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Summary

In this thesis, we investigate the asymptotic behaviour of positive global unbounded
solutions to the critical semilinear heat equation. We construct the first example of
non-radial infinite-time blow up solution in a 3-dimensional bounded domain. This
generalizes the non-radial case proved by Cortdzar, Del Pino and Musso in [7] for
dimension n > 5 and the radial result for n = 3 by Galaktionov and King [14].

Our analysis starts by selecting a good ansatz, which encloses all the main asymp-
totic properties of the exact solution. We show that, after necessary improvements of
the natural approximation, we get a sufficiently small error to start the second part
of the proof. Then, we produce a correct perturbation of the approximate solution by
adapting the parabolic inner-outer gluing method developed in [7,8]. This consists in
solving a weakly coupled system after suitably decomposing the problem near and far
from the blow-up point. This approach is constructive and allows an accurate analysis
of the asymptotic dynamics.

A fundamental feature and difficulty in the inner regime is the presence of a nonlocal
operator that controls the second order asymptotic of the blow-up parameter. We show
that such operator, similar to a half-fractional derivative, can be inverted but a loss of
regularity in the parameter appears. We prove the invertibility of such operator using
a Laplace transform type method combined with heat kernel estimates and we regain
regularity of the parameters using smoothness of the solution in the outer regime.

For the unit ball, our construction works for any blow-up point sufficiently close to
the center. In particular, we give a new proof of the infinite-time blow-up at the center
of a ball, firstly proved in [14] using matched expansion techniques. Our construction
applies to any domain under a natural analytic condition, given in terms of the Robin
function of the domain.
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Chapter 1

Introduction

The aim of this thesis is to investigate the long term behaviour of solutions to the
critical heat equation, a model in the class of nonlinear parabolic problems.

In this chapter we introduce the reader to the main topic by beginning with an
overview on the Fujita problem. Then we present the motivation behind this work.
In the main chapter 2 we prove the existence of a positive global unbounded solution
in dimension 3 for the critical heat equation in a nonradial setting. In chapter 3 we
present few steps towards the solution to the conjecture in dimension 4 and outlook.

1.1. The Fujita problem

Superlinear parabolic equations of the form

up = Au+ f(u) in Q x (0,00),
u(z,t) =0 on 09 x (0, c0),
u(z,0) = up(z) in £,

are often employed to describe reaction-diffusion systems in stellar dynamics and com-
bustion. The term superlinear indicates that the function f(u) grows more than linearly
as the solution u tends to infinity. A typical model problem in the theory of blow-up
analysis is the Dirichlet problem for the Fujita equation

u=Au+u’ in Qx(0,00),
u(z,t) =0 on 99 x (0,00), (Fp)
u(z,0) = up(r) in €,

where ug is a continuous datum, p > 1 and 2 C R" is a bounded smooth domain
in dimension n > 1. The dynamics of the solution to (F,) depends on the domain’s
geometry (2, nonlinear exponent p, and initial datum wyg.

Fujita started to investigate equation (F,) in [13] as a first approach to more general
superlinear problems. The recently updated monograph [21] by Quittner and Souplet
contains methods and results about the qualitative study of this problem until 2019.
Now, we describe how the admissible behaviour of global solutions drastically changes
as a function of p € (1,00). A crucial role is played by the critical Sobolev exponent
defined by

2
" >3,
psi=q4"n—
00 otherwise.

In the subcritical case p < pg, positive global solutions must be bounded. The first
important result in this direction is the work [6] by Cazenave and Lions. Then, after



many partial results, Quittner [20] proved that all positive global solutions to the
Dirichlet problem in bounded domain possess the a priori bound

sup [|u(, )| gy < G, where C = C(HUOHLOQ(Q)), (1.1)
>0

where C' is bounded in any bounded sets. In other words, for any initial datum g such
that |lug||,, < K, the evolved global solution satisfies the uniform bound ||u(t)||,, < C,
where C' = C(K). Instead, in the supercritical regime p > pg, (1.1) is false when 2
is star-shaped (see Theorem 28.7 in [21]). Nevertheless, Blatt and Struwe [2] proved
that, if Q is convex and bounded, then we have

sup ||, ) ey < 00 (1.2)
>0

This a priori L*°-bound, is still an open question for bounded non-convex domains.

If p = pg, even the a priori bound (1.2) is false. In other words, the critical case could
admit unbounded global positive solutions. In fact, we shall see below that examples
of such solutions have been detected.

1.1.1 Threshold solutions

Given an exponent p € (1,00), the behaviour of a solution to (F,) is heavily dependent
on the L*-size of the datum. Given any smooth function ¢(x) > 0, # 0, consider
a > 0 and uq(x,0) := ap(z) as initial datum. On one hand, we show that if «
is sufficiently small, then u, tends uniformly to zero as t — oo. Indeed, consider a
function of the form

v(z,t) = ce” "¢y (),

where a € (0,A1) and A1, ¢; are respectively the first Dirichlet eigenvalue and the
positive eigenfunction of the Laplacian in Q with [|¢1([;1q) = 1. We prove that v is a
supersolution for (F)). Indeed,

O — Av = v = ey (2)e{ (- a) — Pt e T >,

if we fix e < (A1 — a)P%HgZ)leolo(Q). Clearly, v(z,t) = 0 on 9. Now, uq(z,0) =
ap(zr) < v(x,0) = epi(x) if a is sufficiently small. Thus, it follows by the semilinear
comparison principle that

o (2,t) < ey (w)e™ .

In particular, uq(z,t) decays uniformly as ¢ — oo when « is fixed sufficiently small. On
the other hand, using the eigenfunction method of Kaplan [16], we prove that, for e > 0
sufficiently large, uqy(x,t) is not globally defined in time. We multiply the equation by



¢1 and integrate by parts to get

at/gua(ac,t)qbl(:z:) d$:—)\1/Qua(x,t)qﬁl(x)dx—|—/Q¢1(x)ua(:v,t)pd:v.

Letting @ = [, ¢1(x)ua(x,t) dz, the Jensen’s inequality implies

() = —\at) + /Q 1) tta (3, )P der
)+ a(t)?

> —)qﬁ(t

We observe that
a(0) = /Q 61(2)1a(2,0) d = a /Q b1(@) () de,

is positive. Also, for a > 0 sufficiently large we have —A\1u(0) + @(0)? > 0. Thus, by
comparison we have 4(t) > 4(0) and hence @/(¢t) > 0. Hence, supposing that @ (and
hence u) is well-defined in [0, 7], we can perform a change of variable to integrate the
inequality above and we find

T a(T) 1
T:/ ds S/ —dr
0 4(0) rP — )\17“
& 1
< / ————dr < oo.
4(0) P — )\17"

This shows that 7" cannot be arbitrarily large. We conclude that [|ua (-, )| Lo () = (t)
blows-up in finite time.

Thus, we observe a dramatic transition of the dynamics from global existence with
decay into blow-up in finite time. It was proved by Lions in [18] that these are the
typical behaviors, in the sense that the set of non-negative initial values uy for which
one of these scenarios occurs is dense in C3(Q). It follows from standard parabolic
theory (see [17]) that the set

A ={a>0:uy(z,t)is uniformly bounded and uq(z,t) -0 as t— oo}

is open. We have just shown that A is nonempty and bounded above. Then, the
threshold number o* = a*(¢) € (0, 00) defined by

o = sup {a >0 : tlgloao o (-5 t) |l = 0} ,

satisfies the following properties:
e if & < a* the solution u,(x,t) tends uniformly to zero as t — +o0;
e if & > o the solution u,(x,t) blows-up in finite time.

The first existence result of threshold solutions is due to Ni, Sacks and Tavantzis [19],



who proved that wu,« is well-defined as L!-weak solution. It is known (see Theorem

28.7 in [21]) that

e for p € (1,ps), ua+(x,t) is global, smooth and, up to subsequences, tends to a
positive steady states of (F));

e if p > pg, and € is convex then uy+ blow-up in finite time;

e if p=pg, Q= B1(0) and ¢ radial non-increasing, then Galaktionov and Vazquez
[15] proved that u,+ is smooth, global and

i Juae (-, 8)] |z (@) = oo. (13)

The main open question that motivates our work concerns the limit (1.3) and goes as
follows:

What is the asymptotic behaviour of [ua+(-,t)|| (o) in the non-radial setting?

1.1.2 The critical exponent

The critical exponent pg is related to the Sobolev inequalities: for bounded domains €2
the embedding H} () — LPT1(Q) is compact when p € (1,pg) and the best Sobolev
constant I H2
U771

Sp(Q) =  inf 0O

0F£uEH(Q) ||U”Lp+1(g)
is attained. Due to the loss of compactness when p = pg, the constant Sy () is
attained only if Q@ = R™. S,,((R"™) is achieved by the Talenti bubbles (see [24])

Uuelo) =70 (222), (1.4

defined for every u € (0,00) and £ € R™, where

n—2
-2

1 3 n-2
U(z) = an <1+m2> , ap=[n(n—-2)] % . (1.5)

The work of Caffarelli, Gidas and Spruck [5] implies that these are all the positive
solutions of the equation

n+2
AU+ U»2 =0 inR"
These are the positive critical points of the energy

1 - 2 n
Bu) = /]R Vo) dr " / ()22 da.




The family (1.4) is energy invariant, meaning that
E(Uue) =EU) = Sps(R™") V(&) e RT x R™

If we consider the limit ;o — 0 we see that the function U, ¢ becomes unbounded at
x = £ In other words, the family (1.4) becomes asymptotically singular when the
parameter u decays and the energy is concentrating around z = £.

When Q is a bounded domain, S, (2) = S,4(R™) is not attained. Struwe proved
in [22] that every Palais-Smale sequence {u;}32; € H(Q) associated to the energy
functional £, namely satisfying sup; |FE(u;)| < oo and VE(u;) — 0, has the decompo-
sition

= Uso + Z igi o(1) when j — oo, (1.6)

up to subsequences, for some k € N, where un, € Hg(Q) is a critical point of E and
ué — 0, 5} € 2. When the domain is star-shaped, the Pohozaev identity constrains uq
to vanish. It is worth noting that, in general, £ > 0. However, if we restrict to non-
negative Palais-Smale sequences {u;}72; with E(u;) > Sp, it follows that k must be
positive. In this case, we say that the compactness of E is lost by ”bubbling” because
the Talenti bubbles in (1.6) are preventing the existence of a converging subsequence.
Furthermore Du [12] and Suzuki [23] have proved, that for every sequence of times
{t;}32, with t; — 0o as j — oo, the threshold solution uq«(z,t;) of the energy-critical
heat equation (F,4) has the asymptotic decomposition (1.6) up to subsequences. Thus,
when constructing example of threshold solutions in the critical case, it is natural to
look for solutions with the asymptotic shape (1.4).

1.2. Examples of threshold solutions for p = pg

In this section we present an overview about the known examples of threshold solutions,
in both radial and nonradial case, and we give a first introduction to the next chapters.

1.2.1 The radial case

Most of the results in the literature concerning the dynamics of the threshold solution
pertain to the radial case. This setting allows the construction of specific solutions by
means of matched asymptotic expansions. This technique has been used by Galaktionov
and King [14] to prove that, as t — oo, the radial threshold solution has the asymptotic
bubbling profile ,
o t) ~ = 27 (A ) 7
u(t)

24 Jaf?
with
772
Zt(l +o(1)) if n=3,

2Vt(1+o(1)) if n=4,

log [luas ()]l =



and
n—2
[tar ()]0 = (Wnt)2=9, if n>5, (1.8)

with constants

w2 (n—4)2To(N)

= Inln =2 RN 2)

where I'g denotes the Gamma function. As a by-product of our analysis in the following
chapter, we prove a generalization of (1.7) for n = 3.

1.2.2 The nonradial case in higher dimension

The first example of global unbounded solution without radial symmetry has been
constructed by Cortézar, Del Pino and Musso in [7] in dimension n > 5. Let @ C R"
with n > 5. For any ¢ € Q there exists an initial datum ug(z) such that the positive
solution to (F,4) has the form

ulz,t) = uU<x/:é)(t)> W™ (Hola,q) + 0z, 1)),

where

e O(z,t) is bounded and decays uniformly away from the point g;
o |lu(-,t)| . satisfies (1.8) as t — oo;

o £(t) =g+ O(u(t)?) as t — oo.

In particular, we observe that the time asymptotics at x = ¢, given by ,ufanQ, does

not depend on the position of ¢ in €). This is in contrast with what we shall see in
dimension 3 and 4.

In fact, they prove a more general result, giving the first example of a multi-spike
threshold solution. Let G(x,y) be the solution to

- A:L"G(xa y) = Cn(S(QZ' - y) in Qv
G(z,y) =0 on 09,

where §(x) is the Dirac mass at the origin and ¢, = apw,. Also, consider the regular
part of the Green function

H(xay) = F(:U - y) - G(l‘,y),

where I'(z) = a,,/|2|" 2 is a multiple of the fundamental solution. It is proved in [7]
that, given a set of points ¢q1,...,qx € @ C R” with n > 5 and k € NT, if the matrix G

with entries
(©):: = H(gj,q5) if i=j,
Y — G(qi,qj) otherwise,



is positive definite, then a solution to (F)4) exists and asymptotically looks like a sum
of bubbles centered at ¢; for j = 1,...,k. The condition on G guarantees that the
interaction terms between the bubbles are sufficiently weak to treat them as lower
order terms.

Such solutions enjoy a k codimension stability. In other words, there exists a codi-
mension k manifold M in C'!(Q2), which contains the initial datum wu,(z,0) that blows
up in infinite time at points {g;}¥_, such that if v(x) € M and it is sufficiently close to
uq(z,0) in Cl-sense, then the solution with initial datum v(z) has exactly k blow up
points {g;}*_; with §; near the original ¢; for i = 1,..., k.

1.2.3 The nonradial case in dimension 3

The existence of positive global and unbounded solutions of (F,) in nonradial case is
an open problem when n € {3,4}. Chapter 2 of this thesis deals with the conjecture
in dimension 3. We consider the Dirichlet problem

w=Au+u> in QxR
u=0 on 00 x RT (1.9)
u(z,0) =up(x) in €Q,

where  is a smooth bounded domain in R3. We observe that the equation is translation-
invariant in time. It is convenient to construct u(z,t) in Q x [to,00) for a sufficiently
large initial time ¢y > 0; then, the function ug(z,t) := u(z,t —tg) is a solution to (1.9)
in 2 x [0, 00).

We discover that an important role in the analysis of this problem is played by the
Green function G of the elliptic operator —A — ~, for a special number ~ € [0, A1), in
2 under Dirichlet boundary conditions. The Green function G, satisfies

- AzG’Y(l'ay) - PYG’Y(:L'ay) = C35y(x) in Qa
Gy(z,y) =0 on 0.

Here 6,(x) is the Dirac delta distribution centered at y. Also, ¢, := wpay, where wy, is
the area of the unit sphere in dimension n and «,, is given in (1.5). In order to separate
the singular part, we decompose

Gy(z,y) =T (z —y) — Hy(z,y)
where

I(z):=—

|’

denotes (a multiple of) the fundamental solution of the Laplacian, and H,(x,y) is the
regular part of G,. The diagonal function R,(z) = H,(x,x) is called Robin function,



and it turns out that, given ¢ € Q, there exists a unique number v = (g) such that

Ryg)(q) =0, with ~(q) € (0,A1).

Equivalently, this number is defined by

v(q) :==sup{y > 0: R,(q) > 0}.

We are now in position to state the main theorem proved in chapter 2.

Theorem 1. Let Q C R? a bounded smooth domain. Let q a point in 0 such that

v(q) < % (1.10)

Then, there exist an initial datum ug(z) € CH(Q), smooth functions £(t),u(t) and
O(z,t) such that the solution u(z,t) to the problem (1.9) is a positive unbounded global

solution with the asymptotic form

z —¢&(t)
pi(t)

where 0 is a bounded function. Also, 0 decays uniformly away from the point q, that

u@¢>:ﬂ4ﬂU( )—u”%Hﬂaf%+ﬂ%ﬂ%

is: for all compact set K C Q with ¢ ¢ K, we have 100, Ol oo (i) — 0 as t — oo.

Moreover, the parameters u(t),&(t) are smooth functions of time and satisfy

1
h(mw)zmwmrwm»,5@—q=ow@>ast%m.

The assumption (1.10) The condition above seems necessary when we look for a
stable solution in the sense of [7]. In our construction we need to consider the Dirichlet
problem of the type

up = Au+yu+e " in Q x RT, (1.11)
u(z,t) =0 on 0Q x [0, 00),
up(z) =0 in Q.

For t > 1, we have
u(a, 1)] S e
This is a consequence of the long-term behaviour of the Dirichlet heat kernel
pi (@, t) ~ 1 (x)gr (y)e M,

in bounded domains. Since we need to solve fixed point theorems in weighted-L>° spaces
to find the exact remainder of the blow-up parameter p(t), the long time behaviour of



the solution to (1.11) has to be e,

In any domain, the number v(g), as a function of ¢, is smooth and tends to A; as
q approaches 0). Hence, (1.10) necessarily requires g to be sufficiently far from the
boundary. We have examples of domains where (1.10) is satisfied somewhere. We do
not know if this is true for all domains. A study of Wang [25] suggests that (1.10) may
be false everywhere in ’very thin cylinders’.

Relation between v and upn  The number «(q) is related to the Brezis-Nirenberg
problem. Define

\Y% 2_ 24
Sa(Q) = 11?f)\{ } fQ| U(ZEN an |11L(1:)| x‘
ueH5()\{0 =
0 (fQ "LL|6 dx) 3

In the celebrated work [3] Brezis and Nirenberg proved that the existence of a constant
upN € (0, A1) such that

UBN = inf{a >0: SQ(Q) < 80}

Then, Druet [11] proved

i — Q).
glelgv(q) pBN(§2)

Thus, when 3upn(€2) < A\1(f2) is true, condition (1.10) is satisfied in some open set
O C Q, and Theorem 1 gives the desired solution with blow-up at any fixed point
qe Q0.

The unit ball B; When we consider the radial case 2 = B;(0) and ¢ = 0, an
explicit computation gives v(0) = 72/4, that is consistent with (1.7). In fact, this is
the minimum value for v(g) since Brezis and Nirenberg computed ugy(B;) = 72/4.
Applying the formula in Remark 2.1 of Chapter 2 to the radial case we deduce that
v(r) is a decreasing function of r € [0,1]. Thus, the condition (1.10) is satisfied in the
ball Bg«, where d* = |g| and ¢ is a point such that vy(q) = A\1/3.

The unit cube C; For the unit cube C; it is known (see Remark 4.3 in [25]) that
3upn(C1) < A1(C1). Indeed, from Bl/2(0> C C; and the strict monotonicityof pugn(€2)
with respect to 2 we deduce upn(C1) < puBN (B1 /2) = 2. By separation of variables
we easily compute A\ (C1) = 372, thus

3/,LBN(C1) < 3,uBN (Bl/g) = 371'2 = )\1(61)

In general, in Theorem 1 we need the smoothness of the domain 2 to get a smooth
solution up to the boundary. In case of the cube, a slight modification of Theorem 1
applies: since (] is a Lipschitz domain, by the parabolic regularity theory we get a
smooth solution u(z,t) in Q x RT which is Lipschitz continuous in Q x [0, 00).



Estimates for other domains Let Q* the ball with the same volume as 2. The
following estimate holds true:

A1 (€Y%) A(Q) 2
< < .
gy S #eN() = = min Ro(x)

Thus, assuming without loss of generality Q2 with volume |Q| = |By|, if it happens that
we know mingcq Ro(r)? < 4/3 we can apply Theorem 1 to €. The first inequality was
proved by Brezis and Nirenberg [3] by means of a symmetrization argument. Using
harmonic transplantation Bandle and Flucher [1] proved the upper bound. Wang [25]
conjectured that upn/A1 € [1/4,4/9). This range is supported by numerical computa-
tions made by Budd and Humphries in [4].

1.2.4 The nonradial case in dimension 4

The critical heat equation in dimension n = 4 is
uw=Au+u® in QxR

If a nonradial positive global unbounded solution for the Dirichlet problem exists is
still an open question. Solving this conjecture is a work in progress in collaboration
with Manuel Del Pino and Juan Dévila.

In Chapter 3 we prove some steps towards an expected full solution. We have
computed the natural generalization of (1.7) by beginning the bubbling construction.
A nonlocal operator, less singular than in dimension 3, governs the dynamics of lower
order terms of the blow-up rate. The nonradial extension of (1.7) is as follows:

(|, )| gy ) = BVEL+0(1), k= (ﬁRo(q))m. (1.12)

Here Ry(z) = Ho(z,z) is the Robin function. When Q = B1(0) and ¢ = 0 we explicitly
compute Ro(q) = aq = 2v/2, hence the radial case (1.7) is recovered. Thus, as in
dimension 3, we expect that the asymptotic behaviour depends on the position of ¢ in
the domain. More precisely, in chapter 3 we discuss the following steps regarding the
bubbling construction:

e we show that the ansatz
_ T —
H 1U<M€> - Ml/QHO(anf)

requires a nonlocal improvement to remove a slow-decay term of type

A e E
p? 4|z — ¢

where A\(t) = —In(pu(t));

e we invert such nonlinear operator at the main order;

10



e we obtain the behaviour (1.12) and we show that it matches the radial case;

e we prove a modification of [7, Lemma 7.2] in dimension n = 4. This is a necessary
ingredient to get and extension of the linear theory developed in higher dimension
and finding a decaying perturbation close to the blow-up point.

11



Chapter 2

Infinite blow-up solution for the critical heat equa-
tion in dimension 3

In this chapter we present the first example of global unbounded solution to the 3
dimensional critical heat equation without radial symmetry. The radial case was con-
structed by means of matched expansion techniques by Galaktionov and King [14]. We
generalize this result to the nonradial case with a different method.

Our work is based on the new parabolic gluing method introduced in [7] by Cortézar,
Del Pino and Musso. We extend their result to n = 3, thus leaving open only the 4-
dimensional nonradial case. In [7] the assumption n > 5 allows to solve the problem
avoiding nonlocal operators. To solve this main difficulty, we develop an invertibility
theory for a half-fractional derivative type operator, combining asymptotic properties
of the heat kernel of the domain with a Laplace transform argument.

We construct the solution assuming an analytical property of the domain, that can
be stated in terms of the Brezis-Nirenberg number. This condition is verified for balls
and cubes, where we can select the blow-up point in a suitable open set (far from the
boundary). It is not known if there are domains that do not possess this property. As a
consequence of the strategy we also obtain a 1-codimensional stability for the solution.
This is a joint work with Manuel Del Pino.

2.1. Outline of the Article

The paper consists of three main parts. Firstly, we choose a natural ansatz uq, and
we compute the associated error. It turns out that w; is not sufficiently good to
start our perturbation scheme. Thus, an improved approximation us is constructed
by adding global and local terms. In the second part, by means of the inner-outer
gluing procedure, we prove the existence of a perturbation q} such that u = uz + (5 is
an exact solution to the problem. Basically, this strategy consists in decomposing b to
separate the regime close to the blow-up point and far away from it. We firstly solve
the outer problem for given parameters and then, by fixed point arguments, we solve
the inner problem. We need the validity of some orthogonality conditions with respect
to the kernel of the main linear operator in the inner problem. These are satisfied by
carefully selecting the free parameters of our ansatz. In particular, solving one of this
orthogonality conditions requires a crucial invertibility theory for a nonlocal operator
J, that is proved in the third part of the paper.
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INFINITE TIME BLOW-UP FOR THE THREE DIMENSIONAL
ENERGY CRITICAL HEAT EQUATION IN BOUNDED DOMAIN

GIACOMO AGENO AND MANUEL DEL PINO

ABSTRACT. We consider the Dirichlet problem for the energy-critical heat equation

ur = Au + u® in QXR+,

u=0 on 0Q xRT,

u(z,0) =ug(z) in €,
where Q is a bounded smooth domain in R®. Let H,(z,y) be the regular part of
the Green function of —A — v in 2, where v € (0, A1) and A; is the first Dirichlet
eigenvalue of —A. Then, given a point g € € such that 3v(¢) < A1, where

v(q) :=sup{y > 0: Hy(q,q) > 0},

we prove the existence of a non-radial global positive and smooth solution u(z,t)
which blows up in infinite time with spike in ¢q. The solution has the asymptotic
profile

u(az,t)~3i< w(t) 2>2 as t— oo,
p(t)? + |z — &(1)]
where

—In(u(t)) = 2v(Q)t(L + o(1)), &) =q+O0(u(t)) as t— oo

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

We investigate the asymptotic structure of global in time solutions u(x,t) of the
energy-critical semilinear heat equation

uw=Au+u’ in QxR
u=0 on 00 xR, (1.1)
u(+,0) = ug in 9,

where Q C R3 is a smooth bounded domain and ug is a smooth initial datum. The
energy associated to the solution u(z,t) is

1 1
E(u) ::§/Q\Vu|2d:r—g/]u\6dx.

Since classical solutions of (1.1) satisfy

d
SB(0) = [ jul*de <0,
dt Q

the energy is a Lyapunov functional for (1.1). The stationary equation on the whole
space is the Yamabe problem

AU+U=0 inR3.

14



All positive solutions of this equation are given by the Talenti bubbles (see [4])

Upe(z) =M5U<x;€>, (1.2)

where > 0,¢ € R? and
1
U(z) = a3——————75 where a3 := 314,

(1+1217)
Consider the Sobolev embedding HE(Q) < LPT(Q), which is compact for p € (1, pg),
where pg = ”—‘*‘2 , and the associated constant

Ty
Sp(Q) =  inf —— 0@

0¢“€H1(Q ) [lull 7 Lr+1(9)

The Talenti bubbles achieve the constant Sy, (R™). Thus, the energy E(U, ¢) = Sps(R")
is invariant with respect to u,&. When p — 0 the Talenti bubble becomes singular.
This is the reason for the loss of compactness in the Sobolev embedding for p = pg.
Struwe proved in [31] that every Palais-Smale sequence {u;}72, € H} () associated to
the energy functional F, namely satisfying sup; |E(u;)| < oo and VE(u;) — 0, has the
decomposition

= Uso + Z igi o(1) when j — oo, (1.3)

up to subsequences, for some k € N, where us, € HZ () is a critical point of E and
u;- — 0, {; € 2. When the domain is star-shaped, the Pohozaev identity constrains
Uso to vanish. It is worth noting that, in general, k > 0. However, if we restrict to
non-negative Palais-Smale sequences {u;}32, with E(u;) > Sy, it follows that k& must
be positive. In this case, we say that the compactness is lost by ’bubbling’. When the
domain is star-shaped, the Pohozaev identity constrains u., to vanish.

For classical finite-energy solutions u(z,t) the problem (1.1) is well-posed in short
time intervals. We refer to the monograph [29] by Quittner and Souplet for an extended
review on this problem and more general semilinear parabolic problems.

The aim of this paper is exhibiting classical positive finite-energy solutions u(x,t) of
(1.1) which are globally defined in time and satisfy

Jim (-, 8)]| L (@) = oo (1.4)

These global unbounded solutions are difficult to detect since the typical behaviour (in
the sense of Lions [26]) of the solutions to (1.1) is blow-up in finite time or decay at
infinity. On one hand, if the initial datum is sufficiently large than the solutions are
defined until a maximum time 7' < oo; on the other hand, if |lugl| ., is small enough
then the solution eventually decay. For this reason solutions with the property (1.4)
are called ’threshold solutions’ In 1984 the first rigorous proof of the existence in
L!-weak sense of unbounded global solutions was found by Ni, Sacks and Tavantzis [28].
Du [15] and Suzuki [32] have proved, that for a global unbounded solution u of the
energy-critical heat equation (1.1) and every sequence of times {¢,}52; with ¢, — oo
as n — 00, u(x,t,) have the asymptotic decomposition (1.3) up to subsequences. Thus,
when constructing examples of threshold solutions in the critical case, it is natural to
look for solutions with the asymptotic shape (1.2).
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Most of the results about the dynamics of the threshold solution in the literature
concern the radial case. This particular setting allows the construction of specific
solutions by means of matched expansions. In [17], Galaktionov and King studied the
problem for = B;(0) and radial initial datum. They found that the blow-up rate of
the global unbounded solution is

7.[.2

St +o(1) if n=3,
2Vt(1 +o(1)) if n=4,

log [[u(-, )]l o = (1.5)

and
n—2
u(-,t)]] o = (nt)2=5, if n > 5,

with some explicit constants 7,. Our main theorem is the extension of this result in
dimension n = 3 to the nonradial case. The case of higher dimension n > 5 has been
already extended to the nonradial case by Cortézar, Del Pino and Musso in [5], where
they built positive multispike threshold solutions which blow-up by bubbling in infinite
time. The term multispike refers to the fact that the constructed solution has k& blow-up
points as t — oo for every choice of k € NT.

Our solutions involve the Green function G, associated to the elliptic operator
L,=-A—-v on £,

where v € [0, A1) and \; is the principal Dirichlet eigenvalue. Namely, for all y € Q, G,
satisfies

— DG (z,y) —1Gy(T,y) = c30(z —y) in €,
Gy(xz,y) =0 on 09,

where §(x) is the Dirac delta, c3 := asws, the constant w, indicates the area of the unit
n—=2
sphere and oy, = [n(n —2)] 7 . The Green function can be decomposed as

G(r,y) =T(z —y) — Hy(z,y),

where I'(z) = as|z| ! and the regular part H.(z,y) is defined as the solution, for all
y € €, to
a3

AzH(z,y) +vHy(z,y) = P in Q,
Hy(z,y)=T(r—y) in 0Q.
The diagonal R,(z) := H(x,z) is called Robin function associated to the operator

—A — v in Q. It turns out that for any fixed ¢ € ) there exists a unique number
v(q) € (0, A1) defined as

v(q) :=={v>0:Ry(q) > 0}.

Our main theorem shows that, for any ¢ € Q such that 3v(g) < A; holds, there exists a
global solution to the problem (1.1) which blow-up at the point q.

Theorem 1. Let Q C R? a bounded smooth domain. Let q a point in Q such that
A1

. (1.6)

7(q) <
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Then, there exist an initial datum ug(z) € C*(Q), smooth functions &(t), u(t) and 6(x,t)
such that the solution u(x,t) to the problem (1.1) is a positive unbounded global solution
with the asymptotic form

z —§(t)

u(z,t) = ,u_1/2U( o)

where 0 is a bounded function. Also, 6 decays uniformly away from the point q, that
is: for all compact set K C Q with q¢ ¢ K, we have [|0(-,1)|| poo (o) = 0 as t — oco.
Moreover, the parameters u(t),&(t) are smooth functions of time and satisfy

1
() =@+ o). €0 —g=0((e) as toe (L)

Furthermore, thanks to the inner-outer gluing approach, which is based only on
elliptic and parabolic estimates, as in [5] and [8] we get a codimension-1 stability of the
solution stated by Theorem 1. In fact, under condition (1.6), the proof is identical to
that one of Corollary 1.1 in [5] (see the remark in section 7).

) — ,ul/Q(H,Y(:C,é’) +0(x,t)) as t— oo,

Corollary 1.1. Let u be the solution stated in Theorem 1 which blow us at q. Then,
there exist a codimension 1 manifold M in Cl(Q) with ug € M and constants C,ey > 0
such that if ug € M and |Jug — uo|| c1(q) < € then the solution @ given by Theorem 1
with initial datum ug is global with bubbling spike in some point g with |¢ — q| < Ce.

The condition (1.6) tells us that the point ¢ cannot be very close to boundary, since
v(q) = A] as ¢ — 09 (see Lemma A.2 in Appendix A). To prove the result, we will
need to consider Dirichlet problems of the type

up = Au+yu+e 2 f(z) in QxR
u(r,t) =0 on 9N x R,
u(z,0) =0 in §,
for some f(z) € LP with p > 2. In order to get the natural estimate
[u(, )] o < Ce™™"

for ¢t > 1, the condition (1.6) is necessary. This is due to the long-term behaviour of the
Dirichlet heat kernel associated to 2

pi(z,t) ~ d1(2)d1(y)e M as t— oo.
More specifically, we use assumption (1.6) in the following steps of the proof:

e in Lemma 2.2 and Lemma 2.3 for improving the ansatz;
e in Lemma 4.1 for solving the outer problem:;
e in Proposition 6.1 for the invertibility theory of the nonlocal operator J.

The number 7(q) is related to the Brezis-Nirenberg problem. Define
S e i JalVu@)l® —afolu(@)]*dx
T weml@)\fo 3 '

€Hy()\{0} (IQ|U|6d$)5

In the celebrated work [2] Brezis and Nirenberg proved that the existence of a constant
pBN € (0, A1) such that

ppnN = inf{a > 0: S5,(2) < Sp}.
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Then, Druet [14] proved

i — Q).
lgggv(q) pBN(£2)

Thus, when 3upn(£2) < A1(€) is true, condition (1.6) is satisfied in some open set
O C 1, and Theorem 1 gives the desired solution with blow-up at any fixed point ¢ € O.

When we consider the radial case Q2 = B1(0) and ¢ = 0, an explicit computation
gives v(0) = w2/4, that is consistent with (1.5). In fact, this is the minimum value for
v(q) since Brezis and Nirenberg computed pupy(B1) = 72 /4. By radial symmetry we
deduce that condition (1.6) is satisfied in the ball Bg+, where d* = |¢| and ¢ is a point
such that v(q) = A\1/3.

For the unit cube C it is known (see Remark 4.3 in [34]) that 3upn(C) < A1(C).
Indeed, from B 1 (0) C C and the strict monotonicity of upy(€2) with respect to

we deduce upn(C) < upn (Bl /2) = 72. By separation of variables we easily compute
A1 (C) = 372, thus

3,uBN(C) < 3uBN (Bl/g) = 37‘1’2 = )\1(C).
Let Q* the ball with the same volume as €. The following estimate holds true:

A1(02%) AL(Q%) . 9
< < .
1 S #BN(Q) < = min Ro(z)

The first inequality was proved by Brezis and Nirenberg [2] by means of a symmetrization
argument. Using harmonic transplantation Bandle and Flucher [1] proved the upper
bound. Thus, if it happens that we know mingcq Ro(z)? < 4/3 we can apply Theorem
1 to 2. Wang [34] conjectured that upn/A1 € [1/4,4/9). This range is supported by
numerical computations made by Budd and Humphries in [3].

The main differences with respect to the result [5] in dimension n > 5 are the
following:

e in our result the blow-up rate is dependent on the position of the point ¢ € €.
This is a completely new phenomenon.

e The condition (1.6) does not allow us to construct multi-spike solutions, since,
roughly speaking, the spikes need to be relatively far from each other and
sufficiently close to the boundary in order to bound the interaction between
the bubbles (see [5] for a rigorous condition in terms of the Green function Gy).
However, it could still be possible to detect multi-spike.

e A nonlocal operator controls the dynamics of p(t). The presence of a nonlocal
operator has been treated also in [8], where the domain Q = R? allows an explicit
inversion of the Laplace transform.

The approach developed in this work is inspired by [5], [8] and [6]. It is constructive
and allows an accurate analysis of the asymptotic dynamics and stability. Let describe
the general strategy. The first step consists in choosing a good approximated solution
us. Here the word 'good’ means that the associated error function

Sul(z,t) == —Ou + Au + u®

is sufficiently small in 2. Part of the problem consists in understanding what smallness
on Slu] is sufficient to find a small perturbation ¢ such that

UZU3+d~>
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is an exact solution to (1.1). Our building block is the scaled Talenti bubble which we
modify to match the boundary at the first order. Then we realize that we need two
improvements. The first one is a global correction useful to get solvability conditions
for the elliptic linearized operator around the standard bubble

L[¢] := A¢ + 5U(r) .

Such improvement produces a nonlocal term which will govern the second order term
in the expansion of the scaling parameters p(¢). This is a low-dimensional effect, which
is ultimately due to the fact that

Zn+1(7“) = i B 2
where Z, 1 is the unique (up to multiples) bounded radial function belonging to the
kernel of L[¢]. Actually, the dimensional restriction in [5] was especially designed
to avoid this effect and the presence of the corresponding nonlocal term. Then, by
choosing v(q) as in (1.6) we reduce the error close to z = ¢; this gives the asymptotic
behaviour (1.7) of p(t) at the first order. A second correction, local in nature, removes
nonradial slow-decay terms and gives the asymptotic behaviour of £ written in (1.7).
At this point we have a sufficiently good ansatz to start the so called inner-outer gluing
procedure: we decompose the problem in a system of nonlinear problems, namely an
inner and an outer problem which are weakly coupled thanks to the smallness of S|[a].
We solve the outer problem, that is a perturbation of the standard heat equation, for
suitable decaying solutions of the inner equation. We can find the inner solution, by
fixed point argument, using the adaptation to n = 3 of the linear theory for the inner
problem developed in [5]. This requires the solvability of orthogonality conditions which
are equivalent to a system in the parameters &, . To solve this system, we need the

U(r)+U'(r)r ¢ L*(R") when n € {3,4},

invertibility of a nonlocal equation, which we achieve by means of a Laplace transform
argument using asymptotic properties of the heat kernel p?(a:, Y).

Of course, the full problem consists in finding the exact initial datum that evolves in
an infinite time solution. We find the positive initial condition

i, to) =) ™20 (T80 — r0) 2, o 00) + polte) V2 )

1(to)
+ p(to) s (ﬂl7 —&(to) ; to) Ti(to) < : ;éSO) >

u(to)
i ot + (|7 25 Do a5,

for tg fixed sufficiently large, where the existence of i, &, ¢, and the constant ey is a
consequence of fixed point arguments, 7,1, nr, R are defined in (2.5), (2.17), (2.17) and
the functions ¢3, Ji, Ja solve the problems (2.21), (2.14) and (2.15) respectively.

To conclude the proof, it is necessary to establish the Lipschitz dependence of ¢[vy]
and eg[tp], where ¢ represents the solution to the inner problem with the initial datum
o(y,to) = eoZp(y) and 1y denotes the initial outer condition. This property is crucial
for obtaining contraction maps, requiring the initial datum in Cl(Q) class to apply the
Implicit Function Theorem. It is worth noting that, as a consequence of the smoothing
property of the heat equation, a smooth solution u(z,t) is guaranteed for t > t.

We conclude this introduction giving a short bibliographic overview on relate problems
and recent developments. Concerning the Cauchy problem for (1.1) in the critical case
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p = pg, infinite blow-up solutions have been found in dimension n = 3 in [8] by
Del Pino, Musso and Wei. Recently, Wei, Zhang and Zhou [35] detected analogue
solutions in dimension n = 4. King and Galaktionov [17] used matched asymptotic
methods to formally analyze the behaviour of infinite blow-up solutions in the radial
case, conjecturing non-existence of positive infinite time blow-up solutions in dimension
n > 5. In [9], sign-changing solutions in the form of "tower of bubbles”, that is a
superposition of a negative and a positive bubble concentrating at the same point, have
been constructed in dimension n > 7.

Many articles in the literature have been dedicated to construct finite time blow-up
solutions. A smooth solution of

u = Au+uP in Q x (0,7),
u=0 ondQx(0,7),
u(-,0) =up in Q,

blows-up at finite time if |u(-,¢)|| fo(q) — 00 as t — T' for some T' < co. Finite time
blow-up can be classified into two types:

e Type I if
limsup(T — )77 [[u(-, )] o, < o0,
t—T
e Type II if
lim sup (7" — t)ril [u(- )]l o = oo
t—T

Type I blow-up exhibits behavior similar to the corresponding ODE u; = «?, while
Type II blow-up is considerably more difficult to identify. We know after [16] and [27]
that if p = pg and n > 3 Type II blow-up is not admitted, but it is still admissible for
sign-changing solutions, and in fact examples have been found in [9-11,19, 20, 25, 30].

2. APPROXIMATE SOLUTION AND ESTIMATE OF THE ASSOCIATED ERROR

In this section we construct an approximation for a solution to the problem
u = Au+ u® in Q x RT,
u=0 on 00 x RT,

and we compute the associated error. The first approximation u is chosen by selecting
a time-scaled version of the stationary solution to

AU +U°=0 inR?,

properly adjusted to be small at the boundary 0€2. This is constructed in section 2.1.
In order to make the error small at the blow-up point, we need to select a precise first
order for the dilatation parameter p(t), which matches the blow-up rate in the radial

(2.1)

case found in [17]. However, we observe in section 2.2 that, for our rigorous proof, u; is
not close enough to an exact solution to make our scheme rigorous. In section 2.3 we
make a global improvement ugs. Such correction involves a nonlocal operator, similar to
a %—fractional Caputo derivative, in the lower order term of p(t). The last improvement
ug is only local, and it removes slow-decaying terms in non-radial modes by selecting

the first order asymptotic of the translation parameter £(t).
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2.1. First global approximation. Our building blocks are the scaled Talenti bubble
(1.2) which satisfy

AUue+USe =0 inR>. (2.2)

We look for a solution of the form u(z,t) = Uy, 4) ¢ (). We make an ansatz for the
parameters p(t),&(t). Assuming that u(t) — 0 as t — oo and £ — 0 we notice that
Upe(x) is concentrating around = 0 and uniformly small away from it. For this reason,
we should have

Owul — Aup = ul(:r,t)5 (2.3)

cste-0 (55
= dole = [ U@ dy

= So( — Qwsaz'/?,
where ws = 47 is the surface area of S2. Let po(t) the first order of u(t), that is
plt) = po(t)(1+0(1)) as y— oo
From (2.3) we define the scaled function
vz, t) = Py () ),
should satisfy

v & Av + (—;L)y +wzazdp(z — &) in Q x R, (2.4)

v=0 ondQ xR
We choose the parameter jo(t) such that
fro(t)
“2ut)
for some v € RT that will be fixed later. This is equivalent to choosing
po(t) = be” >, (2.5)

for some b € R*. We can fix b = 1. Indeed, the equation is translation-invariant in
time: we construct, for a sufficiently large initial time to, a solution u(z,t) in Q X [tg, 00)
and we conclude that ug(x,t) := u(x,t — t9) is a solution to (2.1) in © x [0,00). We
observe that after shifting the initial time, the main dilatation parameter py becomes
po(t — to) = e?7%0e=27t With this choice (2.4) reads

v = Av + yv + wzazdo(z — &) in Q@ x RT,
v=0 ondNxR".

Hence, for large time we should have

v(z,t) = Gy(x,), (2.6)
where G, (z,y) is the Green function for the boundary value problem
- A:EG’Y(JJ" y) - IVG’Y($7 y) = W30435(IL‘ - y) in Q7 (27)

G(,y) =0 on 09.
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We write

Gy (z,y) =T(z —y) — Hy(z,y),

where o
—A,T'(z) =wsasdp(z), T(x) 3

R

(2.8)

is (a multiple of) the fundamental solution of the Laplacian in R® and the regular part

H, satisfies
— Aty (z,y) —yHy(z,y) = 9Tz —y) nQ,
Hy(hy) =T(-—y) on I
The function H.(z,y) € C%1(Q) when v € (0, A1). Also, we decompose
Hy(2,y) = 0(x — y) — hy(2,9),

where

A e Vi)

]
and h.(-,y) € C*°(£2) solves
Axh'y('ra y) + /Yh'y('ra y) = 0 in Qa

cos(ylr —yl) on 99
|z — y|

hy(z,y) = —as
We also define the Robin function
Ry(z) :== Hy(z,z) = hy(x,x).

In terms of the original function u; the equation (2.6) reads as

«
ul(x7t) ~ :U‘l/2 ‘J} _3§’ - MI/QH’Y(J"’g)'

We also notice that far away from the origin we have
1/2 93

z =&l

Upe(x) = p
This formal analysis suggests the ansatz
u(@,t) == Upe(x) — Nl/sz(l"vf)-

2.1.1. Dilatation parameter p(t). The full dilatation parameter is given by

= po(t)e* ),

where
po(t) =e 2 and A(t)=o(1) as t— oc.
In this notation we have
pt)  jie*® | 2Apge*t
2u(t)  2upe™ T 2pupeh
= -y +A@®),

and
At) = —/t A(s) ds,

where A(s) is an integrable function in any [to, c0).
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2.2. Error associated to u;. The next step consists in computing the error associated
to the first ansatz u;. We define the error operator

S[u] := —0su + Au + u.
Of course, finding u such that S[u] = 0 is equivalent to solving the equation in (2.1). It
is well-known that all bounded solutions to the linearized operator

Ayp+5U =0 in R,

are linear combinations of the functions

, 1 as 11— |y|?
Zi(y) =0y, U(y), 1=1,2,3, Zu(y):= §U(y) +y-VU(@y) == ly

2 (14 1y?)"”
We define the scaled variable
z—¢&(t)
pt)
Now, we compute Slui](x,t) for x # £(t). We have

y=yla,t) =

Auy = u‘lﬂAmU(m;’S)  WVPALH (5, )

= —uPU(y)* + p'/? ('va(x,f) e )

|z — ¢
- a3
=~ PU®y)° + p Py Hy (2, ) — p'/? PR
where we used equations (2.2) and (2.9) for U and H,. The time-derivative gives
Li 1/ ~1/2 £ p
Oy = — 5= PUY) + PV U(Y) - | —= = =y
i == 3 0) W) |- -1

1 :
- iﬁumwx,g) — 26 Vo, Hy(,)
() 2 )

—u3RE VU — VPV, Hy (2, €)

Hence, the error associated to uj is

Sl =A(p=122Z4(y) + 2 Ho (2,€) ) — 12 (2z4<y> + ﬁ;) (2.13)

+ VU (y) + pt e - Vg Hy (2, €)
— 25U (y) Hy (2, €)

+u7 (U y) = pHy (2,€))° = U(y)° + ubU (y) Hy (w0, 6)]

2.3. Global improvement. The remaining part of this section concerns the improve-
ment of the natural ansatz u;. Later in the argument we will divide the error in outer
and inner part. We realize that solving the inner-outer system requires a global and local
improvements. Based on Proposition 3.1 with a = 2,we say that a term is slow-decay
(in space) if it is not controlled by

1
1+ [yt
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We can find an exact perturbation with our scheme if we remove such terms. Looking
at (2.13) we observe that all the terms in the first two lines are slow-decay. For the
moment we can assume A A, €, € bounded by some power of w(t). Later in the argument
we shall specify precise norms for these parameters. Firstly, we decompose

— 325U (y) Hoy (2, ) = — =350 ()40, (x — €)
+ M_3/25U(y)4hv(x7 5)

Now, we select the solution .J;[A](x,t) to the problem

NI= —

OpJ1 = AgJr + 1 + (“) A( ~toz, < 5) + H.(x, g)) in Q x [tg — 1, 00),
o 8 (2.14)
Ji(z,t) =0 in 02 X [tg — 1,00),

Ji(z,to—1) =0 on Q,

and the solution Ja(x,t) to

1
2
OpJo = NyJoy +yJo — (:{)) ['y <,u_12Z4(y) ) + u 25U( )407(/13/) in Q X [tg, 00),

(2.15)

|z —fl
Ja(z,t) =0 on 9 X [tg,0),
Jg(l‘,to) =0 in Q.

The choice of defining .J; from the time o — 1 as well as A(t) will become clear in section
8. We extend £(t) = £(to) for t € [to — 1,t0). We define

ug 1= uy + u(l)/QJ[A](x,t),
where
J[A] == Ji[A] + J.
The new error reads as
Slua] = Slut] + (=0 + Aa) (/> T (@,0)) + 3 — o}
= Sur] + pg/*{=00T + Apd + 7T} +ud — .
Inserting Sfu;] given in (2.13) we get
Slug) =p=E - VU (y) + u' %€ - Vo, Hy (2, (1) + 525U (y)ho (2, y)

+ué/2{—atJ1+AmJl+vJ1+ (:0)( oz, f) +Hw(xa§))}

+u3/2{—atJ2+AxJz—vJ2—( L ) (1 12zi0) + - a3£|>+u25U(y)497(uy)”

452

/2 5
(U@)—@(az@)m(’f) J[A](x,w) —U()° + U () B (o, s)]
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Using equations (2.14) and (2.15), the error associated to uy becomes

Slug) =u=/2€ -V, U (y) + p*/%€ - Vo Ho (2, €) + p=3/25U () hoy (x, €) (2.16)
5

—5/2 Ho vz 5 4
(U(y)uﬂw(sﬂ,fHu(M) J[A}(z,w) U + iU () (2.6)|.

+p

2.3.1. Choice of v. We observe that with the choice of J; we removed the singular term
|z — ¢| 7! from (2.13). At this point, the main error at x = £(t) is given by the first
order of the nonlinear term

325U (0)* Ry (€),
which, in general as size u(t)_:”/ 2. We realize that we can reduce this error by selecting
7 such that R,(0) = 0. The existence of such number is given by the following lemma.

Lemma 2.1. There exists a unique v = v*(0) € (0, A1) such that R+(0) = 0.

Proof. We consider the function R, (0) as a function of 7. Lemma A.2 in [7] shows that
R(0) : (0, A1) = (=00, Ro(0))

is smooth in (0, A1) and 9,R,(0) < 0. Lemma A.1 shows that R,(0) — —oco as v — A].
By the maximum principle Hy(z,y) > 0 for all z,y € €, hence we have Ry(0) > 0 and
the intermediate value theorem gives the existence of a root

7*(0) := max{y > 0: R,(0) > 0}.

Finally the monotonicity of R,(0) implies the uniqueness of v*(0). O
Remark 2.1 (Regularity of v*(x)). Let Ry(x) =: R(v,x). Since R(y*(x),x) =0 and
OyR(v,z) <0 for all x € Q, the implicit function theorem implies that v*(z) € C*(Q)
with
~ VuR(v,2)

a’YR(’Ya .TE) '
Remark 2.2 (radial case). We compute v(0) in case Q = B1(0). We look for a radial
solution to

Vv (x) =

AH, +yH. :’a—T
x

on 0B;.

mn Bl,

)
||
We define ly(|x|) := H,(x,0) for a function ly: [0,1] = R. Then ly solves

H.(z,0)

2
Orrlo + =01y + 1o = 7% in [0, 1],
lo(1) = a3, lo(r) bounded at r = 0.
i(r)

We write lo(r) = az==, where I(r) solves
Ol + 4l =7 in [0,1],
I(1)=1, I(r)=0(r) forr—0.

The solution to this problem is given by

l(r) =1 —cos(y/7r) + cot(y/7) sin(y/y7),
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and we conclude with

H.,(r,0) = a3 l

1 —cos(y/7r) N sin(\(ﬁr))
T rtan(y/y

In particular, for r =0 we find

1,(0) = H,(0,0) = sy ot (/7).
Asking for R(0) =0
- 2
’y:(Q—i-km) for keN,
and, recall that \1(B1) = w2, the unique value in (0, A1) is

7[.2

7=
as predicted in the analysis of Galaktionov mjd King [17].
For sake of simplicity we continue to use v = v(0) to denote the selected number
7*(0). Since Ry (z) € C*°(§2) we expand
Ry(€) = By(0) + € VR (0) + 56 DR, (€) €,
for some £* € [0,£]. Assuming |[£(t)| = O(u(t)) we conclude
u325U(0) Ry (€) = O (n'72).

2.4. Local improvement and final error computations. In this section we make

a further improvement and we obtain the final ansatz. We still need to remove from
(2.13) the main order of the terms

p=2E VU + 25U (y) hy (2, €).
We define the final ansatz
_ —&(t) x —&(t)
£) 1= ua(z,t) + pu(t) /2 (w & t) ( D
U3(ZE, ) ’UQ(I’, )—|—,UJ( ) d)3 /,L(t) » U () /L(t)
where 7 : [0,00) — [0, 1] denotes a smooth cut-off function such that n(s) =1 for s < 1
and suppn C [0, 2], and we define

men:nQa) 1) = (2.17)

where k is a constant such that B% (0) C Q, to ensure that suppn(|-|) € 2. Also we

y(a.t) _ x— ()
GENTIOIOK

define the variable

zz(x,t) :=

We compute

Oy (M_1/2¢3771(t)) = *iﬂ_l/%z’)m(t) + o Py [3@3 + Vyos3 - (Zy - i) +u 2 ¢30m

2u

- - - ’ - 2 n'(lzs) | n"(l2s])
A, 1/2 — 52 9,,-3/2 y(n(\%l)) 1/2 ( n )
(M ¢3m) p y®@3+ 20 Vo3 ] il +p s PARETE + 212
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and define
5

Ho 1/2
Ns(y,t) r=<U(y)5—un(My+€,f)+u<M) J(uy+§7t)+¢3(y,t)m> - U(y)°

Ho 1/2
—5U(y)* (—un(uy +&,8) + M(u) J 4+ ¢377>
Thus, using (2.16),
Slug] = — 0 (M_1/2¢3m) + Ay (M_1/2¢3m) +uj — uj + Sug]

=32 VU + pt2€ -V H (2, €) + p~3 25U (y) hy (2, )

1/2
+ 1PNy, ) + 5U (y) (L/:O> J(a,t) + =P gsmsU ()

— { <_M)M1/Q¢3nl(t) + 1 Py |0 + Vs - (—Zy — i)

+ M1/2<Z533t77}

24
_ _ ' - 2 n'(lzs]) |, n"(l23])
512, A 2=3/2V s - y(n (|23l )> 1/2 (77 3 3 )
+u M) DyPs + 2p y93 Iyl 4l +u 3 T + 1212
By Taylor expansion of h.(z,§) centered at x = £ we have
1 _
h'y(l‘»g) = R’y(g) + py - vmh'y(fag) + 5#292 : ngh'y(u’ﬂ,ﬁ) (2'18)

for some x € [, z]. Now, we expand the first terms at (§,&) = (0,0). By the Chain
Rule we have V,, hy(z,2) = 2V, R, (x). Hence, we have

Vil (6,6) = %vxm(g) _ %Vva(O) n %g Dau Ry (€),

for some £ € [0,£]. Furthermore, since R, (0) = 0, we have

R(&) = & Vo R,(0) + %52 : Dy R (€9)

for some £* € [0,£]. Plugging these identities in (2.18) we obtain

I (0,€) =€ VB (0) + Ly - VR, (0) (2.19)

1 1
+ §§2 Dy R (€7) + MY Dy R\ (§7) - €

oI Daaha(7,).
Let
=% + <&
Now, we assume the following decay for the parameters &1, &1, A, A:
()] + &) < Cu()'F,
()] < Cult),
)] < Cult),
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for some positive constants k, lg, 1 to be chosen. We write the full error
Slug] =2V, U(y) - {f - M_luoéo] Ul

+5U(y)* [u‘?’”hv(w, &) — = pg (;uoy : V:pr(O))] !

+ 17329, U(y) - €+ 5U () 20, 2.)] (1 - m)
=+ Ml/?é . va'y(xa 5)

1/2
NG (1) 4 U () 2 (‘f) J(a,1)

- { (-;)Ml/%sm(t) + 1Py | Oeps + Vs - (—My - 5)
p p’oop

+ u1/2¢38m}

+ " P [Ay¢3 +5U(y)" ¢3 + M(uo, 50]}

202 1 (ML) v (2 ) )Y

- 23] p2l? PRl
where
M{uo, &) := poo - VU (y) — gU(y)4uo(uoy - VaR,(0)) (2.20)
For any fixed ¢ > tg, we select ¢4(-,t) as the bounded solution to the elliptic problem
Ays(y, t) +5U(y) ¢3(y,t) = —Mluo, &ol(y,t) in R?, (2.21)

with the following orthogonality conditions on the right-hand side:
/3 Mo, &) (y,t) Zi(y)dy =0 for t>ty, and i=1,2,3,4. (2.22)
R

As we shall see, conditions (2.22) are essential to have ¢3 bounded in space (see (2.4))
and equivalent to choose £y(t). The condition corresponding to the index i = 4 is
satisfied by symmetry. When ¢ = 1,2, 3 the orthogonality condition (2.22) is equivalent
to

Hoo.i ( /]R 0, U ()" dy) — ( /R L 5U(y)'yi0,, U (y) dy) %895,1-}%7(0) = 0.
Hence, we select §p; such that
_ 02,iB(0) (Js 5U (y)'i0y, U (y) dy)
- 2(fis 104, U (9)| > dy)
With the condition tliglo &i(t) = 0 we get
~ 0u,ihy(0) (Jgs 5U () iy, U (y) dy)
47 ( fia 10,0 ()] dy)

£0,i(t)

f1o ().

o.(t) = cie™", o = . (2.23)

Also, we define ¢ := (cy, co, ¢3).

Remark 2.3 (no local improvement in the radial case). In case 2 = B1(0), searching
h~(7,0) solution to (2.12) in the radial form, we see that

V2R,(0) =2V, hy(0,0) =0,
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hence conditions (2.22) imply & = 0, as expected. This implies that the local improve-
ment ¢3, which in fact involves only non-zero modes, is null in the radial case.

With these choices for ¢35 and &y we conclude with the following expression of the
error associated to the final ansatz ug:

Slus] =32V, U(y) - [51 + (1 - lfl}lo)fo} ul

45U | (2,6) = 15 0 G0y - VR, )

I [M73/2va(y) . £+ 5U(y)4/f3/2h7(a:,£)} (L—mp)
+pt2 Vo (,§)

1/2
NG (g, 1) + 5U (y) Y2 (‘:f) J(z.t)

_ <_Iu)M_1/2¢3771(t)+,u_1/277l(t) us + Vb3 - _Hy_é + Y2 ha0ym
2 pooop
32y 4. Y 77<|3|>> 172 ( 2 n'(|2s]) 77”(|23!)>
+ 207"V y 3 w ( i +pu" s PRI + )

For later purpose, we split S[ug] in inner and outer error. At this stage, it is important
to treat the terms involving directly A as part of the outer error, since, as we shall see,
a priori these are the terms with less regularity. Let

S[US] = Sin + Souta

where
3/2( Mo 12 4 5/2
Sin 1=y~ <M> 5U(y) (2, ) + /2N (2.24)
+u oy, (51 + (1 - H_lﬂo)fo) -VyUl(y)
_ 1
+p 3/27715U(y)4<h7(x,§) - (lff) <2uoy : VIRV(O)»
and
Sout =12V, U(y) - €+ 5U (y) hy (w,€)] (1 =) (2.25)
+ u'2€ Vo Hy (2,€)
_ . 1. / z . z
12 = Ryen + 20 y00) + m(B6n — 16 Ty00) a2
_3/2 Y 77'(\23|)) —1)2 ( 2 1'(|zs]) 77”(|Z3\)>
ANV ( a )T\ e e )
2.4.1. Size of Sip. 77 We proceed with the estimate of Sy,. Let
R(t) = =, (2.26)
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for some § > 0. We need the following conditions on 6, ly, Iy

§+10 <1 (2.27)
1—-0 1+0h
2.2
se (5 (2.28)
l <o, (2.29)
kE>—1+420+1, (2.30)

The condition (2.27) is used to get the estimate in the linear outer problem, and it is due
to the fact that both the heat kernel p§* and the parameter po(t) have an exponential
decay for ¢ large. To get the quadratic term U3¢? smaller than Sy, in the inner problem
we need the upper bound in (2.28). The lower bound is necessary to get a positive
Holder exponent in the regularity of A. The last two conditions (2.29)-(2.30) ensure
that the main term in S, is given by the first term in (2.24). Thus, we fix the following
values satisfying (2.27)-(2.28):

2 2
o0=—, lL1=-. 2.31
9 ) 1 3 ( )
Here and in what follows, we write a < b if there exists a constant C, independent of ¢,
such that a < Cb. If both the inequalities a < b and b < a hold we write a ~ b. Using

(2.36) and (2.37) we estimate
_3/2
< M (Hll L )

4( Ko 12 3/2
5U (y () o (x, )] S
| () L) (z,t) TPE T 1]

—3/2411

S Mﬁ
1+ |yl
and

15PN S R ) (H (0, )]+ 1 (1))

-1/2 2

H l H

< (pR A+t + )
1+\y|3(” P Ty

u12

4
1+ [yl
M71/276+2 min{1-6,l1 }

1-0

A

0

1+ [y *
Also,

—3/2

|3 2, (451 +(1- M_luo)fo) VUl S m 1/:_ 7] 4R2(\§1\ + Mz)

—3/2—254min{1+k,2}
< M

~

1

1+ |yl

Now, we estimate the last term of S;, using expansion (2.19) and p/po = e** we get
—3/24+min{1,lo}

) (o)~ (52) (grov- 9o 0) )1 £ F
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Combining these estimates we get

1Sin| < 4{ —1/2—8+2min{1-4,l1} +M—3/2—26+min{1+k,2} +#—3/2+min{l,lo,l1}]
1+ y|
and using the values (2.31) we get
Sul 5 200 232
T Iyt '
_ 1i—5/6 |
iyt

2.4.2. Size of Syt For the first term in Sy we have
(L= m)VyU - €| S u*>(1—m)
=250 hy (1= m)| S (1 = my)
W'V Hy| S

and using the estimate on ¢3, V03, 0r¢3 we get

V20— Rm(n + 29 - V) + (010 — 11 V) + 00 L8 28y <

pl |23]
Finally,
_ i _ 2 n'(lzsl) | n"(2sl)
9,,73/2y ] y(n (|23] )) 412 ( + ) < 302
| 1% y¢3 ’y’ ,U,l H ¢3 ‘23‘ ,U2l2 N2l2 | ~ M
We conclude that
|Sout| S /2. (2.33)
2.4.3. Size of Sin(1 —ngr). It remains to estimate the size of Siy(1 — ngr). We have
M%Hﬁ%
(1= ng)5U* =20 (2, )] S 5—ge (1= 1)
1+ |y
Then,
_ _ 1
(1= nr)*2N5| < (1 —nR)p 1/21 n |y’3(|Hw(ﬂ?,€)| + [ I (@, t)])?
—1/2R—1
o 2 21
S —nr)——5 ((R)" +p™
L+ ly|” ( )
1
L | |
Also,
4y . ) H%erin{o,kf%}
P3P+ (1= o)éo) - VU () (1 —ng) < R (1—-nr)
and
- 1 R-2,-1/2
0= e (0) 2 (o .6) = (22) (00 Vo) )| 5 2 (1= )
p/\2 1+ |y
26—1
M 2
S (1—-mngr)
1+ Jy|?

31



Combining these estimates we find

_ 1
|Sin(1 = np)| S ™30T (1 — np) (2.34)
1+ [yl
5,4 1
<pTete—— (1 —
~ M R
We conclude that
5.4 1 3
|Sin(]-77]R)+Sout| ,S,u 6+972(1*77R)+'u2
1+ |yl

2.5. Estimates of Ji, J; and ¢3. The following lemma gives an estimate of J;[A](x, ?)
in terms of A. Observe that

1/2 2
lim () pe) —le=¢ L o |
t—o00 (Iu,o(t)) (MQ i ‘x _ §| 2>3/2 + ’Y(xu{) ’.’13| + 7(1’,0)

In order to control J; we will construct a supersolution using 7, that is the solution to
hT = AT +7T — At)Gy(2,0)  in Qx [tg — 1,00), (2.35)
J(z,t) =0 on 00 x [tp — 1,00),
J(x,to—1)=0 in Q.
We define the L°°-weighted space
Xe:={f € Lty — 1,00) : || f]| oo < 00},

where

1/l o, := sup [f(E)po(t)™].

s

t>to—1

Lemma 2.2 (Estimate of J1). Suppose 2vly < A1 — and
[[A]]

soly < 00

Then we have
W1 ey S O AT o (2.36)
fort > ty.
Since we have selected [; < 1 in (2.31), condition (1.6) guarantees that 2yl; < X — .

Proof. By parabolic comparison, it is enough to prove the bound for J defined as the
solution to (2.35). Indeed, we have

1/2 . 2 . 2 .
PN T | g e | <A@ -+ E 0.
Lo 2 2\3/2 7 El K
(12 + 1o —¢?)
Consider

T = Al soge” " f(2),
where f(x) solves
AL (@) = A0+ D f() = G (2,0)] in
f(z)=0 on 0.
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Then, J satisfies
0T = AT = 4T = A o, [ Ao f () — (20 + 1) f ()]
> [A(t)] |G, (x,0)]-

Also, J(x,t) = 0 on 9 x [0,00) and J(z,0) = ||A|| oty f(x) = 0 by the maximum
principle since (201 +1) < A1. Thus, J is a supersolution and for t € [tg, 00) we obtain
W2 ey S ITC DN ey

S AL e

S AN oo g, 0()"

Lemma 2.3 (Estimate of J3). Let Ja(z,t) be the unique solution to the problem

1
8tJ2:AwJ2+vJ2—(“)Q[v(u—12z4(x_f)+ a3 )
1o © |z — £

+ M25U(x;£>49ﬂ,(a: — 5)} in Q0 x [ty, 00),

Ja(x,t) =0 on 00 X [tg, 00),
Ja(z,t0) =0 in Q.
Suppose that 3v < A\1. Then, there exists ty large such that

1
’JQ(.’IZ’,t)’ 5 S
(1+1]yl ')

for any € > 0 and for all (x,t) € 2 X [tg,00) where y = x;_tg'

(2.37)

Proof. Firstly, we observe that
1—y? 1
RENFENCREM
(L+1y15)32 vl

<— =
wl (1+1y1°7°)

Also, by Taylor expanding the function 6, in (2.11) near the origin, we see that
-1

w250 ()0, ()| <

4|y‘
1+ [y
-1

< n
Tyl (14 1y17)

where € > 0 can be taken arbitrarily small. Thus, by parabolic comparison, it is enough
to find u such that

1 1

[yl (1+1y1*79)
u(z,t) >0 on 9N X [ty,0),
a(z,to) >0 in Q.

O > Au~+~yu+ p~ in Q X [tg, 00), (2.38)
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Let v := p~tu(x,t). We have
00 = Oy (,u_lu)

e
=pu ! (ut + (2v — 2A)u)

Thus, the problem for v becomes
2
in Q x [tg, 00), (2.39)

0 > Api+ (3y — 200 + -
yl (1+191°7°)

v >0 on 0 x [ty,00),
v(x,tp) >0 in Q.
We look for v of the form

iz, t) = vo(xu€>n<x 5) + (2, 1).

We need
O — Az — (3y — 2A)v1 277[ — Owg + u72Ayv0 + (3y— 2A)vo (2.40)

N W}
[yl (1+ [y *7%)
2
[yl (1+ [y *7%)
+ 2M_1Va:77 - Vyo,
and v; > 0 on I X [tg, 00) and vo(z, tp) > 0 in Q. Without loss of generality let @ C By.
Consider the positive radial solution vg(y,t) to

+(1—mn) + (Agzn — 9m)vo

1
Ayvg + 2 =0 onB 1
ol (1 11°7) i
v9=0 ondB 1,
u(t)

given by the formula of variation of parameters
1
o 1 [P s
v =2 " = / ———dsd
O(y) 1wl ,02 0o 14+ g2—€ P

From this formula we obtain the following estimates in (z,t) € Q X [tg, 00):

1
vo(lyl,t) S ———=>
lvo([yl 1) T+

1

Ovo(y, t 57_
Oreny 0] S 1
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Thus, if |z — £| < Cy, for Cy sufficiently small, then
-2

_ . 7
—0pvo+p 2 Ao + By —MNvy+ —————
! lyl (14 1y1*79)

-2
7 1
= _ +0 <0
lyl (1+ [y *™9) (1 + [yl H)

Then, let v; be the solution to

=

[yl (1+ Jy1*7)
+ 217V, - Vyvg  in Q x [tg, 00),

O — Az — (3y — A)vl =(1-mn) + (Agzn — 9m)vo

with
vy =0 on 9 x [ty,00),
Ul(CE,to) =0 in Q.

In the right-hand side we have
-2
H 1—¢
(1 - 77) _ 5 2 )
[yl (1 + [y *7%)

(A = dm)vo| S u'™s,

207 Vo - Vyvo| S pte.
Since 3y — 2A(t) < A; provided that to is sufficiently large, the comparison principle
applies and we get |vg| < p'™%. Thus, inequality (2.40) is verified. Also, we have
v=wv1 >0 on dN x [tg,00) and Ya(z,ty) = nuo(x,ty) > 0. Thus v satisfies (2.39) and

hence u = pv satisfies (2.38). Then, by parabolic comparison we get |Ja| < |u|, hence
we obtain (2.37). O

Lemma 2.4 (Estimate on ¢3). There exists a bounded solution to the problem

Ay¢3 + 5U(y)4¢3(ya t) = —M[&), MO](yv t) in R3a (241)

under the orthogonality conditions (2.22) on M|[&o, 1o](y,t). We have the following
estimates on ¢z and its derivatives:

[d3(y, )] + (L+ [y])|Vyds(y. t)| + deds S pP(t) f(y, 1), (2.42)

where f is a smooth bounded function.

Proof. From the explicit form of the function M given in (2.20) we estimate its size as

1
Mo, )| < pt——ms.
|Mlpo, ol (y, 1) < p TE

Let {9,,}°_, the orthonormal basis of L?(S5?) made up of spherical harmonics, namely
the eigenfunctions of the problem

A2V + A =0 in S
where 0 = A\g < A\ =X =XA3 =2 < A4 <.... We decompose

M(y,t) = i/\/li(r, t)vi(y/r), where r:=ly|, M;(rt):= /S2M(Tc9,t)19i(0) de.
i=1
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From (2.20) we see that M; = 0 for i > 4. Also, we decompose ¢3 as

Zqﬁgzrt i(y/r), where ¢s3,(r,t): /¢3r9t (0) de,

and, by (2.41), also ¢3 satisfies ¢3;(y,t) = 0 for i > 4. Similarly, we define

/Zré? d0.

The formula of variation of constants gives

buirit) = ) [ ijWL-(p, ) dp,

where
Zi(p,t) :== /p Mi(s,t)zi(s)s? ds.
Since ’ W2(0)
Milrt)] S 45
and .
2i(r)] S m

we deduce that
I Zi(p, )| S p(t)p* as p—0.
Also, by the orthogonality conditions (2.22) we have

|Z:(p / Mi(s,t)zi(s)s* ds

1
S p2(t)= as p— oo,
P
With these estimates we conclude

r 2)3
63(r, 1) S — /O d J;f) 1Z(p,t)| dp

3
< p2(t) r /r (1 + p2) p4 dp
~ 1473 Jo pt 1+ p°
S ().
Similarly, taking the space and time derivatives of equation (2.41), we deduce the
bounds on Vy,¢3 and 0;¢3. O

We conclude this section by summarizing the key estimates on the size of the error

S[U3] .

Lemma 2.5. Let 3y < A1, pn = poe*™ and & = & + &1, where pg, & are given by (2.5)
and (2.23) respectively. Assume

A()] < o), JA@)] < o),
R(t)=p"", &) < pup**
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for positive constant 9,1y, 11, k satisfying (2.27),(2.28), (2.29) and (2.30). Then, setting
x = py—+E&, we have, for ty sufficiently large, the following estimate on the error function

Slus] holds:
Slus](y, t) = Sin(y, )nre)(1yl) + Sin(y, ) (1 = ngw) (Y)) + Sout(y, 1),

where
_3 1
|Sin(y, )nrm| S p> " L (2.43)
|Sout(y: t)| < 12, (2.44)
1
Sin(y, t)(1 =17 T e — 2.45
1Sin(y, )( Rt))| " (2.45)

The proofs of (2.43), (2.44) and (2.45) are given in sections 2.4.3, 2.4.2 and 2.4.3
respectively.

3. THE INNER-OUTER SCHEME
We recall that our final purpose is to find an unbounded global in time solution u to
(2.1) of the form
u=u3 + o, (3.1)

for a small perturbation ¢. The latter is constructed by means of the inner-gluing
method. This consists in looking for a perturbation of the form

B(,t) = po(t)2 (. t) + nre (I ) 26y, 1), (3.2)
where
_ (. ey T
mellol) = (g ) ve= vty = =0

and n(s) is a cut-off function with supp () C [0,2] and n =1 in [0, 1]. We have already

chosen R = R(t) in (2.26). In terms of ¢ the equation reads as
0= S[u] = —0u + Agu + u’
= (—0uus + Dgus +13) — 06 + Dadp+ (ug + §)* —
= Slus] — % + Ny + Buze + N (us, ¢)
where
N(us3, @) := (uz + @)° — u3 — 5uje. (3.3)
Hence the problem for ¢ is
Od = Dot + 5u5d + S[us] + N(uz, @) in Q x [to, o),
= —uz on 9N x [tg, o).

Now, the main idea is to split the problem for ¢ in a system for (1, @), localizing the
inner regime. We divide the error in

S[UB] :SinnR + Sin(l - 77R) + Souta
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where Spn, Sout are defined in (2.24) and (2.25) respectively. Considering ¢ as in (3.2)
we compute

p_Fo 2, 1/ 12 (y(:v,t)>ﬂ 1/
06 =3, 1o ¥+t "+ pT00m | Tps ot onn

+u 2 (0 + Vi - Oy(x,t))nr
= _%utl)/Qw +Né/28tw+ﬂ_l/2¢ [vzn(y> . <_Ry _ Hg _ f)]

+ (—i)#lﬂdnm +p~ g <<9td> +Vyo- (—Zy - 5) ) :

and

Aa:(g :MéﬂAa&w + Nil/zAx (gzﬁ(y(x, t)? t)T/R(t) (y(x7 t)))

_ 3 2 (lz
=162 D) + 1 () Ay (y, t) + 1Y 2¢(Z\nu(2‘3|2)

+20ED)

[12R2
ERAED
2| pR

191
+2p 1/2;Vy¢(y,t) :
where z := %. We split

5ui = Sujug vnr + Sulny “Y(1 = nr) + Suip~éng.
Hence, the full equation reads as
— g + g0 + 12 00mp + npu 20,0
i - 3
+ m-z{('y — M@ +2Vyg-y) — p PV (u

277’(|Z|)+77”(|Z|))
12| 12R? [12R2

=18 At + PR A G + u1/2¢><

_1/21 z 1'(|z])
+2u PV, p -
po U0 |zl pR
1/2 1/2 _
+ 5ud g Yng + 5udu 2wl — nr) + Suip~ 20k

+ Sinfr + Sin(1 = nr) + Sout + N (u3, ¢)(1 — nr) + N (us, $)ng.

We divide the full problem in a system. Firstly, we look for a solution ¥ to
200 =g Do + g + 5udpny 0 (1 — ng) + g0
+ nR{(v N0+ 2Vy¢-y) — T PV,0- <i) }
- 2 n'(lz]) |, n"(lz]) 12l z 17'(l2])
12, 47N Ui ) 9, 122y o * M
o ¢><|Z| 2R Rz ) TV TR

+ Sin(1 = nr) + Sout + N (us, ¢)(1 — nr), in Q x [to, o0)
P(z,t) =— ugl/Qu;g(:r,t) on 08 X [tg, 00).
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Thus, after dividing by ,u(l)/ 2, 1) solves the outer problem

1/2
B =Azw+vw+5u§w<1—nR>+ul(lZ) $0un (3.4)
YOS i v (&
+ p <M0> nR{(v A)(p+2Vyd-y) — Vyo (u)}
- 1/2 2 7'(lz]) | n"(z]) Vyo 2 1(|2])
1 H < n n y =1
: <uo> (d)(IZI 2R 2R )+2 poo 2| pR )
+ g S (1 = 1R) + pg " Sous + g 2N (uz, ) (1 = nr), in £ x [to, 00)

P(z,t) = — ual/Qu;;(x,t) on 0 X [tg, 00),
Then, ¢ has to solve the problem

w206 = Ay + Budn 2 + Subug v + S + N (us, ¢) in Byg(0) x [to, 00).

5/2

Equivalently, multiplying by p°/#, ¢ solves

1/2
12006 =Dy + 5U + 5U* (‘:f) by + €,8) + Bolo+ u] (uy + €,8)  (3.5)

+ 1528 (y + €, 1) + N (1 2uz, 1 2¢) (uy + €,t)  in Bag(0) x [to, 00),

where By is the linear operator
o A ~1/2 4 4
Bo[f] = 5| (U = puHy + pJ[A] + p~ 23y, t)ns ) — U, (3.6)

3.0.1. General strategy for solving the inner-outer system. We now describe the method
we use to solve the system (3.4)-(3.5).

Firstly, for fixed parameters A, A, ¢,€ and inner function ¢ in suitable weighted spaces,
we solve problem (3.4) in 1) = ¢[A, A, &, €, ¢]. This is done in Section 4.

We insert such 1 in the inner problem. At this point we need to find A, A, ¢, € and ¢.
We make the change of variable ¢(7) defined by the ODE

D) _ 2e(m)
t(ro) = to,

that explicitly gives

t 1 d
7'—7'0:/ —= ds
to /‘(8)2

:/t12ﬂ+oﬂ»%

to Ho(s)
1 -2
= —puolt 1 1)).
- (®) 1+ o(1)
Expressing equation (3.5) in the new variables (y,7) we get the inner problem
0r¢ = Dy¢ + 5U¢ + H[d, v, 11, A, £,€](y,7)  in Bag x [10,00), (3.7)
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where
1/2

Hlbb, 1y i €, €)(y,7) :=5U<y>4u(‘jf) By + €, () (3.8)

+ Bolo + p] (y + €,6(7)) + p®/ %S (py + €, ¢(7))
+ N (g, 12 0) (y + €, 1(1)).

Let Zy be the positive radially symmetric bounded eigenfunction associated to the only
negative eigenvalue Ay of the problem

~Ayp —5U(y)*¢ = Xogp for ¢ in L=(RY).
It is known that A is simple and
o=V Pollyl
v
We solve (3.7) with a multiple of Zy(y) as initial datum, namely
&(10,y) = eoZo(y) in Bap, (3.9)

for some constant ey = eg[H] to be found. Formally, this initial datum (3.9) allows ¢
to remain a small perturbation of the ansatz along its trajectory. Indeed, multiplying
equation (3.7) by Zj and integrating by parts we obtain

120p(t) + Xop(t) = q(t),

Zo(y) ~ as |y| — oo.

where
p(t) = [ o0 %) dy. o) = [ H(p.0Zody.

The general solution p(t) is given by

t _ t
p(t) = el fo p(s) "% ds (p(t()) +

This shows that in order to get a decaying solution p(¢) (and hence ¢(y, t)), the following
initial conditions should hold:

to

o
plto) = [ o) Zo(w)dy = = [~ ls) Pa(s)e P s,

0
This argument formally suggests that, to avoid the instability caused by Zg, the small
initial value ¢(y,to) should lie on a manifold locally described as a translation of the
hyperplane orthogonal to Zy(y).
Another important observation is that, in order to solve the problem (3.7)-(3.9) we need
to constrain the right-hand side H to be orthogonal to {Z;}1 ;. Namely we need

/ H(y,7)Zi(y)dy =0 for t¢€[r,00) and i=1,2,3,4. (3.10)
Bar

Indeed, the elliptic kernel generated by {Z;}%_; is a subset of the kernel of the parabolic
operator

1200 = Ay + 5U (y)*9.
Hence we expect to have solvability of the inhomogeneous problem (3.7) with suitable
space-time decay if the orthogonality conditions (3.10) are satisfied.
As we shall see in Section 5, the Condition (3.10) with index ¢ = 4 is equivalent to a
nonlocal problem in A, for fixed ¢, £. This operator turns out to be similar to a Caputo
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%—derivative, and we develop a crucial invertibility theory in Section 8. In section 5 we
solve (3.10) by fixed-point argument and hence we find A, §.

A main ingredient of the full proof is the linear theory for the inner problem developed
in [5] and adapted in dimension 3 in [8].

3.0.2. Statement of the linear estimate for the inner problem. We recall the result on the
linear theory in dimension 3, proved in [8]. To state the result we decompose a general
function h(-,7) € L?(Bag) for any T € [19,00) in spherical modes. Let {9,,}5°_, the
orthonormal basis of L?(S?) made up of spherical harmonics, namely the eigenfunctions
of the problem

Ag2Vp + A0 =0 in S2,
where 0 = A\g < A1 =X =A3=2< My <.... We decompose h into the form

§:h, (ol 7y ) hsllslr) = [ 1r0.7)0,0(0) 0.

Furthermore, we write h = h° + h! + ht where

W= oyl 7), §:h|m () # §3h'” ()

We solve the inner problem (3.13) for functions h in the space X, 21, defined by

Xy o+4q :={h € L(Bagr x [10,00)) : ||h]] vota < oo}, (3.11)
wherer, a are positive constants and
2
1Bl yora = sup  7(1+ |yl *T )[Ry, 7).
T>70,yEB2R

We look for ¢ in the space of functions

X, = {9y, 1) € L¥(Q x [to,00)) : [|9]], < o0}

where
Il == sup  7R(r)"*log " (R(7))(1 + ly| )6y, )| + (1 + [y))IVyo(y, 7)I]
T>70,YEBoR
(3.12)
+ sup TVR(T)—?) IOg_l(R(T))(l—l- ’y‘4)|¢(y77—1) B ¢Eya 7—2>‘
T’y€B2R»Tla7—2€[T’T+1} ‘7—1 - 7_2’ §+E
+ sup TVR(T)—S 1Og_1(R)<1 + ’y‘5)’vy¢(ya7_l) B vly¢(y77_2)’
T>70,YEBaR,T1,72€[T,7+1] ’7‘1 — 7'2‘ 3te

Since in our problem h as in (3.7) decays as p! T (14 |y|*) ™t = 7711 + [y *) ! we fix

_ 144
UV = 3 -

Proposition 3.1. Let v and a be positive numbers. Then for all sufficiently large R > 0
and any h(y,T) with [[h| , 5., < 00 such that

h(y,7)Z;(y)dy =0 in [19,00), for i=1,2,3,4,
Bagr
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there exists ¢[h] and eg[h] which solves
0 = Ay +5U(y)* ¢ + h(y,7) in Bag x (19, 00) (3.13)
é(y,10) = eoZo(y) in Bag.

They define linear operators of h that satisfy the estimates

2
0.7 + (DI, S 7 [ ol (.14
R301(R,a) 1 n
11 |y’4 H 1” v,2+a + 1+ |y|a Hh || v,2+a |’
and
leo[h] v2tar
where
1 ifa>2, 1 ifa>1,
0%R,a) :={logR ifa=2,, 6Ok(R,a):={logR ifa=1,
R*>7® ifa <2, R'=® ifa< 1.

In order to make the system for (¢, 1)) weakly coupled, ¢ needs to be small at distance
y ~ R. For this reason we need to take a > 1 in the statement of Proposition 3.1. This
makes clear why we need to improve ansatz u; to us in Section 2.
We apply the estimate above with constants ¢ = 2 and v = 1 in the form

3
6 + (Lt ) Vyo(w.7)] < ], 4 F ) (3.15)
L+ |yl
and observe that
_ R3hm}o T VR llogR if |y| ~ R
H H vaT T ~ H H v,4 { T VR3 if ’y‘ ~ 0.

Observe that from (3.15) and parabolic estimates we also have the bound on the Hélder
seminorms in (3.12), thus

o]l < CliRll, 4 (3.16)

3.0.3. Spaces for the parameters. We introduce weighted Holder spaces for the parame-
ters. Let

Xtabo = {A € C(to,00) : |A[l 4440 <00},
where

A = A + t 7bA o )
| ?B};{ (@) Al o [tt—l—l} f;lg{'“() [Alo, ’[t’t“]}

and

M oo ftpra) = sup |A(s)],

se[t,i+1]
A(s1) — A(s
[A]O,o,[t,tﬂ} = sup [A(s1) (02)‘
s1,82€[t,t+1] |81 - 52’
S1#£82

We also define Xy ., := X} .., and

h = su h + [ho.o .
Il = S0P u(2) (1Al oo i 41] + oo s
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We look for A such that
Al

0,80, 1re T IAN g1y 61,0 < 1, (3.17)

for some positive constant , dg, 01, lg, {1 for i = 1, 2 to be chosen. We consider parameters
&1 such that

[[&]] f,1+k,1+e + H&H Bl4ke < b2, (3.18)

for some k£ > 0. The positive constants b;, for i = 1,2 will be selected as small as
needed.

Choice of constants. Here we select the constants
l07 l17 67 607 617 g, k7 57

which are sufficient to find the perturbation ¢ in (3.1) by the inner-outer gluing scheme.
We choose

o lo=l+0=g;
e Sp=U1+6—(1-6)(2) =5 — ey, where g1 = (1—%)26;
_ 2.
b l1_§7
o 61 =11 +6—(1-6)(1+2¢) =§ — 3, where &3 := (1 — §)2¢;
o k=ly;
° e:l—lo;
e B=35+0L+6.

This choices are dictated by the following constraints, based on the estimate of the
approximate solution, the characterization of the orthogonality conditions (6.1) and the
estimates in Proposition 6.1:
e from the outer problem we know that |1 (x,t)| < g/t R~1. From the nonlocal
equation (5.2) and [; < Iy we need |A| < [¢(0,%)|. This leads to the choice of lp;
e in (2.31) we chose 0 =2/9 and [; = 2/3 so that

1-0 1+1
541 <1, and (56( L +1>.
2 6
e From estimate (6.4), equation (5.2) and the bound on the e-Holder seminorm of

1 we get

1
1 p—1 _ 6
[A]%—i-e,[t,t-i-l] N WJ(OvT)]a,[t,t—f—l] S (,LL 'R )(MR)QE =p,

which gives do;
e similarly, from (4.13) the Holder estimate on the outer solution gives

[w(oa T)]%‘FE,[t,t—i—l} S /-‘Ll1+6(lU/R)_(1+2a)

and by equation (5.2) and estimate (6.5) we need [A]%-l—s,[t,t—i-l} S [Y]et,t41)- This
leads to d1;

e From (5.5) we need |&| + |&1] < p!th0, does the choice of k, which is consistent
with (2.30).

e the constant ¢ is chosen small enough so that d; is positive (¢ < 1/6 is sufficient).
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4. SOLVING THE OUTER PROBLEM

We devote this section to solve the outer problem (3.4)
Oy = Agtp + 0 + Vi + fl0, 0, A, A, €, €], t),  in Q x [tg, 00)
P(z,t) = —ual/QU3(m,t) on 9N X [tg, 00).
Y(w,to) = o(z) in €,

where ¢y(x) is any suitable small initial condition,

1/2
f(z,t) :/f1<:0> PR
1/2 ) :
+ul(£) nR{w—A)(wwmy)—vm-(i }
(N2 00z 0" UD)Y L  Vee 2 i (lz])
a (w) (¢<\ZI 12 R? * P2 R? >+2 |z pR )
+ 11 Sin (1= nr) + g > Sous + g />N (uz, ) (1 — ng)

and
V(x,t) = 5ui(l —ng).

Observe that
9
H -2
[V (2,t)] = [5us(1 —ng)| < R~ (4.1)
1+ Jy|?

Let
i (1) = o () /2 (1),
Then, the problem for ¥; becomes
01 = Dothy + Vr + F[, 6, A, A€, €] (2, 1) in © x [to, 00), (4.2)
P1(z,t) = g(x,t) on Q X [ty,00),
1z, to) = YP1(z) in Q
where
F(z,t) = po(t)/* f(z,1)
g(z,t) := —uz(z,t)
1, o) = po(to)*tho ().

In particular, in the proof of Proposition 4.1 we prove that for o > 0 sufficiently small

-2
[Fa, )] < pt/2Hheom2e <1+‘|‘y|2+> (43)
l9(a,0)] < pi. (44)
Thus, we firstly consider the linear version of (4.2). Assume
p’?
|F(z,t)] < va

and define ||F[| 5_, ., for some 3, a > 0 as the best constant M > 0 for the inequality
above.
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Lemma 4.1. Let I such that ||F|| 5_5 ., < 00 for some constants 8 and a < 1.

Furthermore, assume that ||e**g(s)|| o o0x( y < 00 for some a >0 and [|h| [y <

to,oo)

oo. Let yn[F, g, h| be the unique solution to
Ohy = Apy + Vpy + F(x,t)  in Q X [tg, 00), (4.5)
Pi(x,t) = g(z,t) on 0N X [ty,0),
U1(x,tg) = h(z) in Q.

Then, for B < 3/2 and b € (0, A1) and a € (0,min{a, A\; —€}) for arbitrary ¢ > 0, we
have

(1@ O S IEI s-2,042 + e TR poo gy + T[] e o

to,oo)
(4.6)

foralle = py+& € Q and t > tg. Furthermore, the following local estimate on the
gradient holds:

o
L+ |yl

prt

Va1 (@, )] SIFll p_garo———agz for Iyl <R (4.7)
1+ |yl
Also, in the same region, one has
142 .
i) a0 14 [ (BB 4 o [(HR)*) SIFN ggagon”  (48)
Proof. To prove (4.6) it is enough to find a supersolution to the problem
ph?
Onpa = Ay + || F| B-2042] e in Q x [to, 00),

o =g on 0N X [ty,00),
Yo =h in Q.

We use the notation ¢9 = 15[F, g, h]. Indeed, suppose that 19 is a supersolution to this
problem. By (4.1) we have

8—2
_ 7 _
[Vapa| S WR@O) 2,

and hence ||[Vis]| f-22+a < R(tg)~2 for to sufficiently large. Thus, we find that a

large multiple of 19 works as supersolution of (4.5). Firstly, let F, g = 0 and consider
12[0,0, h]. Let vo(x) be the solution to

— Agvg —bvyg =0 in Q,
vg=1 on 99,
for b € (0, A1) and define
2 = || e g ().
We claim that 1), is a supersolution for 30,0, h]. Indeed, we have
Oty — Dathy = ||| e 710 (—bug — Agg) =0 in 2 x [to, 00),
Po(x,t) = |h] e >0 on HQ x [to, 00),
ba(w,to) = [l o = h(z) inQ,
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where the last inequality is a consequence of the maximum principle applied to vg.
Secondly, we look for a supersolution to 2|0, g,0]. Let v;(x) the solution to

—Azv; —avy =0 in Q,
vi(z) =1 on 09,
where a € (0, min{a, \; — ¢}) and consider
ba = 1€ ()| e (o0x (19,00 € O 01 ().
We verify that
Ortha — Aghy = |[e®g| e ") (—awy — Avy) =0 in Q x [to, 00),
Yo, t) = [leg|| e 1) > g(a, ) on N x [tg, 00),
Dol 0) = € g()]| e oo eyt (@) = 0 in 2

where we use @ < a to get the second inequality and @ < A; to get the third one
again by the maximum principle. It remains to find a supersolution for ¥»[F,0,0]. Let
Yo[F,0,0] = e~ (=t0)qps where ¢ = 2vf so that
2
b3 = Dapg + ch3 + — 4.

We find a bounded 3 supersolution in case ¢ < A, that is 3y < A;. Consider

Wy = lb()(x;{)ﬁ(x;{) + (2, 1)

We need

atlpl - Axﬂr’l - Clj) 277

—2
—dPo + 1 2A by + g + — 4.9
tWo T W yWo 0 1+|y|2+a ( )

e

1+ [y| >+

with 1p3(z,t) > 0 on 9 x [tg, 00) and initial datum v3(x,ty) > 0. Suppose without loss
of generality that 2 C B; and take g as the solution to
2+

Apg = —
! L+ yl
1],)020 on 8Blfl'

From the variation of parameters formula

o[
o(lyl) = /|y| pQ/OHszm s ap,

1
< -

1 82 1
Onbol = 0y — 2/ ———ds S =,
|0nbo| t<u>,u 0 1+ s2ta SN 1+’y|a

+(1-n) + (Azn — Om) o + 20~ Vaun - Voo,

in Bu—l

we find
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and, if |z — ¢| < d for d fixed sufficiently small, we obtain
-2 -2

_ 10 w 1
—0ibo + p Ao + o + = - +O<)go
t Yy 1+ |y|2+a 1+ |y‘2+a 1+ ‘y|a

Now, we take {1 as the solution to

-2

Opy1 — Apby — Py = (1 - n)l—iffy’g—i_a + (Aﬂ] - atn)lb() + 2/1471V:t77 : Vyll)()

P =0 on 9N X [tg, 00),
ﬂ)l(x,to) =0 in Q.
We estimate the right-hand side by

-2

U
1—n)——5= S %
( )1+|y!2+a

[(Aen — Om)bo| < 1%,

|2:U’_1vx"7 ’ Vyll)o\ 5 Ma'
Hence, by comparison principle using ¢ < A; we obtain a solution 3] < p®. Thus,
inequality (4.9) is satisfied. Also ¥3 =0 on 0Q X [to, 00) and 93(z,t0) = mpo(x,t9) > 0.
We conclude that 13 is a supersolution and the bound (4.6) is proven. Now, we prove
the gradient estimate (4.7). Let

~(x — §
i) = 0 ; ()
where 7(t) = w(t)~2, that gives 7(¢t) ~ u=2. We can take 7(tg) = 2. Then, the equation
for v is

0rp = Dotp — 20y - Votp + 12V (ny + & ()0 + i F(uy + &, 7(1)).
Suppose that |y| < du~! for § sufficiently small. We have

1] g_2 4
WA (uy + €, 7(t)) S pf =22

MUyt
2y ) s 1
pwVpy +&71) S ——3-
1+ Jy|?

We proved the L*°-bound

190l .0 S IEN 52,0125
whenever [|[F[[ 5 5,5 < 00. We apply standard local parabolic estimates for the

gradient: let o € (0,1) and 71 > 7(to) + 1, then
Yyt (71, 5.y (0) + V6 (70 ) ooy 0)) S DI oo (B0 x(m—1,m1) + IF 1] Lo (Ba0)x (1 —1,m))
S u(t(r = D)l pos,ase

S )Pl s—.asor
In the original variables, for any ¢ > to + 1 we find

(R Va0 (Ol Bte) + RUIVaV (0| ooy S KIS pozape (410)
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By analogue parabolic estimates using ||V 1l ., < 0o we can extend estimate (4.10)
up to t = tp, thus the proof of (4.7) is completed. Now we prove estimate (4.8). We
consider the Holder seminorm

1] =  sup 11 (21, 1) —¢1(962,t2)1! _

T1F£T2€S,
w2 sy (Jor = 2l * + [t — 1o )
We perform the change of variable
wl(xa t) = ’(7;(27 T))
where z := x — £/(Rp) and 7 satisfies
dr 1

dt (uo(t)R(1)*F

T—Typ= / 2+ads
to

= C(uo R) <2+a>< 1+ o(1)).

that is

The equation for v is

- - - B2
0 =00+ Vi + (R L
¢ ¢ 17[} (/‘L ) 1 + |ZR| a+2

where

V(zr) = v(xu_;,f(tﬁm?.

We observe that the right-hand side is bounded by 1B, Then, applying local parabolic
estimate on ¢ we get

[V1(21,t1) — P1(x2,t2)]

[¢1]1+2e,1+25 Qx[ti4+1] — sup 1+2e
2 r1#£T2€1, 2 ¢ t
ti£to €[t t+1] |21 — 22| * + [t — t2

142¢

190, n), 1) — bz, 1), 7(t2))] ‘ (Ja1 =zl + 10— 7l )
(|21—Z2!2+|71—T2|)H26 (\w1—x2\2+|t1—tg|>

~ 1

S W’] 142¢, 1‘*‘225 1+2e

[(nR)*T 2
1

The same computation with Holder coefficient (2¢,¢) gives

ﬁ 1
[wl]%a ~ [(/LR)Q—HX]&'

S £l ,3—2,a+2#6

0

Remark 4.1 (case a = 0). If we let « = 0 then a slight modification of this lemma
is still true. More precisely, in estimates (4.6)-(4.8) we need to multiply the terms
involving || F|| 5_ by log(e + |y|). Indeed, letting a = 0 in the proof we obtain the
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bound Po(ly|) < log(e + |y|) which is given by a direct estimate of the variation of
parameters formula.

Let o > 0 arbitrarily small. We introduce the following weighted norms for ):

[0l o= sup [, )] 12 (1 + [y ) 0] (4.11)
TEQ,tE[to,00)

+osup|[Vath(a, )] (14 [y et ()]
TEBR,tE[to,00)

1+2¢, 2« —(l1+5)
50D {1010, 153 g (1) 24

+ sup {[w]Qs»EyBRX[t,tJrl] (NR)%MQO‘M*(’HHS) }7
t>tg

and define the space of function X,, = {¢ € L>®(Q x [tg,00)) : ||| .. < oo}. Now, we
are ready to solve the outer problem (3.4) for ¢ such that
¢l . < b, (4.12)

for some parameters satisfying (3.17) and (3.18).

Proposition 4.1. Assume that A, &, ¢ satisfy (3.17), (5.18) and (4.12) respectively.
Also, suppose g € C1() such that

%0l foe + I Vabo| Loo(Q) < e rto,

for some k> 0. Then, there exists to large so that problem (8.4) has a unique solution
v =V[A A& E @), and given a > 0 sufficiently small, there ezists Cys such that

Hw” %ok S eiﬁtOC**a (413)
where Cyy = Cyi(by1, b2) and by, ba are the constants in (3.17) and (3.18) respectively.

Proof. By a fixed point argument, we prove existence and uniqueness of 11 solution
of (4.2) in a space where estimate (4.13) holds. Thus, the same result applies to
using 1 = €74y and the relations (4.3), (4.4). Let T} the linear operator, defined by
Lemma 4.1, such that, for all f, g, h with bounded norms [|f|| 5_5 o190, l€®gll oo, [I17l &
respectively, T'[f, g, h] = 1 is the solution to (4.5).

Firstly, we define ¢)p := T'(0, —ué/Qu;z,, o). From the definition of us(x,t) we expand
for z € 9N and tg large, to get

1/2
_ Qs )2
uz(z,t) =p 12 -
e\ 1/2 €r —
043M1/2 1/2 93

—
(2 +le-g?)” el
ple -\
|z —¢|?
= u* % fp(x,t),

for a smooth bounded function fg(z,t) on 0 X [tg, 00). Hence, Lemma 4.1 gives the
bound

= agp! 2z — ¢

Wl < e o]l oo + e T Ug | oo (900 [10.00))
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for any b < A; and a < min{5y, A\; — e} for any £ > 0. We obtain a solution ¥ + ¢ to
(4.2) if ¢ satisfies

v =A®), A@W):=T[F(),0,0]
Let

B={y: |[¢],, <e "M},

where M is a fixed large constant, independent of ¢t and t;. We prove that A(¢) € B
for any ¢ € B. Firstly, we estimate F'(¢)) in the L*°-norm. From definition (4.11) we

apply Lemma (4.1) with 8 = 3 + 11 + 6 < 3/2. We recall that F' = u(l)/Qf where
fast) =g PN N 91t = 1m)

1/2 ] :
( POR + - 1<:0> nR{(v—A)(ngrzqus.y)_vygb. (i)}

)"

e () (o e i) <2 )
51
;

+ Ho 1/2 - nR) + /~L0 1/2 Sout'
We have 0" (y/R) # 0 and 1/ (y/R) # 0 only if |y| ~ R, hence we estimate
2 1+, p3 -2
—1( M -1 H R log(R) n(lz—§
i) enn S el 114
o S e e ) Y

-2
S e—ntoull+6 IOg(R)

1+ y|?

—2
< e—nto 1+6—2a 2
~ 24«

L+ 1y|
Using the bound on the gradient given in the definition of ||¢||, we obtain
(2P 2 (2] PR log(R) L,y (10 (12]))]
peol) 2y s B T
I poo |zl pR 1+ |yl PR
-2

< e—/it() I1+6—2a 1%

S el

: L
Similarly, also using the bounds on A, £ we have
1/2 ; o R)
o M) 0 < h+916g(R )2 —i—z L
i () ot < ol P log(R)n' () -~ — =
n
S ol (Rt L
< e*lito I1+6—2a :U’_Q )
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" R? log(R)

Shel A

‘/fl (;‘O)mnR{ (v=A)(@+29,6-9) ~ Vyo- (i) }

241,35 w2
S ol p? % log(R) ———

< e—nto l1+6—2a /*L72
~ 1 + |y‘ 24«
Furthermore, using Lemma 2.5 we estimate
‘Nil/zsout‘ Sw
< M3—a /’672
~ 1+ |y| 24«
< efm‘,o I1+6—2a M_2
~ 1 24a”
+ ly|
and
1/2 nios M
WS (L =nr)| ST ——
1+ Jy|?
< e—nto 11+26—2c ,u72 )
~ 14 [y >
Finally, using (4.11)
—1/2 ~ _ _ 2
g P N5 (s, 6)(1 = nm)| S 2l (™ 2gmm + pt ) (1 = ) (4.15)
-2
H —1y 4122 2
< = _
S Bl g + 1Y ") (1 = ng)
L+ [y ° ( " )
_9 1+ p3 2 28
p Ciy a2 TR log(R) 2 M
S——3|#m 1||<b||*<4 n’ + ¢l Lp——5 | (1 = 1R)
1+ [yl 1+ y| 1+ |y

-2

H 9 5 ) ) 6
S Tt (19120 g () ] 2450

—2
S emrtophto=e B (Jg)1 2+ |1y 2,)
1+ y|

Summing up these estimates we conclude that for a, k > 0 fixed sufficiently small

-2

- - 0
flx,t)] Se “toull+6 “log(R)———-
£ ) (B

Hence, we have
-2
F .T,t < efﬁto %+l1+672a 1% 7
| ( )| ~ H 1 + ‘y| 24+«
and Lemma 4.1 gives

1

TIF(),0,0]] S e Rtopzth+o-2a
[T[F(¢),0,0]] S e ™p R
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Since F' € L () x [tg,0)), classic parabolic estimates give 1) € CH"”HTU(Q X [to, o))
for any ¢ < 1 and from Lemma 4.1 we get

[l . < e oM (4.16)

for sufficiently large M. This proves A(¢) € B. Now, we claim that the map A(¢) is a
contraction, that is: there exists ¢ < 1 such that, for any 1,19 € B,

A1) = AW2)] 1 < €l = Y| o

Since 1 appears in F(¢) only in the nonlinear term N, we get

AW = AW?) = T[ualﬁfv(ug,uéﬂ (v +vn) + 1 ong)

- MEWN(U?,, M(l)/2 (”¢2 + ¢B) + M_1/2¢77R> 0, 0} .

From definition (3.3) we write

Mam :N(Ufsv H(l)/Q (wl + ¢B> + N71/2¢77R) - N’(U& ml)/Q (%DQ + ¢B) + lfl/zcﬁm%)]
iy (s + 61 7 20m)” — (7 4 20m)® Sl - 02))
iy 2 (s /20" 4 5 20m)” (s + 2% + i 2m)’

= 5(ug + 2 m) g (v — wQ)}

+ 5[ (ug + 7 2m)" — ud] (8" — v?)
=:Nj + Ns.
Recalling that g = % + 1 + 0 we estimate
N1 (2, 6)] S 20 g P |y — o) ?

St UB Yy — ol
-1 23

H I 2
N 1 — Pa|
1+\y!31+\y!2a” .

-2

< e—l-ito I1+0—2a 1% 1 — o
N I PR 11 — 2| .

and

INo(z,8)] < up™ 2ol — ol .,
p? phRlog(R) P
“aay® o 14t 1Bl°
to , li4+6—2 p?
Se ot Tt ——— [ — Yol
1+ |y| 24«
Finally, applying T[-,0,0] to F'(¢)) we obtain

1+0—2a

AW = AW S e oy = vl (4.17)

e lgr — |,
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Arguing as in (4.16), from (4.17) and standard parabolic estimates we obtain

M) = A2l .. < ellvn = ¥l ..

with ¢ < 1 if ¢y is taken sufficiently large. Applying the Banach fixed point theorem
we get existence and uniqueness of ¢ and hence of 1) = U[A, A& €, ¢] with estimate
(4.13) that is a consequence of estimates (4.6-(4.8). O

Remark 4.2 (Continuity with respect to the initial condition ). Given an initial
datum 1y Proposition 4.1 defines a solution to (3.4) 1 = ¥[¢y], from a small neigh-
borhood of 0 in the L>(2) space with the Ct-norm ||v|| o, + ||Vibo|| o, into the Banach
space L with norm ||¢]| ., defined in (4.11). In fact, from the proof of Proposition 4.1
and the implicit function theorem applied to 1o — V] is a diffeomorphism and hence
10 [08] = ORI . < e[l — W3l o + Vet — Vatidl ],

for some positive constant c.

The function ¢ = ¥[A, A€ €, ¢] depends continuously on the parameters A, A€ €.

To see this we argue similarly to [8, Proposition 4.3]. For example fix A €,€, ¢ and
consider

=M 9@ where ¢ =W[A; A& g, for i=1,2
for A1, Ay satisfying (3.17). Then 1) solves
Oh = A+ VMY + (V[A] = VIA))p® + F[A)] - F[Ag].

One can easily check each term in F' and obtain

[F[A] = FlA2]ll g_g 0q0 < cl[A1 —
with ¢ < 1 if g is large enough. Also, using (4.1) we find that

[VIA1] = VA2l g2 0t < cllA1 — A2l o0
Then, arguing as in the proof of (4.6), a multiple of ||[A; — Asg|| ﬁ’lo’éo’%Jrgll), where 1

2” lg,00°

is the supersolution constructed in Lemma (4.1), is a supersolution for 1. Similarly,
one obtain analogue estimates fixing the other parameters &, A ,&. Let us consider all
the parameters fixed except ¢. We define 1) = [A, A, €, €, ¢1] — [A, A, £, &, ¢o], which
satisfies the equation

O = AP + Vi + Flpi] — Flga).
For instance, we estimate

1/2
pt <,50> (61 — 92)0mr

-2

Sli(to)*og(1/u(to))][[ 61 — o] Ll +072 Jw

-2

l1+6— I
Scllgr — ¢ 1t QO‘W’

and, arguing as in (4.14)-(4.15), we obtain similar estimate on each term of F[¢1]— F[¢2].
Having the L®-bound, the estimate for the gradient and for the Holder norm of ¢
follow as in the proof of Lemma 4.1. We summarize the continuity of ¥[A, A, ¢,€, o1]
with respect to the parameters in the following Proposition.
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Prop051t10n 4.2. Under the same assumption of Pmposztzon 4.1, the function ¢ =
U[A, A €€, @] is continuous with respect to the parameters A, A&, €, ¢. Moreover the
following estimate holds:

H\Il[A(l)a A(l)vf(l)a 5(1)7 ¢(1)] - \II[A(2)7 A(2)7 5(2) ) 5(2)7 ¢(2)] H**
< AN = AP sy H A = APy
2 (1 2(2
+ 1€t = &y 1pap, 40 + IEEY = €My 140c + 160 — 6@

where ¢ < 1 provided that to is sufficiently large and the constants by, by in (3.17),(3.18)
are sufficiently small.

5. CHARACTERIZATION OF THE ORTHOGONALITY CONDITIONS (3.7)

Given the function ¢ = W[A, A, &, €, ¢] provided by Proposition 4.1, we plug it in
the inner problem for ¢. From the linear theory stated in Proposition 3.1, the inner
problem (3.7) with initial datum (3.13) can be solved if the orthogonality conditions

| HAACEAW ) Z dy =0 for t>t, and i=123.4  (5)

are satisfied. The aim of this section is to solve this system in A, ¢ for any given ¢ € X,.
The next Lemma shows that the orthogonality condition with index ¢ = 4 is equivalent
to a nonlocal equation in the variable A, for fixed ¢, &.

Lemma 5.1. Assume that A&, ¢ satisfy (5.17),(3.18) and (3.12) respectively. Let
=W\, A & b be the solution to problem (8.4) given by Proposition 4.1. Then, the
condition (5.1) with index i = 4 is equivalent to
(14 a[A, €](£)TIAJ(0,8) = g(t) + G[A, A, &, €, ¢](t)  for ¢ € [to,00), (5.2)

where J is the solution to

0T = AT +~1T — At)G(2,0) in Qx [tg — 1,00),

J(xz,t) =0 on QX [tg — 1, 00),

J(z,to—1) =0 n Q.
The function a is smooth and decays exponentially, with a[0,0] = 0. The following

estimate on g holds:

lg] f.lo—20,61, 142 +lgll #,lo—2a,00,6 < e oy,

and
IGIA, A, €,€, 0] a2 HIGIA AL €, Oz 0—20.00 < € foe  (53)

+ AN 41y 5, + €1l f1+0,3+e T €111 414002 + 10114}

Furthermore, we have
IGIAM, AM ¢ M) »(] — G[A@) A® @) @) ¢(2)]||ﬂ10 - 51 Lz (5.4)
<cf{[a) - IIW0 o,z + [AD = AP, 5

f(l)

2
+ 168 = M y1rig 40 + 51HMJ+M£

+[lg™ — 6@}
with constant ¢ < 1 provided that tg is fized suﬁ‘icz’ently large and b; small fori=1,2.
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Proof. We recall that
) 1/2
1630116, 7) =50 ) ' (22) sty +.4(7)

+ Bolo + ] (ny + &, 4(7)) + 1 Sin(uy + &, (7))
+ N (! s, 1 29) (ny + €, 1(7)).
Hence, (3.10) with index ¢ = 4 becomes

1/2
0= [ z4<y>sm<y,t>dy+u(’jf) [, 25U ) ey + .1 dy

+ | Zi(y)Bolg + w] (ny + &,t) dy + /B Za(y)N (" Pug, 120) (y + €, (7)) dy

Bar
4

=: sz(t)

j=1
We follow the analogue [8, Lemma 5.1] to estimate the terms i;(¢). Firstly, we analyze
11. We have

() =" [ Sin(y, ) Zaly) dy

Baor

1/2
:M</LO) /BQR 5U(y)*J (ny + &, 1) Za(y) dy

+ /B Ny )Z(y) dy

+ u/B Zy(y)5U (y)*ho(py + €,€) dy
2R
=:a1 (t) -+ CLQ(t) + ag(t),
where we used that the integral of Zy(y)U(y)*d,
for i =1,2,3. Also,

-1/2 .
! (l;o) al®) = [, SUW)' Ziy) Ty + £,6) dy

U(y) on Bsr(0) is null by symmetry

7

~TIN0.0) [ 5U()'Za(y) dy

Bagr
+ AN, - TAI.0] [ 5U) Zitw) dy
+ [ 5U W) Za(y) [T [A)(ny + €, 1) — JIAJ (&, 1)) dy

Bar
::an(t) =+ a12(t) =+ alg(t).
The main term of the left-hand side of (5.2) is given by

e (1+O(R™2) ani(t) = T[A)(0,1),

where ¢1(1 4+ O(R™?)) = me 5U*Z4 dy. To analyze a2 one can proceed by estimating
the right-hand side in L?(Q) of the equation for w(z,t) = J(z,t) — J(,t) and using
standard parabolic estimates we deduce

lara[A](t)] < p e,
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for some o € (0,1). To analyze a1 it is enough to proceed as in Appendix of [8] using
the Duhamel’s formula in R? and then decomposing J as a sum of a solution on R? and
a smooth one in 2 with more decay, obtaining

[ T[A)(y + &, 8) = TIAJ(E, )] = 1" || TTI()6(|y] ),
for some o € (0,1) and bounded function II, 6. Thus
ara[A](t) = p" oI [A(F).

for some function II;(¢) in (fp, c0) and constant o € (0,1). Taking into account the
behaviour of Ji,.Jo and ¢3 given in (2.36), (2.37) and (2.42) respectively, we have

ay = /B Z4(y)Ns(y, 1) dy

3 2
=/, 24{10 (U(y) +s(—pHy + pJ + M_1/2<Z>3771)) <—MH7 +pd + M_l/zqﬁsm) } dy
2R

_ 2 /B 10Z4(y)U (9)*QIA, €] (v, £) dy,

for some bounded smooth function Q[A, ¢](y,t) and constant s € (0,1).
Finally, Taylor expanding h~(z,§) at = &, we get

as =p /B Zu(y)5U () oy + €,€) dy
—uR () /B  Zw)Ut) dy

+13 [ Za(w)5U () (y - Daaho(uy™ (y) + £,€) - y) dy

:/1'21_[2 [Av 5] (t),

for some y* € [0,y] and a smooth bounded function IIs(¢). This gives the left-hand side
in (5.2). Now, we look at ia. We decompose

wE g Sig(t) = [ Za(y)SU () A€ A€ @)y + €,8) dy

:10[0,0,0,0,0}(0,15) Z4(y)5U(y)4 dy

Bor

+ [ ZawsU)*010,0,0,0,0)(uy + 1) = (0.0,0,0,0)(0, 1)} dy

+ [ Za@)sU @) {wlA, & A€ )y + €, 1) = $10,0,0,0,0)(uy + &, 1) } dy

Bar

= bl(t) + bg(t) + bg(t),
The term

bi(t) = 00,0,0,0,010,1) [ 5U(s)*Zi(y) dy.

is independent of parameters and, as a consequence of the Proposition (4.1), satisfies
the estimate

o1 ()| f.lo—20,01,1+e <C,
101 (D] 4 19—20,50,c < C-
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Applying the mean value theorem in by and using the gradient estimate of ¥ we deduce
that the same bound as b hold. This gives the main term by (t) 4 ba2(t) = g(¢) in the
right-hand side of (5.2). We analyze b3(t). We decompose

WA, & A€, ¢ —[0,0,0,0,0] =¢[A, &, A, &, 6] — [0, A, £, ]
+ (0,8, A, €, 6] — ¥[0,0,A,£, ¢
+9[0,0,€, A, ¢] — [0,0,0,A, ¢]
+1[0,0,0, A, ¢] — 1[0, 0,0,0, ¢]
+[0,0,0,0, 9] —1[0,0,0,0,0]

4
= Z Cj.
j=1
By Proposition 4.2 applied to each c¢; we obtain

103 (O] 40 —201,61.

vz + [[b3 () 4,10 —20,50,2 Se_mo{”A” 000,54 1A 41,6, e

1D e + 1600 115 + 11}
Also, again as a consequence of the Lipschitz estimates in 1) we have for example
103[A1] = b3[A2]ll 4 1y 906y, 1222 < CllA1 = Dol 5, o

for any Al, Ay € Xi1,,61,e and fixed A, ¢, A,f in the respective spaces. We analyze 3.
We recall that

. 4
Bofi + ) = 5| (U = ut + pI 8] 4 5P n(y ) = U] 6+ o,
which is linear in ¢, 1 and satisfies

|Bolg + pp](y + &, 1)| S

7
plo + il
AR

It follows that
lis(t)| Splloll T R3log(R) + [[¢]] , pu2pltT0—2
SNl 0730 4 ||| T2
<e—nto'ulo—2oc_

Then, the Hoélder bounds on 1 and ¢ in the respective norms gives estimate (5.3) for i,
and using Proposition 4.2 we also get the Lipschitz property (5.3) for i3. Finally, we
have

- 1
IV (s, 1 20) (uy + €,4(1))| < W@ + )’
2(1+l1) 6 2 2(11+5—a)
< ! 3<Mu R 108g &), o 2a>
1+ |yl L+ |yl 1+ |yl

—kto ,,lo—2a
Se oo,

and (5.3)-(5.3) for i4 follows arguing as for i3. Summing up the estimates we obtain
G[A, A€ € B](t) = bs + i3 +i4 as in (5.2) with the properties (5.3) and (5.4). O
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In the next Lemma we characterize the conditions
|z A GG dy =0, for te(toox) and =123
Bar

Since we proceed similarly to the proof of Lemma 5.1 recalling that Z; = 0,,U(y) for
i =1,2,3, we omit the proof.

Lemma 5.2. The relation (5.1) for i =1,2,3 is equivalent to

€1i = cipn(t) 10 + ©4[A, €, 9)(1) (5.5)
for smooth bounded function O(t) which satisfies
||®[A7 Aa gv éa §Z5] ||ﬁ,1+l0,%+5+||6[A7 Aa ga éa §Z5] ||Ii,1+l0,+a < e—nto { HAH #,10,00,€ (56)

aall FAV[EWAP NP o (Y[ PRUPAS S o /151 PRI 3 121 3

Furthermore, we have
< ef AW — A®)

1 2 (1 2(2
+161” = &7 vt 1 e + 1L = €7 g1 e

+116@ = 6@},
with constant ¢ < 1 provided that tg is fized sufficiently large and b; small for i =1,2.

t1+lo0,5+e (5.7)

#.00,00,5 +¢ + HA(l) o A(2)|| B.01,61,¢

6. CHOICE OF PARAMETERS A, ¢

In the previous section we have proved that if ¢ € X, and A, ¢ satisfying (3.17) and
(3.18) then the system of orthogonality conditions

Bar

is equivalent to the (nonlocal) system in [tg, c0)

(1+a[A, () T[A)(0,1) = g(t) + G[A, A, &, €, 6](8),
él,i = Ci,uo(t)2 (1 + @i[A,A,g,qu for i=1,2,3,

with g, G,a as in Lemma 5.1 and ©; as in Lemma 5.2. Next, we verify that this system
is solvable for A, ¢ satisfying (3.17),(3.18) respectively. This relies on the following
crucial proposition, proved in section 8, on the solvability of the nonlocal operator

JIA)(0,t) = g(¢) for g as in (5.2).

(6.1)

Proposition 6.1. Let h: [tg,00) = R a function satisfying |||, ., . < oo for some

constants € > 0 and c1, ¢y such that

C2,&

A1 —7

0<e<a <=5 (6.2)
Then there exists a function A € C’%‘Fa(to —1,00) satisfying
J[A)(0,8) = h(t) in (to,o0), (6.3)
where J[A] satisfies (2.85), and there exists a constant Cy such that
A f,c1,02,6+% < ChAl f,c1,¢0,6"° (6.4)
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Moreover, if |||y 1., . < oo then A € CYe(tg — 1,00) and there exists a constant Cy
72 )
such that

HAH ﬁ,Cl,CQ,E S CQHhH ti,cth%—‘,—g' (65)
Thus, the linear operators
T :Xﬁ7C1»0275 - Xﬁ,cl,cg,a-i—% (66)
h(t) — A[h](2),
and
. d
T1 = % ¢} T1 :Xﬁ,cl,cg,%-i-a — X}i,q,cz,a (6.7)

h(t) = Alh](2),
are well-defined and continuous.
We are ready to solve the system (6.1) in A, ¢ for fixed ¢ € X,.

Proposition 6.2. Suppose that ¢ satisfies (4.12). Then, there exist A = A[¢](t) and
& =¢[9](t) to the nonlinear nonlocal ODE system (6.1) which satisfy (3.17) and (3.18)
respectively. Moreover, they satisfy

IA[61] = Alalll 44y 50,14 < €lldr = 2l (6.8)
1A[p1] = Alall 41, 5,0 < €ldr = 2ll.,,
1€lo1] = ElDalll 4 141,14 < clldr = 2],

I€[@1] — €[02]ll ¢ 1110, < €llor — 2],
with constant ¢ < 1 provided that ty is fized sufficiently large and b; small fori=1,2.

Proof. Firstly, we observe that equation (5.2) can be rewritten as
TIANO,8) = g1(t) + G1[A, A,€,€,9](0),
where
(1) + G1[A, A& €] = (1+ alA, €)M o(1) + GIA, A€, €(1)], (6.9)

for new functions g1,G; satisfying the same properties of ¢g,G in Lemma 5.1. By
Proposition 6.1 we reduce the equation for A to a fixed point problem

A@) = FA)@), FANE) = Tlgu(t) + Gi[A A, €,€, ¢
where T} is defined in (6.7). Let
Ao(t) = T1[ga](t)
and define the operator £;[h] := T1[h — g1]. We use the notation
Li[h] = A[R](¢) := A[R](t) — Ao(2),
for any h € Xﬁ7l1’617%+€. Observe that
A[R]] = [Ao| + A[H]

—kto

l l
SN 12051 b e TR BN g1y 5014
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we consider the solution to the ODE

€1 = ¢uo(t) 7 + hy(t), (6.10)

Given hj € Xﬁ,1+lo,%+a

given explicitly by

o0 :cj/ o)1 ds+/ h(s) ds i= Tj+/ h(s) ds
t t t
In particular

€150 S o)+ po () ORI 4y 00 [SRIGIBYT G R L P
We define the vector

2(t) ;=€ — T = h(t),

where h = (h1, ha, h3) satisfies ||l 4 1, < oo fori=1,23.
) i)

I~ fl+og+e T G {Hh’H ﬁ71+107%+5}'

Let £, the linear operator defined as Lo[h] = = by relation (6.10) for i = 1,2,3. We
observe that (A,¢) is a solution to (6.1) if (A, Z) is a fixed point

where A is the operator
A()\7 E) = (Al P\? E’]’ AQ()\v E’)) = (Tl [Gl P\? E? ¢H7 ‘CQ[(:)P\7 ‘Ev ¢]])7

where

ChME, ¢) = Gl[Ao +/ dsT+/ =(s dsqs}

O\, E, ¢) ::G){Ao(t)+/t A(s) ds,T(t)+/t =(s) ds,gb],
with G; and © defined in (6.9) and (5.5). We show that there exists a unique fixed
point A = A[¢], E[¢] in
B ={(\E) € (L=(t0,00))" : [N g1, 6, + [El g 1430,14 < e7™0L}
for some L fixed large. Indeed, estimates (6.5) and (5.3) give
M1 E]l g, 6,0 < Coll GV E, Ol 14, 5,14

< 026_'“0{”7\” fl61e T 1= #,1+10,3+e + lloll *}

Also, from (5.6)
1A2[AElll 4 15,50, 1 12 < IO E, 9]

S Ce—ntg {

v T 1 g 240 + 61}
Then, we have to verify that A is a contraction. For instance, we have
AL E] = AL, Elll g, 5,0 = ITUG1 AL, ©, 0] — Gile, ©, ]| $1161, ke
< Co)|G1lAL, ©, 6] = Gi[A2,©, ¢l 1y 20,6, 1
< Cacl|Adr = Aol 4, 6

where Cy, ¢ is the constant appearing in (6.5) and (5.4) respectively. Since ¢ can be
as small as required provided that tg is fixed sufficiently large, we obtain that A; is a
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.7) we can estimate
© with respect to =,

contraction map. By means of the Lipschitz property of © in
As[A1, E1] — Az[Ag, Z] similarly. Finally, using the estimates on
we get

(5
@,

AR E1) — AL ED | < eflh = Aall g1, 50+ IE2 — Bl 5014

As a consequence of the Banach fixed point theorem, provided that L and ¢y are fixed

large, the map A has a unique fixed point (A, Z) in the space B. Observe that
A® = = [ Dulhl(s) ds = 73[n)

where T} is defined in (6.6), satisfies (3.17) thanks to (6.4). Also, the components of

vector &1 = [ E(s) ds satisfy (3.18). This proves the existence of a solution (A, §) to

the system (6.1) satisfying (3.17)-(3.18). With similar estimates on A[¢1] — A[¢2] and

El¢p1] — E[¢p2] using (5.4),(5.7) relations (6.8) follow. O

We observe from the proof that Ty, like an half-fractional derivative, loses 1/2-Hélder
exponent but we regain it through g, Gi as a consequence of estimates on ¥ from
Proposition 4.1. This is the main reason to put all the terms of S[us] involving directly
[ in the outer error (2.25). Indeed, to get A € C¢ it is crucial to allow H in (3.8) (and
hence Sy, in (2.24)) to depend on A only indirectly through ¢[A] or Ji[A].

Remark 6.1. By remark 4.2 the outer solution 1 = U] is smooth as a function of
the initial datum 1o, provided that ||vo|| o, + [|Violl o s sufficiently small. Thus, also
the parameters AN[wol, £[to] found in the previous preposition depend smoothly on 1y,
and from the proof we also obtain

1A[o] = Al oo < 1o — %5l oo
61 1200] — €186l o < N9 — Vi1l -

7. FINAL ARGUMENT: SOLVING THE INNER PROBLEM

This section provides the final step in the proof of Theorem 1. At this point, given ¢
satisfying (4.12), we have a solution ¢ = W[A[¢@], £[4], ¢] of the outer problem (3.4) and
parameters A[¢], £[¢] such that the orthogonality conditions (5.1) are satisfied. Thus,
to get a solution

U = ug + (g(.’E,t),
where ¢ is defined in (3.2), we need to prove the existence of ¢ such that ||¢||, < oc.

Proof of Theorem 1. We make a fixed point argument using the linear estimate (3.15).
Proposition 3.1 well defines a linear operator T : h — (¢$[h], e[h]) and it is continuous
between the L>°-weighted space described in (3.15). Thus, the solution ¢ to the nonlinear
inner problem satisfies

¢ = Ain(¢), where Ay (o) :=T(H|[P]). (7.1)

We claim that A;, has a unique fixed point in the space
B={¢ e L*(Baxr): ¢l < B},

for some fixed constant b large. Firstly, we prove
Iu1+ll
1

HIE A (0] Sero b
HIAE A ) S et

~
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We recall that
1/2

H(p, ¥, p, 1, €, €] (y, 7) r=5U(y)4u<l:f> Y(py + &, (1))

+ Bolo + p] (y + €,6(7)) + p®/ %S (py + €, ¢(7))
+ N (g, 12 0) (y + €, 1(1)).

Using the estimate on ¢ from Proposition 4.1, we have

1/2 14+ +6

4 @ < ,—kto 1%
wU@>u(M) Wy & S e

and from (3.6) we get

|Bo[op + pab] (ny + &, 4(7))| S

1 B
E \WHy + pd + =2 hsns| (¢ + )

1+
1+ p3 l1+6
<P (arermot 'R loi(R)ﬂL s §
1+ |yl 1+ |yl 1+ |yl
< e*lﬂto :U'l+l14.
1+ |yl

Recalling the estimates on ¢ at y ~ 0 and y ~ R given by the norm (3.12), using that
R = p~% with ¢ satisfying (2.28) we deduce

~ 1
IV (g, 1 20) (uy + €,4(1))| < W(‘f’ +)?
1 2(14+01) R6 1002 (R 2(l1+6—a)
S . M/'L Sg ( )+,U2M "
1+ [yl L+ [yl 1+ |yl
< g~ Klo ’ulHl 1
L+ |yl

By Lemma 2.5 we have the main error
1+

122 Sy + €, (7)) < L

1+ [y|*

Thus, provided that tg is large enough, we have
ITHI . <ClH] 4 < B,
for B chosen large, where C' is the constant in (3.16). This proves A, (¢) € B. Now, we

need to prove that for (1), ¢() € B we have

M1+l1
|H[¢W] — H[pP]| < cllo™ — @, ———,
1+ |yl

for some ¢ < 1. This is a consequence of Propositions 4.2 and 6.2. Indeed, for instance
we get

5U(9)" o e (5] — Ny 2]

=5U (y)“uo\ [eW’“)l - eAWﬂ P[pM] + Mo {ww(“] _ w[qﬁ@)]} ‘

1+1
ptth

<Scllptt) — o2 Tt "
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and similarly we get the same control on the other terms of H[¢(1)] — H[¢?)]. Finally,
since the operator 7 : X, 4 — X, is continuous, where X, 4 is defined in (3.11) for
a = 2, by composition with H : X, — X, 4 we obtain for By

i 6] = Ain[6®]1, < ello™ — 6P,

provided that ¢ is fixed sufficiently large. Thus, Ay, : B — B is a contraction map and
by Banach fixed point theorem we obtain the existence and uniqueness of ¢ € X, such
that (7.1) holds. Finally, we recall that the constant ey = eg[H] in the initial condition
d(y,to) = epZo(y) is a linear operator of H. The existence of ¢ immediately defines
eo. This completes the proof of the existence of u = us + ¢ in Theorem 1, with the
bubbling profile centered in z = 0 € €2 and parameters satisfying (1.7). O

Remark 7.1 (continuity of (¢, eg) with respect to vg). We found the inner perturbation
¢ and its initial datum ¢(y,to) = eoZo(y) based on the existence of the outer solution
U[¢] given by Proposition 4.1, which in fact can be found for any initial condition
Yo € CH(Q). Furthermore, as a consequence of the continuity of W] and Ag], &[]
found in remark 4.2 and 6.1 we obtain

leoltg] — eolw]] S (195 — V3l ooy — I1V05 — VR |-

Since we know that A, A, €, €, depends smoothly on vy, by the implicit function theorem,
we deduced that map o — (o], eotho]) is C1 with respect to g € CH(Q). This allows
to prove the 1-codimensional stability of Corollary 1.1. We omit the proof since it is
identical to that one of [5].

8. INVERTIBILITY THEORY FOR THE NONLOCAL LINEAR PROBLEM

In this section we prove Proposition 6.1. We deduce the result by Laplace transform
method combined with asymptotic estimates of the heat kernel p? associated to .
It turns out that the operator J[A] in (2.35) is similar to a half-fractional integral of
A. Thus, roughly speaking, we expect the inverse operator to behave as a fractional
derivative of order 1/2. In fact, the Proposition 6.1 can be seen as a precise statement
of this idea.

For later purpose we recall some facts about the Dirichlet heat kernel. For the
definition and properties we follow [12,18]. A function p{}(z,) continuous on Q x Q xR,

C? in x and C' in t is called Dirichlet heat kernel for the problem
Opu(x,t) = Au(x,t) in Q xR,
u(z,t) =0 on 9N x [0,00),
u(z,0) = up(z) in Q,
if, for any y € (), satisfies
Oip (z,y) = Agp'(w,y) in Q@ X RY,
pi(z,y) =0 inQ,
and

lim | p(z, y)uo(y) dy = uo(z),
t—0t JQ

uniformly for every function ug € Cp(£2). The existence of the Dirichlet heat kernel is a
classical result by Levi [24]. It has the following basic properties:
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i p?(aj,y) >0, p?(ﬂc,y) = p?(:%x) and p?(l’,y,t) =0 if x € 9
e for any y € Q the function p{*(z,y) € C® (Rt x Q);
e it satisfies 0;pi*(x,y) = Aupii(z,y) for (z,y,t) € 2 x Q@ x RT and ;
o pH(x,y) =0 for x € OQ or y € O
Also, from [18, Theorem 10.13] and its proof, the heat kernel p{(z,y) admits the
expansion
pi(a,y) =D e () dr(y), (8.1)
k>1
where A, is the k-th Dirichlet eigenvalue of —A on Q and ¢y, the corresponding eigen-
function and also for ¢ > 1 and n > 1 (see [18, Remark 10.15])

(e 9]

S sup [¢(x)on(y)] < oo (8.2)

k=n z,y€N

The series (8.1) converges absolutely and uniformly in [e,00] x Q x Q for any € > 0, as
well as in the topology of C*°(RT x Q x Q).

Before starting the proof of Proposition 6.1, we recall an estimate on the short time
behaviour of the heat kernel p$!(x, ) due to Varadhan [33, Theorem 4.9]. We will use it
in the following form as in Hsu [22, Corollary 1.6].

Lemma 8.1. Let ¢ > 0 fized such that B:(0) C Q. Then for y € B:(0) we have

3 _s2
py (0,y)(1 =€ 5) < p(0,y), (8.3)
where § < &g is independent of y and
0o := d(09,0B;) = i —b| > 0.
0 (09, 05) 4CO0bEDB. (0) ja =9
Proof. Recall the useful identities in [33, p. 675]
lim sup 47 log (p (2, 9) — pP(2,9)) < —daalz,v)*, (8.4)
7—0
lim 47 log(p;* (2,y)) = —d(z,y)?, (8.5)
T7—0

where
daﬂ(wv y) = zlenaf;l{d(xj Z) + d(z7 y)}

From (8.4) there exists 7 such that for 7 < 7y we have

R3 _ g (z.1)?

Pr (Ivy)_e 4 Sp?(xvy)v
for all z,y € Q. In particular, fix x = 0 and consider y € B.(0) C € for a small € > 0.
Then we have

doq(0,y) = € + do.
Thus for y € B.(0)

2509 2482 _dow? %
e 4T S e 4T S e 4T e 477

and (8.5) says

2
PE(0,y) = e G O RPN
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Thus, we have for 7 < 79 small and y € B.(0)

52

3 _ o
pr (0,9)(1 — e %) < p(0,y), (8.6)
for any § < §p independent of y. O

We mention that the uniform bound (8.6) holds for y ranging in any convex subset
of the domain, see [22, p.374-375]. Also, for any 7 > 0 and z,y € Q we have the upper
bound

3
p(z.y) < ¥ (2,y), (8.7)
as a consequence of the maximum principle. Thus, Varadhan’s estimate (8.3) is a
precise statement about the idea that for small times the heat kernel "does not feel the
boundary”. We refer to Kac [23] and Dodziuk [12] for statements of the same flavor. In
the proof of Proposition 6.1 we need the following lemma.

Lemma 8.2. Define the function
1) = [ pH0.9)G (0, 0) dy,

where p!(z,y) denotes the Dirichlet heat kernel associated to Q and G~ (x,y) the Green
function of the operator —A —~ on . Then I(T) has the following asymptotic behavior:

O(e M7 for T — o0,
I(r) = () » N (8.8)
1T+ Cou/T+ 37+ O(m°/%)  for T —07F,

for some constant c; x fori=1,2,3.

Proof. Step 1 (Asymptotic for t — 00). We recall that the heat kernel p(z, %) admits
the series expansion (8.1) which converges absolutely and uniformly in the domain
[e,00) x Q x  for any € > 0, as well as in the topology C®°(RT x  x Q). By the
uniform convergence with respect to y € () we obtain for 7 > 0

1) = [ 30 9u0)0n(0)C 0 dy 8.9)
Q=1

= 26””/ or(y)G4(y, 0) dy.
k=1 @
Multiplying equation (2.7) by ¢x and integrating by parts we get
Y /Q G (2, 0)p () dx = /Q G (2,0)Adn(z)
_ / 1 (2) AG (., 0) dz
Q
= —’y/QGW(:L',O)¢k(:U) dx — c3 /Q or(z)0o(x) dx

= _V/QGW(% 0)¢r(x) dx — c3¢1(0),
that gives

o1 (0)?
M =7

/Q G, (x,0)¢x(z) da = c3 (8.10)
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We plug (8.10) into (8.9). Finally, from (8.2) we obtain the asymptotic behaviour (8.8)
for 7 — 0.

Step 2 (Asymptotic for t — 01). Firstly, we split
I(7) :/Qp?((l,y)‘ | dy+/pf (0,y)H,(y,0) dy

=: (1) + Ix(7).

We analyze I1(7). For the region B.(0) we invoke Varadhan’s estimate (8.6) and we
obtain

_lul?

P 0,y e a1 e
/Bg(m \(yl )dyZ/Bg [47r7]“°’/2mdy(1_€ ™)
62
—4/ 3/2pdp e )
eve o £
m/ rdr(l—e 7)

2
]. 1 — 675 &2
= 1—e
471'7'( 2 ) ( )

()

for some ¢ > 0, and using (8.7)

Q R3
/ p(0,y) dy < / pr (0,y) dy
L0 [yl B.(0) Yl

<L ot
~ 4/rT VT
From these bounds we conclude
Q _c
p7(0,9) 1 e
T dy=-——4+0| —
/5(0) Y| dy/7T VT

In the region 2\ B:(0) by (8.7) we get

y (8.7
p(0,y) g2
/ édygf_?’/z/ e s pdp
o\B.(0) |yl .

We conclude that

2(0, 2(0,
II(T):ag/ p7(0,9) dy+a3/ pr(0.9) 4
aO\B.(0) Y| B.0) |yl
Cl,x e r a3
= ol 2 0%, crp= .
ﬁ + <\ﬁ> as T — , 1, 4\/ﬁ

Now, we estimate the term I5(7). We treat it similarly to I1(7) but we get a lower order
term in the expansion since H.,(y,0) is not singular. We use decomposition (2.10) for
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H.(y,0) and we consider the integral over B¢ (0). Using the cosine expansion we get

0,(y.0) = a2yl +O(y|*).

Thus, we compute the integral associated to the first term with Varadhan’s estimate
(8.3) and the upper bound (8.7):

ly|2
1 —cos(yAlyl) 7/ e~ i .
Q
— Y~ dy=a3z; — |yl dy(1 T 11
/BE(O)PT(.%O) Iy] Yy = a3y 20 [47W]3/2|y| y( +0<e )) (8.11)
2
P

= dra [ e o1+ oc7F))
= 471043\5% /OZ\EE e B dr(l + o(e*$>)
= s {1+o(e7%)

for an explicit constant cs .. The same computation on the remainder O<|y| 3) gives a

term of order 0(7'3/ 2). Another Taylor expansion at y = 0 gives

1
hy(y,0) = Vyh,(0,0) -y + Sy D,y h~(0,0) -y + O(|y| 3)7

where Dy, h+(0,0) denotes the Hessian of h.(-,0) evaluated in y = 0. Integrating the
first term on B.(0) against p{’(0,y) and using (8.3)-(8.7) wee see by symmetry of the
integrand p]FS (0,)Vyh~(0,0) - y that the integral gives an exponentially decaying term.
The second term in (8.12) can be treated similarly to (8.11) and gives a term of order
c3+7(1 4 0(1)) for some explicit constant c3 .. The integral of p*(y,0)H,(y,0) on the
complement can be treated as before and gives an exponentially decay term for 7 — 0.
Thus we conclude that

Io(T) = co /T + C347 + 0(73/2) as T — 0%,
We conclude that I(7) = I1(7) 4+ I>(7) has the asymptotic (8.8) for 7 — 0. O
We start here the main proof of Proposition 6.1.

Proof of Proposition 6.1. Firstly, we observe that J(0,ty) = h(tg) is in general
not compatible with a null initial condition. For this reason it is natural to solve the
problem for J starting from ¢ = to — 1. We look for A(¢) for ¢t € (tp — 1,00). The
function 7 is a solution to the problem

WT = DT +7T — AMt)G(2,0) in Qx (t — 1,00),
J(x,t) =0 on 02 x (to — 1,00),
such that
J(0,t) = h*(t) in (to,00),

where

* _ h(t) te [toa 00)7
" (t) B {hext(t) te [tO - ]-a 750)a (812)

67



and
hext (t) = n(t)h(to),
where 7 is a smooth such that n(tg — 1) =0, n(tp) = 1 and
[n(to — v)hlto) — hto + )| < [Ble o o1yt

for any v < 1. This choice gives an extension h*(t) € C¢ with

||h’*” f,c1,c2,(to—1,00) S HhH f,c1,c2,(t0,00) (813)
Let s :=t — (top — 1) and for s € (0, 00) define
Jo(z,s) :=e T (x,s+ (to — 1)), (8.14)

Bs) == —Als + (to — 1)),
hy(s) := h*(s + (to — 1)).
The function Jj is a solution to
DsTo(x,8) = ApJo + e 7 B(5)G(2,0)  in Q x (0, 00)
Jo(z,s) =0 on 90 x (0,00),

such that

Jo[B(0,s) = hy(s)e™ 7 in (0, 00). (8.15)

Imposing the initial condition J(z,t9) = 0 in Q, that is Jy(x,0) = 0, by Duhamel’s
formula we have

JolB1(0,5) = / T B (s — 7)1 (r) dr, (8.16)

0
where

I(r) = /Q p2(0,9)G- (y,0) dy,

and p$(x, y) denotes the heat kernel associated to . The asymptotic behaviour of (1)
is given by Lemma 8.2. We denote the Laplace transform of a function f as

F© = [T ss)as

We refer to the book [13] by Doetsch for classic properties of the Laplace transform.
Applying the Laplace transform to (8.16) and using (8.15) we obtain

ho(& +7) = BE+I(E)
= [(€+7BE+7) - BO)|I(9),

and hence
Ble+7) = ff?y R+ 7)), (8.17)
where
. . 1
© =i
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By definition we have

I(¢) = /Ooo 6 1(s) ds,

that is well defined and analytic in the right-half plane Re & > —\; thanks to Lemma
8.2. By expansion (8.8) we have

Ve

L for s— 0t
_551 < _ )
€ I(s)] S gls), g(s) {e_(weg)s A

and ¢ is integrable in R™ if Re{¢} > —\;1. Thus, using (8.9), in any half plane Re& > ¢
where ¢ > —)\; the dominated convergence theorem applies to get

I(€) = /OOO e I(s)ds

= Ak
o0 0 2 o)
:Z¢k( ) / e fse Aksds
= M= Jo
#r(0)2 1

k=1
At this point we can extend I(€) analytically from {¢€ € C: & > —\;} to C\ {132,
Let £ = a + ib and rewrite the series as
Z 1
)\k -y )\k: +a+ib

)\k+a 1
—1b .
ZAk* )‘k‘+a +b2 Z)\k‘i >‘k+a) +b2

Since the coefficients of the series are positive, I({) = 0 implies b = 0. Plugging b =0
into the first series we obtain that a root § = q of [ satisfies

Z /\k - )\k +a -
Hence, we deduce that the set of zeros of I is given by a sequence {—ax}p2, where
ax € (Mg, \k+1). In particular,
I(€) #0 for Re&> -\ (8.18)

By standard argument [13, Theorem 33.7] on the Laplace transform, using (8.8), we
have

I( ) = c1aV/TE 1/2—|-c \Qf

in the half-plane Re & > —A;. Thus, in the same half-plane we have

5 _ 1
7O =i

=1 &V 4 do 7 4 ds T2 O(E7?) as €] — oo

€32 403,62+ 0(E%?) as €] — o0,

(8.19)
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Figure 1. Contour integral Cp.

As a consequence of (8.18), 5(&) has a unique singularity at £ = — in the half-plane of
convergence. By [13, Theorem 28.3] the function (&) can be represented as a Laplace
transform of a function.! Finally, we compute the inverse Laplace transform by means
of the Residue theorem defining the rectangular contour integral Cr in Figure 1 as
suggested in the proof of [13, Theorem 35.1]. For later purpose we observe that, looking
at the contour integral Cg, the constant a € (7, A1) can be taken arbitrarily close to A;.
An application of the Riemann-Lebesgue Lemma (as in [13, p.237]) implies

lim STF(E)de =0,
R—o0 Lor
lim STF(E)de = 0.
R—o0 Lir
Since
1
= lim — STE(€)d
o(r) = lim —— /LLRe (&) d§
we obtain

o(t) = Res(eft&(é), —v)e*’*t + ]%gnm% L ;+RR 5 (&) de. (8.20)

We easily compute

Res(e§T6(f), —’y) !

A R

We cannot have an estimate directly on 3 at this point. Indeed, (1(£))
of a function since diverges as |{| — co. However, it still can be represented as the Laplace transform
of a distribution, see [13, Theorem 29.3].

= lim
§——

~! is not a Laplace transform
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Now, we analyze the integral (8.20). We decompose

lim B S5 (€) dE = ie™oT /R e {~( a+iy) dix da.1
o = o(— — —
R—o0 J_q—iR -R Y V—a+tiy (—a+iy)3/?
_ d&*]
(—a+iy)?

+ieoT / Ve iy,
L Vatw

iR d2
B
i (—at iy W

iR d
. 3%
+ie” " / ——dy
—ir (—a+iy)?
It is easy to see (by means of another contour to avoid the standard branch) that, up

to constants, the last three integral are respectively the inverse Laplace transform of
€71/2 ¢73/2 €72 The integral

R, d da ds «
R(T ::/ ezyT[(} —a+1iy) — Lt — — = - — ]
(™) ( y) vV—a+tiy (—a+iy)3?2 (—a+iy)?
is absolutely convergent thanks to the second order expansion of 5(&). In fact, obtaining
the absolute convergence of R(7) (and R'(7)) is the main reason to use the sharp

Varadhan’s estimate on the heat kernel pi*. Thus, from (8.20) we obtain

o(T) = coge T+ 77 {f}; + Co /T + C3 47 + R(T)],

for some constants ceo, Cj« for i = 1,2,3, where R(7) is bounded. This gives the
asymptotic behaviour

oo T+ 0(e™)  for T— 00,

o) = { :

&t o+ O(YT) for 7 0T,

for any a € (7, A1). For later purposes, we observe that o(7) is differentiable. Indeed,
differentiating R(7), we still obtain an absolutely convergent integral thanks to the
full expansion (8.19), and an application of the dominated convergence theorem gives
o € C! with

'(r) = —Yeooe T 4+ O(e™7) for 7 — oo,
B —(201,)" 321+ 0(1)) for T 07,

From (8.17), taking the inverse Laplace transform of both sides, we get
B = B0+ [ e s - na(ryar,
that is
8(5) = 8(0) + [ T a(rhi(s — ) dr

71



Proof of (6.4). We rewrite this formula as
B(s) =B(0) + coo/ hg(7) dr —|—/ hg(7) [67(8_7)0(8 —7)— coo} dr
0 0
[e.e] [e.e]
= [80) + e [ By dr| - e [Thir)ar
0 s
—i—/ hg(T) [67(5_7)0(3 —7)— coo} dr.
0
We choose 5(0) = —coo [y~ h(T)dT. We reduced the problem to estimate
Bi(s) = —coo/ ho(T)dr,

Ba(s) = /OS hy(7) [67(5_7)0(5 —7)— coo} dr.

We recall that the extension hf(s) has been selected so that (8.13) holds. Here and in
what follows, without losing in generality we assume the same value ¢ = ¢; for ¢ = 1, 2.
When we estimate the L>° norm of 8 we will only use the L* norm of Ay and hence
we get the same L°-weight constant ¢;. Instead, when we estimate the C'/2¢ we
need both the L*> and C° norms of hj, thus we will get the same C*-weight constant
co = min{cy, c2}. Thus, conditionally to ¢; < (A1 —7)/(27), the weight constant ¢; with
¢ = 1,2 for B and h{ are respectively the same. We proceed with the L estimate of f3.
We have

[e.9]
B S Wil e [ e dr
S
S I3l ctols)

Using hypothesis (6.2) and selecting a close enough to A; so that

A —
c<a< 127 T (8.21)

we get

S
Ba(5)| S Wil | e 7ee T ds
"= O
5 ||h8 ” e 56_ min{2vyc,a}s
S ol 4 c.cto(s)”.
Combining the bounds on 51 and 52 we obtain
1B(s)| S NAGIl 4 c.crt0(5) (8.22)

Now we estimate the (1/2 + ¢)-Holder seminorm. In the following it is enough to assume
€ (0,1). We have

Bi(s)— prs—m)| <| [ hi(r)dr
5—1)
<15 o ot (5)In)

% 1
o 1 (TR M L

(8.23)

Let
(1) :=€"T0(T) — oo
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Following the classical fractional integral estimate of Hardy and Littlewood [21, Theorem
14], we decompose

Ba(s) — Ba(s — 1) /hOS—T dT—/O_h;;(s—n—T)Z(T)dT
=i(s) [y ar = [ Tits) — ils — riCr) dr
—nj(e) [ ar = [T (s =0 =) = hy(o)lir) dr
(o) | :7 trydr = [ () — s = () dr

- /ns [ho(s) = ho(s — 7)J(U(T) = U(T —n)) dr
=:A1(s,m) + Aa(s,m) + As(s, ).
For s —n € (n,1) we have

1
4 Sl [ Zar

s—n /T
SIhg(s)] (577 = (s =m)'?)
< [hiloesssn s 20
S RG] g cta(s)n 2,

For s —np > 1 we get

Al < his) [ i)

S
Sas)| [ e
51
S lho(s)ln
. 1
S G g e eres) 0=
For s —n € (0,7) we obtain

A1l <|hy(s —dr
Al ol [

. 1
S[hO]O,s,[s—n,s—n—H] ’5 - "7‘ 67’2
. 1
SIAGI ¢ cra(s) 2T
Now we estimate Ay. We have
n
|42 < HhSHﬁ,c,gu(S)c/O |7 i(T)| dr

n 1
< h* C/ g d
S Bl o) [ 7 dr

1
S Gl cem(s)nz e
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Finally, we estimate Az. Using the L* norm of hf for 7 > 1 and C* seminorm for 7 < 1

we obtain

sl S [ Ihi(s) = s = 7)1 i)~ 1 = )] d
n
Sl [ 171710r) = U = )| dr
n
Sl e [ 171512 = (= )2
n

S
Sl oo [ 171752 dr
n
« 1
S/Hho” ﬁ7c75772+€
w 1
SIhgll g e em(s — 1)n2"e
" 1
SIhgl g e cma(s)n2 e,
Combining the bounds on A;, Ao, A3 and we obtain
B2(s) = B2(s —n)| < o
Finally, from (8.22), (8.23) and (8.24) we obtain

18I e, 46 S Iholl e

Going back to the original variable ¢t using (8.14), we obtain

1A e 2 ve S Mol gees

and recalling (8.13) the proof of (6.4) is complete.

1
2te.

IONYI]

We proceed to prove the second part of Proposition 6.1: in case h € X

is differentiable and A € Xi e

(8.24)

O
then A

ez +e?

Proof of (6.5). In the same notation of the previous lemma, we need to prove that

B1(s), B2(s) are differentiable and estimate the derivatives. Since

Bi(s) = — / " i (r) dr,
we clearly have 8;1(s) € C1(0,00) and B{(s) = cxoh(s) € X

1
ﬁ7c7§+8

by hypothesis. To

analyze fa, following [21, Theorem 19|, we introduce for any ¢ > 0 the function

Bao(s) = /0 T e ()i(s — 1) dr

so that fa20(s) = B2(s). Since o(7) € C1, we can differentiate (3 (s) to obtain

83(5) =hils = (e + | TR (s — 7 dr
= [hi5(s) — his(s — )li(e) + 15 — B (s)

+ /0 i) - BN (s — ) dr

Observe that we can choose the extension h such that hf(s) = o(s'/?) for s — 0. Since

h§ € Xy 1o when € — 0 the right-hand side tends uniformly to

[(s)ho(s) + 9(s),
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where
o(s) 1= [ [h(r) = ki) (s = 7) ds.
By hypothesis and the choice of the extension we have I(s)h(s) € Xﬂ’cé%. Also, the

1
function g(s) is continuous since hjj(s) € Cz7=.

Pa(s1) = Pa(s2) = lim (52 e(s1) — Ba,e(s2))
= lim ﬁz e( )

e—0

- (i) o),

1(s)hi(s) + g(s) = Ba(s).
It remains to prove that g(s) € Xj ... Using the asymptotic of ¢’(¢) and the assumption
(6.2) with a as in (8.21) we have

$ 1
1905) S[lo 1 o1 /_ll/(s —)|s— 7|2t dr (8.25)

hence

s—1
1l e / (s = () dr

/ \w|_1+€dw+/ —2yeT o= (s—7) dr

<I| ﬁ,c,%%u( )

We write
(s =) = 9() = [ In(s) = b (s = 7y dr = [ [hs =) = oW (s = =) dr
= [ 10(s) (s — w0t ) du — [ s )~ s — ] ()
— - / (h(s =) = (s =] [I'(u = ) ~ U (u)] du
+/77[h(s)— du—i—/ h(s — w))l'(u) du

::Bl(sa 77) + 32(87 77) + B3(87 77)
Using again assumption (6.2) we get
1 1 _ _
B1] Sl o3 egorag [ =l 3= )2 — w2 du
7
e—a(u—n) — e

s
+ ||h|| ﬁ,c,%Jre/l :U’(S - U)U n du

Sl gy ens)
Also

|Ba| < |hi(s) — his(s — ) n~ /2
(8)nS,
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and

n
Bol S gl g on(o) [ ut du

€

S HhSH ﬁ,c,%+5ﬂ(3)c77 .
This proves
l9(s) = g(s =m)| S () N1l e, 1 4 clml =
Combining it with (8.25) we obtain

||g|| mc’g S ||h‘8|| jj,c,%—{-g‘
Summing up the estimates for 1(s) and £5(s) = I(s)hi(s) 4+ g(s) we obtain
18" () 4 e S M5l g1 4
Finally, in the original variable ¢, using (8.14) and (8.13), we obtain the bound (6.5). O
Remark 8.1 (the initial datum Ji(z,t9)). From the proof of Proposition 6.1 we
have J (tog,x) = fol h*(s)I(x, ™ — s)ds where h§ is an arbitrary smooth function with
h(t) = o(tY/?) for t — 0 and k(1) = h(ty), connecting to h(t) at t =ty to maintain
the C* regularity of h. We observe by estimate (2.2) that
11 t0) | ey S ITTAIC t0) | poe gy S 1A ()] S po(to)™

Thus, our initial datum remains positive provided that ty is fived sufficiently large.

APPENDIX A. PROPERTIES OF THE ROBIN FUNCTION H,(z,z).

In this appendix we prove some properties of the Robin function that we use in our
construction. We recall that the Green function associated to the operator —A — ~
satisfies

— NGy (x,y) — Gy (2, y) = dmazd(z —y) in Q, (A.1)
G(,y) =0 on 09.

As usual, we split

Gy(z,y) =T(z —y) — Hy(z,y) where I'(z)= EC—T,
where the regular part H,(z,y) satisfies
- AIH’Y(wv y) - ’YHV(I',ZJ) = _’YF($ - y) in Qa
H’Y('vy) :F(_y) on aQ?
for any fixed y € Q. We recall (from [7] and reference therein) the following properties
of Ry(x) := Hy(x,x):
(1) Ry(x) € C(Q)
(2) 0yR,(x) < 0 and belongs to C*>(Q2).
(3) Ro(x) satisfies

Ry(z) = (14 0(1)) as d(z,00) — 0.

1
2d(x,00)
(4) for each v € (0, A1) fixed, Hy(z,z) — 400 as z — 0N.
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Lemma A.1 (Behavior near the first eigenvalue). The function H.(x,y) satisfies

w33
AL —7

H,(z,y) ~ — d1(y)pr(z)  as v/ A,

where ¢1(x) is the first Dirichlet eigenfunction of —A in Q with ||¢1]| 5 = 1 and ¢1(z) >0

in €.
Proof. We decompose
Hy(az, y) = a(y)¢1 (x) + H()(HZ, y) =+ hl,“/(xv y)

where
aly) i= [ (H,(@.9) ~ Holw,))61 (@) dz,
and Hy satisfies

AyHo(z,y) =0 inQ, Hy(z,y) = ﬁ on 0.

Thus, for any fixed y € Q, h -(z,y) is the solution to
Azhiq(,y) +vhiq(2,y) =1Go(z,y) + a(y) (M —7)d1(z) in Q
hi,=0 on 0fQ.

By the definition of a(y) we have

/th(ﬂ%y)%(lf) dr = /Q (Hy(w,y) — Ho(x,9))$1(x) dz — a(y)||é1]| 5
= 0.
Testing (A.1) against ¢; we get

_ azdmo(y)
| o) dr = ST

Also, testing (A.3) against ¢1 and using (A.4) we obtain
0= (=M +7) [ by (@ y)ér(a) de

_ 7/ 1(2)Go(z, y) de + a(y) (M — 7).
Q

Thus, we have

o) = —3— [ Golaev)er (@) e

_ 7 dmazén(y)
AL A -y

and plugging (A.5) in (A.2) we obtain

H,\(z,y) = o1(y)1(z) + Ho(z,y) + ho (2, ).

v 4dmas
A AL =y

(A.2)

(A.3)

(A.6)

We notice that only the first and last term in the right-hand side depends on ~. Hence
we just need to prove that hy ,(x,y) is bounded as v — A]. This is a consequence of
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the Poincaré inequality for functions orthogonal to ¢;. Indeed, expanding h, , in the
L%-basis made of Laplacian eigenfunctions {¢;}2, we get

9k G5 = [ oo, p)(~Ashs s (@.9) da

:/Q (Z ozk(?J)%(:l:)) (Z ak(y)qﬁk(x))\k) dr

k>2 k>2

=" ()M = Xl (9l 5,
k>2

where
. (y) :/Q%(w)hlﬁ(x,y) dx.

In particular a;1(y) = a(y). Now, testing equation (A.3) against h, , and using
Cauchy—Schwarz inequality we get

A2 = Ny ol < IVRLA Gl = YRy Gl
= ’Y/g)GO(fay)hL,v(Ivy) dx

<ANGoC o) 21 ) 5
We conclude that

i
. < .
AL~y < N ,YHGo( LD
A1
< )
< Gl
< Cq,

for some constant Cq independent of y and . By standard elliptic estimates we get
1719l o < Ko,
with K independent of y and ~. This concludes the proof. 0
The following lemma gives the asymptotic of v*(x) as x approaches the boundary 0.
Lemma A.2. The unique number v*(z) € (0, A1) defined by the relation
H(z,2) =0

satisfies

V() ~ A — 870,01 (2)])*d(z,00)° as z— 2’ € 09, (A7)
and d(z,00) = |z — 2'].
Proof. We divide the proof in two steps. Given x € €2, consider the set

D, :={2' € 00 : |x — 2| = d(x,00)}.

If D, is not a singleton we choose the unique =’ = (2, 2%, 24) € D, with the property
x <y for all ¥ = (yi,y5,y5) € Dy, where, by definition, z < y holds if

ay <y, or
i =y, and <), or

/ / / / / /
T =Y, To=1yy, and x5 < ys.
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This defines 2’ := 2/(z) uniquely.
Step 1. Firstly we prove (A.7) for domains such that, for all z € €2, the reflection
point z”(x) := 22/ (x) — z satisfies
2" ¢ Q. (P)
We decompose

a3

H"/(xvy> - | 7

r— + F(z,y), (A.8)

where F' satisfies
AxF + '7F = Y391 (l’, y) in Q7
F(xz,y) =0 on 09,

and
1 1

//_y‘

We write

F(x,y) = a(y)é1(z) + wi(z,y)

and select a(y) so that [, w (x,y)¢1(x) dx = 0. By decomposition (A.8) and (2.8) we
obtain

a@ﬁ::A;quﬂﬁ‘*wL@%y»¢ﬂx)¢f

= | \Hy(@y) - | ¢1(x) de
(a0~ )

=Am@%ﬂ@m—é®@w%@“

= /le(xay)ﬁbl(ﬂf) dx + W

The equation for w, is
Awy +ywy = afy) (A —7)d1 + yasgi(z,y).
Multiplying this equation by w, and integrating by parts we get
2 2
IVw(, y)llz = llw 9l = —7/991(56,3/)10(90,?;) da.
Using the improved Poincaré inequality we have

A2 = Nwi 95 < Vi)l = Allwe ()5,
and by Cauchy—Schwarz we obtain

A1
—_— . . A.
oGl < 5l ol < 2 lanG )l (A.9)
Now, we want to estimate uniformly in y the right-hand side of
471'04 x
Hy(z,y) = /91 (z,9)¢1(2 3010)91(2) +wy(z,y).
’56 ¥—M

We can suppose O € Q. Let M = 2diam(2) we have

1 1
O</72dx§/ 7d$§CQ.
Q| —y| By (y \x—y[
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Let Q" = {2” € R3 : 2" = 2”(x) for some z € Q}. We have

1 1
o< [ e [, o] e
Q [z —y| Q"ue |z —y| B,

where My = 2diam(Q" U Q) hence we get

sup [lg1(-,y)| , < Ca.
yeN

We combine this bound with (A.9) to get

lwi(y)ll, < Ko

with K independent of y and by standard elliptic estimates we get sup,cq [[w(:,

K. We conclude that

as drazpr(y)ér(v)

H (x,y) =
’Y( ) |.CL‘H—y| 7_)\1

+ ¢1(2)B(y) + wi(z,y)
where
B(y) :Z/le(z’y)cbl(Z) dz

with w, (x,y) bounded in 2 x Q. Also we notice that

|
0</q51 = < ol / dz < Co.
Ba) |z =y

o</w(§) —dr<lol. [, -

This proves the boundedness of B(y). Now, the equatlon for v*(x) reads as
o3 dragpy (z)?
d(z,00) v — A

Let ¢ := |0, ¢1(2")| . We expand ¢;(x) at 2’ € IQ to get
8mcd(x, 00)3

A —
Since B(x) and w(z,z) are bounded, we conclude that
8mcd(x, 00N)3

Al —

and

dx<CQ

M//

0=

+ ¢1(2)B(x) +wi (2, ).

~1 as x — x' € 0N.

Y o <

(A.10)

= [1+ 2cd(2,090)2B(x) + 2d(z, 02)w(x, )| (1 + O(d(x, 02)))

(A.11)

Step 2. Now, we modify the method in Step 1 to obtain an expansion similar to (A.10)
and conclude that (A.7) is true for general smooth bounded domains. Let y € Q4.
Now we prove (A.7) for all smooth domains Q. Fix € = ¢(2) > 0 so small that the set
Qe :={z € Q:d(z,00) < €} possesses the property (P) and let 1. be a smooth cut-off

function with supp(ne) C e and n(z) = 1 for z € Q5. We write

Hoy(z,y) =ne(x)ne(y)Hy (z,y) + (1 = ne(x)ne(y)) Hy(, y)
:ﬁm(ﬂ?)ne(y) + Fy(z,y)

where

Fy(z,y) = ne(2)ne(y) F(z,y) + (1 = ne(@)ne(y)) Hy (7, y).
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We notice that n.n.F', where F' is defined in Step 1, is well-defined in ) thanks to the
cut-off functions. The problem for F5 is

AmF2(l‘,y)+’YF2(lU,y) :agg2(3:,y) in Qa
Fy(x,y) =0 on 09,

where
g2(%,y) == g2.1(z,y) + 922(x,y) + 92,3(%, y) + g2.4(, ),
and
v
921\, Y) ‘=
(@9) |z — |
Ne(T)ne(y)
92,2 Ty Y) =~V 71 >
(z,v) 7 — ]
divne(x
92,3(@,y) = 2ne(y)+(2»,,
2" — y|
Agn(x)
g24(x,y) == —ne(y) ———
(z,9) e )‘xu_y|

We decompose

FQ('r? y) = ﬁ(y)qf)l(m) + w2(x7y)7
where [ is chosen such that [wa(z,y)¢1(x)dz = 0, that gives
8) = [ Fale)ota) do = [ on() [~ ary) - 2D o0,
o Q m 2" =yl e —yl

Andi(y) [ aszoi(x) aszne(x)
= doe —ne(y) | -
—A 47 Ja |z -yl 2" =yl
Next we prove that wy(z,y) is uniformly bounded in  x Q. Using the improved
Poincaré inequality and standard elliptic estimates as in Step 1, we reduce the problem
to estimate the L2-norm of g(-,y) uniformly in y € Qc/4. We have

1 1
gl =n [ o< [ ——sdr<cy,
Q |z —yl By |z —y|

1 1 1
\\92,2\\§S’Y/ ”7dflf'§/”7d$§/ — < Cq,
a. |z" =yl Q' |r —y| B, |7 — 9|

M@l _ -
lozal3< [ DI < CePgaall}
Q\Q s 2" =y

1 -
lg23l15 < C/ ——— < Cae Q.
2\ s 2" — y|

Since € depends only on 2 we obtain

”92(7y)|| g < CQ,E-
Now we prove that B.(y) < Cq. Indeed, we have

1 Ne(z)ne (y)
Be(y) := +Ba, / ds — i
(v) ) A P ¢1(2) dz 02—yl $1(2) dz
B

B2,e
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and

| B1| S/ L(z)dzg [91]] oC2
o lz—yl

z 1
Bod <o) [ S i< [ Ean<cn
Q B, |z =y

2" =l

Finally, the equation for v*(x) is

and

[1]
2]
3]

(4]
[5]
[6]
(7]
(8]
[9]
[10]

[11]

[17]

18]

[19]

2
0= Hy(2,2) = 2d(x1, o) " igflfi + Belw)n(w) + uale, o),

from the boundedness of B¢(x) and ws(x,z) we obtain (A.11). O
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2.2. Conclusions

We provided the first rigorous proof of nonradial threshold solution to the critical
heat equation. If we choose the domain to be a ball or a cube, we have examples of
infinite blow-up and the solution becomes unbounded in an arbitrarily fixed point of
an open set, relatively far from the boundary. In general, our construction is valid in
any domain such that 3upn(€2) < A1(€2). One of the most surprising feature is the non
trivial generalization of the blow-up rate from the radial to the nonradial situation.
Indeed, we discovered that the rate of blow up depends on the position of the blow-up
point inside the domain. With respect to what happens in higher dimension n > 5, this
is a new phenomenon. Heuristically, it is suggested by the explicit computations on
the ball and, more in general, by the behaviour of the number ~(¢) near the boundary,
that larger is the distance between the blow-up point and the boundary, slower is the
blow-up growth of the threshold solution.

Adapting the parabolic gluing method in [7] required three main ingredients. Firstly,
an educated guess was found by means of an heuristic argument. In correcting the first
ansatz we exploit the importance of the regular part of the Green function associated
to the elliptic operator —A — v in 2. Secondly, we needed the solvability of a nonlocal
equation, which we proved for any domains by means of an inverse Laplace transform
argument using the asymptotic properties of the heat kernel associated to €. Lastly,
we realized that a loss of regularity emerges when we solve the nonlocal equation. A
first approach to a nonlocal operator in this type of problems can be found in [9],
where = R? allows an explicit computation. However, a loss of regularity needs to be
address. For this reason we argued by fixed point arguments in suitable weighted-C“
spaces instead than the usual weighted-L>° setting.

In the next chapter we present the first steps towards an answer to the analogue
conjecture in dimension 4.
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Chapter 3

Further work and Outlook

3.1. The nonradial construction in the 4 dimensional case

In this section we start the construction of a 4 dimensional infinite time blow-up solution
to the critical heat equation. This is a work in progress with Juan Déavila and Manuel
del Pino. Firstly, we make an educated guess, that is

ug = M_1U<1;;£> - /LH(.’E,&),

where H is the regular part of the Green function associated to —A. Contrary to the 3
dimensional case, we assume that fi/pu — 0, as suggested by the radial analysis in [14].
It turns out that a nonlocal correction is needed to make one of the orthogonality
conditions in the inner problem satisfied. Arguing formally, we obtain the main order
equation for the nonlocal operator. At this point, arguing rigorously, we deduce that
the expected main order for u(t) is given by

1/2
po(t) = el where k= (\@H (q,Q))

Then, by means of an explicit computation we find k for Q = Br(0) and ¢ = 0, and
we deduce the blow-up rate associated to the radial solution found in Galaktionov
and King [14]. Lastly, we modify [7, Lemma 7.2] to get a coercivity estimate on the
quadratic form associated to —A — pUP~!, where p is the critical exponent. This is
essential to recover the linear estimate for the inner problem in dimension 4. Our
analysis suggests two fundamental features similar to the case n = 3 and in contrast
with higher dimension:

e the asymptotic behaviour of the threshold solution strongly depends on the loca-
tion of the blow-up point;

e the second order in the asymptotic expansion of the blow up is controlled by a
nonlocal operator, qualitatively different from the 3 dimensional analogue, and
similar to the nonlocal operator treated in [8].

There are two main differences between the 4D and 3D cases.

e The blow-up rate in 4D is sub-exponential, unlike the exponential blow-up ob-
served in 3D. Consequently, there is no resonance effect between p(t) and the
Dirichlet Heat Kernel. Therefore, we conjecture that in 4D, there are no analyt-
ical constraints regarding the location of blow-up points within €2. This leads to
the second difference.
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e In 4D, we can select a point near the boundary, unlike in 3D. This allows us to
naturally detect the multispike scenario by choosing points close to the boundary
and sufficiently far apart, following the same condition as in dimensions n > 5.

3.1.1 First approximate solution
Let © € R* a smooth bounded domain. We look for a positive infinite-time blow-up

solution to the problem

ou=Au+u® in QxR (3.1)
u(z,t) =0 on 00 x R,
u(z,0) = up(z) in Q.

Here the exponent p := (n+2)/(n — 2) = 3 is the critical one in dimension n = 4. For
this equation the energy

1 1
E(u) = 2/9\Vu|2dx—4/9]u\4d:v

is a Lyapunov functional. Indeed, integrating by parts

WE(u(-,t)) = ;/92Vu-Vut dx — /ngut dx

= —/ Ut(Au+u3) dx
Q

:—/u?dx,
Q

we see that E(u(-,t)) is non-increasing in time. Without loss of generality, we construct
a solution that blows up at the origin ¢ = 0 € 2. Our building blocks are the scaled
Talenti bubble

Uty et () = “(t)_1U< p(t)

where

- a4 n—2
14 |z)* '

Ul(x)

The family of functions U, ¢, for constants p € R™ and § € R*, forms the set of positive
solution of the Yamabe equation

AU +U2=0 inR%L
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Similarly to the 3 dimensional case, we look for a solution of the form

up(z,t) ~ Un).) (z).

Supposing u(t),£(t) — 0 as t — oo we have that U,y) ¢ (7) is concentrating around
x = £ and becomes uniformly small away from it. For this reason, we should have

Oup — Auq = ul(:c,t)3
3
~ do(z — -1 H))
o f ({9 e
= do(z — &§)povgw,

where wy = 272 is the area of the unit sphere S® and a4 = /8. We write the parameter
w in form

p(t) = buo(t)(1 4 o(1)),
for some function pg(t). The equation for
U($, t) = Halul(l‘a t)
becomes
v~ Ay — ,ualﬂov + aqwqde(x) in Q2 x RT.
Contrary to the 3 dimensional problem, a priori we assume
Mo(t)_lﬂo — 0.
Since the problem is translation invariant, if we find a solution u(x,t) starting with a
large initial time fg, then ug(z,t — tp) is a solution to the original problem (3.1). For
this reason we we will choose t( fixed as large as needed. This assumption on pu(t) is

suggested by the radial case, where the blow-up rate is sub-exponential. Thus, we get

v & Av + agwido(r — €)  in Q x RT)
v=0 ondQ xR

This means that far away from x = 0, we should have
v(z,t) = G(z,8),
that in terms of u; means

o7}
ui(z,t) = MW — pH(z,§).
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These formal arguments suggest our first ansatz

uy(z,t) = ,u_1U<$_/f(t)> — pH(z,§)

and H(x,y) is the regular part of the Green function and for y € €2 satisfies

AyH(z,y) =0 in Q
H(z,y) = a4’2 on Q.

‘ _
We compute the error associated to the ansatz wq, that is
Slu1] := =0y + Auy + ui{’

In the following we use the scaled variable

T
Y= y(xat) =
We have

Opur = — p U (y) — w2y - VU (y)
- M_Qé : va(y) - /J,H([E, 0) - Mf ' vsz(l', 5)7

and, using the equations for U(z) and H we get

We conclude that

Slur] =p =21 Zs(y) + n= 28 - VyU (y) + pé - Vo, H (2, &) + fiH (2, €) (3.2)
+u P [(Uy) — W H(2,8)) = U(y)*],

where

1|y

(1+1)"

Z5 =0y
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For |py| < % we Taylor expand

H(py +&,6) = R(&) +py - Vo, H(E,E) + %ﬁzﬁ : Dy H(7,€), (3.3)

for some = € [£,z], where R(&) := H(,§) denotes the Robin function, that is the
diagonal of the regular part of the Green function. Expanding the Robin function we
have

R(§) = R(0) +&- VR(E"),

for some &£* € [0,£]. Looking close to z = 0, say |z — £| < 1/2, we estimate the error
function by

Slur) =p =21 Zs(y) — 3u~"U(y)*R(0) (3.4)
3 () € VR(E) + py - Vi HEE) + 2y

5# y2 : DmmH(i’vf)
+u7% - (VyU(y) + 1P Vay H(, €)) + 1H (2, €)
+u 7 (Uy) — p*H(2,€))® = U(y)® + 3u*U(y)*H(,€)]

Our exact solution will have the profile
u=1ui+ qz;,

with gg smaller compared to u;. It is natural to look for perturbation in the same scale
of the Talenti bubble

d(w,t) = u1d><$ ¢ ,t),
i
the equation for ¢(y,t) reads as

0 =135 (uy + @)
= — pP0i + p - Vyd + fu(d + Vyo - y)
+ Ay +3[U(y) — 12 H(x,0)] "6 + 2 S[ur] + 1> N(ur, §)
=Ay¢ +3U(y)*¢ + p* Slur] + Alg)].

where

N(u1,9) = (u1 +¢)°* — ui - 3uid,
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and

Alp] = = 1201 + 1 - Vb + fus(d + Vo - y)
+ [3[U(y) - 12H(@,0)]" = 30| ¢+ 4 N(w, §).
We assume that ¢(y, t) decays in y and, for ¢ large, the terms in A[¢] are small compared

to the others. Hence the function ¢ can be approximated by the solution ¢o(y,t) to
the problem

Aydo + 3U (y)2do = —Eo(y,t) in R,
do(y,t) =0 as |y —0.

It is known that all the bounded solutions are spanned by {Z;}3_, where
Zi(y) =0, U(y) for i=1,2,3,4, Zs(y)=U(y)+V,U(y) y.

The problem above can be solved if and only if

Eo(y,t)Zi(y)de =0 VYt >ty and i=1,23,4,5.
R4
In case i = 1,2,3,4 the symmetry of the integrand gives the desired orthogonality.
However, since Zs ¢ L?(R?*), the condition with index i = 5 does not make sense at
this stage. Indeed, considering the first two terms in (3.4) as leading terms, we should
have

0~ /R Zs(y) dy ~ 1 R(0) /R U () Zs(y) dy,

but Zs(y) ¢ L?*(R*). In the next section we modify our ansatz to overcome this
difficulty. This is the ultimate reason for the condition n > 5 in [7].

3.1.2 Nonlocal improvement of the approximation

As in the 3 dimensional case we can get rid of this term by adding a nonlocal term
in the approximate solution. In order to make the error associated to the ansatz wuq
smaller for |y| large, we modify u; by defining

up(x,t) + p(t)J(z,t)
= p U (y) — () H (, ) + p(t)J (2, t).

ug(z,t) :

The idea is to remove the slowing-decay term through a linear parabolic equation
satisfied by J(z,t). We define
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so that

We choose J(z,t) as the solution to

QY
(r2) + 2 = €0
J(z,t) =0 on 90 x (ty,00),
J(z,0)=0 in Q.

O J = Ny + A(t) in Q x (tg, 00),

We will approximate J(x,t) with the solution to the Cauchy problem J, g4

Qg

8tJ07R4 = AJ?JO,R‘l + )\(t)(2(t)<H|2>
1% X

in R* x (g, 00), (3.5)

Jora(z,t0) =0 in R
which can be express by the Duhamel formula. We split

2 - (1+y))?

4 2
(1+1yP)
2 o 2
42 2" 1+;1 7 074U(y)2 ~U@).
(1+1P) Ltlb
———  ¢L2(RY)
€L2(R%)

Zs(y) =«

We compute the error associated to us. Using expansion (3.2) we get

ooy Loy 3.3
STug] =4 Sy + B2 L)l g 7+A,0 -2 +ud —u
2] {[1] M21+!yl2} M{ ' u31+|y|2} >

2%22 + 172 VU (y) + p - Vi, H(w,€) + fuH (1, €)
(1+1u?)

+u 7 [(Uy) = W H(x, &) + p*J)% = U(y)*].

=p 2
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Now, we look at the new error close to the blow up point = 0. Let |z — £(t)] < 1/2
for t > to sufficiently large, then from (3.4) we have

Slus) :u’zﬂ% —3u~'U(y)?R(0) — 3u~'U(y)*J (2, 1)

(1+1u?)

1
—3u~'U(y)? [& CVR(E) + py - Vi, H(EE) + S p*y” Doy H(7,€)

+ %8 (VyU(y) + 1PV H (2, 8)) + j1H (2, €)
+u (U (y) — p?H(z, &) + p2J)* = Uly)® + 32U (y)* (H (2, &) + J (2, 1))]

As in the 3 dimensional case we need to separate the main inner error. We decompose
the error as

S[u2] = Sin + Sout
where

200 o
T N2 +p 3 VU (y)
(1 + ly| )

— 302U (y)* H(z, &) + 32U (y)* J (z, 1) + Na,

Sin :/1'7211

where Ao denotes the nonlinear term
Ny = p=?[(U(y) = pH (@, €) + p2J)° = U(y)® + 36U (y)*(H (2, €) = J (1)) ]
If we perform the same formal argument with this new error Si, we see that
0= =30 RO) [ U0PZs(0)dy 30 Jaal0.0) [ U Zo(w)dy
: _ 2054
—A(t)p 1/ —————=Z5(y) dy
g R (14 [y[*)? W

3! [ V@PZ I+ €6 ~ T 0.0)] dy

3! /R4 U(y)*Zs(y)[H (py + &, 1) — R(0)] dy + /R4 Na(y, t)Zs(y) dy

= — 3 e [R(0) + Jra(0,8)] + p "RIN(8),
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where ¢; == g4 U(y)?Z5(y) dy and

2@4

RO = A0 [ s

3 / U(9)* 25 (y) [y + &,1) — Jo (0, )] dy
R4

Zs5(y) dy

+3 / Uy)* 2 () [H (uy + €,7) — R(0)] dy + / No(y.t)Zs(y) dy
R4 R4

Taking into account the expansion (3.3) and the decay of ), it is natural to assume
that for t > tg large the equation at the main order is

0= —3eu™ [R(0) + RIN(®) + Joua (0,1)].

where R[)](¢) is a lower order remainder which decays in time. Hence, we should find
A such that

Joa [N(0,) = R(0) + RIA(0).

This equation is a constraint on the evolution of Jj gs [A] at the origin. In the next
section we show that there is a choice of A such that this equation is satisfied at the
main order.

3.1.3 The blow-up growth of the threshold solution

As the heuristic argument suggests, we need to find A such that
Jors[N(0,8) = R(0) + RIAJ(%).

where R[/\] (t) decays. The following lemma shows that, neglecting the remainder
term R[A|(t), we can approximately solve .Jj pa [A](0,t) = R(0) up to an error of size

O(t~'/21n(t)) if we choose X = k+/f — tg for some k. In this way we find the main order
term of p(t), and since

(s )l ooy = ul€:t) ~ cuap(t) ™

we obtain the infinite blow-up rate of the expected global solution.

Lemma 3.1.1. Let JR470[}\0](0,t) the solution to the Cauchy problem

Qg

in R* x (tg, 00),
12(t) + |2 (o, e0)

atJO,R‘l = AzJ07R4 + )\(f)

Jogi(z,t0) =0 in R
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given by the Duhamel formula. Let

1/2
M@:mﬁ%,%@:fwﬂk:WMmm). (3.6)
Then, there exists a constant C > 0 sufficiently large, such that fort > tg+ 1
H(0,0) — CT 72 < Jgao[A](0,¢) < H(0,0) + Cyt ™/ In(t)

Proof. We split the proof in two steps, respectively the upper and lower bound for
J[Ao](0,). After a time-translation from ¢ to ¢t — to we reduce to the problem with
initial time 0.

Step 1 (Upper bound). Firstly, we show the upper bound. Using spherical coordi-

nates we have

: B E No(s) e A=)
JR4[)\0](0,75)—044/0 [47r(t—s)]2 /]1@4 M0(3)2+|y\2 dy ds

tog12 )
:a42/ 2/ B 3
0o [47(t —s)]" Jrt po(s)* + |y
2
—1/2 /oo 6774(5,5) 3,
— ———p dpds
t—s)?Jo n(s)?+p?

2

S
(
k 2/t 871/2 /oo e~ 3 4
= ayu—2 - dr |2yt — d
2 | T aF Jo meP At Vsl ds

dyds

t—s
t 00 —r2. 3
=k [ 52 S drd
R Y O eI T A
t —1/2 oo -r2..3
:a4k/ i / — ¢ 21“ 5drds, T:=7(ts):= () ,
o 4t—s)Jo T(t,8)*+r 24/t — s

where in the fourth identity we used the change of variable p = 2/t — sr. Now, we

have

o) 6_72’!"3 T €_T27"3 00 €_T27“3
A d—Am+£ g dr = Ailts) + At 9)

po T = po
’I"2+7"2 T2+T‘2

We estimate
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and

oo ,—r2..3 00 1 B
As(t,s) = / %dr < / e rdr=-e .
7 re4r 7 2

This gives

. t 8_1/2 9 — 8
J[A\o](0,1) §a4]{j/0 4(t—s); [1 —e (1 + f2)} 425(5)2) ds

[ e
- 4(t—s
+ oy /04(25—3)26 s

k[t - ko[t —1/2 )
0 0

8 Jo (t—s)
:ZBl(t) + Bg(t).

We show that By (t) = O(t‘l/2 In(t)). By definition of 7 we have

2 2
f(t,s)<1<:>”(48) ctosest MOy

4

Let s*(t) such that

which exists and is unique for ¢ large enough. Since u(t) is positive we have s*(t) < t

which, combined with the decreasing monotonicity of pu(t), gives

Summarizing we have

s*(t) € (t - “?2,15).

We observe that if s < s*(¢) then we have

7(s,t) < 1.

Indeed, if s < 1 we have

o (s)? p(0)?
M) =qa-s Sag-1 "

for t large enough. Also, if s € [1,s%(t)] then the function s + %8)2 is increasing and
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we deduce

< () + M(Sz(t)) _

that means 7(¢,s) < 1. Also, for ¢ large enough and s > s*(¢) the monotonicity of

s+ %5)2 gives

We estimate Bi 1 as

k[t _ ko[t _ _
By1(t) §a42/(t)8 1/2(s) 2ds§a42/t e S 12)(s)"2 ds
s* e

We split By as

k t—1 _
By :a42/ sTV2u(s)72 [1 - e_’"Q(l + 172)} ds
0

Eos® N
+ iy / 5712 (s)72 [1 — esz(l + Fz)] ds
t—1

= BI,O,O(t> + 317071@).

Using the inequality
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we get,

t—1 2
B < BYWAC)
I,0,0(t) ~ /0 S (t — 3)2 ds

1-t=1 4172 -1/2 2
:/ t ,22 w(tz) iz
0 t (1-=2)

-t _—1/2
S t3/2/ - dz
0 (1—2)

<7321 44
< t_1/2.

We estimate

s*(t) 4
Bl,O,l(t) S/ 871/2“1(8)72 H(S) 5 ds
t—1 (t—s)

_utw)
< p(t—1)>2 T ﬂ ds
~ t—1 (t —s)?
TG )
= u(t —1)2%73/2 =
e A (e E
1/t (1— w)—1/2
= pu(t —1)%t73/2 ~
2 ) (s (6))2 w? dw

St =1 — )T (W)l

where we used the change of variables s = tz in the third line and z = 1 — w in the

fourth one. Now, we estimate Ba(t). Let

BQ(t) = 8 6_4(t_3) dS + — 6_4(t—s) dS

(t—-ys) 8 Ji1t—s
= B271(t) + B272(t).

O[4k /tl 8_1/2 u(s)2 054]{; t 8_1/2 w(s)?
0

We show that By (t) <t~ Y/21n(t). Indeed, we have

Bya(t) = b / ° e~ 10 ds + auk / i eiﬁijs) ds
’ 8 Jo (t—3) 8 Jiyo (t—3)

i= Ba11(t) + Ba212(1),
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where

1(s)?

t/2
B271,1(t) S t_l/ s V2e7 309 dg
0

and

t
B27172(t) 5 t_1/2/ E— dS
t/2 t—s

t—1 1
< t_l/z/ ds <t7Y2n(t).
tj2 V=S

Next, we bound the main term By (). We have

t -1/2 (t2)2

Byo(t) = 24K 172 / RS2 =
’ 8 1—¢—1 (1 — Z)

L T o

< @Ry / IR

8 -1 (1= 2)

Using the change of variable a(t)(1 — z)~! = w, where a(t) =

1 o -
1 _ o) w
/ e 1-zdz = / € dw,
1—¢—1 1 —Z ta(t) w

%f) we get

hence we conclude that

Boalt) < “ 412 (u2(1)) + 0(1)

< H(0,0) + O(t~1/?).

Finally,
Jori[Aa](0,t) < By(t) + Ba(t)
= B100(t) + B1,01(t) + B1,1(t) + B21(t) + Ba2(t)
< Baa(t) + O(t/*1n(t))
< H(0,0) + Ot~ 21n(t)).
as t — o0.
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Step 2 (Lower bound). We decompose J[A](0,t) and estimate

) t g—1/2 00 =123
A t) = ask drd
J120](0,8) = e /0 4(t—s)/0 72 + r2 ras

t -1/2 0 ,—r? 2
> a4k:/ 5 / i r2 dr.
1 At —s) )z T2+

Now, we have

t -1/2 S ) t -1/2 00
a4k/ 5 / Z Ter :a4k/ S / e rdrds
-1 4t —s) J; A+ t—1 4t —3) Ji
t g—1/2 o 7
— auk ~2/ _ drd
“ /t_14<t—s>r R

t—1/2 2
:O[4k/ S 6_475_)5) dS
8 Ji1(t—s)

t g—1/2 00 o=
— auk ~2/ drd
o /t14<t—s>7" A e

=: BQQ(t) - Bg(t).

We prove that Bs(t) < Ct~/2 for t large enough. We estimate

t -1/2 oo ,—T
B3 < a4k/ i fz/ ¢ dr ds.
—14t—s) Sz 7

We use the following bounds:

/00 e " ln(%) 4+ L1, = 100 e;i dr,
r
PooT (272)~le ™ F>1,

Thus, using 72[— In(7) 4 ¢;] < #/2 for 7 € (0, 1] we obtain

B e[ ST el d
< > -
(0 ok | s Hf)*"‘} ’

k t —-1/2 ~
+ g~ / 5 e ™ ds
S

2 *(t) 4(t - S)
s*(t) g—1/2
§a4k/ /2 ds
-1 At —s)
auk [t s71/? u(s)?

76_4@75) dS
2 S*(t) 4(t - S)

=: B371(t) + B372(t).
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We estimate B3 2. We have

5*(t) ~1/2
B3 S / 873/43)3/2 ds
-1 (t— s)lJrZ

s*(t) 1
< p(t—1)32 1t -1 —1/2/ — - s
S
S A (t— )i
St — 1)%2 (s ()

<72,

This shows that Bz 1(t) < Ct~/2. Now, we have

t —-1/2

Bsa(t) S /

t—u(t)2/a (t—8)

_ o)

1 s
S t_1/2/ c & dz
1—a@) (1= 2)

00 =W
< ¢1/2 / — dw
1 w

Thus, we have
JO,R4 [)\O] (O, t) > BQQ(t) + O(t_l/Q)_

We need to estimate Baa(t) from below. We have

k t —1/2 _ ,u(s)2
Bas(t) = — / ° e 1t-9) (s
t

8 Ji1 (t—s)
1 ~-1/2 .
_auk g / 2 s
8 141 (1= 2)
1 ~1/2 12
> Cm‘ktl/Q/ Y 6_257(51—11) dz.
- 8 1—¢—1 1—=z2
Now, letting
plt —1)%
t) :=
i) = L
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we use the change of variable 3(t)(1 — 2)~! = w to get

1 —1/2 _ —
mtlﬂ/ Qe_ 2157(51715 — aiktfl/Q /OO ﬂ dw
1 tB(t)

8 —_t—1 1—2z 8 w

> R 25() - o2

> 12 (e~ 1) )] + O ?)

= %“kzk(l — )2 Lo )
2
— O“f +O(t712)

= H(0,0) + O(t~4/?).
Combining the lower and the upper bound we conclude that
H(0,0) — O 7Y% < Jga o[Ao](0,8) < H(0,0) + C1t /2 1n(t)
for a sufficiently large positive constant C7. O

3.1.4 The blow-up growth in the radial case
The radial solution to

Ay H(z,0) =0 in Bgr(0)

H(z,0) = “;‘Tz on dBx(0),

it is given by h(|z|) = H(x,0) which solves

B (r) + %h’(r) ~0 in0R]

8:h(0) =0, h(R)= %.

The solution to this problem is the constant function

Qg

h(?“) = @7

and hence H(z,0) = ayR™2 for all x € Bg(0). Thus, plugging the value H(0,0) =
ayR™? in (3.6) we deduce

©) R

that is exactly the asymptotic behaviour found by Galaktionov and King in [14].

ln<M1> = 2 i1+ o(1)),
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3.1.5 The coercivity of the quadratic form

Here we modify [7, Lemma 7.2] to get the same result in dimension 4. This lemma
establishes a weak coercivity estimate for the quadratic form

Q: Hr - R

b Qo) = /B o [F9F 50 o) dy

where
Hp :={ ¢ € H}(BaR) : ¢is radial, / Zopdxr =0 . (3.7)
By (0)

The result in dimension 3 is already present in [9]. Compared to the higher dimensions
we obtain weaker bounds for n = 3,4 due to the unbounded growth of the L?(Bg)-
norm of Z,,1 as R — oco. Roughly speaking, the next Lemma gives an approximated
estimate from below for the second eigenvalue A2 g, on Ba g of the linear operator

—A —pUP~t,

Lemma 3.1.2. There exist positive constants vn, R,, depending only on n, such that

the estimate

. .
R*?;”WQB(BR) if n=3,
V4 2 .
Q¢ ) > RQT(R)WHLZ’(BR) if n=4, (3.8)
Tn

WHW%%BR) if n =5,
holds for all p € Hr and R > R,.

If we could replace Zj, that is the eigenfunction associated to the negative eigenvalue
for this operator on R”, with the analogue eigenfunction for the operator on Byg, we
would get a lower bound on the second eigenvalue A g.

Proof. We consider the subspace Hgr C H}(Bg) defined in (3.7) and let

Ar:= inf Q(9¢,9).

¢EHR
9]l ;2=1

Since the quadratic form @ is coercive and convex in Vu the value Ag is achieved. Let
¢r € Hg with [|¢r||, = 1 such that

AR = Q(oR, #R).
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The function ¢g satisfies

Lo[#] := A¢r + pUP ™t = Ardr — coZo  in Bp, (3.9)
¢R S HR7

that, in terms of ¢, means

Llom) = ¥+ "l + pUP g = ha(r),

87‘11}55(0) =0, wR(R) =0,

where hr(r) = —ArYr(r) + crZo(r) for a suitable Lagrangian multiplier cg. The
constant \p is non-negative. Indeed, Consider the radial problem

LB+ A0 =0 &'(0)=0, lim ®(r)=0,

r—00

where
1
L[] =" + @' + pur'o.
T

The kernel contains Z,,+1 which changes sign once. Hence, from the maximum principle
we obtain that the quadratic form associated to the operator in R™ cannot be negative.
Using the Rayleigh quotient characterization of the eigenvalues we see that A\ > 0. If
we suppose that Ap < 0, we can extend ¢p trivially outside Byp and such extension
makes the quadratic form on R™ negative, but this is not possible. Hence A > 0.

Let nr(s) to be a cut-off function such that nr(s) =1 for s < R/4, s =0 for s > R/2.
Testing equation (3.9) against Zy and integrating by parts we get cg = O(e“’R) for
some o > 0. Let Z(r) be a second solution to Lg[Z] = 0 linearly independent of Z, 1,

such that the Wronskian is normalized as

W(Zp41,2) = Z'(r) Znr (r) = Z(r) Zyy 1 (r)
1
rn—l'

We have Z ~ cor>™™ as r — 0 and Z ~ co as 7 — 0 for some non-zero constants

€0, Coo- The formula of variation of parameters gives the solution
~ T
Vr(r) =Z(r) / hia(5) Znia (5)s"L ds (3.10)
0

2R
+ Zna(r) / hi(8)2(s)s" " ds — DiZnsa (),
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where
. 2R
Dp := Zn+1(2R)1Z(2R)/ hr(8)Zni1(s)s" 1 ds.
0
We want to estimate ||¢r|  2(p,,) Py means of (3.10) where ¢r(x) = ¢r(r), however
Z(r)? is not integrable in 7 = 0 when n > 4, hence we estimate its L*norm on the

annulus Apg := Byr(0) \ Br-1(0). We have

S v+ e Znsallg,,,

/ hr(s)Zny1(s)s" Lds
0

and

HDRZn+1HL2(AR) S Rn72(/\R + eiaR)HZn-&-IH%Q(BzR)'

Also, for r € (R, 2R) we have

2R _
/ Z(s)s" tds

<Nl 2By 121 241

We estimate

[NIES

R

B 1 R
1Z]] L2(AR) S (/1 p22=n)pn=l gy +/ rt dr)
1 1
R

n
2

N

Since Z,4+1 is given explicitly, it is easy to compute

5 5
\@W[R—I—%R} if n=3,
7 3 .
HZTLHH%Q(BR) ~ { 1672 [ln(R) ~ 5 + RJ if n=4,
2 _9)2 4—n
W[cn_f% 4} T
\ n—

for R — oo, where

Cp = /OO Mrn_l dr.
" 0 (?"2 + 1)”
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Combining all these estimates we get

l6Rl 2(an) IR 280 (121 120 |1 Zn 1]l L2300
W21 p2(apllZnll 2y + Rn*QHZnHH%%BgR))
SO+ ) (R Zni1 | 2y + 101 132 5,2 B )

SOr+ e ) Zni1ll72(p, 2R

Bar

Now, from standard elliptic estimates (see [17]) using the equation for ¢ and the L2-
estimate we deduce the L**-bound |[¢g|[ o (p,) < ¢ for some constant ¢ independent of

R and H¢RHL2(32R) =1 we get

2\ 2
<1 - R“> < orllp2(an)

< HZn—H ”%Q(BQR)()\R + e—UR)Rmax{g,n_Q}.

This implies that, in dimension n > 5, n = 4 and n = 3, Ar cannot be o (RQ_”),
o(R?In(R)) and o (R™?) as R — 400 respectively. This proves the existence of
constants 7, such that the estimates (3.8) hold for all R sufficiently large. O

Thus, defining

R?>™™ if n>5,
Ok, = R?log(R) if n=4,
R? if n=3,

the linear estimate for the inner problem in [7], also recalled in chapter 2, generalizes
to any dimension in

L [0500(R, a)

oy, T + (1 + [y Vyo(y, ) ST 5—1holly24a
1+ [yl
T 4 hl v,24+a t e h v,24a |’
Tt 1hallyza + 5 — 1A 2y
where v > 0 and

1 ifa>2, 1 ifa>1,
0%(R,a) == logR ifa=2,, 6Ok(R,a):={logR ifa=1,
R>® ifa<?2, R ifa < 1.

In particular in dimension 4, we expect to use the estimate with a = 1 and n = 4, that
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gives

L [R*In(R)

oy, T ST il :
1+ |y‘5 v,2+a

3.2. Outlook

Concerning the main result in chapter 2, it would be very interesting to understand if
the analytical assumption 3upn(€2) < A1(2) is necessary for the existence of an infinite
blow-up solution in 2. If the result is valid without such condition then

e any domain §2 admits a positive infinite time blow-up solution with a single spike
at any fixed g € §;

e it becomes natural to construct multi-spike threshold solutions.

For n > 5 multispike solutions exist if the points are sufficiently close the boundary and
relatively far from each other. This is a natural requirement in order to successfully
treat the error terms associated to the interactions between bubbles. In contrast, the
condition 3y(g) < A1 implies that the blow-up point is far from the boundary. Thus,
it would be very interesting to understand if multi-spike solutions exist.

In section 3.1 we have started a program for the analogue construction in the 4
dimensional case. A natural step towards the full solution is adapting the parabolic
gluing scheme to rigorously prove the existence of the perturbation. Since in this
situation the expected blow-up rate is not exponential, we believe that the result does
not require any analytical constraint on the location of blow up points inside €2, and
thus the multispike scenario should be naturally detected.

Finally, it would be interesting to find sign-changing solutions in low dimension. The
inspiring work [10] for » > 5 presents the first example of sign-changing unbounded
global solution and suggests a suitable ansatz.
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