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Abstract

Tensor algebras give rise to one of the most powerful measures of similarity for
sequences of arbitrary length called the signature kernel accompanied with attrac-
tive theoretical guarantees from stochastic analysis. Previous algorithms to compute
the signature kernel scale quadratically in terms of the length and the number of the
sequences. To mitigate this severe computational bottleneck, we develop a random
Fourier feature-based acceleration of the signature kernel acting on the inherently non-
Euclidean domain of sequences. We show uniform approximation guarantees for the
proposed unbiased estimator of the signature kernel, while keeping its computation
linear in the sequence length and number. In addition, combined with recent ad-
vances on tensor projections, we derive two even more scalable time series features
with favourable concentration properties and computational complexity both in time
and memory. Our empirical results show that the reduction in computational cost
comes at a negligible price in terms of accuracy on moderate-sized datasets, and it
enables one to scale to large datasets up to a million time series.

1 Introduction

Machine learning has successfully been applied to tasks that require learning from complex
and structured data types on non-Euclidean domains. Feature engineering on such do-
mains is often tackled by exploiting the geometric structure and symmetries existing within
the data [5]. Learning from sequential data (such as video, text, audio, time series, health
data, etc.) is a classic, but an ongoing challenge due to the following properties:

• Non-Euclidean data. The data domain is nonlinear since there is no obvious and
natural way of adding sequences of different length.

• Time-space patterns. Statistically significant patterns can be distributed over time
and space, that is, capturing the order structure in which “events” arise is crucial.

• Time-warping invariance. The meaning of many sequences is often invariant to
reparametrization also frequently called time-warping, at least to an extent; e.g. a
sentence spoken quicker or slower contains (essentially) the same information.
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• Discretization and irregular sampling. Sequences often arise by sampling along
an irregularly spaced grid of an underlying continuous time process. A general
methodology should be robust as the sampling gets finer, sequences approximate
paths (continuous-time limit), or as the discretization grid varies between sequences.

• Scalability. Sequence datasets can quickly become massive, so the computational
complexity should grow subquadratically, in terms of all of the state-space dimen-
sion, and the length and number of sequences.

The signature kernel kSig is the state-of-the-art kernel for sequential data [84, 68, 47] that
addresses the first 4 of the above questions and can rely on the modular and powerful frame-
work of kernel learning [71]. Its construction is motivated by classic ideas from stochastic
analysis that give a structured description of a sequence by developing it into a series of
tensors. We refer to [46] for a recent overview of its various constructions and applications.

Features vs Kernel/Primal vs Dual. Kernel learning circumvents the costly evaluation of
a high- or infinite-dimensional feature map by replacing it with the computation of a Gram
matrix which contains as entries the inner products of features between all pairs of data
points. This can be very powerful since the inner product evaluation can often be done
cheaply by the celebrated "kernel trick", even for infinite-dimensional feature spaces, but
the price is that now the computational cost is quadratic in the number of samples, and
downstream algorithms further often incur a cubic cost usually in the form of a matrix in-
version. On the other hand, when finite-dimensional features can used for learning, the pri-
mal formulation of a learning algorithm can perform training and inference in a cost that is
linear with respect to the sample size assuming that the feature dimension is fixed. This mo-
tivates the investigation of finite-dimensional approximations to kernels that mimic their
expressiveness at a lower computational cost. It is an interesting question how the feature
dimension should scale with the dataset size to maintain a given (optimal) learning perfor-
mance in downstream tasks, which is investigated for instance by [65, 7, 77, 48, 75, 43].

Computational Cost of the Signature kernel. In the context of the signature kernel, one
data point is itself a whole sequence. Hence, given a data set X consisting of N ∈ Z+ se-
quences where each sequence x = (x1, . . . , xℓ) is of maximal length ℓ ≤ L ∈ Z+ and has se-
quence entries xi in a state-space of dimension d , then the existing algorithms to evalu-
ate the Gram matrix of the kSig scale quadratically, i.e. as O (N 2L 2d ), both in the sequence
length L and the number of sequences N . So far this has only been addressed by subsam-
pling (either directly the sequence elements to reduce the length or by column subsampling
via the Nyström approach [91]), which can lead to crude approximations and performance
degradation on large-scale datasets.

Contribution. Random Fourier Features (RFF) [58] is a classic technique to enjoy both the
benefits of the primal and dual approach. Here, a low-dimensional and random feature
map is constructed, which although does not approximate the feature map of a translation-
invariant kernel, its inner product is with high probability close to the kernel itself. The
main contribution of this article is to carry out such a construction for the signature kernel.
Concretely, we construct a random feature map on the domain of sequences called Ran-
dom Fourier Signature Features (RFSF), such that its inner product is a random kernel k̃Sig
for sequences that is both (i) an unbiased estimator for kSig, and (ii) has analogous prob-
abilistic approximation guarantees to the classic RFF kernel. The challenge is that a direct
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application of the classic RFF technique is not feasible since this relies on Bochner’s theo-
rem which does not apply since the sequence domain is not even a linear space and the
feature domain is non-Abelian, which makes the use of (generalizations of [28]) Bochner’s
theorem difficult due to the lack of sufficiently explicit representations. We tackle this chal-
lenge by combining the algebraic structure of signatures with probabilistic concentration
arguments; a careful analysis of the error propagation yields uniform concentration guar-
antees similar to the RFF on Rd . Then, we introduce dimensionality reduction techniques
for random tensors further approximating k̃Sig to define the extremely scalable variants k̃

DP
Sig

and k̃
TRP
Sig called RFSF-DP and RFSF-TRP saving considerable amounts of computation time

and memory by low-dimensional projection of the feature set of the RFSF.
Hence, analogously to the classic RFF construction, the random kernels k̃Sig, k̃

DP
Sig, k̃

TRP
Sig

simultaneously enjoy the expressivity of an infinite-dimensional feature space as well as
linear complexity in sequence length. This overcomes the arguably biggest drawback of the
signature kernel, which is the quadratic complexity in sample size and sequence length; the
price for reducing the complexities by an order is that this approximation only holds with
high probability. As in the case of the classic RFF, our experiments show that this is in gen-
eral a very attractive tradeoff. Concretely, we demonstrate in the experiments that the pro-
posed random features (1) provide comparable performance on moderate sized datasets
to full-rank (quadratic time) signature kernels, (2) outperform other random feature ap-
proaches for time series on both small- and large-scale datasets, (3) allow scaling to datasets
consisting of a million time series.

Related Work. The signature kernel has found many applications; for example, it is used
in ABC-Bayes [22], economic scenario validation [1], amortised likelihood estimation [23],
the analysis of RNNs [25], analysis of trajectories in Lie groups [45], metrics for generative
modelling [6, 37], or dynamic analysis of topological structures [29]. For a general overview
see [46]. All of these applications can benefit from a faster computation of the signature
kernel with theoretical guarantees. Previous approaches address the quadratic complexity
of the signature kernel only by subsampling in one form or another: [39] combine a struc-
tured Nyström type-low rank approximation to reduce complexity in dimension of samples
and sequence length, [84] combine this with inducing point and variational methods, [68]
uses sequence-subsampling, [47]use diagonal approximations to Gram matrices in a varia-
tional setting. Related to this work is also the random nonlinear projections in [52]; further,
[54] combine linear dimension projection in a general pipeline and [15] use signatures in
reservoir computing. Directly relevant for this work is recent progress on tensorized ran-
dom projections [78, 61]. Random Fourier Features [58, 60] are well-understood theoreti-
cally [79, 74, 75, 49, 2, 80, 9, 85, 9]. In particular, its generalization properties are studied
in e.g. [3, 48, 77, 43], where it is shown that the feature dimension need only scale sublin-
early in the dataset size for supervised learning, and a similar result also holds for kernel
principal component analysis [75]. Several variations have been proposed over the years
[44, 24, 13, 94, 12, 11, 14], even finding applications in deep learning [81]. Alternative ran-
dom feature approaches for polynomial and Gaussian kernels based on tensor sketching
have been proposed in e.g. [90, 89, 88]. For a survey, the reader is referred to [9, 50].

Outline. Section 2 provides background on the prerequisites of our work: Random Fourier
Features, and Signature Features/Kernels. Section 3 contains our proposed methods with
theoretical results; it introduces Random Fourier Signature Features (RFSF) ϕ̃Sig≤M

, RFSF
kernels k̃Sig≤M

(where M ∈ Z+ is the truncation level introduced later), and most impor-
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tantly their theoretical guarantees. Theorem 3.2 quantifies the approximation kSig≤M
(x, y)≈

k̃Sig≤M
(x, y) uniformly. Then, we discuss additional variants: the RFSF-DP kernel k̃

DP
Sig≤M

and

the RFSF-TRP kernel k̃
TRP
Sig≤M

, which build on the previous construction using dimensional-
ity reduction with corresponding concentration results in Theorems 3.5 and 3.8. Section 4
compares the performance of the proposed scalable signature kernels against popular ap-
proaches on SVM multivariate time series classification, which demonstrates that the pro-
posed kernel not only significantly improves the computational complexity of the signature
kernel, it also provides comparable performance, and in some cases even improvements
in accuracy as well. Hence, we take the best of both worlds: linear batch, sequence, and
state-space dimension complexities, while approximately enjoying the expressivity of an
infinite-dimensional RKHS with high probability.

2 Prerequisites

Notation. We denote the real numbers by R, natural numbers by N := {0, 1, 2, . . .}, posi-
tive integers by Z+ := {1, 2, 3, . . .}, the range of positive integers from 1 to n ∈ Z+ by [n ] :=
{1, 2, . . . , n}. Given a , b ∈R, we denote their maximum by a ∨ b :=max(a , b ) and their min-
imum by a ∧ b := min(a , b ). We define the collection of all ordered m-tuples with non-
repeating entries starting from 1 up to n including the endpoints by

∆m (n ) := {1≤ i1 < i2 < · · ·< im ≤ n : i1, i2, . . . , in ∈ [n ]} . (1)

In general, X refers to a subset of the input domain, where the various objects are de-
fined, generally taken to be a subset Rd unless otherwise stated. For a vector x ∈ Rd , we

denote its ℓp norm by ∥x∥p :=
�∑p

i=1 |xi |p
�1/p

. For a matrix A ∈ Rd×e , we denote the spec-

tral and the Frobenius norm by ∥A∥2 := sup∥x∥2=1 ∥Ax∥2 and ∥A∥F :=
�∑e

i=1 ∥Aei ∥2
2

�1/2
, where

{e1, . . . , ed } is the canonical basis of Rd . The transpose of a matrix A is denoted by A⊤. For

a differentiable f : Rd → R, we denote its gradient at x ∈ Rd by ∇ f (x) :=
�

∂ f (x)
∂ xi

�d

i=1
, and its

collection of partial derivatives with respect to s := (xi1
, . . . , xik

) by ∂s f (x) :=
�

∂ f (x)
∂ xi j

�k

j=1
.

Xseq refers to sequences of finite, but unbounded length with values in the set X:

Xseq := {x= (x1, . . . , xL ) : xi ∈X, L ∈Z+}.

We denote the length of a sequence x= (x1, . . . , xL ) ∈Xseq by ℓx := L , and define the 1st-order
forward differencing operator as δxi := xi+1 − xi . We define the 1-variation functional of a
sequence x ∈Xseq as ∥x∥1-var :=

∑ℓx−1
i=1 ∥δxi ∥2 as a measure of sequence complexity.

Random Fourier Features. Kernel methods allow to implicitly use an infinite-dimensional
feature map ϕ : X→H by evaluation of the inner product k(x, y) = 〈ϕ(x),ϕ(y)〉H, when H

is a Hilbert space. This inner product can often be evaluated without direct computation
of ϕ(x) and ϕ(y) via the kernel trick. Although this makes them a powerful tool due to the
resulting flexibility, the price of this flexibility is a trade-off in complexity with respect to the
number of samples N ∈Z+. Disregarding the price of evaluating the kernel k(x, y)momen-
tarily, kernel methods require the computation of a Gram matrix with O (N 2) entries, that
further incurs an O (N 3) computational cost by most downstream algorithms, such as KRR
[72], GP [63], and SVM [71]. Several techniques reduce this complexity, and the focal point
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of this article is the Random Fourier Feature (RFF) technique of [58, 59, 60], which can be
applied to any continuous, bounded, translation-invariant kernel on Rd .1 Throughout, we
write with some abuse of notation k(x−y)≡ k(x, y). Next, we outline the RFF construction.

A corollary of Bochner’s theorem [67] is that any continuous, bounded, and translation-
invariant kernel k : Rd × Rd → R can be represented as the Fourier transform of a non-
negative finite measure Λ called the spectral measure associated to k, i.e. for x, y ∈X

k(x−y) =

∫

Rd

exp(i w⊤(x−y))dΛ(w).

We may, without loss of generality, assume thatΛ is a probability measure such thatΛ(Rd ) =
0, which amounts to working with the kernel k(x−y)/k(0). [58]proposed to draw d̃ ∈Z+ i.i.d.

samples from Λ, w1, . . . , wd̃
i.i.d.∼ Λ, to define the random feature map for x ∈X by

ϕ̃ :X→ H̃ :=R2d̃ , ϕ̃(x) :=
1
p

d̃

�

cos
�

W⊤x
�

, sin
�

W⊤x
��

, (2)

where W= (wi )
d̃
i=1 ∈Rd×d̃ . Then, the corresponding random kernel is defined for x, y ∈X as

k̃ :X×X→R, k̃(x, y) =



ϕ̃(x), ϕ̃(y)
�

H̃
=

1

d̃

d̃
∑

i=1

cos
�

w⊤i (x−y)
�

(3)

to provide a probabilistic approximation to k. Indeed, it is a straightforward exercise to
check that k(x, y) = E

�

k̃(x, y)
�

≈ k̃(x, y). This approximation converges exponentially fast in
d̃ and uniformly over compact subsets of Rd as proven in [58, Claim 1]. This bound was later
tightened and extended to the derivatives of the kernel in the series of works [74, 80, 9], and
we provide an adapted version under Theorem B.1 in the supplement.

Tensors and the tensor product. First, we provide a brief overview of tensors and tensor
products of vector spaces, which we will use to construct our feature space called the free al-
gebra over a vector space. If U and V are (not necessarily finite-dimensional) vector spaces,
their tensor product U ⊗V is a vector space together with a bilinear map⊗ : U ×V →U ⊗W ,
such that any bilinear map B : U ×V →W factors through U ⊗V , i.e. there exists a unique
linear map B̃ : U ⊗V →W , which satisfies B = B̃ ◦⊗. Let BU and BV respectively be bases
of U and V . Then, U ×V is unique up to isomorphism, and its basis is formed by the tensor
product of the bases, i.e. BU⊗V = {u⊗v ∈U ⊗V : u ∈BU , v ∈BV }.

A coordinate-wise construction of the tensor product is given by identifying U ⊗V with
the set of functions from BU ×BV to R that are nonzero only on finitely many elements,
which is a vector space by pointwise operations on functions. Specifically, for u ∈BU and
v ∈ BV , we may identify u⊗ v with the function that takes 1 on (u, v) and 0 on every other
element of BU ×BV . Then, we can extend this to U ×V by asserting the bilinearity of ⊗, so
denoting x=

∑

u∈BU
αuu and y=

∑

v∈BV
βvv, we have

x⊗y=

 

∑

u∈BU

αuu

!

⊗

 

∑

v∈BV

βvv

!

=
∑

u∈BU

∑

v∈BV

αuβvu⊗v,

where finitely many coefficients are nonzero in {αu ∈R : u ∈BU } and
�

βv ∈R : v ∈BV

	

.

1A kernel is called translation-invariant if k(x, y) = k(x+ z, y+ z) for any x, y, z ∈Rd .
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Now, if U and V are Hilbert spaces, the canonical extension of their inner product to
U ⊗V is defined for rank-1 tensors (i.e. tensors of the form u⊗v for u ∈U and v ∈V ) as




u⊗v, x⊗y
�

U⊗V
:= 〈u, x〉U




v, y
�

V
for u, x ∈U , v, y ∈V , (4)

which is then extended to all elements of U ⊗V via bilinearity of the inner product. After
completing the space with respect to the induced metric, U ⊗V becomes again a Hilbert
space, and we refer the reader to [93, 42] for further details about tensor products.

Free algebras. Now we introduce our feature spaceHSig. That is, we show how to embed a
Hilbert spaceH into a bigger Hilbert spaceHSig which is also an associative algebra2 using a
so-called free construction. Since the tensor product is associative, we can unambiguously
take take tensor powers of the vector space H. Denoting H⊗m :=H⊗ · · ·⊗H, we define the
free algebra over H as the set of sequences of tensors indexed by their degree m ∈N,

⊕

m≥0

H⊗m =
�

(t0, t1, t2, . . . ) : tm ∈H⊗m for m ∈N,∃n ∈N s.t. N ≥ n , tN = 0
	

, (5)

where
⊕

is the direct sum operation, ⊗ is the tensor product. For example, if H = Rd ,
then the degree-1 component is a d -dimensional vector, the degree-2 component is a d ×d
matrix, the degree-3 component is an array of shape d ×d ×d . The space

⊕

m≥0H
⊗m is a

vector space with addition and scalar multiplication defined for λ ∈R, s, t ∈
⊕

m≥0H
⊗m as

s+ t := (sm + tm )m≥0 , λs := (λsm )m≥0 ,

and H is a linear subspace of
⊕

m≥0H
⊗m by identifying v ∈H as (0, v, 0, 0, . . . ) ∈

⊕

m≥0H
⊗m .

Further,
⊕

m≥0H
⊗m is also an associative algebra since it is endowed with a (noncommu-

tative3) product defined for tensors s, t ∈
⊕

m≥0H
⊗m as

st=

�

m
∑

i=0

si ⊗ tm−i

�

m≥0

∈
⊕

m≥0

H⊗m .

This process of turning H into an algebra
⊕

m≥0H
⊗m is a free construction; informally this

means that (5) is the minimal structure that turns H into an algebra; for more details about
free algebras, see [93, 64]. We now define for s, t ∈

⊕

m≥0H
⊗m their inner product as

〈s, t〉⊕
m≥0 H⊗m =

∑

m≥0

〈sm , tm 〉H⊗m ,

where the inner product 〈sm , tm 〉H⊗m onH⊗m is as in (4). Finally, the completion of
⊕

m≥0H
⊗m

in this inner product gives a Hilbert space HSig, which is equivalently defined as

HSig = {t= (t0, t1, t2, . . .) : tm ∈H⊗m , 〈t, t〉HSig
<∞}. (6)

Path Signatures. A classic way to obtain a structured and hierarchical description of a
path x : [0, T ]→ Rd is by computing a sequence of iterated integrals called the path signa-
ture of x given as tensors of increasing degrees m ∈N such that the degree-m object is

Sm (x) :=

∫

· · ·
∫

0<t1<···<tm<T

dx(t1)⊗ · · ·⊗dx(tm ) =

∫

· · ·
∫

0<t1<···<tm<T

ẋ(t1)⊗ · · ·⊗ ẋ(tm )dt1 · · ·dtm .

2An algebra A is a vector space A, where one can multiply elements together, i.e. ab ∈ A for a, b ∈ A.
3Noncommutative means that ab ̸= ba in general for elements a, b ∈V of the algebra.
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Formally, we refer to the map that takes a path to its iterated integrals, S : Paths→HSig,
S (x) := (1,S1(x),S2(x), . . .) as the path signature map. The domain of S is a space of paths that
are regular enough such that the integrals are well-defined. Its feature space is given by
applying the above construction of HSig in (6) to H=Rd with the Euclidean inner product.

Among the attractive properties of S is that it linearizes nonlinear functions of paths,
that is for any continuous function f one can find a linear functional w of S such that

f (x)≈ 〈w,S (x)〉 :=
∑

m≥0

∑

i1,...,im∈[d ]
wi1,...,im

∫

ẋi1 (t1) · · · ẋim (tm )dt1 · · ·dtm , (7)

where (7) w1, . . . , wd , w1,1, . . . , wd ,d , . . . , wd ,...,d ∈ R denote the coordinates of w, and the ap-
proximation holds uniformly on compacts [26, Theorem II.5]whenever the path x includes
time as a coordinate4. The same results generalize to paths without an increasing coordi-
nate up to reparametrization (i.e. time-warping) and backtracking, formally called “tree-
like” equivalence, see [31]. Moreover, these iterated integrals can be well-defined beyond
the setting of smooth paths; for example, the same results extend to Brownian motion,
semimartingales, and even rougher paths. Rough path theory provides a systematic study
that comes with a rich toolbox, that combines analytic and algebraic estimates, rich enough
to cover the trajectories of large classes of stochastic processes; see [51, 27] for an intro-
duction. Informally, iterated integrals of paths can be seen as a generalization of classical
monomials and from this perspective, the approximation (7) can be regarded as the exten-
sion of classic polynomial regression to path-valued data. Thus at least informally it is not
surprising, that vanilla signature features suffer from similar drawbacks as classic mono-
mial features; for example, if classic monomials are replaced by other nonlinearities this
often drastically improves the approximations; see e.g. [84, 68], where precomposing the
signature with the RBF kernel increases learning performance.

Signature Features for Sequential Data. A challenge in machine learning when construct-
ing feature maps for datasets of sequences is that the sequence length can vary from in-
stance to instance; the space of sequences Xseq =

�

(xi )Li=1 : x1, . . . , xL ∈X and L ∈Z+
	

in-
cludes sequences of various lengths, and they should all get mapped to the same feature
space, while preserving the information about the elements themselves and their order-
ing. A concatenation property of path signatures called Chen’s identity [53, Thm. 2.9] turns
concatentation into multiplication provides a principled approach to construct features for
sequences. Below we recall the construction of discrete-time signatures based on [82].

The key idea is to define the discrete-time signature of 1-step increments, and then glue
features together by algebra multiplication to guarantee that the Chen identity holds by
construction. Now assume we are given a static feature map ϕ : X→H into some Hilbert
space H. Our task is to construct from this feature map for elements of X, a feature map
for sequences of arbitrary length in X. A natural first step is to apply the feature map ϕ
elementwise to a sequence x ∈ Xseq to lift it to a sequence into the feature space H of ϕ,

ϕ(x) :=
�

ϕ(xi )
�ℓx

i=1
∈ Hseq. The challenge is now to construct a feature map for sequences

in H. Simple aggregation of the individual features fails; e.g. summation of the individ-
ual features ϕ(xi ) would lose the order information, vectorization

�

ϕ(x1), . . . ,ϕ(xℓx
)
�

∈Hℓx

would make sequences of different length not comparable. It turns out that multiplication
is well-suited for this task in a suitable algebra.

4This means that xi (t ) = t for some i∈ [d ]; more generally, a strictly increasing coordinate is sufficient.
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Fortunately, there is a natural way to embed any Hilbert space H into a larger Hilbert
space HSig that is also a non-commutative algebra. First, we take the 1st-order differences,

x 7→δϕ(x) :=
�

ϕ(xi+1)−ϕ(xi )
�ℓx−1

i=1
∈Hℓx−1, where x ∈Xseq (8)

since it is more natural to keep track of changes rather than absolute values. Then we iden-
tify H as a subset of HSig. The simplest choice given the above construction of HSig is

ι : h 7→ (1, h, 0, 0, . . .) ∈HSig where h ∈H. (9)

A direct calculation shows that composing the maps (8), (9), and multiplying the in-
dividual entries in HSig results in a sequence summary using all non-contiguous subse-
quences, since in each multiplication step a sequence entry is either selected once or not
at all. This gives rise to the discretized signaturesϕSig :Xseq→HSig for x ∈Xseq with ℓx ≥ 2:

ϕSig(x) :=
ℓx−1
∏

i=1

ι(δϕ(xi )) =

 

∑

i∈∆m (ℓx−1)

δϕ(xi1
)⊗ · · ·⊗δϕ(xim

)

!

m≥0

, (10)

where ∆m : Z+ → Zm
+ is as defined in (1) and i = (i1, . . . , im ). Thus, the sequence feature

is itself a sequence, however, now a sequence of tensors indexed by their degree m ∈ N in
contrast to being indexed by the time index i ∈ [ℓx]. These sequence features are invariant to
a natural transformation of time series called time-warping, but can also be made sensitive

to it by including time as an extra coordinate with the mapping x = (xi )
ℓx
i=1 7→ (ti , xi )

ℓx
i=1.

It also possesses similar approximation properties to path signatures in (7), i.e. uniform
approximation of functions of sequences on compact sets; see Appendices A and B in [82].

Despite the abstract derivation, the resulting feature mapϕSig is—in principle—explicitly
computable when H = Rd ; see [38] for details. However, when the static feature map ϕ is
high- or infinite-dimensional, this is not feasible and we discuss a kernel trick further below.

Remark 2.1. We used the map ι, as defined in (9), to embed H into HSig. Other choices are
possible, for example one could use the embedding ι̂ :H→HSig for h ∈H

ι̂(h) :=

�

1, h,
h⊗2

2!
,

h⊗3

3!
, . . .

�

∈HSig. (11)

This embedding is actually the classical choice in mathematics, but different choices of the
embedding lead to, besides potential improvements in benchmarks, mildly different compu-
tational complexities and interesting algebraic questions [20, 82, 83].

Finally, it can be useful to only consider the first M ∈ Z+ tensors in the series ϕSig(x)
analogously to using the first M moments in classic polynomial regression to avoid overfit-
ting. Hence, we define the M -truncated signature features for M ∈Z+ as

ϕSig≤M
(x) :=

�

1,ϕSig1
(x), . . . ,ϕSigM

(x), 0, 0, . . .
�

for x ∈Xseq,

where ϕSigm
(x) is the projection of ϕSig(x) onto H⊗m . In practice, we regard M ∈ Z+, and

the choice of the embedding as hyperparameters to optimize.
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Signature Kernels. The signature is a powerful feature set for nonlinear regression on
paths and sequences. A computational bottleneck associated with it is the dimensionality
of the feature space HSig. As we are dealing with tensors, for H finite-dimensionalϕSigm

(x)
is a tensor of degree-m which has (dimH)m coordinates that need to be computed. This
can quickly become computationally expensive. For infinite-dimensionalH, e.g. whenH is
a reproducing kernel Hilbert space (RKHS), which is one of the most interesting settings due
to the modelling flexibility, it is infeasible to directly compute ϕSig. In [39], the signature
kernel was introduced, and it was shown that a kernel trick allows to compute the inner
product of signature features up to a given degree M ∈ Z+ using dynamic programming,
even when H is infinite-dimensional. Subsequently, [68] proposed a PDE-based algorithm
to compute it, which was further extended in [8], and we refer to [46] for a recent overview of
signature kernels. Here, we focus on discrete-time, and our starting point is the approach
of [39] combined with the non-geometric approximation [20] resulting in the features (10).

Above we described a generic way to turn a static feature map ϕ : X→H into a feature
map ϕSig≤M

(x) for sequences, see (10). The signature kernel is a powerful formalism that
allows to transform any static kernel on X into a kernel for sequences that evolve in X. Let
k : X ×X → R be a continuous and bounded kernel, and from now on, let H denote its
RKHS, and ϕ(x) := kx ≡ k(x, ·) the associated reproducing kernel lift for x ∈ X. We define the
M -truncated (discretized) signature kernel kSig≤M

:Xseq×Xseq→R for M ∈Z+ as

kSig≤M
(x, y) :=




ϕSig≤M
(x),ϕSig≤M

(y)
�

HSig
=

M
∑

m=0




ϕSigm
(x),ϕSigm

(y)
�

H⊗m

=
M
∑

m=0

kSigm
(x, y) =

M
∑

m=0

∑

i∈∆m (ℓx−1)
j∈∆m (ℓy−1)

δ2
i1, j1

k(xi1
, y j1
) · · ·δ2

im , jm
k(xim

, y jm
), (12)

where we defined the level-m (discretized) signature kernel kSigm
: Xseq×Xseq→R for m ∈

[M ] as kSigm
(x, y) :=




ϕSigm
(x),ϕSigm

(y)
�

H⊗m , and δ2 denotes a 2nd-order cross-differencing
operator such thatδ2

i , jk(xi , y j ) := k(xi+1, y j+1)−k(xi+1, y j )−k(xi , y j+1)+k(xi , y j ) for i ∈ [ℓx−1]
and j ∈ [ℓy − 1]. The key insight by [39] is equation (12), i.e. that kSig≤M

can be computed5

without computing ϕSig≤M
itself by a kernel trick that only uses kernel evaluations.

The kernel hyperparameters are the choice of the static kernel k, for which there is a
wide range of options, e.g. for X = Rd the Gaussian, exponential or Matérn family of ker-
nels; any hyperparameters that k comes with, such as the bandwidth; the truncation level
M ∈Z+; the choice of the algebra embedding, e.g. (9) or (11); and the choice of kernel nor-
malization [10] that scales each level kSigm

appropriately. It also comes with nice theoreti-
cal guarantees such as analytic estimates when sequences converge to paths, its maximum
mean discrepancy (MMD) metrizes classic topologies for stochastic processes, and can lead
to robust statistics in the classic statistical sense (B-robustness); see [10] for details.

Although (12) looks expensive to compute, [39] applies dynamic programming to effi-
ciently compute kSig≤M

using a recursive algorithm; an alternative algorithm is the above
mentioned approach of approximating the (untruncated) signature kernel kSig using PDE-
discretization. Importantly, (12) avoids computing tensors, and only depends on the entry-
wise evaluations of the static kernel k(xi , y j ). Indeed, this leads to a computational cost of
O ((M +d )ℓxℓy), which is feasible for sequences evolving in high-dimensional state-spaces,
but only with moderate sequence length. Note that the same bottleneck applies to PDE-
based approaches. In part, the aim of this article is to alleviate this quadratic cost in se-

5The computation can be carried out exactly for finite M and approximately for M =∞.
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quence length, while approximately enjoying the modelling capability of working within
an infinite-dimensional RKHS.

3 Random Fourier Signature Features

The goal of this section is to build random features for sequences, that enjoy the benefit of
linear sequence length and low-dimensional feature complexity with theoretical guaran-
tees that the corresponding inner product is close to the M -truncated (discretized) signa-
ture kernel kSig≤M

with high probability. We construct these random features in a two step
process: firstly, we reduce the feature space from infinite to finite (but high) dimensional-
ity through a careful construction using random Fourier features (RFFs), and in the second
step we apply further dimensionality reduction to reduce the complexity to an even lower
dimensional space in order to aid in scalability. Although we present this construction as
conceptually distinct steps, the steps are coupled during the computation, and the features
can be computed directly without going through the initial step.

From infinite to finite dimensions. In Section 2, we recalled the RFF construction, which
associates to a continuous, bounded, translation-invariant kernel k : X ×X → R on X a
spectral measure Λ, and approximates k by drawing samples from Λ to define the random
features ϕ̃ : X→ H̃ (2), and the random kernel k̃ : X×X→ R (3). Afterwards, we presented
a generic way to turn any such static features ϕ̃ : X→ H̃ for elements of X into sequence
features for sequences that evolve in X via ϕSig≤M

: Xseq → HSig. Applying this construc-
tion with the RFF as feature map on X would already result in a random feature map for
sequences, i.e. a map from Xseq into H̃Sig. Taking the inner product in H̃Sig of this new
random feature map for sequences would, however, only yield a biased estimator for the
truncated signature kernel kSig≤M

. We correct for this bias by revisiting our previous con-
struction, and build an unbiased approximation to kSig≤M

using independent RFF copies in
each tensor multiplication step. Then, we show in Theorem 3.2 that this random estimator
comes with good probabilistic guarantees.

The probabilistic construction procedure is outlined in the following definition.

Definition 3.1. Let W(1), . . . , W(M ) i.i.d.∼ Λd̃ be i.i.d. random matrices sampled from Λd̃ for
RFF dimension d̃ ∈ Z+, and the define the independent RFF maps ϕ̃m : X → H̃ as in (2),

i.e. ϕ̃m (x) =
1p

d̃

�

cos(W(m )⊤x), sin(W(m )⊤x)
�

for m ∈ [M ] and x ∈ X. The M -truncated Ran-

dom Fourier Signature Feature (RFSF) map ϕ̃Sig≤M
: Xseq → H̃Sig from sequences in X into

the free algebra over H̃ is defined for truncation level M ∈Z+ and x ∈Xseq as

ϕ̃Sig≤M
(x) :=

 

∑

i∈∆m (ℓx−1)

δϕ̃1(xi1
)⊗ · · ·⊗δϕ̃m (xim

)

!M

m=0

. (13)

Further, the RFSF kernel k̃Sig≤M M
:Xseq×Xseq→R can be computed for x, y ∈Xseq as

k̃Sig≤M
(x, y) :=




ϕ̃Sig≤M
(x), ϕ̃Sig≤M

(y)
�

H̃Sig
=

M
∑

m=0




ϕ̃Sigm
(x), ϕ̃Sigm

(y)
�

H̃⊗m

=
M
∑

m=0

k̃Sigm
(x, y) =

M
∑

m=0

∑

i∈∆m (ℓx−1)
j∈∆m (ℓy−1)

δ2
i1, j1

k̃1(xi1
, y j1
) · · ·δ2

im , jm
k̃m (xim

, y jm
), (14)
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where we defined the level-m RFSF kernel k̃Sigm
: Xseq×Xseq→ R for m ∈ N as k̃Sigm

(x, y) :=



ϕ̃Sigm
(x), ϕ̃Sigm

(y)
�

H̃⊗m with the convention that k̃Sig0
≡ 1, and k̃1, . . . , k̃M : X×X → R are

independent RFF kernels defined as in (3) with the random weights W(1), . . . , W(M ) ∈Rd×d̃ .

Since the feature map ϕ̃Sig≤M
can be directly evaluated in the feature space recursively,

k̃Sig≤M
has linear complexity in the sequence length. However, it requires computing high-

dimensional tensors, where the degree-m component ϕ̃Sigm
(x) ∈ H̃⊗m has (dimH̃)m =

(2d̃ )m coordinates, making it infeasible for large m , d̃ ∈Z+. Remark 3.3 discusses the com-
putational complexity in detail. Further, note that the kernel can be evaluated by means
of a kernel trick exactly analogously to the evaluation of (12), but in this case there are no
computational gains compared to the infinite-dimensional signature kernel kSig≤M

(x, y).
Next, we provide a theoretical analysis to show that the random kernel k̃Sig≤M

(x, y) con-
verges to the ground truth signature kernel kSig≤M

(x, y) exponentially fast and uniformly
over compact state-spacesX⊆Rd , generalizing the result [58, Claim 2] to this non-Euclidean
domain of sequences. Throughout the analysis, we need certain regularity properties of Λ
in order to invoke quantitative versions of the law of large numbers, i.e. properties such
as boundedness, existence of the moment-generating function, moment-boundedness, or
belonging to certain Orlicz spaces of random variables. Boundedness of the spectral mea-
sure is too restrictive an assumption, since a continuous, bounded, translation-invariant
kernel k :X×X→R is characteristic if and only if the support of its spectral measure is Rd ,
see [73, Prop. 8]. Hence, we instead work with the assumption that its moments are well-
controllable, i.e. the tails of the distribution are not “too heavy”. Specifically, we assume the
Bernstein moment condition that

Ew∼Λ
�

w 2m
i

�

≤
m !S 2R m−2

2
for all i ∈ [d ] (15)

for some S , R > 0. We show in the Supplementary Material under Lemmas A.11 and A.12,
in a more general context, that this is equivalent to Λ being a sub-Gaussian probability
measure; see e.g. [4, Sec 2.3] and [87, Sec. 2.5] about sub-Gaussianity. This of course in-
cludes the spectral measure of the Gaussian kernel defined for bandwidth σ > 0 and x, y ∈
X k(x, y) = exp

�

−∥x−y∥2
2/2σ2

�

, which has a Gaussian spectral distribution w ∼ N (0, 1/σ2Id ),

and therefore calculation gives Ew∼N(0,1/σ2)
�

w 2m
�

=
2m Γ (m+ 1

2 ))
σ2m

p
π
< m !

2

�

2
p

2
σ2 4pπ

�2 � 2
σ2

�m−2
, since

Γ (m + 1/2)< Γ (m +1) =m !. Hence Λ satisfies condition (15) with S , R as given here.
Now we state our approximation theorem regarding k̃Sigm

, which quantifies that it is a
(sub-)exponentially good estimator of kSigm

with high probability and uniformly.

Theorem 3.2. Let k : Rd ×Rd → R be a continuous, bounded, translation-invariant kernel
with spectral measure Λ, which satisfies (15). Let X⊂Rd be compact and convex with diam-
eter |X|, X∆ := {x− y : x, y ∈ X}. Then, the following quantities are finite: σ2

Λ := Ew∼Λ
�

∥w∥2
2

�

,

L :=


Ew∼Λ
�

ww⊤
�



1/2

2
, Ei , j := Ew∼Λ

��

�wi w j

�

�∥w∥2

�

and Di , j := supz∈X∆





∇
�

∂ 2k(z)
∂ zi ∂ z j

�







2
for i , j ∈

[d ]. Further, for any max. sequence 1-var V > 0, and signature level m ∈Z+, for ε> 0

P






sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�kSigm
(x, y)− k̃Sigm

(x, y)
�

�≥ ε






≤

≤m















�

Cd ,X

�

βd ,m ,V
ε

�
d

d+1 +d

�

exp
�

− d̃
2(d+1)(S 2+R )

�

ε
βd ,m ,V

�2�

for ε<βd ,m ,V
�

Cd ,X

�

βd ,m ,V
ε

�
d

(d+1)m +d

�

exp
�

− d̃
2(d+1)(S 2+R )

�

ε
βd ,m ,v

�
1

m

�

for ε≥βd ,m ,V ,
(16)
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where Cd ,X := 2
1

d+1 16 |X|
d

d+1
∑d

i , j=1(Di , j +Ei , j )
d

d+1 and βd ,m ,V :=m
�

2V 2
�

L 2 ∨1
� �

σ2
Λ ∨d

��m
.

The proof is provided in the supplement under Theorem C.10. The result shows that the
random kernel k̃Sigm

approximates the signature kernelkSigm
uniformly over subsets ofXseq

of sequences x ∈ Xseq with maximal 1-variation V , ∥x∥1-var ≤ V , assuming that the state-
space X⊂Rd is a convex and compact domain. The error bound is analogous to the classic
RFF bounds, in the sense that the tail probability decreases exponentially fast as a function
of the RFF dimension d̃ . The functional form of the bound is inherited from Theorem B.1,
which provides an analogous result for the derivatives of RFF. This link follows from Lemma
C.9, which connects the concentration of the RFSF kernel to the second derivatives of RFF.

The main difference from the classic case, i.e. [58, Claim 1] and Theorem B.1, is the
appearance of βd ,m ,V which controls a regime change in the tail behaviour. Concretely, for
ε < βd ,m ,V (16) has a polynomial plus a sub-Gaussian tail, while for ε > βd ,m ,V has a (1/m)-
subexponential tail. This is not surprising as the inner summand in (14) is the m-fold tensor
product of m independent RFF kernels, which makes the tail heavier exactly by an exponent
of 1/m. The constant itself, βd ,m ,V , depends on (i) the maximal sequence 1-variation V ,
which measures a notion of time-warping invariant sequence complexity; (ii) the Lipschitz
constant of the kernel L (see Examples C.2 and C.3); (iii) the trace of the second moment of
Λ,σ2

Λ =Ew∼Λ
�

∥w∥2
2

�

; (iv) the state-space dimension d ; (v) and the signature level m itself.

Remark 3.3. Algorithm 1 demonstrates the computation of the RFSF map ϕ̃Sig≤M
given a

dataset of sequences X = (xi )Ni=1 ⊂ Xseq. Upon inspection, we can deduce that the algorithm
has a computational complexity of O

�

N L (M d d̃ +1+ d̃ + . . .+ d̃ M )
�

. Importantly, it is linear
in L, the sequence length, although scales polynomially in the RFF sample size d̃ M .

Dimensionality Reduction: Diagonal Projection. Previously, we introduced a featurized
approximation k̃Sig≤M

to the signature kernel kSig≤M
, called the RFSF kernel, which reduces

the computation from the infinite-dimensional RKHS to a finite-dimensional feature space
using random tensors. Although this makes the computation in the feature space viable of
the RFSF map ϕ̃Sig≤M

, it is still tensor-valued, which incurs a computational cost of O (d̃ +
d̃ 2 + · · ·+ d̃ m ) in the RFF dimension d̃ ∈ Z+. Now, we take another step towards scalability
and apply further dimensionality reduction. By examining the structure of these tensors,
we introduce a diagonally projected variant called RFSF-DP that considerably reduces their
sizes. We emphasize that the above RFSF construction is the crucial step: it approximates
the inner product in an infinite-dimensional space, and now we further approximate it in
an even lower dimensional space. The benefit is that one does not have to go through the
computation of the initial RFSF map, but only the selected degrees of freedom have to be
computed from the beginning.

As a first observation, we notice that the computation of (14) can be reformulated, due
to (3) and linearity of the differencing operator, in the following way:

k̃Sigm
(x, y) =

1

d̃ m

d̃
∑

q1,...,qm=1

∑

i∈∆m (ℓx−1)
j∈∆m (ℓy−1)

m
∏

p=1

δ2
ip , jp

cos
�

w(p )qp

⊤
(xip
−y jp

)
�

(17)

by spelling out the definition of the RFF kernel, where w(1)1 , . . . , w(m )
d̃

i.i.d.∼ Λ, such that W(p ) =
�

w(p )1 , . . . , w(p )
d̃

�

∈ Rd×d̃ as defined in Def. 3.1. Now, we may observe that there that there is
a dependency structure among the samples being averaged in (17), since the outer sum-
mation is over the Cartesian product (q1, . . . , qm ) ∈ [d̃ ]×m , which suggests that we might be
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able to drastically reduce the degrees of freedom by restricting this summation to only go
over an independent set of samples. One way to do this is to restrict to multi-indices of the
form I :=

�

(q , . . . , q ) ∈ [d̃ ]×m : q ∈ [d̃ ]
	

, i.e. we diagonally project the index set, motivating
the name of the approach stated in the following definition.

Definition 3.4. Let w(1)1 , . . . , w(M )
d̃

i.i.d.∼ Λ for d̃ ∈Z+, and define ϕ̂m ,q :X→ Ĥ :=R2 with sample

size d̂ = 1 for q ∈ [d̃ ] and m ∈ [M ], such that ϕ̂m ,q (x) =
�

cos(w(m )q
⊤

x), sin(w(m )q
⊤

x)
�

for x ∈X.

The M -truncated Diagonally Projected Random Fourier Signature Feature (RFSF-DP) map

ϕ̃DP
Sig≤M

:Xseq→ H̃DP
Sig :=

⊕M
m=0

�

Ĥ⊗m
�d̃

is defined for truncation M ∈Z+ and x ∈Xseq as

ϕ̃DP
Sig≤M

(x) :=
1
p

d̃





 

∑

i∈∆m (ℓx−1)

δϕ̂1,q (xi1
)⊗ · · ·⊗δϕ̂m ,q (xim

)

!d̃

q=1





M

m=0

.

Then, the RFSF-DP kernel can be directly computed for x, y ∈Xseq via

k̃
DP
Sig≤M

(x, y) :=
¬

ϕ̃DP
Sig≤M

(x), ϕ̃DP
Sig≤M

(y)
¶

H̃DP
Sig

=
M
∑

m=0

¬

ϕ̃DP
Sigm
(x), ϕ̃DP

Sigm
(y)
¶

(Ĥ⊗m )d̃
=

M
∑

m=0

k̃
DP
Sigm
(x, y)

=
1

d̃

M
∑

m=0

d̃
∑

q=1

∑

i∈∆m (ℓx−1)
j∈∆m (ℓy−1)

δ2
i1, j1

k̂1,q (xi1
, y j1
) · · ·δ2

im , jm
k̂m ,q (xim

, y jm
), (18)

where we defined the level-m RFSF-DP kernel k̃
DP
Sigm

:Xseq×Xseq→R for m ∈N and x, y ∈Xseq

as k̃Sig(x, y) :=
¬

ϕ̃DP
Sigm
(x), ϕ̃DP

Sigm
(y)
¶

(Ĥ⊗m )d̃
with the convention that k̃

DP
Sig0
≡ 1, and k̂m ,q : X×

X→R are independent RFF kernels with sample size d̂ = 1 defined for x, y ∈X as k̂m ,q (x, y) :=



ϕ̂m ,q (x), ϕ̂m ,q (y)
�

Ĥ
with the random weights w(m )q ∈Rd for q ∈ [d̃ ], m ∈ [M ].

Note that by the definition of the RFF kernels in (18), we may substitute that k̂p ,q (x, y) =

cos(w(p )q
⊤
(x−y)) for x, y ∈X, so (18) is equivalently written for x, y ∈Xseq as

k̃
DP
Sigm
(x, y) =

1

d̃

d̃
∑

q=1

∑

i∈∆m (ℓx−1)
j∈∆m (ℓy−1)

δ2
i1, j1

cos(w(1)q
⊤
(xi1
−y j1

)) · · ·δ2
im , jm

cos(w(m )q
⊤
(xim
−y jm

)),

which is what we set out to do in the above paragraph; that is, restrict the outer summation
onto the diagonal projection of the index set. Another way to look at Definition 3.4 is that
the RFSF-DP kernel in (18) is constructed by defining d̃ independent RFSF kernels, each
with internal RFF sample size d̂ = 1, and then taking their average; the concatenation of
their corresponding features are then the features of the RFSF-DP map. Note that for RFF
sample size 1, each RFF map has dimension 2, i.e. Ĥ = R2, and hence, the corresponding
RFSF kernels have dimension 1+2+ · · ·+2M = (2M+1−1), which by concatenation results in
the overall dimensionality of the RFSF-DP kernel being dimH̃TRP

Sig = d̃
�

2M+1−1
�

. This relates
to the computational complexity of the RFSF-DP map; for details see Remark 3.6.

Next, we state our concentration result regarding the level-m RFSF-DP kernel k̃
DP
Sigm
(x, y).
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Theorem 3.5. Let k : Rd ×Rd → R be a continuous, bounded, translation-invariant kernel
with spectral measure Λ, which satisfies (15). Then, for level m ∈Z+, x, y ∈Xseq, and ε> 0

P
h
�

�

�k̃
DP
Sigm
(x, y)−kSigm

(x, y)
�

�

�≥ ε
i

≤ 2 exp

 

−
1

4
min

(

�
p

d̃ε

2Cd ,m ,x,y

�2

,

�

d̃ε
p

8Cd ,m ,x,y

�
1

m
)!

,

where L :=


Ew∼Λ
�

ww⊤
�

 is the Lipschitz constant of k, and Cd ,m ,x,y > 0 is bounded by

Cd ,m ,x,y ≤
p

8e 4(2π)1/4e 1/24(4e 3 ∥x∥1-var



y




1-var
/m )m

�

(2d max(S , R ))m +
�

L 2/ ln 2
�m �

.

The proof is provided in the supplement under Theorem C.11. The result shows that
the RFSF-DP kernel converges for any two sequences x, y ∈Xseq with a

�

1
m

�

-subexponential
convergence rate with respect to the sample size d̃ ∈ Z+. Similarly to Theorem 3.2, the
bound has a phase transition, where for small values of ε, it has a sub-Gaussian tail, while
for larger values, it has a

�

1
m

�

-subexponential tail. A crucial difference from the previous

bound is that now the phase transition happens at ε⋆ =Cd ,m ,x,y2
2m−3/2

2m−1 d̃
1−m

2m−1 , which depends
on the sample size d̃ . This means that for fixed value of ε > 0, the phase transition always
happens eventually as d̃ gets large enough, hence the convergence rate with respect to d̃ is
�

1
m

�

-subexponential regardless of the value of ε. The slightly reduced rate of convergence
compared to the RFSF kernel in Theorem 3.2 is to be expected, since the sample size of the
RFSF-DP kernel is analogously reduced by an exponent of

�

1
m

�

in comparison. The constant

Cd ,m ,x,y, similarly to (16), depends on (i) the 1-variation of sequences ∥x∥1-var ,


y




1-var
that

measure the complexity of the sequences; (ii) L > 0, the Lipschitz constant of the kernel k
(see Examples C.2, C.3); (iii) the moment bound parameters S , R > 0 from condition (15);
(iv) the state-space dimension d ; and (v) the signature level m .

Remark 3.6. Algorithm 2 demonstrates the computation of the RFSF-DP map ϕ̃DP
Sig≤M

given

a dataset of sequences X = (xi )Ni=1 ⊂Xseq. Upon counting the operations, we deduce that the
algorithm has a computational complexity O

�

N Ld̃ (M d +2M )
�

. Crucially, it is linear in both
L, the maximal sequence length, and d̃ , the sample size of the random kernel.

Dimensionality Reduction: Tensor Random Projection. Previously, we built the RFSF-DP
map by subsampling an independent set from the samples that constitute RFSF kernel.
Here, we propose an alternative dimensionality reduction technique that starts again from
the RFSFmap, and uses random projections to project this generally high-dimensional ten-
sor onto a lower dimension. Random projections are a classic technique in data science for
reducing the data dimension, while preserving its important structural properties. They
are built upon the celebrated Johnson-Lindenstrauss lemma [36], which states that a set of
points in a high-dimensional space can be embedded into a space of much lower dimen-
sion, while approximately preserving their geometry. Exploiting this property, we construct
a tensor random projected (TRP) variant of our random kernel called RFSF-TRP, such that
the computation is coupled between the RFSF and TRP maps, similarly to a kernel trick.

Tensorized random projections [78, 61] construct random projections for tensors with
concise parametrization that respects their tensorial nature. Given tensors s, t ∈

�

Rd
�⊗m

for m ∈ Z+, the TRP map with CP (CANDECOMP/PARAFAC [40]) rank-1 is built via a random

functional Pr :
�

Rd
�⊗m → R such that Pr(s) =




p1⊗ · · ·⊗pm , s
�

(Rd )⊗m , where p1, . . . , pm
i.i.d.∼

N(0, Id ) are d -dimensional component vectors sampled from a standard normal distribu-
tion. Then, the inner product can be estimated as Pr(s)Pr(t) ≈ E [Pr(s)Pr(t)] = 〈s, t〉(Rd )⊗m .
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Variance reduction is achieved by stacking n ∈Z+ such random projections, each with i.i.d.

component vectors p(1)1 , . . . , p(n )m
i.i.d.∼ N(0, Id ). Hence, the TRP operator is defined as

TRP :
�

Rd
�⊗m →Rn , TRP(s) :=

1
p

n

�¬

p(i )1 ⊗ · · ·⊗p(i )m , s
¶�n

i=1
. (19)

On the one hand, this allows to represent the random projection map onto Rn using only
O (nmd ) parameters as opposed to the O (nd m ) parameters in a densely parametrized ran-
dom projection; and on the other, it allows for downstream computations to exploit the
low-rank structure of the operator, as we shall do so in the definition stated below.

Definition 3.7. Let W(1), . . . , W(M ) i.i.d.∼ Λd̃ be i.i.d. random matrices sampled from Λd̃ for RFF
dimension d̃ ∈ Z+, the define the independent RFF maps ϕ̃m : X→ H̃ as in (2), i.e. ϕ̃m (x) =
1/
p

d̃

�

cos(W(m )⊤x), sin(W(m )⊤x)
�

for m ∈ [M ] and x ∈ X, and let P(1), . . . , P(M )
i.i.d.∼ Nd̃

�

0, I2d̃

�

be random matrices with i.i.d. standard normal entries. The M -truncated Tensor Random
Projected Random Fourier Signature Feature (RFSF-TRP) map ϕ̃TRP

Sig≤M
Xseq→ H̃TRP

Sig = RM d̃ is
defined for truncation level M ∈Z+ and x ∈Xseq as

ϕ̃TRP
Sig≤M

(x) :=
1
p

d̃





 

∑

i∈∆m (ℓx−1)

¬

p(1)q ,δϕ̃1(xi1
)
¶

· · ·
¬

p(m )q ,δϕ̃m (xim
)
¶

!d̃

q=1





M

m=0

=
1
p

d̃

 

∑

i∈∆m (ℓx−1)

�

P(1)
⊤
δϕ̃1(xi1

)
�

⊙ · · ·⊙
�

P(m )
⊤
δϕ̃m (xim

)
�

!M

m=0

, (20)

where P(m ) =
�

p(m )q

�d̃

q=1
∈R2d̃×d̃ , and⊙denotes the Hadamard product6. The RFSF-TRPkernel

k̃
TRP
Sig≤M

:Xseq×Xseq→R can then be directly computed for sequences x, y ∈Xseq by

k̃
TRP
Sig≤M

(x, y) :=
¬

ϕ̃TRP
Sig≤M

(x), ϕ̃TRP
Sig≤M

(y)
¶

H̃Sig
=

M
∑

m=0

¬

ϕ̃TRP
Sigm
(x), ϕ̃TRP

Sigm
(y)
¶

H̃⊗m

=
M
∑

m=0

k̃
TRP
Sigm
(x, y) =

1

d̃

M
∑

m=0

d̃
∑

q=1

∑

i∈∆m (ℓx−1)
j∈∆m (ℓy−1)

m
∏

p=1

¬

p(p )q ,δϕ̃p (xip
)
¶¬

p(p )q ,δϕ̃p (y jp
)
¶

,(21)

where we defined the level-m RFSF-TRPkernel k̃
TRP
Sigm

:Xseq×Xseq→R for m ≤M as k̃
TRP
Sigm
(x, y) :=

¬

ϕ̃TRP
Sigm
(x), ϕ̃TRP

Sigm
(y)
¶

H̃⊗m
with the convention that k̃

TRP
Sig0
≡ 1.

We remark that (20) is equivalent to theTRPoperator (19) applied to theRFSFmap (13) by
exploiting bilinearity of the inner product, and using that it factorizes over the tensor com-
ponents, as described in (4). Then, the unbiasedness of (21) follows from the fact that the
TRP operator is an isometry under expectation, which is applied to the RFSF tensor ϕ̃Sigm

,

therefore k̃
TRP
Sigm

kernel is conditionally an unbiased estimator of k̃Sigm
given theRFSFweights

W(1), . . . , W(m ) ∈ Rd×d̃ . By the tower rule for expectations, k̃
TRP
Sigm

is an unbiased estimator of
kSigm

. The approximation quality is then governed by two factors: (i) how well the TRP pro-

jected kernel k̃
TRP
Sigm

approximates k̃Sigm
; (ii) the quality of the approximation of k̃Sigm

with

6The Hadamard product stands for component-wise multiplication of the vectors x, y ∈Rn , x⊙y=
�

xi yi

�n

i=1
.
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respect to kSigm
. Note that (ii) has already been discussed in Theorem 3.2. Here, we state

the following theoretical result which quantifies (i). Combining these two results by means
of triangle inequality and union bounding quantifies that k̃

TRP
Sigm

is a good estimator of kSigm
.

Theorem 3.8. Let k : Rd ×Rd → R be a continuous, bounded, translation-invariant kernel
with spectral measure Λ, which satisfies (15). Then, the following bound holds for RFSF-TRP
kernel for signature level m ∈Z+ sequences x, y ∈Xseq and ε> 0

P
h
�

�

�k̃
TRP
Sigm
(x, y)− k̃Sigm

(x, y)
�

�

�≥ ε
i

≤Cd ,Λ exp



−

�

m 2d̃
1

2m ε
1

m

2
p

2e 3R ∥x∥1-var



y




1-var

�
1
2



 , (22)

where the absolute constant is defined as Cd ,Λ := 2
�

1+ S
2R +

S 2

4R 2

�d
.

The proof is given in the supplement under Theorem C.12 utilizing the hypercontrac-
tivity of Gaussian polynomials [35] that is used to quantify the concentration of the TRP
estimator. The concentration of the RFSF-TRP kernel is then governed by Theorems 3.2 and
3.8 combined. Together, they show that for smaller values of ε (i.e. the regime change as
discussed below Theorem 3.2), the probability has a polynomial plus a sub-Gaussian tail,
while for large ε, it has a

�

1
2m

�

-subexponential tail due to (22), and the dominant conver-

gence rate with respect to d̃ is
�

1
4m

�

-subexponential. This means that in terms of conver-
gence, RFSF-TRP is the slowest among the 3 variations introduced so far. However, it is also
the most efficient in terms of overall dimension, hence computational complexity as well,
since H̃TRP

Sig =RM d̃ . Remark 3.9 discusses the computational complexity in detail.

Remark 3.9. Algorithm 3 demonstrates the computation of the RFSF-TRP map ϕ̃TRP
Sig≤M

given

a dataset of sequences X = (xi )Ni=1 ⊂ Xseq. Counting the operations, here we can deduce that
the algorithm has an O

�

M N Ld̃ (d + d̃ )
�

computational complexity. This variation is also
linear in L, the maximal sequence length, although it is quadratic in d̃ .

4 Experiments

Time series classification. We perform multivariate time series classification experiments
to investigate the performance of the scalable RFSF variants compared to the full-rank sig-
nature kernel and other quadratic time baseline kernels, and further, to demonstrate the
scalability to large-scale datasets, where the quadratic sample complexity becomes pro-
hibitive. We use support vector machine (SVM) [76] classification with for classifying mul-
tivariate time series on datasets of various sizes. For the quadratic time kernels, the dual
SVM formulation is used, while for kernels with explicit feature representations, we use the
primal formulation that has linear complexity in the size of the dataset n ∈ Z+ aiding in
scalability to truly large-scale datasets. For each considered kernel/feature, we use a GPU-
based implementation provided in the KSig library7. For large-scale experiments with the
featurized kernels, linear SVM implementation is used from the cuML library [62], while the
dual SVM on small-scale datasets uses the sklearn library [56]. For multi-class problems,
we use the one-vs-one classification strategy. This study is also the largest scale compari-
son of various signature kernels to date which extends the datasets considered in [68]. The
hardware used was 2 computer clusters equipped with overall 8 NVIDIA 3080 Ti GPUs.

7https://github.com/tgcsaba/KSig

16

https://github.com/tgcsaba/KSig


Table 1: Computational complexities of kernels in our experiments; N ∈Z+ is the number
of time series, L ∈ Z+ is their length, d ∈ Z+ is their state-space dimension, M ∈ Z+ is the
signature truncation level, d̃ ∈Z+ is the RF dimension, W ∈Z+ is the warping length in RWS.

RFSF-DP RFSF-TRP KSig KSigPDE RWS GAK RBF RFF

O
�

N Ld̃
�

M d +2M
��

O
�

N LM d̃
�

d + d̃
��

O
�

N 2L 2 (M +d )
�

O
�

N 2L 2d
�

O (N LW d ) O
�

N 2L 2d
�

O
�

N 2Ld
�

O
�

N Ld d̃
�

Methods. We compare the proposed variants RFSF-DP and RFSF-TRP to the baselines de-
scribed here: (1) the M -truncated Signature Kernel [39] KSig formulated via the kernel trick,
and is a quadratic time baseline; (2) the Signature-PDE Kernel [68] KSigPDE, which uses the
2nd-order PDE solver and also has quadratic complexity; (3) the Global Alignment Kernel
[17] GAK, the previous SOTA time series kernel before the signature and can be related to it,
see [39, Sec. 5]; (4) Random Warping Series [92] RWS, which produces features by DTW align-
ments between the input and randomly sampled time series; (5) theRBFkernel, which treats
the whole time series as a vector of length RLd , (6) Random Fourier Reatures [58] RFF, which
also treats the time series as a long vector. The complexities are compared in Table 1.

Hyperparameter selection. For each dataset-kernel, we perform cross-validation to se-
lect the optimal hyperparameters that are optimized over the Cartesian product of the fol-
lowing options. For each method that requires a static kernel, we use the RBF kernel with
bandwidth hyperparameterσ> 0. This is specified by a rescaled median heuristic, i.e.

σ=αmed
n




xi −x′j







2
/2 : i ∈ [ℓx], j ∈ [ℓx′ ], x, x′ ∈X

o

, for α> 0,

where α is chosen from α ∈ {10−3, . . . , 103} on a logarithmic grid with 19 steps. For each ker-
nel that is not normalized by default (i.e. the GAK and RBF kernels are normalized, the for-
mer is because without normalization it blows up) , we select whether to normalize to unit
norm in feature space via k(x, y) 7→ k(x, y)/

p

k(x, x)k(y, y). The SVM hyperparameter C > 0
is selected from C ∈ {100, 101, 102, 103, 104}. Further, motivated by previous work that in-
vestigates the effect of path augmentations in the context of signature methods [54], we
chose 3 augmentations to cross-validate over. First is parametrization encoding, which
gives the classifier the ability to remove the warping invariance of a given sequence kernel,
adding the time index as an additional coordinate, i.e. for each time series in the dataset

x ∈ X, we augment it via x = (xi )
ℓx
i=1 7→ (β i/ℓx, xi )

ℓx
i=1, where β > 0 is the parametrization

intensity chosen from β ∈ {100, 101, 102, 103, 104}. The second augmentation is the base-
point encoding, the role of which is to remove the translation invariance of signature fea-
tures. Note that when the static base kernel is chosen to be a nonlinear kernel other than
the Euclidean inner product, the signature kernel is not completely translation-invariant
due to the state-space nonlinearities, but it is close being that by the L-Lipschitz prop-
erty in Lemma C.2 valid for of the static kernels considered in this work. The basepoint
encoding adds an initial 0 step at the beginning of each time series, i.e. for x ∈ X, x =
(x1, . . . , xℓx

) 7→ (0, x1, . . . , xℓx
). The third augmentation is the lead-lag map, which is defined as

x = (x1, . . . , xℓx
) 7→

�

(x1, x1), (x2, x1), (x2, x2), . . . , (xℓx
, xℓx−1), (xℓx

, xℓx
)
�

. For the truncation-based
signature kernels, we select the truncation level M ∈ Z+ from M ∈ {2, 3, 4, 5}. For RWS, we
select the warping length from W ∈ {10, 20, . . . , 100} as suggested by the authors. This makes
RWS the most expensive feature-based kernel, and so as to fit within the same resource lim-
itations, we omit cross-validating over the path augmentations. For RF approaches, we set
the RF dimension d̃ ∈Z+, so the overall dimension is 1000.
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Datasets: UEA Archive. The UEA archive [18] is a collection of overall 30 datasets for
benchmarking classifiers on multivariate time series classification problems containing
both binary and multi-class tasks. The data modality ranges from various sources e.g. hu-
man activity recognition, motion classification, ECG classification, EEG/MEG classifica-
tion, audio spectra recognition, and others. The sizes of the datasets in terms of number
of time series range from small (≤ 1000 examples) to large (≤ 30000), and includes various
lengths between 8 and 18000. A summary of the dataset characteristics can be found in
Table 2 in [18]. Pre-specified train-test splits are provided for each dataset, which we fol-
low. We evaluate all considered kernels on the small datasets (≤ 1000 time series), but be-
cause the non-feature-based become very expensive computationally beyond these sizes,
we only evaluate feature-based approaches on medium and large datasets (≥ 1000 time se-
ries). Each featurized approach is trained and evaluated 5 times on each dataset in order to
account for the randomness in the hyperparameter selection procedure and evaluation.

Datasets: Mental Workload Intensity Classification. We evaluate featurized approaches
on a large-scale brain-activity recording data set called fNIRS2MW.8 This dataset contains
brain activity recordings collected from overall 68 participants during a 30-60 minute exper-
imental session, where they were asked to carry out tasks of varying intensity. The collected
time series are sliced into 30 second segments using a sliding window, and each segment is
labelled with an intensity level (0-3), giving rise to overall∼ 100000 segments, which we split
in a ratio of 80−20 for training and testing. We convert the task into a binary classification
problem by assigning a label whether the task is low (0 or 1) or high (2 or 3) intensity.

Datasets: Satellite Image Classification. As a massive scale task, we use a satellite im-
agery dataset9 of N = 106 time series. Each length L = 46 time series corresponds to a
vegetation index calculated from remote sensing data, and the task is to classify land cover
types [57] by mapping vegetation profiles to various types of crops and forested areas cor-
responding to 24 classes. We split the dataset in a ratio of 90-10 for training and testing.

4.1 Results

Table 2 compares test accuracies on moderate size multivariate time series classification
datasets with N ≤ 1000 from the UEA archive. KSig provides state-of-the-art performance
among all sequence kernels with taking the highest aggregate score in terms of all of average
accuracy, average rank, and number of first places. Our proposed random feature variants
RFSF-DP and RFSF-TRP provide comparable performance on most of the datasets in terms
of accuracy, and they are only outperformed by KSig and KSigPDE with respect to average
accuracy and rank. Interestingly, RFSF-TRP has more first place rankings, but RFSF-DP per-
forms slightly better on average. This shows that on datasets of these sizes, using either of
RFSF-DP and RFSF-TRP does not sacrifice model performance - even leading to improve-
ments in some cases, potentially due to the implicit regularization effect of restricting to
a finite-dimensional feature space - and it can already provide speedups. We visualize the
critical difference diagram comparison of all considered approaches in Figure 1.

Table 3 demonstrates the performance of scalable approaches, i.e. RFSF-DP, RFSF-TRP,
RWS and RFFon the remaining UEA datasets (N ≥ 1000), the dataset fNIRS2MW (N = 105), and
the satellite dataset SITS1M (N = 106). We find it infeasible to perform full cross-validation

8https://github.com/tufts-ml/fNIRS-mental-workload-classifiers
9https://cloudstor.aarnet.edu.au/plus/index.php/s/pRLVtQyNhxDdCoM
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Table 2: Comparison of SVM test accuracies on small multivariate time series classification
datasets. For each row, the best result is highlighted in bold, and the second best in italic.

RFSF-DP RFSF-TRP KSig KSigPDE RWS GAK RBF RFF

ArticularyWordRecognition 0.984 0.981 0.990 0.983 0.987 0.977 0.977 0.978
AtrialFibrillation 0.373 0.320 0.400 0.333 0.427 0.333 0.267 0.373
BasicMotions 1.000 1.000 1.000 1.000 0.995 1.000 0.975 0.860
Cricket 0.964 0.964 0.958 0.972 0.978 0.944 0.917 0.886
DuckDuckGeese 0.636 0.664 0.700 0.480 0.492 0.500 0.420 0.372
ERing 0.921 0.936 0.841 0.941 0.945 0.926 0.937 0.915
EigenWorms 0.817 0.837 0.809 0.794 0.623 0.511 0.496 0.443
Epilepsy 0.949 0.942 0.949 0.891 0.925 0.870 0.891 0.777
EthanolConcentration 0.457 0.439 0.479 0.460 0.284 0.361 0.346 0.325
FingerMovements 0.608 0.624 0.640 0.630 0.612 0.500 0.620 0.570
HandMovementDirection 0.573 0.568 0.595 0.527 0.403 0.595 0.541 0.454
Handwriting 0.434 0.400 0.479 0.409 0.591 0.481 0.307 0.249
Heartbeat 0.717 0.712 0.712 0.722 0.714 0.717 0.717 0.721
JapaneseVowels 0.978 0.978 0.986 0.986 0.955 0.981 0.981 0.979
Libras 0.898 0.928 0.922 0.894 0.837 0.767 0.800 0.800
MotorImagery 0.516 0.526 0.500 0.500 0.508 0.470 0.500 0.482
NATOPS 0.906 0.908 0.922 0.928 0.924 0.922 0.917 0.900
PEMS-SF 0.800 0.808 0.827 0.838 0.701 0.855 0.855 0.770
RacketSports 0.874 0.861 0.921 0.908 0.878 0.849 0.809 0.755
SelfRegulationSCP1 0.868 0.856 0.904 0.904 0.829 0.915 0.898 0.885
SelfRegulationSCP2 0.489 0.510 0.539 0.544 0.481 0.511 0.439 0.492
StandWalkJump 0.387 0.333 0.400 0.400 0.347 0.267 0.533 0.267
UWaveGestureLibrary 0.882 0.881 0.912 0.866 0.897 0.887 0.766 0.846

Avg. acc. 0.740 0.738 0.756 0.735 0.710 0.702 0.692 0.656
Avg. rank 3.609 3.739 2.348 2.957 3.957 4.174 4.913 5.913

12345678

RFF
RBF
GAK
RWS RFSF-TRP

RFSF-DP
KSigPDE
KSig

CD

Figure 1: Critical difference diagram compar-
ison on moderate datasets of considered ap-
proaches using two-tailed Nemenyi test [19].

Table 3: Comparison of accuracies on large-
scale datasets of random features.

RFSF-DP RFSF-TRP RWS RFF

CharacterTrajectories 0.990 0.990 0.991 0.989
FaceDetection 0.653 0.656 0.642 0.572
InsectWingbeat 0.436 0.459 0.227 0.341
LSST 0.589 0.624 0.631 0.423
PenDigits 0.983 0.982 0.989 0.980
PhonemeSpectra 0.204 0.204 0.205 0.083
SITS1M 0.745 0.740 0.610 0.718
SpokenArabicDigits 0.981 0.980 0.981 0.964
fNIRS2MW 0.659 0.658 0.621 0.642

Avg. acc. 0.693 0.699 0.655 0.635
Avg. rank 1.778 1.889 2.222 3.333

for quadratic time kernels on these datasets due to expensive kernel computations and
downstream cost of dual SVM. The results show that both variants RFSF-DP and RFSF-TRP
perform significantly better on average with respect to accuracy and rank then both RWS
and RFF. Note when RWS takes first place, it only improves over our approach marginally,
however, when it underperforms, it often does so severely. This is not surprising as both
RFSF-DP and RFSF-TRP approximate the signature kernel, which is universal kernel on time
series; it is theoretically capable of learning from any kind of time series data as supported
by its best overall performance above.
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5 Conclusion

We constructed a random kernel k̃Sig≤M
for sequences that benefits from (i) lifting the orig-

inal sequence to an infinite-dimensional RKHSH, (ii) linear complexity in sequence length,
(iii) being with high probability close the signature kernel kSig. Thereby it combines the
strength of the signature kernel kSig which is to implicitly use the iterated integrals of a
sequence that has an infinite-dimensional RKHSH as state-space with the strength of (un-
kernelized) signature features ϕSig that only require linear time complexity. Our main the-
oretical result extends the theoretical guarantees for translation-invariant kernels on linear
spaces to the signature kernel defined on the nonlinear domain Xseq; however, the proofs
differ from the classic case and require to analyse the error propagation in tensor space. A
second step is more straightforward, and combines this approach with random projections
in finite-dimensions for tensors to reduce the complexity in memory further. The advan-
tages and disadvantages of the resulting approach are analogous to the classic RFF tech-
nique on Rd , namely a reduction of computational complexity by an order for the price
of an approximation that only holds with high probability. As in the classic RFF case, our
experiments indicate that this is in general a favourable tradeoff.

In the future, it would be interesting both theoretically and empirically to replace the
vanilla Monte Carlo integration in the RFF construction by block-orthogonal random ma-
trices as done in [94]. Further, our random features can also be used to define an unbi-
ased appoximation to the inner product of expected signatures, which has found usecases,
among many, in nonparametric hypothesis testing and market regime detection [10, 32],
training of generative models [55, 33], and graph representation learning [83].
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A Concentration of measure

Classic inequalities. The following inequalities are classic, and their proofs are in analy-
sis textbooks, e.g. [21, 66]. Firstly, Jensen’s inequality is useful for convex (concave) expec-
tations.

Lemma A.1 (Jensen’s inequality). Let X be an integrable random variable, and f : R→ R a
convex function, such that f (X ) is also integrable. Then, the following inequality holds:

f (E [X ])≤E
�

f (X )
�

.

Hölder’s inequality is a generalization of the Cauchy-Schwarz inequality to L p spaces.

Lemma A.2 (Hölder’s inequality). Let p , q ≥ 1 such that 1
p +

1
q = 1. Let X and Y respectively

be L p and L q integrable random variables, i.e. E
�

|X |p
�

<∞ and E
�

|Y |q
�

<∞. Then, X Y is
integrable, and it holds that

E [|X Y |]≤E1/p
�

|X |p
�

E1/q
�

|Y |q
�

.

Although not inherently a probabilistic inequality, Young’s inequality can be used to
decouple products of random variables.

Lemma A.3 (Young’s inequality). Let p , q > 0 with 1
p +

1
q = 1. Then, for every a , b ≥ 0

a b ≤
a p

p
+

b q

q
.

Lemma A.4 (Reverse Young’s inequality). Let p , q > 0 such that 1
p −

1
q = 1. Then, for every

a ≥ 0 and b > 0, it holds that

a b ≥
a p

p
−

b−q

q
.

Proof. Apply Young’s inequality with p ′ = 1
p and q ′ = q

p to a ′ = (a b )p and b ′ = b−p .
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Subexponential concentration. Next, we state a variation on the well-known Bernstein
inequality, which holds for random variables in the subexponential class. The condition
(25) on a random variable X , in this case, is formulated as a moment-growth bound, called a
Bernstein moment condition. We show in Lemmas A.11 and A.12 (in a more general setting)
that (25) is equivalent to the random variable being subexponential. Further, note that the
condition itself is given in terms of non-centered random variables, while the statement of
the theorem is about their centered counterparts. For similar results, see [86, Sec. 2.2.2].

Theorem A.5 (Bernstein inequality - one-tailed). Let X1, . . . , Xn be independent random
variables satisfying the following moment-growth condition for some S , R > 0,

E
�

X k
i

�

≤
k !S 2R k−2

2
for all k ≥ 2. (23)

Then, it holds for X̃ i := X i −E [X i ] that

P
�∑n

i=1
X̃ i ≥ t

�

≤ exp

�

−t 2

2(nS 2+R t )

�

.

Proof. We have for λ> 0

P
�∑n

i=1
X̃ i ≥ t

� (a )
≤ exp(−λt )E

�

exp
�

λ
∑n

i=1
X̃ i

��

(b )
= exp

�

−λt −λ
∑n

i=1
E [X i ]

�

n
∏

i=1

E [exp(λX i )] , (24)

where (a) holds for any λ> 0 by the Chernoff bound applied to
∑n

i=1 X̃ i , and in (b) we used
the independence of X i -s. Bounding the moment-generating function of X i , one gets

E [exp(λX i )]
(d)
= 1+λE [X i ] +

∞
∑

k=2

λk

k !
E
�

X k
i

� (e)
≤ 1+λE [X i ] +

S 2λ2

2

∞
∑

k=0

λk R k

(f)
= 1+λE [X i ] +

S 2λ2

2(1−λR )

(g)
≤ exp

�

λE [X i ] +
S 2λ2

2(1−λR )

�

,

where (d) is due to the Taylor expansion of the exponential function, (e) implied by (23),
(f) holds by the sum of geometric series for any λ < 1/R , (g) follows from the inequality
1+ x ≤ exp(x ) for all x ∈R. Using this to bound (24),

P
�∑n

i=1
X̃ i ≥ t

�

≤ exp
�

−λt −λ
∑n

i=1
E [X i ]

�

n
∏

i=1

exp

�

λE [X i ] +
S 2λ2

2(1−λR )

�

= exp

�

−λt +
nS 2λ2

2(1−λR )

�

.

Finally, choosing λ= t /(nS 2+R t ) gives the statement.

Corollary A.6 (Bernstein inequality - two-tailed). Let X1, . . . , Xn be independent random
variables satisfying the the following moment-growth condition for some S , R > 0,

E
�

|X i |k
�

≤
k !S 2R k−2

2
for all k ≥ 2. (25)

Then, it holds for X̃ i := X i −E [X i ] that

P
h
�

�

�

∑n

i=1
X̃ i

�

�

�≥ t
i

≤ 2 exp

�

−t 2

2(nS 2+R t )

�

.
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Proof. Applying Theorem A.5 to
∑n

i=1 X̃ i and −
∑n

i=1 X̃ i , and combining the two bounds
gives the two-tailed result.

α-exponential concentration. In this section, we introduce a specific class of Orlicz norms
for heavy-tailed random variables, which generalizes subexponential distributions.

Definition A.7 (α-exponential Orlicz norm). Let α> 0 and define the function

Ψα : R→R, Ψα(x ) := exp
�

xα
�

−1 for all x ∈R.

The α-exponential Orlicz (quasi-)norm of a random variable X is defined as

∥X ∥Ψα := inf
§

t > 0 : E
�

Ψα

� |X |
t

��

≤ 1
ª

,

adhering to the standard convention that inf;=∞.

If a random variable X satisfies ∥X ∥Ψα <∞, it is either called an α-(sub)exponential
random variable (if α< 1) [69, 30, 9], or sub-Weibull of order-α [41, 95].

An alternative characterization of the α-exponential norm is the following tail-bound.

Remark A.8 (Tail bound). Let α > 0 and X be a random variable such that ∥X ∥Ψα <∞.
Then,

P [|X | ≥ ε]≤ 2 exp

�

−
εα

∥X ∥αΨα

�

.

Proof. Due to Definition A.7, E
h

exp
�

|X |α
∥X ∥αΨα

�i

≤ 2, hence by Markov’s inequality

P [|X | ≥ ε] =P

�

|X |α

∥X ∥αΨα
≥
εα

∥X ∥αΨα

�

≤ e
− εα

∥X ∥αΨα E

�

exp

�

|X |α

∥X ∥αΨα )

��

≤ 2e
− εα

∥X ∥αΨα .

Note that although ∥·∥Ψα is often referred to as a norm, it does not satisfy the triangle
inequality for α < 1, although we can still relate the norm of the sum to the sum of the
norms.

Lemma A.9 (Generalized triangle inequality for Orlicz norm). It holds for any random vari-
ables X , Y and α> 0 that

∥X +Y ∥Ψα ≤Cα
�

∥X ∥Ψα + ∥Y ∥Ψα
�

,

where Cα = 21/α if α< 1 and 1 otherwise.

Proof. See Lemma A.3. in [30].

A useful property of α-exponential norms is that they satisfy a Hölder-type inequality.

Lemma A.10 (Hölder inequality for Orlicz norm). It holds for any random variables X1, . . . , Xk

and α1, . . . ,αk > 0 that






∏k

i=1
X i







Ψα
≤
∏k

i=1
∥X i ∥Ψαi

,

where α :=
�

∑k
i=1α

−1
i

�−1
.
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Proof. See Lemma A.1. in [30].

Next, we show in the following two lemmas that a random variable X is α-exponential
if and only if |X |α satisfies a Bernstein moment-growth condition.

Lemma A.11 (Bernstein condition implies Orlicz norm bound). Let α > 0 and X be a ran-
dom variable that satisfies for S , R > 0 that

E
�

|X |kα
�

≤
k !S 2R k−2

2
for all k ≥ 2. (26)

Then, it holds that

∥X ∥Ψα ≤ (S ∨R )1/α .

Proof. Firstly, due to Jensen’s inequality (Lemma A.1) and (26), we have

E
�

|X |α
�

≤E1/2
�

|X |2α
�

≤ S . (27)

We proceed similarly to the proof of Theorem A.5. For t > 0, we have

E

�

exp
|X |α

t α

�

(a)
= 1+

E
�

|X |α
�

t α
+
∞
∑

m=2

E
�

|X |mα
�

t mαm !

(b)
≤ 1+

S

t α
+

S 2

2t 2α

∞
∑

m=0

�

R

t α

�m

(c)
= 1+

S

t α
+

S 2

2t �2α
��t α

t α−R
︸ ︷︷ ︸

f (t )

,

where (a) is due to the Taylor expansion of the exponential function, (b) is due to (26) and

(27), (c) is the sum of a geometric series for R < t α. Defining f (t ) := 1+ S
t α

�

1+ S
2(t α−R )

�

and
solving for f (t )≤ 2 leads to the quadratic inequality

0≤ t 2α− (S +R )t α+SR −
S 2

2
,

which has roots t α1,2 =
1
2

�

S +R ±
Æ

(S −R )2+2S 2
�

. We discard the left branch, which violates
the condition R < t α since

t α2 =
1

2

�

S +R −
p

(S −R )2+2S 2
�

≤
1

2
(S +R − |S −R |) = S ∧R ≤R .

Now, as the inequality
p

x 2+ y 2 ≤ |x |+
�

�y
�

� holds for all x , y ∈R, we get

t α1 ≤
1

2

�

S +R +
p

(S −R )2+2S 2
�

≤
1

2

�

S +R + |S −R |+
p

2S
�

= S ∨R +

p
2

2
S ≤ 2(S ∨R )

and hence choosing t ≥ (2(S ∨R ))1/α ≥ t1 implies f (t )≤ 2, and we are done.

The other direction is proven in the following lemma.

Lemma A.12 (Finite Orlicz norm implies Bernstein condition). Letα> 0 and X be a random
variable such that ∥X ∥Ψα <∞. Then,

E
�

|X |kα
�

≤
k !S 2R k−2

2
for all k ≥ 2,

where S :=
p

2∥X ∥αΨα and R := ∥X ∥αΨα .
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Proof. We have that

E
�

|X |kα
� (a)
= k !∥X ∥kα

Ψα
E

�

1

k !

�

|X |
∥X ∥Ψα

�kα�
(b)
≤ k !∥X ∥kα

Ψα
E

�

exp

�

|X |α

∥X ∥αΨα

�

−1

�

(c)
≤ k !∥X ∥kα

Ψα

(d)
=

k !
�p

2∥X ∥αΨα
�2 �

∥X ∥αΨα
�k−2

2
,

where (a) is simply multiplying and dividing by the same values, (b) is the inequality 1+
x k/k !≤ e x for x > 0, (c) follows from Definition A.7, (d) is reorganizing terms to the required
form.

We adapt the following concentration inequality from [41] for α-exponential summa-
tion.

Theorem A.13 (Concentration inequality for α-subexponential summation). Let α ∈ (0, 1)
and X1, . . . , Xn be independent, centered random variables with ∥X i ∥Ψα ≤Mα for all i ∈ [n ].
Then, it holds for t > 0 that

P
h
�

�

�

∑n

i=1
X i

�

�

�≥Cα
�

2
p

n t +
p

241/αt 1/α
�

i

≤ 2e −t , (28)

where Cα :=
p

8e 4(2π)1/4e 1/24(2e /α)1/αMα. Alternatively, it holds for ε> 0 that

P
h
�

�

�

∑n

i=1
X i

�

�

�≥ ε
i

≤ 2 exp

�

−
1

4
min

�

�

ε

2
p

nCα

�2

,

�

ε
p

8Cα

�α��

. (29)

Proof. The inequality (28) follows directly from [41, Theorem 3.1].
To show (29), let g1(t ) := 2Cα

p
n t and g2(t ) :=

p
2Cα41/αt 1/α. Now, for t > 0

P
h
�

�

�

∑n

i=1
X i

�

�

�≥ 2
�

g1(t )∨ g2(t )
�

i

≤P
h
�

�

�
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i=1
X i

�

�

�≥ g1(t ) + g2(t )
i

≤ 2e −t ,

which is equivalently written as

P
h
�

�

�

∑n

i=1
X
�

�

�≥ ε
i

≤ 2 exp
�

−
�

g −1
1 (ε/2)∧ g −1

2 (ε/2)
��

.

Hypercontractivity. Here we provide an alternative approach for the concentration of
heavy-tailed random variables, specifically for polynomials of Gaussian random variables.
The following lemma states a moment bound for such Gaussian chaoses, considered in
e.g. [35, 4].

Lemma A.14 (Moment bound for Gaussian polynomial). Consider a degree-p polynomial

f (X ) = f (X1, . . . , Xn )of independent centered Gaussian random variables, X1, . . . Xn
i.i.d.∼ N(0, 1).

Then, for all k ≥ 2

E1/k
�
�

� f (X )
�

�

k �≤ (k −1)p/2E1/2
�
�

� f (X )
�

�

2�

.

Theorem A.15 (Concentration inequality for Gaussian polynomial). Consider a degree-p

polynomial f (X ) = f (X1, . . . , Xn )of independent centered Gaussian random variables, X1, . . . , Xn
i.i.d.∼

N(0, 1). Then, for p ≥ 2 and ε> 0

P
��

� f (X )−E
�

f (X )
��

�≥ ε
�

≤ 2 exp

�

−
ε2/p

2
p

2e V1/p
�

f (X )
�

�

,

where V [·] denotes the variance of a random variable.
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Proof. Without loss of generality, we may assume that E
�

f (X )
�

= 0 and V
�

f (X )
�

= 1. Since
Lemma A.14 holds, we have for p , k ≥ 2

E
�
�

� f (X )
�

�

2k/p � (a)
≤ E2/p

�
�

� f (X )
�

�

k � (b)
≤ (k −1)k ≤ k k (c)

≤ k !e k ≤
k !(
p

2e )2e k−2

2
,

where (a) holds due to Jensen inequality since (·)2/p is concave, (b) is Lemma A.14, and

(c) is due to Stirling’s approximation. Hence,
�

� f (X )
�

�

2/p
satisfies a Bernstein condition with

S =
p

2e and R = e . Therefore, by Lemma A.11, we have


 f (X )




Ψ2/p
≤ (2
p

2e )p/2.

Then, by Remark A.8, it holds that

P
��

� f (X )
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�≥ ε
�

≤ 2 exp



−
ε2/p



 f (X )




2/p

Ψ2/p



≤ 2 exp

�

−
ε2/p

2
p

2e

�

.

B Random Fourier Features

[58] provides a uniform bound for the RFF error over a compact and convex domain X⊂Rd

with diameter |X| for some absolute constant C > 0,

P

�

sup
x,y∈X

�

�k̃(x, y)−k(x, y)
�

�≥ ε
�

≤C
�

σΛ |X|
ε

�2

exp

�

−
−d̃ε2

4(d +2)

�

, (30)

whereσ2
Λ =Ew∼Λ

�

∥w∥2
�

, and [79] shows that C ≤ 66. Equation (30) implies [74, Sec. 2]

sup
x,y∈X

�

�k̃(x, y)−k(x, y)
�

�=Op

�

|X|
q

d̃−1 log d̃
�

.

The converse result10 for RFF derivatives was shown in [74, Thm. 5]. The idea of the proof is
to cover the input domain by an ε-net, and control the approximation error on the centers,
while simultaneously controlling the Lipschitz constant of the error to get the bound to
hold uniformly. We provide an adapted version with two main differences: (1) using the
Bernstein inequality from Corollary A.6, where the Bernstein condition is given in terms of
non-centered random variables, and (2) using the covering numbers of [16]. We will use this
theorem in proving Theorem 3.2 for controlling the approximation error of the derivatives
of RFFs.

Given p ∈ Nd , we denote
�

�p
�

� := p1 + . . .+ pd , for a function f : Rd → R the p-th partial

derivative by ∂ p f (z) := ∂ |p| f (z)
∂ p1 z1...∂ pd zd

, for a vector w ∈Rd the p-th power by wp :=w
p1
1 · · ·w

pd

d .

Theorem B.1 (Concentration inequality for RFF kernel derivatives). Let p, q ∈ Nd and k :
Rd×Rd →R be a continuous, bounded, translation-invariant kernel such that z 7→∇ [∂ p,qk(z)]
is continuous. LetX⊂Rd be a compact and convex domain with diameter |X|, and denote by
Dp,q,X := supz∈X∆ ∥∇ [∂

p,qk(z)]∥2, where X∆ :=
�

x−y : x, y ∈X
	

. Let Λ be the spectral measure

of k satisfying that Ep,q := Ew∼Λ
��

�wp+q
�

�∥w∥2

�

<∞, and the Bernstein moment condition for
some S , R > 0,

Ew∼Λ
�
�

�wp+q
�

�

k �≤
k !S 2R k−2

2
for all k ≥ 2.

10These error guarantees can also be improved exponentially both for the approximation of kernel values
[74] and kernel derivatives [80, 9] in terms of the size of the domain where it holds, i.e. |X|.
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Then, for Cp,q,X := |X| (Dp,q,X+Ep,q) and ε> 0,

P

�

sup
x,y∈X

�

�∂ p,qk̃(x, y)− ∂ p,qk(x, y)
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�≥ ε
�

≤ 16

�
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�
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exp

�

−d̃ε2

4(d +1)(2S 2+Rε)

�

.

Proof. We adapt the proof of [58, 74]. Note that as X is compact, so is X∆, and it can be
covered by an ε-net of at most T := (4 |X|/r )d balls of radius r > 0 [16, Prop. 5]with centers
z1, . . . , zT ∈X∆. Since for all z ∈X∆ there exists i ∈ {1, . . . , T } such that ∥z− zi ∥2 ≤ r , it holds
for f (z) := ∂ p,qk̃(z)− ∂ p,qk(z) and L f := sups∈X∆



∇ f (s)




2
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�

� f (z)− f (zi )
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∇ f (s)




2
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≤ sup

s∈X∆



∇ f (s)




2
r = L f r, (31)

where (a) is due to the mean-value theorem followed by Cauchy-Schwarz inequality, and
(b) is since ∥z− zi ∥ ≤ r . Now, by triangle inequality, it holds for any z ∈X∆ that



∇ f (z)
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Differentiating k̃(z) as defined in (3), we get by the chain rule and triangle inequality that
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, (33)

where cos(n ) denotes the n-th derivative of cos for n ∈N. The main idea of the proof is then

T
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{
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� f (zi )
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�<ε/2}
⋂

{L f <ε/2r } ⊆ {
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� f (z)
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since
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� f (z)
�

� ≤
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� f (z)− f (zi )
�

�+
�

� f (zi )
�

� and (31) holds. Therefore, taking the complement and
bounding the union, we get our governing inequality for the uniform error over X∆:
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Now, we need to bound all probabilities on the RHS. First, we deal with L f ,
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where (c) is Markov’s inequality, (d) is (32) and (33). To deal with the centers in (34), note
∂ p,qk̃(z) can be written as a sample average of d̃ i.i.d. terms as per (3) since

∂ p,qk̃(z) = ∂ p,q
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so that the Bernstein inequality (Cor. A.6) is applicable. For j = 1, . . . , d̃ , we have
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and that f (z) = ∂ p,qk̃(z)− ∂ p,qk(z) = ∂ p,qk̃(z)−E
�

∂ p,qk̃(z)
�

by the dominated convergence
theorem. Hence, we may call the Bernstein inequality (Cor. A.6) to control f (zi ) so that
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Combining the bounds for
�

� f (zi )
�

� (36), and for L f (35), into (34) yields
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which has the form g (r ) = τ1r −d + τ2r , that is minimized by choosing r ⋆ = (dτ1/τ2)
1

d+1 .

This choice sets it to the form g (r ⋆) = τ
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, so that by substituting back
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Finally, we note that for d ≥ 1, Fd := d
1

d+1 +d
−d

d+1 ≤ 2 and 2
3d+1
d+1 ≤ 8.

C Bounds on Signature Kernels

We first set the ground for proving our main theorems by introducing the notion of L-
Lipschitz kernels to help control distance distortions in the feature space. This subclass
of kernels will be useful for us in relating the 1-variation of sequences in feature space to
that in the input space. After this, we will prove various smaller lemmas and supplementary
results for signature kernels, which will lead up to Lemma C.9, which is our main tool for
proving Theorem 3.2, and it relates the concentration of our RFSF kernel k̃Sig to the second
derivatives of the RFF kernel k̃. Then, the proof of Theorem 3.2 quantifying the concentra-
tion of the RFSF kernel, k̃Sig, will follow from putting together Lemma C.9 with Theorem
B.1, and we will also make use of the Bernstein inequality from Theorem A.5. The proof
of Theorem 3.5 for the RFSF-DP kernel, k̃

DP
Sig, will follow by combining the results of this

section with α-exponential concentration, in particular, Theorem A.13. Finally, Theorem
3.8 for the RFSF-TRP kernel, k̃

TRP
Sig, will be proven using lemmas from this section, and the

hypercontractivity concentration result from Theorem A.15.

Distance bounds in the RKHS.

Definition C.1 (Lipschitz kernel). Let (X, d ) be a metric space. We call a kernel k :X×X→R
with RKHS H an L-Lipschitz kernel over X for some L > 0 if it holds for all x, y ∈X that



kx−ky





H
=
Æ

k(x, x) +k(y, y)−2k(x, y)≤ Ld (x, y),

where kx := k(x, ·),ky := k(y, ·) ∈H.

Example C.2 (Finite 2nd spectral moment implies Lipschitz). Let k : Rd ×Rd → R be a con-
tinuous, bounded and translation-invariant kernel with RKHS H and spectral measure Λ,

such that σ2
Λ := Ew∼Λ

�

∥w∥2
2

�

<∞. Then, it holds that k is


Ew∼Λ
�

ww⊤
�



1/2

2
-Lipschitz, so for

any x, y ∈Rd one has


kx−ky





H
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1/2

2



x−y




2
.
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Proof. We have for x, y ∈Rd that



kx−ky





2

H

(a)
= k(x, x) +k(y, y)−2k(x, y)

(b)
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∫
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(d)
≤
∫

Rd

�

w⊤(x−y)
�2
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2
,

where (a) holds due to the reproducing property, (b) is Bochner’s theorem, (c) is because
the imaginary part of the integral evaluates to 0 as the kernel is real-valued, (d) is due to the

inequality 1− t 2/2≤ cos(t ) for all t ∈R, (e) is because
�

w⊤(x−y)
�2
= (x−y)⊤ww⊤(x−y), and

(f) is Cauchy-Schwarz inequality combined with the definition of the spectral norm.

Example C.3 (Random Lipschitz bound for RFF). Let k̃ : Rd ×Rd → R be an RFF kernel de-
fined as in (2) corresponding to some spectral measure Λ, and let H̃ denote its feature space

corresponding to the RFF map ϕ̃ : Rd → H̃ defined as in (2), so that given w1, . . . , wd̃
i.i.d.∼ Λ, we

have for x, y ∈Rd that

k̃(x, y) =
1

d̃

d̃
∑

j=1

cos
�

w⊤j (x−y)
�

.

Let W = (w1, . . . , wd̃ ) ∈ Rd×d̃ be the random matrix with column vectors w1, . . . , wd̃
i.i.d.∼ Λ.

Then, k̃ is
�

∥W∥2p
d̃

�

-Lipschitz, so that for any x, y ∈Rd , we have the inequality



ϕ̃(x)− ϕ̃(y)




H̃
≤
∥W∥2
p

d̃



x−y




2
.

Proof. The proof follows analogously to that of Example C.2. Let x, y ∈Rd , then



ϕ̃(x)− ϕ̃(y)




2
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2
,

where (a) is due to the cosine identity cos(a − b ) = cos(a )cos(b )+ sin(a )sin(b ) for all a , b ∈
R, (b) is due to the inequality 1− t 2/2 ≤ cos(t ) for all t ∈ R, (c) is because

�

w⊤i (x−y)
�2
=

(x − y)⊤wi w⊤i (x − y) and WW⊤ =
∑d̃

i=1 wi w⊤i , (d) is due to the Cauchy-Schwarz inequality
combined with the definition of the spectral norm.

Bounds for the Signature Kernel. A well-known property of signature features that they
decay factorially fast with respect to the tensor level m ∈N.

Lemma C.4 (Norm bound for signature features). Let L > 0 and k : X×X → R be an L-
Lipschitz kernel with RKHS H. Then, we have for the level-m signature features ϕSigm

(x) of
the sequence x ∈Xseq that



ϕSigm
(x)




H⊗m ≤
(L ∥x∥1-var)

m

m !
.
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Proof. We have
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,

where (a) follows from triangle inequality followed by factorizing the tensor norm, (b) is the
L-Lipschitzness property, (c) from completing the multinomial expansion and normalizing
by the number of permutations (note that ∆m (ℓx − 1) contains a single permutation of all
such multi-indices that have nonrepeating entries), and (d) is the definition of sequence
1-variation.

The following bound for the signature kernel is a direct consequence of the previous
lemma.

Corollary C.5 (Upper bound for signature kernel). Let k :X×X→R be an L-Lipschitz kernel,
and kSigm

: Xseq×Xseq → R the level-m signature kernel built from k. Then, we have the
following bound for x, y ∈Xseq

�

�kSigm
(x, y)

�
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.

Proof. Note that without a kernel trick, kSigm
is written for x, y ∈Xseq as the inner product
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where (a) follows from the Cauchy-Schwarz inequality, and (b) is implied by Lemma C.4.

A similar upper bound to Lemma C.4 also holds for the RFSF kernel k̃Sigm
, that now

depends on the norms of the random matrices W(1), . . . , W(m ), hence is itself random.

Lemma C.6 (Random norm bound for RFSF). Let ϕ̃Sigm
: Xseq → H̃Sig be the level-m RFSF

map defined as in (13) built from some spectral measure Λ. Then, we have for x ∈Xseq that
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2
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2
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p
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,

where W(1), . . . , W(m ) i.i.d.∼ Λd̃ are random matrices sampled from Λd̃ .
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Proof. The proof follows analogously to Lemma C.4. We have for x ∈Xseq that
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where (a) is the triangle inequality and factorization of tensor norm, (b) is using the Lips-
chitzness of RFFs from Example C.3, (c) is the same as steps (c)-(d) in Lemma C.4.

Then, the following is again an application of the Cauchy-Schwarz inequality.

Corollary C.7 (Random upper bound for RFSF kernel). Let k̃Sigm
: Xseq×Xseq → R be the

level-m RFSF kernel defined as in (14) built from some spectral measureΛ. Then, for all x, y ∈
Xseq

�

�k̃Sigm
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�

�≤
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2

2
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2

2
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�

∥x∥1-var



y




1-var

d̃

�m

where W(1), . . . , W(m ) i.i.d.∼ Λd̃ are random matrices sampled from Λd̃ .

The following lemma does not concern signatures, but will be useful to us later in the
proof of Lemma C.9 by providing a mean-value theorem for the cross-differencing operator
δ2

i , j .

Lemma C.8 (2nd order mean-value theorem). Let f : Rd ×Rd → R be a twice differentiable
function, and X⊂Rd be a convex and compact set. Then, we have for any u, v, x, y ∈X that

f (x, y)− f (x, v)− f (u, y) + f (u, v)≤ sup
s,t∈X



∂ 2
s,t f (s, t)





2
∥x−u∥2



y−v




2
,

where ∂ 2
s,t f (s, t) :=

�

∂ 2 f (s,t)
∂ si ∂ t j

�d

i , j=1
refers to the submatrix of the Hessian of cross-derivatives.

Proof. Keeping v, y ∈ X as fixed, we may define g : Rd → R as g (·) := f (·, y)− f (·, v), so that
the expression above can be written as g (x)−g (u), and by the convexity of X, we may apply
the mean-value theorem to find that ∃s ∈ (0, 1) such that

g (x)− g (u) =



∇g (s x+ (1− s )u), x−u
�

≤ sup
s∈X



∇g (s)




2
∥x−u∥2 , (37)

where∇g (s) :=
�

∂ g (s)
∂ si

�d

i=1
denotes the gradient of g , while the second inequality follows from

the Cauchy-Schwarz inequality and the compactness ofX (so that the sup exists). Also note
that ∇g (s) = ∂s f (s, y)− ∂s f (s, v), so defining h : Rd → Rd as h (·) := ∂s f (s, ·) and applying the
vector-valued mean-value inequality [66, Thm. 9.19] to h gives that ∃t ∈ (0, 1) such that



h (y)−h (v)




2
≤


Jh (t y+ (1− t )v)




2



y−v




2
≤ sup

t∈X
∥Jh (t)∥2



y−v




2
, (38)
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where Jh (t) :=
�

∂ hi (t)
∂ t j

�d

i , j=1
refers to the Jacobian of h . Putting the inequalities (37) and (38)

together and substituting back the function f gives the desired result.

This is our final lemma in our exposition of supplementary results about the (random)
signature kernels, and it will be our main tool for proving Theorem 3.2.

Lemma C.9 (Uniform upper bound for deviation of RFSF kernel). Let X ⊂ Rd be a convex
and compact set, k : Rd ×Rd →R a continuous, bounded, translation-invariant L-Lipschitz
kernel and k̃ : Rd×Rd →R the corresponding RFF kernel. Then, the level-m (m ∈N) signature
and RFSF kernels are uniformly close for V > 0 by

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�k̃Sigm
(x, y)−kSigm

(x, y)
�

�

≤V 2m
m
∑

k=1

L 2(m−k )

d̃ k−1((k −1)!)2


W(1)




2

2
· · ·


W(k−1)




2

2
sup
s,t∈X



∂ 2
s,tk̃k (s, t)− ∂ 2

s,tk(s, t)




2
,

where k̃1, . . . , k̃m are independent RFFkernels with weights W(1), . . . , W(m ) i.i.d.∼ Λd̃ , and ∂ 2
s,t f (s, t) :=

�

∂ 2 f (s,t)
∂ si ∂ t j

�d

i , j=1
for a twice-differentiable function f : Rd ×Rd →R.

Proof. First of all, by Lemma C.5 and Lemma C.7, the supremum exists. In the following,
given a sequence x ∈Xseq, we denote its 1 : l slice for some l ∈ [ℓx] x1:l := (x1, . . . , xl ). Then,
it holds for any m ≥ 1 recursively for the signature kernel that

kSigm
(x, y) =

ℓx−1
∑

k=1

ℓy−1
∑

l=1

kSigm−1
(x1:k , y1:l )δ

2
k ,l k(xk , yl ),

and analogously for the RFSF kernel that

k̃Sigm
(x, y) =

ℓx−1
∑

k=1

ℓy−1
∑

l=1

k̃Sigm−1
(x1:k , y1:l )δ

2
k ,l k̃m (xk , yl ).

Combining these recursions together, we have for the uniform error that

εm = sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�k̃Sigm
(x, y)−kSigm

(x, y)
�

�

= sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�

�

�

�

ℓx−1
∑

k=1

ℓy−1
∑

l=1

k̃Sigm−1
(x1:k , y1:l )δ

2
k ,l k̃m (xk , yl )−kSigm−1

(x1:k , y1:l )δ
2
k ,l k(xk , yl )

�

�

�

�

�

(a)
≤ sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�

�

�

�

ℓx−1
∑

k=1

ℓy−1
∑

l=1

k̃Sigm−1
(x1:k , y1:l )(δ

2
k ,l k̃m (xk , yl )−δ2

k ,l k(xk , yl ))

�

�

�

�

�

+ sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�

�

�

�

ℓx−1
∑

k=1

ℓy−1
∑

l=1

(k̃Sigm−1
(x1:k , y1:l )− k̃Sigm−1

(x1:k , y1:l ))δ
2
k ,l k(xk , yl )

�

�

�

�

�
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(b)
≤ sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1
∑

k=1

ℓy−1
∑

l=1

�

�k̃Sigm−1
(x1:k , y1:l )

�

�

�

�δ2
k ,l k̃m (xk , yl )−δ2

k ,l k(xk , yl )
�

�

+ sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1
∑

k=1

ℓy−1
∑

l=1

�

�k̃Sigm−1
(x1:k , y1:l )−kSigm−1

(x1:k , y1:l )
�

�

�

�δ2
k ,l k(xk , yl )

�

�

(c)
≤ sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�k̃Sigm−1
(x, y)

�

�

︸ ︷︷ ︸

(i)

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1
∑

k=1

ℓy−1
∑

l=1

�

�δ2
k ,l k̃m (xk , yl )−δ2

k ,l k(xk , yl )
�

�

︸ ︷︷ ︸

(ii)

+ sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�k̃Sigm−1
(x, y)−kSigm−1

(x, y)
�

�

︸ ︷︷ ︸

(iii)

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1
∑

k=1

ℓy−1
∑

l=1

�

�δ2
k ,l k(xk , yl )

�

�

︸ ︷︷ ︸

(iv)

, (39)

where (a) follows from adding and subtracting the cross-terms and applying triangle in-
equality, (b) follows from applying triangle inequality over the summations, (c) follows from
noting that if ∥x∥1-var ,



y




1-var
≤V then so is ∥x1:k∥1-var ,



y1:l





1-var
≤V for k ∈ [ℓx]and l ∈ [ℓy],

and thus justifiably pulling out the supremums.
Now, we deal with terms (i)–(iv) individually. For (i), we have Corollary C.7, so

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�k̃Sigm−1
(x, y)

�

�≤



W(1)




2

2
· · ·


W(m−1)




2

2

((m −1)!)2

�

V 2

d̃

�m−1

. (40)

To deal with (ii), we can apply Lemma C.8 with f = k̃m −k to get

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1
∑

k=1

ℓy−1
∑

l=1

�

�δ2
k ,l k̃m (xk , yl )−δ2

k ,l k(xk , yl )
�

�

≤ sup
s,t∈X



∂ 2
s,tk̃m (s, t)− ∂ 2

s,tk(s, t)




2
sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1
∑

k=1

ℓy−1
∑

l=1

∥δxk∥2



δyl





2

≤V 2 sup
s,t∈X



∂ 2
s,tk̃m (s, t)− ∂ 2

s,tk(s, t)




2
. (41)

For (iii), we note that it is simply εm−1. Finally, we can write (iv) as an inner product and
apply Cauchy-Schwarz and L-Lipschitzness of k so that

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1
∑

k=1

ℓy−1
∑

l=1

�

�δ2
k ,l k(xk , yl )

�

�= sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1
∑

k=1

ℓy−1
∑

l=1

�

�




δkxk
,δkyl

��

�

≤ sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1
∑

k=1

ℓy−1
∑
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δkxk





H



δkyl





H
≤ L 2V 2. (42)
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Putting equations (40), (41), (42) together in (39), we get that

εm = sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�k̃Sigm
(x, y)−kSigm

(x, y)
�

�

≤
V 2m

d̃ m−1((m −1)!)2
sup
s,t∈X



∂ 2
s,tk̃m (s, t)− ∂ 2

s,tk(s, t)




2

m−1
∏

p=1



W(p )




2

2
+ L 2V 2εm−1, (43)

which gives us a recursion for estimating εm . The initial step, m = 1, can be estimated by

ε1 = sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�k̃Sig1
(x, y)−kSig1

(x, y)
�

�

= sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�

�

�

�

ℓx−1
∑

k=1

ℓy−1
∑

l=1

δ2
k ,l k̃1(xk , yl )−δ2

k ,l k(xk , yl )

�

�

�

�

�

= sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1
∑

k=1

ℓy−1
∑

l=0

�

�δ2
k ,l k̃1(xk , yl )−δ2

k ,l k(xk , yl )
�

�

≤V 2 sup
s,t∈X



∂ 2
s,tk̃1(s, t)− ∂ 2

s,tk(s, t)




2
, (44)

which is actually analogous to (43) since ε0 = 0. Now, we may unroll the recursion (43) with
the initial condition (44), and we get

εm ≤V 2m
m
∑

k=1

L 2(m−k )

d̃ k−1((k −1)!)2
sup
s,t∈X



∂ 2
s,tk̃k (s, t)− ∂ 2

s,tk(s, t)




2

k−1
∏

p=1



W(p )




2

2
.

Proofs of main concentration results. Here, we provide proofs of the main concentration
results, i.e. Theorems 3.2, 3.5, 3.8, respectively under Theorems C.10, C.11, C.12.

Theorem C.10 (Concentration inequality for RFSF kernel). Let X ⊂ Rd be a compact and
convex set with diameter |X|, and X∆ := {x− y : x, y ∈ X}. Let k : Rd ×Rd → R be a continu-
ous, bounded, translation-invariant kernel with spectral measureΛ, which satisfies for some
S , R > 0 that

Ew∼Λ
�

|wi |2k
�

≤
k !S 2R k−2

2
for all i ∈ [d ] and k ≥ 2. (45)

Then, the following quantities are finite: σ2
Λ :=Ew∼Λ

�

∥w∥2
2

�

, L :=


Ew∼Λ
�

ww⊤
�



1/2

2
, Ei , j :=

Ew∼Λ
��

�wi w j

�

�∥w∥2

�

and Di , j := supz∈X∆





∇
�

∂ 2k(z)
∂ zi ∂ z j

�







2
for i , j ∈ [d ]. Further, for any maximal

sequence 1-variation V > 0, and signature level m ∈Z+, it holds for the level-m RFSF kernel
k̃Sigm

: Xseq×Xseq → R defined as in (14) and the signature kernel kSigm
: Xseq×Xseq → R

defined as in (12) for ε> 0 that

P






sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�kSigm
(x, y)− k̃Sigm

(x, y)
�

�≥ ε






≤
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≤m















�

Cd ,X

�

βd ,m ,V
ε

�
d

d+1 +d

�

exp
�

− d̃
2(d+1)(S 2+R )

�

ε
βd ,m ,V

�2�

for ε<βd ,m ,V
�

Cd ,X

�

βd ,m ,V
ε

�
d

(d+1)m +d

�

exp
�

− d̃
2(d+1)(S 2+R )

�

ε
βd ,m ,V

�
1

m

�

for ε≥βd ,m ,V ,

where Cd ,X := 2
1

d+1 16 |X|
d

d+1
∑d

i , j=1

�

Di , j +Ei , j

�
d

d+1 and βd ,m ,V :=m
�

2V 2
�

L 2 ∨1
� �

σ2
Λ ∨d

��m
.

Proof. Finite quantities. To start off with, due to (45) with m = 2 and Jensen’s inequality
(Lemma A.1), we get

E
�

|wi |2
�

≤E1/2
�

|wi |4
�

<∞ for all i ∈ [d ] .

Hence, by linearity of the expectation σ2
Λ = E

�

∥w∥2
�

=
∑d

i=1 E
�

w 2
i

�

< ∞. Next, due to
Hölder’s inequality (Lemma A.2), it holds that

E
�

wi w j

�

≤E
��

�wi w j

�

�

�

≤E1/2
�

|wi |2
�

E1/2
�
�

�w j

�

�

2�

<∞ for all i , j ∈ [d ] ,

therefore L <∞. Further, applying Hölder’s inequality twice followed by Jensen’s inequal-
ity,

E
��

�wi w j wk

�

�

�

≤E2/3
�
�

�wi w j

�

�

3/2�

E1/3
�

|wk |3
�

≤E1/3
�

|wi |3
�

E1/3
�
�

�w j

�

�

3�

E1/3
�

|wk |3
�

≤E1/6
�

|wi |6
�

E1/6
�
�

�w j

�

�

6�

E1/6
�

|wk |6
�

<∞ for all i , j , k ∈ [d ] , (46)

which is finite due to (45) with m = 3. Now, because of the ℓ1-ℓ2 norm inequality,

E
��

�wi w j

�

�∥w∥2

�

≤E
��

�wi w j

�

�∥w∥1

�

=
d
∑

k=1

E
��

�wi w j wk

�

�

�

<∞,

hence Ē <∞. Next, as per [70, Thm. 1.2.1.(iii)], as (46) holds for all i , j , k ∈ [d ], k is 3-times
continuously differentiable, which combined with the compactness of X, hence that of X∆,

gives supz∈X∆

�

�

�

∂ 3k(z)
∂ zi ∂ z j ∂ zk

�

�

�<∞. Finally, from the ℓ1-ℓ2 inequality again, we get that

sup
z∈X∆









∇
�

∂ 2k(z)
∂ zi ∂ z j
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2

≤ sup
z∈X∆









∇
�

∂ 2k(z)
∂ zi ∂ z j
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1

≤
d
∑

k=1

sup
z∈X∆

�

�

�

�

∂ 3k(z)
∂ zi ∂ z j ∂ zk

�

�

�

�

<∞,

which shows the finiteness of D̄ . This finishes showing that the stated quantities are finite.
Splitting the bound. To start proving inequality our main inequality, first note that as

per Example C.2, k is L-Lipschitz (see Def. C.1). Hence, Lemma C.9 yields that

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

�

�k̃Sigm
(x, y)− k̃Sigm

(x, y)
�

�

≤V 2m
m
∑

k=1

L 2(m−k )

d̃ k−1((k −1)!)2
sup
s,t∈X



∂ 2
s,tk̃k (s, t)− ∂ 2

s,tk(s, t)




2

k−1
∏

p=1



W(p )




2

2
. (47)

We bound the summand in the previous line in probability for each k ∈ [m ]. For brevity,

denote αm ,k := V 2m L 2(m−k )

((k−1)!)2 , and first consider the case k ≥ 2, so that we have

Pk (ε) :=P

�

αm ,k

d̃ k−1



W(1)




2

2
· · ·


W(k−1)




2

2
sup
s,t∈X



∂s,tk̃k (s, t)− ∂s,tk(s, t)




2
≥ ε

�
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(a)
≤ P



αm ,k

 


W(1)




2

2
+ . . .+



W(k−1)




2

2

d̃ (k −1)

!k−1

sup
s,t∈X



∂s,tk̃k (s, t)− ∂s,tk(s, t)




2
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(b)
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2

2
+ . . .+
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2

2

d̃ (k −1)
︸ ︷︷ ︸

(Ak )

sup
s,t∈X



∂s,tk̃k (s, t)− ∂s,tk(s, t)




1
k−1

2

︸ ︷︷ ︸

(Bk )

≥
�

ε

αm ,k

�
1
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,

where in (a) we used the arithmetic-geometric mean inequality, and in (b) we divided both

sides by αm ,k and took the (k −1)th root. Further, setting t :=
�

ε
αm ,k

�
1

k−1 , we have for γ> 0

Pk (ε)≤ P [Ak ·Bk ≥ t ]
(c)
≤ P

�

�

Ak −γ
�

Bk ≥
t

2

�

+P
�

Bk ≥
t

2γ

�

(d)
≤ inf

τ>0

§

P
h

Ak −γ≥
τ

2

i

+P
�

Bk ≥
t

τ

�ª

+P
�

Bk ≥
t

2γ

�

, (48)

where in (c) we added and subtracted γBk and applied a union bound, while in (d) we com-
bined a union bound with the relation {X Y ≥ ε} ⊆ {X ≥τ}

⋃

{Y ≥ ε/τ}which holds for any
τ> 0.

Our aim is now to obtain good probabilistic bounds on Ak and Bk to use in (48) with the
specific choice of γ=E [Ak ] =σ2

Λ.
Bounding Ak . By the inequality between the spectral and Frobenius norms, we have

k−1
∑

p=1



W(p )




2

2
≤

k−1
∑
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W(p )




2

F
=

d
∑
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∑
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�
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(p )
i , j

�2
.

Now note that w
(p )
i , j are i.i.d. copies of the i th marginal of Λ for all j ∈

�

d̃
�

and p ∈ [k −1], so

that via (45)
�

w
(p )
i , j

�2
satisfies the Bernstein moment condition

E
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i , j

�2k
�

≤
k !S 2R k−2

2
for all i ∈ [d ], j ∈ [d̃ ], p ∈ [m ], k ≥ 2.

Hence, we may apply the Bernstein inequality from Theorem A.5 so that for i ∈ [d ]
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�

,

whereσ2
i =Ew∼Λ

�

w 2
i

�

. Combining these bounds for all i ∈ [d ] and denotingσ2
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∑d
i=1σ

2
i ,

P
�
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∑
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∑
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i , j
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Hence, we have the required probabilistic bound for the term in (48) containing Ak .
Bounding Bk . One can bound the spectral norm by the max norm so that

B k−1
k = sup

s,t∈X



∂s,tk̃k (s, t)− ∂s,tk(s, t)




2
≤ sup

s,t∈X



∂s,tk̃k (s, t)− ∂s,tk(s, t)




max

= max
i , j=1,...,d

sup
s,t∈X

�

�

�

�

∂ 2k̃k (s, t)
∂ si ∂ t j

−
∂ 2k(s, t)
∂ si ∂ t j

�

�

�

�

. (50)

Let i , j ∈ [d ] and denote Ei , j := Ew∼Λ
��

�wi w j

�

�∥w∥2

�

and Di , j := supz∈X∆ ∥∇ [∂
ei ,e j k(z)]∥2,

which are finite as previously shown. Due to Hölder’s inequality (Lemma A.2) and (45),

E
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i

�

E1/2
�

w 2m
j

�

<∞.

Recall that k is 3-times continuously differentiable, so that the conditions required by The-
orem B.1 are satisfied, that we now call to our aid in controlling the RFF kernel derivatives,
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,

where we defined C ′d ,X,i , j :=
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|X| (Di , j +Ei , j )
�

d
d+1 . Hence, noting that the max satisfies the

relation {maxi ξi ≥ ε}=
⋃

i {ξi ≥ ε} and union bounding (50) in probability, we get that
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where we denote C ′d ,X :=
∑d

i , j=1 C ′d ,X,i , j = |X|
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d+1 .
Putting it together. Now that we have our bounds for Ak and Bk , we put everything

together, that is, plug the bounds (49) and (51) into (48), so that we get
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where (a) follows from substituting (51) and (49) into (48) with the choice of γ = σ2
Λ, (b)

from choosing τ= t
k−1

k , and (c) from putting back t = (ε/αm ,k )
1

k−1 .
Note that the previous applies for all k ≥ 2. For k = 1, we have by (51) that
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Combining and simplifying. We can now combine the bounds for P1, . . . , Pm into (47),
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where (g) follows from rearranging the expressions from (f), while (h) from unifying the
coefficients and that 1≤ d ≤max(σ2

Λ, d ) and f (x ) = x 2/(a+b x ) is monotonically increasing
in x on the positive half-line for a , b > 0, while (f) from αm ,k = V 2m L 2(m−k )/((k − 1)!)2 ≤
(V L )2m , using that f (x ) is increasing, and defining βd ,m ,V :=m

�

2V 2(L 2 ∨1)(σ2
Λ ∨d )

�m
.

Conclusion. Finally, we split the bound into two cases: the first case is if the error is big,
i.e. ε≥βd ,m ,V =m

�

2V 2(L 2 ∨1)(σ2
Λ ∨d )

�m
, when we decrease all the exponents to 1

m ,
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The other when the error is small, i.e. ε<βd ,m ,V , when we increase all the exponents to 1
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The claimed estimate follows by denoting Cd ,X := 2
1

d+1 16C ′d ,X and simplifying.

Next, we prove Theorem 3.5 to show an approximation bound for the RFSF-DP kernel.

Theorem C.11 (Concentration inequality for RFSF-DP kernel). Let k : Rd ×Rd →R be a con-
tinuous, bounded, translation-invariant kernel with spectral measure Λ, which satisfies for
some S , R > 0 that

Ew∼Λ
�

|wi |2k
�

≤
k !S 2R k−2

2
for all i ∈ [d ] and k ≥ 2. (52)

Then, for signature level m ∈Z+ and x, y ∈Xseq, it holds for ε> 0 that:
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where the absolute constant Cd ,m > 0 satisfies that
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p

8e 4(2π)1/4e 1/24(4e 3/m )m
�

(2d max(S , R ))m +
�

L 2/ ln 2
�m �

.
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Proof. Let k̂
(1)
Sigm

, . . . , k̂
(d̃ )
Sigm

be independent copies of the RFSF kernel, each with internal RFF

sample size d̂ = 1, such that k̃
DP
Sigm

= 1
d̃

∑d̃
k=1 k̂

(k )
Sigm

. Our goal is to call Theorem A.13 with α=
1

m , and therefore, we compute an upper bound on the Ψ1/m -norm of k̃
(k )
Sigm
(x, y)−kSigm

(x, y)
for all k ∈ [d̃ ]; for a definition of the α-exponential norm, see Definition A.7.

By Lemma C.6, it holds for any x, y ∈Xseq and k ∈ [m ] that
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where w(1)k , . . . , w(m )k
i.i.d.∼ Λ are the random weights that parametrize k̂

(k )
Sigm

for all k ∈ [d̃ ]. Now,
calling Lemma A.11 with α= 1 yields that, due to (52), the following holds:
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Note that for α= 1, ∥·∥Ψα satisfies the triangle inequality (see Lemma A.9), and hence
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As ∥·∥Ψα is positive homogenous and satisfies a Hölder-type inequality (see Lemma A.10):
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where in (a) we used Corollary C.7, in (b) we used (53). We are almost ready to use Theorem
A.13, but it requires the ∥·∥Ψ1/m

bound in terms of centered random variables. Although
∥·∥Ψα does not satisfy the triangle inequality forα ∈ (0, 1), it obeys that (see [30, Lemma A.3.])
∥X +Y ∥Ψα ≤ 21/α

�

∥X ∥Ψα + ∥Y ∥Ψα
�

for any random variables X and Y . For a constant c ∈ R,

we have ∥c ∥Ψ1/m
= |c |

lnm 2 , and hence by Lemma C.5 we have that



kSigm
(x, y)





Ψ1/m
≤

�

L 2 ∥x∥1-var



y




1-var
/ ln 2

�m

(m !)2
,

where L =


Ew∼Λ
�

ww⊤
�



2
is the Lipschitz constant of the kernel k :X×X→R. This gives
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Finally, we have the required Orlicz norm bound for invoking Theorem A.13, so that we get
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where the constant Cd ,m > 0 is defined as
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and invoking Stirling’s approximation 1
m ! ≤

�

e
m

�m
gives the stated result.

Now, we prove the analogous result for k̃
TRP
Sigm

.

Theorem C.12 (Concentration inequality for RFSF-TRP kernel). Let k : Rd × Rd → R be a
continuous, bounded, translation-invariant kernel with spectral measure Λ, which satisfies
for some S , R > 0 that
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2
for all i ∈ [d ] and k ≥ 2. (54)

Then, for the level-m RFSF-TRP kernel as defined in (21), we have for x, y ∈Xseq and ε> 0
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Proof. First, we consider the conditional probability P
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conditioning on the RFSF weights W := (W(1), . . . , W(m )), so that the only source of random-
ness comes from the TRP weights P := (P(1), . . . , P(m )). The idea is to call Theorem A.15 to
estimate the conditional probability, and then take expectation over W. Since Theorem
A.15 quantifies the concentration of a Gaussian polynomial around its mean in terms of its
variance, we first compute the conditional statistics of k̃

TRP
Sigm
(x, y).

Conditional expectation. Recall the definition of ϕ̃TRP
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which is a sample average of d̃TRP i.i.d. terms, i.e. k̃
TRP
Sigm
(x, y) = 1
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i=1 Ai . We only have to

verify that Ai is conditionally an unbiased approximator of k̃Sigm
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where (a) follows from linearity of expectation and independence of the p(p )i ’s for p ∈ [m ],
(b) from bilinearity of inner product, and independence of P and W, (c) from substituting
the covariance, (d) is since the outer product is projected onto the diagonal.

Conditional variance. We compute the conditional variance of Ai given W:

E
�

A2
m ,i

�

�W
�

(e)
=

∑

i,k∈∆m (|x|)
j,l∈∆m (|y|)

m
∏

p=1

E
�¬

p(p )i ,δϕ̃p (xip
)
¶¬

p(p )i ,δϕ̃p (y jp
)
¶¬

p(p )i ,δϕ̃p (xkp
)
¶¬

p(p )i ,δϕ̃p (ylp
)
¶

�

�

�W
�

(f)
=

∑

i,k∈∆m (|x|)
j,l∈∆m (|y|)

m
∏

p=1

�

E
�¬

p(p )i ,δϕ̃p (xip
)
¶¬

p(p )i ,δϕ̃p (y jp
)
¶

�

�

�W
�

E
�¬

p(p )i ,δϕ̃p (xkp
)
¶¬

p(p )i ,δϕ̃p (ylp
)
¶

�

�

�W
�

+E
�¬

p(p )i ,δϕ̃p (xip
)
¶¬

p(p )i ,δϕ̃p (xkp
)
¶

�

�

�W
�

E
�¬

p(p )i ,δϕ̃p (y jp
)
¶¬

p(p )i ,δϕ̃p (ylp
)
¶

�

�

�W
�

+E
�¬

p(p )i ,δϕ̃p (xip
)
¶¬

p(p )i ,δϕ̃p (ylp
)
¶

�

�

�W
�

E
�¬

p(p )i ,δϕ̃p (xkp
)
¶¬

p(p )i ,δϕ̃p (y jp
)
¶

�

�

�W
�

�

(g)
=

∑

i,k∈∆m (|x|)
j,l∈∆m (|y|)

m
∏

p=1

�

¬

δϕ̃p (xip
),δϕ̃p (y jp

)
¶¬

δϕ̃p (xkp
),δϕ̃p (ylp

)
¶

+
¬

δϕ̃p (xip
),δϕ̃p (xkp

)
¶¬

δϕ̃p (y jp
),δϕ̃p (ylp

)
¶

+
¬

δϕ̃p (xip
),δϕ̃p (ylp

)
¶¬

δϕ̃p (xkp
),δϕ̃p (y jp

)
¶

�

(h)
≤

∑

i,k∈∆m (|x|)
j,l∈∆m (|y|)

3m
m
∏

p=1





δϕ̃p (xip
)










δϕ̃p (y jp
)










δϕ̃p (xkp
)










δϕ̃p (ylp
)






(i)
= 3m

 

∑

i∈∆m (|x|)

m
∏

p=1





δϕ̃p (xip
)






!2




∑

j∈∆m (|y|)

m
∏

p=1





δϕ̃p (y jp
)










2

(j)
≤

1

(m !)4

 

3∥x∥2
1-var



y




2

1-var

d̃ 2

!m
m
∏

p=1



W(p )




4

2
,

where (e) follows from linearity of expectation and independence of the p(p )i ’s for p ∈ [m ], (f )
from Isserlis’ theorem [34], (g) is the same as (a)-(d), (h) is the Cauchy-Schwarz inequality,
(i) from factorizing the summation, (j) is the same as Lemma C.6.
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Therefore, we have due to Lemma C.7 for the variance that
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Let βm (x, y) := 3m+1
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. Then, as k̃
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Conditional bound. Since k̃
TRP
Sigm
(x, y) |W is a Gaussian polynomial of degree-2m , with

expectation k̃Sigm
(x, y), and variance (55), we have by Theorem A.15 for ε> 0 that
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Undoing the conditioning. We take the expectation in (56) so that
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where (k) follows form multiplying and dividing with a λ> 0, (l) from applying Lemma A.4
with p = 1

2 and q = 1, and (m) from the arithmetic-geometric mean inequality.

Bounding the MGF of w
(p )
i , j

2
for p ∈ [m ], i ∈ [d ], j ∈ [d̃ ], we have that
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where (n) is the Taylor expansion, (o) is the condition (54) and applying Jensen inequality to
the degree-1 term, (p) is the geometric series for λ< 1

R , and (q) is choosing λ= 1
2R . Hence,
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where (r) is due to the Jensen inequality (Lemma A.1), and (s) follows from the indepen-

dence of the w
(p )
i , j ’s for p ∈ [m ], i ∈ [d ], j ∈ [d̃ ]. Finally, plugging this into (57), we get that
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Finally, note that βm (x, y)
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�

3m+1
(m !)4

�
1

2m ∥x∥1-var



y
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≤ 2e 2

m 2 ∥x∥1-var
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1-var
, since 3m +

1≤ 4m for m ≥ 1, and 1
m ! ≤

�

e
m

�m
due to Stirling’s approximation.

D Algorithms

We adopt the following notation for describing vectorized algorithms from [39, 82]. For
arrays, 1-based indexing is used. Let A and B be k -fold arrays with shape (n1×· · ·×nk ), and
let i j ∈ [n j ] for j ∈ [k ]. We define the following array operations:

(i) The cumulative sum along axis j :

A[. . . , :,⊞, :, . . . ][. . . , i j−1, i j , , i j+1 . . . ] :=
i j
∑

κ=1

A[. . . , i j−1,κ, i j+1, . . . ].

(ii) The slice-wise sum along axis j :

A[. . . , :,Σ, :, . . . ][. . . , i j−1, i j+1, . . . ] :=
n j
∑

κ=1

A[. . . , i j−1,κ, i j+1, . . . ].

(iii) The shift along axis j by +m for m ∈Z+:

A[. . . , :,+m , :, . . . ][. . . , i j−1, i j , i j+1, . . . ]

:=

�

A[. . . , i j−1, i j −m , i j+1, . . . ], if i j >m
0 if i j ≤m .

(iv) The Hadamard product of arrays A and B :

(A⊙B )[i1, . . . , ik ] := A[i1, . . . , ik ]B [i1, . . . , ik ].
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(v) Now, if A has shape (n1× · · ·×n j × · · ·×nk ) and B has shape (n1× · · ·×n ′j × · · ·×nk ),
then their (batch) outer product along axis j is defined for i j ∈ [n j n ′j ] as

(A⊠ j B )[i1, . . . , i j , . . . , ik ] := A[i1, · · · , ⌈i j /n
′
j ⌉, · · · ik ]B [i1, . . . , i j mod n j . . . , ik ],

where ⌈·⌉ : R→Z refers to the ceiling operation, and (·mod n ) : Z→ [n ] to the mod-
ulo n operation that maps onto [n ] for n ∈Z.

Algorithm 1 Computing the RFSF map ϕ̃Sig≤M
.

1: Input: Sequences X= (xi )Ni=1 ⊂Xseq, measure Λ, truncation M ∈Z+, RFF sample size d̃ ∈Z+

2: Optional: Add time-parametrization xi ← (xi ,t , t /ℓxi
)
ℓxi
t=1 for all i ∈ [N ]

3: Tabulate to uniform length ℓ :=max j∈[N ] ℓx j
by xi ← (xi ,1, . . . , xi ,ℓxi

, . . . , xi ,ℓxi
) for all i ∈ [N ]

4: Sample independent RFF weights W(1), . . . , W(M ) i.i.d.∼ Λd̃

5: Initialize an array U with shape [M , N , L −1, 2d̃ ]
6: Compute increments U [m , i , t , :]← ϕ̃m (xi ,t+1)− ϕ̃m (xi ,t ) for m ∈ [M ], i ∈ [N ], t ∈ [L −1]
7: Initialize array V ←U [1, :, :, :]
8: Collapse into level-1 features P1←V [:,Σ, :]
9: for m = 2 to M do

10: Update with next increment V ←V [:,⊞+1, :]⊠3 U [m , :, :, :]
11: Collapse into level-m features Pm ←V [:,Σ, :]
12: end for
13: Output: Arrays of RFSF features per signature level P1, . . . , PM .

Algorithm 2 Computing the RFSF-DP map ϕ̃DP
Sig≤M

.

1: Input: Sequences X= (xi )Ni=1 ⊂Xseq, measure Λ, truncation M ∈Z+, RFSF-DP sample size d̃ ∈Z+

2: Optional: Add time-parametrization xi ← (xi ,t , t /ℓxi
)
ℓxi
t=1 for all i ∈ [N ]

3: Tabulate to uniform length ℓ :=max j∈[N ] ℓx j
by xi ← (xi ,1, . . . , xi ,ℓxi

, . . . , xi ,ℓxi
) for all i ∈ [N ]

4: Sample independent RFF weights W(1), . . . , W(M ) i.i.d.∼ Λd̃

5: Initialize an array U with shape [M , N , L −1, d̃ , 2]
6: Compute increments U [m , i , t , k , :]← ϕ̂m ,k (xi ,t+1)− ϕ̂m ,k (xi ,t ) for m ∈ [M ], i ∈ [N ], t ∈ [L −1], k ∈ [d̃ ]
7: Initialize array V ← 1p

d̃
U [1, :, :, :, :]

8: Collapse into level-1 features P1←V [:,Σ, :, :]
9: for m = 2 to M do

10: Update with next increment V ←V [:,⊞+1, :, :]⊠4 U [m , :, :, :, :]
11: Collapse into level-m features Pm ←V [:,Σ, :, :]
12: end for
13: Output: Arrays of RFSF-DP features per signature level P1, . . . , PM .
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Algorithm 3 Computing the RFSF-TRP map ϕ̃TRP
Sig≤M

.

1: Input: Sequences X= (xi )Ni=1 ⊂Xseq, measure Λ, truncation M ∈Z+, RFSF and TRP sample size d̃ ∈Z+

2: Optional: Add time-parametrization xi ← (xi ,t , t /ℓxi
)
ℓxi
t=1 for all i ∈ [N ]

3: Tabulate to uniform length ℓ :=max j∈[N ] ℓx j
by xi ← (xi ,1, . . . , xi ,ℓxi

, . . . , xi ,ℓxi
) for all i ∈ [N ]

4: Sample independent RFF weights W(1), . . . , W(M ) i.i.d.∼ Λd̃

5: Sample standard normal matrices P(1), . . . , P(M )
i.i.d.∼ Nd̃ (0, I2d̃ )

6: Initialize an array U with shape [M , N , L −1, d̃ ]
7: Compute projected increments U [m , i , t , :]←P(m )

⊤ �
ϕ̃m (xi ,t+1)− ϕ̃m (xi ,t )

�

for m ∈ [M ], i ∈ [N ], t ∈ [L −1]
8: Initialize array V ← 1p

d̃
U [1, :, :, :]

9: Collapse into level-1 features P1←V [:,Σ, :]
10: for m = 2 to M do
11: Update with next increment V ←V [:,⊞+1, :]⊙U [m , :, :, :]
12: Collapse into level-m features Pm ←V [:,Σ, :]
13: end for
14: Output: Arrays of RFSF-TRP features per signature level P1, . . . , PM .
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