 ([62]). Let θ be a deterministic substitution. Then, the complexity function

of the subshift Xθ is either Θ(1), Θ(n), Θ(n log log n), Θ(n log n) or Θ(n2). Moreover, if θ is

primitive, then the complexity function is Θ(1) or Θ(n).

1.7 Random substitutions

Random substitutions are a generalisation of deterministic substitutions where the substituted

image of a letter is chosen from a fixed finite set according to a probability distribution. For ex-

ample, given p ∈ (0, 1), we define the random Fibonacci and random period doubling substitutions

by

ϑRF :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ a with probability 1,

and

ϑRPD :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ aa with probability 1,

respectively. The action of a random substitution can be extended to finite words by applying

the random substitution independently to each letter. In a similar manner to deterministic
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substitutions, a subshift can be associated to a random substitution in a natural way (we highlight

that the subshift is independent of the choice of non-degenerate probabilities assigned to the

random substitution). However, in contrast to subshifts of deterministic substitutions, random

substitution subshifts often have positive topological entropy and support uncountably many

ergodic measures [70].

Random substitutions were first studied in the physics community, in the context of percolation

theory. A seminal paper of Mandelbrot [50] on turbulence in a fluid initiated the study of fractal

percolation, a phenomenon that random substitutions have proved useful in modelling [16, 17, 18].

The systematic study of random substitutions from a mathematical viewpoint was initiated

by Godrèche and Luck [34] in 1989, who focused on a single example, the random Fibonacci

substitution. Notably, it was there that positive topological entropy for random substitution

subshifts was first identified. Following this discovery, the topological entropy was calculated for

several families of random substitution subshifts, for example by Koslicki [46], Nilsson [58, 59],

Spindeler [74] and Wing [76].

The mathematical theory of random substitutions and their associated subshifts has developed

rapidly in recent years. In 2018, Baake, Spindeler and Strungaru [7] computed the diffraction

measure for a family of random substitutions and Rust and Spindeler [70] established some key

topological and dynamical properties of random substitution subshifts. For example, they showed

that, under mild conditions, a random substitution subshift is topologically transitive and has

uncountably many minimal components. Further, they provided a weak condition under which a

random substitution subshift has positive topological entropy. Following these works, Rust [69]

provided sufficient conditions under which a random substitution subshift does not admit periodic

points and Miro et al [53] provided sufficient conditions for a random substitution subshift to

be topologically mixing. In addition, it was shown by Gohlke, Rust and Spindeler [38] that

every topologically transitive shift of finite type can be obtained as the subshift of a random

substitution. However, despite this recent progress, the systematic study of random substitutions

is still in its infancy, and many properties remain poorly understood.

The notion of primitivity for deterministic substitutions extends naturally to the random

setting (we give the definition in Chapter 2). As in the deterministic setting, primitivity is a

standard assumption in the study of random substitutions and is assumed in the majority of

the aforementioned works. To each primitive random substitution, a measure can be associated
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in a canonical manner [70]. This measure, called the frequency measure corresponding to the

random substitution, reflects the underlying probability distribution. It was shown by Gohlke

and Spindeler [39] that for every primitive random substitution, the corresponding frequency

measure is ergodic with respect to the shift action [39].

A systematic approach to calculating topological entropy of random substitution subshifts

was provided by Gohlke [35] in 2020. There, the notion of inflation word entropy for a random

substitution was introduced and shown to coincide with the topological entropy of the associated

subshift, under the assumption that the underlying random substitution is primitive and compatible

(we give the definition in Section 2.2). This allows the topological entropy to be calculated or

accurately estimated for a broad class of random substitution subshifts. However, a limitation

of Gohlke’s result is that it requires the somewhat restrictive condition of compatibility. In

Chapter 3 of this thesis, we continue the development of the theory of topological entropy for

random substitution subshifts. In contrast to [35], we do not require the underlying assumption

of compatibility in our work.

A limitation of topological entropy as a measure of complexity is that it is blind to the choice

of probabilities attached to the random substitution. This is not the case for many important

properties of random substitutions, such as word frequencies, which can be viewed as almost sure

properties with respect to the corresponding frequency measure [70]. In Chapters 4–6, we view

complexity from the perspective of this measure. In particular, we develop a theory of measure

theoretic entropy for random substitution subshifts and study regularity properties of frequency

measures from the perspective of multifractal analysis. Motivated by Gohlke’s inflation word

approach to topological entropy, we introduce new notions called the measure theoretic inflation

word entropy and the inflation word Lq-spectrum of a primitive random substitution. We show

that, in many cases, these notions coincide with the measure theoretic entropy and Lq-spectrum,

respectively, where the measure in question is the frequency measure. Thus, our approach allows

us to develop a robust theory of measure theoretic entropy and multifractal analysis for frequency

measures arising from random substitutions.
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1.8 Outline of thesis

This thesis is based on three papers the author wrote while a Ph.D. student [37, 54, 55]. We

introduce the key definitions that we work with throughout in Chapter 2 and prove several basic

properties of random substitutions. The majority of the results stated here are either proved in

the paper [37] or available in the literature on random substitutions. However, at the end of this

chapter, we provide a new proof that every Bernoulli measure on the full shift can be obtained as

the frequency measure corresponding to a primitive random substitution.

Chapter 3 contains the main results from the solo-authored paper [54], on topological entropy

and word complexity of random substitution subshifts. The main results proved in this chapter

are the following.

• A primitive random substitution subshift has zero topological entropy if and only if it is

the subshift of a deterministic substitution. This answers in the positive an open question

of Rust and Spindeler [70].

• For all primitive constant length random substitutions, the topological entropy of the

associated subshift coincides with the notion of inflation word entropy introduced by Gohlke

in [35]. Together with the main theorem in [35], this shows that the inflation word entropy

of a primitive random substitution coincides with the topological entropy of the associated

subshift for all random substitutions for which it is well-defined.

• Without primitivity, a wide range of complexity behaviour can occur that is not possible

in the deterministic or primitive random settings. For example, there exist non-primitive

random substitution subshifts with intermediate growth complexity function. A partial

classification of complexity functions for subshifts of constant length random substitutions

is provided.

Chapters 4 and 5 are based on the paper [37], which was written in collaboration with

P. Gohlke, D. Rust and T. Samuel. Chapter 4 focuses on measure theoretic entropy; then, in

Chapter 5,we consider conditions under which a primitive random substitution gives rise to a

frequency measure of maximal entropy. We give the definition of measure theoretic inflation word

entropy in Section 4.1. The main results from these chapters are the following.
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• For all primitive random substitutions, the notion of measure theoretic inflation word

entropy coincides with the measure theoretic entropy of the associated subshift with respect

to the corresponding frequency measure.

• In many cases, a closed-form formula for the measure theoretic entropy can be obtained.

• Under mild assumptions, a primitive random substitution subshift supports a frequency

measure of maximal entropy.

• Under more restrictive assumptions, this measure is shown to be the unique measure of

maximal entropy.

• The random period doubling substitution subshift is intrinsically ergodic.

Chapter 6 concerns multifractal properties of frequency measures. This chapter is based on

the paper [55], which is joint work with A. Rutar. We introduce the notion of the inflation word

Lq-spectrum of a random substitution in Section 6.2. In the main results of this chapter, we show

the following.

• For primitive and compatible random substitutions, the inflation word Lq-spectrum coincides

with the Lq-spectrum of the corresponding frequency measure for all q > 0.

• Under an additional assumption (recognisability), the two notions coincide for all q ∈ R.

• In this latter setting, the multifractal formalism holds.
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CHAPTER 2

RANDOM SUBSTITUTIONS

In this chapter we provide a systematic introduction to random substitutions and their associated

subshifts. In Section 2.1, we give the definition of a random substitution and its associated

subshift and state some basic properties of random substitution subshifts. Then, in Section 2.2, we

introduce various conditions that it is natural to impose on random substitutions and discuss their

consequences. Section 2.3 concerns frequency measures, the class of measures that arise naturally

from random substitutions, which are our main objects of study in Chapters 4–6. After giving

their definition and key properties, we provide the statement of a result which is fundamental to

the proofs of our main results in Chapters 4–6.

Since the content of this chapter is largely foundational, many of the results stated here are

not originally due to the author. We have taken care to provide citations to the original work

where this is the case.

2.1 Random substitutions and their subshifts

2.1.1 Random substitutions

In a similar manner to [35, 37], we define a random substitution by the data required to determine

its action on letters. We then extend this to a random map on words. In the following, and

throughout, we let F(·) denote the collection of all finite subsets of a given set.

Definition 2.1.1. Let A = {a1, . . . , ad} be a finite alphabet. A random substitution ϑP = (ϑ,P)

is a set-valued substitution ϑ : A → F(A+) together with a set of non-degenerate probability
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vectors

P =

pi = (pi,1, . . . , pi,ri) : ri = #ϑ(ai); pi ∈ (0, 1]ri ;

ri∑
j=1

pi,j = 1 for all i ∈ {1, . . . , d}

 ,

such that

ϑP : ai 7→


s(i,1) with probability pi,1,

...
...

s(i,ri) with probability pi,ri ,

for every 1 ≤ i ≤ d, where ϑ(ai) = {s(i,j)}1≤j≤ri .

We call each s(i,j) a realisation of ϑP(ai). If there exists an ℓ ∈ N such that |s(i,j)| = ℓ for all

i ∈ {1, . . . , d} and j ∈ {1, . . . , ri}, then we say that ϑP is of constant length ℓ.

If θ is a deterministic substitution, defined over the alphabet A, such that θ(a) is a realisation

of ϑP(a) for all a ∈ A, then we say that θ is a marginal of ϑP.

Similarly to deterministic substitutions, the action of a random substitution can be extended

to finite and bi-infinite words. In the following, we describe how a random substitution ϑP

determines a Markov process with state space A+ and transition matrix Q, indexed by A+ ×A+.

We interpret the entry Qu,v as the probability of mapping a word u to a word v under the

random substitution. Formally, Qai,s(i,j)
= pi,j for all j ∈ {1, . . . , ri} and Qai,v = 0 if v /∈ ϑ(ai).

We extend the action of ϑP to finite words by mapping each letter independently to one of its

realisations. More precisely, given n ∈ N, u = ai1 · · · ain ∈ An and v ∈ A+ with |v| ≥ n, we let

Dn(v) = {(v(1), . . . , v(n)) ∈ (A+)n : v(1) · · · v(n) = v}

denote the set of all decompositions of v into n individual words and set

Qu,v =
∑

(v(1),...,v(n))∈Dn(v)

n∏
j=1

Qaij ,v
(j) .

In other words, ϑP(u) = v with probability Qu,v.

For u ∈ A+, let (ϑn
P(u))n∈N be a stationary Markov chain on some probability space
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(Ωu,Fu,Pu), with transition matrix given by Q; that is,

Pu[ϑ
n+1
P (u) = w | ϑn

P(u) = v] = Pv[ϑP(v) = w] = Qv,w

for all v, w ∈ A+, and n ∈ N. In particular,

Pu[ϑ
n
P(u) = v] = (Qn)u,v

for all u, v ∈ A+, and n ∈ N. We often write P for Pu if the initial word is understood. In this

case, we also write E for the expectation with respect to P. As before, we call v a realisation of

ϑn
P(u) if (Qn)u,v > 0 and set

ϑn(u) = {v ∈ A+ : (Qn)u,v > 0}

to be the set of all realisations of ϑn
P(u). Conversely, we may regard ϑn

P(u) as the set ϑn(u)

endowed with the additional structure of a probability vector. If u = a ∈ A is a letter, we call a

word v ∈ ϑn(a) a level-n inflation word, or exact inflation word.

We now give the definitions of two of the most well-studied random substitutions: the random

Fibonacci substitution and the random period doubling substitution. We will often refer back to

these two guiding examples throughout this thesis.

Example 2.1.2 (Random Fibonacci). Let A = {a, b} and let p ∈ (0, 1). The random Fibonacci

substitution ϑP = (ϑ,P) is the random substitution given by

ϑP :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ a with probability 1,

with defining data ra = 2, rb = 1, s(a,1) = ab, s(a,2) = ba, s(b,1) = a, P = {pa = (p, 1−p),pb = (1)}

and corresponding set-valued substitution ϑ : a 7→ {ab, ba}, b 7→ {a}.

Example 2.1.3 (Random period doubling). Let A = {a, b} and let p ∈ (0, 1). The random
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period doubling substitution ϑP = (ϑ,P) is the random substitution defined by

ϑP :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ aa with probability 1

with defining data ra = 2, rb = 1, s(a,1) = ab, s(a,2) = ba, s(b,1) = aa, P = {pa = (p, 1− p),pb =

(1)} and corresponding set-valued substitution ϑ : a 7→ {ab, ba}, b 7→ {aa}. Observe that ϑP is a

constant length random substitution of length 2.

For both the random Fibonacci and random period doubling substitutions, for all a ∈ A and

k ∈ N, every realisation of ϑk
P(a) has the same length. Where this is the case, we write |ϑk(a)|

for the common length. This is not always the case for random substitutions and, in general, the

length |ϑP(a)| is a random variable. We also write |ϑ| = maxa∈Amaxv∈ϑ(a)|v| for the maximal

length of an exact inflation word.

2.1.2 The subshift associated to a random substitution

To a given random substitution ϑP = (ϑ,P), one can associate a subshift in a similar manner to

the deterministic setting, via a language generated by the random substitution.

Definition 2.1.4. Let ϑ = (ϑ,P) be a random substitution over a finite alphabet A. We say

that a word u ∈ A+ is (ϑ-)legal if there exists an ai ∈ A and k ∈ N such that u appears

as a subword of some word in ϑk(ai). The language of ϑ is the subset of A+ defined by

Lϑ = {u ∈ A+ : u is ϑ-legal}.

Definition 2.1.5. The random substitution subshift of a random substitution ϑP = (ϑ,P) is the

system (Xϑ, S), where Xϑ = {x ∈ AZ : every subword of x is ϑ-legal} and S denotes the usual

(left) shift map.

Under very mild assumptions, the space Xϑ is non-empty (we give sufficient conditions in

Section 2.1.3). We endow Xϑ with the subspace topology inherited from AZ. Since Xϑ is defined

in terms of a language, it is a compact S-invariant subspace of AZ; hence, Xϑ is a subshift. For

n ∈ N, we write Ln
ϑ = {u ∈ Lϑ : |u| = n} for the subset of Lϑ consisting of words of length n.
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The notation Xϑ reflects the fact that the random substitution subshift does not depend

on the choice of (non-degenerate) probabilities P. In fact, this is the case for many structural

properties of ϑP. In these cases, one sometimes refers to ϑ instead of ϑP as a random substitution,

see for instance [35, 38, 69, 70]. On the other hand, for some applications, one needs additional

structure on the probability space. For example, the measure theoretic properties we consider in

Chapters 4–6 are in general dependent on the explicit choice of probabilities.

The set-valued function ϑ extends naturally to Xϑ, where for w = · · ·w−2w−1 ·w0w1 · · · ∈ Xϑ,

we let ϑ(w) denote the (possibly infinite) set of sequences of the form x = · · ·x−2x−1 · x0x1 · · ·

with xj ∈ ϑ(wj) for all j ∈ Z. It follows routinely from the definition of Xϑ that ϑ(Xϑ) ⊆ Xϑ.

Some properties of ϑ are reminiscent of continuous functions, although ϑ itself is not a function.

In the following, we recall that we equip AZ with the discrete product topology and a given

subshift of AZ with the subspace topology inherited from AZ.

Lemma 2.1.6. If ϑP = (ϑ,P) is a random substitution and X ⊂ AZ is compact, then ϑ(X) is

compact.

Proof. It suffices to show that ϑ(X) is closed. Let (y(n))n∈N be a sequence in ϑ(X) and assume

that this sequence converges to some y ∈ AZ. We show that y ∈ ϑ(X). To this end, let (x(n))n∈N

be a sequence in X with y(n) ∈ ϑ(x(n)) for all n ∈ N. By the compactness of X, this sequence has

an accumulation point x = · · ·x−1x0x1 · · · ∈ X. By restricting to an appropriate subsequence,

we may assume that

x
(m)
[−n,n] = x[−n,n]

for all m,n ∈ N with m ≥ n. In which case,

y
(n)
[−n,n] = w

(n)
−n · · ·w(n)

−1 · w(n)
0 · · ·w(n)

n

with w
(n)
j ∈ ϑ(xj) for all j ∈ {−n, . . . , n}. As (y(m))m∈N converges to y, we may assume, for

n ∈ N,

y [−n,n] = w
(n)
−n · · ·w

(n)
−1 · w(n)

0 · · ·w(n)
n ,
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again by possibly restricting to an appropriate subsequence. By a standard diagonal argument

utilising the pigeonhole principle, we can choose wj ∈ ϑ(xj) for all j ∈ Z such that y =

· · ·w−2w−1.w0w1w2 · · · . Namely, we have that y ∈ ϑ(x).

2.1.3 Primitive random substitutions

Similarly to deterministic substitutions, the action of a random substitution on the abelianisation

of a word can be encoded by a matrix. This allows a natural analogue of primitivity for random

substitutions to be defined. In general, the matrix of a random substitution depends on the

choice of probabilities.

Definition 2.1.7. Let ϑP = (ϑ,P) be a random substitution over a finite alphabet A =

{a1, . . . , ad}. The matrix of ϑP is the d× d matrix M = MϑP
defined by

Mi,j = E[|ϑP(aj)|ai ] =
rj∑
k=1

pj,k|s(j,k)|ai .

Definition 2.1.8. We say that ϑP is primitive if the matrix of ϑP is a primitive matrix.

In contrast to the deterministic setting, primitivity is not sufficient to guarantee that the

subshift associated to a given random substitution is non-empty. For example, the random

substitution ϑ : a, b 7→ {a, b} is primitive, but Xϑ = ∅. However, it was shown by Rust and

Spindeler [70, Prop. 9] that a primitive random substitution gives rise to an empty subshift if

and only if, for every a ∈ A, ϑ(a) consists only of realisations of length 1. To keep the statements

of our main results simple, we exclude these pathological cases and from now on restrict the

definition of primitivity to those random substitutions that give rise to a non-empty subshift.

By the Perron–Frobenius theorem, if ϑP is a primitive random substitution, then there exists

a real number λ ≥ 1 such that λ is an eigenvalue of the matrix of ϑP, and every other eigenvalue

is strictly smaller than λ in modulus. Moreover, λ is a simple eigenvalue, so has a one-dimensional

eigenspace. Further, the left and right eigenvectors corresponding to the eigenvalue λ consist of

positive real entries. We normalise R such that its entries sum to 1 and normalise L such that

L⊤ ·R = 1. For simplicity, we call λ the Perron–Frobenius eigenvalue of ϑP (as opposed to the

Perron–Frobenius eigenvalue of the substitution matrix of ϑP). Similarly, we call L and R the

left and right eigenvectors of ϑP. Together, we call (λ,L,R) the Perron–Frobenius data of ϑP.
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The Perron–Frobenius data of a random substitution encodes information on expected inflation

lengths and letter frequencies. This is summarised in the following.

Proposition 2.1.9 ([39, Lemma 3.5]). Let ϑP = (ϑ,P) be a primitive random substitution with

Perron–Frobenius data (λ,L,R). Then, for all a ∈ A, we have

E[|ϑm
P (a)|]

E[|ϑm−1
P (a)|]

→ λ and
E[|ϑm

P (a)|]
λm

→ La

as m → ∞. Moreover, for all b ∈ A, we have

E[|ϑm
P (a)|b]

E[|ϑm
P (a)|]

→ Rb

as m → ∞.

If ϑP is a random substitution and M is the matrix of ϑP, then for all k ∈ N, Mk is the

matrix of the random substitution ϑk
P. Thus, if ϑP is primitive, then ϑk

P is primitive for all k ∈ N.

Moreover, if (λ,L,R) is the Perron–Frobenius data for ϑP, then (λk,L,R) is the Perron–Frobenius

data for ϑk
P.

While the matrix of a random substitution is dependent on the choice of probabilities,

primitivity itself is independent of the choice of (non-degenerate) probabilities. In fact, primitivity

can be characterised entirely in terms of the underlying set-valued substitution.

Proposition 2.1.10 ([70, Def. 4]). Let ϑP = (ϑ,P) be random substitution over a finite alphabet

A. Then ϑP is primitive if and only if there exists a positive integer K such that, for all a, b ∈ A,

the letter a appears as a subword of some realisation of ϑK(b).

We emphasise that while primitivity is independent of the choice of probabilities, the Perron–

Frobenius data corresponding to the random substitution does, in general, depend on the

probabilities. This is highlighted by the following example.

Example 2.1.11. Let p ∈ (0, 1), and let ϑP = (ϑ,P) be the random substitution defined by

ϑP :


a →


aa with probability p,

ab with probability 1− p,

b → a with probability 1.

21



We have that ϑP(a) = aa with probability p and ϑP(a) = ab with probability 1 − p, so

E[|ϑP(a)|a] = 2p + (1 − p) = 1 + p. Similarly, E[|ϑP(a)|b] = 1 − p, E[|ϑP(b)|a] = 1 and

E[|ϑP(b)|a] = 0, so the matrix of ϑP is given by

M =

E[|ϑP(a)|a] E[|ϑP(b)|a]

E[|ϑP(a)|b] E[|ϑP(b)|b]

 =

1 + p 1

1− p 0

 .

The Perron–Frobenius eigenvalue of M is λ = (p+ 1 +
√
p2 − 2p+ 5)/2 and the corresponding

(normalised) right eigenvector is R = (1− f(p), f(p)), where

f(p) =
2(p− 1)

3p− 1−
√

p2 − 2p+ 5
.

The above example also illustrates that primitivity is not preserved under passing to marginals.

The marginal at p = 1 is the deterministic substitution θ : a 7→ aa, b 7→ a, which is not primitive

since b does not appear as a subword of θk(a) or θk(b) for any k ∈ N.

2.2 Special classes of random substitutions

Since primitive random substitutions give rise to a wide variety of subshifts, including all

topologically transitive shifts of finite type [38] and all primitive deterministic substitution

subshifts, it is reasonable to impose additional conditions in their study. In this section, we

introduce some common conditions imposed on random substitutions.

2.2.1 Compatible random substitutions

One of the most common assumptions in the study of random substitutions is compatibility, which

states that the inflated image of every word has a well-defined abelianisation. Compatibility is a

fundamental assumption in Gohlke’s work on topological entropy [35], which we summarise in

Chapter 3, and is also assumed in the main results of [7, 33, 53, 69]. In the following, recall that

for a given u ∈ AZ, we let Φ(u) = (|u|a)a∈A denote the abelianisation of u.

Definition 2.2.1. We say that a random substitution ϑP = (ϑ,P) is compatible if for all a ∈ A

and u, v ∈ ϑ(a), we have Φ(u) = Φ(v).
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Compatibility guarantees that the length |ϑk(a)| is well-defined for all a ∈ A and k ∈ N.

Further, if ϑP = (ϑ,P) is compatible, then for all u ∈ A+, a ∈ A and s, t ∈ ϑ(u), we have that

|s|a = |t|a. We write |ϑ(u)|a to denote this common value. It is straightforward to verify that if

ϑP is compatible, then ϑk
P is compatible for all k ∈ N.

Note that the matrix of a compatible random substitution is independent of the choice of

probabilities P. Therefore, if a random substitution is both primitive and compatible, the Perron–

Frobenius eigenvalue and corresponding right eigenvector do not depend on P. In fact, there is a

uniform inflation rate and uniform letter frequencies, which are encoded by the Perron–Frobenius

data. Specifically, we have the following.

Proposition 2.2.2 ([35, Prop. 13]). If ϑP = (ϑ,P) is a primitive and compatible random

substitution with Perron–Frobenius data (λ1,L,R), then for all ε > 0 there is an integer N such

that every word v ∈ Lϑ of length at least N satisfies

|v|(Ra − ε) < |v|a < |v|(Ra + ε)

for all a ∈ A, where Ra is the entry of R corresponding to a. Consequently, for all a, b ∈ A,

|ϑk(b)|a
|ϑk(b)|

→ Ra

as k → ∞. Hence, for all x ∈ Xϑ,
|x[−n,n]|a
2n+ 1

→ Ra

as n → ∞.

The following is proved in [67, Prop. 5.8] for primitive deterministic substitutions. The proof

presented there extends to primitive and compatible random substitutions.

Proposition 2.2.3. Let ϑP = (ϑ,P) be a primitive and compatible random substitution, with

Perron–Frobenius data (λ1,L,R). Further, let λ2 denote the second largest (in absolute value)

eigenvalue of the substitution matrix. Then, there exists a constant c > 0 such that for all m ∈ N

and a ∈ A,

λm
1 La − c|λ2|m ≤ |ϑm(a)| ≤ λm

1 La + c|λ2|m,
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where |λ2| denotes the modulus of λ2. In particular,

|ϑm(a)|
λm
1

→ La.

as m → ∞ for all a ∈ A.

The random Fibonacci substitution defined in Example 2.1.2 is compatible, since Φ(ab) =

Φ(ba) = (1, 1). For any choice of probabilities, the right Perron–Frobenius eigenvector is given by

(τ−1, τ−2)⊤, where τ denotes the golden ratio. Thus, in every element of the associated subshift,

the letter a occurs with frequency τ−1 and the letter b occurs with frequency τ−2. Similarly,

the random period doubling substitution defined in Example 2.1.3 is compatible, with right

Perron–Frobenius eigenvector (2/3, 1/3)⊤.

2.2.2 Generalisations of compatibility

For compatible random substitutions, the Perron–Frobenius data (λ,L,R) is independent of the

choice of probabilities. A natural generalisation of compatibility is to allow R to depend on the

probabilities but still insist that λ and L are independent of the probabilities. Such random

substitutions are called geometrically compatible, since this is the natural setting in which a

random substitution can be viewed as a random inflation rule on an associated tiling dynamical

system. For more details, we refer the reader to [36].

Definition 2.2.4. We say that a primitive random substitution ϑP is geometrically compatible if

there is a real number λ > 1 and a vector L with strictly positive entries, such that L is a left

eigenvector with eigenvalue λ for all marginals of ϑP.

As well as encompassing all compatible primitive random substitutions, the class of geometri-

cally compatible random substitutions also includes all primitive random substitutions of constant

length.

Lemma 2.2.5. Let ϑP = (ϑ,P) be a primitive random substitution over a finite alphabet A. If

ϑP is compatible or constant length, then ϑP is geometrically compatible.

Proof. For compatible random substitutions, the result follows from the fact that the substitution

matrix is independent of the choice of probabilities and is preserved under passing to marginals,
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so it remains to consider the constant length case. To this end, let ϑP be a primitive random

substitution of constant length ℓ and let θ be a marginal of ϑP. The constant length property

is preserved under passing to marginals, so θ has Perron–Frobenius eigenvalue λ = ℓ. Let

L = (1, . . . , 1)⊤ ∈ R#A. Since θ is of constant length ℓ, we have that
∑

b∈A E[|ϑ(a)|b] = ℓ for

all a ∈ A. In particular, the column sums of the substitution matrix M are all equal to ℓ.

Hence, ℓL⊤ = M⊤L⊤, so L is a left eigenvector for the eigenvalue ℓ and we conclude that ϑP is

geometrically compatible.

The reverse inclusion in Lemma 2.2.5 does not hold. Namely, there exist geometrically

compatible random substitutions that are neither compatible nor constant length. This is

illustrated by the following example.

Example 2.2.6. Let ϑP be the primitive random substitution defined over the alphabet A = {a, b}

by

ϑP :


a 7→ abb with probability 1,

b 7→


a with probability p,

bb with probability 1− p.

The random substitution ϑP is geometrically compatible with L = (2, 1)⊤ and λ = 2. We highlight

that ϑP is neither constant length nor compatible.

Beyond geometric compatibility, there is the class of random substitutions with unique

realisation paths. Recall that for v = v1 · · · vn, the random word ϑP(v) = ϑP(v1) · · ·ϑP(vn) can

be written as a concatenation of the random variables ϑP(v1), . . . , ϑP(vn). In general, there might

be several realisations of (ϑP(v1), . . . , ϑP(vn)) that concatenate to the same realisation of ϑP(v).

For random substitutions with unique realisation paths, this phenomenon can be excluded.

Definition 2.2.7. We say that ϑP has unique realisation paths if for every v ∈ Lϑ and k ∈ N,

the vector (ϑk
P(v1), . . . , ϑ

k
P(v|v|)) is completely determined by ϑk

P(v).

While the definition above is most adequate for our purposes, we note that the property of

having unique realisation paths does not depend on the choice of P. Indeed, it is straightforward

to verify that a random substitution ϑP = (ϑ,P) has unique realisation paths if and only if for
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all v ∈ Lϑ and k ∈ N the concatenation map

ϑk(v1)× · · · × ϑk(v|v|) → Lϑ, (w1, . . . , w|v|) 7→ w1 · · ·w|v|

is injective.

Lemma 2.2.8. Every primitive, geometrically compatible random substitution has unique

realisation paths.

Proof. Let ϑP be primitive and geometrically compatible. Since the same holds for ϑk
P, we may

restrict to the case k = 1 in the following. Let v ∈ Lϑ and let u be a realisation of the random

word

ϑP(v) = ϑP(v1) · · ·ϑP(v|v|)

and (u1, . . . , u|v|) a corresponding realisation of (ϑP(v1), . . . , ϑP(v|v|)) satisfying

u = u1 · · ·u|v|.

Let M1 be the substitution matrix of a marginal of ϑP with v1 7→ u1. Since L has strictly positive

entries, there is a unique 1 ≤ m ≤ |u| such that

LΦ(u[1,m]) = LΦ(u1) = LM1Φ(v1) = λLv1 .

This determines u1 = u[1,m] unambiguously. Inductively, we find that uj is uniquely determined

by u for all 1 ≤ j ≤ |v|.

For the reader’s convenience, we summarise the relation between different characterisations of

primitive random substitutions in Figure 2.1.

2.2.3 Separation conditions

In this section, we introduce additional conditions that either (1) impose a certain separation on

inflation words, or (2) impose a certain uniformity on the inflation and the probabilities.
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Constant Length Compatibility

Geometric Compatibility

Unique Realisation Paths

Figure 2.1: Implication diagram for some conditions on primitive random substitutions.

Definition 2.2.9. A random substitution ϑP = (ϑ,P) satisfies the disjoint set condition if

u, v ∈ ϑ(a) with u ̸= v =⇒ ϑk(u) ∩ ϑk(v) = ∅

for all a ∈ A and k ∈ N. It satisfies the identical set condition if

u, v ∈ ϑ(a) =⇒ ϑk(u) = ϑk(v)

for all a ∈ A and k ∈ N. Moreover, we say that ϑP has identical production probabilities if for all

a ∈ A, k ∈ N and v ∈ ϑk(a),

P[ϑk−1
P (u1) = v] = P[ϑk−1

P (u2) = v]

for all u1, u2 ∈ ϑ(a).

Observe that the identical and disjoint set condition depend only on the underlying set-valued

substitution. However, the property of having identical production probabilities is dependent on

the probability distribution.

Remark 2.2.1. The conditions introduced in Definition 2.2.9 can also be rephrased in probabilistic

terms. Specifically, ϑP satisfies the disjoint set condition if and only if ϑP(a) is determined by

ϑn
P(a) for all n ∈ N and a ∈ A. The identical set condition with identical production probabilities

holds for ϑP if and only if the random words ϑP(a) and ϑn
P(a) are independent for all n ≥ 2 and

a ∈ A. This formulation will be useful when we consider measure theoretic entropy in Chapter 4.

In general, it is not straightforward to verify whether a given random substitution satisfies

the identical or disjoint set condition. However, for some families of random substitutions there

are sufficient conditions that are easy to check.
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Proposition 2.2.10. If ϑP = (ϑ,P) is a random substitution such that ϑ(a) = ϑ(b) for all

a, b ∈ A, then ϑP satisfies the identical set condition.

Proof. Since ϑ(a) = ϑ(b) for all a, b ∈ A, it follows inductively that ϑk(a) = ϑk(b) for all k ∈ N.

Hence, ϑP satisfies the identical set condition.

The sufficient condition for the identical set condition given by Proposition 2.2.10 is not a

necessary condition. For example, any random substitution defined over the set-valued substitution

ϑ : a, b 7→ {abc, bac}, c 7→ {acb, bca} satisfies the identical set condition, but ϑ(a) ̸= ϑ(c).

Proposition 2.2.11. If ϑP = (ϑ,P) is a constant length random substitution such that ϑ(a) ∩

ϑ(b) = ∅ for all a, b ∈ A with a ̸= b, then ϑP satisfies the disjoint set condition.

Proof. We show that, for each k ∈ N and each level-(k + 1) inflation word w, there is a unique

level-k inflation word v such that w ∈ ϑ(v). By the constant length property, w can be decomposed

into ℓk level-1 inflation words w = w1 · · ·wℓk so that wi ∈ ϑ(vi) for all i ∈ {1, . . . , ℓk}. Moreover,

this is the unique such decomposition of w into level-1 inflation words. By assumption, vi is the

unique letter such that wi ∈ ϑ(vi), so it follows that v is the unique level-k inflation word such

that w ∈ ϑ(v). It then follows inductively that there is a unique level-1 inflation word u such

that w ∈ ϑk(u). Since this holds for all k ∈ N and all level-(k + 1) inflation words, we conclude

that the disjoint set condition is satisfied.

Example 2.2.12. Given p ∈ (0, 1), let ϑP = (ϑ,P) be the random period doubling substitution

ϑP :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ aa with probability 1.

Since ϑ is constant length and ϑ(a) ∩ ϑ(b) = ∅, Proposition 2.2.11 gives that ϑP satisfies the

disjoint set condition.
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Example 2.2.13. Given p ∈ (0, 1), let ϑP = (ϑ,P) be the random Fibonacci substitution

ϑP :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ a with probability 1.

Observe that ab, ba ∈ ϑ(a) and aba ∈ ϑ(ab) ∩ ϑ(ba), so ϑP does not satisfy the disjoint set

condition. On the other hand, aab ∈ ϑ(ba) \ ϑ(ab), so ϑ(ab) ̸= ϑ(ba) and thus ϑP does not satisfy

the identical set condition either.

The above example illustrates that the constant length assumption in Proposition 2.2.11

cannot be dropped. The issue in the non-constant length setting is that an inflation word can

have multiple different decompositions into lower level inflation words. For the random Fibonacci

substitution, this happens for the level-2 inflation word aba, which can be decomposed into level-1

inflation words as (ab, a) or (a, ba).

2.2.4 Recognisable random substitutions

A consequence of the disjoint set condition is that for every a ∈ A, k ∈ N and w ∈ ϑk(a), there

is a unique v ∈ ϑk−1(a) such that w ∈ ϑ(v). In other words, every exact inflation word can be

uniquely “de-substituted” to another exact inflation word. The following definition extends this

idea from inflation words to all elements in the subshift.

Definition 2.2.14. Let ϑP = (ϑ,P) denote a random substitution over a finite alphabet A,

and suppose that |ϑ(a)| is well-defined for all a ∈ A. We call ϑP recognisable if, for all x ∈ Xϑ,

there exist a unique y = · · · y−1y0y1 · · · ∈ Xϑ and a unique integer k ∈ {0, . . . , |ϑ(y0)| − 1} with

S−k(x) ∈ ϑ(y).

In other words, for all i ∈ Z, there exist words wi ∈ ϑ(yi) such that x can be uniquely

decomposed into inflation words as (. . . , w−1, w0, w1, . . .). We call each wi an inflation tile or

supertile of x and call each index ji such that xji = wi
0 a cutting point of inflation tiles.

A common strategy for verifying that a given random substitution is recognisable is to first

show that, in every element of the subshift, the cutting points of inflation tiles are uniquely

determined, and then show that each inflation tile has a unique preimage. This is especially
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useful for constant length random substitutions, since once one cutting point is determined, this

determines all cutting points of inflation tiles in a given inflation word decomposition.

Example 2.2.15. Let p1, p2 ∈ (0, 1) and let ϑP = (ϑ,P) be the random substitution defined by

ϑP :



a 7→


abbaa with probability p1,

aabba with probability 1− p1,

b 7→


babaa with probability p2,

baaba with probability 1− p2.

Observe that ab appears as a subword in every element of Xϑ. Since, for every x ∈ Xϑ, there

exists a y ∈ Xϑ and j ∈ {0, . . . , |ϑ(y1)|} such that x ∈ Sj(ϑ(y)), it follows that every x ∈ Xϑ

contains the word v = bbuaba as a subword, for some (possibly empty) legal word u that does

not contain bb or aba as a subword. Since u does not contain aba as a subword, we deduce

that the occurrence of aba in v must lie on the overlap of an a and a b supertile. Since ϑP is

constant length, this determines the positions of all cutting points of inflation tiles and, as all

exact inflation words are distinct, the inflation word decomposition of x is uniquely determined.

Hence, we conclude that ϑP is recognisable.

In the following, we present an example of a non-constant length random substitution that is

recognisable.

Example 2.2.16. Let p ∈ (0, 1) and let ϑP = (ϑ,P) be the random substitution defined by

ϑP :


a 7→


abb with probability p,

bab with probability 1− p,

b 7→ aa with probability 1.

We show that ϑP is recognisable. Observe that, for each element in Xϑ, if one cutting point

between inflation tiles is known, then all can be determined by reading from left to right, or

right to left, since the first two and last two letters of every realisation are distinct from each

other. Further, note that no letter can appear more than three times consecutively. We deduce

recognisability by showing that the cutting points of inflation tiles are determined by the repeated
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occurrences of letters. First, observe that any occurrence of bbb must lie on the overlap of two

a supertiles, and that abba can only occur on the overlap of an a and a b supertile, or two a

supertiles, and reading the letter immediately to the right of the occurrence of abba determines

which case we are in. Thus, any word that contains multiple occurrences of b has a unique

decomposition into inflation words. Since every element of the subshift Xϑ admits an occurrence

of bb, we thus deduce that every element has a unique decomposition into inflation words. Hence,

ϑP is recognisable.

Like many of the properties we have encountered before, recognisability does not depend on

the choice of probabilities, and could equivalently be defined in terms of the underlying set-valued

substitution. An alternative characterisation of recognisability is the following local version.

Intuitively, local recognisability means that applying a finite window to a sequence is enough to

determine the position and the type of the inflation word in the middle of that window.

Lemma 2.2.17. Let ϑP = (ϑ,P) be a primitive random substitution over an alphabet A, and

suppose that |ϑ(a)| is well-defined for all a ∈ A. If ϑP is recognisable, then there exists a

smallest natural number κ(ϑ), called the recognisability radius of ϑ, with the following property.

If x ∈ ϑ([a]) for some a ∈ A and x[−κ(ϑ),κ(ϑ)] = y[−κ(ϑ),κ(ϑ)] for some y ∈ Xϑ, then y ∈ ϑ([a]).

Proof. By way of contradiction, suppose there is no radius of recognisability. In which case,

there exists a sequence of tuples ((x(k), y(k)))k∈N with (x(k), y(k)) ∈ ϑ([a]) × (Xϑ \ ϑ([a])) and

x
(k)
[−k,k] = y

(k)
[−k,k] for all k ∈ N. Let (x, y) ∈ Xϑ ×Xϑ be an accumulation point of this sequence.

By recognisability,

Xϑ =
⊔
b∈A

|ϑ(b)|−1⊔
k=0

Sk(ϑ([b])),

and by construction, x = y. Due to Lemma 2.1.6, and since S is continuous, we have that

Sk(ϑ([b])) is compact for all b ∈ A and k ∈ Z. Hence, both ϑ([a]) and Xϑ \ ϑ([a]) are compact.

It therefore follows that x ∈ ϑ([a]) and x = y ∈ Xϑ \ ϑ([a]), leading to a contradiction.

As a consequence of the local characterisation of recognisability, for every legal word u with

length greater than twice the radius of recognisability there exists an inflation word w, appearing

as a subword of u, that has a unique decomposition into exact inflation words. We call the largest

such w the recognisable core of u.
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Every recognisable random substitution satisfies the disjoint set condition. However, in

contrast to the disjoint set condition, recognisability is preserved under taking powers. Moreover,

the recognisability radius of ϑm
P grows (asymptotically) at most with the inflation factor as m

increases.

Lemma 2.2.18. If a random substitution ϑP is recognisable, then it satisfies the disjoint set

condition.

Proof. By way of contradiction, suppose that ϑP does not satisfy the disjoint set condition. In

which case, there exist a ∈ A, and s and t ∈ ϑ(a) with s ≠ t and ϑ(s) ∩ ϑ(t) ̸= ∅. For x ∈ [a],

observe that there exist y and z ∈ ϑ(x) such that y[0,|ϑ(a)|−1] = s, z[0,|ϑ(a)|−1] = t, and y coincides

with z at all other positions. Hence, there exists a w ∈ ϑ(y) ∩ ϑ(z) that can be constructed by

mapping s and t to the same word v ∈ ϑ(s) ∩ ϑ(t). This is a contradiction to recognisability, so

we conclude that ϑP must satisfy the disjoint set condition.

Lemma 2.2.19. Let ϑP = (ϑ,P) be a primitive random substitution for which |ϑ(a)| is well-

defined for all a ∈ A. If ϑP is recognisable, then ϑk
P is recognisable for all k ∈ N. Moreover, if ϑP

is of constant length ℓ, then for all m ∈ N we have that

κ(ϑm) ≤ ℓm − 1

ℓ− 1
κ(ϑ).

Proof. Let x ∈ Xϑ and assume that there exist y, y′ ∈ Xϑ and i ∈ {0, . . . , |ϑk(y0)| − 1}, j ∈

{0, . . . , |ϑk(y′0)| − 1} such that x ∈ Si(ϑk(y)) and x ∈ Sj(ϑk(y′)). We show that y = y′ and i = j.

By definition, there exist elements w0 = x,w1, . . . , wk−1, wk = y, z0 = x, z1, . . . zk−1, zk = y′ and

integers ir ∈ {0, . . . , |ϑ(wr
0)| − 1}, jr ∈ {0, . . . , |ϑ(zr0)| − 1} such that wr ∈ Sir(ϑ(wr−1)) and

wr ∈ Sjr(ϑ(zr−1)) for all r ∈ {1, . . . , k}. Since ϑP is recognisable, we must have that i1 = j1

and w1 = z1. Then, it follows inductively that ir = jr and wr = zr for all r ∈ {1, . . . , k}. In

particular, we must have that y = y′ and i = j. Since x ∈ Xϑ was arbitrary, we thus conclude

that ϑk
P is recognisable.

Now assume that ϑP is of constant length ℓ. We prove the bounds on the recognisability

radius by induction. The claim is immediate for m = 1. Assume it holds for some m ∈ N, and

note, by primitivity, that Xϑ = Xϑm . Let a ∈ A, x ∈ ϑm+1([a]) and y ∈ Xϑ with x[−k,k] = y[−k,k]

for k = ℓκ(ϑm) + κ(ϑ); in particular, y ∈ ϑ(Xϑ). Let v ∈ ϑm([a]) be such x ∈ ϑ(v), and let
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w ∈ Xϑ such that y ∈ ϑ(w). Applying the local characterisation of recognisability given by

Lemma 2.2.17 to the pair (Sjℓx, Sjℓy) for each j ∈ {−κ(ϑm), . . . , κ(ϑm)}, in combination with

Lemma 2.2.18, we obtain that v[−κ(ϑm),κ(ϑm)] = w[−κ(ϑm),κ(ϑm)]. By the definition of κ(ϑm), this

implies w ∈ ϑm([a]) and so y ∈ ϑ(w) ⊆ ϑm+1([a]), yielding

κ(ϑm+1) ≤ ℓκ(ϑm) + κ(ϑ) = κ(ϑ)
m∑
j=0

ℓj =
ℓm − 1

ℓ− 1
κ(ϑ),

where the second to last equality follows from the inductive hypothesis.

While every recognisable substitution satisfies the disjoint set condition, the reverse implication

does not hold. A counterexample is given by the random period doubling substitution, which

satisfies the disjoint set condition but is not recognisable.

Example 2.2.20. Let p ∈ (0, 1) and let ϑP = (ϑ,P) be the random period doubling substitution

defined by

ϑP :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ aa with probability 1.

We show that the subshift Xϑ admits elements that do not have a unique inflation word decom-

position. For example, let x = (aab)Z. Since, for all k ∈ N, we have b(aab)(2
2k−1)/3 ∈ ϑ2k(b), it

follows that x ∈ Xϑ. We note that (22k−1)/3 is always an integer since 22k−1 = (2k−1)(2k+1),

and one of these factors must be divisible by 3. Observe that both

· · · aa︸︷︷︸
b

ba︸︷︷︸
a

ab︸︷︷︸
a

· aa︸︷︷︸
b

ba︸︷︷︸
a

ab︸︷︷︸
a

· · · and · · · a ab︸︷︷︸
a

aa︸︷︷︸
b

b · a︸︷︷︸
a

ab︸︷︷︸
a

aa︸︷︷︸
b

b · · · ,

are valid inflation word decompositions of x. Hence, x does not have a unique inflation word

decomposition and so ϑP is not recognisable.

2.3 Frequency measures

If θ is a primitive deterministic substitution, then the subshift Xθ supports a unique shift-invariant

measure µ. For each v ∈ Lθ, µ assigns to the cylinder set [v] mass equal to the word frequency of
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v under repeated iteration of the substitution; namely,

µ([v]) = lim
k→∞

|θk(a)|v
|θk(a)|

.

By primitivity, this limit always exists and is independent of the choice of a. For random

substitutions, the associated subshift is typically not uniquely ergodic. However, a shift-invariant

measure can be constructed in a similar manner. In particular, for a given random substitution

ϑP, there exists a shift-invariant measure µP that is compatible with the word frequencies that

arise almost surely in the limit of large inflation words. Moreover, it was shown by Gohlke and

Spindeler [39] that this measure is ergodic with respect to the shift action.

2.3.1 Definition and basic properties

Recall that for every subshift X, the algebra ξ(X) of cylinder sets that specify the origin, together

with the empty set, generates the Borel sigma-algebra B(X). Frequency measures assign to a

given cylinder the expected frequency of the word under repeated substitution.

Definition 2.3.1. Given a primitive random substitution ϑP = (ϑ,P), we define the expected

frequency of a word v ∈ Lϑ by

freq(v) = lim
k→∞

E[|ϑk
P(a)|v]

E[|ϑk
P(a)|]

. (2.1)

We note that, by primitivity, the limit in (2.1) always exists and is independent of the choice

of a. In fact, we have the stronger property that the word frequencies exist P-almost surely in the

limit of large inflation words and are given by freq(v) for all v ∈ Lϑ (see [39] for further details).

Definition 2.3.2. Let ϑP = (ϑ,P) be a primitive random substitution and define µP : ξ(Xϑ) →

[0, 1] by µP(∅) = 0, µP(Xϑ) = 1 and µP([v]m) = freq(v) for all v ∈ Lϑ and m ∈ {1 − |v|, 2 −

|v|, . . . , 0}. The set function µP defines a pre-measure on the algebra ξ(Xϑ), which extends

uniquely to a measure on B(Xϑ). We call the measure µP the frequency measure corresponding

to the random substitution ϑP.

Proposition 2.3.3 ([39, Proposition 5.3 and Theorem 5.9]). Let ϑP be a primitive random sub-

stitution. Then, the corresponding frequency measure is a shift-invariant and ergodic probability

measure on the subshift Xϑ.
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Since µP is ergodic, it follows by Birkhoff’s ergodic theorem that for every u ∈ Lϑ, we have

1

2n+ 1
#
{
i ∈ {−n, . . . , n} : x[i,i+|u|−1] = u

} n→∞−−−→ µP([u])

for µP-almost all x ∈ Xϑ. This motivates the term frequency measure.

For all a ∈ A, we have that µP([a]) = Ra, the entry of the right Perron–Frobenius eigenvector

corresponding to a. It is also possible to define the measures of longer words in a similar

manner, as the entries of the right Perron–Frobenius eigenvector of an associated induced random

substitution. However, Definition 2.3.2 is sufficient for our purposes so we do not include this

alternative characterisation here. For more details, we refer the reader to [39, 70].

Note that frequency measures are dependent on the probabilities of the random substitution.

As such, primitive random substitution subshifts often support uncountably many ergodic

measures. This is in contrast to subshifts of primitive deterministic substitutions, which are

always uniquely ergodic [52, 67].

2.3.2 Renormalisation lemma

The presence of an inherent hierarchical structure allows for the application of renormalisation

techniques in the study of random substitutions. Since the frequency measure corresponding to

a primitive random substitution reflects the underlying Markov process, it is natural to expect

this measure will exhibit some kind of dynamical self-similarity. This is given by the following

self-consistency relation, which was shown as the first step in the proof of [39, Prop. 5.8].

Lemma 2.3.4. Let ϑP = (ϑ,P) be a primitive random substitution, with corresponding frequency

measure µP. Then, for all n ∈ N and u ∈ Ln
ϑ, we have

µP([u]) =
1

λ

∑
v∈Ln

ϑ

µP([v])

|ϑ|∑
m=1

m∑
j=1

P[ϑP(v)[j,j+n−1] = u and |ϑP(v1)| = m].

Lemma 2.3.4 relates the measures of cylinder sets via the action of the random substitution.

This is a very powerful tool for studying frequency measures, and is fundamental to the proofs of

our main results on measure theoretic entropy and multifractal properties of frequency measures

in Chapters 4–6.

If additional assumptions are imposed on the random substitution, then simpler formulations of
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Lemma 2.3.4 can be obtained. For example, if the inflated image of every letter has a well-defined

length, then we have the following.

Lemma 2.3.5. Let ϑP = (ϑ,P) be a primitive random substitution with corresponding frequency

measure µP. Additionally assume that, for all a ∈ A, the length |ϑ(a)| is well-defined. Fix n ∈ N

and let k be an integer such that every v ∈ Lk
ϑ has |ϑ(v)| ≥ n+ |ϑ(v1)|. Then, for every u ∈ Ln

ϑ,

µP([u]) =
1

λ

∑
v∈Lk

ϑ

µP([v])

|ϑ(v1)|∑
j=1

P[ϑP(v)[j,j+m−1] = u].

Proof. For all v ∈ Lk
ϑ, the length |ϑ(v1)| is well-defined, so for all u ∈ Ln

ϑ and j ∈ {1, . . . , |ϑ(v1)|},

we have

P[ϑP(v)[j,j+n−1] = u and |ϑP(v1)| = m] =


P[ϑP(v)[j,j+n−1] = u] if m = |ϑ(v1)|,

0 if m ̸= |ϑ(v1)|.

Hence, it follows by Lemma 2.3.4 that

µP([u]) =
1

λ

∑
v∈Lk

ϑ

µP([v])

|ϑ(v1)|∑
j=1

P[ϑP(v)[j,j+m−1] = u],

which completes the proof.

We note that if ϑP = (ϑ,P) is compatible or constant length, then the condition that |ϑ(a)|

is well-defined for all a ∈ A is satisfied.

2.3.3 Frequency measures on the full shift

We conclude this chapter by providing conditions under which a class of frequency measures on

the full shift are Bernoulli measures. We highlight the following is a new result which has not

been presented in any of the papers on which this thesis is based.

Proposition 2.3.6. Given p1, p2, p3, p4 ∈ (0, 1) such that
∑4

i=1 pi = 1, let ϑP = (ϑ,P) be the
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random substitution defined by

ϑP : a, b 7→



aa with probability p1,

ab with probability p2,

ba with probability p3,

bb with probability p4,

and let µP denote the corresponding frequency measure. Then, the associated subshift Xϑ is the

full shift {a, b}Z. Further, the measure µP is Bernoulli if and only if there exists a p ∈ (0, 1) such

that p1 = p2, p2 = p3 = p(1− p) and p4 = (1− p)2. In this case, µp is the (p, 1− p)-Bernoulli

measure on {a, b}Z.

Proof. For each k ∈ N, we have that ϑk(a) = ϑk(b) is the set of all words of length 2k over the

alphabet {a, b}, so it follows by the definition of the subshift associated to a random substitution

that Xϑ is the full shift {a, b}Z.

To prove the necessary and sufficient conditions under which the frequency measure µP is

a Bernoulli measure, we use the renormalisation lemma stated in Section 2.3.2. In particular,

since ϑP is constant length, we can apply the version stated in Lemma 2.3.5. For each n ∈ N and

u ∈ Ln
ϑ, Lemma 2.3.5 gives that

µP([u]) =
1

2

∑
v∈L⌊n/2⌋+1

ϑ

µP([v])
2∑

j=1

P[ϑP(v)[j,|u|+j−1] = u].

For all v1, v2 ∈ L⌊n/2⌋+1
ϑ and j ∈ {1, 2} we have

P[ϑP(v
1)[j,|u|+j−1] = u] = P[ϑP(v

2)[j,|u|+j−1] = u],

so the above expression simplifies to

µP([u]) =
1

2

(
P[ϑP(v)[1,|u|] = u] + P[ϑP(v)[2,|u|+1] = u]

)
(2.2)

for any choice of v ∈ L⌊n/2⌋+1
ϑ , noting that

∑
v∈L⌊n/2⌋+1

ϑ

µP([v]) = 1.

We first show that when p1 = p2, p2 = p3 = p(1− p) and p4 = (1− p)2, the frequency measure
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µP is the (p, 1− p)-Bernoulli measure. Observe that for every w ∈ ϑ(a) = ϑ(b), we have

P[ϑP(a) = w] = P[ϑP(b) = w] = p|w|a(1− p)|w|b

and, if j ∈ {1, 2} and c ∈ {a, b}, then

P[ϑP(c)j = a] = p and P[ϑP(c)j = b] = 1− p.

Hence, splitting each of the probabilities in (2.2) into inflation tiles, we obtain

P[ϑP(v)[1,|u|] = u] = P[ϑP(v)[2,|u|]+1 = u] = p|u|a(1− p)|u|b ,

so it follows by (2.2) that µP([u]) = p|u|a(1− p)|u|b . Since this is true for all u ∈ Lϑ = {a, b}∗, we

conclude that µP is the (p, 1− p)-Bernoulli measure.

Now, we show that if µP is a Bernoulli measure, then there exists a p ∈ (0, 1) such that p1 = p2,

p2 = p3 = p(1− p) and p4 = (1− p)2. If µP is a Bernoulli measure, then µP([u]) =
∏|u|

i=1 µP([ui])

for all u ∈ Lϑ. Thus, we require µP([ab]) = µP([ba]). By Equation (2.2), we have

µP([ab]) =
1

2
(p2 + (p1 + p3)(p3 + p4))

µP([ba]) =
1

2
(p3 + (p1 + p2)(p2 + p4)) ,

and these two quantities coincide if and only if p2 = p3. Next, note that the right Perron–Frobenius

eigenvector of ϑP is given by

R =

(
1 + p1 − p4

2
,
1− p1 + p4

2

)⊤
,

so

µP([a]) =
1 + p1 − p4

2
= p1 + p2,

where in the second equality we have used that p4 = 1− p1 − p2 − p3 and p2 = p3. Thus, by (2.2),

if µP is a Bernoulli measure, we require

(p1 + p2)
2 = µP([a])µP([a]) = µP([aa]) =

1

2
(p1 + (p1 + p2)

2).
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In other words, we require (p1 + p2)
2 = p1. If p ∈ (0, 1) is the real number such that p1 = p2,

then this identity holds if and only if p2 = p(1− p). Since p3 = p2, we also require p3 = p(1− p).

Finally, since
∑4

i=1 pi = 1, we have p4 = 1 − p2 − 2p(1 − p) = (1 − p)2. This completes the

proof.
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CHAPTER 3

TOPOLOGICAL ENTROPY AND WORD COMPLEXITY

In contrast to subshifts of deterministic substitutions, random substitution subshifts often have

positive topological entropy. As such, topological entropy provides a new invariant in the study

of random substitution subshifts not available for their deterministic counterparts.

Positive topological entropy was first identified for subshifts of random substitutions in the

pioneering work of Godrèche and Luck [34], who showed that the random Fibonacci substitution

gives rise to a subshift with positive topological entropy. Following this, the topological entropy

was calculated for several families of random substitution subshifts, for example, see [46, 56, 58, 59,

74, 76]. In each of these references, the topological entropy was calculated by first quantifying the

asymptotic growth rate of inflation words and then showing the topological entropy coincides with

this quantity. This approach was unified by Gohlke [35], who showed that for every primitive and

compatible random substitution, the topological entropy of the associated subshift coincides with

the notion of inflation word entropy, which is characterised entirely in terms of the substitution

branching process, as opposed to the subshift. Further, Gohlke showed that if the underlying

random substitution satisfies either the identical or disjoint set condition, then a closed-form

formula for the topological entropy can be obtained.

In this chapter, we continue to develop the theory of topological entropy for random substitution

subshifts. In Section 3.1, we provide necessary and sufficient conditions under which a primitive

random substitution gives rise to a subshift of positive topological entropy. In particular, we

show that a primitive random substitution subshift has zero topological entropy if and only

if it can be obtained as the subshift of a deterministic substitution, answering in the positive

an open question of Rust and Spindeler [70]. Then, in Section 3.2, we develop techniques for

calculating topological entropy for subshifts of constant length random substitutions, without the
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requirement of compatibility. This allows the topological entropy to be calculated for a broad

class of non-compatible random substitution subshifts. Further, we obtain general bounds on the

topological entropy of constant length random substitutions that hold even without primitivity. In

contrast to the primitive setting, non-primitive random substitutions can give rise to subshifts that

cannot be obtained as the subshift of a deterministic substitution. In Section 3.3, we show that

these subshifts exhibit a rich variety of complexity behaviour not witnessed in the deterministic

or primitive random settings.

The results in this chapter are largely based on the solo-authored paper [54].

Notation. Throughout this chapter, we write ϑ for a random substitution instead of ϑP, to

reflect the fact that the topological entropy of the associated subshift does not depend on the

choice of probabilities. We note that all the results in this chapter can be framed in terms of

set-valued substitutions. However, we still refer to ϑ as a random substitution to keep in line

with the rest of the thesis.

3.1 Positivity of topological entropy for random substitution sub-
shifts

3.1.1 Statement of main results

While random substitution subshifts typically have positive topological entropy, every deterministic

substitution subshift is itself the subshift of a random substitution, so it is not true that all random

substitution subshifts have positive topological entropy. Rust and Spindeler [70] conjectured

that, under primitivity, the zero entropy random substitution subshifts are precisely those that

can be obtained as the subshift of a deterministic substitution. Here, we provide a proof of this

conjecture.

Theorem 3.1.1. Let X be the subshift of a primitive random substitution. Then htop(X) = 0 if

and only if X is a deterministic substitution subshift.

We give the proof of Theorem 3.1.1 in Section 3.1.2. By combining Theorem 3.1.1 with the

classification of complexity functions for subshifts of primitive deterministic substitutions given

by Pansiot (Proposition 1.6.1), we obtain the following. In particular, we highlight that there do

not exist primitive random substitution subshifts with intermediate growth complexity function.
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Corollary 3.1.2. If ϑ is a primitive random substitution such that htop(Xϑ) = 0, then the

complexity function of Xϑ is either Θ(1) or Θ(n).

Corollary 3.1.2 illustrates that there exists a complexity gap for subshifts of primitive random

substitutions. In particular, any function that grows faster than linearly but sub-exponentially

cannot be obtained as the complexity function of a primitive random substitution subshift. On

the other hand, there is no exponential complexity gap, as Gohlke, Rust and Spindeler [38,

Theorem 42] showed that the set {htop(Xϑ) : ϑ is a primitive random substitution} is dense in

[0,∞).

Without primitivity, the conclusion of Theorem 3.1.1 does not hold. In Section 3.3, we show

that non-primitive random substitutions give rise to subshifts whose complexity functions exhibit

a rich variety of behaviour not witnessed for subshifts of deterministic or primitive random

substitutions. In particular, we show that there exist zero entropy subshifts of non-primitive

random substitutions that have intermediate growth complexity function, as well as ones with

polynomial growth not possible for deterministic substitutions. A key feature of these examples

is the existence of letters that occur with frequency zero, which is not possible under primitivity.

3.1.2 Proof of Theorem 3.1.1

We now turn towards the proof of Theorem 3.1.1. Our proof uses the notion of a splitting pair

for a random substitution introduced by Rust and Spindeler [70]. There, it was shown that this

notion provides a sufficient condition for positive entropy of the associated subshift.

Definition 3.1.3. Given u, v ∈ A+, we say that u is an affix of v if u is either a prefix or a suffix

of v, namely, if u = v[1,|u|] or u = v[|v|−|u|+1,|v|]. If u is both a prefix and a suffix of v, then we call

u a strong affix of v.

Definition 3.1.4. If ϑ is a random substitution and a ∈ A is such that there exist realisations

u, v ∈ ϑ(a) with |u| ≤ |v| for which u is not a strong affix of v, then we say that a admits a

splitting pair for ϑ.

Proposition 3.1.5 ([70, Corollary 34]). If ϑ is a primitive random substitution for which there

exists a letter that admits a splitting pair, then htop(Xϑ) > 0.
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If ϑ is a primitive random substitution, then for all m ∈ N the random substitution ϑm gives

rise to the same subshift as ϑ. Hence, to ascertain that the subshift Xϑ has positive topological

entropy, it is sufficient to verify that there exists a positive integer m such that ϑm admits a

splitting pair. Thus, to obtain Theorem 3.1.1, it suffices to show that every primitive random

substitution for which no power admits a splitting pair can be obtained as the subshift of a

deterministic substitution. In particular, we show that any such random substitution gives rise to

the same subshift as one of its marginals.

Proof of Theorem 3.1.1. Let ϑ be a primitive random substitution with htop(Xϑ) = 0. It follows

by Proposition 3.1.5 that no letter in A admits a splitting pair for any power of ϑ. Thus, for

every m ∈ N and a ∈ A, there exists a unique realisation of ϑm(a) of greatest length, since if

u, v ∈ ϑm(a) have |u| = |v| and u is a strong affix of v, then we require u = v. Let θ be the

marginal of ϑ that maps each letter a ∈ A to the realisation of ϑ(a) of greatest length. By

construction, for each a ∈ A and m ∈ N, θm(a) is the realisation of ϑm(a) of greatest length.

Since, for every a ∈ A, a does not admit a splitting pair for ϑ, every realisation of ϑ(a) appears

as a subword of θ(a), so primitivity transfers to θ. Now, let u ∈ L(Xϑ). Since ϑ is primitive, we

have L(Xϑ) = Lϑ, so there exist m ∈ N, a ∈ A and v ∈ ϑm(a) such that u appears as a subword

of v. But every realisation of ϑm(a) appears as a subword of θm(a), so u ∈ Lθ. Primitivity of θ

gives that L(Xθ) = Lθ, so we have that u ∈ L(Xϑ). Hence, L(Xϑ) = L(Xθ) and so we conclude

that Xϑ = Xθ.

While Theorem 3.1.1 guarantees that every zero entropy primitive random substitution

subshift can be obtained as the subshift of a deterministic substitution, it does not guarantee that

every random substitution that gives rise to that subshift must be deterministic. For example,

the primitive random substitution ϑ : a 7→ {a, aba}, b 7→ {bab} gives rise to the finite subshift

Xϑ = {(ab)Z, (ba)Z}. However, if a primitive random substitution is additionally assumed to have

unique realisation paths (recall Definition 2.2.7), then its subshift has zero topological entropy if

and only if it is itself deterministic.

Proposition 3.1.6. If ϑ is a primitive random substitution with unique realisation paths and

there exists a letter b ∈ A such that #ϑ(b) ≥ 2, then htop(Xϑ) > 0.

Proposition 3.1.6 is a consequence of a lower bound on measure theoretic entropy that we

prove in Chapter 4. In particular, there exists a frequency measure µ, supported on the subshift
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Xϑ, such that Xϑ has positive measure theoretic entropy with respect to the measure µ. Positivity

of topological entropy then follows from the fact that measure theoretic entropy provides a lower

bound for topological entropy. We refer the reader to Proposition 4.1.5 for the exact details.

3.2 Inflation word entropy

A systematic approach to calculating topological entropy for subshifts of primitive and compatible

random substitutions was provided by Gohlke [35]. There, it was shown that topological entropy

coincides with the notion of inflation word entropy, which is defined in terms of the underlying

random substitution.

Definition 3.2.1. Let ϑ be a random substitution such that the length |ϑm(a)| is well-defined

for all m ∈ N and a ∈ A. The lower and upper inflation word entropy of type a, respectively, are

defined by

ha = lim inf
m→∞

1

|ϑm(a)|
log(#ϑm(a))

ha = lim sup
m→∞

1

|ϑm(a)|
log(#ϑm(a)).

When these limits coincide, we denote their common value by ha, which we call the inflation

word entropy of type a.

Note that the length |ϑm(a)| is well-defined for all m ∈ N and a ∈ A if and only if ϑ is

compatible or of constant length.

3.2.1 Compatible random substitutions

For primitive and compatible random substitutions, Gohlke [35] showed that the inflation word

entropy ha exists and coincides with the topological entropy for all a ∈ A. In this section, we

summarise the main results from [35] and show how these can be applied to obtain the topological

entropy for some examples.

Proposition 3.2.2 ([35, Theorem 17]). Let ϑ be a primitive and compatible random substitution

with Perron–Frobenius eigenvalue λ and right eigenvector R. Then, for all m ∈ N and a ∈ A, the
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following bounds hold:

1

λm

∑
a∈A

Ra log(#ϑm(a)) ≤ ha ≤ ha ≤ htop(Xϑ) ≤
1

λm − 1

∑
a∈A

Ra log(#ϑm(a)).

Moreover, the lower bound is non-decreasing in m. In particular, the inflation word entropy ha is

well-defined and independent of a ∈ A, and the topological entropy can be calculated via

htop(Xϑ) = ha = lim
m→∞

1

λm

∑
a∈A

Ra log(#ϑm(a)) = sup
m∈N

1

λm

∑
a∈A

Ra log(#ϑm(a)).

If a primitive and compatible random substitution ϑ satisfies the identical or disjoint set

condition, then a closed-form formula for the topological entropy of the associated subshift can

be obtained.

Proposition 3.2.3 ([35, Corollary 18]). Let ϑ be a primitive and compatible random substitution.

If ϑ satisfies the identical set condition, then

htop(Xϑ) =
1

λ

∑
a∈A

Ra log(#ϑ(a)).

If ϑ satisfies the disjoint set condition, then

htop(Xϑ) =
1

λ− 1

∑
a∈A

Ra log(#ϑ(a)).

Proposition 3.2.3 allows the exact value of the topological entropy to be obtained for a broad

class of random substitution subshifts. We now present several examples where this is possible.

Our first example satisfies the identical set condition and our second satisfies the disjoint set

condition.

Example 3.2.4. Let ϑ be the random substitution defined by

ϑ : a, b 7→


ab,

ba.

Since ϑ satisfies the identical set condition and has Perron–Frobenius eigenvalue λ = 2 and right
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eigenvector R = (1/2, 1/2)⊤, by Proposition 3.2.3 we have

htop(Xϑ) =
1

λ
(Ra log(#ϑ(a)) +Rb log(#ϑ(b))) =

1

2
log 2.

Example 3.2.5. Let ϑ be the random period doubling substitution

ϑ :


a 7→


ab,

ba,

b 7→ aa.

We have previously shown that ϑ satisfies the disjoint set condition and has Perron–Frobenius

eigenvalues λ = 2 and right eigenvector R = (2/3, 1/3)⊤. Thus, it follows by Proposition 3.2.3

that

htop(Xϑ) =
1

λ− 1
(Ra log(#ϑ(a)) +Rb log(#ϑ(b))) =

2

3
log 2.

The following example does not satisfy the identical set condition or disjoint set condition, so

Proposition 3.2.3 cannot be applied. However, a precise estimate for the topological entropy can

be obtained using the bounds given by Proposition 3.2.2.

Example 3.2.6. Let ϑ be the random Thue-Morse substitution defined by

ϑ :


a 7→


ab,

ba,

b 7→ ba.

Noting that ϑ has Perron–Frobenius eigenvalue λ = 2 and right eigenvector R = (1/2, 1/2)⊤,

Proposition 3.2.2 gives that

1

2m+1
(log(#ϑm(a)) + log(#ϑm(b))) ≤ htop(Xϑ) ≤

1

2m+1 − 2
(log(#ϑm(a)) + log(#ϑm(b))) .

Using these bounds, a computer-assisted calculation of the cardinalities #ϑm(a) and #ϑm(b)

gives that, to four decimal places, the topological entropy of the subshift Xϑ is 0.2539.

For some random substitutions, an exact value can be obtained for the topological entropy of
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the associated subshift even if neither the identical set condition nor the disjoint set condition are

satisfied. This is the case for the random Fibonacci substitution, where a closed-form recursive

relation for the cardinalities of inflation sets allows the topological entropy of the associated

subshift to be expressed as an infinite sum.

Example 3.2.7. Let ϑ be the random Fibonacci substitution

ϑ :


a 7→


ab,

ba,

b 7→ a.

It was shown in [34, 58] that

htop(Xϑ) =
∞∑
n=2

log n

τn+2
≈ 0.444399,

where τ denotes the golden ratio.

3.2.2 Constant length random substitutions

Proposition 3.2.2 and Proposition 3.2.3 provide a means of calculating the topological entropy of

a broad class of random substitution subshifts. However, a limitation is the somewhat restrictive

assumption of compatibility. The random substitutions that give rise to many well-known

subshifts, such as shifts of finite type [38], are typically not compatible. As such, it is desirable

to better understand topological entropy for non-compatible random substitution subshifts.

However, there are two main barriers to extending the inflation word entropy approach to the

non-compatible setting. Firstly, the lower and upper inflation word entropy are only well-defined

for compatible and constant length random substitutions. Secondly, subshifts of non-compatible

random substitutions do not have uniform letter frequencies, a property fundamental to the proof

of Proposition 3.2.2 in [35]. Here, we develop techniques to circumvent the latter of these issues in

the constant length setting. We show that for primitive random substitutions of constant length,

the topological entropy of the associated subshift can be calculated via inflation word entropy.

This allows the topological entropy to be calculated for a broad class of non-compatible random

substitution subshifts, which previously has only been possible for isolated examples.
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Theorem 3.2.8. Let ϑ be a primitive random substitution of constant length. Then, for all

a ∈ A, the inflation word entropy ha exists and coincides with htop(Xϑ).

We present the proof of Theorem 3.2.8 in Section 3.2.3. In general, the conclusion of

Theorem 3.2.8 does not hold without primitivity. For example, consider the non-primitive random

substitution defined by ϑ : a 7→ {ab, ba}, b 7→ {aa}, c 7→ {cc}. The associated subshift Xϑ contains

the subshift of the random period doubling substitution as a subsystem. In Example 3.2.5, we

showed that this subshift has topological entropy log(4)/3, so htop(Xϑ) ≥ log(4)/3 > 0. However,

since #ϑm(c) = 1 for all m ∈ N, we have hc = 0.

We now present two examples of non-compatible random substitutions where Theorem 3.2.8

can be applied to obtain the exact value of the topological entropy.

Example 3.2.9. Let ϑ be the primitive random substitution defined by ϑ : a 7→ {aa, bb}, b 7→

{aa}, and let Xϑ denote the corresponding subshift. Using Theorem 3.2.8, we show that

htop(Xϑ) =
1

2
log 2.

Observe that ϑm(b) ⊆ ϑm(a) for all m ∈ N. Hence, by the constant length property, we have

ϑm(a) = ϑm−1(a)ϑm−1(a) ∪ ϑm−1(b)ϑm−1(b) = ϑm−1(a)ϑm−1(a)

for all m ∈ N, so #ϑm(a) = (#ϑm−1(a))2. It follows inductively that

1

2m
log(#ϑm(a)) =

1

2
log(#ϑ(a)) =

1

2
log 2

for all m, so we conclude by Theorem 3.2.8 that htop(Xϑ) = ha = log(2)/2.

Example 3.2.10. Let ϑ be the primitive random substitution defined by ϑ : a 7→ {aa, ab}, b 7→

{ba}, and let Xϑ denote the corresponding subshift. The topological entropy of Xϑ is

htop(Xϑ) =

∞∑
n=1

1

2n
log n ≈ 0.507834.

To see this, note that since ϑ is primitive and constant length, it follows by Theorem 3.2.8 that

htop(Xϑ) = ha = hb, so we can calculate htop(Xϑ) by computing ha or hb. Since for all distinct

48



realisations u, v ∈ ϑ(a) ∪ ϑ(b) we have u ̸= v and ϑ is constant length, we have

ϑm+1(a) = ϑm(aa) ∪ ϑm(ab) and ϑm+1(b) = ϑm(ba)

for all m ∈ N, where the union is disjoint. It follows that

#ϑm+1(a) = #ϑm(a)(#ϑm(a) + #ϑm(b)) and #ϑm+1(b) = #ϑm(a)#ϑm(b),

noting that ϑm+1(u) = ϑm+1(u1) · · ·ϑm+1(u|u|) for all u ∈ Lϑ. We next show that #ϑm(a) =

(m + 1)#ϑm(b) for all m ∈ N. For m = 1, the identity clearly holds since #ϑ(a) = 2 and

#ϑ(b) = 1. For m ≥ 2, we have

#ϑm(a)

#ϑm(b)
=

#ϑm−1(a)(#ϑm−1(a) + #ϑm−1(b))

#ϑm−1(a)#ϑm−1(b)
=

#ϑm−1(a)

#ϑm−1(b)
+ 1;

thus, it follows by induction that #ϑm(a)/#ϑm(b) = m+1 for all m ∈ N. Specifically, #ϑm(a) =

(m+ 1)#ϑm(b). Hence,

log(#ϑm(b)) = log(#ϑm−1(a)#ϑm−1(b)) = logm+ 2 log(#ϑm−1(b)),

and it follows inductively that

1

2m
log(#ϑm(b)) =

m∑
n=1

1

2n
log n.

Letting m → ∞, we obtain

htop(Xϑ) = hb =

∞∑
n=1

1

2n
log n.

We note that the topological entropy of the subshift in Example 3.2.10 can also be written as

log σ, where σ is Somos’s quadratic recurrence constant:

σ =

√
1

√
2

√
3
√
4 · · · =

∞∏
k=1

(
1 +

1

k

)2−k

.

It is an open question as to whether σ is algebraic or transcendental [31, p. 446]. Similarly, it is not

known whether the topological entropy of the random Fibonacci substitution (Example 3.2.7) is
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the logarithm of an algebraic number. Gohlke, Rust and Spindeler asked whether the topological

entropy of a primitive random substitution is always the logarithm of an algebraic number [38,

Question 44]. This question was recently answered in the negative by Escolano, Manibo and

Miro [22], who presented an example of a primitive random substitution for which the topological

entropy of the associated subshift is the logarithm of a transcendental number.

In the compatible setting, the exact value of the topological entropy can be obtained if either

the identical or disjoint set condition are satisfied (recall Proposition 3.2.3). For constant length

random substitutions, this is also possible, provided the random substitution has uniform inflation

set cardinalities.

Proposition 3.2.11. Let ϑ be a primitive random substitution of constant length ℓ ≥ 2 for

which there exists an N ∈ N such that #ϑ(a) = N for all a ∈ A.

If ϑ satisfies the identical set condition, then

htop(Xϑ) =
1

ℓ
logN .

If ϑ satisfies the disjoint set condition, then

htop(Xϑ) =
1

ℓ− 1
logN .

Proof. First, assume ϑ satisfies the identical set condition. We prove, by induction, that #ϑk(a) =

N ℓk−1 for all k ∈ N and a ∈ A. This is immediate in the case k = 1, so assume it holds for all

k ≤ m ∈ N. The identical set condition gives that, for each a ∈ A, we have ϑm(u) = ϑm(v) for

all u, v ∈ ϑ(a). Hence, for any fixed u ∈ ϑ(a), we have

#ϑm+1(a) = #ϑm(u) =
ℓ∏

i=1

(#ϑm(uj)) = (N ℓm−1
)ℓ = N ℓm ,

where the second equality follows by the constant length property and the third follows by the

inductive hypothesis. Thus, for all k ∈ N and a ∈ A, we have

1

ℓk
log(#ϑk(a)) =

1

ℓ
log(#ϑ(a)) =

1

ℓ
logN .

Letting k → ∞, it follows by Theorem 3.2.8 that htop(Xϑ) = ℓ−1 logN .
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Now assume ϑ satisfies the disjoint set condition. We show that #ϑk(a) = N
∑k−1

j=0 ℓj for all k ∈ N

and a ∈ A. Again, this is immediate for k = 1, so assume it holds for all k ≤ m ∈ N. By the

disjoint set condition, for all u, v ∈ ϑ(a) with u ̸= v, we have ϑm(u) ∩ ϑm(v) = ∅, so it follows

that

#ϑm+1(a) =
∑

u∈ϑ(a)

#ϑm(u) =
∑

u∈ϑ(a)

ℓ∏
j=1

(#ϑm(uj)) = (#ϑ(a))
(
N

∑m−1
j=0 ℓj

)ℓ
= N

∑m
j=0 ℓ

j

,

where the second inequality follows by the constant length property, the third follows by the

inductive hypothesis and the fourth by the fact that #ϑ(a) = N . Hence, for all k ∈ N and a ∈ A,

we have
1

ℓk
log(#ϑk(a)) =

 1

ℓk

k−1∑
j=0

ℓk

 logN → 1

ℓ− 1
logN

as k → ∞. Thus, it follows by Theorem 3.2.8 that

htop(Xϑ) =
1

ℓ− 1
logN ,

and this completes the proof.

3.2.3 Proof of Theorem 3.2.8

If ϑ is a primitive random substitution of constant length ℓ, we have ϑm(a) ⊆ Lℓm

ϑ = Lℓm(Xϑ) for

all m ∈ N and a ∈ A, so ha ≤ ha ≤ htop(Xϑ). Thus, to prove Theorem 3.2.8 it suffices to show

that htop(Xϑ) ≤ ha for all a ∈ A. The following upper bound for htop(Xϑ) is central to our proof

of this inequality. We highlight that the following does not require primitivity.

Proposition 3.2.12. Let ϑ be a random substitution of constant length ℓ and let m ∈ N. For

each k, let uk denote the level-k inflation word for which #ϑm(uk) is maximised. Then, for all

k ∈ N, the following inequality holds:

htop(Xϑ) ≤
1

ℓm − 1

∑
a∈A

|uk|a
ℓk

log(#ϑm(a)).

Proof. Fix m, k ∈ N and let n ∈ N. By definition, every finite word admitted by the subshift is a

subword of a realisation of ϑm(v) for some v ∈ L(Xϑ). Moreover, since ϑ is constant length, for
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every legal word of length nℓm, there exists such a v with length n+ 1, so

Lnℓm(Xϑ) ⊆
⋃

v∈Ln+1(Xϑ)

ℓm⋃
j=1

ϑm(v)[j,j+nℓm−1]. (3.1)

By the definition of the subshift Xϑ, for every v ∈ Ln+1(Xϑ) there exists a legal word u and

w ∈ ϑk(u) such that v is a subword of w. Moreover, by the constant length property, there exists

such a u with length kn = ⌈ℓ−k(n+ 1)⌉+ 2, so we have that

#ϑm(v) ≤ #ϑm(w) ≤ (#ϑm(uk))kn =
∏
a∈A

(
(#ϑm(a))|u

k|a
)kn

,

where the second inequality follows by breaking w into level-k inflation words and the fact that

uk is the level-k inflation word for which #ϑm(uk) is maximised. Since this bound is independent

of the choice of v ∈ Ln+1
ϑ , it follows by (3.1) that

1

nℓm
log(#Lnℓm(Xϑ)) ≤

1

nℓm
log ℓm +

1

nℓm
log(#Ln+1(Xϑ)) +

kn
nℓm

∑
a∈A

|uk|a log(#ϑm(a)).

Noting that kn/n → ℓ−k as n → ∞, we deduce that

(
1− 1

ℓm

)
htop(Xϑ) ≤

1

ℓm

∑
a∈A

|uk|a
ℓk

log(#ϑm(a)).

Dividing by 1− ℓ−m completes the proof.

We now give the proof of Theorem 3.2.8.

Proof of Theorem 3.2.8. It suffices to show that ha ≥ htop(Xϑ) for all a ∈ A. To this end, let

n ∈ N and, for each k ∈ N, let uk be the level-k inflation word for which #ϑn(uk) is maximised.

By Proposition 3.2.12, we have

htop(Xϑ) ≤
1

ℓn − 1

∑
a∈A

|uk|a
ℓk

log(#ϑn(a))

for all k ∈ N, and so

htop(Xϑ) ≤
1

ℓn − 1
lim inf
k→∞

∑
a∈A

|uk|a
ℓk

log(#ϑn(a)). (3.2)
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We show that, for every b ∈ A, the right hand side is bounded above by ℓn(ℓn − 1)−1hb. For

each b ∈ A and k ∈ N, let vkb denote the realisation of ϑk(b) for which #ϑn(vkb ) is maximised. By

definition, for every k ∈ N there exists a b ∈ A such that vkb = uk. For each k ∈ N, let b(k) ∈ A

be a letter such that #ϑn(vkb(k)) ≤ #ϑn(vka) for all a ∈ A. By primitivity, there is an integer K

such that, for all a ∈ A, there is a realisation of ϑK(a) in which every letter appears at least once.

By construction, there exists an inflation word w ∈ ϑK(b) such that vkb ∈ ϑk−K(w). Moreover,

since vkb was chosen so that #ϑn(vkb ) is maximised, for all w ∈ ϑK(b) we have

#ϑn(vkb ) ≥
ℓK∏
j=1

#ϑn(vk−K
wj

) =
∏
a∈A

(#ϑn(vk−K
a ))|w|a .

Since, by primitivity, there exists a realisation of ϑK(b) in which every letter appears at least

once and, for all k, there exists a c ∈ A for which vk−K
c = uk−K , it follows that

log(#ϑn(vkb(k))) ≥ log(#ϑn(uk−K)) + (ℓK − 1) log(#ϑn(vk−K
b(k−K))).

Iterating the above, we obtain that for all m ∈ N and k ≥ Km, we have

log(#ϑn(vkb(k))) ≥
m∑
j=1

(ℓK − 1)j−1 log(#ϑn(uk−jK)) + (ℓK − 1)m log(#ϑn(vk−mK
b(k−mK))).

Noting that all terms in the above are non-negative, it follows that for all b ∈ A and m ∈ N, we

have

hb = lim inf
k→∞

1

ℓn+k
log(#ϑn+k(b)) ≥ 1

ℓn
lim inf
k→∞

1

ℓk
log(#ϑn(vkb ))

≥ 1

ℓn+K

m∑
j=1

(
ℓK − 1

ℓK

)j−1

lim inf
k→∞

1

ℓk−jK
log(#ϑn(uk−jK)).

By the constant length property and (3.2), we have

lim inf
k→∞

1

ℓk−jK
log(#ϑn(uk−jK)) = lim inf

k→∞

∑
a∈A

|uk−jK |a
ℓk−jK

log(#ϑn(a)) ≥ (ℓn − 1)htop(Xϑ).
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for all j ∈ {1, . . . ,m}. Hence, we obtain

hb ≥
ℓn − 1

ℓn+K
htop(Xϑ)

m∑
j=1

(
ℓK − 1

ℓK

)j−1
m→∞−−−−→ ℓn − 1

ℓn
htop(Xϑ),

noting that
∑∞

j=1((ℓ
K − 1)/ℓK)j−1 = ℓK . Finally, since this bound holds for all n ∈ N, we

conclude that hb ≥ htop(Xϑ), which completes the proof.

3.2.4 General bounds for constant length random substitutions

The coincidence of topological entropy and inflation word entropy given by Theorem 3.2.8 provides

a mechanism for calculating the topological entropy for a broad class of non-compatible random

substitution subshifts. However, a limitation of Theorem 3.2.8 is that it does not give any

information about the rate of convergence. Moreover, it does not provide a means of calculating

topological entropy for non-primitive random substitutions. In this section, we prove general

bounds on the topological entropy for constant length random substitutions, which provide a

means of obtaining good estimates, even in cases where a closed-form expression cannot be

obtained via Theorem 3.2.8. Central to our approach is the following definition.

Definition 3.2.13. Let ϑ be a random substitution over some alphabet A. We say that a

vector ν = (νa)a∈A ∈ [0, 1]#A is a permissible letter frequency vector for ϑ if there exists a letter

b ∈ A ∩ L(Xϑ), a sequence of integers (nk)k and sequence of exact inflation words vk ∈ ϑnk(b)

such that |vk|a/|vk| → νa for all a ∈ A.

The assumption that b ∈ L(Xϑ) guarantees that the sequence vk is admitted by the subshift

Xϑ. The inclusion A ⊆ L(Xϑ) always holds under primitivity, however, there are non-primitive

random substitutions for which there exists a letter not admitted by the subshift. For example,

for the random substitution ϑ : a 7→ {ab, ba}, b 7→ {aa}, c 7→ {bb} we have that c /∈ L(Xϑ).

Recall from Proposition 3.2.2 that if ϑ is a primitive and compatible random substitution,

with Perron–Frobenius eigenvalue λ > 1 and corresponding right eigenvector R = (Ra)a∈A, then

the following bounds hold for all m ∈ N:

1

λm

∑
a∈A

Ra log(#ϑm(a)) ≤ htop(Xϑ) ≤
1

λm − 1

∑
a∈A

Ra log(#ϑm(a)).
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Under compatibility, the only permissible letter frequency vector is R. However, without

compatibility there often exists a continuum of permissible letter frequency vectors. We prove

an analogue of the above bounds for constant length random substitutions that holds without

compatibility, using the notion of a permissible letter frequency vector. In the lower bound, we

can replace R with any permissible letter frequency vector; however, for the upper bound we

require a particular choice.

Proposition 3.2.14. Let ϑ be a random substitution of constant length ℓ ≥ 2 and let ν = (νa)a∈A

be a permissible letter frequency vector. Then,

htop(Xϑ) ≥
1

ℓ

∑
a∈A

νa log(#ϑ(a)).

Moreover, there exists a permissible letter frequency vector η = (ηa)a∈A such that

htop(Xϑ) ≤
1

ℓ− 1

∑
a∈A

ηa log(#ϑ(a)).

In particular, η can be taken to be any permissible letter frequency vector that maximises the

quantity
∑

a∈A ηa log(#ϑ(a)).

Proof. We first prove the lower bound. For any permissible letter frequency vector ν, there exists

a letter b ∈ A ∩ L(Xϑ), a sequence of positive integers (nk)k with nk → ∞ and realisations

vk ∈ ϑnk(b) such that |vk|a/|vk| → νa as k → ∞, for all a ∈ A. Since ϑ(Xϑ) ⊆ Xϑ, every

realisation of ϑ(vk) is admitted by the subshift Xϑ. As every realisation of ϑ(vk) has length

ℓnk+1, it follows that Lℓnk+1
(Xϑ) ≥ #ϑ(vk). Moreover, the constant length property gives that

#ϑ(vk) =
∏

a∈A(#ϑ(a))|v
k|a , so we have

1

ℓnk+1
log(#Lℓnk+1

(Xϑ)) ≥
1

ℓ

∑
a∈A

|vk|a
ℓnk

log(#ϑ(a)).

Letting k → ∞, we obtain

htop(Xϑ) ≥
1

ℓ

∑
a∈A

νa log(#ϑ(a)).

The upper bound is largely a consequence of Proposition 3.2.12. Letting (uk)k denote the sequence
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of level-k inflation words for which #ϑ(uk) is maximised, Proposition 3.2.12 gives

htop(Xϑ) ≤
1

ℓ− 1

∑
a∈A

|uk|a
ℓk

log(#ϑm(a)). (3.3)

Since A is finite, there exists a letter b ∈ A such that uk ∈ ϑk(b) for infinitely many k. Thus, by

the compactness of R#A, there exists a sequence of positive integers (kn)n such that ukn ∈ ϑkn(b)

for all n ∈ N and |ukn |a/ℓkn converges for all a ∈ A. By definition, this limit is a permissible

letter frequency vector η. Passing to limits along the subsequence (kn)n in (3.3), we obtain that

htop(Xϑ) ≤
1

ℓ− 1

∑
a∈A

ηa log(#ϑ(a)).

In particular, the above holds for any permissible letter frequency vector that maximises the

quantity
∑

a∈A ηa log(#ϑ(a)). This completes the proof.

As a consequence of Proposition 3.2.14, we obtain the following characterisation of positive

topological entropy for constant length random substitutions. We emphasise that, in contrast to

the results in Section 3.1, we do not assume primitivity in the following.

Corollary 3.2.15. If ϑ is a constant length random substitution, then htop(Xϑ) > 0 if and only

if there exists a permissible letter frequency vector ν and a ∈ A such that νa > 0 and #ϑ(a) ≥ 2.

We conclude this section by presenting an example of a primitive random substitution where

Theorem 3.2.8 is insufficient to obtain an exact formula for the topological entropy but where the

bounds given by Proposition 3.2.14 allow us to obtain a good estimate.

Example 3.2.16. Let ϑ be the primitive random substitution defined by ϑ : a 7→ {aa, bb}, b 7→

{ab}, and let Xϑ denote the associated subshift. Since for all m ∈ N, there exists a realisation

of ϑm(a) in which a is the only letter that appears, the vector (1, 0)⊤ is a permissible letter

frequency vector for every power of ϑ. For all m ∈ N, #ϑm(a) ≥ #ϑm(b), so for every permissible

letter frequency vector ν = (νa, νb), we have νa log(#ϑm(a)) + νb log(#ϑm(b)) ≤ log(#ϑm(a)),

noting that νa + νb = 1. Hence, it follows by Proposition 3.2.14 (applied to ϑm) that

1

2m
log(#ϑm(a)) ≤ htop(Xϑ) ≤

1

2m − 1
log(#ϑm(a)).
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For all m ∈ N, the inflation sets ϑm(a) satisfy the following relations:

ϑm(a) = ϑm−1(aa) ∪ ϑm−1(bb) and ϑm(b) = ϑm−1(ab).

Since ϑ is constant length and ϑ(a) ∩ ϑ(b) = ∅, we have that ϑm(a) ∩ ϑm(b) = ∅ for all m ∈ N.

Hence, it follows from the above relations that

#ϑm(a) =
(
#ϑm−1(a)

)2
+
(
#ϑm−1(b)

)2
=
(
#ϑm−1(a)

)2
+

m−2∏
i=1

(
#ϑi(a)

)2 .

A computer-assisted calculation for the case m = 14 gives that, to four decimal places, the

topological entropy of the subshift Xϑ is 0.4115.

3.3 Non-primitive random substitutions

Recall from Corollary 3.1.2 that if a primitive random substitution subshift has zero topological

entropy, then the complexity function is either Θ(1) or Θ(n). Without primitivity, the picture

is very different. In this section, we show that, without primitivity, constant length random

substitutions give rise to a broad variety of subshifts with complexity functions not witnessed in

the deterministic or primitive random settings.

3.3.1 Polynomial growth

There is no polynomial complexity gap for subshifts of constant length random substitutions,

beyond that given by the Morse–Hedlund theorem [20, 57]. In particular, we have the following.

Proposition 3.3.1. The set of α for which there exists a constant length random substitution

subshift with Θ(nα) complexity function is dense in [1,∞).

Proof. We show that there exists a set A that is dense in [1,∞) such that, for every α ∈ A, there

exists a constant length random substitution whose subshift has Θ(nα) complexity function. To

this end, let ℓ ≥ 3, let A = {a1, . . . , aℓ+2} be an alphabet of ℓ+ 2 letters, and let

Rℓ =
{
u ∈ Aℓ : for all i ∈ {1, . . . , ℓ}, ai appears in u precisely once

}
.
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Note that every u ∈ Rℓ has length |u| = ℓ. Given a non-empty subset S of Rℓ, let ϑℓ,S be the

random substitution of constant length ℓ defined over the alphabet A by

ϑℓ,S :


ai 7→ ai · · · ai for all i ∈ {1, . . . , ℓ},

aℓ+1 7→ S,

aℓ+2 7→ aℓ+1aℓ+2a1 · · · a1,

and let Xℓ,S denote the corresponding subshift. For notational convenience, we write pℓ,S for

the complexity function of Xℓ,S . We show that pℓ,S is Θ(n1+logℓ (#S)). We first prove this in the

case n = ℓk for some k ∈ N and then extend to all n ∈ N in the second step. To this end, we

first compute the cardinalities #ϑm(ai) for each m ∈ N and i ∈ {1, . . . , ℓ + 2}. Observe that

#ϑm(ai) = 1 for all m ∈ N and i ∈ {1, . . . , ℓ}. Further, since every word in the set S contains

only letters from the set {a1, . . . , aℓ}, we have that #ϑm(aℓ+1) = #S for all m ∈ N. Finally, we

have

#ϑm(aℓ+2) = (#ϑm−1(aℓ+1))(#ϑm−1(aℓ+2)) = (#S)(#ϑm−1(aℓ+2)) = (#S)m−1

for all m ∈ N. Every letter in the alphabet A is admitted by the subshift, so L(Xℓ,S) = Lϑℓ,S

and thus pℓ,S(n) = #Ln
ϑ for all n ∈ N. By the constant length property, if k ∈ N, m ∈ {1, . . . , k}

and u is a legal word of length ℓk, then there exists a legal word v of length ℓk−m + 1 and an

integer j ∈ {1, . . . , ℓk−m} such that u ∈ ϑm(v)[j,j+ℓk]; hence,

Lℓk

ϑℓ,S
=

⋃
v∈Lℓk−m+1

ϑℓ,S

ℓm⋃
j=1

ϑm(v)[j,j+ℓk−1]. (3.4)

For all k ≥ 2, we have that #ϑk(aℓ+2) ≥ #ϑk(aℓ+1) ≥ #ϑk(ai) for all i ∈ {1, . . . , ℓ}. Since

aℓ+2aℓ+2 is not a legal word, it follows that #ϑk(v) ≤ #ϑk(aℓ+1)#ϑk(aℓ+2) = (#S)k for all

v ∈ L2
ϑ. Hence, it follows by (3.4) in the case m = k that

pℓ,S(ℓ
k) ≤ pℓ,S(2)ℓ

k(#S)k = pℓ,S(2) (ℓ
k)1+logℓ(#S). (3.5)

For the lower bound, observe that the ℓ+1 letter word w = aℓ+1aℓ+2a1 · · · a1 is legal, so it follows
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by (3.4) in the case m = k − 1 that

Lℓk

ϑℓ,S
⊇

ℓk−1⋃
j=1

ϑk−1(w)[j,j+ℓk−1]. (3.6)

Every realisation of ϑk−1(w) contains precisely one occurrence of the letter aℓ+2. Further, there

is a positive integer ℓk−1 < n < 2ℓk−1 such that for every realisation of ϑk−1(w), the letter aℓ+2

appears in position n. Thus, the above union is disjoint. Moreover, for all j ∈ {1, . . . , ℓk−1},

the inflated image of the second letter of w is contained in the corresponding realisation of

ϑk−1(w)[j,j+ℓk−1], so #ϑk−1(w)[j,j+ℓk−1] ≥ #ϑk−1(aℓ+2) = (#S)k−2. Hence, it follows by (3.6)

that

pℓ,S(ℓ
k) ≥ ℓk−1(#S)k−2 = ℓ−1(#S)−2(ℓk)1+logℓ(#S). (3.7)

Now, let n ∈ N and let k be the unique integer such that ℓk ≤ n < ℓk+1. By the monotonicity of

the complexity function, we have

pℓ,S(ℓ
k) ≤ pℓ,S(n) ≤ pℓ,S(ℓ

k+1)

and so it follows by (3.5) and (3.7) that

ℓ−2(#S)−3n1+logℓ(#S) ≤ pℓ,S(n) ≤ ℓ pℓ,S(2)n
1+logℓ(#S).

Hence, we conclude that the complexity function of Xℓ,S is Θ(n1+logℓ(#S)). Since the set

A = {1 + logℓ k : ℓ ∈ {3, 4, 5, . . .}, k ∈ {1, . . . , ℓ!}}

is dense in [1,∞) and, for every α ∈ A, there exists an ℓ ∈ {3, 4, 5, . . .} and a subset S of Rℓ such

that the subshift Xℓ,S has Θ(nα) complexity function, the result follows.

By combining Proposition 3.3.1 with Pansiot’s classification of complexity functions for

deterministic substitutions (Proposition 1.6.1), we obtain the following.

Corollary 3.3.2. There exist subshifts of constant length random substitutions with zero

topological entropy that cannot be obtained as the subshift of a deterministic substitution.
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Example 3.3.3. Let ϑ be the random substitution defined by ϑ : a 7→ {aaa}, b 7→ {bbb}, c 7→

{ccc}, d 7→ {abc, acb}, e 7→ {dea}. The associated subshift has Θ(n1+log3 2) complexity function.

By Proposition 1.6.1, there does not exist a deterministic substitution subshift with this complexity

function, so the subshift Xϑ cannot be obtained as the subshift of a deterministic substitution.

3.3.2 Intermediate growth

It is also possible for the subshift of a non-primitive constant length random substitution to have

an intermediate growth complexity function. In the following, we give sufficient conditions for

this phenomenon to occur.

Proposition 3.3.4. Let ϑ be a constant length random substitution for which the following hold:

• for all a ∈ A with #ϑ(a) ≥ 2 and all permissible letter frequency vectors ν, we have νa = 0;

• there exists a letter b ∈ A for which #ϑ(b) ≥ 2 and a realisation v ∈ ϑ(b) with |v|b ≥ 2.

Then, the associated subshift Xϑ has intermediate growth complexity function.

Proof. The first condition guarantees that htop(Xϑ) = 0 by Corollary 3.2.15. Meanwhile, it follows

inductively from the second condition that for all m ∈ N, there exists a realisation vm ∈ ϑm(b)

with |vm|b ≥ 2m. This gives that the letter b is admitted by the subshift, so for all m ∈ N we

have ϑm(b) ⊆ Lℓm(Xϑ); hence,

pXϑ
(ℓm) ≥ #ϑm(b) ≥ #ϑ(vm−1) ≥ 2|v

m|b ≥ 22
m
= 2(ℓ

m)logℓ 2
.

Thus, if n ∈ N and m is the integer such that ℓm ≤ n < ℓm+1, then by monotonicity of the

complexity function we have

pXϑ
(n) ≥ pXϑ

(ℓm) ≥ 2(ℓ
m)logℓ 2

≥ 22
−1nlogℓ 2

,

which grows faster than any polynomial. Hence, we conclude that the complexity function of Xϑ

has intermediate growth.

Example 3.3.5. Let ϑ be the random substitution defined by ϑ : a 7→ {aaa}, b 7→ {abb, bba}

and let Xϑ denote the corresponding subshift. We have that |ϑm(a)|b = 0 and |ϑm(b)|b = 2m for
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all m ∈ N, so for every realisation v ∈ ϑm(a) ∪ ϑm(b) we have |v|b/3m ≤ 2m/3m → 0. Hence,

the only permissible letter frequency vector is (1, 0)⊤; since #ϑ(a) = 1, the first condition of

Proposition 3.3.4 is satisfied. Moreover, since abb ∈ ϑ(b) and #ϑ(b) ≥ 2, the second condition

is also satisfied. Therefore, it follows by Proposition 3.3.4 that Xϑ has intermediate growth

complexity function. Specifically, one can show that pXϑ
(n) ≥ 22

−1nlog3 2 for all n ∈ N.

Propositions 3.3.1 and 3.3.4, together with our results on topological entropy, illustrate that

a broad variety of functions can be obtained as the complexity function of the subshift of a

non-primitive random substitution. However, these results are far from a complete classification,

and further work is required to better understand the full range of behaviour that can be exhibited,

particularly the different possible intermediate growth rates.
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CHAPTER 4

MEASURE THEORETIC ENTROPY

Topological entropy is, almost by definition, blind to the generating probabilities assigned to a

random substitution. This is not the case for aspects such as word frequencies and diffraction

spectra, which are almost-sure properties in the limit of an appropriate substitution Markov

process [65]. Alternatively, these properties can be associated with the corresponding frequency

measure. It is therefore reasonable to treat entropy on the same footing: interpreting it as a

quantity that is generic with respect to the frequency measure. Moreover, this perspective more

closely reflects the original context considered by Godrèche and Luck [34], who were interested in

random substitutions providing models for physical quasicrystals, the entropy of which depend

on the underlying Markov process.

In this chapter we provide a systematic treatment of measure theoretic entropy for random

substitution subshifts, where the measure in question is a frequency measure. We introduce

a new notion called measure theoretic inflation word entropy which, similarly to the notion of

inflation word entropy studied in Chapter 3 for topological entropy, is defined in terms of the

underlying random substitution, as opposed to the subshift. We show that for all primitive

random substitutions, this notion coincides with the measure theoretic entropy of the associated

subshift with respect to the frequency measure. This allows the measure theoretic entropy to

be calculated for many random substitution subshifts and establishes a natural analogue to

the results on topological entropy presented in Chapter 3. However, we emphasise that our

present setting is more general, as we do not assume that the underlying random substitution is

compatible or constant length.

We give the definition of measure theoretic inflation word entropy in Section 4.1, followed by

the statements of our main results. We then present some consequences of these results and give
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examples of random substitution subshifts where our inflation word analogue allows the measure

theoretic entropy to be calculated or accurately estimated. Following this, in Section 4.2, we

present the proofs of our main results.

The results presented in this chapter are based on [37, Section 3], which is joint work with

P. Gohlke, D. Rust and T. Samuel and has been published in Annales Henri Poincaré.

4.1 Measure theoretic inflation word entropy

4.1.1 Definitions and main results

For a primitive random substitution ϑP = (ϑ,P), m ∈ N and a ∈ A, we let

Hm,a =
∑

v∈ϑm(a)

−P[ϑm
P (a) = v] logP[ϑm

P (a) = v]

and let Hm be the vector given by Hm = (Hm,a)a. To reflect the notation for entropy of a

partition, we often denote Hm,a by HP(ϑ
m
P (a)). Our main result of this section is that the measure

theoretic entropy hµP(Xϑ) of the subshift Xϑ, with respect to the corresponding frequency

measure µP, coincides with the quantity

lim
m→∞

1

λm
Hm ·R,

where R is the right Perron–Frobenius eigenvector of the substitution. Before giving the formal

statements of our main results, we first introduce some notation. Given p ∈ (0, 1), we write H(p)

for the entropy of the vector (p, 1− p). That is,

H(p) = −p log p− (1− p) log(1− p).

Our most general result on the relation between the entropy of µP and the sequence of

entropies assigned to the Markov processes (ϑm
P (a))m, with a ∈ A, takes the following form.

Theorem 4.1.1. Let ϑP = (ϑ,P) be a primitive random substitution with Perron–Frobenius

eigenvalue λ and right eigenvector R, and let µP be the frequency measure corresponding to ϑP.
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Then, for all m ∈ N, the following bounds hold:

1

λm
Hm ·R−H(λ−m) ≤ hµP(Xϑ) ≤

1

λm − 1
Hm ·R.

In particular,

hµP(Xϑ) = lim
m→∞

1

λm
Hm ·R.

If the random substitution ϑP is additionally assumed to have unique realisation paths (recall

Definition 2.2.7), then the H(λ−m) counter-term in the lower bound can be removed. Further,

under this additional assumption, we obtain necessary and sufficient conditions for when the

lower and upper bounds are achieved.

Theorem 4.1.2. Let ϑP = (ϑ,P) be a primitive random substitution with unique realisation

paths, with Perron–Frobenius eigenvalue λ and right eigenvector R, and let µP be the frequency

measure corresponding to ϑP. Then, for all m ∈ N, the following bounds hold:

1

λm
Hm ·R ≤ hµP(Xϑ) ≤

1

λm − 1
Hm ·R.

The upper bound is an equality if and only if ϑm
P satisfies the disjoint set condition; the lower

bound is an equality if and only if ϑm
P satisfies the identical set condition with identical production

probabilities. Further, the sequence of lower bounds (λ−mHm ·R)m is non-decreasing in m.

We present the proofs of Theorems 4.1.1 and 4.1.2 in Section 4.2.

It is natural to enquire whether the counter-term H(λ−m) can also be dropped in the more

general case. However, this is not possible, as can be seen from the following example.

Example 4.1.3. Given p ∈ (0, 1), let ϑP be the random substitution defined by

ϑP :


a 7→


a with probability p,

aba with probability 1− p,

b 7→ bab with probability 1,

and let µP denote the corresponding frequency measure. The random substitution ϑP gives rise

to the finite subshift Xϑ = {(ab)Z, (ba)Z}; thus, hµP(Xϑ) = 0. On the other hand, ϑP is primitive

and HP(ϑP(a)) = −(p log p+ (1− p) log(1− p)) > 0.
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4.1.2 Applications

In general, for a random substitution ϑP = (ϑ,P) with corresponding frequency measure µP, the

measure theoretic entropy hµP(Xϑ) depends on the choice of P. This is in contrast to topological

entropy, which is blind to the choice of probabilities. As a consequence of Theorem 4.1.1 we obtain

that the dependence on the probability parameters is continuous. In the following, we regard P

as a vector in Rr equipped with the Euclidean topology, where r =
∑d

i=1 ri =
∑d

i=1#ϑ(ai) and

d is the cardinality of the alphabet. We emphasise that we assume that P is non-degenerate in

the sense that all probabilities are assumed to be strictly positive.

Corollary 4.1.4. Assume the setting of Theorem 4.1.1. The map P 7→ hµP(Xϑ) is continuous.

Proof. For 0 < ε < 1, let Dε be the domain of those P such that all entries of P are greater

than ε. Since the complete domain of P can be obtained as a (nested) union over all Dε, it is

enough to show that the map P 7→ hµP(Xϑ) is continuous on Dε for arbitrary ε. The general

strategy of the proof is to represent hµP(Xϑ) as a uniform limit of continuous functions on Dε

via Theorem 4.1.1.

Recall that λ,Hm and R all depend implicitly on P. By primitivity, the Perron–Frobenius

eigenvalue λ > 1 is a simple eigenvalue for all P. Since the substitution matrix depends analytically

on the probability parameters, we can resort to standard results in perturbation theory; compare

for example [42]. In particular, λ depends analytically on P ∈ Dε and since λ is simple, so does

R. The entries of Hm inherit continuity from the fact that the maps P 7→ P[ϑm
P (a) = u] are

continuous for all a ∈ A and u ∈ A+. Hence, the function

sm : P 7→ 1

λm
Hm ·R,

is continuous in P for all m ∈ N. With this notation, Theorem 4.1.1 can be rephrased as

λm − 1

λm
hµP(Xϑ) ≤ sm(P) ≤ hµP(Xϑ) +H(λ−m), (4.1)

for all m ∈ N. Note that hµP(Xϑ) is uniformly bounded from above by the topological entropy of

Xϑ and λ is bounded from below by its minimal value λε > 1 on the compact set Dε. Therefore,

the convergence

lim
m→∞

sm(P) = hµP(Xϑ)
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is uniform on Dε, and the result follows.

Recall that measure theoretic entropy is always bounded above by topological entropy. Thus,

if ϑP = (ϑ,P) is a primitive random substitution with corresponding frequency measure µP,

then hµP(Xϑ) ≤ htop(Xϑ). As a consequence of Theorem 4.1.2, we obtain the following sufficient

conditions for positive topological entropy for subshifts of primitive random substitutions with

unique realisation paths.

Proposition 4.1.5. Let ϑP = (ϑ,P) be a primitive random substitution with unique realisation

paths for which there exists a letter b ∈ A such that #ϑ(b) ≥ 2 and let µP denote the corresponding

frequency measure. Then, 0 < hµP(Xϑ) ≤ htop(Xϑ).

Proof. Since #ϑ(b) ≥ 2, there exists a realisation v ∈ ϑ(b) such that 0 < P[ϑP(b) = v] < 1. By

primitivity, the right Perron–Frobenius eigenvector R of ϑP has strictly positive entries, so it follows

that λ−1H1 ·R > 0. Hence, we conclude by Theorem 4.1.2 that 0 < hµP(Xϑ) ≤ htop(Xϑ).

4.1.3 Examples

We now present several examples where Theorems 4.1.1 and 4.1.2 allow the measure theoretic

entropy to be calculated or accurately estimated. We first give some examples for which

Theorem 4.1.2 can be applied to obtain a closed-form formula for the measure theoretic entropy.

Example 4.1.6 (Random period doubling). Given p ∈ (0, 1), let ϑP = (ϑ,P) be the random

period doubling substitution

ϑP :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ aa with probability 1,

and let µP denote the corresponding frequency measure. Recall that ϑP satisfies the disjoint set

condition and has Perron–Frobenius data λ = 2, R = (2/3, 1/3)⊤, so Theorem 4.1.2 gives that

hµP(Xϑ) =
1

λ− 1
H1 ·R =

2

3
(p log p+ (1− p) log(1− p)).

A plot of hµP(Xϑ), for p ∈ (0, 1), is given in Figure 4.1 (left).
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Figure 4.1: Plots of measure theoretic entropy for Example 4.1.6 (left) and Example 4.1.7 (right),
for p ∈ (0, 1).

Example 4.1.7. Let p ∈ (0, 1) and let ϑP = (ϑ,P) be the random substitution defined by

ϑP :


a 7→


aa with probability p,

ab with probability 1− p,

b 7→ ba with probability 1,

with corresponding frequency measure µP. Since ϑP is constant length, it has unique reali-

sation paths, so Theorem 4.1.2 can be applied. Moreover, since ϑP satisfies the conditions

of Proposition 2.2.11, the disjoint set condition is satisfied. The random substitution ϑP has

Perron–Frobenius data λ = 2 and

R =

(
1

2− p
,
1− p

2− p

)
;

thus, it follows by Theorem 4.1.2 that

hµP(Xϑ) =
1

λ− 1
H1 ·R = − 1

2− p
(p log p+ (1− p) log(1− p)).

A plot of the measure theoretic entropy, for p ∈ (0, 1), is given in Figure 4.1 (right).
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Example 4.1.8. Let p ∈ (0, 1) and let ϑP = (ϑ,P) be the random substitution defined by

ϑP : a, b 7→


aa with probability p,

ab with probability 1− p,

and let µP denote the corresponding frequency measure. The random substitution ϑP satisfies the

identical set condition with identical production probabilities and has unique realisation paths,

so Theorem 4.1.2 can be applied to obtain an exact formula for the measure theoretic entropy.

Since ϑP has Perron–Frobenius data λ = 2 and R = (1/2, 1/2)⊤, Theorem 4.1.2 gives that

hµP(Xϑ) =
1

λ
H1 ·R = −1

2
(p log p+ (1− p) log(1− p)).

Recall that the random Fibonacci substitution does not satisfy the identical or disjoint

set condition. However, we can still obtain bounds on the measure theoretic entropy using

Theorem 4.1.2.

Example 4.1.9 (Random Fibonacci). Let ϑP = (ϑ,P) be the random Fibonacci substitution

with uniform probabilities, namely

ϑRF :


a 7→


ab with probability 1/2,

ba with probability 1/2,

b 7→ a with probability 1,

and let µP denote the corresponding frequency measure. Since ϑP is primitive and compatible,

thus has unique realisation paths, Theorem 4.1.2 gives that

1

λk
Hk ·R ≤ hµP(Xϑ) ≤

1

λk − 1
Hk ·R

for all k ∈ N. Obtaining the exact value of Hk · R for arbitrary k is difficult. However, a

computer-assisted calculation for the case k = 7 yields the following bounds:

0.4164 < hµP(Xϑ) < 0.4313.
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4.2 Proof of main results

The majority of the work in proving Theorems 4.1.1 and 4.1.2 lies in proving the sequence of

lower and upper bounds on hµP(Xϑ). Central to proving these bounds is the renormalisation

lemma (Lemma 2.3.4). Before we give the proof of Theorems 4.1.1 and 4.1.2, we first provide

a reformulation of Lemma 2.3.4 in terms of random variables that will be appropriate for our

purposes. We also summarise some of the standard properties of entropy and conditional entropy

that we require in our proofs. For ease of notation, we write BC for the complement of a given

set B in what follows.

4.2.1 Renormalisation

The renormalisation lemma (Lemma 2.3.4) is a fundamental ingredient in our proof of Theorems

4.1.1 and 4.1.2. We first prove a reformulation of Lemma 2.3.4 that will be more appropriate

for our purposes, by interpreting the expression appearing in Lemma 2.3.4 via the distribution

of an appropriate random variable that mirrors the action of ϑP on the initial distribution µP,

together with the choice of the origin in the inflation word decomposition. For each n ∈ N and

w ∈ Ln
ϑ, we write

µ(n)(w) = µP([w]).

Lemma 4.2.1. For each n ∈ N, µ(n) is the distribution of a random word Wn on a finite

probability space (Ωn, Pn), defined as follows. The space

Ωn = {(v, u1, · · · , un, j) : v ∈ Ln
ϑ, ui ∈ ϑ(vi), 1 ≤ j ≤ |u1|}

is equipped with the probability vector

Pn : (v, u1, · · · , un, j) 7→
1

λ
µP([v])

n∏
i=1

P[ϑP(vi) = ui].

The random word Wn is defined via

Wn : (v, u1, · · · , un, j) 7→ (u1 · · ·un)[j,j+n−1].

Proof. Let w ∈ Ln
ϑ. We note that W−1

n ({w}) comprises all those elements in Ωn such that the
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property (u1 · · ·un)[j,j+n−1] = w holds. That is,

Pn(Wn = w) =
∑
v∈Ln

ϑ

∑
u1,...,un

|u1|∑
j=1

1

λ
µP([v])

n∏
i=1

P[ϑP(vi) = ui] δw,(u1···un)[j,j+n−1]
.

Comparing with the expression in Lemma 2.3.4, we further note that

P[ϑP(v)[j,j+n−1] = w ∧ |ϑP(v1)| = m] =
∑

u1,...,un

n∏
i=1

P[ϑP(vi) = ui] δm,|u1| δw,(u1···un)[j,j+n−1]
.

From this, we obtain that Pn(Wn = w) = µP([w]) and the claim follows.

Remark 4.2.1. We may interpret the factors occurring in the definition of Pn in terms of the

renormalisation step. The term λ−1 corresponds to a change of scale due to the expansion of

the length of words, µP([v]) reflects the choice of a word before the inflation step, and each of

P[ϑP(vi) = ui] gives the probability of mapping vi to the particular word ui as we apply the

random substitution. Marginalised to (prefixes of) v, the distribution induced by Pn and µP are

closely related but different in general. To be more precise, we will be interested in the random

variable

V[1,m] : (v, u1 · · ·un, j) 7→ v[1,m]

for some m ⩽ n. Integrating out the dependencies on u2, . . . , un and j in the first step, we obtain

Pn(V[1,m] = v′) =
1

λ

∑
v,v[1,m]=v′

µP([v])
∑
u1

|u1|P[ϑP(v1) = u1] =
1

λ
µP([v

′])E[|ϑP(v1)|].

The additional factor λ−1E[|ϑP(v1)|] accounts for the fact that starting the inflation word

decomposition of a word within some u1 ∈ ϑ(v1) is more probable if E[|ϑP(v1)|] is large.

Lemma 4.2.1 provides us with an alternative way to calculate the measure theoretic entropy

that will be instrumental for the proof of our main theorems.

Lemma 4.2.2. The measure theoretic entropy hµP(Xϑ) satisfies

hµP(Xϑ) = lim
n→∞

1

n
HPn(Wn).
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Proof. Let In : v 7→ v be the identity map on Ln
ϑ. By the definition of measure theoretic entropy,

hµP(Xϑ) = lim
n→∞

1

n
Hµ(n)(In).

Since µ(n) = Pn ◦W−1
n by Lemma 4.2.1, it follows that Hµ(n)(In) = HPn(Wn).

4.2.2 Properties of entropy and conditional entropy

In the proof of Theorems 4.1.1 and 4.1.2, we use properties of conditional entropy. For the reader’s

convenience, we state here the key definitions and properties that we require.

Definition 4.2.3. Let (X,B, µ) be a probability space and let η and ξ be measurable partitions

of X. We write Hµ(ξ) for the entropy of the partition ξ. For each set A ∈ B, let µA : B 7→

µ(A ∩B)/µ(A) denote the normalised restriction of µ to the set A. The entropy of ξ given η is

the quantity defined by

Hµ(ξ | η) = −
∑
A∈η

µ(A)HµA
(ξ).

We will mostly be concerned with partitions that are generated by some random map U , that

is, a measurable function on a probability space (Ω,F , µ). More precisely, if U has a finite image

Im(U), then it generates the partition

ξ(U) = {U−1(u) : u ∈ Im(U)}.

To avoid heavy notation, in such situations we set

Hµ(U) := Hµ(ξ(U)).

If we are dealing with two such random maps U and V , we set

Hµ(U ,V) := Hµ(ξ((U ,V))),

where

ξ((U ,V)) = ξ(U) ∨ ξ(V) = {A ∩B : A ∈ ξ(U), B ∈ ξ(V)}

is the common refinement of the partitions generated by U and V. Conditional entropies are
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defined accordingly. Namely, Hµ(U | V) = Hµ(ξ(U) | ξ(V)), Hµ(U ,V |W) = Hµ(ξ(U)∨ξ(V) | ξ(W))

and Hµ(U | V,W) = Hµ(ξ(U) | ξ(V) ∨ ξ(W)), where U ,V and W are random maps on (Ω,F , µ).

In the proof of Theorems 4.1.1 and 4.1.2, we utilise several standard properties of entropy

and conditional entropy, which we summarise in the following. For more further details, we refer

the reader to [75, Ch. 4].

Lemma 4.2.4. Let U ,V and W be (measurable) random maps with finite image as above. Then,

the following hold:

(1) Hµ(U) ≤ log(#Im(U)), with equality precisely if µ ◦ U−1 is equidistributed;

(2) Hµ(U) ≤ Hµ(U ,V), with equality if and only if ξ(U) is a refinement, up to nullsets, of ξ(V);

(3) Hµ(U ,V) = Hµ(V) +Hµ(U | V);

(4) Hµ(U | V) ≤ Hµ(W |V) +H(U |W);

(5) Hµ(U | V) ≤ Hµ(U), with equality if and only if U and V are independent;

(6) Hµ(U | V,W) ≤ Hµ(U | V);

(7) Hµ(U ,V |W) = Hµ(U |W) +Hµ(V | U ,W).

4.2.3 Control over large deviations

Recall that the Perron–Frobenius eigenvalue λ of a primitive random substitution ϑP can be

regarded as an inflation factor. In the case that ϑP is of constant length ℓ, this interpretation

is exact in the sense that, for all v ∈ A+, every realisation of ϑP(v) has length ℓ|v|. If ϑP is

compatible, then it still holds that every realisation of ϑP(v) has the same length, but this length

might deviate slightly from λ|v|. However, we still obtain that λ is arbitrarily close to the ratio

|ϑ(v)|/|v| for sufficiently long legal words v. In general, such a strong statement does not hold if

we drop the assumption of compatibility. However, the probability that |ϑP(v)| deviates by a

positive fraction from λ|v| decays quickly with the length of v for typical choices of v. We make

this more precise in the following.
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Lemma 4.2.5. Let λ− < λ < λ+ and let (mn)n be a sequence of integers such that m < n for

all n ∈ N and limn→∞mn = ∞. Further, let

An = {(v, u1, . . . , un, j) ∈ Ωn : λ−mn ≤ |u2 · · ·umn | ≤ λ+mn}

for all n ∈ N. Then, limn→∞ Pn(An) = 1.

Proof. Let Au
n := {(u2, . . . , umn) : λ−mn ≤ |u2 · · ·umn | ≤ λ+mn} be the set of (u2, . . . , umn)-

tuples that extend to elements in An. By definition of Pn and An,

Pn(An) =
1

λ

∑
v[1,mn]

µP([v[1,mn]])
∑
u1

|u1|P[ϑP(v1) = u1]
∑

(u2,...,umn )∈Au
n

mn∏
i=1

P[ϑP(vi) = ui]

=
1

λ

∑
v[1,mn]

µP([v[1,mn]])E[|ϑP(v1)|]P[λ−mn ≤ |ϑP(v2 · · · vmn)| ≤ λ+mn].

We show that for µP-almost every x ∈ Xϑ, we have

lim
n→∞

P[λ−mn ≤ |ϑP(x2 · · ·xmn)| ≤ λ+mn] = 1. (4.2)

Since µP is ergodic, Birkhoff’s ergodic theorem (Theorem A.1.5) gives that for µP-almost every

x ∈ Xϑ and every δ > 0, it holds that

mn(Ra − δ) ≤ |x[2,mn]|a ≤ mn(Ra + δ),

for each a ∈ A and large enough n ∈ N. In this case, it follows by Cramér’s theorem (Theo-

rem A.2.1) that for all δ′ > 0,

∑
i,vi=a

|ϑP(vi)| ≤ (1 + δ′)mn(Ra + δ)E[|ϑP(a)|], (4.3)

up to a set E = E(n, v, δ, δ′) whose probability decays exponentially with n. By the definition of

the substitution matrix M , we have

E[|ϑP(a)|] =
∑
b∈A

E[|ϑP(a)|b] =
∑
b∈A

Mba.

73



Summing over a ∈ A in (4.3), we obtain that

|ϑP(v2 · · · vmn)| ≤ mn(1 + δ′)

(∑
a,b∈A

MbaRa + δ|ϑ|
)

= mn(1 + δ′)(λ+ δ|ϑ|),

up to an exponentially decaying probability. Choosing δ, δ′ small enough, we get

|ϑP(v2 · · · vmn)| ≤ λ+mn

in these cases. The estimate for the lower bound follows by analogous arguments. Hence, there

exist c = c(v) > 0 and n0 = n0(v) such that

P[λ−mn ≤ |ϑP(v2 · · · vmn)| ≤ λ+mn] ≥ 1− e−mnc,

for all n ≥ n0. In particular, (4.2) holds µP-almost surely and it follows by the dominated

convergence theorem that

lim
n→∞

Pn(An) =
1

λ

∫
Xϑ

E[|ϑP(v1)|] dµP(v) = 1.

4.2.4 The upper bound

As a first step towards the proof of our main results, we establish the sequence of upper bounds for

the measure theoretic entropy stated in Theorem 4.1.1 and Theorem 4.1.2. For ease of notation,

we let φ : [0,∞) → R denote the function defined by φ(0) = 0 and φ(x) = −x log x for all

x ∈ (0,∞).

Proposition 4.2.6. Let ϑP = (ϑ,P) be a primitive random substitution with corresponding

frequency measure µP. Then,

hµP(Xϑ) ≤
1

λk − 1
Hk ·R

for all k ∈ N.

Proof. It suffices to show the relation for k = 1, since for all k ∈ N, µP is the frequency measure

corresponding to ϑk
P and λk is the Perron–Frobenius eigenvalue of ϑk

P. By Lemma 4.2.2, it is

possible to control hµP(Xϑ) via the entropy of Wn. We wish to refer to data in Ωn via a set of
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appropriate random variables. To this end we define (or recall in the case of V[1,m])

• V[1,m] : (v, u1 · · ·un, j) 7→ v[1,m] for all 1 ≤ m ≤ n,

• J : (v, u1, . . . , un, j) 7→ j,

• Uk : (v, u1 · · ·un, j) 7→ uk for all 1 ≤ k ≤ n,

• U[k,ℓ] = (Uk, . . . ,Uℓ) for 1 ≤ k ≤ ℓ ≤ n.

Also, recall that Wn is given by (u1 · · ·un)[j,j+n−1]. On average, the words uk have length λ,

and therefore, in typical situations, Wn in fact only depends on uk with 1 ≤ k ≤ m(n), for

some integer m(n) which deviates from n/λ by at most a constant. This motivates the following

notation. Fix ε > 0 and let λ− = λ− ε. Further, let n ∈ N and

m = m+(n) =
⌈ n

λ−

⌉
.

As a first step, we bound the entropy by

HPn(Wn) ≤ HPn(U[1,m],J ) +HPn(Wn | U[1,m],J ),

using properties (2) and (3) of Lemma 4.2.4. Setting

An = {(v, u1, . . . , un, j) ∈ Ωn | |u2 · · ·um| ≥ n},

we note that on An, Wn is given by (u1 · · ·um)[j,j+n−1] and hence is completely determined by

U[1,m] and J . On AC
n , we can bound the (conditioned) entropy of Wn by

log(#Ln
ϑ) ≤ n log(#A),

using property (1) of Lemma 4.2.4. Combining these two observations, we obtain

HPn(Wn | U[1,m],J ) ≤ Pn(A
C
n )n log(#A).
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By Lemma 4.2.5, the term Pn(A
C
n ) converges to 0 as n → ∞, so we have

HPn(Wn) ≤ HPn(U[1,m],J ) + o(n).

On the other hand, since both J and U1 have a bounded number of realisations,

HPn(U[1,m],J ) = HPn(U[2,m]) +O(1).

Conditioning on V[1,m], we therefore obtain

HPn(Wn) ≤ HPn(U[2,m]) + o(n) ≤ HPn(V[1,m]) +HPn(U[2,m] | V[1,m]) + o(n). (4.4)

For the calculation of the entropy HPn(V[1,m]), recall from Remark 4.2.1 that

Pn(V[1,m] = v[1,m]) =
1

λ
µP([v[1,m]])E[|ϑP(v1)|]. (4.5)

In the following, we show that the modification by the factor λ−1E[|ϑP(v1)|] is inessential for

our purposes. To this end, we make use of the general observation that φ(pq) = pφ(q) + qφ(p).

For an arbitrary probability vector (pi)i∈I and a finite sequence of real numbers q = (qi)i∈I , this

implies that ∑
i∈I

φ(piqi) ⩽ max
i∈I

φ(qi) +
∑
i∈I

qiφ(pi).

Using this for I = Lm
ϑ , and the probability vector with entries µP([v[1,m]]), we obtain via (4.5)

that

HPn(V[1,m]) =
∑

v[1,m]∈Lm
ϑ

φ

(
1

λ
µP([v[1,m]])E[|ϑP(v1)|]

)

=
∑

v[1,m]∈Lm
ϑ

E[|ϑP(v1)|]
λ

φ(µP([v[1,m]])) +O(1).

Recall that m = m(n) implicitly depends on n and note that we can rewrite

1

n

∑
v[1,m]∈Lm

ϑ

E[|ϑP(v1)|]
λ

φ(µP([v[1,m]])) =
m

n

∫
Xϑ

− log(µP([v[1,m]]))

m

E[|ϑP(v1)|]
λ

dµP(v).
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Due to the ergodicity of µP and the Shannon–McMillan–Breiman theorem (Theorem A.1.9),

we have that − log(µP([v[1,m]]))/m converges to hµP(Xϑ) in L1(Xϑ, µP). It follows that the

product with any uniformly bounded function g also converges in L1(Xϑ, µP). Applying this to

g : v 7→ λ−1E[|ϑP(v1)|] yields

lim
n→∞

1

n
HPn(V[1,m]) =

1

λ−
hµP(Xϑ)

∑
v1∈A

µP([v1])
E[|ϑP(v1)|]

λ

=
1

λ−
hµP(Xϑ)

1

λ

∑
a,b∈A

MbaRa =
1

λ−
hµP(Xϑ).

(4.6)

We next turn to the calculation of the conditional entropy HPn(U[2,m] | V[1,m]). Denoting by

Pn,v[1,m]
the normalised restriction of Pn to {V[1,m] = v[1,m]}, we have

Pn,v[1,m]
[U[2,m] = (u2, · · · , um)] =

m∏
i=2

P[ϑP(vi) = ui],

and thereby

HPn,v[1,m]
(U[2,m]) =

m∑
i=2

HP(ϑP(vi)) = H1 · Φ(v[2,m]).

Using (4.5), this yields

HPn(U[2,m] | V[1,m]) =
1

λ

∑
v[1,m]∈Lm

ϑ

µP([v[1,m]])E[|ϑP(v1)|]H1 · Φ(v[2,m]).

For the corresponding asymptotic behaviour we note that, by Birkhoff’s ergodic theorem (Theo-

rem A.1.5), Φ(v[2,m])/m converges to R for µP-almost every v, so

lim
n→∞

1

n
HPn(U[2,m] | V[1,m]) =

1

λ−
H1 ·R

∑
v1∈A

µP([v1])
E[|ϑP(v1)|]

λ
=

1

λ−
H1 ·R. (4.7)

Hence, combining the contributions from (4.6) and (4.7), we obtain by (4.4) that

hµP(Xϑ) = lim
n→∞

1

n
HPn(Wn) ≤

1

λ−

(
hµP(Xϑ) +H1 ·R).

As ε → 0, we have λ− → λ, so it follows that

hµP(Xϑ) ≤
1

λ− 1
H1 ·R,
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which completes the proof.

The sequence of vectors (Hn)n∈N can be bounded via a matrix-recursion that involves the

substitution matrix.

Proposition 4.2.7. Let ϑP be a primitive random substitution. Then, for each a ∈ A and all

n, k ∈ N, we have that

HP(ϑ
n+k
P (a)) ≤ Hn · (Mkea) +HP(ϑ

k
P(a)),

where M is the matrix of ϑP and ea is the unit vector corresponding to the letter a. In particular,

Hn+k ·R ≤ λkHn ·R+Hk ·R.

If ϑP has unique realisation paths, equality occurs precisely if ϑn
P(a) is completely determined by

ϑn+k
P (a).

Proof. First, let v ∈ Lm
ϑ , for some m ∈ N, and note that the random variable ϑn

P(v) can be

written as a function of (ϑn
P(v1), · · · , ϑn

P(vm)). Due to the independence of the random variables

in the last tuple, we obtain that

HP(ϑ
n
P(v)) ≤ HP

(
ϑn
P(v1), . . . , ϑ

n
P(vm)

)
=

m∑
i=1

HP(ϑ
n
P(vi)) = Hn · Φ(v).

If ϑP has unique realisation paths, then we have equality. Using the Markov property of the

substitution process in the first step, for each a ∈ A, we have

HP(ϑ
n+k
P (a)|ϑk

P(a)) =
∑

v∈ϑk(a)

P[ϑk
P(a) = v]HP(ϑ

n
P(v)) ≤ Hn ·

 ∑
v∈ϑk(a)

P[ϑk
P(a) = v]Φ(v)


= Hn · E[Φ(ϑk

P(a))] = Hn · (Mkea),

with equality if ϑP has unique realisation paths. Therefore, for all a ∈ A,

HP(ϑ
n+k
P (a)) ≤ HP(ϑ

n+k
P (a)|ϑk

P(a)) +HP(ϑ
k
P(a)) ≤ H⊤

nM
kea +Hk,a.

The result now follows by summing over all a ∈ A, weighted with respect to the entries of the
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right Perron–Frobenius eigenvector. The first inequality in the above is an equality precisely if

ϑk
P(a) is completely determined by ϑn+k

P (a) and the second inequality is an equality provided

that ϑP has unique realisation paths.

Corollary 4.2.8. Let ϑP be a primitive random substitution. Then, for all n ∈ N,

1

λn − 1
Hn ·R ≤ 1

λ− 1
H1 ·R.

If ϑP has unique realisation paths, we have equality for all n ∈ N if and only if ϑP satisfies the

disjoint set condition.

Proof. Given n ≥ 2, iterating the relation Hn ·R ≤ λn−1H1 ·R+Hn−1 ·R yields

Hn ·R ≤ H1 ·R
n−1∑
k=0

λk =
λn − 1

λ− 1
H1 ·R,

immediately giving the required inequality. Under the assumption of unique realisation paths,

equality holds if and only if ϑn
P(a) completely determines ϑP(a) for all a ∈ A and n ∈ N. This is

just a reformulation of the disjoint set condition (compare Remark 2.2.1).

4.2.5 The lower bound

We now establish the lower bounds for the measure theoretic entropy in Theorem 4.1.1 and

Theorem 4.1.2. Again, our proof relies heavily on the self-consistency relation for µP presented in

Section 4.2.1.

Proposition 4.2.9. Let ϑP be a primitive random substitution with corresponding frequency

measure µP. Then,

hµP(Xϑ) ≥
1

λk
Hk ·R−H(λ−k),

for all k ∈ N. If ϑP has unique realisation paths, then

hµP(Xϑ) ≥
1

λk
Hk ·R,

for all k ∈ N.
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Proof. Again, it suffices to consider the case k = 1. We use the same notation as the proof of

Proposition 4.2.6, with one modification. For ε > 0, we now consider λ+ = λ+ ε and set

m = m−(n) =
⌈ n

λ+

⌉
.

This is to ensure that Wn and J determine U2 · · · Um on a set of large probability, given by

Bn = {(v, u1, . . . , un, j) : |u2 · · ·um| ≤ n− |ϑ|},

where we recall that |ϑ| = maxa∈Amaxv∈ϑ(a)|v|. By properties (4) and (5) of Lemma 4.2.4, we

have

HPn(Wn) ≥ HPn(Wn | V[1,m]) ≥ HPn(U[2,m] | V[1,m])−HPn(U[2,m] |Wn). (4.8)

and it follows by analogous arguments to those in the proof of Proposition 4.2.6 that

lim
n→∞

1

n
HPn(U[2,m] | V[1,m]) =

1

λ+
H1 ·R.

It remains to find an adequate upper bound for HPn(U[2,m] |Wn). To that end, we introduce an

additional random variable on Ωn, namely,

ℓm : (v, u1, . . . , un, j) 7→ |u2 · · ·um|.

It then follows by properties (6) and (7) of Lemma 4.2.4 that

HPn(U[2,m] |Wn) ≤ HPn(U[2,m] |Wn,J , ℓm) +HPn(J , ℓm |Wn)

= HPn(U[2,m] |Wn,J , ℓm) +O(log(m)).

(4.9)

The last step follows because the number of distinct realisations of (J , ℓm) can be bounded from

above by |ϑ|2m. Conditioned on Wn,J , ℓm, and provided ℓm ≤ n− |ϑ|, knowledge of U[2,m] is

equivalent to knowledge of

|U|[2,m] : (v, u1, . . . , un, j) 7→ (|u2|, . . . , |um|).

Indeed, on the set Bn (that is, if ℓm ≤ n− |ϑ|) we observe that Wn,J , ℓm determines the word

80



u2 · · ·um, such that knowing the lengths of the individual words allows us to infer (u2, . . . , um).

By conditioning,

HPn(U[2,m] |Wn,J , ℓm) ≤ HPn(|U|[2,m] |Wn,J , ℓm) +HPn(U[2,m] | |U|[2,m],Wn,J , ℓm).

Let M = maxa∈A#ϑ(a), implying #Im(U[2,m]) ≤ Mm. By the observations above, we can bound

HPn(U[2,m] | |U|[2,m],Wn,J , ℓm) ≤ Pn(B
C
n )m log(M).

Since P (BC
n ) → 0 as n → ∞ by Lemma 4.2.5, it follows that

HPn(U[2,m] |Wn,J , ℓm) ≤ HPn(|U|[2,m] | ℓm) + o(n). (4.10)

If ϑP has unique realisation paths, then Wn,J , ℓm determines U[2,m] completely on Bn, yielding

HPn(U[2,m] |Wn,J , ℓm) = o(n),

by an analogous argument. Given ℓm = ℓ, the number of possible values of |U |[2,m] is bounded

above by the number of choices to decompose a block of length ℓ into m− 1 smaller blocks, that

is, by the binomial coefficient
(
ℓ−1
m−2

)
. Using this bound on Bn and the fixed bound Mm on BC

n ,

we obtain

HPn(|U|[2,m] | ℓm) ≤
n−|ϑ|∑
ℓ=m−1

Pn[ℓm = ℓ] log

(
ℓ− 1

m− 2

)
+ Pn(B

C
n )m log(M)

≤ log

(
n

m− 2

)
+ o(n) ≤ nH((m− 2)/n) + o(n).

Since we have seen in (4.9) and (4.10) that HPn(|U|[2,m] | ℓm) bounds HPn(U[2,m] |Wn) up to a

term of order o(n), we obtain from (4.8) that

hµP(Xϑ) = lim
n→∞

1

n
HPn(Wn) ≥ lim

n→∞

1

n
HPn(U[2,m] | V[1,m])− lim sup

n→∞
HPn(U[2,m] |Wn)

≥ 1

λ+
H1 ·R−H(λ−1

+ )
ε→0−−−→ 1

λ
H1 ·R−H(λ−1).

81



If ϑP has unique realisation paths, then HPn(U[2,m] |Wn) = o(n), which gives the stronger bound

hµP(Xϑ) ≥
1

λ
H1 ·R.

This completes the proof.

For the remainder of this section, we restrict to the case of unique realisation paths.

Proposition 4.2.10. Let ϑP be a primitive random substitution with unique realisation paths.

Then, for each a ∈ A, we have

HP(ϑ
n+k
P (a)) ≥ Hn · (Mkea)

for all n, k ∈ N, where ea is the unit vector corresponding to a. Equality holds if and only if

ϑn+k
P (a) is independent of ϑn

P(a) for all a ∈ A.

Proof. In the proof of Proposition 4.2.7, we showed that HP(ϑ
n+k
P |ϑn

P(a)) = Hn · (Mkea) for

each a ∈ A. Thus, we have

HP(ϑ
n+k
P (a)) ≥ HP(ϑ

n+k
P |ϑn

P(a)) = Hn · (Mkea),

for each a ∈ A, and equality holds if and only if ϑn+k
P (a) and ϑn

P(a) are independent random

variables.

Corollary 4.2.11. Let ϑP be a primitive random substitution with unique realisation paths.

Then, for all m ≤ n,
1

λm
Hm ·R ≤ 1

λn
Hn ·R.

Equality holds for all m ≤ n if and only if ϑP satisfies the identical set condition with identical

production probabilities.

Proof. It follows by Proposition 4.2.10 that

1

λn
Hn ·R ≥ 1

λn
Hm · (Mn−mR) =

1

λm
Hm ·R.
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Equality for all m ≤ n holds precisely if

1

λn
Hn ·R =

1

λ
H1 ·R,

for all n ∈ N. This is the case if and only if for all a ∈ A, ϑP(a) is independent from ϑn
P(a)

for all n ∈ N, which means that ϑn−1
P (v) has the same distribution for all possible realisations

v of ϑP(a). This is precisely the identical set condition with identical production probabilities

(compare Remark 2.2.1).

4.2.6 Proof of main results

Our main results now follow in a straightforward manner from the results we have already

established.

Proof of Theorem 4.1.1. The fact that λ−mHm ·R−H(λ−m) ≤ hµP(Xϑ) ≤ (λm−1)−1Hm ·R for

all m ∈ N follows directly by combining Proposition 4.2.6 and Proposition 4.2.9. The convergence

of λ−mHm ·R as m → ∞ can be seen from the reformulation of this relation in (4.1).

Proof of Theorem 4.1.2. The upper and lower bounds for hµP(Xϑ) were established in Proposi-

tion 4.2.6 and Proposition 4.2.9. The statements on the equivalent conditions for equality with

the lower or upper bound are given in Corollary 4.2.8 and Corollary 4.2.11. The fact that the

sequence of lower bounds is non-decreasing is also contained in Corollary 4.2.11.
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CHAPTER 5

MEASURES OF MAXIMAL ENTROPY

Recall that a measure µ supported on a subshift X is called a measure of maximal entropy if

hµ(X) = htop(X) and that for every subshift there always exists at least one measure of maximal

entropy. In this chapter, we combine the theory developed in Chapters 3 and 4 on topological and

measure theoretic entropy to ascertain conditions under which a primitive random substitution

gives rise to a frequency measure of maximal entropy. This allows us to show that there exists a

frequency measure of maximal entropy for a broad class of random substitution subshifts. Further,

in a more general setting, we show that a measure of maximal entropy can be constructed as the

weak∗-limit of a sequence of frequency measures.

Recall that we say a subshift is intrinsically ergodic if it has a unique measure of maximal

entropy. We prove intrinsic ergodicity for several families of random substitution subshifts and

show that the unique measure of maximal entropy is a frequency measure. These subshifts often

do not satisfy the specification property, the prototypical method for verifying intrinsic ergodicity,

thus provide an interesting new class of intrinsically ergodic subshifts.

The results in this chapter are largely based on [37, Section 4]. However, we highlight that

some of the results in Section 5.1 on the existence of frequency measures of maximal entropy

are slightly more general than those presented in [37], since we apply results from Chapter 3 on

topological entropy which were proved after the paper [37] was published. Nonetheless, the proofs

are very similar to those in [37]. Also, our proof that the subshift associated with the random

period doubling substitution is intrinsically ergodic is new.
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5.1 Frequency measures of maximal entropy

5.1.1 Existence of frequency measures of maximal entropy

Using our results on topological and measure theoretic entropy, we can show that for many

random substitution subshifts, there exists a frequency measure of maximal entropy. As a guiding

example, let ϑP = (ϑ,P) be the random period doubling substitution

ϑP :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ aa with probability 1,

for some p ∈ (0, 1), and let µP be the corresponding frequency measure. Since ϑP is primitive and

compatible, both topological entropy and measure theoretic entropy of the associated subshift

coincide with the inflation word analogues introduced in Chapters 3 and 4. Moreover, since ϑP

satisfies the disjoint set condition, closed-form formulae can be obtained for each. Specifically, in

Example 3.2.5, we showed that

htop(Xϑ) =
2

3
log 2

and, in Example 4.1.6, we showed that

hµP(Xϑ) = −2

3
(p log p+ (1− p) log(1− p)) .

Observe that when p = 1/2, hµP(Xϑ) and htop(Xϑ) coincide. Hence, the frequency measure

corresponding to p = 1/2 is a measure of maximal entropy. More generally, by combining the

theory established so far for measure theoretic entropy and topological entropy, we can show that

there exists a frequency measure of maximal entropy for many random substitution subshifts. In

the following, we provide sufficient conditions under which this occurs.

Theorem 5.1.1. Let ϑP = (ϑ,P) be a primitive random substitution satisfying either the

identical set condition or disjoint set condition, for which P[ϑP(a) = v] = 1/(#ϑ(a)) for all a ∈ A

and v ∈ ϑ(a). Further, assume that at least one of the following holds:

• ϑP is compatible;
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• ϑP is constant length and there exists an N ∈ N such that #ϑ(a) = N for all a ∈ A.

Then, the corresponding frequency measure µP is a measure of maximal entropy for the subshift

Xϑ.

Proof. For all a ∈ A and v ∈ ϑ(a), we have that P[ϑP(a) = v] = 1/(#ϑ(a)); hence,

H1 ·R =
∑
a∈A

Ra log(#ϑ(a)).

If ϑP satisfies the disjoint set condition, then by Theorem 4.1.2 we have

hµP(Xϑ) =
1

λ− 1

∑
a∈A

Ra log(#ϑ(a)).

Thus, if ϑP is compatible, it follows by Proposition 3.2.3 that hµP(Xϑ) = htop(Xϑ), and so µP is

a measure of maximal entropy. On the other hand, if ϑP is constant length and #ϑ(a) = N for all

a ∈ A, then we have hµP(Xϑ) = (λ−1)−1 logN , which is equal to htop(Xϑ) by Proposition 3.2.11.

Now assume that ϑP satisfies the identical set condition. Before we can apply Theorem 4.1.2,

we first need to verify that ϑP has identical production probabilities. To this end, let a ∈ A, and

u, v ∈ ϑ(a). Since ϑP is compatible, |u|b = |v|b for all b ∈ A. Hence, if t ∈ ϑ2(a), it follows that

P[ϑP(u) = t] =
∏
b∈A

(#ϑ(b))−|u|b =
∏
b∈A

(#ϑ(b))−|v|b = P[ϑP(v) = t].

By way of induction, let n ∈ N and assume that P[ϑn−1
P (u) = w] = [ϑn−1

P (v) = w] for all w ∈ ϑn(a).

Since ϑP satisfies the identical set condition, for all t ∈ ϑn+1(a) we have t ∈ ϑn(u) ∩ ϑn(v), so

P[ϑn
P(u) = t] =

∑
w∈ϑn−1(u)

P[ϑn−1
P (u) = w]P[ϑP(w) = t]

=
∑

w∈ϑn−1(v)

P[ϑn−1
P (v) = w]P[ϑP(w) = t] = P[ϑn

P(v) = t].

Therefore, by induction, ϑP has identical production probabilities, and thus by Theorem 4.1.2 we

have

hµP(Xϑ) =
1

λ

∑
a∈A

Ra log(#ϑ(a)).

86



Comparing this with the expressions for topological entropy given by Propositions 3.2.3 and

3.2.11, we conclude that hµP(Xϑ) = htop(Xϑ). Namely, µP is a measure of maximal entropy.

For the random Fibonacci substitution, the conclusion of Theorem 5.1.1 does not hold. Thus,

the assumption that either the identical set condition or disjoint set condition is satisfied cannot

be dropped in general.

Example 5.1.2. Let ϑP = (ϑ,P) be the random Fibonacci substitution with uniform probabili-

ties,

ϑP :


a 7→


ab with probability 1/2,

ba with probability 1/2,

b 7→ a with probability 1,

and let µP denote the corresponding frequency measure. In Example 4.1.9, we showed that

the measure theoretic entropy of the subshift Xϑ with respect to the measure µP satisfies the

following bounds:

0.4164 < hµP(Xϑ) < 0.4314.

However, htop(Xϑ) =
∑∞

m=2 log(m)/τm+2 ≈ 0.4444, so µP is not a measure of maximal entropy.

The following example shows that the assumption that the cardinalities of inflation sets

coincide cannot be dropped for constant length random substitutions. Further, it illustrates that

the frequency measure of greatest entropy may not correspond to uniform probabilities in the

non-compatible setting.

Example 5.1.3. Let p ∈ (0, 1) and let ϑP be the random substitution defined by

ϑP :


a 7→


aa with probability p,

ab with probability 1− p,

b 7→ ba with probability 1,

with corresponding frequency measure µP and subshift Xϑ. Recall that ϑP satisfies the disjoint
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set condition. In Example 3.2.10 we showed that the topological entropy of the subshift Xϑ is

htop(Xϑ) =

∞∑
n=1

1

2n
log n ≈ 0.507834.

Further, in Example 4.1.7, we showed that

hµP(Xϑ) = − 1

2− p
(p log p+ (1− p) log(1− p)),

which is maximised when p = τ−1, where τ denotes the golden ratio. Letting µmax denote the

measure corresponding to this value of p, we have

hµmax(Xϑ) = log τ ≈ 0.481212.

Hence, µmax is not a measure of maximal entropy for Xϑ.

5.1.2 Weak*-limits of sequences of frequency measures

Examples 5.1.2 and 5.1.3 demonstrate that neither constant length nor compatibility are sufficient

to guarantee the frequency measure corresponding to uniform probabilities is a measure of

maximal entropy. However, in both of these settings, a measure of maximal entropy can be

obtained as the weak*-limit of a sequence of frequency measures. In particular, the measures

in this sequence can be taken to be frequency measures corresponding to powers of the random

substitution with uniform probabilities.

Theorem 5.1.4. Let ϑP = (ϑ,P) be a primitive random substitution. Further, assume that ϑP

is compatible or constant length. Then, there exists a sequence of frequency measures (µn)n such

that µn converges weak* to a measure of maximal entropy for the system subshift Xϑ.

Proof. For each n ∈ N, let Pn denote the family of probability vectors corresponding to uniform

probabilities on ϑn. Since the subshift of a random substitution is independent of the choice

of probabilities, the random substitution (ϑn,Pn) gives rise to the subshift Xϑ. Let µn denote

the frequency measure corresponding to the random substitution (ϑn,Pn). Since the space

of shift-invariant probability measures on Xϑ is weak*-compact, there exists a shift-invariant

probability measure µ and a sequence (nk)k of natural numbers such that (µnk
)k∈N converges
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weak* to µ. As we have assumed that ϑP is compatible or constant length, ϑP has unique

realisation paths. Thus, by Theorem 4.1.2 we have

hµnk
(Xϑ) ≥

1

λnk

∑
a∈A

Ra log(#ϑnk(a)) (5.1)

for all k ∈ N. If ϑP is compatible, then the right hand side converges to htop(Xϑ) by Proposi-

tion 3.2.2. On the other hand, if ϑP is of constant length ℓ, then

1

λnk

∑
a∈A

Ra log(#ϑnk(a)) =
∑
a∈A

Ra
log(#ϑnk(a))

ℓnk

for all k, which converges to htop(Xϑ) by Theorem 3.2.8. Hence, in either case, we have

lim
k→∞

hµnk
(Xϑ) ≥ htop(Xϑ),

and so it follows by the upper semi-continuity of measure theoretic entropy that hµ(Xϑ) =

htop(Xϑ).

Notice that in the proof of Theorem 5.1.4, the only place we have used compatibility or the

constant length property is in establishing the coincidence of topological entropy with the quantity

in (5.1). As such, we expect the full strength of compatibility or the constant length property are

not required for the conclusion of Theorem 5.1.4 to hold.

5.2 Intrinsic ergodicity of random substitution subshifts

Theorem 5.1.1 gives that for a broad class of random substitution subshifts, there exists a

frequency measure of maximal entropy. It is natural to enquire whether this measure is unique as

a measure of maximal entropy. In this section, we show that this is indeed the case for many

random substitutions satisfying the conditions of Theorem 5.1.1.
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5.2.1 Techniques for proving intrinsic ergodicity

A common technique for proving a subshift is intrinsically ergodic is to show that there exists a

measure of maximal entropy µ for which there are constants A,B > 0 such that

Ae−|u|h ≤ µ([u]) ≤ Be−|u|h (5.2)

for every legal word u, where h denotes the topological entropy of the subshift. Such a uniform

restriction on the scaling of cylinder sets is often called a Gibbs property. This technique was first

used by Adler and Weiss [2] to show that the Parry measure is the unique measure of maximal

entropy for every irreducible shift of finite type (although we note that Parry [63] previously

showed that this measure is a measure of maximal entropy). Generally, verifying the property

(5.2) holds can be difficult. However, Bowen [10] introduced a sufficient condition, called the

specification property, under which this property holds, which is typically easier to verify than

proving the bounds in (5.2) directly. Verifying the specification property has become a standard

technique for proving intrinsic ergodicity of subshifts and, in recent years, several weaker versions

of this property have been introduced, which are still sufficient to establish intrinsic ergodicity.

For example, Climenhaga and Thompson [13, 14] introduced a weak specification property that

holds for all subshift factors of β-shifts and S-gap shifts, for which Bowen’s specification property

is not satisfied, thus establishing intrinsic ergodicity for a broad class of subshifts. However, their

approach still relies on the existence of a measure of maximal entropy that satisfies the property

(5.2).

5.2.2 A class of random substitutions satisfying the identical set condition

For a class of subshifts arising from constant length random substitutions satisfying the identical

set condition, we can show that the measure of maximal entropy given by Theorem 5.1.1 satisfies

the Gibbs property in (5.2), thus is the unique measure of maximal entropy. These subshifts were

shown to be intrinsically ergodic by Gohlke and Spindeler [39]. In their proof, they showed that

these subshifts are coded shifts, which are well known to satisfy Bowen’s specification property.

Here, we present an alternative proof, which does not rely on specification, but instead uses the

renormalisation lemma (Lemma 2.3.5) to directly verify the Gibbs property (5.2).
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Proposition 5.2.1. Let A be a finite alphabet, ℓ ≥ 2 and s1, . . . , sk ∈ A+ be distinct words of

length ℓ, such that for every letter a ∈ A there exists an i ∈ {1, . . . , k} such that a appears in si.

Let ϑP = (ϑ,P) be the random substitution defined by

ϑP : a 7→


s1 with probability 1/k,

...

sk with probability 1/k,

for all a ∈ A and let µP denote the corresponding frequency measure. Then, the measure µP

satisfies the Gibbs property (5.2). Thus, the subshift Xϑ is intrinsically ergodic and µP is the

unique measure of maximal entropy.

Proof. First observe that, since for any a ∈ A, every letter in A appears in a realisation of

ϑ(a), the random substitution ϑP is primitive; hence, L(Xϑ) = Lϑ. Let u ∈ Lϑ. We prove the

Gibbs property (5.2) by application of the renormalisation lemma. Since ϑP is constant length,

Lemma 2.3.5 gives that

µP([u]) =
1

ℓ

∑
v∈L⌈|u|/ℓ⌉+1

ϑ

µP([v])

ℓ∑
j=1

P[ϑP(v)[j,j+|u|+1] = u]. (5.3)

We have that ϑ(a) = ϑ(b) for all a, b ∈ A and P[ϑP(a) = w] = 1/k for all w ∈ ϑ(a). Hence,

it follows by the Markov property of ϑP that, for all v ∈ L⌈|u|/ℓ⌉+1
ϑ and j ∈ {1, . . . , ℓ}, if

u ∈ ϑ(v)[j,j+|u|−1], then

(
1

k

)⌈|u|/ℓ⌉+1

≤ P[ϑP(v)[j,j+|u|−1] = u] ≤
(
1

k

)⌈|u|/ℓ⌉−1

.

Otherwise, if u /∈ ϑ(v)[j,j+|u|−1], then P[ϑP(v)[j,j+|u|−1] = u] = 0. Since u is legal, there exists at

least one j ∈ {1, . . . , ℓ} such that u ∈ ϑ(v)[j,j+|u|−1], so it follows by (5.3) that

1

ℓk
e−|u|htop(Xϑ) =

1

ℓk
e−|u|ℓ−1 log k ≤ µP([v]) ≤ ke−|u|ℓ−1 log k = ke−|u|htop(Xϑ),

noting that
∑

v∈L⌈|u|/ℓ⌉+1
ϑ

µP([v]) = 1 and htop(Xϑ) = ℓ−1 log k by Proposition 3.2.11. Thus, we

conclude that the Gibbs property (5.2) holds, so the subshift Xϑ is intrinsically ergodic.
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Example 5.2.2. Let ϑP be the random substitution defined by

ϑP : a, b 7→


ab with probability 1/2,

ba with probability 1/2,

and let µP denote the corresponding frequency measure. Since ϑP satisfies the conditions of

Proposition 5.2.1, the associated subshift is intrinsically ergodic, and µP is the unique measure of

maximal entropy.

5.2.3 Recognisable random substitutions

While the class of intrinsically ergodic random substitution subshifts given by Proposition 5.2.1

satisfy the Gibbs property (5.2), this is not the case in general for random substitution subshifts.

For a broad class of recognisable random substitutions, the frequency measure of maximal entropy

given by Theorem 5.1.1 does not satisfy this Gibbs property. Nonetheless, we can prove that this

frequency measure is the unique measure of maximal entropy by other means.

Theorem 5.2.3. Let ϑP = (ϑ,P) be a recognisable primitive random substitution of constant

length ℓ and assume that at least one of the following holds:

(i) there exists an N ∈ N such that #ϑ(a) = N for all a ∈ A;

(ii) ϑP is compatible and ℓ is the only non-zero eigenvalue of the substitution matrix.

Under these hypotheses, the system (Xϑ, S) is intrinsically ergodic. Moreover, the unique measure

of maximal entropy is the frequency measure corresponding to uniform probabilities.

We present the proof of Theorem 5.2.3 in Section 5.2.5. Our technique is to show that for

the frequency measure of maximal entropy given by Theorem 5.1.1, a weaker Gibbs property

holds for cylinder sets of exact inflation words. This, together with the underlying assumptions

of recognisability and constant length, is sufficient to obtain the conclusion of Theorem 5.2.3.
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Example 5.2.4. Let ϑP = (ϑ,P) be the random substitution defined by

ϑP :



a 7→


abbaa with probability 1/2,

aabba with probability 1/2,

b 7→


babaa with probability 1/2,

baaba with probability 1/2,

and let µP denote the corresponding frequency measure. In Example 2.2.15, we showed that ϑP

is recognisable. Thus, since #ϑ(a) = #ϑ(b), the conditions of Theorem 5.2.3 (specifically (i)) are

satisfied. Hence, the subshift Xϑ is intrinsically ergodic and µP is the unique measure of maximal

entropy.

5.2.4 Gibbs properties of frequency measures

In this section we prove the (weak) Gibbs property satisfied by the measure of maximal entropy

for subshifts of random substitutions satisfying the conditions of Theorem 5.2.3. This is the

content of Lemma 5.2.8, which utilises the following auxiliary results.

Lemma 5.2.5. Let ϑP = (ϑ,P) be a primitive random substitution with corresponding frequency

measure µP. Further assume that ϑP is compatible or constant length. Then, for all v ∈ Lϑ and

w ∈ ϑ(v),

µP([w]) ≥
1

λ
µP([v])P[ϑP(v) = w].

In the case that ϑP is constant length and recognisable and |ϑ(v)| > 2κ(ϑ), we have

µP([w]) =
1

λ

∑
u∈L|v|

ϑ

µP([u])P[ϑP(u) = w].

Proof. Let v ∈ Lϑ and let w ∈ ϑ(v) be fixed. Let n = |w| and Jn(v) = {u ∈ Ln
ϑ : u[1,|v|] = v}.

Since ϑP is compatible or constant length, Lemma 2.3.5 gives that

µP([w]) =
1

λ

∑
u∈Ln

ϑ

µP([u])

|ϑ(u1)|∑
j=1

P[ϑP(u)[j,j+|w|−1] = w]
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Noting that [v] is the union of all [u] with u ∈ Jn(v), we thus obtain

µP([w]) ≥
1

λ

∑
u∈Jn(v)

µP([u])P[ϑP(u)[1,|w|] = w] =
1

λ

∑
u∈Jn(v)

µP([u])P[ϑP(v) = w]

=
1

λ
µP([v])P[ϑP(v) = w].

If ϑP is constant length and recognisable, and |ϑ(v)| > 2κ(ϑ), then there is a unique way to

decompose w into inflation words. However, there might still be several words u ∈ Lϑ with

|u| = |v| such that w ∈ ϑ(u). Hence, it follows by Lemma 2.3.5 that

µP([w]) =
1

λ

∑
u∈L|v|

ϑ

µP([u])P[ϑP(u) = w].

Lemma 5.2.6. Let ϑP = (ϑ,P) be a primitive random substitution satisfying the disjoint set

condition. Assume that P[ϑP(a) = s] = 1/#ϑ(a) for all a ∈ A and s ∈ ϑ(a) and that at least one

of the following conditions is satisfied:

(i) ϑP is of constant length ℓ and there is an N ∈ N such that #ϑ(a) = N for all a ∈ A;

(ii) ϑP is compatible and the second largest eigenvalue τ of the substitution matrix satisfies

|τ | < 1.

Under these hypotheses, there exists a constant c > 0 such that P[ϑm
P (a) = w] ≥ ce−|w|htop(Xϑ)

for all m ∈ N, a ∈ A and w ∈ ϑm(a). In particular, when ϑP is of constant length, we have that

P[ϑm
P (a) = w] = ehtop(Xϑ)e−|w|htop(Xϑ).

Proof. As ϑP satisfies the disjoint set condition, it follows by the Markov property of ϑP and

induction that, for a ∈ A, m ∈ N and w ∈ ϑm(a), we have

P[ϑm
P (a) = w] =

1

#ϑm(a)
. (5.4)

Let us first consider case (i). It follows by the constant length property and disjoint set condition

that #ϑm(a) = N1+ℓ+···+ℓm−1 for all m ∈ N. By Proposition 3.2.11, we have that htop(Xϑ) =
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logN/(ℓ− 1). Noting that
∑m−1

j=0 ℓj = (ℓm − 1)/(ℓ− 1), it follows that

log(#ϑm(a)) = logN
m−1∑
j=0

ℓj = (ℓm − 1)htop(Xϑ) = |w|htop(Xϑ)− htop(Xϑ)

for all m ∈ N, a ∈ A and w ∈ ϑm(a). Taking the exponential of both sides, we conclude from

(5.4) that

P[ϑm
P (a) = w] = ehtop(Xϑ)e−|w|htop(Xϑ).

Let us now consider case (ii). Since the Perron–Frobenius eigenvalue λ of ϑP is simple, we can

split the substitution matrix M as M = λRL⊤ +N , where R and L are respectively the right

and left Perron–Frobenius eigenvectors of ϑP and where NRL⊤ = 0 = RL⊤N . For each m ∈ N,

we let qm denote the vector indexed by A defined by qm,a = log(#ϑm(a)) for all a ∈ A. It was

shown in [35, Lemma 10] that for all primitive and compatible random substitutions satisfying

the disjoint set condition, q⊤
m = q⊤

1

∑m−1
k=0 Mk for all m ∈ N. Hence,

q⊤
m = q⊤

1

m−1∑
k=0

Mk = q⊤
1

m−1∑
k=0

λkRL⊤ + q⊤
1

m−1∑
k=0

Nk

=
λm − 1

λ− 1
q⊤
1 RL⊤ + q⊤

1

m−1∑
k=0

Nk = (λm − 1)htop(Xϑ)L
⊤ + q⊤

1

m−1∑
k=0

Nk.

By construction, τ is the dominant eigenvalue of N , and so there exists a c > 0 and n ∈ N

such that ∥Nk∥∞ < ckn|τ |k for all k ∈ N. Hence, there is r ∈ R with |τ | < r < 1 such that

∥Nk∥∞ < crk. We therefore obtain

log(#ϑm(a)) ≤ (λm − 1)Lahtop(Xϑ) +∥q1∥∞
m−1∑
k=0

∥Nk∥∞

≤ (λm − 1)Lahtop(Xϑ) +
c

1− r
∥q1∥∞.

On the other hand, by Proposition 2.2.3, we have that

|ϑm(a)| ≥ Laλ
m −D|τ |m ≥ Laλ

m −D,

for some D > 0. Hence, there exists a constant C > 0 such that log(#ϑm(a)) ≤ |ϑm(a)|htop(Xϑ)+

C. Taking the exponential of both sides, we conclude from (5.4) that P[ϑm
P (a) = w] ≥
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e−|w|htop(Xϑ)e−C . Setting c = e−C completes the proof. If ϑP is additionally assumed to

be of constant length, then τ = 0 since the eigenvalues of the matrix associated to a con-

stant length substitution are integers. In this case, the matrix M satisfies M = λRL⊤, where

L = (1, . . . , 1) by the constant length property. Thus, it follows by the same arguments as above

that log(#ϑm(a)) = (λm − 1)htop(Xϑ). Taking the exponential of both sides, it follows from (5.4)

that P[ϑm
P (a) = w] = ehtop(Xϑ)e−|w|htop(Xϑ).

Lemma 5.2.7. Let ϑP = (ϑ,P) be a random substitution satisfying either of the conditions

of Lemma 5.2.6 and let µP denote the corresponding frequency measure. Then, there exists a

constant c > 0 such that

µP([w]) ≥ µP([v])
c|v|

|w|e|w|htop(Xϑ)

for all v ∈ Lϑ, m ∈ N and w ∈ ϑm(v). If, in addition, ϑP is constant length and recognisable and

|v| > 2κ(ϑ), then

µP([w]) ≤
|v|e|v|htop(Xϑ)

|w|e|w|htop(Xϑ)
.

Proof. Let v ∈ Lϑ, m ∈ N and w ∈ ϑm(v) be fixed. Applying Lemma 5.2.5 to ϑm
P yields

µP([w]) ≥
1

λm
µP([v])P[ϑm

P (v) = w]. (5.5)

Since ϑP is compatible or constant length, we can decompose w into subwords w = w1 · · ·w|v|

such that wj ∈ ϑm(vj) for all j ∈ {1, . . . , |v|}. Hence, it follows by Lemma 5.2.6 that there is a

constant c > 0 such that

P[ϑm
P (v) = w] =

|v|∏
j=1

P[ϑm
P (vj) = wj ] ≥

|v|∏
j=1

c e−|wj |htop(Xϑ) = c|v|e−|w|htop(Xϑ). (5.6)

By Proposition 2.2.3, there is a universal constant D > 0 such that λm ≤ D|ϑm(a)| for all m ∈ N

and a ∈ A. Combining this with (5.5) and (5.6) yields the desired result.

Now, assume additionally that ϑP is recognisable and of constant length ℓ. Then by

Lemma 5.2.6 we have that P[ϑm
P (u) = w] = e|u|htop(Xϑ)e−|w|htop(Xϑ) for every u ∈ L|v|

ϑ with

w ∈ ϑ(u). Thus, the lower bound follows by identical arguments to the above, taking c = ehtop(Xϑ).
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For the upper bound, observe that if |v| > 2κ(ϑ), we also have |ϑm(v)| = ℓm|v| > 2κ(ϑm), for all

m ∈ N, by Lemma 2.2.19. Hence, noting that |u| = |v| and ℓ−m = |v|/|w|, Lemma 5.2.5 gives

that

µP([w]) =
1

ℓm

∑
u∈L|v|

ϑ

µP([u])P[ϑm
P (u) = w] ≤ |v|e|v|htop(Xϑ)

|w|e|w|htop(Xϑ)
.

In the proof of Theorem 5.2.3 we only require the lower bound of Lemma 5.2.7. However, the

upper bound allows us to show that the subshifts we consider in Theorem 5.2.3 do not satisfy

the Gibbs property (5.2), therefore do not satisfy Bowen’s specification property or the weaker

specification property of Climenhaga and Thompson. This is illustrated by the following.

Lemma 5.2.8. Let ϑP = (ϑ,P) be a random substitution satisfying the conditions of Theo-

rem 5.2.3, and let µP denote the corresponding frequency measure. Then there exist constants

c1, c2 > 0 such that for all a ∈ A, m ∈ N and w ∈ ϑm(a),

c1
|w|

e−|w|htop(Xϑ) ≤ µP([w]) ≤
c2
|w|

e−|w|htop(Xϑ).

Proof. The lower bound follows immediately from Lemma 5.2.7, taking c1 = mina∈A cµP([a])

where c is the constant given by Lemma 5.2.7. For the upper bound, let M be the least integer

such that ℓM > 2κ(ϑ) and set c2 = maxu∈Lϑ, |u|≤ℓM |u|e|u|htop(Xϑ). Since µP is a probability

measure, µP([w]) ≤ c2e
−|w|htop(Xϑ)/|w| if |w| ≤ ℓM . On the other hand, if m > M and w ∈ ϑm(a)

then it follows by Lemma 5.2.7 that there is a v ∈ ϑM (a) such that

µP([w]) ≤
|v|e|v|htop(Xϑ)

|w|e|w|htop(Xϑ)
≤ c2

|w|
e−|w|htop(Xϑ).

This completes the proof.

The upper bound on µP in Lemma 5.2.8 is irreconcilable with the bound for the unique

measure of maximal entropy on subshifts with a weak specification property established in [14,

Lemma 5.12]. In particular, the subshifts for which Theorem 5.2.3 establishes intrinsic ergodicity

do not satisfy the weak specification property in [14].
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5.2.5 Proof of Theorem 5.2.3

We now present the proof of Theorem 5.2.3. In addition to the Gibbs property proved in the

previous section, we also utilise the following result, which is proved in [21]. For ease of notation,

we let △ denote the symmetric difference of two sets. That is, given two sets A and B, we write

A△B = (A ∪B) \ (A ∩B).

Lemma 5.2.9 ([21, Lemma 8.8]). Let (X, d) be a compact metric space and let ϱ be a Borel

probability measure on X. If B ⊂ X is measurable and (ξn)n∈N is a sequence of finite measurable

partitions of X for which limn→∞maxP∈ξn diam(P ) = 0, then there exists a sequence of sets

(An)n∈N with An ∈ σ(ξn) and limn→∞ ϱ(An△B) = 0. Here, σ(ξn) denotes the sigma algebra

generated by the partition ξn.

Proof of Theorem 5.2.3. Let µ denote the frequency measure of maximal entropy given by Theo-

rem 5.1.1 and let m ∈ N. For each k ∈ {0, . . . , ℓm − 1}, let Xm,k denote the subset of Xϑ defined

by Xm,k = Sk(ϑm(Xϑ)). It follows by recognisability that these subsets are pairwise disjoint for

different choices of k. Note, by Lemma 2.1.6, that the subsets Xm,k are closed, and since by the

constant length property we have

Sℓm(Xm,k) = Sℓm(Sk(ϑm(Xϑ))) = Sk(ϑm(SXϑ)) = Sk(ϑm(Xϑ)) = Xm,k,

it follows that Xm,k is a Sℓm-invariant subspace of Xϑ. Since every x ∈ Xϑ can be split into

level-m inflation words, we have

Xϑ =

ℓm−1⊔
k=0

Xm,k,

where the union is disjoint due to recognisability. Lemma 2.2.19 implies that r = ⌈κ(ϑ)/(ℓ− 1)⌉+1

satisfies

ℓmr >
ℓm − 1

ℓ− 1
κ(ϑ) + ℓm ≥ κ(ϑm) + ℓm.

By the constant length property, this ensures that every word of length at least 2rℓm has a unique

decomposition into inflation words. This together with Lemma 2.2.17 implies, for all u ∈ L2r
ϑ and

w ∈ ϑm(u), that |w| = 2rℓm and Srℓm([w]) ⊂ ϑm(Xϑ). Let us consider the following partition of
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Xm,k:

ξm,k = Srℓm
({

Sk([w]) : w ∈ ϑm(u) and u ∈ L2r
ϑ

})
.

This in turn yields a partition of Xϑ, namely

ξm =
ℓm−1⋃
k=0

ξm,k.

By way of a contradiction, assume that ν ≠ µ is another ergodic measure of maximal entropy.

Since distinct ergodic measures are mutually singular, there exists an S-invariant set B with

µ(B) = 0 and ν(B) = 1. Note that the diameter of the atoms of ξm tends uniformly to zero as m

tends to infinity, so (ξm)m∈N meets the requirements of Lemma 5.2.9. Applying it to the measure

ϱ′ = (µ+ ν)/2 we obtain that, given ε > 0, there exist m ∈ N and Am ∈ σ(ξm) such that

(µ+ ν)(Am△B) < ε. (5.7)

For k ∈ {0, . . . , ℓm − 1}, let Am,k = Am ∩Xm,k and Bm,k = B ∩Xm,k, and define the conditional

probability measures µm,k and νm,k by

µm,k =
1

µ(Xm,k)
µ|Xm,k

and νm,k =
1

ν(Xm,k)
ν|Xm,k

.

For all j ∈ {0, . . . , ℓm − 1}, we have Sk−j(Xm,j) = Xm,k, and since µ and ν are S-invariant and

the sets Xm,k are disjoint, it follows that

µ(Xm,k) = µ(Xm,j) =
1

ℓm
and ν(B ∩Xm,k) = ν(B ∩Xm,j) =

1

ℓm
.

Consequently, νm,k(Bm,k) = ℓm ν(B ∩Xm,k) = 1. On the other hand, µm,k(Bm,k) = ℓmµ(B ∩

Xm,k) = 0. Since {Xm,k : k ∈ {0, . . . , ℓm − 1}} forms a partition of Xϑ, we can rewrite (5.7) as

ℓm−1∑
k=0

(µm,k + νm,k)(Am,k△Bm,k) = ℓm
ℓm−1∑
k=0

(µ+ ν)((Am△B) ∩Xm,k)

= ℓm(µ+ ν)(Am△B) < ℓmε.
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Hence, there exists a k′ such that

(µm,k′ + νm,k′)(Am,k′△Bm,k′) < ε. (5.8)

Here, we observe that Am,k′ ∈ σ(ξm,k′), and recall that if |v| ≥ 2ℓmr, then the word v has a unique

inflation word decomposition under ϑm. Therefore, there exists a unique j ∈ {0, . . . , ℓm − 1} such

that [v] ⊂ Xm,j .

Note that the system (Xm,j , S
ℓm) equipped with the measure νm,j is an induced subshift

obtained from (Xϑ, S) equipped with the measure ν by inducing on Xm,j . Hence, by Abramov’s

formula (Lemma A.1.10), we have

hν(Xϑ, S) =
1

ℓm
hνm,j (Xm,j , S

ℓm).

The remainder of the proof follows a similar line of arguments to Adler and Weiss’ [2] proof

of intrinsic ergodicity for topologically transitive shifts of finite type, applied to the system

(Xm,k′ , S
ℓm) and the Sℓm-invariant measures µm,k′ and νm,k′ . For ease of notation, in the

following we write k = k
′ and T = Sℓm . Note that

αm,k = {Sk([w]) : w ∈ ϑm(a), a ∈ A}

forms a generating partition of Xm,k, and by the fact that ϑP is of constant length and recognisable,

ξm,k =
r−1∨
j=−r

T−j(αm,k).

Let ηm = {Am,k, Xm,k \ Am,k} and for a given set A ⊆ Xm,k denote by tm(A) the number of

atoms in ξm,k that intersect A. Then, we have

2rℓmhν(Xϑ, S) = 2rhνm,k
(Xm,k, S

ℓm) ≤ Hνm,k
(ξm,k)

≤ Hνm,k
(ηm) +Hνm,k

(ξm,k | ηm)

≤ log 2 + νm,k(Am,k) log(tm(Am,k)) + νm,k(Xm,k \Am,k) log(tm(Xm,k \Am,k)).
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Let Srℓm+k[w] ∈ ξm,k, with w ∈ ϑm(v) for some v ∈ L2r
ϑ . By Lemma 5.2.7, we have that

µm,k(S
rℓm+k([w])) = ℓmµ([w]) ≥ µ([v])

c2r

2re2ℓ
mrhtop(Xϑ)

≥ Ce−2rℓmhtop(Xϑ,S),

taking C = c2r(minv∈L2r
ϑ
µ([v]))/2r. We have that C > 0 since µ([v]) > 0 for all v ∈ Lr

ϑ. Hence,

tm(Am,k) ≤
1

C
µ(Am,k)e

2ℓmrhtop(Xϑ,S)

and

tm(Xm,k \Am,k) ≤
1

C
µ(Xm,k \Am,k)e

2ℓmrhtop(Xϑ,S).

This yields that 0 ≤ log(2) − log(C) + νm,k(Am,k) log(µm,k(Am,k)). By (5.8), we have that

µm,k(Am,k) < ε and νm,k(Am,k) > 1− ε. This implies the following contradiction:

0 ≤ lim
ε→0

(log 2− log(C) + (1− ε) log ε) = −∞.

From Lemma 5.2.7, we have used only the lower bound in the proof of Theorem 5.2.3.

Since this inequality holds under less restrictive conditions, it seems natural to enquire whether

Theorem 5.2.3 can be sharpened accordingly by replacing the constant length assumption with a

weaker condition. However, a closer inspection reveals that the last part of the proof relies on

the detailed control that the constant length assumption provides. A definite answer therefore

remains an open problem.

5.2.6 Random period doubling

We have shown that for the random period doubling substitution

ϑP :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ aa with probability 1,

the frequency measure µ corresponding to p = 1/2 is a measure of maximal entropy for the

associated subshift Xϑ. We now show that this is the unique measure of maximal entropy.
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Theorem 5.2.10. The subshift associated to the random period doubling substitution is in-

trinsically ergodic. Moreover, the unique measure of maximal entropy is the frequency measure

corresponding to p = 1/2.

Our strategy of proof is to construct a random substitution φP = (φ,P) satisfying the

conditions of Theorem 5.2.3 that gives rise to a subshift with the same topological entropy as

Xϑ, for which there exists a factor map π : Xφ → Xϑ. That is, a continuous surjective map for

which π ◦ S = S ◦ π. Uniqueness of the measure of maximal entropy then follows by the intrinsic

ergodicity of the subshift Xφ and the fact that every measure of maximal entropy on Xϑ is the

push-forward of a measure of maximal entropy on Xφ. A proof of this latter fact is given in [51].

Lemma 5.2.11 ([51, Theorem 3.3]). Let X and Y be subshifts with htop(X) = htop(Y ) and let

π : X → Y be a factor map. Then, every measure of maximal entropy on Y is the push-forward

of a measure of maximal entropy on X.

We now give the proof of Theorem 5.2.10.

Proof of Theorem 5.2.10. Let φP = (φ,P) be the random substitution defined over the alphabet

A = {a0, a1, b0, b1} by

φP :



a0 7→


a0b0 with probability 1/2,

b0a1 with probability 1/2,

a1 7→


a0b1 with probability 1/2,

b1a1 with probability 1/2,

b0 7→ a0a0 with probability 1,

b1 7→ a1a1 with probability 1,

and let ν denote the corresponding frequency measure. We claim that φ2
P satisfies the conditions

of Theorem 5.2.3. Since φ2
P gives rise to the same frequency measure as φP, this gives that the

frequency measure ν is the unique measure of maximal entropy for the subshift Xφ. It is clear

that φP is a primitive random substitution of constant length, therefore so is φ2
P. Also, observe

that #φ2(a0) = #φ2(a1) = #φ2(b0) = #φ2(b1) = 4, so the only condition of Theorem 5.2.3 that

it remains to verify is that φ2
P is recognisable. By Lemma 2.2.19, it suffices to show that φP is
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recognisable. To show this, we prove that for all x ∈ X, there is a unique j ∈ {0, 1} and y ∈ X

such that x ∈ S−k(φ(y)). Since all exact inflation words are distinct, for each j ∈ {0, 1}, if x ∈ X

then there is a unique y ∈ X such that x ∈ S−j(φ(y)). Hence, it suffices to show that there is a

unique j ∈ {0, 1} such that x ∈ S−j(φ(X)). Observe that every x ∈ X contains an occurrence of

b0 or b1. If an occurrence of either of these letters is followed by a0, b0 or b1, then this uniquely

determines the choice of j, since these two letter words cannot appear on the overlap of two exact

inflation words. On the other hand, if the following letter is an a1, then j is uniquely determined

by the number of occurrences of a1 before another letter is observed. In particular, if there are

an even number of occurrences of a1, then bja1 lies on the overlap of two inflation tiles and if

there are an odd number, bja1 is contained within a single inflation tile. Thus, φP is recognisable,

therefore satisfies the conditions of Theorem 5.2.3. Hence, the subshift Xφ is intrinsically ergodic.

Observe that a factor map π : Xφ → Xϑ can be defined onto the random period doubling

subshift Xϑ by π(a0) = π(a1) = a , π(b0) = π(b1) = b. Thus, by Lemma 5.2.11, every measure of

maximal entropy on Xϑ is the push-forward of a measure of maximal entropy on Xφ. Since the

subshift Xφ is intrinsically ergodic, it follows that the only measure of maximal entropy on Xϑ is

the push-forward of the unique measure of maximal entropy on Xφ. In particular, the subshift

Xϑ is intrinsically ergodic. By Theorem 5.1.1, the unique measure of maximal entropy is the

frequency measure corresponding to p = 1/2.

5.2.7 The golden mean shift

It was shown in [38] that every topologically transitive shift of finite type can be obtained as

the subshift of a primitive random substitution. For the golden mean shift, we show that the

unique measure of maximal entropy, the Parry measure, can be obtained as the weak*-limit of a

sequence of frequency measures corresponding to primitive random substitutions.

Example 5.2.12 (The golden mean shift). The golden mean shift is the shift of finite type over

the alphabet {a, b} defined by the forbidden word set F = {bb}. The subshift X can be obtained
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as the subshift of the random substitution ϑP defined by

ϑP :


a 7→


aa with probability τ−1,

aba with probability τ−2,

b 7→ b with probability 1.

However, this random substitution is not primitive, so we cannot directly apply our results. To

circumvent this issue, let ε ∈ (0, 1) and let ϑε be the random substitution defined by

ϑε :



a 7→


aa with probability τ−1,

aba with probability τ−2,

b 7→


b with probability 1− ε,

abb with probability ε,

and let µε denote the corresponding frequency measure. For all ε ∈ (0, 1), ϑε is a primitive

random substitution with unique realisation paths, satisfying the disjoint set condition. Since the

space of shift-invariant measures on X is weak*-compact, there exists a shift-invariant measure µ

such that µε converges weak* to µ as ε → 0. One can show that Ra,ε/(λε − 1) → τ2/(τ2 + 1)

as ε → 0, where λε and Ra,ε are the Perron–Frobenius eigenvalue and the entry of the right

Perron–Frobenius eigenvector corresponding to the letter a, respectively, and τ denotes the golden

ratio. Thus, it follows by the upper semi-continuity of entropy and Theorem 4.1.2 that

hµ(X) ≥ lim sup
ε→0

hµε(X) = lim sup
ε→0

1

λε − 1
H⊤

1 R ≥ lim sup
ε→0

−1

λε − 1
Ra,ε(τ

−2 log τ−2 + τ−1 log τ−1)

=
τ2

τ2 + 1
(2τ−2 + τ−1) log τ = log τ ,

where the last equality is a consequence of the characteristic equation τ2 = τ + 1. Since

htop(X) = log τ and the Parry measure is the unique measure of maximal entropy [2, 63] on X,

we conclude that µ must be the Parry measure.

In [38], it was shown that for any topologically transitive shift of finite type, there is an

algorithm which constructs a primitive random substitution that gives rise to that subshift.

Thus, this algorithm yields a primitive random substitution that gives rise to the golden mean
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shift. However, a closer inspection reveals that if the corresponding frequency measure is the

Parry measure then we require two of the realisations to occur with probability zero and the

resulting random substitution is the random substitution ϑP defined in Example 5.2.12, which is

not primitive. As to whether there exists a primitive random substitution for which the Parry

measure is the corresponding frequency measure remains open.

5.2.8 An example with multiple measures of maximal entropy

So far, all of the examples we have considered in this section have been intrinsically ergodic.

However, there exist subshifts of primitive random substitutions that support multiple measures

of maximal entropy. This is illustrated by the following example, the Dyck shift, which supports

two distinct ergodic measures of maximal entropy.

Example 5.2.13 (The Dyck shift). For each i ∈ {1, 2, 3, 4}, let pi = (pi,1, pi,2, pi,3) be a

probability vector and let ϑP = (ϑ,P) be the random substitution defined over the alphabet

A = {(, ), [, ]} by

ϑP :



( 7→


( with probability p1,1,

( ( ) with probability p1,2,

( [ ] with probability p1,3,

) 7→


) with probability p2,1,

( ) ) with probability p2,2,

[ ] ) with probability p2,3,

[ 7→


[ with probability p3,1,

[ ( ) with probability p3,2,

[ [ ] with probability p3,3,

] 7→


] with probability p4,1,

( ) ] with probability p4,2,

[ ] ] with probability p4,3.

Gohlke and Spindeler [39] showed that the corresponding subshift is the Dyck shift, which supports

two distinct ergodic measures of maximal entropy [47]. The random substitution ϑP does not

have unique realisation paths since, for example, the word (()) can be obtained as two different

realisations of () under ϑP.

5.2.9 Outlook

We have established intrinsic ergodicity for several families of random substitution subshifts.

However, we are still far from a classification of intrinsic ergodicity for random substitution
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subshifts. In particular, we highlight that there is a large gap between the theory of measure

theoretic entropy developed in Chapter 4, which applies to all primitive random substitutions,

and the more restrictive conditions that we require to establish intrinsic ergodicity. We conclude

this chapter by presenting several open questions and possible directions for future work.

The intrinsic ergodicity of random period doubling substitution subshift suggests a relaxation

of the recognisability assumption in Theorem 5.2.3 to the disjoint set condition may be possible.

In this more general setting, the conditions of Theorem 5.1.1 are still satisfied, so the frequency

measure corresponding to uniform probabilities is a measure of maximal entropy. Moreover, this

measure satisfies the lower bound of the Gibbs property used in the proof of Theorem 5.2.3.

However, the proof of Theorem 5.2.3 relies on the existence of a finite recognisability radius, which

we no longer have without the assumption of recognisability. Therefore, a different approach will

be required. One possible approach could be to extend the techniques we used to show intrinsic

ergodicity for the subshift of the random period doubling substitution. Namely, by constructing a

surjective measure preserving factor map from the subshift of a recognisable random substitution

satisfying the conditions of Theorem 5.2.3.

It remains open as to whether the subshift associated with the random Fibonacci substitution

is intrinsically ergodic. In Example 5.1.2, we showed that the frequency measure corresponding to

uniform probabilities is not a measure of maximal entropy. However, by Theorem 5.1.4, a measure

of maximal entropy can be obtained as the weak*-limit of a sequence of frequency measures. A

careful analysis of the properties of this measure could provide an indication as to whether or not

it is unique as a measure of maximal entropy.

The Dyck shift illustrates that, in general, primitive random substitutions need not be

intrinsically ergodic. However, the random substitution that gives rise to the Dyck shift is a

somewhat pathological example as it does not have unique realisation paths. We are not currently

aware of any random substitutions with unique realisation paths for which it is known that the

corresponding subshift supports multiple measures of maximal entropy.
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CHAPTER 6

MULTIFRACTAL PROPERTIES OF FREQUENCY
MEASURES

So far, we have developed techniques to study the measure theoretic entropy of the subshift Xϑ

of a primitive random substitution ϑP = (ϑ,P), with respect to the corresponding frequency

measure µP. It follows by the Shannon–McMillan–Breiman theorem (Theorem A.1.9) that

lim
n→∞

logµP([x[−n,n]])

2n+ 1
= hµP(Xϑ)

for µP-almost all x ∈ Xϑ. However, entropy does not give any information about the scaling

behaviour of µP([x[−n,n]]) for non-typical x. In this section, we develop techniques to study this

behaviour. Specifically, we study the fine scaling properties of frequency measures from the

perspective of multifractal analysis. This perspective is relevant in a wide variety of contexts, such

as the geometry of fractal sets and measures and in dynamical systems, with typical applications

to geometric measure theory and number theory. In our setting, our primary objects of study

are the Lq-spectrum, a parametrised family of quantities that capture the inhomogeneous scaling

properties of a measure, and the local dimensions, which capture the exponential growth rate of a

measure around a point. The Lq-spectrum and local dimensions are related through a heuristic

relationship known as the multifractal formalism, first introduced and studied in a physical

context in [40]. It is an important and well-studied question to determine settings in which the

multifractal formalism holds, and to determine qualitative conditions describing its failure.

Much of the work on multifractal analysis has been done in the setting of local dimensions of

self-similar measures (see [3, 28, 29, 48, 72] for some examples) and Birkhoff sums of potentials

in dynamical systems with a finite type property (see, for example, [25, 66] and the references
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therein). As a notable recent example, in Shmerkin’s proof of Furstenberg’s intersection conjecture

[72], the Lq-spectrum is computed for a large class of dynamically self-similar measures and

related to the multifractal analysis of slices of sets. However, we note that alternative proofs of

Furstenberg’s intersection conjecture have been provided by Austin [4] and Wu [77], which do not

rely on techniques from multifractal analysis. For more details on the geometry of measures and

multifractal analysis, we refer the reader to the foundational work of Olsen [60] and the classic

texts of Falconer [23, 24] and Pesin [64].

We have already seen that random substitution subshifts have characteristic features of

(dynamical) self-similarity, but in many cases are far from being shifts of finite type. This is

highlighted by the fact that Theorem 5.2.3 provides a broad class of random substitutions for

which the associated subshift supports a frequency measure that is the unique measure of maximal

entropy but does not satisfy the Gibbs property. Thus, frequency measures typically do not fall

into any of the classes for which the main multifractal properties are already well understood.

Here, we derive symbolic expressions for the Lq-spectrum of frequency measures corresponding

to primitive and compatible random substitutions. We introduce an inflation word analogue of

the Lq-spectrum that reflects the underlying Markov process, in a similar vein to the analogue

of measure theoretic entropy introduced in Chapter 4. For q ≥ 0, we show that this coincides

with the Lq-spectrum and often yields a closed-form formula. For q < 0, it provides a lower

bound for the Lq-spectrum but the two notions need not coincide in general. Our results on the

Lq-spectrum are presented in Section 6.2. Under the additional assumption of recognisability, we

show that the two notions coincide for all q ∈ R. Moreover, we establish that the multifractal

formalism holds, which allows the multifractal spectrum to be obtained. We present our results

on the multifractal spectrum and multifractal formalism in Section 6.3.

The results in this chapter are based on the paper [55], which is joint work with A. Rutar.

6.1 Multifractal analysis and the Lq-spectrum

6.1.1 Local dimensions

One of the primary methods of studying local properties of measures in multifractal analysis

is via local dimensions and the multifractal spectrum. Local dimensions quantify the scaling
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behaviour of a measure at a given point.

Definition 6.1.1. Let µ be a Borel measure supported on a compact metric space X. For each

x ∈ X, we define the lower and upper local dimension of µ at x, respectively, by

dimloc(µ, x) = lim inf
r→0

logµ
(
B(x, r)

)
log r

dimloc(µ, x) = lim sup
r→0

logµ
(
B(x, r)

)
log r

.

When these quantities coincide, we refer to their common value as the local dimension of µ at x,

which we denote by dimloc(µ, x).

Observe that the definition of local dimensions requires a metric structure. For subshifts, a

natural metric can be defined as follows. With this metric, the lower and upper local dimensions

can be expressed in terms of cylinder sets.

Definition 6.1.2. Let A be a finite alphabet. If x, y ∈ AZ are such that x ̸= y but x0 = y0,

then we let n(x, y) denote the largest integer such that xj = yj for all |j| ≤ n. A metric

d : AZ ×AZ → R can be defined by

d(x, y) =


1 if x0 ̸= y0

e−(2n(x,y)+1) if x ̸= y but x0 = y0

0 if x = y

for all x, y ∈ AZ.

We note that the metric d generates the (discrete product) topology on AZ – see [49] for more

details. Throughout this chapter, we assume that the subshifts we consider are equipped with this

metric. If x ∈ AZ, and n ∈ N, then B(x, e−(2n+1)) is precisely the set of elements in X that agree

with x on positions −n up to n; that is, the cylinder set [x[−n,n]]. Moreover, for all r > 0, we have

that B(x, r) = [x[−n(r),n(r)]], where n(r) is the integer such that e−(2n(r)+1) ≤ r < e−(2n(r)−1).

Hence, the local dimensions of a subshift can be characterised as follows.

Proposition 6.1.3. Let µ be a Borel probability measure supported on a subshift X ⊆ AZ. For
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all x ∈ X, the lower and upper local dimensions of µ at x are given by

dimloc(µ, x) = lim inf
n→∞

logµ
(
[x[−n,n]])

2n+ 1

dimloc(µ, x) = lim sup
n→∞

logµ
(
[x[−n,n]])

2n+ 1
.

The multifractal spectrum quantifies the size of the set of points that have a given local

dimension. For α ≥ 0, we define

Fµ(α) = {x ∈ X : dimloc(µ, x) = α} . (6.1)

We quantify the size of each of the sets Fµ(α) via their Hausdorff dimension, which is defined as

follows.

Definition 6.1.4. Let E be a subset of a compact metric space X and let s ≥ 0. For each δ > 0,

let

Hs
δ(E) = inf

{ ∞∑
i=1

(diam(Ui))
s : {Ui} is a countable cover of E by sets of diameter at most δ

}
.

The s-dimensional Hausdorff measure of X is defined by

Hs(E) = sup
δ>0

Hs
δ(E).

The Hausdorff dimension of E is then defined by

dimHE = inf {s ≥ 0: Hs(E) = 0} .

We use the convention that dimH∅ = −∞, which is standard in multifractal analysis.

Definition 6.1.5. Let µ be a Borel measure supported on a compact metric space X. The

multifractal spectrum of µ is the function fµ : [0,∞) → [0,∞) defined by

fµ(α) = dimH Fµ(α)

for all α ≥ 0.
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Related to the local dimensions and multifractal spectrum is the notion of Hausdorff dimension

of a measure. While the multifractal spectrum provides information about the local scaling

behaviour of a measure, the Hausdorff dimension is a global property.

Definition 6.1.6. Let µ be a Borel probability measure supported on a compact metric space X.

The Hausdorff dimension of µ is defined by

dimH µ = inf{dimHE : µ(E) > 0},

where the infimum is taken over all Borel-measurable sets E.

Proposition 6.1.7 ([23, Prop. 10.1]). Let µ be a Borel probability measure supported on a

compact metric space X. Then,

dimH µ = sup{s : dimloc(µ, x) ≥ s for µ-a.e. x}.

6.1.2 The Lq-spectrum

The Lq-spectrum is a well-studied quantity in multifractal analysis which encodes scaling properties

of a measure, in a weak sub-exponential sense. The Lq-spectrum and multifractal spectrum are

closely related, however the Lq-spectrum is generally easier to compute. In the following, we give

the definition for the Lq-spectrum of a shift-invariant measure supported on a subshift. We note

that it is possible to define the Lq-spectrum more generally for measures on arbitrary metric

spaces, however, the following is sufficient for our purposes.

Definition 6.1.8. Let X be a subshift and µ be a shift-invariant Borel probability measure

supported on X. The Lq-spectrum of µ is defined by

τµ(q) = lim inf
n→∞

− 1

n
log

 ∑
u∈Ln(X)

µ([u])q

 .

We also define the upper variant τµ by taking limit superior in place of the limit inferior.

We first list some basic properties of the Lq-spectrum of the measure µ. Here, (a) is well-known

and is a routine consequence of Hölder’s inequality and (b) is proved in [72, Lemma 1.4].

Lemma 6.1.9. Let µ be a shift-invariant measure on X.
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(a) The Lq-spectrum τµ is continuous, increasing and concave on R.

(b) Let αmin = limq→∞ τµ(q)/q and αmax = limq→−∞ τµ(q)/q. Then, for every s < αmin ≤

αmax < t, all n sufficiently large and u ∈ Ln, e−tn ≤ µ([u]) ≤ e−sn. In particular, the local

dimensions satisfy

αmin ≤ inf
x∈X

dimloc(µ, x) ≤ sup
x∈X

dimloc(µ, x) ≤ αmax.

We also note that the Lq-spectrum encodes both the measure theoretic and topological

entropy. In the following, (a) follows immediately from the definition and (b) was proved in [26,

Theorem 1.4].

Proposition 6.1.10. Let µ be a fully-supported shift-invariant measure supported on a subshift

X. Then,

(a) τµ(0) = htop(X), and

(b) if τµ is differentiable at q = 1, then τ ′µ(1) = hµ(X).

We conclude this section by presenting a technical result concerning the Lq-spectrum that

will be useful in later proofs.

Lemma 6.1.11. Let µ be a shift-invariant probability measure supported on a subshift X and

let ζ > 1. Then

τµ(q) =
1

ζ
lim inf
n→∞

− 1

n
log

 ∑
u∈L⌊ζn⌋(X)

µ([u])q

 (6.2)

and

τµ(q) =
1

ζ
lim sup
n→∞

− 1

n
log

 ∑
u∈L⌊ζn⌋(X)

µ([u])q

 . (6.3)

Proof. It follows by standard properties of limits inferior and superior that

τµ(q) ≤
1

ζ
lim inf
n→∞

− 1

n
log

 ∑
u∈L⌊ζn⌋(X)

µ([u])q


τµ(q) ≥

1

ζ
lim sup
n→∞

− 1

n
log

 ∑
u∈L⌊ζn⌋(X)

µ([u])q

 ,
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so it suffices to show the opposite inequalities. For ease of notation, we write Sk,µ(q) =∑
u∈Lk(X) µ([u])

q for each k ∈ N and q ∈ R. First, let q < 0 and let n ∈ N be arbitrary.

Let kn be minimal so that ⌊ζkn⌋ ≥ n. Observe that there is some M ∈ N (independent of n)

so that ⌊ζkn⌋ ≤ n +M : it follows that limn→∞ n/kn = ζ. Then if v ∈ L⌊ζkn⌋(X) is arbitrary,

[v] ⊂ [u] for some u ∈ Ln(X) and µ([v])q ≥ µ([u])q. Thus

S⌊ζkn⌋,µ(q) ≥ Sn,µ(q).

which gives (6.2) for q < 0 since limn→∞ n/kn = ζ.

Similarly, for q ≥ 0, since there are at most (#A)M words v ∈ L⌊ζkn⌋(X) with [v] ⊆ [u], for

each u ∈ Ln(X) there is some v(u) ∈ L⌊ζkn⌋(X) such that µ([v(u)])q ≥ (#A)−qMµ([u])q. Hence,

S⌊ζkn⌋,µ(q) ≥ (#A)−qMSn,µ(q).

This gives (6.2) for q ≥ 0. The arguments for (6.3) follow similarly, by choosing kn maximal so

that ⌊ζkn⌋ ≤ n.

6.1.3 Relation between the Lq-spectrum and multifractal spectrum

In general, it is difficult to compute the multifractal spectrum of a measure. However, in some

cases, the multifractal coincides with the concave conjugate of the Lq-spectrum.

Definition 6.1.12. Let g : R → R be a concave function. The concave conjugate of g is the

function g∗ defined by

g∗(α) = inf
q∈R

{qα− g(q)}.

The function g∗ is itself concave since it is the infimum of a family of affine functions. For more

detail concerning the theory of concave functions, we refer the reader to [68].

In general, the concave conjugate of the Lq-spectrum provides an upper bound for the

multifractal spectrum (this is the content of Proposition 6.1.13). Further, in some cases, it

coincides exactly with the multifractal spectrum. When this is the case, we say that the

multifractal formalism holds. The multifractal formalism is a powerful tool for computing the

multifractal spectrum of a measure. As such, determining conditions under which it holds is a
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central question in multifractal analysis.

Proposition 6.1.13. Let µ be a shift-invariant measure on a subshift X. Then fµ(α) ≤ τ∗µ(α)

for all α ∈ R.

Proof. Let α ∈ R, n ∈ N and ε > 0, and let

Mn,ϵ(α) =
{
u ∈ Ln(X) : e−(2n+1)(α+ϵ) ≤ µ([u]) ≤ e−(2n+1)(α−ϵ)

}
.

In other words, Mn,ϵ(α) is an ϵ-approximation of Fµ(α) at level n. Our strategy is to control

the size of the sets Mn,ϵ(α) in terms of the Lq-spectrum of µ, and then use these sets to build a

good cover of Fµ(α). Since τ∗µ is a concave function, the left and right derivatives exist at every

point. Let q− and q+ denote the left and right derivative of τ∗µ at α, respectively. By concavity,

q− ≥ q+. Let q ∈ [q+, q−]. For the remainder of the proof, we assume that q ≥ 0; the case q < 0

is analogous. Observe that

∑
u∈Ln(X)

µ([u])q ≥
∑

u∈Mn,ε(α)

µ([u])q ≥ e−(2n+1)(α+ε)q#Mn,ε(α). (6.4)

Since, by Lemma 6.1.11, τµ(q) = lim infn→∞(
∑

u∈L2n+1(X) µ([u])
q)/(2n+ 1), there is a positive

integer Nε such that for all n ≥ N , we have
∑

u∈Ln(X) µ([u])
q < e−(2n+1)(τµ(q)−ε). Further, since

q ∈ [q+, q−], we have that αq − τµ(q) = τ∗µ(α), so it follows by (6.4) that,

#Mn,ϵ(α) ≤ e−(2n+1)(τ(q)−ϵ) · e(2n+1)(α+ϵ)q = e(2n+1)(τ∗(α)+(q+1)ϵ) (6.5)

for all n ≥ Nϵ.

Now for each x ∈ Fµ(α), we can find some nx ∈ N so that for all n ≥ nx, µ([x[−n,n]]) ≥

e−(2n+1)(α+ϵ). In particular,

Gϵ :=
∞⋃

n=Nϵ

Mn,ϵ(α)

is a Vitali cover for Fµ(α).

Now suppose {Ij}∞j=1 is any disjoint sub-collection of Gϵ. Then, setting s = τ∗(α) + 2ϵ(1 + q),
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we have

∞∑
j=1

(diam Ij)
s ≤

∞∑
n=Nϵ

∑
u∈Mn,ϵ(α)

(diam[u])s ≤
∞∑

n=Nϵ

e−(2n+1)s#Mn,ϵ(α)

≤
∞∑

n=Nϵ

e−(2n+1)se(2n+1)(τ∗(α)+(q+1)ϵ)

=
∞∑

n=Nϵ

(e−(1+q)ϵ)2n+1 < ∞,

where the third inequality follows by (6.5). Thus, by the Vitali covering theorem, there is a cover

{Ei}∞i=1 for Fµ(α) such that

Hs(Fµ(α)) ≤
∞∑
i=1

(diamEi)
s < ∞

and so dimH Fµ(α) ≤ τ∗(α) + 2ϵ(1 + q). Since ϵ > 0 was arbitrary, the desired result follows.

6.2 Lq-spectra of frequency measures

6.2.1 Inflation word Lq-spectra

Given a primitive random substitution ϑP = (ϑ,P), we can define an analogue of the Lq-spectrum

in terms of its production probabilities, in a similar manner to the inflation word analogue of

measure theoretic entropy introduced in [37]. We will see that, in many cases, this notion coincides

with the Lq-spectrum of the frequency measure associated to ϑP. For each k ∈ N and q ∈ R, we

define

φk(q) = −
∑
a∈A

Ra log

 ∑
s∈ϑk(a)

P[ϑk
P(a) = s]q

 ,

where R = (Ra)a∈A is the right Perron–Frobenius eigenvector of ϑP. We define the inflation

word Lq-spectrum of ϑP by

Tϑ,P(q) = lim inf
k→∞

φk(q)

λk
.

We similarly define the upper variant T ϑ,P by taking a limit supremum in place of the limit

infimum.

We first state some key properties of Tϑ,P(q) that follow easily from the definition. Firstly,
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if ϑP is a primitive and compatible random substitution that satisfies either the disjoint set

condition or identical set condition with identical production probabilities, then the limit defining

Tϑ,P(q) exists for all q ∈ R and is given by a closed-form expression. We will see later that, for

q ≥ 0, these expressions transfer to the Lq-spectrum.

Proposition 6.2.1. Let ϑP be a primitive and compatible random substitution and q ∈ R. If

ϑP satisfies the disjoint set condition, then the limit defining Tϑ,P(q) exists and

Tϑ,P(q) =
1

λ− 1
φ1(q).

If ϑP satisfies the identical set condition and has identical production probabilities, then the limit

defining Tϑ,P(q) exists and

Tϑ,P(q) =
1

λ
φ1(q).

Proof. Fix q ∈ R. By the Markov property of ϑP, for all a ∈ A, k ∈ N and v ∈ ϑk(a),

P[ϑk
P(a) = v] =

∑
s∈ϑ(a)

P[ϑP(a) = s]P[ϑk−1
P (s) = v]. (6.6)

If ϑP satisfies the disjoint set condition, then for every v ∈ ϑk(a) there is a unique s(v) ∈ ϑ(a)

such that v ∈ ϑk−1(s(v)). Thus, for all s ∈ ϑ(a) such that s ≠ s(v), we have P[ϑk−1
P (s) = v] = 0,

and so it follows by (6.6) that

∑
v∈ϑk(a)

P[ϑk
P(a) = v]q =

∑
v∈ϑk(a)

P[ϑP(a) = s(v)]q P[ϑk−1
P (s(v)) = v]q

=
∑

s∈ϑ(a)

P[ϑP(a) = s]q
∑

u∈ϑk−1(s)

P[ϑk−1
P (s) = u]q

=

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

 ·
∏
b∈A

 ∑
u∈ϑk−1(b)

P[ϑk−1
P (b) = u]q

|ϑ(a)|b

,
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where in the final equality we use compatibility to split the second sum into inflation tiles. Thus,

φk(q) = −
∑
a∈A

Ra

∑
b∈A

|ϑ(a)|b log

 ∑
u∈ϑk−1(b)

P[ϑk−1
P (b) = u]q


−
∑
a∈A

Ra log

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q


= λφk−1(q) + φ1(q),

noting that
∑

a∈ARa|ϑ(a)|b = λRb. It follows inductively that

1

λk
φk(q) =

k∑
j=1

1

λj
φ1(q)

k→∞−−−→ 1

λ− 1
φ1(q),

so the limit defining Tϑ,P(q) exists and is equal to (λ− 1)−1φ1(q).

On the other hand, if ϑP satisfies the identical set condition and has identical production

probabilities, then P[ϑk−1
P (s1) = u] = P[ϑk−1

P (s2) = u] for all s1, s2 ∈ ϑ(a). Hence, it follows by

(6.6) that ∑
v∈ϑk(a)

P[ϑk
P(a) = v]q =

∑
v∈ϑk(a)

P[ϑk−1
P (s) = v]q

for any choice of s ∈ ϑ(a). By compatibility and the Markov property of ϑP, we have

∑
v∈ϑk(a)

P[ϑk
P(a) = v]q =

∏
b∈A

 ∑
u∈ϑk−1(b)

P[ϑk−1
P (b) = u]q

|ϑ(a)|b

;

thus,

φk(q) =
∑
b∈A

∑
a∈A

Ra|ϑ(a)|b log

 ∑
v∈ϑk−1(b)

P[ϑk−1
P (b) = v]q

 = λφk−1(q),

noting that
∑

a∈ARa|ϑ(a)|b = Rb. It follows by induction that φk(q)/λ
k = φ1(q)/λ for all k ∈ N,

so we conclude that Tϑ,P(q) exists and equals λ−1φ1(q).

Proposition 6.2.2. Let ϑP be a primitive and compatible random substitution. For all q > 1

and q < 0, the sequence (λ−kφk(q))k is non-decreasing; for all 0 < q < 1, the sequence is

non-increasing.

Proof. This is largely a consequence of Jensen’s inequality. Note that on the interval (0, 1], the
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function x 7→ xq is convex if q > 1 or q < 0, and concave if 0 < q < 1. We prove the claim for

the case q > 1 or q < 0; the other case follows similarly. For all a ∈ A, k ∈ N with k ≥ 2 and

v ∈ ϑk(a), it follows by the Markov property of ϑP that

∑
v∈ϑk(a)

P[ϑk
P(a) = v]q =

∑
v∈ϑk(a)

 ∑
s∈ϑ(a) : v∈ϑk−1(s)

P[ϑP(a) = s]P[ϑk−1
P (s) = v]

q

≤
∑

v∈ϑk(a)

(∑
s∈ϑ(a) : v∈ϑk−1(s) P[ϑP(a) = s]P[ϑk−1

P (s) = v]q∑
s∈ϑ(a) : v∈ϑk−1(s) P[ϑP(a) = s]

)

=
∏
b∈A

 ∑
w∈ϑk−1(b)

P[ϑk−1
P (b) = w]q

|ϑ(a)|b

.

In the second line we have applied Jensen’s inequality and in the third we have used compatibility

to decompose each probability P[ϑk−1
P (s) = w] into inflation tiles. It follows that

1

λk
φk(q) ≥ − 1

λk

∑
b∈A

Rb

∑
a∈A

Ra|ϑ(a)|b log

 ∑
w∈ϑk−1(b)

P[ϑk−1
P (b) = w]q

 =
1

λk−1
φk−1(q),

noting that
∑

a∈ARa|ϑ(a)|b = λ.

The 0 < q < 1 case follows by similar arguments, with Jensen’s inequality giving the opposite

inequality since x 7→ xq is concave.

6.2.2 Lq-spectra for non-negative q

For q ≥ 0, we show that for every primitive and compatible random substitution, the Lq-spectrum

of the corresponding frequency measure coincides with the inflation word analogue introduced in

Section 6.2.1. In particular, we have the following.

Theorem 6.2.3. Let ϑP = (ϑ,P) be a primitive and compatible random substitution with

corresponding frequency measure µP. Then, the limits defining τµP(q) and Tϑ,P(q) exist and

coincide for all q ≥ 0. Moreover, the following bounds hold.

(1) For all 0 ≤ q ≤ 1,
1

λk − 1
φk(q) ≤ τµP(q) ≤

1

λk
φk(q) (6.7)

and (λ−kφk(q))
∞
k=1 converges monotonically to τµP(q) from above.
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(2) For all q ≥ 1,
1

λk
φk(q) ≤ τµP(q) ≤

1

λk − 1
φk(q) (6.8)

and (λ−kφk(q))
∞
k=1 converges monotonically to τµP(q) from below.

We give the proof of Theorem 6.2.3 at the end of this subsection. If ϑP satisfies the disjoint or

identical set condition, then Proposition 6.2.1 and Theorem 6.2.3 together provide a closed-form

formula for the Lq-spectrum of the corresponding frequency measure.

Corollary 6.2.4. Let ϑP = (ϑ,P) be a primitive and compatible random substitution with

corresponding frequency measure µP and let q ≥ 0.

(1) If ϑP satisfies the disjoint set condition, then

τµP(q) =
1

λ− 1
φ1(q).

(2) If ϑP satisfies the identical set condition with identical production probabilities, then

τµP(q) =
1

λ
φ1(q).

In particular, if ϑP satisfies the disjoint set condition or identical set condition with identical

production probabilities, then τµP is analytic on (0,∞).

We now apply Theorem 6.2.3 to calculate the Lq-spectrum for some familiar examples. First,

we obtain a closed-form expression for the Lq-spectrum on [0,∞) for the frequency measure

corresponding to the random period doubling substitution.

Example 6.2.5. Given p ∈ (0, 1), let ϑP be the random period doubling substitution

ϑP :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ aa with probability 1,

and let µP denote the corresponding frequency measure. The random substitution ϑP satisfies
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Figure 6.1: Lower and upper bounds on the Lq-spectrum of the frequency measure corresponding
to the random Fibonacci substitution with p = 1/2, for k = 3 (faint lines), k = 5 (grey lines) and
k = 7 (black lines).

the disjoint set condition, so Corollary 6.2.4 gives that

τµp(q) =
1

λ− 1
φ1(q) = −2

3
log(pq + (1− p)q)

for all q ≥ 0.

As we have already seen, the random Fibonacci substitution does not satisfy the identical

set condition or disjoint set condition. However, in a similar vein to measure theoretic entropy,

we can obtain a sequence of converging lower and upper bounds for the Lq-spectrum of the

corresponding frequency measure from Theorem 6.2.3.

Example 6.2.6. Given p ∈ (0, 1), let ϑP be the random Fibonacci substitution

ϑp :


a 7→


ab with probability p,

ba with probability 1− p,

b 7→ a with probability 1,

and let µP denote the corresponding frequency measure. Theorem 6.2.3 provides lower and upper

bounds for τµP which hold for all q ≥ 0. See Figure 6.1 for a plot of these bounds for k ∈ {3, 5, 7},

in the case that p = 1/2. The bounds displayed were obtained computationally.

The majority of the work in proving Theorem 6.2.3 lies in proving the bounds in (6.7) and
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(6.8). To achieve this, we will make use of the following result, which follows routinely from

standard properties of compatible random substitutions.

Lemma 6.2.7. Let ϑP = (ϑ,P) be a primitive and compatible random substitution and let

q ≥ 1. For all ε > 0, there is an M ∈ N such that for every m ≥ M and v ∈ Lm
ϑ ,

∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

m(Ra+ε)

≤
∑

w∈ϑ(v)

P[ϑP(v) = w]q ≤
∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

m(Ra−ε)

.

For q ≤ 1, the same result holds with reversed inequalities.

Proof. Since ϑP is compatible, the cutting points of inflation tiles are well-defined, so breaking

the sum into inflation tiles we obtain

∑
w∈ϑ(v)

P[ϑP(v) = w]q =
∑

w1∈ϑ(v1)

P[ϑP(v1) = w1]q
∑

w2∈ϑ(v2)

· · ·
∑

wm∈ϑ(vm)

P[ϑP(vm) = wm]q

=
∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

|v|a

.

The result then follows by applying Proposition 2.2.2 to bound |v|a, noting that for all a ∈ A we

have
∑

s∈ϑ(a) P[ϑP(a) = s]q ≤ 1 if q ≥ 1 and
∑

s∈ϑ(a) P[ϑP(a) = s]q ≥ 1 if q ≤ 1.

Proposition 6.2.8. Let ϑP be a primitive and compatible random substitution with corresponding

frequency measure µP. Then, for all q > 1, we have

τµP(q) ≤
1

λ− 1
φ1(q).

Proof. Fix q > 1. Let ε > 0 and, for each n ∈ N, let m(n) be the integer defined by

m(n) =

⌈
n

λ− ε

⌉
.

Then the integers n and m(n) satisfy the conditions of Lemma 2.3.5, so it follows that

∑
u∈Ln

ϑ

µP([u])
q =

∑
u∈Ln

ϑ

 1

λ

∑
v∈Lm(n)

ϑ

µP([v])

|ϑ(v1)|∑
j=1

P[ϑP(v)[j,j+n−1] = u]


q

.

121



Since q > 1, the function x 7→ xq is super-additive on the interval [0, 1], so

∑
u∈Ln

ϑ

µP([u])
q ≥

∑
u∈Ln

ϑ

∑
v∈Lm(n)

ϑ

µP([v])
q

 1

λ

|ϑ(v1)|∑
j=1

P[ϑP(v)[j,j+n−1] = u]

q

≥ 1

λq

∑
v∈Lm(n)

ϑ

µP([v])
q

|ϑ(v1)|∑
j=1

∑
u∈Ln

ϑ

P[ϑP(v)[j,j+n−1] = u]q.

We now bound the probability on the right of this expression by the production probability of

an inflation word. If w(u) ∈ ϑ(v) contains u as a subword in position j, then P[ϑP(v)[j,j+n−1] =

u] ≥ P[ϑP(v) = w(u)]. Hence,

∑
u∈Ln

ϑ

P[ϑP(v)[j,j+n−1] = u]q ≥
∑

w∈ϑ(v)

P[ϑP(v) = w]q

for all j ∈ {1, . . . , |ϑ(v1)|}.

Since ϑP is compatible, by Lemma 6.2.7 there exists an N ∈ N such that for all n ≥ N and

all v ∈ Lm(n)
ϑ

∑
w∈ϑ(v)

P[ϑP(v) = w]q ≥
∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

m(n)(Ra+ε)

.

Hence,

∑
u∈Ln

ϑ

µP([u])
q ≥ 1

λq

∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

m(n)(Ra+ε) ∑
v∈Lm(n)

ϑ

µP([v])
q.

Taking logarithms, rearranging and dividing by n gives

− 1

n
log

∑
u∈Ln

ϑ

µP([u])
q

 ≤ − 1

n
log

 ∑
v∈Lm(n)

ϑ

µP([v])
q

+
1

n
log λq

− m(n)

n

∑
a∈A

(Ra + ε) log

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

 .
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Noting that m(n)/n → (λ− ε)−1 as n → ∞, it follows by Lemma 6.1.11 that

τµP(q) ≤
1

λ− ε
τµP(q) +

1

λ− ε

∑
a∈A

log

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

+ cε

where c := (#A)maxa∈A log(
∑

s∈ϑ(a) P[ϑP(a) = s]q). But ε > 0 was arbitrary; letting ε → 0 and

rearranging we obtain

τµP(q) ≤
1

λ− 1
φ1(q),

which completes the proof.

We now prove the corresponding lower bound.

Proposition 6.2.9. For all q > 1,

τµP(q) ≥
1

λ
φ1(q).

Proof. Let ε > 0 and, for each n ∈ N, let m(n) be the integer defined by

m(n) =

⌈
n

λ− ε

⌉
.

Since q > 1, the function x 7→ xq is convex on the interval [0, 1]. Hence, it follows by Lemma 2.3.5

and two applications of Jensen’s inequality that

∑
u∈Ln

ϑ

µP([u])
q =

∑
u∈Ln

ϑ

 1

λ

∑
v∈Lm(n)

ϑ

µP([v])

|ϑ(v1)|∑
j=1

P[ϑP(v)[j,j+n−1] = u]


q

≤
∑

v∈Lm(n)
ϑ

µP([v])
∑
u∈Ln

ϑ

 1

λ

|ϑ(v1)|∑
j=1

P[ϑP(v)[j,j+n−1] = u]

q

≤ |ϑ|q−1

λq

∑
v∈Lm(n)

ϑ

µP([v])

|ϑ(v1)|∑
j=1

∑
u∈Ln

ϑ

P[ϑP(v)[j,j+n−1] = u]q.

We bound above the probability on the right of this expression by the production probability of a

sufficiently large inflation word contained in u. By compatibility, there is an integer k(n) such

that j + n ≤ |ϑ(v[1,m(n)−k(n)])| for all n ∈ N and v ∈ Lm(n)
ϑ , where lim k(n)/n = 0. In particular,
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for every v ∈ Ln
ϑ, a realisation of ϑ(v[2,m(n)−k(n)]) is contained in u as an inflation word, so

∑
u∈Ln

ϑ

P[ϑP(v)[j,j+n−1] = u]q ≤
∑

w∈ϑ(v2···vm(n)−k(n))

P[ϑP(v2 · · · vm(n)−k(n)) = w]q.

We now bound this quantity uniformly for all v ∈ Lm(n)
ϑ . By Lemma 6.2.7 and the above, there

is an N ∈ N such that for all n ≥ N

∑
u∈Ln

ϑ

µP([u])
q ≤ |ϑ|q−1

λq

∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

(m(n)−k(n)−1)(Ra−ε)

.

Taking logarithms, rearranging and dividing by n gives

− 1

n
log

∑
u∈Ln

ϑ

µP([u])
q

 ≥ m(n)− k(n)− 1

n

∑
a∈A

(Ra − ε) log

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q


− log(|ϑ|q−1/λq)

n

n→∞−−−→ 1

λ− ε

∑
a∈A

(Ra − ε) log

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

 ,

But ε > 0 was arbitrarily, so

τµP(q) ≥
1

λ
φ1(q),

which completes the proof.

We now state the bounds for the q ∈ (0, 1) case. We do not give a proof here since the

arguments mirror the proofs of Propositions 6.2.8 and 6.2.9, except with reversed inequalities:

since x 7→ xq is concave rather than convex and subadditive as opposed to superadditive.

Proposition 6.2.10. If q ∈ (0, 1), then

1

λ− 1
φ1(q) ≤ τµP(q) ≤ τµP(q) ≤

1

λ
φ1(q).

We are now in a position to prove Theorem 6.2.3.

Proof of Theorem 6.2.3. By primitivity, for each k ∈ N, the random substitution ϑk
P gives rise

to the same frequency measure as ϑP. Applying Propositions 6.2.8, 6.2.9 and 6.2.10 to ϑk
P, we
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obtain that
1

λk
φk(q) ≤ τµP(q) ≤ τµP(q) ≤

1

λk − 1
φk(q)

for all q > 1 and
1

λk − 1
φk(q) ≤ τµP(q) ≤ τµP(q) ≤

1

λk
φk(q)

for all 0 < q < 1. Letting k → ∞ gives

τµP(q) = τµP(q) = Tϑ,P(q) = T ϑ,P(q)

for all q ∈ (0, 1) ∪ (1,∞), so the limits defining τµP(q) and Tϑ,P(q) both exist and coincide. The

same holds for q = 0 and q = 1 by continuity. The monotonicity of the bounds λ−kφk(q) follows

by Proposition 6.2.2.

6.2.3 Lq-spectra for negative q

For q < 0, the inflation word Lq-spectrum provides a general lower bound for the Lq-spectrum.

Proposition 6.2.11. Let ϑP be a primitive and compatible random substitution with corre-

sponding frequency measure µP. Then, for all k ∈ N and q < 0, we have

τµP(q) ≥
1

λk − 1
φk(q). (6.9)

In particular,

τµP(q) ≥ T ϑ,P(q) ≥ Tϑ,P(q).

Proof. We prove (6.9) for k = 1. The bounds for k > 1 then follow by considering higher powers

of ϑP. Let ε > 0 be sufficiently small and for n sufficiently large, let m(n) be the integer defined

by

m(n) =

⌈
n

λ− ε

⌉
.

To avoid division by zero, we rewrite Lemma 2.3.5 in a form where we do not sum over elements

equal to zero. Here, we write u ◀ ϑ(v) to mean there exists w ∈ ϑ(v) for which u appears

as a subword of w. For each v ∈ Lm(n)
ϑ and u ∈ Ln

ϑ, let J (v, u) = {j ∈ {1, . . . , |ϑ(v1)|} : u ∈

ϑ(v)[j,j+n−1]}. If j /∈ J (u, v), then P[ϑP(v)[j,j+n−1] = u] = 0, and if u does not appear as a
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subword of any realisations of ϑ(v), then J (u, v) = ∅. Therefore, we can rewrite Lemma 2.3.5 as

µP([u]) =
1

λ

∑
v∈Lm(n)

ϑ
u◀ϑ(v)

µP([v])
∑

j∈J (v,u)

P[ϑP(v)[j,j+n−1] = u].

Hence, by subadditivity of the function x 7→ xq on the domain (0, 1],

∑
u∈Ln

ϑ

µP([u])
q =

∑
u∈Ln

ϑ

 1

λ

∑
v∈Lm(n)

ϑ
u◀ϑ(v)

µP([v])
∑

j∈J (v,u)

P[ϑP(v)[j,j+n−1] = u]


q

≤ 1

λq

∑
u∈Ln

ϑ

∑
v∈Lm(n)

ϑ
u◀ϑ(v)

µP([v])
q
∑

j∈J (v,u)

P[ϑP(v)[j,j+n−1] = u]q

=
1

λq

∑
v∈Lm(n)

ϑ

µP([v])
q
∑
u∈Ln

ϑ
u◀ϑ(v)

∑
j∈J (v,u)

P[ϑP(v)[j,j+n−1] = u]q.

For each j ∈ J (v, u), let wj(u) ∈ ϑ(v) be a word such that wj(u)[j,j+n−1] = u. Note that there

are at most K := 2|ϑ|(#A)|ϑ| different u ∈ Ln
ϑ such that wj(u)[j,j+n−1] = u. Hence,

∑
u∈Ln

ϑ
u◀ϑ(v)

∑
j∈J (v,u)

P[ϑP(v)[j,j+n−1] = u]q ≤
∑
u∈Ln

ϑ
u◀ϑ(v)

∑
j∈J (v,u)

P[ϑP(v) = wj(u)]
q

≤ K
∑

w∈ϑ(v)

P[ϑP(v) = w]q

and it follows that

∑
u∈Ln

ϑ

µP([u])
q ≤ λ−qK

∑
v∈Lm(n)

ϑ

µP([v])
q
∑

w∈ϑ(v)

P[ϑP(v) = w]q.

Thus, by Lemma 6.2.7, for all ε > 0 there is an integer N such that for all n ≥ N , we have

∑
u∈Ln

ϑ

µP([u])
q ≤ λ−qK

∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

m(n)(Ra+ε)
 ∑

v∈Lm(n)
ϑ

µP([v])
q

 .
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Taking logarithms, rearranging and dividing by n gives

− 1

n
log

∑
u∈Ln

ϑ

µP([u])
q

 ≥ − 1

n
log

 ∑
v∈Lm(n)

ϑ

µP([v])
q

+
1

n
log(λ−qK)

− m(n)

n

∑
a∈A

(Ra + ε) log

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

 .

Noting that m(n)/n → (λ− ε)−1 as n → ∞, it follows by Lemma 6.1.11 that

τµP(q) ≥
1

λ− ε
τµP(q) +

1

λ− ε

∑
a∈A

log

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

+ cε

where c := (#A)maxa∈A log(
∑

s∈ϑ(a) P[ϑP(a) = s]q). Letting ε → 0 and rearranging, we obtain

τµP(q) ≥
1

λ− 1
φ1(q),

and by considering higher powers of ϑk
P we obtain (6.9) for all k ∈ N. Finally, letting k → ∞ in

(6.9) gives that τµP(q) ≥ T ϑ,P(q) ≥ Tϑ,P(q), which completes the proof.

In general, the corresponding upper bound does not hold for q < 0, even under compatibility.

In particular, the quantities τµP(q) and Tϑ,P(q) need not coincide. This is illustrated by the

following two examples. In the first, we show that this can occur for frequency measures on the

full shift. Then, in the second we provide a compatible example, which is a slight modification of

the first.

Example 6.2.12. Let p1 < p2 ∈ (0, 1) such that p1 + 3p2 = 1 and let ϑP be the random

substitution defined by

ϑP : a, b 7→



ab with probability p1,

ba with probability p2,

aa with probability p2,

bb with probability p2.

We show for all sufficiently small q < 0 that τµP(q) > Tϑ,P(q). Observe that, for each k ∈ N, the
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word vk = (ab)2
k ∈ ϑk+1(a) ∩ ϑk+1(b) occurs with probability

P[ϑk+1
P (a) = vk] = P[ϑk+1

P (b) = vk] = p2
k

1 .

Since p1 < p2, this is the minimal possible probability with which a level-k inflation word can

occur, so it follows that

lim
q→−∞

Tϑ,P(q)

q
= −1

2
log p1.

Now, let u ∈ L2k+1

ϑ be arbitrary. We show that µP([u]) ≥ p2
k−1

1 p2
k−1

2 /2. Since ϑ(a) = ϑ(b) with

identical production probabilities, it follows by Lemma 2.3.5 that, for any choice of w ∈ L2k+1
ϑ ,

µP([u]) =
1

2

(
P[ϑP(w)[1,2k+1] = u] + [ϑP(w)[2,2k+1+1] = u]

)
.

If P[ϑP(w)[1,2k+1] = u] ≥ p2
k−1

1 p2
k−1

2 , then we are done. Otherwise, at least half of the letters

in v must be mapped to ab. But then for u to appear from the second letter, at least half of

the letters in v must be mapped to ba or bb, so P[ϑP(w)[2,2k+1+1] = u] ≥ p2
k−1

1 p2
k−1

2 . Hence,

µP([u]) ≥ p2
k−1

1 p2
k−1

2 /2 so, in particular,

min
u∈L2k+1

ϑ

µP([u]) ≥
1

2
p2

k−1

1 p2
k−1

2 .

It follows that

lim
q→−∞

τµP(q)

q
≤ −1

4
(log p1 + log p2) < −1

2
log p1 = lim

q→−∞

Tϑ,P(q)

q
.

Example 6.2.13. Let p1 < p2 ∈ (0, 1) such that p1 + 3p2 = 1 and let ϑP be the random

substitution defined by

ϑP : a, b 7→



ab ba with probability p1,

ba ab with probability p2,

ab ab with probability p2,

ba ba with probability p2.
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By similar arguments to the previous example, it can be shown that

lim
q→−∞

τµP(q)

q
≤ −1

8
(log p1 + log p2) < −1

4
log p1 = lim

q→−∞

Tϑ,P(q)

q
.

In particular, there exists a q0 < 0 such that τµP(q) < Tϑ,P(q) for all q < q0.

6.2.4 Recognisable random substitutions

A key feature of the random substitutions in Examples 6.2.12 and 6.2.13 is the existence

of legal words u and v for which there are distinct j1, j2 ∈ {1, . . . , |ϑ(v1)|} such that u ∈

ϑ(v)[j1,j1+|v|−1] ∩ ϑ(v)[j2,j2+|v|−1]. The inflation word Lq-spectrum does not capture the averaging

procedure across these realisations, thus it is possible for Tϑ,P(q) and τµP(q) to be disparate for

q < 0. If we additionally assume recognisability, then we can exclude this possibility.

Theorem 6.2.14. Let ϑP be a primitive, compatible, and recognisable random substitution with

corresponding frequency measure µP. Then for all q ∈ R,

τµP(q) = Tϑ,P(q) =
1

λ− 1
φ1(q).

It follows from Proposition 6.2.11 that (λ− 1)−1φ1(q) is a lower bound for the Lq-spectrum,

so it only remains to show the upper bound. Central to the proof of this bound is the following

version of the renormalisation lemma. In the proof of Theorem 6.2.14, we only require the upper

bound in the following. However, we will use the lower bound when we consider the multifractal

formalism in Section 6.3. Recall that, for a recognisable random substitution, the recognisable

core of a legal word u with length at least twice the recognisability radius, is the largest inflation

word, appearing as a subword of u, that has a unique decomposition into exact inflation words.

Lemma 6.2.15. Let ϑP = (ϑ,P) be a primitive and compatible random substitution, with

corresponding frequency measure µP and let u ∈ Lϑ. If v ∈ Lϑ and w ∈ ϑ(v) contains u as a

subword, then

µP([u]) ≥
1

λ
µP([v])P[ϑP(v) = w].

If, additionally, ϑP is recognisable, |u| > 2κ(ϑ) and w′ is the recognisable core of u with v′ ∈ Lϑ
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the unique legal word such that w′ ∈ ϑ(v′), then

µP([u]) ≤
κ(ϑ)

λ
µP([v

′])P[ϑP(v
′) = w′].

Proof. If u is a subword of w ∈ ϑ(v), then µP([u]) ≥ µP([w]). Thus by Lemma 2.3.5 applied to

µP([w]),

µP([u]) ≥
1

λ
µP([v])P[ϑP(v) = w].

Now, assume that ϑP is recognisable, |u| > 2κ(ϑ) and w′ ∈ ϑ(v′) is the recognisable core of u.

Let k be an integer such that every t ∈ Lk
ϑ has |ϑ(t)| ≥ k + |ϑ(v1)|. Since there are at most

κ(ϑ) letters of u preceding the recognisable core, if t ∈ Lk
ϑ is a word for which u ∈ ϑ(t)[j,j+|u|−1]

for some j ∈ {1, . . . , |ϑ(t1)|}, then ti · · · ti+|v|−1 = v′ for some i ∈ {1, . . . , κ(ϑ)}. Moreover, since

there is a unique way to decompose w′ into exact inflation words, for each t ∈ Lk
ϑ there can be at

most one j ∈ {1, . . . , ϑ(t1)} such that u ∈ ϑ(t)[j,j+|u|−1]. Hence, it follows by Lemma 2.3.5 that

µP([u]) =
1

λ

∑
t∈Lk

µP([t])

|ϑ(t1)|∑
j=1

P[ϑP(t)[j,j+|u|−1] = u]

≤ 1

λ

κ(ϑ)∑
i=1

∑
t∈Lk

ϑ
ti···ti+|v|−1=v′

µP([t])P[ϑP(v
′) = w′]

=
κ(ϑ)

λ
µP([v

′])P[ϑP(v
′) = w′],

which completes the proof.

Using Lemma 6.2.15, we prove the following upper bound on the Lq-spectrum for q < 0.

Proposition 6.2.16. If ϑP is a primitive, compatible and recognisable random substitution,

then, for all k ∈ N and q < 0, we have

τµP(q) ≤
1

λ− 1
φ1(q).

Proof. Again, it suffices to verify the bounds in the case k = 1. To this end, let ε > 0 be
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sufficiently small and, for each n ∈ N sufficiently large, let m(n) be the integer defined by

m(n) =

⌊
n

λ− ε

⌋
.

For each u ∈ Ln+2κ(ϑ)
ϑ , let w(u) denote the recognisable core of u. Further, let v(u) denote the

unique legal word such that w(u) ∈ ϑ(v(u)). Then, by Lemma 6.2.15,

µP([u]) ≤
κ(ϑ)

λ
µP([v(u)])P[ϑP(v(u)) = w(u)]. (6.10)

For all u ∈ Ln+2κ(ϑ)
ϑ , the recognisable core w(u) has length at least n so, by compatibility, there

is an integer N such that if n ≥ N , then |v(u)| ≥ m(n) for all u ∈ Ln+2κ(ϑ)
ϑ . In particular,

for every u there exists a v ∈ Lm(n)
ϑ such that µP([v(u)]) ≤ µP([v]) and a w ∈ ϑ(v) such that

P[ϑP(v(u)) = w(u)] ≤ P[ϑP(v) = w]. Hence, it follows by (6.10) and Lemma 6.2.7 that

∑
u∈Ln+2κ(ϑ)

ϑ

µP([u])
q ≥ 1

λq

∑
v∈Lm(n)

ϑ

µP([v])
q
∑

w∈ϑ(v)

P[ϑP(v) = w]q

≥ 1

λq

∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

m(Ra−ε) ∑
v∈Lm(n)

ϑ

µP([v])
q,

noting that since q < 0, the function x 7→ xq is decreasing on (0, 1]. Taking logarithms, rearranging

and dividing by n gives

− 1

n
log

∑
u∈Ln

ϑ

µP([u])
q

 ≤ − 1

n
log

 ∑
v∈Lm(n)

ϑ

µP([v])
q

+
1

n
log λq

− m(n)

n

∑
a∈A

(Ra − ε) log

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

 .

Noting that m(n)/n → (λ− ε)−1 as n → ∞, it follows by Lemma 6.1.11 that

τµP(q) ≤
1

λ− ε
τµP(q) +

1

λ− ε

∑
a∈A

log

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

+ cε
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where c := (#A)maxa∈A log(
∑

s∈ϑ(a) P[ϑP(a) = s]q). Letting ε → 0 and rearranging, we obtain

τµP(q) ≤
1

λ− 1
φ1(q),

which completes the proof.

We now give the proof of Theorem 6.2.14.

Proof of Theorem 6.2.14. In the case q ≥ 0, the result follows from Corollary 6.2.4, noting

that every recognisable random substitution satisfies the disjoint set condition. For q < 0, the

conclusion follows by combining the upper bound on τµP(q) given by Proposition 6.2.16 with the

lower bound given by Proposition 6.2.11.

6.2.5 Recovering entropy from the Lq-spectrum

Since the Lq-spectrum encodes both topological and measure theoretic entropy, Theorem 6.2.3

provides an alternative means of proving the coincidence of these quantities with the inflation

word analogues introduced in Chapters 3 and 4 for all random substitutions that satisfy the

conditions of Theorem 6.2.3. In particular, we obtain the conclusion of Proposition 3.2.2 in full

generality and the conclusion of Theorem 4.1.2 under the additional assumption of compatibility.

Theorem 6.2.17. Let ϑP = (ϑ,P) be a primitive and compatible random substitution with

corresponding frequency measure µP.

(1) The limit

lim
k→∞

1

λk

∑
a∈A

Ra log(#ϑk(a))

exists and is equal to htop(Xϑ).

(2) The Lq-spectrum of µP is differentiable at 1. Moreover, the limit

lim
k→∞

1

λk

∑
a∈A

Ra

∑
v∈ϑk(a)

−P[ϑk
P(a) = v] log(P[ϑk

P(a) = v])

exists and is equal to τ ′µP
(1) = hµP(Xϑ) = dimH µP.
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Proof of Theorem 6.2.17. We first establish the result for topological entropy. By Theorem 6.2.3,

the limit defining Tϑ,P(0) exists; in particular,

lim
m→∞

1

λm

∑
a∈A

Ra log(#ϑm(a))

exists. Since htop(Xϑ) = −τµP(0) = −Tϑ,P(0), we conclude that

htop(Xϑ) = − lim
m→∞

1

λm

∑
a∈A

Ra log(#ϑm(a))

as claimed.

Now we consider measure theoretic entropy. For notational simplicity, we set

ρk = −
∑
a∈A

Ra

∑
s∈ϑk(a)

P[ϑk
P(a) = s] log(P[ϑk

P(a) = s]).

for each k ∈ N. We first make the following elementary observation: if f and g are concave

functions with f(1) = g(1) and f(x) ≤ g(x) for all x ≥ 1, then f+(1) ≤ g+(1). Indeed, for all

ϵ > 0,
f(1 + ϵ)− f(1)

ϵ
≤ g(1 + ϵ)− g(1)

ϵ
,

and taking the limit as ϵ → 0 (which always exists by concavity) yields the desired inequality.

Recall that τµP and λ−kφk are concave functions with τµP(1) = φk(1) = 0 for all k ∈ N.

Moreover, φk is differentiable for all k ∈ N with φ′
k(1) = ρk and, by Proposition 6.2.2,

(
λ−kφk

)
k

converges monotonically to τµP from below. Thus, it follows by concavity, and the fact that

τµP(1) = λ−kφk(1) = 0 for all k, that ρk/λ
k is a monotonically increasing sequence bounded

above by τ+µP
(1), so the limit exists. Therefore, by these observations,

τ+µP
(1) = lim

k→∞

ρk
λk

,

since φk(q)/(λ
k − 1) ≥ τµP(q) for all q ∈ (0,∞).

The result for τ−µP
(1) follows by an identical argument, instead using monotonicity and the

corresponding bounds for q ∈ (0, 1). Thus τ ′µP
(1) = limk→∞ ρk/λ

k, so the desired result follows

by Lemma 6.1.9(c).
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6.3 A multifractal formalism for frequency measures

For primitive, compatible and recognisable random substitutions, Theorem 6.2.14 provides a

closed-form formula for the Lq-spectrum for all q ∈ R. In this section, we prove that the

multifractal formalism holds for all such random substitutions. This allows the multifractal

spectrum to be obtained from the Lq-spectrum.

Theorem 6.3.1. Let ϑP be a primitive, compatible and recognisable random substitution with

corresponding frequency measure µP. Then, the multifractal formalism holds for µP. Moreover,

fµP = τ∗µP
is an analytic and concave function.

Our strategy of proof is to establish a variational principle by considering typical local dimen-

sions of one frequency measure µP relative to another frequency measure µQ. The multifractal

formalism then follows from this dimensional result combined with the formula for the Lq-spectrum

proved in Theorem 6.2.14 – we give the proof in Section 6.3.2.

6.3.1 Non-typical local dimensions

To prove the multifractal formalism holds for a given frequency measure µP, we show that for

every α ∈ [αmin, αmax], there exists another frequency measure µQ such that dimH µQ ≥ τ∗µP
(α)

and dimloc(µP, x) = α for µQ-almost every x ∈ Xϑ. Given a primitive set-valued substitution ϑ,

permissible probabilities P and Q, m ∈ N and a ∈ A, we define the quantity Hm,a
P,Q by

Hm,a
P,Q =

∑
v∈ϑm(a)

−P[ϑm
Q(a) = v] logP[ϑm

P (a) = v].

Further, let Hm
P,Q denote the vector (Hm,a

P,Q)a∈A. We first prove some properties of the quantity

Hm
P,Q that we will use in the proof of Proposition 6.3.6.

Lemma 6.3.2. If ϑ is a primitive and compatible set-valued substitution and P and Q are

permissible probabilities, then for all m ∈ N, a ∈ A and s ∈ ϑ(a),

∑
v∈ϑm(s)

P[ϑm
Q(s) = v] logP[ϑm

P (s) = v] =
∑
b∈A

|ϑ(a)|bHm,b
P,Q.

Proof. Since ϑ is compatible, we can decompose each v ∈ ϑm(s) into inflation words v =
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v1 · · · v|ϑ(a)|. By the Markov property of ϑP (respectively ϑQ), we have

P[ϑm
P (s) = v] = P[ϑm

P (s1) = v1] · · ·P[ϑm
P (s|ϑ(a)|) = v|ϑ(a)|].

and it follows that

∑
v∈ϑm(s)

P[ϑm
Q(s) = v] logP[ϑm

P (s) = v] =
∑
b∈A

|ϑ(a)|b
∑

w∈ϑm(b)

P[ϑm
Q(b) = w] logP[ϑm

P (b) = w]

=
∑
b∈A

|ϑ(a)|bHm,b
P,Q,

which completes the proof.

Lemma 6.3.3. If ϑ is a primitive and compatible set-valued substitution satisfying the disjoint set

condition, with right Perron–Frobenius eigenvector R, and P and Q are permissible probabilities,

then
1

λm
Hm

P,Q ·R → 1

λ− 1
H1

P,Q ·R

as m → ∞.

Proof. Since ϑ satisfies the disjoint set condition, for all m ∈ N and a ∈ A,

Hm+1
P,Q ·R =

∑
a∈A

Ra

∑
v∈ϑm+1(a)

P[ϑm+1
Q (a) = v] logP[ϑm+1

P (a) = v]

=
∑
a∈A

Ra

∑
s∈ϑ(a)

P[ϑQ(a) = s] logP[ϑP(a) = s]

+
∑
a∈A

Ra

∑
s∈ϑ(a)

P[ϑQ(a) = s]
∑

v∈ϑm(s)

P[ϑm
Q(s) = v] logP[ϑm

P (s) = v]

= H1
P,Q ·R+

∑
b∈A

Hm,b
P,Q

∑
a∈A

|ϑ(a)|bRa

= H1
P,Q ·R+ λ

∑
b∈A

RbH
m,b
P,Q

= H1
P,Q ·R+ λHm

P,Q ·R.

In the second equality we have used the Markov property of ϑP and ϑQ, laws of logarithms, and

that
∑

v∈ϑm(s) P[ϑm
Q(s) = v] = 1 for all s ∈ ϑ(a); in the third we have applied Lemma 6.3.2 and

the fourth follows from the fact that λ is an eigenvalue of the substitution matrix. Applying the
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above inductively,

1

λm
Hm

P,Q ·R =
m∑
j=1

1

λj
H1

P,Q ·R m→∞−−−−→ 1

λ− 1
H1

P,Q ·R,

which completes the proof.

Given a recognisable random substitution ϑP = (ϑ,P), any bi-infinite sequence x ∈ Xϑ can

be written uniquely as a bi-infinite concatenation of exact inflation words: x = · · ·w−1w0w1 · · · .

Moreover, there is a unique y ∈ Xϑ and j ∈ {0, . . . , |ϑ(y0)| − 1} such that x ∈ Sj(ϑ(y)). For each

a ∈ A and w ∈ ϑ(a), we define the inflation word frequency of (a,w) in x ∈ Xϑ by

fx(a,w) = lim
n→∞

fn
x (a,w)

fn
x (a,w) =

1

2n+ 1
#{m : am = a,wm = w,wm is contained in x[−n,n]},

provided the limit exists. For a given frequency measure µP, the inflation word frequency of a

µP-typical word is determined by the production probabilities. Specifically, we have the following.

Lemma 6.3.4. Let ϑP = (ϑ,P) be a primitive, compatible and recognisable random substitution

with corresponding frequency measure µP. For µP-almost every x ∈ Xϑ , the inflation word

frequency exists and is given by

fx(a,w) =
1

λ
RaP[ϑP(a) = w],

for all a ∈ A and w ∈ ϑ(a).

Proof. Let Aa,w be the set of points x ∈ Xϑ such that the above does not hold. We show

that Aa,w is a null set. Taking the complement and then the intersection over all a,w gives a

full-measure set with the required property. Given ε > 0, let E(n, ε) be the set of x ∈ Xϑ such

that ∣∣fn
x (a,w)−

1

λ
RaP[ϑP(a) = w]

∣∣ > ε.
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By the Borel–Cantelli lemma, it suffices to show that

∑
n∈N

µP(E(n, ε)) < ∞

for all ε > 0 in order to conclude that Aa,w is a nullset. To this end, we show that µP(E(n, ε))

decays exponentially with n. Given u with |u| = 2n+ 1 > 2κ(ϑ), let uR denote the recognisable

core of u, which has length at least |u| − 2κ(ϑ). Lemma 6.2.15 gives that

µP([u]) ≤
κ(ϑ)

λ
µP([v])P[ϑP(v) = uR] =

κ(ϑ)

λ
µP([v])

|v|∏
i=1

P[ϑP(vi) = wi,vi ]

where each wi,vi is the inflated image of vi in uR. By compatibility, we can choose an integer

N such that every v of length at least N satisfies |v|(Ra − ε/3) ≤ |v|a ≤ |v|(Ra + ε/3) for all

a ∈ A. For each v and a ∈ A, let Aa(v) denote the set of u′ ∈ ϑ(v) such that the frequency of

indices i ∈ {j : aj = a} with wi,a = w deviates from P[ϑP(a) = w] by more than ε/3. Since ϑP

acts independently on letters, it follows by Cramér’s theorem (Theorem A.2.1) that the sum∑
u′∈A(v) P[ϑP(v) = u′] decays exponentially with |v|a (and hence with |v|). In particular, there

is a constant C > 0, independent of the choice of v, such that

∑
u′∈A(v)

P[ϑP(v) = u′] ≤ e−Cn. (6.11)

Note that if u is a sufficiently long legal word and has [u] ∩ E(n, ε) = ∅, then we require that

uR ∈ A(v). Indeed, if u′ /∈ A(v) and |v| ≥ N , then the relative inflation word frequency of w is

bounded above by

{j : aj = a}
|v|

|v|
|u|

(
P[ϑP(a) = w] +

ε

3

)
≤ 1

λ

(
Ra +

ε

3

)(
P[ϑP(a) = w] +

ε

3

)
≤ 1

λ
RaP[ϑP(a) = w] + ε

and, similarly, bounded below by RaP[ϑP(a) = w]/λ − ε; hence, [uR] ∩ E(n, ε) = ∅. Let Vn

denote set of all words that appear as the (unique) preimage of the recognisable core of a word of
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length n. It then follows by Lemma 6.2.15 that

µP(E(n, ε)) ⩽
∑
u∈Ln

ϑ
[u]∩E(n,ε)̸=∅

µP([u]) ≤
κ(ϑ)

λ

∑
v∈Vn

µP([v])
∑

u′∈A(v)

P[ϑP(v) = u′] ⩽ e−Cn,

where in the final inequality we have used (6.11) and that

∑
v∈Vn

µP([v]) ≤
n∑

j=1

∑
v∈Lj

ϑ

µP([v]) ≤ n,

absorbing this contribution and the κ(ϑ)/λ factor into the constant C. It follows that

∞∑
n=1

µP(E(n, ε)) ≤
∞∑
n=1

e−Cn < ∞,

and the result then follows by the Borel–Cantelli lemma.

Finally, we require the following bounds on the exponential scaling rate of measures of

cylinders, which is a consequence of Theorem 6.2.3 and standard properties of the Lq-spectrum

and multifractal spectrum. In particular, these give bounds on the possible local dimensions of

the measure.

Proposition 6.3.5. If ϑP is a primitive and compatible random substitution with corresponding

frequency measure µP, then there are values 0 < s1 < s2 < ∞ and c1, c2 > 0 such that for all

n ∈ N and v ∈ Ln(Xϑ) = Ln
ϑ, we have

s1n+ c1 ≤ logµP([v]) ≤ s2n+ c2

Proof. By Theorem 6.2.3, for all k ∈ N and q > 1,

τµP(q) ≤
1

λk − 1
φk(q);

and for q < 0,
1

λk − 1
φk(q) ≤ τµP(q),
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Moreover, for each k, with

βk,min := lim
q→∞

φk(q)

q(λk − 1)
= − 1

λk − 1

∑
a∈A

Ra log

(
min

v∈ϑk(a)
P[ϑk

P(a) = v]

)
βk,max := lim

q→−∞

φk(q)

q(λk − 1)
= − 1

λk − 1

∑
a∈A

Ra log

(
max

v∈ϑk(a)
P[ϑk

P(a) = v]

)
,

it follows that [βk,min, βk,max] ⊂ (0,∞) is a decreasing nested sequence of intervals, so with

βmin = limk→∞ βk,min and βmax = limk→∞ βk,max,

0 < βmin ≤ lim
q→∞

τµP(q) ≤ lim
q→−∞

τµP(q) ≤ βmax < ∞.

Applying Lemma 6.1.9(b) gives the result.

Finally, we obtain our main conclusion concerning relative local dimensions.

Proposition 6.3.6. Let ϑ be a primitive, compatible and recognisable set-valued substitution,

let P and Q be permissible probabilities, and let µP and µQ denote the respective frequency

measures. Then, for µQ-almost all x ∈ Xϑ,

dimloc(µP, x) =
1

λ− 1

∑
a∈A

Ra

∑
v∈ϑ(a)

−P[ϑm
Q(a) = v] logP[ϑm

P (a) = v]. (6.12)

Proof. Fix m ∈ N. It follows by Lemma 2.2.19 that since ϑP is recognisable, so is ϑm
P . For

each x ∈ Xϑ and n ∈ N with n > κ(ϑm), let un−(x) denote the recognisable core of x[−n,n] and

let un+(x) denote an inflation word of minimal length that contains x[−n,n]. By compatibility,

|un−(x)|/(2n+1) → λ−m and |un+(x)|/(2n+1) → λ−m as n → ∞. Further, let vn−(x) be the legal

word such that un−(x) ∈ ϑm(vn−(x)) and vn+(x) be the legal word such that un+(x) ∈ ϑm(vn+(x)).

Then, it follows by Lemma 6.2.15 and the definition of local dimension that

lim inf
n→∞

(
− 1

2n+ 1
logµP([u

n
−(x)])−

1

2n+ 1
logP[ϑP(v

n
−(x)) = un−(x)]

)
≤ dimloc(µP, x) ≤ dimloc(µP, x)

≤ lim sup
n→∞

(
− 1

2n+ 1
logµP([u

n
+(x)])−

1

2n+ 1
logP[ϑP(v

n
+(x)) = un+(x)]

)
.
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By Proposition 6.3.5, there exists a constant C ≥ 0 such that for all x ∈ Xϑ,

0 ≤ lim inf
n→∞

− 1

2n+ 1
logµP([u

n
−(x)]) ≤ lim sup

n→∞
− 1

2n+ 1
logµP([u

n
+(x)]) ≤ C.

Hence, it follows from the above that

lim inf
n→∞

− 1

2n+ 1
logP[ϑP(v

n
−(x)) = un−(x)]

≤ dimloc(µP, x) ≤ dimloc(µP, x)

≤ lim sup
n→∞

− 1

2n+ 1
logP[ϑP(v

n
+(x)) = un+(x)] +

C

λm
.

(6.13)

We now show that for µQ-almost all x ∈ Xϑ,

lim inf
n→∞

− 1

n
logP[ϑP(v

n
−(x)) = un−(x)] = lim sup

n→∞
− 1

n
logP[ϑP(v

n
+(x)) = un+(x)]

=
1

λm
Hm

P,Q ·R.

By compatibility, we can decompose the production probabilities into inflation tiles as

P[ϑm
P (vn−(x)) = un−(x)] =

∏
a∈A

∏
w∈ϑm(a)

P[ϑm
P (a) = w]Na,w(x,n),

where, for each a ∈ A and w ∈ ϑm(a), Na,w(x, n) denotes the number of a’s in vn−(x) that map

to w. It follows by Lemma 6.3.4, applied to ϑm
Q, that for µQ-almost all x ∈ Xϑ,

1

2n+ 1
Na,w(x, n) →

1

λm
RaP[ϑm

Q(a) = w]

as n → ∞ for all a ∈ A and w ∈ ϑm(a). Hence, it follows that

lim
n→∞

− 1

2n+ 1
logP[ϑm

P (vn−(x)) = un−(x)]

=
1

λm

∑
a∈A

Ra

∑
v∈ϑm(a)

P[ϑm
Q(a) = v] logP[ϑm

P (a) = v]

=
1

λm
Hm

P,Q ·R,

with the same convergence holding for un+(x) by identical arguments. Thus, it follows from (6.13)
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that
1

λm
Hm

P,Q ·R ≤ dimloc(µP, x) ≤ dimloc(µP, x) ≤
1

λm
Hm

P,Q ·R+
C

λm
.

Since the above holds for all m ∈ N, by letting m → ∞ it follows by Lemma 6.3.3 that dimloc(µP, x)

exists and

dimloc(µP, x) =
1

λ− 1
H1

P,Q ·R,

which completes the proof.

6.3.2 Proof of the multifractal formalism

In this section, we apply the results obtained in the previous subsection, along with results on

the Lq-spectrum under recognisability, to prove Theorem 6.3.1.

Proof of Theorem 6.3.1. In light of Proposition 6.1.13, it remains to show that fµP(α) ≥ τ∗µP
(α)

for each α ∈ R. By Theorem 6.2.14, for all q ∈ R, we have

τµP(q) =
1

λ− 1
φ1(q) =

1

λ− 1

∑
a∈A

RaTa(q)

where, for each a ∈ A,

Ta(q) = − log

 ∑
s∈ϑ(a)

P[ϑP(a) = s]q

 .

First, fix α ∈ (αmin, αmax) and let q ∈ R be chosen so that τ ′µP
(q) = α. Observe that

qα− τµP(q) = τ∗µP
(α). Then define Q by the rule

P[ϑQ(a) = s] = P[ϑP(a) = s]qeTa(q)
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for all a ∈ A and s ∈ ϑ(a). Then by Theorem 6.2.17,

dimH µQ =
1

λ− 1

∑
a∈A

Ra

(
−
∑

v∈ϑ(a)

P[ϑQ(a) = v] logP[ϑQ(a) = v]
)

= q · 1

λ− 1

∑
a∈A

Ra

(
−
∑

v∈ϑ(a)

P[ϑQ(a) = v] logP[ϑP(a) = v]
)

− 1

λ− 1

∑
a∈A

RaTa(q)
∑

v∈ϑ(a)

P[ϑQ(a) = v]

= qα− τµP(q) = τ∗µP
(α)

since

τ ′µP
(q) =

1

λ− 1

∑
a∈A

Ra

−
∑

v∈ϑ(a) P[ϑP(a) = v]q logP[ϑP(a) = v]

e−Ta(q)

=
1

λ− 1

∑
a∈A

Ra

(
−
∑

v∈ϑ(a)

P[ϑQ(a) = v] logP[ϑP(a) = v]
)
.

In fact, this shows that dimloc(µP, x) = α for µQ-almost all x ∈ Xϑ by Proposition 6.3.6. Thus

fµP(α) ≥ dimH µQ = τ∗µP
(α), as required.

The result for α = αmin (resp. α = αmax) follows similarly by taking a degenerate probability

vector Q assigning equal value to the realisations of ϑ(a) with maximal (resp. minimal) probabil-

ities given by P, and zero otherwise. The corresponding non-degenerate sub-substitution is also

compatible and recognisable, so the same arguments yield the corresponding bounds.

6.3.3 Examples

Example 6.3.7. Let p > 0 and let ϑP be the random substitution defined by

ϑP :


a 7→


abb with probability p,

bab with probability 1− p,

b 7→ aa with probability 1,
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τ1/5
τ2/5

(a) Lq-spectrum

τ∗
1/5

τ∗
2/5

(b) Multifractal spectrum

Figure 6.2: Lq-spectrum and multifractal spectrum corresponding to the frequency measure in
Example 6.3.7 for p ∈ {1/5, 2/5}.

and let µP denote the corresponding frequency measure. The random substitution ϑP is compati-

ble, with corresponding primitive substitution matrix

M =

1 2

2 0

 ,

Perron–Frobenius eigenvalue λ = (1 +
√
17)/2, and (normalised) right Perron–Frobenius eigenvec-

tor (
−3 +

√
17

2
,
5−

√
17

2

)
.

We showed in Example 2.2.15 that the random substitution ϑP is recognisable. Hence, Theo-

rem 6.2.14 gives that for all q ∈ R, we have

τµp(q) = Tϑ,P(q) =
1

λ− 1
φ1(q) = −7−

√
17

8
log(pq + (1− p)q).

Further, it follows by Theorem 6.3.1 that µP satisfies the multifractal formalism. A plot of the

Lq-spectrum and multifractal spectrum for two choices of p is given in Figure 6.2. We note that

when p = 1/2, the Lq-spectrum of the measure µP is a straight line and the multifractal spectrum

is equal to htop(Xϑ) at htop(Xϑ), and −∞ otherwise.

In the following example, we highlight that the multifractal spectrum need not have value 0

at the endpoints.
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τ1/5
τ2/5

(a) Lq-spectrum

τ∗
1/5

τ∗
2/5

(b) Multifractal spectrum

Figure 6.3: Lq-spectrum and multifractal spectrum corresponding to the frequency measure in
Example 6.3.8 for p ∈ {1/5, 2/5}.

Example 6.3.8. Let ϑP be the random substitution defined by

ϑP :



a 7→


abb with probability p,

bab with probability p,

bba with probability 1− 2p,

b 7→ aaa with probability 1.

Similarly to Example 6.3.7, ϑP is primitive, compatible and recognisable, so Theorem 6.3.1 gives

that the multifractal formalism holds. By Theorem 6.2.14, we have

τµP(q) = − 3

10
log(2pq + (1− 2p)q),

with the multifractal spectrum given by the concave conjugate. For p = 1/5 and p = 2/5, the

Lq-spectrum and multifractal spectrum of µP are plotted in Figure 6.3.

Example 6.3.9. Given p ∈ (0, 1), let ϑP = (ϑ,P) be the random substitution defined by

ϑP :



a 7→


abbaa with probability p,

aabba with probability 1− p,

b 7→


babaa with probability p,

baaba with probability 1− p,

and let µP denote the corresponding frequency measure. We have previously shown that ϑP
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is primitive, compatible and recognisable, so by Theorem 6.3.1, µP satisfies the multifractal

formalism. In Example 5.2.4, we showed that the subshift Xϑ is intrinsically ergodic, with the

frequency measure corresponding to p = 1/2 being the unique measure of maximal entropy.

Further, we showed that this measure does not satisfy the Gibbs property (5.2).

6.4 Outlook

We conclude this chapter with a list of open questions which we feel could be potentially interesting

directions for future work.

(1) What is the Lq-spectrum of the frequency measure corresponding to a primitive and compatible

random substitution when q < 0? Example 6.2.12 demonstrates that, without recognisability,

the Lq-spectrum and inflation word Lq-spectrum need not coincide for q < 0. However,

even for this example, we do not know an exact formula for the Lq-spectrum when q < 0.

Obtaining precise results for q < 0 is substantially more challenging than for q ≥ 0, since

the sum in the definition of the Lq-spectrum depends on the measure of cylinders with very

small (but non-zero) measure. For example, in the self-similar case, without the presence of

strong separation assumptions, little is known. This is in stark contrast to the q ≥ 0 case,

which is generally well understood.

(2) Without the disjoint set condition and the identical set condition, what can be said about

differentiability of the Lq-spectrum? For q ≥ 0, we give the Lq-spectrum as a uniform limit

of analytic functions: however, aside from the exceptional point q = 1 where we can say more,

this is not enough to give information about differentiability.

(3) Does the frequency measure corresponding to the random period doubling substitution

satisfy the multifractal formalism? More generally, can the assumption of recognisability in

Theorem 6.3.1 be relaxed to a weaker condition, such as the disjoint set condition?
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APPENDIX A

MATHEMATICAL BACKGROUND

A.1 Ergodic theory and dynamical systems

Much of our work concerns properties of topological and measure theoretic dynamical systems.

Here, we summarise some of the key concepts from ergodic theory that we work with throughout,

and give the definitions and key properties of measure theoretic and topological entropy in the

more general setting of topological dynamical systems. For a detailed introduction to ergodic

theory, we refer the reader to Walters’ book [75].

Throughout this section, we assume that a given topological space X is equipped with the

Borel sigma-algebra B(X).

A.1.1 Invariant and ergodic measures

Definition A.1.1. Let T : X → X be a transformation of a topological space X. We say that a

probability measure µ : B(X) → R is T -invariant if µ(T−1B) = µ(B) for all B ∈ B(X). We call

the triple (X,µ, T ) a measure-preserving transformation. Further, we let M(X,T ) denote the set

of all T -invariant Borel probability measures on X.

Definition A.1.2. We say that a sequence of measures (µn)n ⊆ M(X,T ) converges weak* to

µ ∈ M(X,T ) if for every continuous f : X → R, we have

∫
f dµn →

∫
f dµ

as n → ∞.
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Under the assumption that the topological space X is compact and metrisable, and the

transformation T : X → X is continuous, the set of all T -invariant probability measures on X is

weak*-compact.

Proposition A.1.3 ([75, Theorem 6.10]). Let T : X → X be a continuous mapping of a compact

metric space. Then, the space M(X,T ) is weak*-compact.

Definition A.1.4. Let T : X → X be a continuous transformation of a compact metric space

and let µ ∈ M(X,T ). We say that µ is an ergodic measure for T if for every B ∈ B(X) with

T−1B = B, we have µ(B) = 0 or µ(B) = 1.

A notable consequence of ergodicity is the following.

Theorem A.1.5 (Birkhoff’s ergodic theorem). Let (X,µ, T ) be an ergodic measure-preserving

transformation and f : X → X be an L1-function. Then,

lim
n→∞

1

n

n−1∑
j=0

f(T jx) =

∫
f dµ

for µ-almost every x ∈ X.

A.1.2 Measure theoretic entropy

Here, we give the general definition of measure theoretic entropy for an invertible measure-

preserving transformation. We first define the entropy of a measurable partition.

Definition A.1.6. Let (X,B, µ) be a probability space and let η be a measurable partition of X.

The entropy Hµ(η) of η with respect to µ is the quantity defined by

Hµ(η) =
∑
A∈η

−µ(A) logµ(A).

Definition A.1.7. Let (X,µ, T ) be a measure-preserving transformation. Further, let ξ be a

finite measurable partition of X with ∨i∈NT
−i(ξ) = B(X), up to null sets. For each n ∈ N, let

ξn = ∨n−1
i=0 T

−i(ξ). The measure theoretic entropy of the system (X,µ, T ) is the quantity defined

by

hµ(X,T ) = lim
n→∞

1

n
Hµ(ξn).

147



That the limit exists follows from the fact that the sequence (Hµ(ξn))n is sub-additive and Fekete’s

lemma [27].

If the space X is compact and metrisible and the transformation T : X → X is continuous,

then the entropy map µ → hµ(X,T ) is upper semi-continuous.

Proposition A.1.8 ([75, Theorem 8.2]). Let T : X → X be a continuous transformation of a

compact topological space X and let (µn)n be a sequence of T -invariant measures which converge

weak* to a T -invariant measure µ. Then,

hµ(X,T ) ≥ lim sup
n→∞

hµn(X,T ).

If µ is additionally assumed to be ergodic, then the measure theoretic entropy hµ(X,T ) can

be obtained from the individual points almost surely. This result is commonly known as the

Shannon–McMillan–Breiman theorem. We give the statement here for the special case of subshifts.

For a more general result, we refer the reader to Keller’s book [43].

Theorem A.1.9 (Shannon–McMillan–Breiman). Let X be a subshift over a finite alphabet,

equipped with an ergodic probability measure µ. Then,

− 1

n
logµ([x[1,n]]) → hµ(X)

as n → ∞, both almost-surely and in L1.

If µ is an S-invariant probability measure on a shift space (X,S), then the entropy of the

systems (X,Sm), m ∈ N, are related to the entropy of the system (X,S) by Abramov’s formula

[1]. We note that Abramov’s result applies more generally to flows on Lebesgue spaces. However,

the following formulation is sufficient for our purposes.

Lemma A.1.10. Let X be a subshift equipped with an S-invariant probability measure µ. For

all m ∈ N, the following identity holds:

hµ(X,Sm) = mhµ(X,S).
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A.1.3 Topological entropy

Topological entropy can similarly be defined more generally for topological dynamical systems

(X,T ), where X is a compact space and T : X → X is a continuous transformation of X.

Definition A.1.11. Let X be a compact topological space and let α be an open cover of X. We

let N(α) denote the smallest cardinality of a sub-cover of α. By compactness, N(α) < ∞. We

define the entropy of α to be

H(α) = logN(α).

Definition A.1.12. Let X be a compact topological space, let α, β be open covers of X and let

T : X → X a continuous transformation of X. We let α ∨ β denote the open cover of X by sets

of the form A ∩B, where A ∈ α, B ∈ β and let T−1α denote the open cover by sets of the form

T−1A, A ∈ α.

Definition A.1.13. Let T : X → X be a continuous transformation of a compact topological

space X and let α be an open cover of X. The topological entropy of (X,T ) relative to α is

defined by

htop(X,T, α) = lim
n→∞

1

n
H

n−1∨
j=0

T−jα

 . (A.1)

The topological entropy of (X,T ) is then defined by

htop(X,T ) = sup{htop(X,T, α) : α is an open cover of X}. (A.2)

The limit in (A.1) always exists due to the sub-additivity of the sequence (∨n−1
j=0T

−jα)n and

Fekete’s lemma [27]. See [75] for the precise details.

A.2 Large deviations theory

Some of our proofs utilise results from large deviations theory. Here, we provide a brief overview

of the theory of large deviations and give the statement of Cramér’s theorem, which we apply in

the proofs of Theorems 4.1.1 and 6.3.1. For a more detailed introduction to large deviations, we

refer the reader to the excellent book by Den Hollander [19].

Let X1, X2, . . . be a sequence of independent, identically distributed random variables on a
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probability space (R,B(R),P), with mean ζ ∈ R and standard deviation σ. For each n ∈ N, let

Sn = X1 + · · ·+Xn denote the nth partial sum. By the strong law of large numbers,

1

n
Sn → ζ

P-almost surely. However, the strong law of large numbers does not provide any quantitative

information about the rate of convergence. Observe that the central limit theorem gives that

1

σ
√
n
(Sn − ζn) → Z

in distribution, with respect to P, where Z is the standard normal distribution. In particular, the

central limit theorem quantifies the probability that Sn differs from ζn by an amount of order
√
n.

Such deviations are referred to as normal deviations. The theory of large deviations is concerned

with quantifying the size of the set of points for which Sn differs from ζn by an amount of order n.

One of the most famous results in this direction is Cramér’s theorem, which states the following.

Theorem A.2.1. Let (Xi)i∈N be a sequence of independent, identically distributed random

variables and assume that

φ(t) = E[etX1 ] < ∞

for all t ∈ R. For each n ∈ N, let Sn denote the nth partial sum Sn =
∑n

i=1Xi. Then, for all

α > E[X1],
1

n
logP[Sn ≥ αn] → −I(α)

as n → ∞, where

I(x) = sup
t∈R

{xt− log ϕ(t)} .

In particular, there exists a constant C > 0 such that

P[Sn ≥ αn] ≤ e−Cn

for all n ∈ N.
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