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Abstract

The use of on-line, noisy, partial observations as a means of inferring ob-
scured system parameters is one that arises in a number of applications. Hy-
drocarbon drilling operations are one such example, in which the presence
of hazardous events and general subsurface activity must often be inferred
using measurements of the drill equipment taken at the surface. Adopting
a Bayesian viewpoint, the task is then to estimate or — where possible —
exactly compute the probability distribution of the parameters as the corre-
sponding measurements are assimilated.

If the latent parameters are assumed to form a Markov process then the
described statistical model has sufficient structure for the implementation of
a number of inference methods. In applications where the underlying map-
pings are non-linear, the distributions are generally intractable and sequen-
tial Monte Carlo (SMC) methods offer a means of constructing estimates.
For their relative robustness and versatility, SMC methods are often advanta-
geous over other approaches. However, their construction requires repeated
generation of weights based on the map between the parameter space and
the observation space. If this weight generation cost is expensive then the
repeated computation of these terms can limit the usefulness of the method
in applications such as the drilling operation.

In this thesis we present a novel SMC method called the multilevel boot-
strap particle filter (MLBPF) that arises from applying the approach of
multilevel Monte Carlo (MLMC) to the weight computation step. The aim
of this adaptation is to translate the efficiency savings of MLMC to the SMC
setting, thus enabling more accurate estimates to be constructed with the
same computational budget. Despite the relative simplicity of the idea, the
implications it has on the method are profound, since in general the weights
are no longer guaranteed to be non-negative. In addition to specifying an
operational MLBPF algorithm, we prove a strong law of large numbers and
central limit theorem result, before numerically testing the MLBPF on a
number of models comparable to the drill-system. In addition to attaining
empirical accuracy gains in these experiments, we derive a general approach
to particle filtering on drill-system type models that provides a means of esti-
mating the hidden parameter distributions in the absence of exact knowledge
of the underlying system state.
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Chapter 1

Introduction

Hydrocarbon drilling operations are complex procedures that apply spe-
cialised machinery and engineering techniques in often volatile conditions.
This scale and complexity comes with a risk of hazardous events (HE) that
compromise the safety of the field engineers and the surrounding ecosystem.
Furthermore, to continue to meet demand, oilfield services are drilling in
riskier conditions such as offshore deepwater, ultra-high pressure and high
temperature wells, which intensifies the already substantial risks to the en-
vironment and human life [4, 60, 66].

While large-scale environmental catastrophes such as the 1969 Santa Bar-
bara and 2010 Deepwater Horizon oil spills are rare, operational time loss
as a result of HE is a prevalent and enduring issue. As of 2018, this non-
productive time accounted for between 20-25% of the total drilling time [26].
With the various costs of operating a drilling rig being extremely high, early
detection of HE is also a means by which the associated operational costs
can be significantly reduced.

From a safety, environmental and economic perspective it is therefore
desirable to detect HE at the earliest possible opportunity to minimise the
extent of the potential resulting damage. More generally, accurately estimat-
ing parameters that describe the expected behaviour of the system enables
greater operational efficiency which in turn minimises any negative impacts
of the drilling. Improving the capabilities to which this can be achieved is a
key objective not only to facilitating a safer transition to reaching net zero
carbon emissions, but also because much of this intelligence is transferable
to emerging sustainable approaches such as geothermal well applications and

1



2 CHAPTER 1. INTRODUCTION

carbon removal.

The repertoire of methods for parameter estimation and HE detection is
constantly expanding and draws from numerous fields in science and tech-
nology. Managed pressure drilling is a technique that adaptively calibrates
the drilling equipment to the environment to enable safe drilling in settings
where the formation has a narrow pressure window [2]. The recent teleme-
try hardware innovation wired drill pipe technology delivers data up to a
rate 10, 000 times faster than the traditional mud pulsing method [33] and
enables measurements of the drilling equipment to be taken locally subsur-
face instead of being globally averaged at the surface. These measurements
facilitate a greater insight into subsurface activity that enables better fault
detection in managed pressure drilling [26] and real-time vertical seismic
profiling by using the drill-bit as an imaging source [58]. Real-time, large
scale performance is becoming increasingly more accessible through efficient
cloud-based technology and greater availability of high performance com-
puters, thus enabling solvers and simulations to be run alongside a drilling
operation.

Each of these advancements open the possibility for the application of
mathematical methods that have previously been infeasible. However, the
physical limitations of the drilling procedure are such that improving upon
the current level of performance is non-trivial for several reasons. The drill
system is predominantly obscured from direct observation, meaning knowl-
edge of the subsurface activity has to be inferred indirectly using measure-
ments that themselves are subject to observation noise. This raises the
possibility of a certain set of measurements suggesting the occurrence of one
or several HE, or alternatively being a harmless artefact of the drilling. In
the case of the former, prior knowledge and the historical behaviour of the
measurements must be used to classify the HE for it to be remediated with
minimum disruption to the operation [79]. On the other hand, if changes in
the measurement data are wrongly attributed as symptoms of an HE then
the risk of raising a false alarm is increased, which can also threaten the
safety and efficiency of well control [73].

Another complicating factor is the occurrence of unforeseen events dur-
ing the operation. Prior to drilling, knowledge of the surrounding geology
is acquired using seismic imaging at the proposed location of the well. Part
of the process of generating these images is to use synthetic data simulated
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Figure 1.1: A schematic of the discrepancy that can arise between a geolog-
ical column estimate and its true composition.

from an erroneous model to adjust the parameters of a global model [74].
This error can lead to discrepancies between the estimated and true geologi-
cal column that the drilling device excavates to reach the target hydrocarbon
reservoir; see Figure 1.1. In turn, this can lead to the drilling equipment be-
ing incorrectly calibrated to its environment, resulting in either sub-optimal
performance or burnout from being overworked. Furthermore, the surround-
ings are themselves unpredictable and can damage the equipment, which can
also malfunction of its own accord.

1.1 Description of the drill system

While the components of drilling rigs may vary slightly between onshore
and offshore applications, their basic apparatus is broadly the same. A
drilling device comprising of two main components; a hollow drill string and
a bottomhole assembly is supported by a derrick or mast at the designated
point of drilling. A multipurpose fluid known as mud is pumped at a known
and fixed volumetric flow rate through the center of the drill string, which can
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Figure 1.2: Left: The drilling device is rotated and applied with a downward
force, while the mud flows through its center and up to the surface via the
resulting annulus. Right: A close up of the drill bit, which is used for both
cutting the rock and flushing the mud via the bit nozzles.

be constructed to be several kilometres long to access the target hydrocarbon
reservoir. At surface level a rotary table provides power for rotation of the
drill string measured in rotations-per-minute (RPM), and a weight-on-bit
(WOB) is applied to provide a downward force to the device. The purpose
of these manoeuvres is to provide a mechanical power to the drilling process
that is measured in the rate of penetration (ROP). It is also at the surface
that a standpipe is used to pressurise the mud as it enters the drill string.
Together with the RPM and WOB, this pressure level is an observable input
quantity that is in part controllable by the operator but is also responsive to
events in the well. As such, they form observable inlet measurements that
are used to infer knowledge of the drill system.

At the other end of the drilling device is the bottomhole assembly. This
is a collection of machinery for which the main components of interest from
an HE perspective are the mud motor and the bit. The purpose of the mud
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motor is to use the passing fluid as a hydraulic energy source as it flows
through the motor to provide extra drive to the bit. In applications where
directional drilling is required the motor is also steerable; allowing drilling
to be performed at different angles and rotation of the bit independently of
the drill string. The role of the bit at the very end of the drilling device
is to cut and crush the rock. Throughout the course of an operation the
bit is likely to require changing to remain effective. To do so a so-called
tripping manoeuvre is performed on the drill string, in which it is extracted
and subsequently reinserted into the bore hole after the change or repair has
been made [2].

Once passing through the mud motor the mud flows out of the drilling
device into the surrounding well through small bit nozzles. Due to the high
pressure at these depths the fluid is ejected out of the bit at a high velocity
that aides flushing the cavity of cuttings for their transport to the surface
via the mud. Ensuring the mud is kept in an appropriate pressure window
in relation to the formation as it moves up along the annulus is vital to
preserving the integrity of the well. Doing so prevents borehole collapse
from an insufficiently low mud pressure and rock fracture from one that is
excessively high [12, 46, 82]. If wired drill pipe technology is used then the
sensors are placed on the outer wall of the drill string where they can be
used to perform tasks such as monitoring the location profiles of the passing
cuttings [24]. Once at the surface the cuttings are extracted from the mud
and monitored for the presence of hydrocarbon content and their geological
properties by an engineer, while the mud is retreated and recycled to be sent
through the system again. The mud exits the well at its known atmospheric
pressure and an observable volumetric flow rate that can be used as an outlet
measurement for downhole inference.

1.2 Common hazardous events

There are a number of HE that can occur during a drilling operation and
their formal categorisation and diagnosis is a field in its own right. For the
purposes of further describing the model application, as well as some of the
underlying statistical challenges, we state some of the most prominent HE
here.

• Kick/blowout : if the well pressure is lower than the formation pore



6 CHAPTER 1. INTRODUCTION

pressure at points in the well then an influx of the higher pressure
formation fluid occurs [66, 80]. A blowout is the event in which a kick
becomes uncontrolled. Blowouts are the cause of some of the worst
oil and gas drilling disasters and many preventative measures both
before and after kicks have been devised to prevent them escalating
to blowout [70]. Early detection of kick is therefore crucial and has
motivated many approaches; cf. [35]. Some potential indicators of
kick are discrepancies between the inlet and outlet flow rates due to
the influx of the formation fluid, a sudden increase in the ROP, and a
change in the inlet mud pressure [80], although these are just a few of
the simpler methods in circulation; cf. [25] for more detail.

• Circulation loss: conversely to kick, circulation loss is well leakage due
to the pressure of the mud being excessively high. There are different
levels of severity of loss — from seepage losses to catastrophic losses
— and this instructs the extent of the measures taken to rectify the
situation. If the loss is excessive it may lead to insufficient pressure in
the well, at which point an influx could again occur [79]. Circulation
loss is therefore characterised in its moderate state by a decreased
outlet volumetric flow rate and by the symptoms of kick as the losses
become catastrophic.

• Washout : the appearance of a hole in the wall of the drill string due
to erosion that allows mud to flow from inside the drill string to the
well without passing through the bottomhole assembly. This bypassing
compromises the effectiveness of the mud and hence the efficiency of
the operation, as the mud is no longer being used to its full potential
in the bottomhole assembly. In the worst case scenario pipe twistoff
can occur, typically inducing 3 to 12 days of non-productive time [51].
Washout typically manifests itself as a decrease in the observable inlet
mud pressure level.

• Pack off : the partial or complete blockage of the annulus due to an
accumulation of cuttings. The consequences of pack off are numerous
and are listed in [24], one of the most serious of which is stuck drillpipe.
Stuck drillpipe remains one of the most expensive complications in
drilling, costing the industry more than $250 million a year as of 2020
[22]. Since pack off is a restriction of the flow, its occurrence can
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be identified by a lower outlet volumetric flow rate than expected,
anomalies in the drill string rotary speed and WOB, and an increase
in the inlet pressure.

• Bit nozzles plugging : obstruction of the bit nozzles by small cuttings,
reducing the effectiveness of the cleansing role of the mud in the cavity.
This compromises the efficiency of the drilling as the transport of the
cuttings out of the way of the drill is no longer optimal. Plugging is
observed as an increase in the inlet mud pressure but does not affect
the pressure in the well. This makes the event less serious in practice
but important to detect and distinguish from the more serious pack off
[80].

We observe that each of the listed HE manifest themselves as anomalies in the
drilling equipment which may not be exclusive to one particular event. These
anomalies are then used as partial observations of events in the obscured part
of the drill system.

In addition to estimating parameters that describe HE, it is of interest to
determine the optimal configuration of the equipment. For example, given
some environment, tuning the location of drill pipe sensors or the combina-
tion of RPM and WOB may improve the performance of the sensor signal
quality or ROP respectively. Since the system measurements are the means
by which the condition of the system is inferred, they can also be used to
estimate regions of parameter values that elicit better performance from the
equipment. This is somewhat of a reversal of the HE detection problem, in
which some features of the system are now being systematically calibrated
to induce desired changes in others, but in essence is the same problem of
hidden parameter estimation. To this end the task at hand may more gener-
ally be viewed as one in which we have a collection of events of interest that
are only partially observable via changes in the drilling equipment, and it is
from these changes that we wish to infer information about the underlying
dependencies.

1.3 Modelling assumptions

With this generalisation in mind, we consider the drilling application in the
more general paradigm of Bayesian parameter estimation. During the oper-
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ation, partial observations of the parameters are systematically generated in
an online fashion, meaning the estimation problem is sequential by nature.
The task is then to use the noisy observations — for example, the drill equip-
ment measurements — to infer the probability distribution of the parameter
at the corresponding moment in time.

Let n ∈ N0 := N ∪ {0}. For each Y-valued observation Yn, we denote
the corresponding X-valued parameter by Xn. To use the observations for
inference, a model is required that relates each Yn to Xn. We view this
model as the composition of two functions: a deterministic map h : X → Y
that describes the dependency of Yn on Xn in the absence of noise, and the
application of a random component to h(xn) that maps h(xn) to yn ∈ Y.

A class of functions h that describe a wide range of dependencies are
those for which h(xn) is a component of a solution to a differential equation
with respect to the realised state Xn = xn. For example, in the context
of drilling, one of the primary media for connecting the observations to the
obscured parameter is the mud. To suitably describe the dynamics of the
mud for the purposes of inference thus requires a fluids model based on
the principles of conservation of mass, momentum and energy [72, Ch. 1].
We note that, due to the physical limitations of how quickly waves can be
transferred in a fluid, there is an unavoidable lag between the observation
and the parameter state it corresponds to. As such, inferential estimates will
always pertain to state distributions that occurred in the past, and the state
may have changed substantially within the time taken to receive the most
recent observation.

If the fluid viscosity is neglected and the solutions are sufficiently smooth
[14, Ch. 1] then, in the one-dimensional case, they can be expressed as the
solution to a partial differential equation (PDE) of the form

∂tw + ∂zf(w) = S(z, t, w) (1.3.1)

where:

• z ∈ R and t ∈ [0,∞) are the space and time variables respectively;

• w = w(z, t) = (ρ(z, t), J(z, t), E(z, t)) ∈ R3 is the solution of (1.3.1)
comprising of the density ρ, momentum J and energy E;

• ∂( · ) is the partial derivative operator with respect to the variable ( · );
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• f : R3 → R3 is a flux function that describes the spatial dynamics;

• S : R× [0,∞)×R3 → R3 is a source term function describing external
forces acting on the fluid.

When the latent parameter Xn is also factored into proceedings, the solution
and source term in (1.3.1) inherit an additional dependence on Xn. For
example, suppose Xn describes the area of a washout hole and p is the mud
pressure level derived from ρ via an Equation of State p = F (ρ) satisfying
F ′(ρ) > 0 [14, Ch. 1]. Then the source term is modelled as a point mass
at the location of the hole and, in a manner consistent with the physical
behaviour of the operation, the inlet pressure component derived from the
mathematical solution w(z, t;Xn) decreases as Xn increases. We note by the
monotonicity assumption of the equation of state that this is equivalent to
a decrease in the density solution evaluated at the inlet.

If the fluid is compressible, the equations that form (1.3.1) are known
as the Euler equations. For applications such as the drilling operation in
which the mud is subjected to extremely high pressures, this compressibility
assumption is a realistic one. The Euler equations neglect second order
terms modelling fluid viscosity and heat conduction that are present in the
Navier-Stokes equations. Consequently, (1.3.1) is first-order and therefore
hyperbolic, meaning information is propagated at a finite speed and that
discontinuous solutions can arise even when the initial data is continuous
[47, Ch. 1]. In contrast, the PDE specified by the Navier-Stokes equations
is parabolic and hence possesses solutions that are continuous solutions for
all times [47, Ch. 14]. We note, by modifying f and S, that (1.3.1) can also
be used to model other applications such as the shallow water equations or,
with the inclusion of a second order term, the convection-diffusion equation.
While keeping the drilling model in mind, we therefore consider the general
form (1.3.1) rather than focusing only on the specific w, f and S that specify
the Euler equations.

In general, there are no closed form solutions to PDEs of the type (1.3.1);
instead, approximate numerical solutions are required. From a numerical
point of view, both the Euler and Navier-Stokes equations are challenging
problems in their own right that are regularly used as benchmarks for con-
temporary numerical methods; for the Euler equations see [3, 42, 72] and
Navier-Stokes equations see [34, 69, 81], for example. Typically in the hy-
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perbolic case, finite element and finite volume methods are favoured over
finite difference methods, which typically are not well suited to handling the
discontinuities that can arise [47, Ch 1].

Irrespective of the method, numerical solutions to (1.3.1) are generally
expensive to generate and impose a computational bottleneck to applications
such as drilling operations, which in general require accurate solutions on a
frequent basis. Moreover, (1.3.1) models the simplest case in which both the
spatial domain and the solution components are one-dimensional. In more
advanced models these quantities can be vector-valued, in which case the
computational complexity of generating solutions increases by potentially
numerous orders of magnitude.

Heuristically, if approximate solutions to (1.3.1) can be obtained with
respect to N > 0 “proposed” parameter states (ξin)Ni=1, then the credibility of
each ξin against the true xn can be ascertained by comparing the synthetic
observation yin based on w(z, t; ξin) to the realised observation yn of xn. Un-
der some non-restrictive assumptions about the latent parameter process and
the observations that we make precise in Chapter 2, this approach can be
repeatedly applied in a rigorous way to construct estimates of the proba-
bility distribution of Xn at each iteration. This is the general approach of
Sequential Monte Carlo (SMC) methods [19] that we use as a foundation
for the parameter estimation method presented in this thesis. In particular,
we identify the overall cost of generating the yin as a target for cost savings.
In turn, this enables the generation of more proposed states ξin that provide
more accurate estimates of the parameter distributions in the same compu-
tational time. In the context of drilling operations, such gains translate to a
better insight of the subsurface developments and hence more ability to take
reactive steps to improve operational safety and efficiency.

1.4 Literature review

The methods by which HE detection is performed may broadly be classi-
fied as data-based or model-based [26]. The distinction between the two
approaches is based primarily on the fact that, although a model-based ap-
proach may use data to estimate parameters, the relationship between the
two quantities is specified explicitly using a model of some or all of the
components of the drill system. In contrast, data-based methods do not
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explicitly factor in any underlying physical structure and rely solely on the
data to form estimates.

The argument for data-based methods is that, by taking a model-free
approach, the estimates avoid any potential bias of performing inference via
a model that does not reflect the true physical behaviour of the system. They
have recently grown in popularity due to the greater availability of real-time
drilling data, but both approaches are still widely used and the preference of
one over the other can depend on the features and requirements of the task.
Examples of data-based methods include the use of a slow feature analysis
to detect faults in a manner that limits false alarms [26]; the application
of a random forest to estimate a rock property coefficient [65]; applying
an artificial neural network hybrid method to fluid measurement data to
estimate rheological properties of the mud [1]; and the study of an artificial
neural network to estimate the in-situ stress of a reservoir section using
wireline log data [21].

The model-based approach uses the data as a means of inferring HE but
does so with the addition of a model that maps the measurements to the
HE. Since the mud is one of the primary means by which this mapping takes
place, these models are often fluid based. Depending on the application or
the equipment, the models can greatly vary and incorporate bespoke auxil-
iary modifications to specifically study features of interest. Some common
examples are friction, heave and flow models that augment a 1-D hydraulic
transmission line [44], a BHP model based on multiphase flow [83], and mod-
elling the annular flow velocity by a wave frequency based on the Doppler
principle [25]. In other scenarios it may be the case that a simplified mod-
elling approach sufficiently captures a feature while reducing the complexity
of the problem. In [38] a simplified hydraulics model was used to estimate
the downhole pressure profile, while in [24] a fluids model was applied to
capture the dynamics of passing cuttings and quantify uncertainty in the
transport process via the ensemble Kalman filter.

In this thesis we take the model-based approach and pursue a statisti-
cal solution methodology for drill-system type problems. In particular we
use the framework of SMC methods based on random samples and on-line
measurements to estimate the sequence of probability distributions of the
corresponding evolving parameter states. We do so because the mappings
within models such as those based on drill-systems are generally non-linear
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and SMC methods are more robust to these features than alternative lin-
earisation methods. Moreover, SMC methods possess convergence properties
that alternative methods do not, and in practice they continue to become
more powerful with the increased accessibility to high-performance comput-
ing. The novelty of our approach is that we combine the interacting particle
mechanism of SMC with multilevel Monte Carlo (MLMC) [29] to produce
a multilevel SMC methodology that seeks to further broaden the current
repertoire of methods.

Specifically, we remain in the problem of estimating a flow of probabil-
ity distributions that are related to one another via a Markovian mapping,
but at each iteration apply the multilevel decomposition within the costly
weight assignment step. One profound consequence of this is that, due to the
telescoping sum, the weights are now based on the difference of two distinct
likelihood terms and are no longer guaranteed to be positive as they are in
traditional SMC methods. As such, the notion of resampling a particle with
probability proportional to its importance weight no longer has a well-defined
meaning and an alternative resampling scheme is required for the method
to be practically feasible. We construct one such scheme, in which resam-
pling is instead performed according to the total variation filter measure and
additionally the sign of the weight is retained alongside each corresponding
resampled particle. The resulting particle approximations are therefore also
signed measures. However, we prove that almost sure convergence to the
exact respective probability measures and a central limit theorem hold.

The integration of multilevel methods into Bayesian estimation problems
has been explored in a variety of different contexts. In [7] the approach was
implemented within the framework of SMC samplers, but these problems are
quite different to the SMC estimation problem that we consider. SMC sam-
plers proceed by sampling from a sequence of probability distributions, with
the aim of composing a particle ensemble that resembles one drawn from a
target distribution that may otherwise be difficult to sample from; see [56].
In [7] this sequence was constructed according to a multilevel scheme that
iteratively refines a sample throughout the levels towards one that achieves
equivalent accuracy to its closest competitor in fewer floating point opera-
tions. However, since there is no transience in the target distribution, the
algorithm avoids the issues arising from mutating particles to estimate prob-
ability distributions of a latent Markov process. In particular, the nature
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of the problem means the method does not have to deal with the issues of
weight negativity that we face in multilevel SMC.

Within the SMC paradigm a multilevel scheme has previously been con-
structed in [36] to leverage a multilevel particle filter, but both the applica-
tion setting and the method are different to that which we consider. Firstly,
the setting is based specifically on estimating the probability distribution of
a partially observable diffusion process at a collection of discrete time mea-
surements. Consequently, the multilevel aspect is introduced using the es-
tablished framework of Euler-Maruyama type methods as used in [29], based
on a hierarchy of nested Brownian increment solver steps. Secondly, since
the estimates are targeted at the diffusion discrepancies; i.e. the distribution
of the difference in the diffusion process at times n+1 and n, the multilevel
scheme is applied with respect to different step sizes over this time inter-
val. The sequentiality in the method then arises as a result of considering
the discrepancy distribution at the next iteration, which essentially extends
the “payoff time” estimation problem in [29] to a sequence of termination
times. This specific interpretation enables a coupled resampling method to
be applied, which again circumvents any weight negativity. In contrast, we
do not assume any such structure in our models which, while enabling more
general applications, leads to a method which possesses different weighting
and resampling steps.

A similar diffusion-based filtering problem is considered in [23], this time
in the context of random weight particle filtering. In such methods neg-
ative weights can occur with probability greater than zero as a result of
instead drawing importance weight samples from an unbiased estimator of
the Radon-Nikodym derivative as opposed to evaluating the derivative it-
self. In the presence of a negative weight, each of the weight samples are
incremented by one from a newly generated sample set until no negativity
remains. Such an approach is justified by Wald’s identity for martingales,
which ensures that the expected value of the resulting importance sampling
estimator is proportional to the original random weight estimator. However,
while in this method the presence of a negative weight is undesirable, in
our algorithm the negativity is an essential part of the approach that cap-
tures the effect of decomposing the filter distribution into a telescoping sum
of signed measures. To this end we do not wish to transform them in the
manner used in [23]; rather, they are required to facilitate a mapping of the
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target probability measure into the space of signed measures in a rigorous
way. Indeed, the only time the weight negativity becomes an issue is in
the resampling step. One advantage of our simple total variation measure
resampling approach is that it does not require the generation of any more
weights, which in the applications we consider are expensive. In contrast,
while the random weight approach provides a well-understood alternative
means of accommodating the weight negativity, the repeated generation of a
new collection of weights is infeasible within the assumptions of the applica-
tion. Furthermore, it is not clear in our method that iteratively increasing a
negative weight towards one that is positive preserves the asymptotics that
we have established, nor that it is even desirable from an estimate accuracy
perspective.

Applying the multilevel approach to expensive and complex applications
such as PDE-based observation models has been explored before in the con-
text of uncertainty quantification of groundwater flow [15], but this was in
a setting that was both non-sequential and with respect to one fixed ex-
pectation of interest. Extending this approach to sequences of probability
measures, in particular those based on solutions to PDEs, seems relatively
unexplored. On the other hand, Bayesian cost reduction methods — specif-
ically approximate Bayesian computation (ABC) algorithms [55, 57, 59, 71]
— provide a means of inference when evaluations of the likelihood function
are infeasible due to either being too costly or simply intractable. Such meth-
ods proceed by simulating a collection of proposed observations that serve
as a substitute for the absent likelihood function based on their proximity to
the actual observation. In [71] an SMC sampler approach (ABC-SMC) was
used to further improve the efficiency of the Markov chain Monte Carlo based
method in [52]. Both approaches are based on the property that the accep-
tance rate of synthetic observations can be low when the prior distribution
is a poor approximation to the posterior, and that this prior can be itera-
tively refined to improve the acceptance rate. In [55] the complexity of the
ABC-SMC method was reduced from one that is quadratic in its samples to
one that is linear by using an adaptive sampling approach, while [59] utilises
a hierarchical acceptance structure to improve the efficiency of the ABC ap-
proach and achieve performance gains. This work is particularly relevant to
our own due to the appearance once again of negative weights, ruling out a
conventional integration of the SMC sampling approach to the method. We
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note however that, in general, ABC methods are likelihood-free, whereas in
our problem we seek to make efficiency gains in the sustained presence of
the likelihood function.

This thesis is organised as follows. In Chapter 2 we review and discuss
topics from SMC and multilevel Monte Carlo literature that are required
to provide a thorough theoretical foundation to the subsequent material.
In particular, we discuss the exact filtering equations in Section 2.1 and
show that these equations inherit the predict and update recursions from
the more general Feynman-Kac formulae [54]. This type of analysis will
reappear later in Chapter 3 when we formally derive our own SMC method.
In Section 2.2 we then discuss how particle filters are formally obtained
by replacing the exact measures in the Feynman-Kac formulae with their
particle-based estimates, before considering some of the more practical is-
sues of particle filters that are also relevant to our own method. Section
2.3 discusses the work of MLMC [15, 29], which we present in our more
general notation to facilitate a comparison between MLMC and our own
multilevel-based method. In Chapter 3 we define the multilevel bootstrap
particle filter (MLBPF) that is the core method of this thesis. In partic-
ular we provide a formal derivation in Section 3.1 before proving a strong
law of large numbers result and a central limit theorem in Sections 3.2 and
3.3 respectively. In Chapter 4 we conduct numerical experiments with the
MLBPF on a variety of models. In Section 4.1 we first describe the math-
ematical properties of the models, their physical interpretations, and how
the PDE models in particular can be interpreted as surrogate models for
the drill-system application. Sections 4.2 and 4.3 then present the results
of the numerical experiments that demonstrate comparative empirical accu-
racy gains from the MLBPF over the equivalent benchmark SMC method.
The codes for the experiments conducted in these sections can be found at
https://github.com/dwb26/mlbpf_steady_state_swe_final and https:

//github.com/dwb26/mlbpf_convection_diffusion respectively. In Sec-
tion 4.3 we also discuss some further PDE-based applications, the modelling
challenges they pose, and some potential ways in which they can be made fea-
sible. Finally, in Chapter 5 we review the work and propose possible future
research directions that could be used to further build on the contributions
of this thesis.

https://github.com/dwb26/mlbpf_steady_state_swe_final
https://github.com/dwb26/mlbpf_convection_diffusion
https://github.com/dwb26/mlbpf_convection_diffusion




Chapter 2

Sequential and multilevel
Monte Carlo

2.1 Non-linear filtering

Let (Ω,F ,P) be a probability space and, for n ∈ N0, consider the time homo-
geneous Markov process (Xn) with each Xn taking values in the measurable
space (X,X ). We adopt the convention in SMC literature of referring to
(Xn) as a signal process. Additionally, we denote the set of bounded and
measurable functions on X by B(X) and the set of probability measures on
X by P(X ).

The signal process is described by specifying a prior distribution π0 for
X0 and a mapping K : X × X → [0, 1] describing the transition between
states, where

K(xn, dxn+1) := P(Xn+1 ∈ dxn+1 | Xn = xn) (2.1.1)

and dxn+1 denotes an infinitesimal neighbourhood of xn+1. For every x ∈ X,
A ∈ X , we note that

x ∈ X 7→ K(x,A) ∈ B(X),

A ∈ X 7→ K(x,A) ∈ P(X ),

making K a Markov kernel (cf. [63, Ch. 8], for example). Consequently, K
induces the following integral operators, yielding a function K(φ) ∈ B(X)

17
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and probability measure νK ∈ P(X ) respectively:

K(φ)(·) :=
∫
X
φ(xn+1)K( · , dxn+1), φ ∈ B(X), (2.1.2)

(νK)(·) :=
∫
X
ν(dxn)K(xn, · ), ν ∈ P(X ). (2.1.3)

In particular, for n > 0 the distribution νn = P(Xn ∈ · ) may be exactly
described in terms of π0 and K by first noting the recursion

νn =

∫
X
νn−1(dxn−1)K(xn−1, · ) = νn−1K (2.1.4)

from which we deduce νn = π0K
n, where Kn := K ◦K . . . ◦K is the n-fold

integral operator that results from applying K a total of n times. We assume
K satisfies the Feller property as stated in [19, Ch. 2], so that K(φ) ∈ B(X)
is continuous whenever φ ∈ B(X) is continuous.

We denote the partial observations of (Xn) by the sequence of random
variables (Yn), each taking value in the measurable space (Y,Y), and fre-
quently refer to (Yn) as the observation process. Given the signal (Xn), the
(Yn) are assumed to be conditionally independent, with marginal conditional
probabilities distributed according to

Yn | Xn = xn ∼ G(xn, · )

for a probability kernel G : X×Y → [0, 1]. For each xn we assume G admits
a probability density g with respect to some σ-finite measure, and for a fixed
observation Yn = yn we write gn( · ) := g( · , yn).

The non-linear filtering problem is the task of computing the filter and
prediction probability measures given respectively by

π̂n( · ) := P(Xn ∈ · | Y0 = y0, . . . , Yn = yn), n ≥ 0, (2.1.5)

πn+1( · ) := P(Xn+1 ∈ · | Y0 = y0, . . . , Yn = yn), n ≥ 0. (2.1.6)

In practice, these measures describe exactly the distribution of the latent
state random variable in question, given the knowledge provided by the col-
lection of partial observations. For example, if in the drilling application
we define Xn to be the size of a washout hole at a certain time, then the
partial observations (Ym)nm=0 could be defined to be the collection of inlet
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pressure measurements up to the present time, and the filter measure (2.1.5)
is the probability distribution of the hidden washout hole size at time n

given the knowledge leveraged by these observations (and analogously for
the predictive measure (2.1.6)).

We will also frequently use the corresponding weak forms of (2.1.5)–
(2.1.6) considered over all φ ∈ B(X) and given by

π̂n(φ) =

∫
X
φ(xn)π̂n(dxn), πn(φ) =

∫
X
φ(xn)πn(dxn). (2.1.7)

Integrals of the form (2.1.7) are of common theoretical and practical interest
because they describe not only the underlying probability measure but also
a large class of expectations. They are in fact examples of the more general
Feynman-Kac formulae [54, Ch. 2]

µ̂n(φ) := E
[
φ(Xn)

n∏
p=0

Vp(Xp)

]
, µn(φ) = E

[
φ(Xn)

n−1∏
p=0

Vp(Xp)

]
, (2.1.8)

η̂n(φ) = µ̂n(φ)/µ̂n(1), ηn(φ) = µn(φ)/µn(1), (2.1.9)

with potential functions Vp : X → [0,∞) and expectations taken with respect
to the joint path measure

P(X0:n ∈ dx0:n) = π0(dx0)K(x0, dx1) . . .K(xn−1, dxn).

Consequently, π̂n and πn inherit the structure that relates the Feynman-
Kac measures (2.1.8)–(2.1.9) to one another through a recursive procedure
of prediction and update. To see this connection, we first note that

µn(φ) :=

∫
Xn+1

φ(xn)

[
n−1∏
p=0

Vp(xp)

]
π0(dx0)K(x0, dx1) . . .K(xn−1, dxn)

=

∫
Xn

∫
X
φ(xn)K(xn−1, dxn)

[
n−1∏
p=0

Vp(xp)

]
π0(dx0) . . .K(xn−2, dxn−1)

= µ̂n−1(K(φ)). (2.1.10)
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By the property K(x, · ) ∈ P(X ), it follows immediately from (2.1.10) that

µn(1) =

∫
Xn

[
n−1∏
p=0

Vp(xp)

]
π0(dx0) . . .K(xn−2, dxn−1) = µ̂n−1(1).

Therefore, by (2.1.9),

ηn(φ) = µ̂n−1(K(φ))/µ̂n−1(1) = η̂n−1(K(φ)). (2.1.11)

This is the so-called mutation step, which demonstrates how the normalised
prediction Feynman-Kac measure ηn is obtained from the normalised up-
dated Feynman-Kac measure η̂n−1 by integrating the Markov kernel condi-
tioned on the state xn−1 with respect to η̂n−1.

The other part of the recursion is the update step, which describes how
the new information provided in the form of Vn is used to update ηn to η̂n.
By the definitions (2.1.8), we first note the simple relation µ̂n(φ) = µn(Vnφ).
Normalising µ̂n, it then follows that

η̂n(φ) = µn(Vnφ)/µn(Vn) = ηn(Vnφ)/ηn(Vn) =: Ψn(ηn)(φ), (2.1.12)

where Ψ : η ∈ P(X ) 7→ Ψ(η) ∈ P(X ) is the Boltzmann-Gibbs operator

Ψn(η)(dx) =
1

η(Vn)
Vn(x)η(dx). (2.1.13)

Combining (2.1.11) and (2.1.12) gives the following recursive formulae for
the Feynman-Kac probability measures

ηn = Ψn−1(ηn−1)Kn−1, (2.1.14)

η̂n = Ψn(η̂n−1Kn−1). (2.1.15)

Equation (2.1.14) describes how ηn is obtained by first updating ηn−1 via the
Boltzmann-Gibbs operator in light of Vn−1, and then mutating the resulting
η̂n−1 with respect to the Markov kernel. Similarly, (2.1.15) describes how η̂n

is obtained by mutating η̂n−1 and updating the resulting ηn in light of Vn,
again using the Boltzmann-Gibbs operator.

To relate the Feynman-Kac mutation and update formulae to the filter
and prediction distributions (2.1.5)–(2.1.6), by Bayes’ theorem and (2.1.4)
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we have the following recursion

π̂n(φ) ∝
∫
X
φ(xn)gn(xn)πn(dxn)

=

∫
X

∫
X
φ(xn)gn(xn)π̂n−1(dxn−1)K(xn−1, dxn)

= π̂n−1(gnK(φ)).

From this we deduce the formula

π̂n(φ) ∝ π̂0

(
Kn(φ)

n∏
p=1

gp

)
= π0

(
Kn(φ)

n∏
p=0

gp

)
.

However, up to proportionality, the last expression is simply η̂n(φ) as given
in (2.1.8)–(2.1.9) in which Vn = gn.

Consequently, the filter and prediction distributions (2.1.5)–(2.1.6) are
specific cases of the Feynman-Kac measures (2.1.8)–(2.1.9) and thus inherit
the same predict and update recursive structure. However, exact computa-
tion of πn and π̂n is only possible under restrictive modelling assumptions
about the signal and observation processes. This is due to the presence of
integrals in each of the formulas that are tractable in only a few cases. For ex-
ample, if the signal and observation processes take values in Euclidean space
and K and G both admit Gaussian density functions, then for all n the dis-
tributions πn and π̂n are also Gaussian, and the Kalman filter parametrises
the exact solution via the respective mean and covariance terms [39]. Alter-
natively, if X consists of a finite number of values then the integrals in πn

and π̂n are finite sums over X and hence tractable, in which case the solution
is found using grid-based methods; cf. [5].

The Kalman filter and grid-based methods offer optimal solutions to spe-
cial cases of the filtering problem but are sub-optimal whenever the integrals
in the computation of πn and π̂n are intractable. A number of methods have
been derived that seek to approximate solutions to such problems, including
the extended Kalman filter for signal and observation processes in Euclidean
space [40, 41, 39], and approximate grid-based methods when X is infinite but
can be well approximated by a finite grid [5]. The extended Kalman filter fur-
nishes Gaussian approximations to πn and π̂n by performing a linearisation
about point estimates of the predictive and posterior means and applying
the operations from the Kalman filter to the resulting matrices. However,
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these approximations will have limited accuracy if the target distributions
are heavily-skewed or bimodal, and in certain scenarios the estimates may
diverge. The unscented Kalman filter seeks to improve on this drawback
by constructing a Gaussian approximation based on a collection of specified
sigma points [37, 77], but for the same reasons struggles in the presence of
heavily-skewed or bimodal target distributions. The approximate-grid based
method approximates πn and π̂n by an empirical measure on a finite grid
which, in addition to suffering from the curse of dimensionality, requires
truncation of X if it is unbounded [5].

An alternative means for approximating solutions to (2.1.5)–(2.1.6) is
the Monte Carlo (MC) method of constructing estimates of πn and π̂n based
on N ∈ N random samples, known as particles, taken from an appropriate
distribution. The resulting estimates are formed by constructing empirical
distributions πN

n and π̂N
n that have as support the particles, each of which are

assigned a weight that represents its probability. The evolution of πN
n and π̂N

n

from one iterate to the next is then performed by transforming the empirical
distributions in exactly the manner described by (2.1.11) and (2.1.12). Such
an approach enables discrete estimates of the exact distributions that possess
convergence properties other sub-optimal methods do not, and are robust to
non-linear, non-Gaussian features in the signal and observation models.

2.2 Sequential Monte Carlo

2.2.1 Formulation

The purpose of SMC methods is to construct sample-based estimates of
(2.1.5)–(2.1.6). Since these estimating measures are discrete — in the sense
that they are based on a finite number of samples — there are a number of
theoretical and practical issues to consider in their design.

At each iteration n ∈ N0 we denote by (ξin)
N
i=1 the collection of X-valued

particles and by (wi
n)

N
i=1 their corresponding non-negative weights. Together,

(ξin)
N
i=1 and (wi

n)
N
i=1 form the empirical estimate πN

n of πn, given by

πN
n :=

N∑
i=1

wi
nδξin , (2.2.1)

where δx denotes the Dirac-delta measure with point mass at x. The anal-
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ogous weak-form MC estimator of πn is obtained by integrating φ ∈ B(X)
with respect to (2.2.1) to give

πN
n (φ) =

∫
X
φ(xn)π

N
n (dxn) =

N∑
i=1

wi
nφ(ξ

i
n). (2.2.2)

If the ξin are independently, identically distributed (i.i.d.) according to πn,
denoted by ξin

i.i.d.∼ πn, then wi
n = N−1 for all i, and by elementary operations

it follows that (2.2.2) is unbiased. The construction of πN
n using i.i.d. samples

from πn implies that its standard deviation σ(πN
n (φ)) is found via

σ2(πN
n (φ)) = σ2

(
N−1

N∑
i=1

φ(ξin)

)
= N−1σ2(φ), (2.2.3)

so that σ(πN
n (φ)) = σ(φ)/

√
N whenever the variance σ2(φ) := Var(φ(Xn))

is finite. Asymptotically, the strong law of large numbers implies that πN
n (φ)

converges almost surely to πn(φ) for all φ ∈ B(X), while a central limit
theorem also applies whenever σ2(φ) < ∞; see, for example, [63, Ch. 4] and
[19, Ch. 1] respectively.

A central issue to SMC methods is how to form convergent estimators
when it is not possible to sample directly from πn, and how to evolve the em-
pirical measure in a way such that the asymptotic properties are preserved.
This is accomplished by applying the exact recursive formula (2.1.14) to the
empirical measure πN

n , or equivalently, applying (2.1.15) to the estimate π̂N
n

of π̂n.

Considering the case for πN
n , suppose that ξin and wi

n are known (we note
that for n = 0, these quantities are computed using standard MC from the
prior π0). Using (2.1.14), the next iteration empirical prediction is specified
by

πN
n+1 = Ψn(π

N
n )K. (2.2.4)

In particular, the application of the Boltzmann-Gibbs operator Ψn updates
πN
n to π̂N

n via

π̂N
n := Ψn(π

N
n ) =

N∑
i=1

gn(ξ
i
n)w

i
n∑N

j=1 gn(ξ
j
n)

δξin =:
N∑
i=1

w̃i
nδξin . (2.2.5)
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Then, by applying K:

πN
n+1( · ) = π̂N

n K( · ) =
∫
X
π̂N
n (dxn)K(xn, · ) =

N∑
i=1

w̃i
nK(ξin, · ) (2.2.6)

In other words, given πN
n , the next iteration empirical prediction measure

πN
n+1 is given by the weighted sum of the probability measures induced by

conditioning the Markov kernel on each ξin, in which the observational infor-
mation provided by the update step is encoded into the weights. By the nor-
malisation of the w̃i

n it follows that (2.2.6) integrates to unity and is therefore
a well-defined probability distribution; to obtain a new empirical prediction
measure and thus close the recursion we then sample ξin+1 ∼ K(ξin, · ) and
set wi

n+1 = w̃i
n to give (2.2.1), with n replaced by n+ 1.

2.2.2 Importance sampling

By formulating a discrete representation of the exact predict and update
steps, the formulae (2.2.5)–(2.2.6) specify a particle filter algorithm that
produces empirical estimates of the intractable measures πn and π̂n at each
n. It is an extension of importance sampling [28] to the sequential setting,
which is based on the idea of sampling from an importance distribution q

when sampling from a probability distribution π is not possible, such that
suppπ ⊆ supp q. This approach is justified by the Radon-Nikodym formula

π(φ) ∝ q

(
φ
dπ

dq

)
, (2.2.7)

see [64, Ch. 2.6.]. Based on (2.2.7), an estimate of π is given by instead
sampling ξi

i.i.d.∼ q and forming weights based on evaluations of dπ/dq that
correct for the bias of sampling from q. Due to the normalisation term
in (2.2.7), the resulting Monte Carlo estimate is based on the ratio of two
estimators and is therefore biased for any N . However, under some mild
assumptions about π and φ, it also exhibits almost sure convergence and
has a central limit theorem; see [28].

In the context of SMC, importance sampling features by considering the
distribution of X0, . . . , Xn | Y0 = y0, . . . , Yn = yn at some n > 0 and comput-
ing its Radon-Nikodym derivative with respect to an importance distribution
q. The recursive property of SMC is preserved for a general choice of impor-
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tance distribution by virtue of the fact that this Radon-Nikodym derivative
can be expressed by constructing the potential function Vn accordingly; thus
remaining in the predict-update framework of Feynman-Kac theory. To this
end, we note that the choice Vn = gn represents one particular choice of im-
portance distribution — namely that for which q is chosen to be the Markov
kernel — but that one advantage of the Feynman-Kac interpretation is that it
encompasses a more general class of importance distributions in the process.

To utilise the Markov property and the information provided by the
observations, a general choice of q is often designed to have the form

q( · ) = q(Xn ∈ · | Xn−1 = xn−1, Y0 = y0, . . . , Yn = yn). (2.2.8)

One of the principles behind conditioning on the observations in (2.2.8) is
that knowledge of the latest observation yn can be incorporated to “retro-
spectively” propagate the particles ξin ∼ q towards a neighbourhood of the
point in X that produced it, should such a mapping be known. The idea
behind this approach is that the observation guides the particles towards a
region that is more likely to be close to the latent state value than by naively
mutating conditioned only on an estimate of the previous state. Without loss
of generality we continue to assume Vn = gn in our work, but note that all of
the forthcoming discussion also applies to a more general class of importance
distributions of the form (2.2.8), the design of which is a non-trivial problem
in its own right. For a deeper discussion on sequential importance sampling
and design of importance distributions we refer to [5, 16], for example.

2.2.3 Resampling

While the estimators πN
n and π̂N

n are theoretically plausible, in practice the
majority of the weights ŵi

n ∝ gn(ξ
i
n)w

i
n (and hence also wi

n) are likely to be
close to zero after a few iterations. It has been proven that the variance of the
weights increases over time [20] and that this issue is therefore unavoidable.
This is the well-known degeneracy problem that, until the introduction of
resampling, inhibited the widespread use of particle filters.

Consequently, the update step described by the Boltzmann-Gibbs opera-
tor is typically supplemented by an additional resampling/selection operator
S(x, · ) that mitigates the particle degeneracy. For example, if multinomial
resampling is performed — in which the resampled particle ξ̂in is set equal
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to ξjn with probability ŵj
n — then

SπN
n
(ξin, · ) = Ψn(π

N
n ). (2.2.9)

For ξ̂in ∼ SπN
n
(ξin, · ) we then have π̂N

n = N−1
∑

i δξ̂in
, and the prediction step

(2.2.6) proceeds with w̃i
n = ŵi

n = N−1.

The operator (2.2.9) is part of a larger class of mixture-type models in
which resampling is only performed with probability depending on ξin; see
[54, Ch. 3]. These models are somewhat analogous to the application of
an accept/reject step to proposed samples in MCMC [62]. Furthermore,
there exists a rich collection of resampling schemes other than multinomial
sampling such as stratified, residual and deterministic, to name a few [48].

While resampling provides a solution to the degeneracy problem, it has
several drawbacks. By drawing the resampled particles ξ̂in from π̂N

n , addi-
tional statistical error is introduced into the resulting filter estimator. For
this reason, the pre-resample distribution is preferable in practice for the
purpose of forming estimates, while the post-resample distribution is pre-
ferred for proving convergence properties, since any result will also hold for
its pre-resample counterpart.

Another drawback is that, by requiring the particles to interact, the
ability to parallelise the particle filter is compromised. Though the cost
of resampling is cheap and dimension-free (O(N)), the inability to easily
partition the particles into independent patches makes the typically-more
costly mutation/weight computation steps more problematic. More recently,
methods such as the island particle filter [75] and butterfly resampling [32]
have provided ways to mitigate this problem. Another related issue is that of
sample impoverishment [5], in which repeated resampling of a small subset
of particles leads to a lack of diversity in the generated offspring. This issue
is particularly prevalent when the signal-to-noise ratio is large, since fewer
particles tend to be assigned a greater share of the total weight density, thus
increasing their likelihood of being replicated a large number of times [11].

A popular approach to limiting the drawbacks of resampling is to only
do so when the particle diversity falls below a tolerable threshold. The
theoretical diagnostic by which this is measured is the effective sample size
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of the particles, given by

NESS :=
N

1 + Var(ŵ∗i
n )

, (2.2.10)

where ŵ∗i
n is the “true weight” of ξin; see [43, 49]. Although ŵ∗i

n cannot
generally be computed exactly, a widely used estimator of (2.2.10) is

N̂ESS :=
1∑N

i=1(ŵ
i
n)

2
. (2.2.11)

By its construction and the features of the weights, the quantity N̂ESS is
bounded via 1 ≤ N̂ESS ≤ N , with the upper and lower bounds corresponding
to the best and worst case degeneracy scenarios respectively. To see this, by
Minkowski’s inequality and the normalisation of the weights,

N∑
i=1

(ŵi
n)

2 ≤
( N∑

i=1

ŵi
n

)2

= 1.

Furthermore, writing each weight as ŵi
n = N−1 + ϵi we obtain the following

lower bound

N∑
i=1

(ŵi
n)

2 =
N∑
i=1

(
1

N
+ ϵi

)2

=
1

N
+

N∑
i=1

ϵ2i ≥
1

N
, (2.2.12)

where we have used the fact that
∑

i ϵi = 0. Intuitively, the optimal scenario
in which ŵi

n = N−1 for all i corresponds to standard MC sampling, where
N i.i.d. samples are taken from the true distribution; i.e. where sampling
from π̂N

n is equivalent to sampling from π̂n. At the other extreme, using
a similar argument to (2.2.12), the value NESS = 1 is obtained if and only
if all weights but one are zero, in which case inference is essentially being
performed using one particle.

The estimator (2.2.11) can therefore be incorporated into a particle fil-
tering method by setting a degeneracy tolerance 1 ≤ τ ≤ N and resampling
whenever N̂ESS ≤ τ . This adaptive approach can also be extended to parti-
cle filters with certain constrained resampling schemes, in which interaction
of only a subset of particles needs be performed in order to achieve time
uniform convergence [78]. In the special case where τ ≡ N , we note that
resampling is performed at every step.
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2.2.4 Bootstrap particle filter

With the choice of potential function Vn = gn and the inclusion of a resam-
pling step, the resulting interacting particle system is the bootstrap particle
filter (BPF). The BPF is a popular choice of particle filter for its ease of

Algorithm 1 Bootstrap Particle Filter (BPF)
% Initialisation
for i = 1, . . . , N do

ξin ∼ π0 and wi
0 = 1/N .

for n ≥ 0 do
% Calculate weights
for i = 1, . . . , N do

w̃i
n = gn(ξ

i
n)w

i
n

% Resampling
for i = 1, . . . , N do

ξ̂in ∼
∑N

i=1 w̃
i
nδξin∑N

i=1 w̃
i
n

and ŵi
n = 1/N

% Mutation
for i = 1, . . . , N do

ξin+1 ∼ K(ξ̂in, · ) and wi
n+1 = ŵi

n

implementation, since its weight computation step involves only computa-
tions involving gn. For further ease of implementation, resampling is often
performed at every iteration since it essentially negates the need to store the
weights from the previous iteration. Such an algorithm is presented in Algo-
rithm 1. It is, however, just one example of a much broader class of particle
filters, with practically every step applicable for modification, often in ways
that obtain better performance (see [19, Ch. 13-14], for example). Nonethe-
less, the BPF captures in an intuitive way each of the key processes that
make up particle filtering, and the alternative approaches taken in other ver-
sions are essentially generalisations of these core principles. For this reason,
we use the BPF as a template for our own particle filtering method.

For π̂i
n and ŵi

n computed as in Algorithm 1, let π̂N
n denote the resulting

empirical filter measure. The following strong law of large numbers and
central limit theorems provide a theoretical justification for the use of particle
filtering methods.

Theorem 1 (Crisan and Doucet [16]). For a Markov kernel K satisfying
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the Feller property and for gn such that gn > 0 is bounded and continuous
for all n,

π̂N
n (φ)

a.s.−−−−→
N→∞

π̂n(φ).

Theorem 2 (Chopin [13]). For all bounded and measurable φ : X 7→ R,

√
N

(
π̂N
n (φ)− π̂n(φ)

)
D−−−−→

N→∞
N (0, σ̂2

n(φ))

for some σ̂2
n(φ) ∈ (0,∞).

We note that, in light of the previous discussion, each of the convergence
results also apply to the measure π̂n prior to resampling, in which the weights
w̃i
n are instead proportional to gn(ξ

i
n).

2.3 Multilevel Monte Carlo

Multilevel Monte Carlo (MLMC) methods are applicable to expectation esti-
mation problems in which there is an associated numerical cost to generating
each sample. Given this cost, it is assumed that samples based on a cheaper
but less accurate solution can be generated in a way that satisfies some gen-
eral assumptions. In this case, it can be shown that MLMC can exploit its
multilevel solution hierarchy in such a way that it provides equivalent ac-
curacy to standard MC in fewer floating point operations. The strength of
the computational gains in works such as [15, 29] is such that we use the
approach as a starting point for our own adaption of multilevel methods to
SMC. Consequently, in this section we briefly review the general principles
behind the method while remaining in the Feynman-Kac framework ahead
of deriving our multilevel SMC method.

Formally, we pause our consideration of sequential problems and instead
consider the class of problems for which estimates are sought for

ηφ(XT ) := Eη[φ(XT )], (2.3.1)

where Xt = X(t, ω) is an X-valued stochastic process, XT is a random vari-
able defined on the probability space (Ω,F ,P) at some fixed T ∈ R, and
η( · ) := P(XT ∈ · ). A crucial feature of problems in the MLMC setting is
that φ is generally assumed fixed, meaning the integral ηφ(XT ) is an unknown
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scalar instead of the weak form probability measure considered in the SMC
setting. To emphasise this distinction we place φ(XT ) as a subscript when-
ever the expectation of φ(XT ) is taken with respect to the distribution η of
XT .

Problems of the type (2.3.1) frequently arise in applications involving
stochastic differential equations such as mathematical finance [29], in which
ηφ(XT ) is the expected value of a portfolio option at an exercise time T ;
and uncertainty quantification in groundwater flow [15], in which ηφ(XT ) is
the expected value of a functional of an elliptic PDE solution with random
coefficients. Due to exact samples ξiT ∼ η of XT typically being unavailable,
the direct MC estimate of (2.3.1) is therefore also infeasible and a different
strategy is required.

Instead, a common approach is to first approximate Xt by an RM -valued
random vector XM

t , for which the component corresponding to t = T repre-
sents an approximation to the random variable XT . The resulting numerical
approximation to ηφ(XT ) is then given by

ηφ(XM
T ) := Eη[φ(X

M
T )]. (2.3.2)

Equation (2.3.2) is useful because it provides a pathway to estimating (2.3.1)
via samples based on numerical approximations of Xt. Under certain as-
sumptions about the convergence of (2.3.2) to (2.3.1) as M → ∞, an MC es-
timate of (2.3.1) of arbitrary accuracy can in theory be constructed by using
a large enough number of samples to estimate (2.3.2) with a sufficiently-large
value of M . For clarity of notation, we use the abbreviation ηMφ := ηφ(XM

T )

of the scalar-valued estimator of ηφ(XT ), which we also abbreviate to ηφ.

As per [15], we write a ≲ b whenever a/b is uniformly bounded inde-
pendently of any parameters (the sample size or approximation resolution,
for example) and write a ≃ b whenever a ≲ b and b ≲ a. Furthermore, we
assume ηMφ → ηφ in mean as M → ∞ with order of convergence α > 0 so
that, for any M , the bias is bounded in the following sense

|ηMφ − ηφ| ≲ M−α. (2.3.3)

For a fixed M ∈ N, we denote a generic unbiased MC estimator of ηMφ
comprising of N samples φ(ξM,i

T ) by ηM,N
φ . To measure the accuracy of ηM,N

φ

from the true expectation ηφ requires a metric, which is typically chosen to
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be the root mean squared error (RMSE)

ε(ηM,N
φ ) := EηM [(ηM,N

φ − ηφ)
2]1/2. (2.3.4)

In addition to being a practical choice, (2.3.4) is a useful tool for analysis on
account of the fact that, for any unbiased estimator ηM,N

φ of ηMφ ,

ε2(ηM,N
φ ) = σ2

(
ηM,N
φ

)
+
(
ηMφ − ηφ

)2
, (2.3.5)

thus decomposing ε2(ηM,N
φ ) in terms of its variance and numerical error (for

a derivation of (2.3.5), see [15], for example). In particular, the numerical
error |ηMφ − ηφ| can only be reduced by increasing the resolution parameter
M , while the variance term is a function of both M and the sample size
N . The legacy of MLMC is that the influence of these two parameters can
be exploited to obtain a specified RMSE threshold in fewer floating point
operations than standard MC.

To quantify the cost of an estimator, let C(ηM,N
φ ) denote the number of

floating point operations performed with ηM,N
φ , and for a tolerance ϵ > 0, let

Cϵ(ηM,N
φ ) denote the cost of obtaining an RMSE of ϵ with ηM,N

φ . For some
γ > 0, we assume the cost of generating each φ(ξM,i

T ) is C(φ(ξM,i
T )) ≲ Mγ ,

and hence for N samples

C(ηM,N
φ ) ≲ NMγ . (2.3.6)

If ηM,N
φ is chosen to be the standard MC estimator

ηM,N
φ,MC := N−1

N∑
i=1

φ(ξM,i
T ), ξM,i

T
i.i.d.∼ ηMφ

then by (2.3.5),

ε2(ηM,N
φ,MC) = N−1σ2

M (φ) + (ηMφ − ηφ)
2, (2.3.7)

where σ2
M (φ) = Var(φ(XM

T )). In the presence of no numerical error, we note
that (2.3.7) reduces to the exact same standard MC variance (2.2.3).

A sufficient condition to attain an RMSE of order ϵ with ηM,N
φ,MC is that

each of the terms in (2.3.7) are of order ϵ2. This implies N ≳ ϵ−2 and, by
the numerical bias assumption (2.3.3), that M ≳ ϵ−1/α, so that according to
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(2.3.6) we have
Cϵ(ηM,N

φ,MC) ≲ ϵ−2−γ/α.

In particular, the ϵ-cost of ηM,N
φ,MC is governed by the ratio γ/α; if the ap-

plication is expensive and hence γ/α is large, this correlates to the rate of
convergence of the estimator being slow compared to the cost of generating
the approximate solutions ξM,i.

In the multilevel approach, a sequence of L + 1 levels (Mℓ)
L
ℓ=0 is con-

structed such that Mℓ > Mℓ−1 for all ℓ and ML = M . The purpose of the
levels is to parametrise the complexity of the corresponding numerical ap-
proximation XMℓ

T . Therefore by the assumptions (2.3.3) and (2.3.6), samples
produced on the lower levels exhibit greater bias but are cheaper to generate,
while for increasing ℓ, the bias decreases at the expense of a higher solution
generation cost.

A key principle of MLMC is that the integral ηMφ can be written as the
telescoping sum

ηMφ =
L∑

ℓ=0

ηℓ∆φ, (2.3.8)

where

ηℓ∆φ :=

Eη[φ(X
Mℓ
T )− φ(X

Mℓ−1

T )] for ℓ > 0,

Eη(φ(X
Mℓ
T )) for ℓ = 0,

(2.3.9)

meaning that ηMφ can be expressed exactly as the expectation of φ(XM0
T )

plus a sum of terms that correct the resulting bias from the previous level.

Given the exact expression (2.3.8), the multilevel approach is to construct
independent, unbiased estimators ηMℓ,Nℓ

∆φ of each of the ηℓ∆φ using Nℓ samples.
In particular, if the standard MC estimator based on i.i.d. samples is used
on each level, then the MLMC estimator of ηMφ is

ηMℓ,N
∆φ,ML :=

L∑
ℓ=0

ηMℓ,Nℓ
∆φ =

L∑
ℓ=0

N−1
ℓ

∑
i∈Pℓ

[
φ(ξMℓ,i

T )− φ(ξ
Mℓ−1,i
T )

]
, (2.3.10)

where N is interpreted as the total number of samples, and where we define
Pℓ to be the set of indices corresponding to the samples assigned to the MC
estimate of ηℓ∆φ. While in the context of MLMC this notation is somewhat
superfluous, when applying the multilevel approach in an SMC setting it is
required to handle in a rigorous way the effects of resampling particles over
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all levels. It is also important to note that, for each i ∈ Pℓ and fixed ℓ > 0,
the solutions ξMℓ,i and ξMℓ−1,i must be generated using the same underlying
sample ωi ∈ Ω to ensure that ηMℓ,Nℓ

∆φ is a consistent estimator of ηℓ∆φ.

Applying the RMSE decomposition formula (2.3.5) to the MLMC esti-
mator gives

ε2(ηM,N
φ,ML) =

L∑
ℓ=0

N−1
ℓ ∆σ2

ℓ (φ) + (ηMφ − ηφ)
2. (2.3.11)

where ∆σ2
ℓ (φ) is the variance of the level-specific φ difference terms in (2.3.9).

Thus, the effect of formulating the MLMC estimator is to generalise the
unilevel variance in (2.3.7) to the sum of the level-wise estimator variances,
while leaving the bias term unchanged. By (2.3.6), the cost of generating
(2.3.11) is

C(ηMML) ≲
L∑

ℓ=0

NℓCℓ,

where Cℓ is the cost of generating a single sample according to (2.3.9). To
attain ϵ-RMSE accuracy, it therefore once again suffices to choose M ≳

ϵ−1/α. To sufficiently attenuate the remaining error requires the sum in
(2.3.11) to be of order ϵ2 which, for reasons given in [15], can generally
be achieved with fewer floating point operations than standard MC. One
intuition is that if ∆σ2

ℓ (φ) is large then the cost of at least one of XMℓ−1

is likely to be comparatively low, meaning Nℓ can be made large without
placing substantial demands on the computational budget. In particular, the
main theorem in [15] provides a methodology for computing approximately-
optimal values of each Nℓ by basing them on empirical estimates of ∆σ2

ℓ (φ).
Since these estimates arise as a natural by-product of the sampling, they
therefore enable the estimate accuracy to be improved at a negligible cost to
the overall efficiency.

To facilitate later comparisons with our multilevel method we conclude
this chapter by stating the MLMC algorithm of [15], which explicitly details
how to compute the approximately-optimal number of level specific samples
Nℓ to leverage the efficiency gains of MLMC.

For a fixed L, Algorithm 2 proceeds by iterating through all levels up to
L. In particular, for each ℓ = 0, . . . , L an initial collection of samples are
generated which are then used to estimate the optimal number of samples
Nℓ. The formula for estimating Nℓ is given in terms of the level-specific
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Algorithm 2 Multilevel Monte Carlo (MLMC)
% Initialisation
Set L = 0 and generate an initial number of samples ξML,i.
% Estimate the variance
Construct the estimate σ̂2

L of σ2
ML

(φ)
for ℓ = 0, . . . , L do

% Estimate the optimal sample sizes

Set Nℓ ≃
√

σ̂2
ℓ /Cℓ

% Evaluate extra samples
Evaluate extra samples ξMℓ,i as needed for the computed Nℓ

% Test for convergence
if L ≥ 1 then

if σ̂2
L ≃ M−α then
return ηMMLMC

% Repeat
Set L = L+ 1 and go back to the variance estimation step.

standard deviation and cost-per-sample σ̂ℓ and Cℓ respectively, which are a
natural by-product of the generated collection of samples. On each level,
the derived estimate of Nℓ then informs the user whether more samples are
required. The multilevel MC estimation is then a simple case of assigning the
Nℓ samples to each level-specific MC estimator and testing for convergence
using the specified convergence criteria, which can also be estimated using
the numerical bias assumption (2.3.3). If the convergence criterion is not
satisfied then L is incremented and the process is repeated; by increasing L,
this in effect “inserts” another Mℓ in between M0 and ML, since we always
require ML = M in order for the MLMC estimator to converge to ηMφ .



Chapter 3

Multilevel bootstrap particle
filter

3.1 Method

While SMC methods such as the BPF are credible theoretical approaches
to hidden parameter estimation problems, in practice they can be infeasible
when the cost of generating the weights is high. The drilling application
described in Chapter 1 is one such example, in which each weight entails
the solution of a system of PDEs. Even in applications where the weight
generation cost is not high, a reduction in this cost is still desirable since it
enables the configuration of more particles and hence asymptotically-more
accurate estimators.

We recall that, for n ≥ 0, the filter distribution π̂n is obtained from πn

by Bayes’ formula

π̂n(φ) =
πn(gnφ)

πn(gn)
, φ ∈ B(X). (3.1.1)

In applications where the exact form of πn is unknown, we saw in Section
2.2 that SMC methods use (3.1.1) to update an empirical estimate πN

n of πn
to π̂N

n by replacing the exact measures by the empirical ones and defining
weights based on evaluations of gn. In light of the related asymptotics, (3.1.1)
is both the limiting case of the empirical measures and the means by which
the cost of an empirical measure formed using weights based on gn can be
quantified. To analyse the weight computation cost, we therefore consider

35
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this exact formula.
In addition to the statistical estimation, it is often the case that the like-

lihood evaluations gn(ξin) are based on equations that have no exact solution
and require numerical approximation. Most relevantly to our application this
approximate solution could be based on a finite element or finite volume PDE
method, for example, but equally could be based on a numerical integration
method or an iterative solution to an optimisation problem. In Section 2.3
we saw how MLMC exploits a cost-accuracy trade-off that arises when a
multilevel approach is applied to numerical approximations of a particular
functional of interest; by constructing the solver resolution and level-specific
sample sizes in an optimal way, an equivalent level of accuracy to standard
MC is achieved at a lower computational complexity [15, 29].

In our method we seek to emulate these gains in the SMC setting by
considering an analogous multilevel approach for the likelihood function gn

and exploiting the linearity of the integral operators in the numerator and
denominator of (3.1.1). The resulting challenges of this task differ from
MLMC in two significant ways. Firstly, MLMC is designed to be applied to
problems in which the expectation of only one functional is of interest and
thus the exact solution is scalar-valued. By contrast, in filtering problems
the expectation is considered over all φ ∈ B(X) to describe the weak form
of a probability measure. Moreover, in this setting we are in fact estimating
sequences of probability measures that are constructed using the results of
non-linear filtering. It is therefore non-trivial that the multilevel-based esti-
mates converge to their target distributions and that these asymptotics are
preserved at each iteration. With these challenges in mind, we remark that
our approach extends MLMC in two senses: from one particular integral to
an integral functional, and from the non-sequential setting to the sequential
one.

3.1.1 Algorithm

Let L ∈ N0 and, given the full accuracy likelihood function gLn := gn, con-
struct a sequence of level-based likelihoods (gℓn)

L
ℓ=0 such that both the com-

putational cost and accuracy of gℓn with respect to some metric increases
with ℓ. We note that the generality of these assumptions allows a broad
range of applications to be considered. Each ℓ could, for example, denote
the number of spatial discretisation points Mℓ in a PDE solver, or denote a
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sparse matrix based on a subset of entries from a covariance matrix; see [31].

Considering the numerator of (3.1.1), we invoke the multilevel telescoping
sum and linearity technique to get

πn(gnφ) =
L∑

ℓ=0

πn(∆gℓnφ),

where ∆gℓn := gℓn − gℓ−1
n and g−1

n ≡ 0. By also applying this formula to the
normalisation term for which φ ≡ 1, the filter distribution can be expressed
in terms of level-specific filters π̂n,ℓ to give the multilevel update step

π̂n(φ) =
L∑

ℓ=0

pn,ℓπ̂n,ℓ(φ), (3.1.2)

where

pn,ℓ :=
πn(∆gℓn)∑L

ℓ′=0 πn(∆gℓ′n )
, π̂n,ℓ(φ) =

πn(∆gℓnφ)

πn(∆gℓn)
. (3.1.3)

By taking this approach, the standard update step is reformulated as the sum
of L+ 1 update steps based instead on level-specific corrections ∆gℓnφ, with
coefficients pn,ℓ that are tractable once the normalisation terms πn(∆gℓn) are
known over all levels. By virtue of the introduction of the gℓn, an added
flexibility is provided by the π̂n,ℓ, which are cheaper to compute than the
full cost/accuracy π̂n at the trade-off of varying degrees of level-dependent
bias.

Since the corrective difference functions ∆gℓnφ are in no way guaranteed
to be non-negative, the level-specific measures π̂n,ℓ are in general signed mea-
sures that combine to provide the formal probability measure π̂n. This ex-
tension from classes of probability measures to classes of signed measures has
profound consequences on the resulting filtering process, since the weights
generated according to ∆gℓn are also no longer guaranteed to be non-negative.
Consequently, any prospective multilevel particle filter must accommodate
these features correctly to produce a workable algorithm.

The form taken by (3.1.2)–(3.1.3) suggests that a multilevel particle filter
can be constructed by applying the standard SMC approach to each of the
level-specific update steps (3.1.3). To this end, let (cℓ)

L
ℓ=0 be a sequence of

positive integers such that cL = 1. For N ∈ N, we denote the sample size
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of the ℓ-th level particle estimate by Nℓ = cℓN , so that the sample size over
all levels is S(N) :=

∑L
ℓ=0Nℓ. Moreover, we assume the particles assigned

to each level are indexed according to the partitioning sets

PN
ℓ := {Iℓ(N) + 1, . . . , Iℓ+1(N)}, 0 ≤ ℓ ≤ L,

where Iℓ(N) :=
∑ℓ−1

k=0Nk and
∑b

a( · ) = 0 whenever a > b. The multilevel
bootstrap particle filter (MLBPF) is defined in Algorithm 3.

Algorithm 3 Multilevel Bootstrap Particle Filter (MLBPF)
% Initialisation
for i = 1, . . . , S(N) do

ξin ∼ π0 and wi
0 = 1.

for n ≥ 0 do
% Calculate weights for each level
for 0 ≤ ℓ ≤ L do

for i ∈ PN
ℓ do

w̃i
n = N−1

ℓ (gℓn(ξ
i
n)− gℓ−1

n (ξin))w
i
n

% Signed resampling
for i = 1, . . . , S(N) do

ξ̂in ∼
∑S(N)

i=1 |w̃i
n|δξin∑S(N)

i=1 |w̃i
n|

and ŵi
n = sgn

(∑S(N)
i=1 w̃i

nI[ξ̂in = ξin]
)

% Mutation
for i = 1, . . . , S(N) do

ξin+1 ∼ K(ξ̂in, · ) and wi
n+1 = ŵi

n

For L = 0, we see that the MLBPF reduces exactly to the BPF; given the
predictive weights wi

n on level 0, the unnormalised, pre-resampled weights w̃i
n

coincide exactly with the non-negative weights in the BPF, up to a constant
that is cancelled out during the normalisation step. In particular, in this
unilevel case we remark that the signed resampling step in Algorithm 3
reduces to the conventional multinomial resampling as defined in the BPF.

For L > 0, the situation is radically altered by the fact that both the
filter and predictive weights can take negative values. This feature is a
natural expression of forming weighted MC estimates of the signed measures
in (3.1.2), but it means that resampling can no longer be performed with
respect to a probability proportional to each weight, since a negative number
has no meaningful probabilistic interpretation. Before discussing the signed
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resampling step we’ve implemented in Algorithm 3 that handles this weight
negativity in a rigorous way, we first describe the two scenarios in which a
negative weight can arise.

gℓn(ξ
i
n) < gℓ−1

n (ξin) and wi
n > 0:

In this situation a larger likelihood value is assigned to ξin under the less
accurate approximation than the more accurate one, while the predictive
weight wi

n is positive. By construction the wi
n are all initialised to be positive

and, due to the recursive nature of Algorithm 3, will remain positive until
at least one particle induces the inequality gℓn(ξ

i
n) < gℓ−1

n (ξin). Consequently,
this scenario is the origin of all weight negativity.

Due to the fact that g−1
n ≡ 0, we also note that this current scenario

can only occur on levels for which ℓ > 0. In practice what is happening
here is that, due to the bias of the lower accuracy likelihood, regions of
X that in reality do not align with the realised observation are incorrectly
deemed as doing so, to an extent that exceeds the higher accuracy likelihood.
Additionally, since wi

n > 0, a particle belonging to this less credible region
was mutated from one at the previous iteration for which this was not the case
(assuming n > 0). While this scenario is the origin of all weight negativity,
in contrast the following case can only occur after this current one has done
so at some iteration.

gℓn(ξ
i
n) > gℓ−1

n (ξin) and wi
n < 0:

By construction of Algorithm 3, in this scenario we necessarily have n > 0,
and wi

n = ŵi
n−1 < 0 is therefore the result of a particle with a negative

weight being resampled at the previous iteration to give

ŵi
n = sgn(w̃i

n(ξ̂
i
n)),

where sgn(x) := 1[x > 0]− 1[x < 0]. For ℓ > 0, a negative weight arises as
the result of another accuracy “switch”, for which ξin−1 was this time located
in a region of weight negativity, was resampled, and then mutated into a
more credible region in light of the new observation. We note this is not the
situation for ℓ = 0, in which w̃i

n < 0 whenever ŵi
n−1 < 0 due to g0n > 0.

Consequently, this scenario is the only one in which a level 0 particle can
ever be assigned a negative weight, since in the previous one the condition
gℓn(ξ

i
n) < gℓ−1

n (ξin) can never be true when ℓ = 0.
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We therefore see from both of the above cases that, for ℓ > 0, a negative
weight arises when a particle jumps between regions of low and high relative
credibility between iterations, while for ℓ = 0 the negativity is inherited solely
from resampling a particle with a negative weight. Beyond describing how a
negative weight can arise, the practical intuition of why a “switch” happens
and what it means is somewhat difficult to grasp, other than asserting that
Algorithm 3 is what we get when constructing a convergent MLBPF method.
It is not currently clear for example, whether one of the described weight
negativity scenarios indicates more accurate estimates than the other, or
whether there is a desirable proportion of weight negativity required to elicit
an optimal performance from the algorithm. While these questions could
have valuable answers that provide greater insight into how to calibrate the
MLBPF, they may also be superfluous and simply distract from the fact that
the negativity scenarios take the form they do precisely because that’s how
convergent estimators of sequences of signed measures are leveraged.

3.1.2 Total variation resampling

In contrast to the BPF, resampling in the MLBPF is performed across all
levels with respect to a distribution proportional to the total variation mea-
sure

S(N)∑
i=1

|w̃i
n|δξin . (3.1.4)

We immediately see that the weights w̃i
n used in conventional multinomial

resampling are replaced by those proportional to their absolute value |w̃i
n|,

while consideration over the entire particle ensemble as used in conventional
multinomial resampling is retained. One consequence of this global mixing
property which we will shortly prove is that the level-specific signed measures
π̂N
n,ℓ in fact converge to the global posterior π̂n rather than the level-specific

signed measure π̂n,ℓ as defined in (3.1.3). Furthermore, we see from Algo-
rithm 3 that in addition to a particle being resampled according to (3.1.4)
that its sign is also paired in this process. The inclusion of these terms is nec-
essary to ensuring the correct asymptotics of the resulting signed measures
and they can be easily interpreted as a method-specific predictive weight as
we have done in Algorithm 3. Consequently, weight negativity can be trans-
ferred from any one level to another, in particular according to the manner
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described previously in Subsection 3.1.1.

The non-negative weights in (3.1.4) are those that arise when the Radon-
Nikodym derivative is instead considered with respect to the total variation
measure. While multinomial resampling may not be the only means by
which resampling could be performed (such as stratified or systematic, for
example), the approach we have taken is crucial to producing convergent es-
timators. In contrast, it would not be valid in our setting to modify negative
weights in a way that can be done in random-weight importance sampling
such as [23], since they are crucial in constructing empirical measures that
asymptotically correct the error from the previous level. Furthermore, in
the presence of a resampling scheme based on (3.1.4) the concept of a prop-
erly weighted sample as in [50] holds, since our measure approximations are
still using the principles of proper weighting, even if they are approximating
signed measures instead of conventional positive measures.

However, by resampling according to (3.1.4), we adopt a different per-
spective to the standard one in a way that accommodates the features of our
multilevel approach. Firstly, for a level 0 particle the conventional intuition
of resampling with probability proportional to its Radon-Nikodym derivative
is retained: particles that are assigned larger likelihood values are more likely
to be resampled. For ℓ > 0 this intuition is replaced with a different one. In
this case the resulting |w̃i

n| instead quantify the magnitude of the numerical
error between levels. To this extent the size of the term gℓn(ξ

i
n) becomes

redundant; rather, the magnitude from which it differs from gℓ−1
n (ξin) deter-

mines the probability with which ξin is resampled. Intuitively, the particles
that exhibit greater level-wise solution error are assigned a higher impor-
tance for resampling, since they are located in regions in which the resulting
level-specific measures are most distinct from one another. In other words,
if these particles were to somehow be ignored, then the loss of their contri-
bution to correcting the telescoping sum would be more significant than by
selecting particles in regions where the solution discrepancy is small. This
would be undesirable, so therefore these particles are assigned a higher prob-
ability of survival. In this context the sign of w̃i

n is also somewhat irrelevant
compared to its magnitude, which in turn is captured by (3.1.4).

While facilitating a well-defined, operational particle filter, the implica-
tions of resampling according to (3.1.4) can be more subtle than they may
first appear. For example, consider the two-level case, i.e. where L = 1.
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For regions of X in which g0n is very accurate (with respect to g1n), the level
1 particles ξin ∈ PN

1 located in these regions will have a small probability
of survival due to the correction terms begin small, while those in level 0
ξin ∈ PN

0 will have a relatively large one. Conversely, level 0 particles in
regions for which g0n is not accurate will have a small probability of survival,
while those in level 1 a relatively large one. We can reverse this logic to say
that, given a resampled particle, if it came from level 1 then it is more likely
to have been resampled from a region in which g0n is inaccurate, while if it
came from level 0 then it more likely came from a region in which g0n is accu-
rate. At first thought, the latter part of that statement seems to contradict
the former: why would we for one level wish to resample according to the
accuracy of g0n, while on another according to its inaccuracy? The key point
is that, for the special case of π̂n,0, we want to sample from this distribution
as much as we can, all the time that it resembles π̂n,1. As soon as this isn’t
the case, our priorities change and we want to then sample from regions
that correct for this difference in a way that is consistent with the density
of the approximating total variation measure. Indeed, to resample particles
from regions in which g1n − g0n is small would be somewhat inefficient, since
these regions have already been accounted for in the level 0 component of
the resampling. This intuition extends naturally when considering multiple
levels and is again captured by (3.1.4) in an exact sense.

From a practical point of view, the remaining problem then becomes how
to select the sample sizes (Nℓ)

L
ℓ=0 with respect to the solver hierarchy (gℓn)

L
ℓ=0

in a way that elicits optimal performance from the algorithm. While we have
made no assumptions that (Nℓ)

L
ℓ=0 is a decreasing sequence, in practice this

is typically the optimal approach and is one that is most consistent with the
ideology of MLMC methods. If implemented, the lower level particle allo-
cations are the most likely to inherit a negative weight via the resampling
according to (3.1.4), since they occupy a greater proportion of the total sam-
ple set. Given a subset of particles with negative weights this means that, for
a fixed computational budget, the capacity for a negative weight to “spread”
through the system is maximised if the maximum amount of computational
budget is placed on level 0, since this provides the most number of trials
for a particle with a negative weight to be resampled. However, such a per-
spective overlooks the fact that, for large N0, the probability of obtaining
a negative weight in the first place is decreased, due to the discussion in
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Subsection 3.1.1. The ratio of negative weights to positive are of interest
since, in practice, they are often symptomatic of poor performance of the
algorithm. The signs are more than just a diagnostic tool however; they
asymptotically correct the bias from the previous level estimate and are an
essential component of the algorithm.

Using Algorithm 3, an approximation of π̂n can be formulated via

π̂N
n =

∑S(N)
i=1 ŵi

nδξin∑S(N)
i=1 ŵi

n

.

We note this is the empirical estimator post resampling which, due to the
added sampling error, is in general less accurate than the one prior to resam-
pling. It therefore follows that the subsequent convergence theorems hold
for the pre-resampled estimator. Furthermore, the results also hold for the
prediction filter

πN
n =

∑S(N)
i=1 wi

nδξin∑S(N)
i=1 wi

n

as a trivial by-product of our analysis.

Before stating and proving the strong law of large numbers and cen-
tral limit convergence theorems, we make the following mild assumptions
about the Markov kernel and the likelihood functions and assume they hold
throughout.

Assumption 1. For all x ∈ X, the measure K(x, · ) admits a strictly positive
density with respect to a σ-finite measure on X .

Assumption 2. For all n ∈ N, gn > 0.

3.2 Strong law of large numbers

Theorem 3. For all bounded and measurable φ : X 7→ R and all n ≥ 0,

π̂N
n (φ)

a.s.−−−−→
N→∞

π̂n(φ).

The proof of Theorem 3 proceeds as follows. In Proposition 1 we prove the
almost-sure convergence for all φ ∈ B(X) of the level-specific unnormalised
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prediction and total-variation prediction measures given by

γNn,ℓ(φ) :=
∑
i∈PN

ℓ

wi
nφ(ξ

i
n), |γNn,ℓ|(φ) =

∑
i∈PN

ℓ

φ(ξin) (3.2.1)

to some integral forms γn(φ) and ηn(φ) respectively that each satisfy a re-
cursive formula. This is proved by induction, an application of Lemma 3
(which we later prove) and an application of Lemma 1, which is assumed
true by the induction statement. Along with the level-specific unnormalised
filter measure

γ̂Nn,ℓ(φ) :=
∑
i∈PN

ℓ

ŵi
nφ(ξ̂

i
n),

the empirical measures (3.2.1) are the building blocks of our analysis and
comprise the normalised level-specific filter and prediction measures in the
following sense

π̂N
n,ℓ(φ) =

γ̂Nn,ℓ(φ)

γ̂Nn,ℓ(1)
, πN

n,ℓ(φ) =
γNn,ℓ(φ)

γNn,ℓ(1)
.

Once Proposition 1 is established, it is then invoked in Lemma 1 to prove
that the almost-sure convergence of γNn,ℓ and |γNn,ℓ| implies the almost sure
convergence of γ̂Nn,ℓ and |γ̂Nn,ℓ| to unnormalised measures also specified in
Proposition 1. Lemma 1 is then used to prove the following key result of
Lemma 2

π̂N
n,ℓ(φ)

a.s.−−−−→
N→∞

π̂n(φ)

which says that the limit of each of the level-specific normalised empirical
filter measures is in fact the full, level-free filter measure π̂n and not π̂n,ℓ.
The reason for this somewhat unexpected result is due to the resampling
step (3.1.4), which is performed with respect to the global particle set in
which all levels are mixed. An equivalent explanation for this result is that,
by taking absolute values in (3.2.2), we see that the total variation measure
(3.1.4) is analogous to the multilevel decomposition of the filter measure
(3.1.2)–(3.1.3).

Lastly in Lemma 3 we show that the established asymptotics are pre-
served in the mutation step, thus proving that convergence holds at each
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stage of the iterative process. Theorem 3 then follows first by noting that

π̂N
n (φ) =

∑S(N)
i=1 ŵi

nφ(ξ̂
i
n)∑S(N)

i=1 ŵi
n

=

L∑
ℓ=0

∑
i∈PN

ℓ
ŵi
nφ(ξ̂

i
n)∑S(N)

i=1 ŵi
n

=

L∑
ℓ=0

(∑
i∈PN

ℓ
ŵi
nφ(ξ̂

i
n)∑

i∈PN
ℓ
ŵi
n

·
∑

i∈PN
ℓ
ŵi
n∑S(N)

i=1 ŵi
n

)
(3.2.2)

=
L∑

ℓ=0

π̂N
n,ℓ(φ)

γ̂Nn,ℓ(1)∑L
ℓ′=0 γ̂

N
n,ℓ′(1)

,

to which Lemmas 1 and 2 can be applied to conclude the result.

Proposition 1. For all n ≥ 0, φ ∈ B(X) and 0 ≤ ℓ ≤ L

γNn,ℓ(φ)
a.s.−−−−→

N→∞
γn(φ) and |γNn,ℓ|(φ)

a.s.−−−−→
N→∞

ηn(φ), (3.2.3)

where

γn+1(φ) = πn+1(φ)γ̂n(1) and ηn+1(φ) = η̂n(K(φ)) (3.2.4)

and

γ̂n(φ) =

∑L
ℓ=0 γn(∆gℓnφ)∑L
ℓ=0 ηn(|∆gℓn|)

and η̂n(φ) =

∑L
ℓ=0 ηn(|∆gℓn|φ)∑L
ℓ=0 ηn(|∆gℓn|)

. (3.2.5)

The statement of Proposition 1 has introduced two measure sequences
(ηn)n≥0 and (η̂n)n≥0 that are non-standard in SMC literature. These mea-
sures have no real world interpretation and instead are theoretical constructs
that are necessary for establishing the main convergence result. They are
what arise as the result of replacing gn by the total variation of the telescop-
ing sum

∑L
ℓ=0 |∆gℓn| in the prediction and filter measures. In particular, we

see in (3.2.3) that ηn is the weak limit of the unnormalised total variation
prediction measure |γNn,ℓ|, which in turn is expressed in terms of η̂n.

We also have the following corollary of Proposition 1 which, in addition
to being of interest due to its insight into the relationship between ηn and
γn, is required in our proof of the central limit theorem.

Corollary 1. For all n > 0, ηn − γn and η̂n − γ̂n are positive measures.

The two following lemmas each assume the convergence results of the pre-
diction measures (3.2.3) hold in order to prove convergence of the respective
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unnormalised filter measures. We note that due to the resampling according
to the total variation measure (3.1.4), the convergence result (3.2.7) must
also be established, since in general weak convergence of a measure does not
imply the weak convergence of its total variation measure (see, for example,
[9, Corollary 8.4.8]).

Lemma 1. If Proposition 1 holds for some n ≥ 0 then

γ̂Nn,ℓ(φ)
a.s.−−−−→

N→∞
γ̂n(φ) (3.2.6)

|γ̂Nn,ℓ|(φ)
a.s.−−−−→

N→∞
η̂n(φ) (3.2.7)

for all φ ∈ B(X) and 0 ≤ ℓ ≤ L.

Lemma 2. If Proposition 1 holds for some n ≥ 0 then

π̂N
n,ℓ(φ)− π̂n(φ)

a.s.−−−−→
N→∞

0 (3.2.8)

for all φ ∈ B(X) and 0 ≤ ℓ ≤ L.

Once Lemmas 1 and 2 are proved, the remaining result required to com-
plete the proof of Theorem 3 is the following Lemma 3. Due to the mutation
step in the MLBPF being unchanged from that used in the BPF, Lemma
3 does not require Proposition 1 as an assumption, since the asymptotics
of the result are not affected by the asymptotics of the resampled particles
(ξ̂in)

S(N)
i=1 . In light of the previous results, this then proves that convergence

holds at every step of the multilevel filtering process and hence completes
the recursion.

Lemma 3. For all n ≥ 0, φ ∈ B(X) and 0 ≤ ℓ ≤ L

1

cℓN

∑
i∈PN

ℓ

sgn(w̃n(ξ̂
i
n))(φ(ξ

i
n+1)−K(φ)(ξ̂in))

a.s.−−−−→
N→∞

0 (3.2.9)

1

cℓN

∑
i∈PN

ℓ

(φ(ξin+1)−K(φ)(ξ̂in))
a.s.−−−−→

N→∞
0. (3.2.10)

Proof of Proposition 1. The proof proceeds by induction. For n = 0, the
result for γNn,ℓ and |γNn,ℓ| holds by repeating the proof of (3.2.10) in Lemma
3 with ξin+1 replaced by ξi0 and K(φ)(ξ̂in) with π0(φ).
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For the induction step, we assume the results hold for some fixed n ≥ 0.
By definition we have

γNn+1,ℓ(φ) =
1

cℓN

∑
i∈PN

ℓ

sgn(w̃n(ξ̂
i
n))φ(ξ

i
n+1).

By (3.2.9) in Lemma 3 it therefore suffices to show that

1

cℓN

∑
i∈PN

ℓ

sgn(w̃n(ξ̂
i
n))K(φ)(ξ̂in)

a.s.−−−−→
N→∞

γn+1(φ) = πn+1(φ)γ̂n(1).

But by the definition of γ̂Nn,ℓ and the mutation formula πn+1(φ) = π̂n(K(φ)),
this is equivalent to showing

γ̂Nn,ℓ(K(φ))
a.s.−−−−→

N→∞
π̂n(K(φ))γ̂n(1),

which is ensured by (3.2.6) in Lemma 1 (which holds by the induction as-
sumption) and the fact that γ̂n(φ) = π̂n(φ)γ̂n(1). Similarly for |γNn,ℓ|, apply-
ing the definition for n + 1 and utilising (3.2.9) in Lemma 3, it suffices to
show

1

cℓN

∑
i∈PN

ℓ

K(φ)(ξ̂in)
a.s.−−−−→

N→∞
ηn+1(φ),

i.e.
|γ̂Nn,ℓ|(K(φ)) = η̂n(K(φ)),

which follows from (3.2.7) in Lemma 1.

Proof of Corollary 1. By (3.2.5), the linearity of γn and (3.2.4), we have
the following recursion in γ̂n(1)

γ̂n(1) =

∑L
ℓ=0 γn(∆gℓn)∑L
ℓ=0 ηn(|∆gℓn|)

=
γn(gn)∑L

ℓ=0 ηn(|∆gℓn|)
=

πn(gn)∑L
ℓ=0 ηn(|∆gℓn|)

γ̂n−1(1).

Hence

γ̂n(1) =
n∏

q=0

(
πq(gq)∑L

ℓq=0 ηq(|∆g
ℓq
q |)

)
. (3.2.11)

By (2.1.14), the predictive distribution πn+1 can also be decomposed into
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the prior π0 as

πn+1(φ) =
πn(gnK(φ))

πn(gn)
=

π0

(
Kn
(∏n

q=0 gqK(φ)
))

∏n
q=0 πq(gq)

,

where Kn is the n-fold integral operator we encountered in the Feynman-Kac
discussion in Section 2.1. Therefore, by (3.2.4) and the result (3.2.11),

γn+1(φ) = πn+1(φ)γ̂n(1) (3.2.12)

=
π0

(
Kn
(∏n

q=0 gqK(φ)
))

∑L
ℓq=0 ηq(|∆g

ℓq
q |)

=
π0

(
Kn
(∑L

ℓ0
. . .
∑L

ℓq

∏n
q=0∆g

ℓq
q K(φ)

))
∑L

ℓq=0 ηq(|∆g
ℓq
q |)

, (3.2.13)

where in the last equality we have used gq =
∑L

ℓ=0∆gℓq, and the interchange
of summation and multiplication is justified by the fact that

∑L−1
ℓ=0 ∆gℓq = 0.

A similar decomposition for ηn+1 can be obtained by repeatedly applying
(3.2.4) in the following manner

ηn+1(φ) = η̂n(K(φ)) ∝
L∑

ℓn=0

ηn(|∆gℓnn |K(φ))

∝
L∑

ℓn=0

L∑
ℓn−1=0

ηn−1

(
Kn
(
|∆g

ℓn−1

n−1 ||∆gℓnn |K(φ)
))

= ηn−1

(
Kn

( L∑
ℓn−1=0

L∑
ℓn=0

|∆g
ℓn−1

n−1 ||∆gℓnn |K(φ)

))

and hence

ηn+1(φ) =
π0

(
Kn
(∑L

ℓ0=0 . . .
∑L

ℓn=0

∏n
q=0 |∆g

ℓq
q |K(φ)

))
∏n

q=0

∑L
ℓq=0 ηq(|∆g

ℓq
q |)

. (3.2.14)

Subtracting (3.2.13) from (3.2.14), to determine the positivity of ηn− γn for
n > 0 it suffices to consider the sign of

π0

(
Kn

( L∑
ℓ0=0

. . .
L∑

ℓn=0

n∏
q=0

(
|∆g

ℓq
q | −∆g

ℓq
q

)
K(φ)

))
.
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However, by the definition of modulus and by Assumption 1, this measure
is positive. For η̂n − γ̂n we note by (3.2.5) that these measures are simply a
sum of ηn(|∆gℓn|)− γn(∆gℓn) and that, for a positive φ ∈ B(X),

ηn(|∆gℓn|φ)− γn(∆gℓnφ) ≥ ηn(∆gℓnφ)− γn(∆gℓnφ) ≥ 0.

In both cases we note that the measures are either strictly positive or iden-
tically zero if and only if the measures are equal.

Proof of Lemma 1. The proof proceeds as follows. Using the Burkholder-
Davis-Gundy theorem for convex functions of martingales [10], we show

1

cℓN

∑
i∈PN

ℓ

φ(ξ̂in)−
∑S(N)

j=1 |w̃j
n|φ(ξin)∑S(N)

j=1 |w̃j
n|

a.s.−−−−→
N→∞

0. (3.2.15)

for |γ̂Nn,ℓ|(φ) and derive a similar result for γ̂Nn,ℓ by making appropriate al-
terations. To show (3.2.15) we construct a triangular martingale array
(ÛN

ρ,ℓ,GN
ρ )0≤ρ≤N,0≤ℓ≤L, i.e. a collection of pairs satisfying the following cri-

teria:

• (GN
ρ )0≤ρ≤N is a non-decreasing sequence of σ-algebras.

• ÛN
ρ,ℓ is GN

ρ -measurable for all ρ and ℓ.

• E[ÛN
0,ℓ] = 0 and E[Ûρ,ℓ | GN

ρ−1] = 0 almost surely for all ℓ and all ρ > 0.

This then furnishes a bound that proves the convergence result (3.2.15) by
an application of Markov’s inequality and the Borel-Cantelli lemma. Finally,
to prove the main convergence results for |γ̂Nn,ℓ| and γ̂Nn,ℓ, we use the following
results implied by Proposition 1:

S(N)∑
i=1

|w̃i
n|φ(ξin) =

L∑
ℓ=0

|γNn,ℓ|(|∆gℓn|φ)
a.s.−−−−→

N→∞

L∑
ℓ=0

ηn(|∆gℓn|φ) (3.2.16)

S(N)∑
i=1

w̃i
nφ(ξ

i
n) =

L∑
ℓ=0

γNn,ℓ(∆gℓnφ)
a.s.−−−−→

N→∞

L∑
ℓ=0

γn(∆gℓnφ). (3.2.17)

The results for |γ̂Nn,ℓ|, γ̂Nn,ℓ will then follow by combining each of the estab-
lished convergence results with the definitions of η̂n and γ̂n respectively.
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For 0 ≤ ℓ ≤ L set Û0,ℓ = 0 and for 1 ≤ ρ ≤ N define

ÛN
ρ,ℓ :=

1

cℓ
√
N

∑
i∈IN

ℓ (ρ)

(
φ(ξ̂in)−

∑S(N)
j=1 |w̃j

n|φ(ξjn)∑S(N)
j=1 |w̃j

n|

)

where IN
ℓ (ρ) denotes the level-specific index subset

IN
ℓ (ρ) := {Iℓ(N) + (ρ− 1)cℓ + 1, . . . , Iℓ(N) + ρcℓ}.

We note that {IN
ℓ (ρ)}Nρ=1 partitions PN

ℓ into N subsets of size cℓ ≥ 1 and
that {|IN

ℓ (ρ)|}Lℓ=0 is a decreasing sequence. Define the σ-algebras GN
ρ by

GN
0 = FN

n , GN
ρ = GN

ρ−1 ∨
∨

0≤ℓ≤L

∨
i∈IN

ℓ (ρ)

σ(ξ̂in), 1 ≤ ρ ≤ N,

where FN
n is the σ-algebra generated by ξiq and ξ̂ip for 0 ≤ q, p ≤ n and

1 ≤ i ≤ S(N). Hence for ρ > 0, GN
ρ is the σ-algebra generated by all of the

historical killed and resampled particles and the resampled particles across all
levels of the current iterate ρ-th level-specific index subsets. By construction,
(GN

ρ ) is a non-decreasing sequence of σ-algebras and ÛN
ρ,ℓ is GN

ρ -measurable.
Clearly, E[ÛN

0,ℓ] = 0, while for ρ > 0 the fact that E[Ûρ,ℓ | Gρ−1] = 0 is

a straightforward consequence of the fact that the resampled particles ξ̂in

are distributed according to the normalised total variation measure as in
Algorithm 3, and hence

E[φ(ξ̂in) | GN
ρ−1] =

∑S(N)
j=1 |w̃j

n|φ(ξjn)∑S(N)
j=1 |w̃j

n|
. (3.2.18)

Noting that |Ûρ,ℓ| ≤ 2∥φ∥∞/
√
N , the Burkholder-Davis-Gundy theorem can

therefore be applied for all 1 ≤ r ≤ ∞ to deduce

E
[∣∣∣∣ 1

cℓN

∑
i∈PN

ℓ

φ(ξ̂in)−
∑S(N)

j=1 |w̃j
n|φ(ξjn)∑S(N)

j=1 |w̃j
n|

∣∣∣∣r∣∣∣GN
0

]
=

1

N r/2
E
[∣∣∣∣ N∑

ρ=1

ÛN
ρ,ℓ

∣∣∣∣r∣∣∣GN
0

]

≤ Br∥φ∥∞
N r/2

,

where Br is some constant that depends only on r. By Markov’s inequal-
ity and the Borel-Cantelli lemma this implies (3.2.15), and by (3.2.16) and
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(3.2.5) we have
|γ̂Nn,ℓ|(φ)

a.s.−−−−→
N→∞

η̂n(φ),

which concludes the section of the proof for |γ̂Nn,ℓ|.

For γ̂Nn,ℓ we instead construct

ŬN
ρ,ℓ :=

1

cℓ
√
N

∑
i∈IN

ℓ (ρ)

(
sgn(w̃n(ξ̂

i
n))φ(ξ̂

i
n)−

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 |w̃j
n|

)
,

which is simply ÛN
ρ,ℓ with w̃n(ξ̂

i
n))φ(ξ̂

i
n) in place of φ(ξ̂in) and the identity

w̃j
n = |w̃j

n|sgn(w̃j
n) applied. Using the the same methodology this implies the

analogous result of (3.2.15) in light of the altered φ. The result

γ̂n,ℓ(φ)
a.s.−−−−→

N→∞
γ̂n(φ)

then follows from applying (3.2.16), (3.2.17) and finally the definition (3.2.5).

Proof of Lemma 2. Let (GN
ρ )0≤ρ≤N and {IN

ℓ (ρ)}Nρ=1 be the same collec-
tions of σ-algebras and level-specific index subsets respectively as constructed
in Lemma 1. For 0 ≤ ℓ ≤ L define UN

0,ℓ = 0 and for 1 ≤ ρ ≤ N define

UN
ρ,ℓ =

1

cℓ
√
N

∑
i∈IN

ℓ (ρ)

sgn(w̃n(ξ̂
i
n))

(
φ(ξ̂in)−

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 w̃j
n

)
(3.2.19)

for some φ ∈ B(X). By construction, each UN
ρ,ℓ is GN

ρ -measurable and
E[UN

0,ℓ] = 0. To apply the Burkholder-Davis-Gundy theorem to UN
ρ,ℓ it re-

mains to show E[UN
ρ,ℓ | GN

ρ−1] = 0 for ρ > 0 and to bound |UN
ρ,ℓ| from above.

Applying the expectation result (3.2.18) to E[UN
ρ,ℓ | GN

ρ−1] gives

cℓ
√
NE[UN

ρ,ℓ | GN
ρ−1] = E

[ ∑
i∈IN

ℓ (ρ)

ŵi
n

(
φ(ξ̂in)−

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 w̃j
n

)∣∣∣∣∣GN
ρ−1

]

=
cℓ∑S(N)

i=1 |w̃i
n|
E
[ S(N)∑

i=1

w̃i
n

(
φ(ξin)−

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 w̃j
n

)]
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where we have used |IN
ℓ (ρ)| = cℓ and |w̃i

n|sgn(w̃n(ξ
i
n)) = w̃i

n. Therefore

E[UN
ρ,ℓ | GN

ρ−1] =
1

√
N
∑S(N)

i=1 |w̃i
n|

S(N)∑
i=1

(
w̃i
nφ(ξ

i
n)− w̃i

n

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 w̃j
n

)
= 0

almost surely, and (UN
ρ,ℓ,GN

ρ )0≤ρ≤N,0≤ℓ≤L is a triangular martingale differ-
ence array. To bound |UN

ρ,ℓ| we apply (3.2.17) from the proof of Lemma 1 to
deduce that∑S(N)

j=1 w̃j
nφ(ξ

j
n)∑S(N)

j=1 w̃j
n

a.s.−−−−→
N→∞

∑L
ℓ=0 γn(∆gℓnφ)∑L
ℓ=0 γn(∆gℓn)

=
πn(φgn)

πn(gn)
.

Therefore for any δ > 0 there exists almost surely a positive integer Nδ such
that for all N > Nδ, ∣∣∣∣

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 w̃j
n

∣∣∣∣ < ∣∣∣∣πn(φgn)πn(gn)

∣∣∣∣+ δ

and hence

|UN
ρ,ℓ| ≤

Cφ,δ√
N

, where Cφ,δ = ∥φ∥∞ +

∣∣∣∣πn(φgn)πn(gn)

∣∣∣∣+ δ.

By the Burkholder-Davis-Gundy theorem,

1

N r/2
E
[∣∣∣∣ N∑

ρ=1

UN
ρ,ℓ

∣∣∣∣r∣∣∣GN
0

]
≤

BrC
r
φ,δ

N r/2
(3.2.20)

for 1 ≤ r ≤ ∞, where Br is some constant that depends only on r. Scaling
and summing UN

ρ,ℓ over ρ, (3.2.19) can be rearranged to get

1√
N

N∑
ρ=0

UN
ρ,ℓ =

1

cℓN

∑
i∈PN

ℓ

sgn(w̃n(ξ̂
i
n))

(
φ(ξ̂in)−

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 w̃j
n

)

=
1

cℓN

∑
i∈PN

ℓ

(
ŵi
nφ(ξ̂

i
n)− ŵi

n

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 w̃j
n

)

=

(
1

cℓN

∑
i∈PN

ℓ

ŵi
n

)(∑
i∈PN

ℓ
ŵi
nφ(ξ̂

i
n)∑

i∈PN
ℓ
ŵi
n

−
∑S(N)

j=1 w̃j
nφ(ξ

j
n)∑S(N)

j=1 w̃j
n

)
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=

(
1

cℓN

∑
i∈PN

ℓ

ŵi
n

)(
π̂N
n,ℓ(φ)−

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 w̃j
n

)

and hence

π̂N
n,ℓ(φ)− π̂n(φ) =

1√
N

∑N
ρ=0 U

N
ρ,ℓ

1
cℓN

∑
i∈PN

ℓ
ŵi
n

+

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 w̃j
n

− πn(φgn)

πn(gn)
.

By the bound (3.2.20) we can invoke Markov’s inequality to make the prob-
ability of N1/2

∑
ρ U

N
ρ,ℓ arbitrarily small. Therefore by the Borel-Cantelli

lemma it follows that
1√
N

N∑
ρ=0

UN
ρ,ℓ

a.s.−−−−→
N→∞

0,

while for the remaining terms we apply (3.2.17) to conclude that

∑S(N)
j=1 w̃j

nφ(ξ
j
n)∑S(N)

j=1 w̃j
n

− πn(φgn)

πn(gn)

a.s.−−−−→
N→∞

0,

which implies the result.

Proof of Lemma 3. With the level-specific index subsets {Iℓ(ρ)}Nρ=1 de-
fined as in the proof of Lemma 1, we consider the random variables

ŨN
ρ,ℓ =

1

cℓ
√
N

∑
i∈IN

ℓ (ρ)

sgn(w̃n(ξ̂
i
n))(φ(ξ

i
n+1)−K(φ)(ξ̂in))

and ŨN
0,ℓ = 0 for 0 ≤ ℓ ≤ L. Additionally, define the σ-algebras (G̃N

ρ )0≤ρ≤N,N>0

by
G̃N
0 = F̂N

n , G̃N
ρ = G̃N

ρ−1 ∨
∨

0≤ℓ≤L

∨
i∈IN

ℓ (ρ)

σ(ξin+1),

where F̂N
n is the σ-algebra generated by ξiq and ξ̂iq for 0 ≤ q ≤ n and 1 ≤

i ≤ S(N). Since ξin+1 ∼ K(ξ̂in, · ), the ξin+1 are conditionally independent
given G̃N

0 , and therefore E[ŨN
ρ,ℓ | G̃N

ρ−1] = 0 almost surely for all 1 ≤ ρ ≤ N .
Moreover, ŨN

ρ,ℓ is G̃N
ρ -measurable for all ρ, making (ŨN

ρ,ℓ, G̃N
ρ )0≤ρ≤N,0≤ℓ≤L a

triangular martingale difference array. As in Lemma 1, the bound |ŨN
ρ,ℓ| ≤
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2∥φ∥∞/
√
N holds and thus by the Burkholder-Davis-Gundy theorem

E
[∣∣∣∣ 1

cℓN

∑
i∈PN

ℓ

sgn(w̃n(ξ̂
i
n))(φ(ξ

i
n+1)−K(φ)(ξ̂in))

∣∣∣∣r∣∣∣G̃N
0

]
≤ Br∥φ∥r

N r/2

for all 1 ≤ r ≤ ∞ and some constant Br depending only on r. The almost-
sure convergence follows by applying Markov’s inequality with the above
expectation bound and the Borel-Cantelli lemma. The analogous result for
(3.2.10) follows by repeating the above process but with sgn(w̃n(ξ̂

i
n)) omitted,

which are all equal to 1 in the case of the total variation measure.

3.3 Central limit theorem

Theorem 4. For all bounded and measurable φ : X 7→ R and all n ≥ 0,

√
N
(
π̂N
n (φ)− π̂n(φ)

) D−−−−→
N→∞

N
(
0, σ̂2

n(φ)
)

for some σ̂2
n(φ) ∈ (0,∞).

A well-known corollary of Theorem 3 is that the measure-type convergence
also holds in the distribution sense; however, specific knowledge of this
measure is unknown. Central limit theorems such as Theorem 4 instead
show that, given a φ ∈ B(X), that the distribution of the random variable√
N
(
π̂N
n (φ) − π̂n(φ)

)
is asymptotically normally distributed with a finite

variance term depending only n and φ. Such knowledge is beneficial because
it enables the well-known properties of the normal distribution to be invoked
in order to make quantitative statements about the asymptotic behaviour of
π̂N
n .

Recall that the measures π̂N
n and πN

n are dependent on the four unnor-
malised measures in the following set

Γn,m =
{
γNp,ℓ, γ̂

N
q,ℓ, |γNp,ℓ|, |γ̂Nq,ℓ| : 0 ≤ ℓ ≤ L, 0 ≤ p ≤ n, 0 ≤ q ≤ m

}
,

where n ∈ N, m ∈ {n− 1, n}. That is, π̂N
n and πN

n are constructed via some
functional mapping on Γn,n and Γn,n−1. To prove Theorem 4 it is sufficient
to show that the measures in these sets are jointly asymptotically normal,
from which the main result follows by the δ-method (see e.g. [54, Ch. 9]).
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Before conducting the proof, we first state the definition of joint asymptotic
normality in the context of the current application.

Let L > 0, d = 2(L+1)(n+m+2), t = (t1, . . . , td)
T ∈ Rd and φ ∈ B(X)d.

Furthermore, define

ΨN
n,m(t,φ) =

N∑
ℓ=0

[
n∑

p=0

(
t
(1)
p,ℓ

[
γNp,ℓ
(
φ
(1)
p,ℓ

)
− γp

(
φ
(1)
p,ℓ

)]
+ t

(2)
p,ℓ

[
|γNp,ℓ|

(
φ
(2)
p,ℓ

)
− ηp

(
φ
(2)
p,ℓ

)])

+

m∑
q=0

(
t
(3)
q,ℓ

[
γ̂Nq,ℓ
(
φ
(3)
q,ℓ

)
− γ̂q

(
φ
(3)
q,ℓ

)]
+ t

(4)
q,ℓ

[
|γ̂Nq,ℓ|

(
φ
(4)
q,ℓ

)
− η̂q

(
φ
(4)
q,ℓ

)])]
,

(3.3.1)

where t(k)p,ℓ = tβ(k,p,ℓ) and φ
(k)
p,ℓ = φβ(k,p,ℓ) for the mapping β : (k, p, ℓ) 7→ (4p+

(k− 1))(L+1)+ ℓ+1 that converts the three-dimensional indexing over the
type of measure k ∈ {1, 2, 3, 4}, where k denotes the index of each measure
in the tuple

(
γNp,ℓ, |γNp,ℓ|, γ̂Np,ℓ, |γ̂Np,ℓ|

)
, the iterate p and the level ℓ respectively,

into the set {1, . . . , d}. As per [31], we say that the measures in Γn,m satisfy
the joint asymptotic normality if for all t ∈ Rd and all φ ∈ B(X)d

√
NΨN

n,m(t,φ)
D−−−−→

N→∞
N
(
0, tTΓn,m(φ)t

)
(3.3.2)

for some symmetric non-negative definite matrix Γn,m(φ) ∈ Rd×d. Then by
the Cramér-Wold theorem (see e.g. [8]) this implies that the d individual
differences in (3.3.1) are joint asymptotically normal, so that Theorem 4
holds by the δ-method.

The proof proceeds by induction by assuming that (3.3.2) holds at initali-
sation and that the convergence is preserved within the update and mutation
steps. The methods differs from the existing literature predominantly be-
cause the triangular martingale difference arrays are based on the MLBPF-
specific signed measures in Γn,m.

Before proceeding to the proof, we note that the joint asymptotic nor-
mality in (3.3.1) is considered both over all levels and all iterations. The
consideration of the latter is superfluous for the purposes of proving Theo-
rem 4, but in the process it allows results across multiple iterations to be
proved, such as the following central limit theorem for the normalisation
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terms across multiple iterations. In particular we note the absence of any
dependence on φ in the standard deviation of the limiting measure.

Theorem 5. There exists σ2
Z > 0 such that

√
N

(
n−1∏
p=0

πN
p (gp)− E

[
n−1∏
p=0

gp(Xp)

])
D−−−−→

N→∞
N
(
0, σ̂2

Z

)
.

In the proof of Theorem 4 we will require the following well-known aux-
iliary result, the short proof of which is provided in [31], for example.

Lemma 4. Let (AN )N>0 and (BN )N>0 be sequences of X-valued random
variables, such that for all N ∈ N, BN is GN -measurable,

√
NBN

D−−−−→
N→∞

B ∼ N
(
0, σ2

B

)
,

and

E
[
exp

(
iu
√
NAN

)∣∣∣∣GN

]
P−−−−→

N→∞
exp

(
− u2

2
σ2
A

)
.

Then √
N(AN +BN )

D−−−−→
N→∞

N
(
0, σ2

A + σ2
B

)
.

Proof of Theorem 4. The proof is by induction and we start with the
update step. This means that we assume the joint asymptotic normality
property (3.3.2) holds for n ∈ N and m = n − 1 and that we consider the
following augmented coefficient and test function vectors associated to the
updated measures over all levels

t̂n = (t
(3)
n,0, . . . , t

(3)
n,L, t

(4)
n,0, . . . , t

(4)
n,L)

T ∈ R2(L+1)

φ̂n = (φ
(3)
n,0, . . . , φ

(3)
n,L, φ

(4)
n,0, . . . , φ

(4)
n,L)

T ∈ B(X)2(L+1).

We also construct the triangular martingale difference (ÛN
ρ ,GN

ρ )0≤ρ≤N,N>0,
where

ÛN
ρ =

L∑
ℓ=0

(t
(3)
n,ℓÛ

N
ρ,ℓ(φ̄

(3)
n,ℓ) + t

(4)
n,ℓÛ

N
ρ,ℓ(φ

(4)
n,ℓ)),

where we have defined

φ̄
(3)
n,ℓ(ξ

i
n) = sgn(w̃n(ξ

i
n))φ

(3)
n,ℓ(ξ

i
n), 1 ≤ i ≤ S(N)



3.3. CENTRAL LIMIT THEOREM 57

and where ÛN
ρ,ℓ is defined as in Lemma 1, except we now include the depen-

dency on the respective test function explicitly in the notation. By the proof
of Lemma 1 we have the following bound

∣∣∣ÛN
ρ

∣∣∣ ≤ Cφ̄√
N

, where Cφ̄ =

L∑
ℓ=0

(
t
(3)
n,ℓ∥φ̄

(3)
n,ℓ∥+ t

(4)
n,ℓ∥φ

(4)
n,ℓ∥
)
,

and hence by basic integral inequalities and probability-expectation rela-
tions,

N∑
ρ=1

E
[(

ÛN
ρ

)2
I
[∣∣∣ÛN

ρ

∣∣∣ ≥ ϵ
]∣∣GN

ρ−1

]
≤

C2
φ̄

N

N∑
ρ=1

P
[∣∣∣ÛN

ρ,ℓ

∣∣∣ ≥ ϵ
∣∣GN

ρ−1

]

≤
C2
φ̄

N

N∑
ρ=1

I
[
Cφ̄√
N

≥ ϵ

]
a.s.−−−−→

N→∞
0. (3.3.3)

Since the levels are conditionally independent given GN
ρ−1 and for all 0 ≤ ℓ ≤

L we have E[ÛN
ρ,ℓ(φ̄

(3)
n,ℓ) | GN

ρ−1] = E[ÛN
ρ,ℓ(φ

(4)
n,ℓ) | GN

ρ−1] = 0, then the second
moments satisfy

E
[(

ÛN
ρ

)2∣∣∣GN
ρ−1

]
=

L∑
ℓ=0

{(
t
(3)
n,ℓ

)2
E
[(

Ûρ,ℓ(φ̄
(3)
n,ℓ)
)2∣∣∣GN

ρ−1

]
+
(
t
(4)
n,ℓ

)2
E
[(

Ûρ,ℓ(φ
(4)
n,ℓ)
)2∣∣∣GN

ρ−1

]}
+ 2

L∑
ℓ=0

L∑
ℓ′=ℓ+1

t
(3)
n,ℓt

(4)
n,ℓ′E

[
ÛN
ρ,ℓ(φ̄

(3)
n,ℓ)Û

N
ρ,ℓ(φ

(4)
n,ℓ)
∣∣∣GN

ρ−1

]
.

By (3.2.16) and (3.2.17) in Lemma 1 each of the terms converge to the
following limits

N∑
ρ=1

E
[(

ÛN
ρ,ℓ(φ̄

(3)
n,ℓ)
)2∣∣∣GN

ρ−1

]
a.s.−−−−→

N→∞

1

cℓ

(
η̂n((φ

(3)
n,ℓ)

2)− γ̂n(φ
(3)
n,ℓ)

2
)

N∑
ρ=1

E
[(

ÛN
ρ,ℓ(φ

(4)
n,ℓ)
)2∣∣∣GN

ρ−1

]
a.s.−−−−→

N→∞

1

cℓ

(
η̂n((φ

(4)
n,ℓ)

2)− η̂n(φ
(4)
n,ℓ)

2
)

N∑
ρ=1

E
[
ÛN
ρ,ℓ(φ̄

(3)
n,ℓ)Û

N
ρ,ℓ(φ

(4)
n,ℓ)
∣∣∣GN

ρ−1

]
a.s.−−−−→

N→∞

1

cℓ

(
γ̂n(φ

(3)
n,ℓφ

(4)
n,ℓ)− γ̂n(φ

(3)
n,ℓ)η̂n(φ

(4)
n,ℓ)
)
,
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from which we deduce that

N∑
ρ=1

E
[(

ÛN
ρ

)2∣∣∣GN
ρ−1

]
a.s.−−−−→

N→∞
t̂TnΓ

′
n(φ̂n)t̂n, where Γ′

n(φ̂n) =

(
A B
B C

)
,

(3.3.4)
where

A = diag0≤ℓ≤L

1

cℓ

(
η̂n((φ

(3)
n,ℓ)

2)− γ̂n(φ
(3)
n,ℓ)

2
)

B = diag0≤ℓ≤L

1

cℓ

(
γ̂n(φ

(3)
n,ℓφ

(4)
n,ℓ)− γ̂n(φ

(3)
n,ℓ)η̂n(φ

(4)
n,ℓ)
)

C = diag0≤ℓ≤L

1

cℓ

(
η̂n((φ

(4)
n,ℓ)

2)− η̂n(φ
(4)
n,ℓ)

2
)
,

in which we have used the notation diag0≤ℓ≤Laℓ = diag(a0, . . . , aL). We
note that, by Corollary 1, the entries of Γ′

n(φ̂n) are ensured to be strictly
positive.

To complete the induction for the update step, consider the decomposi-
tion

ΨN
n,n(t,φ) =

L∑
ℓ=0

t
(3)
n,ℓ

(
γ̂Nn,ℓ(φ

(3)
n,ℓ)− γ̂n(φ

(3)
n,ℓ)
)
+

L∑
ℓ=0

t
(4)
n,ℓ

(
|γ̂Nn,ℓ|(φ

(4)
n,ℓ)− η̂n(φ

(4)
n,ℓ)
)

+ΨN
n,n−1(t̂0,n, φ̂0,n)

= ÂN + B̂N

where t̂0,n and φ̂0,n are defined such that t = (t̂T0,n, t̂
T
n )

T and φ = (φ̂T
0,n, φ̂

T
n )

T .
Adding and subtracting the terms implied in the following, we can write ÂN

and B̂N as

ÂN =

L∑
ℓ=0

[
t
(3)
n,ℓ

(
γ̂Nn,ℓ(φ

(3)
n,ℓ)−

∑S(N)
j=1 w̃j

nφ
(3)
n,ℓ(ξ

j
n)∑S(N)

j=1 |w̃j
n|

)

+ t
(4)
n,ℓ

(
|γ̂Nn,ℓ|(φ

(4)
n,ℓ)−

∑S(N)
j=1 |w̃j

n|φ(4)
n,ℓ(ξ

j
n)∑S(N)

j=1 |w̃j
n|

)]

B̂N =

L∑
ℓ=0

[
t
(3)
n,ℓ

(∑S(N)
j=1 w̃j

nφ
(3)
n,ℓ(ξ

j
n)∑S(N)

j=1 |w̃j
n|

− γ̂n(φ
(3)
n,ℓ)

)
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+ t
(4)
n,ℓ

(∑S(N)
j=1 |w̃j

n|φ(4)
n,ℓ(ξ

j
n)∑S(N)

j=1 |w̃j
n|

− η̂n(φ
(4)
n,ℓ)

)]
+ΨN

n,n−1(t̂0,n, φ̂0,n).

By the results (3.3.3), (3.3.4) and [18, Theorem A.3] — which we state in
Appendix A — we have

E
[
exp

(
iu
√
NÂN

)∣∣∣∣GN
0

]
P−−−−→

N→∞
exp

(
− u2

2
t̂TnΓ

′
n(φ̂n)t̂n

)
. (3.3.5)

Moreover, by the induction assumption that (3.3.2) holds for n and m = n−1,
we can apply the δ-method to deduce that

√
NB̂N D−−−−→

N→∞
N
(
0, tTΓ′

n,n−1(φ)t
)

(3.3.6)

for some Γ′
n,n−1(φ) ∈ R4(L+1)(n+1)×4(L+1)(n+1). By Lemma 4 the claim that

(3.3.2) holds for n and m = n follows from (3.3.5) and (3.3.6), as we have

√
NΨN

n,m(t,φ)
D−−−−→

N→∞
N
(
0, tT

([
0 0

0 Γ′
n(φ̂n)

]
+ Γ′

n,n−1(φ)

)
t

)
.

We now show that the asymptotic normality is also preserved by the
mutation step. In this case we assume (3.3.2) holds at n ∈ N and m = n

and show that this implies the same statement is true for n+ 1 and m = n.
The measures we work with in Γn,m in this case are those corresponding to
k = 1, 2 in the earlier assignment. Considering the decomposition

ΨN
n+1,n(t,φ) =

L∑
ℓ=0

t
(1)
n+1,ℓ

(
γNn+1,ℓ(φ

(1)
n+1,ℓ)− γn+1(φ

(1)
n+1,ℓ)

)
+

L∑
ℓ=0

t
(2)
n+1,ℓ

(
|γNn+1,ℓ|(φ

(2)
n+1,ℓ)− ηn+1(φ

(2)
n+1,ℓ)

)
+ΨN

n,m(t0,n,φ0,n)

= AN +BN ,

where this time t0,n and φ0,n are such that t = (tT0,n, t
T
n+1)

T and φ =

(φT
0,n,φ

T
n+1)

T , where

tn+1 = (t
(1)
n+1,0, . . . , t

(1)
n+1,L, t

(2)
n+1,0, . . . , t

(2)
n+1,L)

T ∈ R2(L+1)

φn+1 = (φ
(1)
n+1,0, . . . , φ

(1)
n+1,L, φ

(2)
n+1,0, . . . , φ

(2)
n+1,L)

T ∈ B(X)2(L+1)
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and

AN =

L∑
ℓ=0
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(1)
n+1,ℓ
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n+1,ℓ)− γ̂Nn,ℓ(K(φ

(1)
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)
+
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(2)
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)

=
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ℓ

(
t
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cℓN
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φ
(1)
n+1,ℓ(ξ

i
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(1)
n+1,ℓ)(ξ̂

i
n)
)

+
t
(2)
n+1,ℓ

cℓN

(
φ
(2)
n+1,ℓ(ξ

i
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(2)
n+1,ℓ)(ξ̂

i
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BN =
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ℓ=0

t
(1)
n+1,ℓ

(
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(1)
n+1,ℓ))− γn+1,ℓ(φ
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)
+
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(2)
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)
+ΨN

n,m(t0,n,φ0,n).

For all 0 ≤ ℓ < L, N ∈ N and i ∈ PN
ℓ we now define Zi,ℓ = wi

n+1Xi,ℓ + Yi,ℓ,
where

Xi,ℓ =
t
(1)
n+1,ℓ

cℓ

(
φ
(1)
n+1,ℓ−K(φ

(1)
n+1,ℓ)(ξ̂

i
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)
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t
(2)
n+1,ℓ

cℓ

(
φ
(2)
n+1,ℓ−K(φ

(2)
n+1,ℓ)(ξ̂

i
n)
)
.

Moreover, for all N ∈ N we define ŨN
0 = 0 and

ŨN
ρ =

1√
N

L∑
ℓ=0

∑
i∈IN

ℓ (ρ)

Zi,ℓ(ξ
i
n+1), 1 ≤ ρ ≤ N,

in which case we have
√
NAN =

N∑
ρ=1

ŨN
ρ .

It is clear that ŨN
ρ is G̃N

ρ -measurable — where G̃N
ρ is the same σ-algebra

constructed in the proof of Lemma 3 — and that E[ŨN
ρ | G̃N

ρ−1] = 0 al-
most surely, implying that (ŨN

ρ , G̃N
ρ )0≤ρ≤N,N>0 is a triangular martingale
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difference array. Moreover,

|ŨN
ρ | ≤

C ′
φ√
N

, where C ′
φ = 2

L∑
ℓ=0

(
t
(1)
n+1,ℓ∥φ

(1)
n+1,ℓ∥+ t

(2)
n+1,ℓ∥φ

(2)
n+1,ℓ∥

)
and therefore by a similar argument to (3.3.3) we have

N∑
ρ=1

E
[(

ŨN
ρ

)2
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[∣∣∣ŨN

ρ

∣∣∣ ≥ ϵ
]∣∣G̃N

ρ−1

]
a.s.−−−−→

N→∞
0. (3.3.7)

Since for all 0 ≤ ℓ ≤ L, 1 ≤ ρ ≤ N and i ∈ IN
ℓ (ρ) the Zi,ℓ are conditionally

independent given G̃N
ρ−1 and E[Zi,ℓ | G̃N

ρ−1] = 0, we therefore have

N∑
ρ=1

E
[(

ŨN
ρ

)2
| G̃N

ρ−1

]
=

1

N

L∑
ℓ=0

∑
i∈PN

ℓ

K(Z2
i,ℓ)(ξ̂

i
n). (3.3.8)

The quantity

K(Z2
i,ℓ)(ξ̂

i
n) = K((Xi,ℓ + sgn(ŵi

n)Yi,ℓ)
2)(ξ̂in)

is clearly non-negative, but it remains to determine if it is strictly positive.
To do so we need to consider two cases: Case 1: φ

(i)
n+1,ℓ is almost surely a

constant for all i ∈ {1, 2}, i.e. for all i ∈ {1, 2} and some ai ∈ R we have
φ
(i)
n+1,ℓ = ai almost surely with respect to the dominating σ-finite measure of

Assumption 1, which we call λ. Then Z2
i,ℓ = 0 almost surely for all 0 ≤ ℓ ≤ L

and i ∈ PN
ℓ . Case 2: (the complement of Case 1): for some ε > 0 we define

E±
ε =

{
x ∈ X : K

(
(Xi,ℓ ± Yi,ℓ)

2
)
(x) > ε

}
.

By Assumption 1 and the fact that at least one of the functions φ
(1)
n+1,ℓ or

φ
(2)
n+1,ℓ must not be a constant λ-a.s., we know that ηn(E

+
ε ) + γn(E

+
ε ) > 0

or ηn(E
−
ε )− γn(E

−
ε ) > 0 or both, for a sufficiently small ε > 0. Therefore

1

N
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ℓ
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i
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1

N

∑
i∈PN+

ℓ

K((Xi,ℓ + Yi,ℓ)
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+
1

N

∑
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>
ε

N

( ∑
i∈PN+

ℓ

1[ξ̂in ∈ E+
ε ] +
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i∈PN−

ℓ

1[ξ̂in ∈ E−
ε ]

)
a.s.−−−−→

N→∞

εcℓ
2
(ηn(E+) + γn(E+) + ηn(E−)− γn(E−)),

for which the limit is strictly positive by Corollary 1. This implies that the
limit

1

N
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i∈PN

ℓ
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ℓ,i)(ξ̂

i
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a.s.−−−−→
N→∞

cℓς
2
ℓ > 0,

where it is straightforward to check that

ς2ℓ =
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Using (3.3.8) it follows that
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ℓ = tTn+1Γ
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where Γ′′
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and

A = diag0≤ℓ≤L

1

cℓ
η̂n(K((φ

(1)
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Therefore, if tTn+1Γ
′′
n+1(φn+1)tn+1 > 0 — which is true if Case 2 holds for

any 0 ≤ ℓ ≤ L — then again by [18, Theorem A.3] it follows that

E
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]
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N→∞
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. (3.3.9)
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By the simple relations

γn+1(φ
(1)
n+1,ℓ) = γ̂n(K(φ

(1)
n+1,ℓ)) and ηn+1(φ

(2)
n+1,ℓ) = η̂n(K(φ

(2)
n+1,ℓ))

we have by the induction assumption that (3.3.2) hold for n and m = n, and
the δ-method √

NBN D−−−−→
N→∞

N
(
0, tTΓ′′

n,n(φ)t
)

(3.3.10)

for some symmetric and positive semi-definite Γ′′
n,n(φ). The claim that

(3.3.2) also holds for n + 1 and m = n follows from (3.3.9), (3.3.10) and
Lemma 4, since we have shown that

√
NΨN

n,m(t,φ)
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N→∞
N
(
0, tT

([
0 0

0 Γ′′
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t
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.

Since we know that tTn+1Γ
′′
n+1(φn+1)tn+1 is non-negative, the only case we

still need to consider is that for which tTn+1Γ
′′
n+1(φn+1)tn+1 = 0, which

occurs only if for all 0 ≤ ℓ ≤ L we have Case 1. In this degenerate case
AN = 0 almost surely and the claim follows immediately with a degenerate
limiting distribution with zero variance.

Lastly for the base case, we show that (3.3.2) holds for n = 0 and m = −1.
For this we observe that γ0,ℓ = |γ0,ℓ| almost surely and γ0 = η0 = π0. An
analogous proof to that of the update step yields the result
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The proof is then completed by the result of Lemma 2, the definitions

γn(φ)

γn(1)
= πn(φ), and

γ̂n(φ)

γ̂n(1)
= π̂n(φ)

and by applying the δ-method.



Chapter 4

Model applications

4.1 Description of models

In line with the drilling application, we implement the MLBPF in applica-
tions where the observations are based on solutions to differential equations.
In particular, we consider models involving ordinary differential equations
(ODEs) and partial differential equations (PDEs) that have analogous prop-
erties to the compressible Euler equations, as well as practical interpretations
in their own right. Though the models that we describe here are differen-
tial equation-focused, we emphasise that the potential applications of the
MLBPF extend beyond this paradigm to any application that satisfies the
cost-accuracy hierarchy assumption in the gℓn. In addition to the method-
specific implementation issues for the MLBPF, there are non-trivial issues
for general particle filtering approaches on systems based on PDE solutions
which we also discuss.

The two main examples of differential equations we focus on are the
shallow water equations and the convection-diffusion equation, both of which
are considered in a one-dimensional setting. The shallow water equations are
a multi-dimensional hyperbolic system of PDE that are used to model fluid
heights and velocity when the vertical behaviour is negligible compared to
the horizontal behaviour. Consequently, they are often used in flood and
tsunami modelling [27]. The convection-diffusion equation is a parabolic
PDE analogous to the conservation of mass equation, with the addition of a
second-order term to model the diffusivity of the variable of interest. One of
its potential applications is to study the concentration of a pollutant moving
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in a river; in such scenarios the pollutant is both transported by the fluid and
disperses via its own diffusive properties. In contrast to the shallow water
case, the velocity of the surrounding body is assumed to be a known function
of space and time, and the unknown solution is the function describing the
concentration of the matter.

Both the shallow water and convection-diffusion equations can be sup-
plemented with a source term S = S(z, t) that describes a scenario in which
a particular quantity is not conserved within the system. For example, in
the convection-diffusion model, S represents the creation or destruction of
the matter from a process such as a chemical reaction or some physical pro-
cess, while in the shallow water case one widely-used application of S is its
ability to model the non-flat topography of the channel that the fluid moves
in. In addition to the described scenarios, in our experiments we assume
that S is parametrised by a signal process that we estimate using solutions
to the differential equation. An important principle of taking this approach
is that S has both a sufficient dependency on the parameter and exerts a
sufficient influence on the solution to the differential equation that it can be
inferred from the specified observations. To further complicate matters, in
the PDE context there is a natural time transience in the differential equa-
tion solutions even in the absence of a source term, meaning the respective
influences of the parameter and of time must be discerned from one another.
We note that the inclusion of the source terms in the shallow water and
convection-diffusion equations is consistent with their classical interpreta-
tion, in the sense that S ≡ 0 models a perfectly flat seabed and an absence
of creation or destruction of matter respectively. Lastly, we emphasise that
the scenarios we describe are just two of many possible applications; other
interesting examples of source term modelling based on the Euler equations
alone include using S to model gravitational terms that arise in applications
from weather prediction to astrophysics [42], or as a permeability coefficient
when quantifying fluid loss to the surrounding rock formation in a drilling
application such as that conducted by Schlumberger.

Though in theory both the shallow water and convection-diffusion equa-
tions assume unbounded spatial domains, in practice these spaces must be
truncated and a finite time fixed. Once appropriate boundary conditions,
initial conditions and hyperparameters are specified, the models are then
well-posed for numerical approximations and particle filtering applications.
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4.1.1 Shallow water equations

For some W > 0, let [0,W ] denote the spatial seabed domain over which
the shallow water is modelled and consider the time variable t ∈ [0, T ] for
some experiment run time T > 0. We denote by λ(z, t) ∈ [0,∞) the height
of the water from the seabed at the point z ∈ [0,W ] and time t ∈ [0, T ],
and by u(z, t) ∈ R the associated velocity. The depth-averaged discharge is
then given by the quantity q = λu. For a non-flat seabed with topography
Z(z, t), the corresponding shallow water equations in their full and explicit
form are

∂tλ+ ∂zq = 0 (4.1.1)

∂tq + ∂z

(
q2

λ
+

1

2
gλ2

)
= −gλ∂zZ (4.1.2)

where g = 9.81 is the acceleration due to gravity. We assume that at the
time of the n-th observation the topography Z is parametrised by a latent
random variable Xn such that (Xn)

∞
n=0 is a Markov process governed by a

Markov kernel as described in Chapter 2.
Before proceeding further with the description of our shallow water equa-

tions application, we return momentarily to the drill-system application and
discuss the similarities between estimating parameters based on the model
(4.1.1)–(4.1.2) and on the fluid dynamics model governing the drill fluid.
We first note that, with some minor alterations, the source term function
S = (0, Z)T can be used to model a downhole event parametrised by the
hidden Markov process Xn. For example, in the event of washout caused by
a hole of area Xn, the corresponding source term is

S(z, tn;Xn) = (XnūρzW δzW , 0)T ,

where tn is the time corresponding to Xn, ū = ū(ρ) is the mean flow velocity
through the hole, ρzW is the mud density at the hole and δzW is a delta func-
tion centred at the location of the hole. In this sense, we see that the source
term really does capture the applications-specific event of interest, and that
switching from one event to another (at least within the same application)
can be achieved by suitably configuring the source term. However, the true
similarities are in the PDEs themselves. By replacing λ with the mud den-
sity ρ, the function q = ρu then becomes the fluid momentum and (4.1.1) is



68 CHAPTER 4. MODEL APPLICATIONS

simply the equation for the conservation of mass. Under this same interpre-
tation, the first two terms in (4.1.2) are also the same as the conservation
of momentum equation in the Euler equations, with only the third term in-
stead substituted for an additional unknown pressure function; see e.g. [14,
Ch. 1], [47, Ch. 14]. To close the system in the Euler equations scenario,
the conservation of mass and momentum equations are often supplemented
by an extra equation based on the conservation of energy, or alternatively
simply closed with the two conservation equations by establishing a so-called
equation of state relating the pressure to the density. Perhaps most crucially,
the shallow water equations and Euler equations are both hyperbolic PDE
and therefore possess the same mathematical properties in their solutions.
Therefore although the two sets of equations may not be identical, for the
purposes of hidden parameter estimation these differences are somewhat in-
consequential and the two models are essentially interchangeable. Indeed, we
only elected to instead study the shallow water equations due to the greater
intuition behind the solutions and the relative availability of literature on
how to correctly handle shallow water source terms numerically, which is a
challenging problem in its own right.

Returning to (4.1.1)–(4.1.2), as a generic model we assume Z has the
following relationship to the probability density function fΓ of the gamma
distribution

Z(z, t;Xn) = fΓ(z; k0, Xn), (4.1.3)

with random scale parameter Xn > 0 and a known, constant shape parame-
ter k0 > 0. In a practical interpretation, (4.1.3) describes a topography of a
smooth trough that is moved further from the origin for increasing values of
Xn. Such a random evolution of a seabed could be used as a simple model of
a tsunami or the disturbance of underwater ecosystems, for example. Since
fΓ is only valid for positive values, we bound Xn in some positive interval
(a, b) ⊂ (0,∞) using an appropriately scaled sigmoid function. Taking this
kind of approach is generally more preferable than simply “rejecting” values
outside of (a, b) that arise from an unmodified random walk, since the tra-
jectory of the path near the asymptotes x = a, b is tempered in a way that
is consistent with random walk behaviour in non-bounded spaces.

Given a latent seabed parameter state xn, we define the partial observa-
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tion yn of xn to be the following observable height of the water

yn = h(xn) + ν = λ(W, t;xn) + Z(W, t;xn) + ν (4.1.4)

where ν ∼ N (0, σ2
Y ) for some known variance σ2

Y . The corresponding likeli-
hood function is thus described by

gn(xn) ∝ exp

(
− (h(xn)− yn)

2

2σ2
Y

)
. (4.1.5)

For the multilevel likelihood function gℓn, we denote the noiseless approximate
solution that induces gℓn by hℓ and analogously whenever a different notation
is used in place of h.

In the case where the solution w = (λ, q) does not vary with time, then
∂tw = 0 and hence q = q0 for some constant q0. Under this assumption,
(4.1.1)–(4.1.2) reduces to the non-linear ODE

d

dz

(
q20
λ

+
1

2
gλ2

)
= −gλ

dZ

dz
, (4.1.6)

which is the steady state version of the shallow water equations. If λ is
sufficiently smooth and an initial value is assigned at z = 0, then the solution
to (4.1.6) satisfies the initial value problem

dλ

dz
=

g

q20/λ
3 − g

dZ

dz
, λ(0) = λ0. (4.1.7)

The steady state solutions that satisfy (4.1.7) are the wave profiles that arise
if a shallow water system is subjected to time-constant forces and rebounding
effects such as a wave hitting a wall are neglected. It is a useful initial model
to first apply the MLBPF and BPF to because, in addition to being an
intuitive application, there are none of the complications of the additional
underlying state transience that is present in PDE applications.

Despite its simplified form, (4.1.7) can in general only be solved analyt-
ically in a few cases. One particularly well-studied case is that for which
q0 = 0, leading to the so-called lake at rest problem [53] with solution
λ = −Z + λ0 + Z0. As the name suggests, the absence of any velocity
describes the case in which the fluid is completely unperturbed, and there-
fore the solution is symmetrical to the topography of the seabed. However,



70 CHAPTER 4. MODEL APPLICATIONS

for q0 ̸= 0 a numerical method is generally required to find approximate
solutions to (4.1.7). For its high order accuracy and ease of implementation
we choose the Runge-Kutta RK4 method (cf. [68, Ch. 12], for example).
The numerical approximation of yn given xn is then obtained by numeri-
cally solving (4.1.7) subject to xn and evaluating the resulting numerical
approximation according to (4.1.4).

4.1.2 Convection-diffusion equation

For the convection-diffusion equation modelling an unknown concentration
ρ(z, t), we consider the specific scenario in which the known fluid velocity
is v(z, t) = v0 for some constant v0 > 0 and the diffusion coefficient of
the matter that is the coefficient of ∂zz is D = 1. The corresponding one-
dimensional equation with source term S(z, t) is then

∂tρ+ v0∂zρ = ∂zzρ+ S, (4.1.8)

which we consider over the same type of spatio-temporal domain as the shal-
low water equations. For (4.1.8) to be well-posed requires the specification
of both initial and boundary conditions; for the simpler case of the initial
conditions we denote

ρ(z, 0) := ρ0(z). (4.1.9)

For simplicity we assume ρ0 is a strong solution of (4.1.8) and is therefore
twice continuously differentiable on (0,W ); by the presence of the second
order term in (4.1.8) this ensures ρ(z, t) is also continuous at all future times
t > 0.

Since we have assumed without loss of generality that v0 > 0, the trans-
porting fluid implicit in (4.1.8) is modelled as moving from left to right. This
means it is only possible to impose boundary conditions at the inlet bound-
ary z = 0, since the value at the outlet z = W is dictated by the solution.
In the event that v0 < 0 the boundary condition would instead be specified
at z = W , with the information being propagated in time towards z = 0.

For the boundary conditions, in our experiment we assign the influx
boundary conditions to be the time-dependent values given by

ρ(0, t;Xt) := Xte
−t, (4.1.10)
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where Xt is the concentration creation rate parameter that forms the random
process we seek to estimate. This parameter is also encoded in the source
term which we define as

S(z, t;Xt) = zeXt (4.1.11)

so that, at all times, the rate at which concentration is created increases
linearly in space and exponentially in the parameter value. In a practical
sense, (4.1.10)–(4.1.11) models an initial influx of the substance ρ at the left
boundary that is proportional to the creation rate Xt, which is then created
exponentially as the substance is transported by the surrounding fluid. As
with the shallow water equations, we confine the range of Xt to a positive
interval (a, b). In this experiment this is only necessary to ensure positivity
of the concentration in the boundary condition (4.1.10); in general there is
no reason why Xt cannot be negative (i.e. the substance is being destroyed).

To estimate the latent random process Xt we let tn be the experiment
time each partial observation is taken and define

yn = ρ(L, tn;xn) + ν (4.1.12)

where xn := xtn , such that (Xn) is a random walk Markov process and
ν ∼ N (0, σ2

Y ) for some known variance σ2
Y . Under our practical interpreta-

tion, (4.1.12) measures the rate at which a diffusive substance is created in a
transporting body moving at velocity v0 by observing the substance concen-
tration at the outlet and accounting for measurement error. Its likelihood
function is analogous to (4.1.5), where instead we set f(xn) = ρ(L, tn;xn).
We note that, although in theory we have t0 < t1 < . . . < ∞, in our nu-
merical experiments we have set yn according to (4.1.12), and then solved
the PDE (4.1.8) over an integration time t ∈ [0, T ] for some fixed T > 0.
This process is then repeated at the next iteration, with the PDE initialised
at time t = 0 with initial condition the output solution ρ from the previous
iteration. In particular, we note this means that the left boundary condition
(4.1.10) is equal to the value of Xt at the start of each iteration and decays
exponentially in time for t ∈ [0, T ].

As with the shallow water equations, the PDE defined by (4.1.8)–(4.1.12)
in general has no closed form solutions. Assuming momentarily that S ≡ 0,
then (4.1.8) is the combination of the transport (advection) equation and the
diffusion equation; each obtainable from (4.1.8) by setting D = 0 and v0 = 0
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respectively. In particular for the transport equation, closed form solutions
are obtainable using the method of characteristics to deduce

ρ(z, t) = ρ0(z − v0t). (4.1.13)

The solution (4.1.13) is simply the initial substance concentration profile
moving from left to right at speed v0, and reflects both the absence of any
diffusive properties and the constant assumption of the speed. In general
once any of these assumptions are lifted (i.e. diffusion is accounted for, a
source term is added or velocity is assumed to vary) then a numerical method
is required. For its unconditional stability, efficiency and time-accuracy,
we use the Crank-Nicolson method [45, Ch. 4], which is an implicit finite
difference method suited for diffusion problems such as (4.1.8), in which all
strong solutions are guaranteed to be continuous.

In each of the following experiments we generate Ndata independent sig-
nal/observation data sets each of length Nlength. These sets are obtained
by simulating an artificial signal process that models a true latent signal
and then computing the observations corresponding to each realised state
using the full accuracy solver. Since in each experiment we are considering a
numerical differential solution, this accuracy is controlled by a spatial mesh
resolution parameter ML = M . In addition to the assumption that the ob-
servation noise is normally distributed, in each experiment we assume the
Markov kernel K(xn, · ) is normally distributed with mean xn and standard
deviation σX , making (Xn) a random walk.

To compare the accuracy of the MLBPF to the BPF, a reference solution
is produced by running the BPF on each data set with a large number of
particles Nref, from which the pre-resample empirical distribution data is
stored for each iterate. The BPF is then run Ntrials times on each data set
with NBPF < Nref particles. On each trial run, the accuracy of the resulting
BPF estimate is measured against the reference solution using some metric
of choice, and the discrepancy is averaged over the iterations. At the end
of the BPF simulations, we are thus left with Ndata ×Ntrials errors, each of
which is an average taken over Nlength iterations.

To test the performance of the MLBPF, the average time TBPF taken
by the BPF to complete a run on a data set is computed. Throughout all
experiments we consider only the two level case, i.e. where L = 1. This



4.2. ODE-BASED APPLICATIONS 73

simplifies matters by leaving only one level below the full accuracy level on
which a mesh size M0 is tested. In general, we do not know a priori what
the optimal choice of M0 is, nor do we know an optimal particle alloca-
tion (N0, N1). Therefore, a configuration of Nmesh proposed level 0 meshes
{M0,k}Nmesh

k=1 are specified along with Nalloc level 1 sample sizes {N1,j}Nalloc
j=1 ,

where we assume maxk M0,k < M and maxj N1,j ≤ NBPF. For each M0,k

and N1,j , the corresponding level 0 particle allocation N0,j is computed such
that the resulting runtime of the MLBPF is approximately equal to TBPF;
tables of these sample sizes are provided in Appendix C, while the values
of the hyperparameters run on each experiment are given in Appendix B.
The MLBPF is then applied with respect to these computed configurations
in the same manner as the BPF, and the length-averaged errors between
the two methods are recorded over all of the Ndata × Ntrials runs. In each
experiment we have used the RMSE based on the point estimates and the
reference distribution point estimates; that is,

RMSE(πN ) =

√√√√N−1
length

Nlength∑
n=0

(x̂n − x̂ref
n )2, (4.1.14)

where πN is the corresponding filtering method configured with N particles
and x̂n =

∑N
i=1w

i
nξ

i
n is the maximum a posteriori estimate of xn with respect

to the quadratic loss function [62, Ch. 1].

4.2 ODE-based applications

For their relative simplicity compared to PDE-based applications, we first
consider the ODE scenario and use the steady state shallow water equations
as a case study. Since there is no transience in the state of the system from
one iteration to another, we apply Algorithm 3 in its unmodified state to
produce the multilevel estimates. In contrast, for the convection-diffusion
application the true state of the concentration profile is unknown at the
time of each measurement yn whenever n > 0. To implement the MLBPF
on models such as these we need to extend Algorithm 3 to one that accommo-
dates the PDE-specific considerations, which we provide in the next section
in Algorithm 4. For other ODE-based applications the implementation of
the MLBPF will be model-specific but analogous to those discussed in this
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section. See [31] for an example of an Euler-Bernoulli beam experiment, in
which noisy deflections of a beam fixed at one end and free at the other were
used to infer the location of a load moving on the beam.

The following technique can in fact be implemented not only on differ-
ential equations models but on any model that is applicable to the MLBPF.
Logically, it makes sense to introduce it here before proceeding further with
the results, but we emphasise that as a technique it is not exclusive to ODE
(or even PDE)-based applications.

4.2.1 Improved approximations with linear regression

While the asymptotics of the MLBPF ensures the convergence of π̂N
n to π̂n

irrespective of the extent of the bias in the lower level estimates, in practice
if this bias is too severe the accuracy of the MLBPF can be poor. However,
information provided by the correction data solutions can be used to rectify
this inaccuracy at minimal extra cost to the algorithm.

Considering the Gaussian likelihood model (4.1.5) in the two-level sce-
nario, by the telescoping sum expression h1 = h0 + (h1 − h0), a level 0

solution h0(ξin) can be generated at level 0 cost but improved to level 1 ac-
curacy if h1−h0 is known at all xn. In general this is not possible, since the
hℓ(ξin) are random variables that depend on a numerical approximation to
an intractable problem. However, observations of h1 − h0 are generated at
no extra cost in the level 1 weighting step that can be used to construct an
approximation

r(xn) = r(xn | (ξin)i∈PN
1
) ≈ h1(xn)− h0(xn).

This can then be evaluated at each level 0 particle to produce an improved-
accuracy level 0 solution h0(ξin) + r(ξin) ≈ h1(ξin) and hence an improved
level 0 likelihood term g̃0n(ξ

i
n) based on h0(ξin) + r(ξin) instead of h0(ξin),

while maintaining the cheap cost benefit of the level 0 solution.
A natural method for constructing r from the correction data is to use

linear regression to produce a polynomial approximation of the deterministic
map h : x ∈ X 7→ h(x) ∈ Y. For example, in the steady-state shallow water
equations model, the N1 level 1 observed water height solutions that we
generate with the particles ξin ∈ PN

1 can be used as data to construct a linear
regression estimator r(xn) that approximates h1(xn) − h0(xn). With r(xn)
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Figure 4.1: Left: Regression approximation r(xn) of h1(xn)− h0(xn) in the
steady-state shallow water equations using the level 1 correction data for
N1 = 250, M0 = 40, M1 = 750 and n = 1. Right: The raw h0 solution
samples are improved to samples that are closer to the true h1 solution
samples.

constructed, we then improve the N0 water height solutions by evaluating r

at each of the ξin ∈ PN
0 to obtain h̃0(ξ

i
n) := h0(ξ

i
n)+r(ξin). In general, h̃0(ξin)

will be a more accurate approximation to h1(ξ
i
n) than h0(ξ

i
n), particularly

because of the absence of noise in the data the regression curve is trained
on. Furthermore, due to the need to evaluate the more expensive level 1
solutions these corrections are obtained at practically no extra cost to the
algorithm. An analogous approach has been applied to beneficial effect in
[6], in which local linear regression was used to modify parameter samples to
produce those which induce sample statistics that are closer to the observed
data. The difference between our approach and that of [6] lies in the desired
quantities; in our own work we are ultimately interested in modifying the
samples to reduce the discrepancy in the solution space, i.e. the image
space, while in [6] it is the adjustment of the samples in the domain that
is of interest, since parameter samples for which the discrepancy from the
observed data is small form an approximate posterior sample.

In the context of filtering the linear regression method that we apply is
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favourable over Gaussian processes or a neural network, since we require only
a reasonable approximation that is cheap in order to keep the weighting cost
down. The task is somewhat different from the conventional setting in which
linear regression is typically applied since, for fixed x, the map hℓ(x) is absent
of noise for any ℓ. Nevertheless, overfitting should still be avoided since by
assumption the value of the correction curve at all x is unknown. For higher
dimensional signal spaces the construction of the approximating hyperplane
becomes more computationally cumbersome but the principle remains the
same. The situation is somewhat simpler for experiments involving multi-
dimensional observation data, in which the regression translation is simply
computed and applied element-wise to the components of the observation
vector.

One drawback of linear regression is that we do not know in advance
the optimal choice of polynomial degree to construct to. Given that h1 is
fixed, the shape of the curve h1 − h0 is therefore dependent on both the
choice of solver and the specified level of accuracy in the level 0 solution.
For example, we see in Figure 4.1 that the regions where the linear approx-
imation is at its poorest for the steady-state shallow water equations are
those furthest from E[h1(xn)−h0(xn)]. There is therefore a global curvature
to h1−h0 that is increasingly prominent the further M0 decreases from M1.
Similarly, for a solver with lower order accuracy than RK4, this dispersion
feature in the tails may be more prominent or feature in a larger proportion
of the samples, leading to the same loss of accuracy in the likelihood im-
provements. In our experiments we found polynomials of degree ≤ 1 to be
a suitable choice; while the correction data {h1(ξin) − h0(ξin)}i∈PN

1
is rarely

exactly linear, the improvements offered by a degree 1 correction are more
than sufficient, are cheaper to compute than higher order polynomials, and
avoid the problems that arise from overfitting as the polynomial degree is
increased. Consequently, all of the following results correspond to a level 1
regression improvement being applied to the level 0 solution data. In [31] a
degree 0 improvement was considered on a big data problem and a degree
1 improvement on an Euler-Bernoulli beam problem; in each of the models
considered here we construct the g̃0n using a polynomial of degree 1 as on the
left panel in Figure 4.1.
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Figure 4.2: Box plots of the MLBPF RMSE over all trials and data sets
compared to the median RMSE of the BPF. Note that, for added clarity,
we’ve extended the tails to include data from the standard ±1.5×IQR to
±3.0×IQR.

4.2.2 Results for ODE model

Figure 4.2 displays box plots of the RMSE (4.1.14) over all of the Ndata ×
Ntrials runs for each particle-mesh allocation considered in the experiment.
We see that there are several configurations for which at least 75% of the
trials are more accurate than the median BPF RMSE, with (M0, N1) =

(40, 250) the allocation with both the lowest median and lowest upper quar-
tile. Excluding the case where N1 = 0, in which we are essentially running
the BPF with a different ODE solver and hence an uncorrected bias, the
configuration where N1 = 4 has the most stable batch of estimates. This
is because close to all of the particles are on level 0 and hence, while the
resulting estimates may not exhibit the optimal global accuracy, they are
essentially all subjected to a stable transformation via the linear regression
which is manifested in the RMSE. In contrast, the range of the RMSE for
N1 = 50, say, is much larger due to the volatility of more multilevel cor-
rections. The reason for the absence of results for M0 ∈ {300, 200, 100}
at N1 = 2000 is due to the fact that, subject to the level 1 cost, there is
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no remaining level 0 budget available in which the MLBPF runtime can be
made comparable to the BPF, making any subsequent accuracy comparison
invalid. Whilst the results at N1 = 2000 align with the intuition that a
mesh-specific optimum is achieved with N0(M0) > N1, our assumptions on
the sample allocations do not impose this as a necessary condition to run the
MLBPF; indeed, Table 2 in Appendix B specifies several instances in which
the computed N0 is such that N0 < N1 in order to satisfy the empirical time
equivalence requirement of the experiment.

While Figure 4.2 shows accuracy gains can be attained using the MLBPF,
these gains need to be put into context of the model uncertainty. To do this,
we note that the reference standard deviation σref averaged over the Nlength

iterations in the Ndata data sets is 0.227. Selecting (M0, N1) = (40, 250) as
an optimal configuration, the median BPF RMSE as a proportion of σref is
approximately 0.0395, while for the MLBPF it is approximately 3.5× 10−4.
Using the relative gain formula

RelGain(ε1, ε2) =
(
100%− ε1 − ε2

ε1
× 100%

)
, (4.2.1)

the relative gain in accuracy of the MLBPF with respect to the model un-
certainty is approximately 1%. While this is not overly impressive, we note
that the results of Figure 4.2 were generated with respect to the BPF config-
ured with 2500 particles and therefore the estimate accuracy is already fairly
saturated, particularly for a one-dimensional signal process. However, when
tasking the BPF with attaining the same accuracy as the optimal MLBPF
configuration it took roughly 11 times longer, requiring approximately 12

times as many particles than what it was originally run with. The practical
takeaway from these points is that, for this particular model and configu-
ration, if a high level of precision is desirable then the MLBPF is able to
achieve this in significantly less time than the BPF. This is a model-specific
feature of the MLBPF and not a general one; for a more significant relative
gain on an ODE model we refer the reader to [31].

4.2.3 Numerical and Monte Carlo error

As is synonymous with multilevel methods, there are two sources of error in
the MLBPF: the numerical error due to the lower accuracy solver, and the
Monte Carlo (MC) error due to the finite number of samples. Each of these
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errors are present in the two forms of curvature that we see in the results of
Figure 4.2. If we first focus on the “local” curvature, in which N1 is fixed
and the M0 are iterated over, the explanation for this behaviour is due to
both forms of error. Considering the batch corresponding to N1 = 4, as
M0 iterates initially through {350, 200, 100}, the loss of numerical solution
accuracy at each mesh size reduction is compensated for by the gain in the
number of available level 0 particles and a subsequent reduction in the MC
error. The crucial feature to note is that this gain in N0 comes with a
caveat: if the loss in numerical accuracy becomes too large, then the bias
of the level 0 empirical distribution becomes too substantial to be corrected
by the level 1 corrections, regardless of how many particles are assigned
to level 0. This is why as M0 iterates through {50, 45, . . . , 10} at N1 = 4

that the MLBPF accuracy gets poorer. This phenomenon is even more
prominent without the regression adjustment, for which the bias in the level
0 empirical estimate is frequently too substantial, resulting in likelihood
evaluations that are practically all zero. Consequently, inference is being
performed with essentially N1 < NBPF particles, which naturally produces
less accurate estimates than the BPF. If the application at hand has a small
signal-to-noise ratio then the biased likelihood evaluations are less likely to
be essentially zero, but such scenarios can also render the relative gains in
the distribution estimates meaningless.

The other form of curvature in Figure 4.2 is that for which M0 is fixed
and N1 varies. By viewing the results in this manner, we are observing the
aggregate benefits of the statistical gains from having a large level 0 alloca-
tion against the bias corrections from the more expensive level 1 evaluations.
In general, we see that the more accurate the level 0 solution, the less cor-
rections are required and the mesh-specific optimal choice is likely to be for
a smaller N1. For example, the configuration for which M0 = 350 really
only ever “cares” about reducing its MC error, since its numerical solution is
accurate enough and it is the absence of samples that is the prime cause of
error. This is why the RMSE for M0 = 350 essentially only ever increases in
N1, since it loses more of its level 0 budget as more particles are assigned to
the expensive level 1 computations and it is the shortage of level 0 samples
that is the most present issue. At the other extreme, M0 = 10 has to con-
tend with a more significant numerical error, meaning that even though it
has the largest number of level 0 particles of all of the level 0 mesh choices,
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to reach its optimal configuration it is happy to sacrifice some of these par-
ticles for some level 1 corrections to reduce the more-prominent numerical
error. Eventually the numerical error is corrected enough that the MC error
starts to take over and the overall accuracy of the results gets poorer as less
particles are assigned to level 0.

While it is clear that this “global” curvature exists in Figure 4.2 under
the specified experiment hyperparameters, in many experiments the situa-
tion can arise where the global minimum RMSE is at the minimum N1 and
minimum M0. When this is the case, the regression approximation as in
Figure 4.1 is sufficiently accurate even for the minimum M0 that the numer-
ical error is essentially eradicated and only the MC error remains. Hence,
the more particles on level 0, the better. This scenario can occur when
the correction data for the M0 is close to perfectly linear and/or when the
signal-to-observation noise ratio is small enough that any error in the re-
gression approximation becomes irrelevant. An example scenario is plotted
for the steady state shallow water equations model in Figure 4.3. Despite
r(xn) being globally non-linear, in this example the signal noise is sufficiently
small that the domain over which r(xn) is evaluated means that the curve
we consider is close to linear and is therefore practically exactly computed
by the linear regression estimator. This results in an optimal configuration
at the minimum values of both M0 and N1, in which an accurate estimate
of the correction curve can be constructed from very few level 1 solution
samples. Moreover, if the approximation is correct up to floating point pre-
cision then this scenario will hold for practically any choice of observation
noise parameter, since the observation noise will not affect the accuracy of
the approximation (though we remark that it will still affect the behaviour
of both the BPF and the MLBPF).

This raises the question: can we not simply neglect the level 1 multilevel
corrections and instead place almost all of the particles on level 0, where the
solutions are close to perfect? In some experiments the answer may be yes;
however, in theory, if there exists any xn such that

|r(xn)− (h1(xn)− h0(xn))| > 0,

no matter how small the difference, then asymptotically the estimates based
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Figure 4.3: Top: One iteration of the overall Nlength = 25 generated data,
in which the level 1 correction data (left) is almost exactly linear and hence
essentially perfectly approximated by N1 = 4 particles. Hence the corrected
level 1 solutions g0(ξin) lie almost exactly on the true level 1 solution curve
(right). Bottom: The corresponding experiment results over Ndata = 10 data
sets for σX = 0.02, σY = 0.005, in which the optimal configuration is at the
smallest values of M0 and N1.
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only on the level 0 improved likelihoods

g̃0n(xn) ∝ exp

(
− (h0(xn) + r(xn)− yn)

2

2σ2
Y

)
will not converge to the true solution, since h0(xn) + r(xn) ̸= h1(xn). Even
in practice, it is not out of the realms of possibility that a particular applica-
tion may require enormous amounts of particles or that forecasts are sought
of extreme events in which accurate estimates of the distribution tails are
required. In both of these scenarios any discrepancy in the regression ap-
proximation again becomes relevant and emphasises the importance of the
multilevel correction terms.

4.3 PDE-based applications

Having established the practicalities of ODE based-applications, we now
consider the more complicated case of state estimation based on observations
that are modelled as the solution of a PDE. This introduces an added element
of uncertainty since, unlike the ODE case in which only the signal is dynamic,
the surrounding system is now also changing in a way that is both time and
signal dependent. On the other hand, accurate knowledge of this system
is required in order for it to be a reliable means to estimate the signal.
Taking the shallow water equations model (4.1.1)–(4.1.4) for example, the
wave height and velocity are governed not only by the conservation laws
corresponding to Z = 0, but also by the topography of the seabed which is
the Markov process we seek to estimate. Consequently, the wave solution at
each n > 0 is unknown and must be estimated alongside the signal.

In a similar vein to the regression approximation technique discussed
in the previous section, the following is a general consideration within the
context of particle filtering on PDEs and is not specific to MLBPF. As an
acknowledgement to its presence in PDE-based applications, irrespective of
the choice of method, we discuss it first.

4.3.1 General evolution of PDE solutions

The task of evolving a numerical approximation of a PDE solution ρ(z, t)

within the SMC framework is one that seems relatively unexplored. There
are again two sources of error in the PDE estimate: the numerical error
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from the discretisation, and the uncertainty of basing this numerical ap-
proximation on random estimates. In the same way that the observation
noise in general prevents the true distribution of Xn from ever being known,
the same is true of ρ(z, t) and therefore of any numerical approximation
ρMn := (ρn[j])

M
j=1, where j is the space discretisation parameter and n is the

time index corresponding specifically to Xn. For consistency we therefore
commute the common notation of a point estimate X̂n of Xn to the PDE
solution paradigm and use the notation ρ̂Mn for a point estimate of ρMn .

Since ρMn depends on the signal values, this solution formally forms part
of an augmented signal that is the true Markov process we seek to estimate,
namely

Xρ,M
n := (Xn, ρ

M
n ). (4.3.1)

Hence in addition to the original signal estimate, each particle is now as-
signed an approximate PDE solution that represents a sample of the un-
known system state. Under this model, the weighting step therefore extends
to quantifying the collective likelihood of these quantities. However, for the
spatial resolution of ρMn to be of any meaningful accuracy, the mesh parame-
ter M and hence the dimension of the augmented signal space will generally
be large. On the other hand, particle filters are known to generally not
perform well in such scenarios due to the curse of dimensionality [17, 61], es-
sentially ruling out the ability to run any such algorithms on this full space.
Moreover, in the multilevel scenario the level-specific augmented particles
according to (4.3.1) would be defined in altogether different spaces, making
resampling over the entire sample set impossible without performing some
kind of transformation to the particles; e.g. an interpolating mapping. For
large sample sizes, this could impose a computational burden that makes the
resulting SMC algorithm infeasible.

A sub-optimal but more practical approach is to construct a point esti-
mate x̂n of the true hidden state value xn. This is then used to form ρ̂Mn

by running the PDE solver with parameter value x̂n and initial condition
ρ̂Mn to give ρ̂Mn+1. In our experiment we use the empirical mean as the point
estimate, which is optimal with respect to the mean loss cost function [62].
While this choice of estimator approach worked for the convection-diffusion
experiment, it is unlikely to do so for all applications and could be an area
of improvement in future work. Its deficiency arises from the fact that, not
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only are we assigning all of the particles ξin the same initial condition in the
manner of (4.3.1), but we are also performing inference on only one compo-
nent of the true, high-dimensional signal. Both of these features have the
potential to induce estimates that diverge.

One possible improvement is to fix a k ∈ N and, at some n ≥ k, instead
perform inference on the lag signal

Xk
n = (Xn−k, . . . , Xn). (4.3.2)

For n < k the particle filter proceeds by solving ξin for i = 1, . . . N with
respect to ρ̂Mn in the manner described above and appending each mutated
particle ξin+1 to N vectors of length not exceeding that of (4.3.2). Once
n ≥ k, the weight wi

n of ξin is computed by solving with respect to (ξip, ρ̂
M
p )

for p ∈ {n− k, . . . , n}, with the idea that the inclusion of the partial histor-
ical path provides more information about the unknown initial condition at
time n. At time n the marginal particles and their weights (ξin, w

i
n) can be

used to estimate π̂n, while as more particles are appended as a result of mu-
tation, the oldest particles are removed in order to maintain a stable level of
complexity within the algorithm. This lag-based method was implemented
to provide a working particle filter on the convection-diffusion model, but
seemed to exhibit no immediate benefits over the filter implementation. One
possible explanation for this could be that there is minimal transience in the
PDE initial condition, meaning that retaining the historical lag data in this
instance brings no added benefits to the estimates. However, this could be a
feature that is specific to the convection-diffusion model, and the approach
could potentially be of more noticeable benefit in other PDE applications.

Another potential improvement could be to design an importance distri-
bution in the style of (2.2.8), in which the latest observation is incorporated
to produce mutated particles and hence a point estimate solution ρ̂Mn that
are collectively more likely under the observed measurement. One challenge
of implementing this design in the context of PDE-based observation models
is that the presence of time in the system could result in there being multi-
ple solutions to this inverse problem. As a simple example, for a PDE with
periodic boundary conditions over [0, 1] and solution ρ(x, t) = sin(2πxt), the
same (noise-less) observation is obtained whenever two particles ξ1, ξ2 are
both integers. Consequently, there are infinitely many regions in X that the
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importance distribution could propagate the particles towards. While in this
simple example the previous state estimate could also be utilised to quantify
the probability of these regions, in more complicated models such as the
full shallow water equations that we discuss in Subsection 4.3.3, determining
which regions are likely under these conditions may not be a straightforward
task.

A likely reason for the success of the point estimate approach in the
convection-diffusion experiment is that the accuracy between the PDE solu-
tion estimate and the true state is not overly sensitive to a moderate error
between the point estimate and the true signal value. Additionally, the inte-
gration time [0, T ] = [0, 0.05] over which the PDE is solved at each iteration
is small for this experiment. In practice this means that the system is being
measured with high frequency, thus preventing too much uncertainty con-
cerning the random PDE solution to develop. This could be a key principle
required in order to justify applying the point estimation approach. It is
also possible that the true underlying PDE solution is sufficiently intransi-
gent that the model we have configured is essentially behaving like an ODE.
Conversely, applications in which there is large estimate uncertainty or in
which small errors in x̂n induce vastly different likelihood functions are likely
to require a different approach in order for an SMC method to be operational.

4.3.2 MLBPF approach and results for PDE model

Another PDE-related consideration this time that is MLBPF-specific is that,
in addition to the estimate of the unknown system solution, there is a need
to solve a PDE on each of the L + 1 levels in order to generate the level-
specific likelihood terms. To do so requires L+ 1 numerical approximations
ρ̂ℓn that act as an initial condition on each level. For the current application
the most successful way to obtain these ρ̂ℓn ∈ Rℓ has been to perform linear
interpolation at complexity O(L + ℓ) on the top level solution ρ̂Ln once the
system estimate has been constructed. For applications in which the spatial
dimensions is greater than 1, multilinear interpolation provides a natural
generalisation of this method to such settings [76].

In light of the proposed point estimate and interpolation steps, the re-
sulting PDE-based MLBPF algorithm is provided in Algorithm 4. We note
that the algorithm captures both the extension of general particle filtering on
PDE applications and the considerations required for a multilevel approach.
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In particular, the corresponding BPF algorithm is implicit in Algorithm 4
and may be obtained by setting L = 0. Similarly, if (ρ̂ℓn[j])

Mℓ
j is constant

for all n, ℓ, then Algorithm 4 essentially reduces to the original MLBPF
algorithm that was applicable to ODEs.

Algorithm 4 MLBPF for PDE-based applications
% Initialisation
for i = 1, . . . , S(N) do

ξin ∼ π0 and wi
0 = 1

for 0 ≤ ℓ ≤ L do
dzℓ = W/(Mℓ − 1)
for j = 1, . . . ,Mℓ do

ρ̂ℓ0[j] = ρ0((j − 1) ∗ dzℓ)
for n ≥ 0 do

% Calculate weights for each level
for 0 ≤ ℓ ≤ L do

for i ∈ PN
ℓ do

w̃i
n = N−1

ℓ (gℓn(ξ
i
n; ρ̂

ℓ
n)− gℓ−1

n (ξin; ρ̂
ℓ−1
n ))wi

n

% Signed resampling
for i = 1, . . . , S(N) do

ξ̂in ∼
∑S(N)

i=1 |w̃i
n|δξin∑S(N)

i=1 |w̃i
n|

and ŵi
n = sgn

(∑S(N)
i=1 w̃i

nI[ξ̂in = ξin]
)

% Compute the hidden state point estimate

x̂n =

∑S(N)
i=1 ŵi

nξ̂
i
n∑S(N)

i=1 ŵi
n

% Mutation
for i = 1, . . . , S(N) do

ξin+1 ∼ K(ξ̂in, · ) and wi
n+1 = ŵi

n

ρ̂Ln+1 = PDE_SOLVE(ρ̂Ln , x̂n)
if L > 0 then

for 0 ≤ ℓ ≤ L− 1 do
ρ̂ℓn+1 = INTERPOLATE(ρ̂Ln+1)

With a slight abuse of notation we have included in Algorithm 4 the
dependency on the level specific PDE solution estimate ρ̂ℓn in the likelihood
terms gℓn. In the interpretation of the full signal (4.3.1) this would be unnec-
essary since this (particle-specific) solution would be encoded into ξin, though
in this case Algorithm 4 would not be valid in its current form due to the
need to alter the resampling step. With our current approach, explicitly de-
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noting the dependency on ρ̂ℓn seems appropriate, since the construction and
application of these estimates is a significant part of the algorithm.

For the convection-diffusion application, we run Algorithm 4 according to
the specified numerical experiment and model description in Section 4.1 and
the parameters in Appendix B. In the same manner as the steady state shal-
low water equations experiment, the results are plotted in Figure 4.4. Due
to the substantially higher cost of generating a PDE solution with respect to
each particle, in this experiment we have run the BPF with a much smaller
NBPF than in the steady-state shallow water experiment, meaning that the
range of values of N1 that the MLBPF can take while remaining within the
specified computational budget is also smaller. However, we see that the
curvature from the previous experiment is still present, though on this occa-
sion we do not have greater accuracy for all choices of level 0. In particular,
we see M0 = 10 exhibits too much numerical error for the MLBPF distri-
bution estimate to surpass the BPF in accuracy for any choice of N1 and
the corresponding N0. However, Figure 4.4 clearly illustrates several config-
urations for which the length-averaged MLBPF empirical distributions are
more accurate in RMSE than the BPF over 75% of the time.
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Figure 4.4: MLBPF RMSE boxplots vs. BPF median RMSE for the
convection-diffusion experiment, in which the smallest median error is ob-
tained with the configuration (M0, N1) = (20, 250).
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As was the case in the shallow water experiment, the accuracy of the
configurations corresponding to larger values of M0 only ever worsen with
N1 due to the MC error being the dominant term. There is also clear global
curvature for the mid-range choices of M0, in which the balance between the
numerical and MC error is played out as the sample allocations are adjusted.
As expected, the highest performing configurations are found within these
choices of M0, with (M0, N1) = (20, 250) being that which provides the
smallest median RMSE. Applying the relative gain formula (4.2.1) with this
configuration there is in this case an 11.6% relative gain in accuracy offered
by the MLBPF; a substantial improvement over the steady-state shallow
water equations model. This is likely because as the solution complexity of
a problem grows, the cost savings of multilevel schemes increases, making
the MLBPF likely a particularly favourable choice over the BPF in settings
where the spatial component of the underlying PDE is multi-dimensional.
For a time comparison, the BPF was unable to reach the RMSE accuracy
obtained by the MLBPF on the first data set for the specified number of
reference particles (= 105).

Aside from the application numerical/MC errors that are assimilated into
the particle estimates, there are now three additional sources of error aris-
ing from implementation considerations in Algorithm 4: the regression ap-
proximation improvement, the global point estimate of the underlying PDE
solution, and the error that lower level PDE initial conditions inherit from
the linear interpolation. Similarly to the motivation behind keeping the re-
gression improvement simple, linear interpolation is not the most advanced
method of inferring a coarse solution from a finer one — particularly in the
context of polynomial or spline interpolation — yet is sufficiently cheap and
accurate enough for the task at hand. Other than more advanced interpola-
tion methods, it is not obvious if there are any alternative ways to approach
this task. For example, updating each ρ̂ℓn using the system point estimate is
infeasible not only because of the substantially higher cost of solving L + 1

PDEs with spatial resolution Mℓ over [0, T ], but because x̂n is an estimate
with respect to the full accuracy solution ρ̂Ln and is therefore biased for any
ℓ < L. In practice, this approach again leads to lower level solutions that
are so far from the full accuracy solution that they are assigned weights that
are essentially zero, hence yielding poor estimates.

In reference to this “drift” property of lower level solutions, the computed
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time increment ∆t that is specific to a numerical method can be problematic
within the PDE-specific MLBPF. Firstly, by the cost-accuracy assumption,
it is crucial that ∆t does not increase as the space increment ∆z is decreased.
In the case of a globally stable numerical method like the Crank-Nicolson
method satisfying this condition is trivial, since the space and time resolu-
tions can be set independently of one another. However, there are many nu-
merical PDE methods in which the time increment is computed as a function
of both ∆z and the numerical approximation (ρ̂[j])Mj=1 for which this level
of control of ∆t is no longer in the hands of the user. For example, the well-
balanced finite volume method of [53] is an advanced computational fluid
dynamics solver that adaptively computes the time increment based on the
maximum and minimum wavespeeds over the entire solution. Consequently,
it is no longer obvious if less accurate solutions are obtained at cheaper cost,
which is a cornerstone of the multilevel methodology. Intuitively, small time
increments arise when the solution is particularly “complex” (i.e. the local
flux is substantial, or a discontinuity develops), meaning that ∆t for the
simplest class of constant solutions would be the maximum. However, it is
not clear how ∆z affects the solution wavespeeds and hence the relationship
it has to ∆t, nor if such a result is obtainable.

On a slightly related matter, it is also important for consistency in the
bias corrections that all of the likelihood terms are based on PDE solutions
computed at the same stopping time T , so that the only source of numerical
inaccuracy arises in a spatial sense. However, if ∆t is level-dependent then
this may not be the case, since some schemes may “overshoot” T by a greater
margin than others. The well-balanced finite volume solver of [53] is one
example of this. One simple way to prevent this is to compute the minimum
∆t over all levels and apply this globally as a time increment. Alternatively,
it may be more efficient to customise the remaining timestep on each level at
the penultimate spatial iteration based on the distance to T , thus ensuring
each multilevel PDE solver is terminated exactly at T .

4.3.3 Implementation on additional models

We conclude this section and chapter with a brief discussion on some other
PDE applications that are either not suited to the MLBPF or impose general
particle filtering challenges that require further investigation.

A simple traffic flow model can be obtained from the convection-diffusion
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equation by setting D = 0 implicit in (4.1.8), thereby removing the diffusion
term and obtaining the transport equation with source term S. If S ≡ 0

and the traffic is light enough that its speed is independent of its density,
then the equation models traffic density moving from left to right at constant
speed v0 and the solution is (4.1.13). However, if S(z, t,Xn) := Xnδz⊥(z),
then the resulting equation

∂tρ+ v0∂zρ = Xnδz⊥(z) (4.3.3)

models the same problem but with traffic entering the road with flux Xn at
a junction located at z = z⊥, and no longer has a closed-form solution [47,
Ch. 11, Ch. 17].
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Figure 4.5: Left: The flux term xn = 0.0881 is sufficiently small that a
queue is not formed after the junction located at z = 0.5. Right: Here
xn = 0.101 is too large that the added influx cannot be assimilated into the
traffic without increasing the traffic density before the junction.

In Figure 4.5 we plot numerical solutions using the Lax-Friedrichs method
[47, Ch. 4] for 2 different values of a random walk signal process Xn such
that z⊥ = 0.5. On the left panel xn = 0.0881 for n = 1 and on the right
xn = 0.101 for n = 14. The nature of the solutions differ depending on the
magnitude of the flux term: for sufficiently small values of Xn the carrying



4.3. PDE-BASED APPLICATIONS 91

capacity of the road is not exceeded and the influx of traffic from the junction
does not leave a queue in its wake. In contrast, for larger values of Xn the
road is unable to assimilate the added load and a traffic jam forms before
the junction as a result.

These two situations are described respectively by the traffic density so-
lutions in the left and right panels in Figure 4.5. Because of this solution
behaviour, a two-dimensional observation space based on the density before
and after the junction is required in order for all values of Xn to be inferred
from the data. However, in both scenarios we see that reductions in the
solver mesh size does not lead to a loss of accuracy at the locations where
the observations are taken, thus leading to a violation of the multilevel cost-
accuracy trade-off condition. In fact, non-linearity is only truly imparted
on the solution via temporary “shockwaves” that arise as the in/outflux of
traffic at the junction is transmitted at a finite speed along the rest of the
road; otherwise, the long term solution given a fixed Xn = xn is essentially
a piecewise continuous function that is equally well approximated by a solu-
tion based on a small number of mesh points as it is by one on many. This
propagation of information at a finite speed is a characteristic property of
hyperbolic PDEs that make them suited to modelling wave problems. In the
event that an observation was taken as a shockwave passed, a reduction in
spatial mesh size would indeed lead to a loss of accuracy and the MLBPF
would be applicable. However, mathematically determining when this infor-
mation arrives requires knowledge of the characteristic lines of (4.3.3), which
in general may be difficult or even impossible to compute.

While the traffic model in its current form is not a suitable application for
the MLBPF, the full shallow water equations model (4.1.1)–(4.1.2) presents
a different kind of challenge to SMC methods in general. For this application,
we consider the scenario where the topography is described by the function

Z(z, t;Xn) = max(0, 0.25− 0.05(z −Xn)
2), (4.3.4)

which is a symmetrical seabed “bump” of maximum height 0.25 centered at
Xn = xn, where Xn is the random walk signal process we seek to estimate.
This is the topography function for the drain on a non-flat bottom experiment
[53], from which we apply the same initial and boundary conditions. The
experiment is given this title because the fluid is allowed to exit the system
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at the right-most boundary, while the left boundary is taken to be a solid
wall (i.e. has a no-slip boundary condition). Under these conditions and a
fixed signal value, this PDE has a steady long-term solution in which the
fluid settles at the height of the bump to its left and is emptied according
the geometry of the bump to its right. If this situation is allowed to develop
then solutions will inherit the same type of simplicity as those in the traffic
model. Therefore, to further agitate the system alongside the signal process,
we modify the left boundary height condition to include a deterministic,
time-dependent oscillation term of the form sin(t) + 1.
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Figure 4.6: Top and middle panels: shallow water equations solution heights
and corresponding random walk topography profiles at various sampled it-
erations. Bottom panel: Generated signal process and corresponding BPF
mean estimates, with sampled values highlighted in red. The BPF estimates
are poor due to the lack of information provided by the observations.

To approximate solutions of the shallow water equations with respect
to the parametrised topography function (4.3.4) we use the well-balanced
finite volume solver of [53] with a second-order MUSCL extension and mea-
sure the resulting water height at the right outlet boundary according to the
observation model (4.1.4). In Figure 4.6 we plot a selection of topography
bumps generated from the signal process and the corresponding shallow wa-
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ter equation solutions at each of these times. In the lowest panel, we plot
mean estimates of the signal generated using the BPF with NBPF = 500

particles, and have highlighted in red the signal values and estimates corre-
sponding to the sampled water height/topography solutions.

The issue with this application is that the BPF is not able to discern
between the general chaotic behaviour of the water system and the effect
the signal has on the outlet water height via the topography bump. Con-
sequently, the resulting estimates do not track the signal in any meaningful
way, since the outlet observations do not leverage enough information about
the signal values they model. In the context of our current approach to fil-
tering on PDEs this is particularly problematic, since the PDE solution esti-
mate required at each iteration is based on these signal estimates. Therefore
if trends in the signal are not detected then the overall performance of the
method quickly deteriorates.

There are several possible ways in which the shallow water equations
experiment could be made feasible, such as:

• Modifying the topography function so that changes in the signal pro-
cess have a more substantial and hence identifiable impact on the wave
solution at the point of observation.

• Designing an observation model that is better equipped to detecting
the effects of the signal, either by taking observations at more optimal
locations or using a more sophisticated method of measurement.

• Refining the boundary conditions so that the system is less chaotic
but still complex enough that accurate likelihood evaluations are more
expensive to produce than ones that are less accurate.

• Implementing the lag signal extension approach of (4.3.2) to remove
some of the uncertainty of the PDE estimate.

It is worth noting that all of these points relate to modelling or general
PDE-based particle filtering considerations for this particular shallow wa-
ter application and are not specific to the MLBPF. Indeed, in light of the
accuracy gains we have observed in the convection-diffusion model, it is fea-
sible that the MLBPF has the capacity to be operable in situations where
the BPF is not. Furthermore, the traffic model and the non-flat drain shal-
low water equations applications are in some sense at opposite extremes of
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the spectrum in terms of system chaos. The current issue with the traffic
model arises essentially because of the lack of agitation in the system, while
for the shallow water model the excessive chaos makes the successful imple-
mentation any particle filtering method a difficult task. In this sense the
modelling considerations of an application have a greater impact on whether
the MLBPF and SMC methods in general are feasible. From what we have
observed in the numerous experiments we have conducted in this thesis and
in [31], it is generally the case that if the BPF can be implemented on a
model, then not only is the same true for the MLBPF, but it is able to do so
more accurately if it is configured properly. To this end, tasks such as identi-
fying this optimal configuration are those which are MLBPF-specific, while
complications of the type arising in this section should be viewed instead as
more general SMC/mathematical modelling problems. Furthermore, while
for the purposes of the drill-system application we have studied the MLBPF
in the context of differential equations, one of the strengths of the method is
the flexibility in its cost-accuracy assumption and hence the applications it
can be applied to. With this in mind, the empirical benefits and advantages
it has offered in the differential equation models we have studied here also
have the capacity to transfer to a wide range of other applications.



Chapter 5

Conclusions

The goal of this thesis has been to provide a novel academic contribution
to approaching parameter estimation problems of the type that arise in on-
line drill system applications. These parameters vary over time in a way
that is essentially random and are only partially observable through mea-
surements that are also subject to uncertainty. A natural approach has
therefore been to adopt a Bayesian viewpoint and model the problem us-
ing a Markov state-space model of the type that arise frequently in signal
processing applications and nonlinear filtering problems [54]. This choice of
model is also favourable to applications such as hydrocarbon drilling because
the fluid dynamics models that mathematically map the parameters to the
observations also fit naturally into the state-space model framework. In the
presence of such nonlinear mappings, sequential Monte Carlo methods can
be applied to leverage approximate solutions that are often more accurate
and reliable than those produced by alternative methods. For this reason
we pursued SMC methods as a research direction, and sought to develop a
novel approach within this field.

With a view to translating the complexity savings of multilevel Monte
Carlo to the SMC setting, we have derived a multilevel bootstrap particle
filter that applies the multilevel “telescoping sum/linearity” technique to the
integral operators in the filtering update step. The idea behind this has
been to reduce the overall cost of computing all of the particle weights at
full accuracy by instead assigning portions of the particles to levels that are
based on inaccurate solutions but which have a cheaper weight generation
cost. The role of the levels in the MLBPF context is to then correct the

95
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resultant bias from the previous level until the combined estimates represent
the full accuracy model. One defining property of this approach within the
context of SMC is that the level-specific distributions are in general now
signed measures, which in practice leads to weights which are potentially
negative. Consequently, the MLBPF algorithm has had to be designed to
accommodate this negativity in order to provide a method that is practically
feasible. In particular, the method of resampling a particle with probability
proportional to its weight is no longer possible, which has a profound impact
on the rest of the algorithm.

For the empirical filter and prediction measures resulting from the MLBPF
we have proved convergence to the exact measures in the sense of a strong
law of large numbers and a central limit theorem. These results provide
a theoretical basis for the use of the MLBPF with any number of levels,
particle allocation or likelihood accuracy hierarchy that are valid within the
very general assumptions of the algorithm. This is a weaker result than that
presented in [15, 29], in which convergence was already ensured via standard
MC theory, and the true contribution was how to apply the MLMC estima-
tor in a way that theoretically guarantees cost savings over the standard MC
estimator, independent of the application. The comparison between these
theorems and our own is somewhat harsh however, since it is assumed im-
plicitly in MLMC literature that the expectation is taken with respect to one
particular functional; a European call option, for example [29]. Therefore,

N∑
i=1

wiφ(ξi)−
∫
X
φ(x)dx

is a scalar-valued random variable which has a well-defined meaning when
taking the expectation. In contrast,

πN (φ)− π(φ), φ ∈ B(X)

is a weak form probability measure, for which the expectation and hence
RMSE has no meaningful interpretation. Instead, a feasible measure-based
metric in the case where X = R is the Kolmogorov-Smirnov distance (see
e.g. [67, Ch. 3]) in which the distance between two distributions is measured
by the supremum distance between the respective cumulative distribution
functions. For more general forms of X the maximum mean discrepancy
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measures the distance between two probability measures via an embedding
into a reproducing kernel Hilbert space [30]. One advantage of using the
RMSE in the MLMC derivations, we recall, was that the sample size and
resolution parameter could be used to both bound the RMSE and capture
the cost of the estimator, thus establishing a connection between the error
and the associated number of floating point operations. For an analogous
approach to work in the SMC setting would require a similar deconstruc-
tion of the Kolmogorov-Smirnov distance or maximum mean discrepancy
into measure-based error terms that are controlled by parameters that also
capture the cost. This is likely to be a challenging if not intractable task,
since the measure distance mappings are more complicated than the RMSE
and therefore more difficult to relate to the complexity of the filter. Were
such a result to be achieved, it would be a valuable addition to the current
progress that has been made as it would enable the type of cost analysis used
in MLMC to be applied within SMC.

In the absence of any formal a priori knowledge about the optimal MLBPF
configuration, an approximation can be computed by experimentally iterat-
ing over a collection of particle allocations/lower level likelihoods and mea-
suring the resulting accuracy with respect to some metric. For all intents
and purposes, this essentially restricts our current version of the MLBPF to
few (if any) more than two levels, since as a consequence of the “brute force”
search we currently deploy the number of degrees of freedom grows rapidly
once additional levels are introduced. In the MLMC setting this problem
is simplified by virtue of the availability of an optimal level specific sam-
ple allocation formula Nℓ ≃

√
σ̂2
ℓ /Cℓ and the ability to test for convergence

according to the criterion σ̂2
L ≃ M−α as described in Algorithm 2. In par-

ticular, the convergence test means that intermediate levels 0 < ℓ < L need
only be introduced where necessary, while the allocation formula allows the
level-specific optimal particle allocation to be calculated once each level is
defined.

To study the global behaviour of the MLBPF in our experiments we have
iterated over the entire “search space”; if the task is instead to locate only
the optimal error minimiser, then it is highly plausible that in practice there
is a more efficient means of finding it than via a global search. In the two
level setting, one possible approach could be to iterate through the points on
the lattice (M0,k, N1,j) where k ∈ {1, . . . , Nmesh} and j ∈ {1, . . . , Nallocs} in
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the following way. Assuming that M0,k and N1,j are indexed such that they
increase in k and j respectively, and that N1,j > 0 for all j, then by initialising
at the point (M0, N1) = (M0,1, N1,1), we guarantee that the MC error is
almost surely minimised on account of the fact that N0 and hence N0 +N1

is globally maximised. If the experimental errors at the points (M0,2, N1,1)

and (M0,1, N1,2) are both greater than that produced at (M0,1, N1,1) then
we can already terminate the search, since we know that the gain of any
kind of bias reduction — be it from greater level 0 accuracy or a more
accurate estimate of the level 1 correction distribution — does not outweigh
the overall loss of accuracy induced by increasing the MC error. However,
if (M0,1, N1,1) does not produce an error less than both of (M0,2, N1,1) and
(M0,1, N1,2), then the configuration giving the minimum error can be selected
as the new optimum and the process is repeated with respect to this point.
A simple but valuable future research task is to implement this method
on the numerical experiments of Chapter 4 and verify that it produces the
same lattice-specific optimum as the brute force approach implemented in
this thesis. Furthermore, if feasible in the two level case, the method could
provide a pathway to practically extending the MLBPF to more than two
levels.

We have run the two level MLBPF on numerical experiments in a num-
ber of varied applications — two of which are in [31] and two of which are
presented in this thesis — and in each case have managed to identify several
configurations that elicit a more accurate performance from the MLBPF
than the BPF. Where these configurations are located on their respective
planes (we note that for one experiment in [31] the only degree of freedom is
the particle allocation) depends heavily on the experiment hyperparameters.
One influencing factor that is common to all of the applications is how well
approximated the true correction curve is by the linear regression accuracy
improvement. If it is essentially perfectly approximated for any N1 on a
given level 0 solution, then only the MC error will remain and the optimal
particle configuration (N0, N1) will be that for which N0 is largest and hence
N1 is smallest. If this is true for all level 0 solutions, then for the same reason
the optimal configuration will be at the cheapest level 0 solution, again at
the smallest N1. Similarly, the behaviour of the MLBPF is also governed
by the experiment signal-to-noise ratio. In practice the signal and obser-
vation noise terms will be fixed, meaning that the optimal level 0 solution
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must be chosen so that its distance from the level 1 solution in the XY-plane
accommodates the noise terms in an optimal way. Even with this choice,
the optimal particle allocation remains unknown a priori, which in turn de-
pends on the statistical precision of the problem; i.e. the value of N1 when
N0 = 0. All of these considerations serve to highlight the many intricate co-
dependencies between the application and the MLBPF and the complexity
of how to even experimentally determine an optimal configuration.

While the main contribution of this thesis has been the MLBPF, by
directing our focus towards PDE-based applications in particular, we have
also devised a general approach to particle filtering on these models. Ap-
plications such as the drill-system model are in general more challenging
because the PDE solution that is used for inference also depends on the pa-
rameters. Formally, this means every component of the approximate PDE
solution is an unknown parameter that we seek to estimate, making the
problem high-dimensional. With SMC methods generally being ill-suited to
such applications, we have instead devised a sub-optimal approach in which
an approximate PDE solution is evolved with respect to a point estimate of
the hidden parameter value and used as a global initial condition for all of
the particles. Along with an interpolation step, this was used to construct a
PDE-specific version of the MLBPF that obtained greater accuracy than the
BPF on the convection-diffusion model. The likely reason for the functional-
ity of the point estimate approach within this application is that the global
PDE approximation is not overly sensitive to the point estimate value it is
generated by. In the case of the full shallow water equations application, it is
currently unclear whether the point estimate approach is the source of inad-
equacy or if the model in its current guise is simply ill-posed. We note that
the limitations and implementation issues of the point estimate approach to
estimating the PDE state are general particle filtering considerations and
non-specific to the MLBPF; indeed, it could be that the empirical accuracy
gains we’ve seen from the MLBPF makes the method feasible in applications
where the BPF is not. The full shallow water equations model is a particu-
larly good case study for future work because it is mathematically analogous
to the Euler equations PDE used in the drilling application, while also ex-
hibiting a physical intuition that facilitates further study of the respective
particle filters. If any experimental gains of the type discussed can be made
with the MLBPF, then the principles of how this performance was attained
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should also be directly transferable to the drill-system application.

A hallmark of particle filtering methods is that they can be virtually
endlessly tuned and customised to attain heightened performance, and the
MLBPF is no exception. One of the primary components of our algorithm
that could be further explored is the resampling step. In its current guise,
resampling is performed with respect to a measure proportional to the empir-
ical total variation measure that arises when instead considering the Radon-
Nikodym derivative of the total variation measure. Our resulting algorithm
with respect to this resampling scheme is well-defined, in the sense that
the approximating measures at each iteration are still comprised of properly
weighted samples as per [50], except in our case the samples are now com-
ponents of a signed measure. The intuition behind our choice of resampling
method is that (i) by taking the absolute value of the weights, the resampling
probabilities again have a well-defined meaning, and (ii) particles are more
likely to be resampled from “rich” areas of the total variation measure, i.e.
high density, which is analogous to the intuition of multinomial resampling
within the BPF. As was discussed in Chapter 3, this leads to a resampling
scheme that can be viewed as one that samples according to |πN

n,0| as long
as πN

n,0 is an accurate approximation to πn,1, then favouring particles that
correct the level 1 telescoping sum error when πN

n,0 is not accurate, in a way
that approximately reflects the weighted density of the signed correction
measure πn,1−πn,0, and so on. Under this scheme, we both resolve the issue
of the weight negativity in the context of resampling and obtain an MLBPF
algorithm for which the particle approximations converge to their respective
measures. While our approach is both operational and theoretically sound,
given its relative novelty it seems possible some improvements or an alterna-
tive approach could be explored. Any mapping that could somehow resolve
the presence of weight negativity would provide a credible alternative to our
resampling method, but it would need to be implemented in a way such
that the asymptotics of the signed empirical measures are preserved. In par-
ticular, simply rejecting particles with negative weights is not valid, while
from a practical perspective, iteratively incrementing weights in a manner
analogous to [23] is likely to be too expensive in the applications we consider.

Another development of our method is that of implementing a more
general importance sampling step, thus extending the MLBPF to a multilevel
SMC methodology. Such an extension would allow for greater flexibility in
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the design of the algorithm, which in turn could be further beneficial to its
performance. For example, the inclusion of an importance distribution that
uses the latest observation to retrospectively propagate particles towards a
more credible region could in general be a valuable addition, but even more so
in the context of our approach to PDE-based observation models, in which an
accurate estimate of the underlying PDE state is crucial to the performance
of the algorithm. In the case of the former point a more general choice
of importance distribution is already theoretically accounted for by virtue
of the Feynman-Kac framework we have adopted, and is simply a case of
modifying the choice of potential function in a way that continues to satisfy
the assumptions we have made. The latter point is not as straightforward,
since this involves solving an inverse problem with respect to a PDE operator.
Even in the scenario that this problem has a unique solution (which is by
no means guaranteed) such a solution could be difficult to determine in the
presence of the system uncertainty and — in the presence of the PDE being
intractable — too costly to solve efficiently on the fly, particularly in the
sequential setting.

Beyond refining the current approaches deployed within the MLBPF,
there are also potential options in which the method could be adaptively
configured within an application. For example, consider the two-level case
in an ODE-type application, and suppose there is a way of inferring the
relative contributions of the MC and numerical errors to the overall error.
In general we are not restricted to the same choice of level 0 mesh size M0 at
every iteration. Therefore if the numerical error is the more prominent term,
then it makes sense to opt for a more pragmatic choice of M0 as a means of
returning an overall higher reduction of the total error. Conversely, a lower
value of M0 will be of greater benefit to the estimate accuracy if the MC
error is the dominant term. Another potential research direction is that in
which the MLBPF could be “collapsed down” to the BPF either periodically
or with respect to some diagnostic analogous to the effective sample size in
resampling. Since experiments have shown that the accuracy gains of the
MLBPF over the BPF are generally substantial in the short term but tend to
diminish over longer time horizons, this suggests that intermittently reverting
back to the BPF could provide additional stability to the MLBPF that would
prevent this drift effect. However, this procedure is not as straightforward as
simply setting L = 0 in the MLBPF, since this does not deal with the issue of
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what happens to the negative weights. In order to be feasible, the mapping
of the weights in such a step would need to be correctly defined in a way
that preserves the asymptotics, which on initial inspection is a non-trivial
task.

More generally to particle filtering, we have in this thesis made some ini-
tial inroads into the problem of SMC methods on PDE-based applications,
but these ideas are still embryonic and application-specific in their success.
A more rigorous and stable approach to updating the initial PDE condition
associated to each particle is a high priority. One option we have proposed
is that of instead estimating the lag signal (4.3.2), which may be of more
notable influence to models such as the full shallow water equations than
the convection-diffusion application, in which the effects were negligible. It
also seems likely that the point estimate approach in general is an area that
can be improved, though it is not obvious how to find a middle ground be-
tween this approach and filtering on the full high-dimensional space. To
this end, a dimensionality-reduction technique on the full space may be a
fruitful means of making progress. Lastly, while in this thesis and in [31] we
have conducted investigations into a diverse collection of models, we have
yet to explore applications in which the signal space is multi-dimensional,
nor differential equations for which the spatial domain or solution space are
multi-dimensional. Given the relative increase in accuracy gains we’ve seen
from the MLBPF between ODE and PDE-based applications, it is worthy of
further investigation to see if the advantage of using the MLBPF continues
to grow with the complexity of the problems. Far from suggesting any short-
comings, the richness of research directions with which the MLBPF can be
further pursued serves to illustrate how our current set of results are likely
only a modest insight into the full capabilities of the method.
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Appendices

A Central limit theorem for triangular martingale
arrays

Let (UN,ρ)1≤ρ≤ρmax
N

be a triangular random variable array such that E[UN,ρ |
GN,ρ−1] = 0, and let (GN,ρ)0≤ρ≤ρmax

N
be a triangular array of sub-σ-algebras of

F of the underlying probability space, such that ρmax
N is GN,0 measurable, and

GN,ρ−1 ⊂ GN,ρ, and for each N and 1 ≤ ρ ≤ ρmax
N , UN,ρ is GN,ρ-measurable.

Then we have the following result:

Theorem 6. Assume that E[U2
N,ρ | GN,ρ−1] < ∞ for all 1 ≤ ρ ≤ ρmax

N and
that

ρmax
N∑
ρ=1

E[U2
N,ρ1[|UN,ρ| ≥ ϵ] | GN,ρ−1]

P−−−−→
N→∞

0, for all ϵ > 0,

ρmax
N∑
ρ=1

E[U2
N,ρ | GN,ρ−1]

P−−−−→
N→∞

σ2, for some σ2 > 0.

Then for any u ∈ R

E

[
exp

(
iu

ρmax
N∑
ρ=1

UN,ρ

)∣∣∣∣∣GN,0

]
P−−−−→

N→∞
exp

(
− u2

2
σ2

)
.
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Table 1: Experiment hyperparameters for the steady state shallow water
equations (left) and the convection-diffusion equation (right).

Parameter Value
σX 2
σY 0.2
W 50
M 750
xmin 1.5
xmax 9.5
Ndata 10
Nlength 25
Ntrials 10
NBPF 2500
Nref 105

k0 3.5
h0 2

Parameter Value
σX 1
σY 0.25
W 1
M 100
xmin 1.5
xmax 8
Ndata 10
Nlength 20
Ntrials 10
NBPF 1000
Nref 105

v0 15
T 0.05

C Computed experiment particle allocations

Table 2: Level 0 sample allocations for the steady state shallow water equa-
tions experiment, computed such that the MLBPF runtime is within 0.05 of
the BPF runtime.

M0

N1 0 4 50 250 1000 1500 2000

350 5357 5357 5357 4686 2343 647 0

200 9667 9375 9375 8203 4980 2196 0

100 18750 18750 18750 16405 10546 6444 2269

50 37500 37500 37500 32812 21093 12890 6737

45 41666 41666 41666 36457 23437 14322 7486

40 46875 46875 46875 41015 29296 16112 8422

25 75000 75000 75000 65625 46875 25781 13476

15 128906 125000 125000 109375 78125 42968 22460

10 193359 187500 187500 164062 117187 82031 43944



C. COMPUTED EXPERIMENT PARTICLE ALLOCATIONS 113

Table 3: Analogous level 0 sample allocations for the convection-diffusion
equation experiment.

M0

N1 0 5 25 50 100 250 500 750

80 1562 1562 1406 1406 1328 937 292 0

60 2707 2707 2499 2499 2290 1874 937 0

40 5312 5312 5000 5000 4375 3750 1875 585

20 14375 14375 14375 13437 12500 10625 6250 3125

15 19164 19164 19164 17914 16665 14164 8332 4166

10 28750 28750 28750 28750 25000 21250 15000 7500
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