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Abstract 

Modern technologies are commonly used to inventory different architectural or industrial objects (especially 

cultural heritage objects and sites) to generate architectural documentation or 3D models. The Terrestrial Laser 15 

Scanning (TLS) method is one of the standard technologies researchers investigate for accurate data acquisition 

and processing required for architectural documentation. The processing of TLS data to generate high-resolution 

architectural documentation is a multi-stage process that begins with point cloud registration. In this step, it is a 

common practice to identify corresponding points manually, semi-manually or automatically. There are several 

challenges for the TLS point cloud processing in the data registration process: correct spatial distribution, marking 20 

of control points, automation, and robustness analysis. This is particularly important when large, complex heritage 

sites are investigated, where it is impossible to distribute marked control points. 

On the other hand, when orientating multi-temporal data, there is also the problem of corresponding reference 

points. For this reason, it is necessary to use automatic tie-point detection methods. Therefore, this article aims to 

evaluate the quality and completeness of the TLS registration process using 2D raster data in the form of spherical 25 

images and Affine Hand-crafted and Learned-based detectors in the multi-stage TLS point cloud registration as 

test data; point clouds were used for the historic 17th-century cellars of the Royal Castle in Warsaw without 

decorative structures, two baroque rooms in the King John III Palace Museum in Wilanów with decorative 

elements, ornaments and materials on the walls and flat frescoes, and two modern test fields, narrow office, and 

empty shopping mall. The extended Structure-from-Motion was used to determine the tie points for the complete 30 

TLS registration and reliability analysis. The evaluation of detectors demonstrates that for the test sites exhibiting 

rich textures and numerous ornaments, a combination of AFAST, ASURF, ASIFT, SuperGlue and LoFTR can be 

effectively employed. For the point cloud registration of less textured buildings, it is advisable to use 

AFAST/ASIFT. The robust method for point cloud registration exhibits comparable outcomes to the conventional 

target-based and Iterative Closest Points methods.  35 

 

Keywords: Affine 2D Hand-crafted Detectors; Cultural Heritage; Interiors; Feature Based Matching; Learned-

based detectors, Reliability Assessment; TLS Registration. 

1. Introduction 

Modern measurement technologies such as terrestrial laser scanning (TLS) are commonly applied to register, 40 

preserve, protect and monitor different engineering objects [1], perform structural health monitoring [2–5], assist 

with construction management [6], carry out three-dimensional (3D) model reconstruction [7], monitor 

deformation of structures [8–13] and significantly assist with preservation and safeguarding of cultural heritage 

objects and sites [14–21], owing to its accurate data acquisitions and processing, which is required to generate the 

documentation such as 3D models, vector drawings or other architectural documentation [22–26]. The acquisition 45 

and processing of point clouds from terrestrial laser scanners is a multi-step process consisting of (1) Survey 

planning, (2) Field operation, (3) Data preparation, (4) Data registration, (5) Data processing, and (6) Quality 

control and delivery [27]. Planning of the optimal TLS positions and target locations depends on the surveying 
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area and the design consideration of the project. Based on the adopted data orientation method, these target 

locations might be natural points that are detected in the point cloud or specific signal points in the form of black 50 

and white chessboards, retroreflective points, or spheres with a known radius (Fig. 1). Since the TLS point clouds 

are collected in the local reference system, it is required to perform the registration step (first step of the TLS point 

cloud processing methodology), allowing to transform point clouds into the assumed reference system [28]. 

 

 
(a) (b) 

Fig. 1. (a) The example of the artificial targets, (b) Registration between two scanned positions [27]. 
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For large and complex objects and sites, obtaining data from multiple TLS positions and transforming them 

into the defined reference system is required, as a single position will not provide the significant data needed for 

an accurate model generation. The transformation into the defined reference system relies on detecting 

corresponding points, shapes or features in at least two-point clouds, and the exterior orientation parameters are 

obtained for each scan. These parameters determine the spatial location of the central point of the scanner system 60 

in the assumed reference system together with three rotation angles, which are then used to transform the point 

cloud [29]. 

In literature, many investigations address the problem of TLS point cloud registration in the context of the 

effectiveness, efficiency and robustness of this process [30–34] and divide these methods into two main groups 

depending on the amount of the input data – pairwise or multiview registration [2]. Most of these algorithms are 65 

the coarse-fine-strategy [35,36], which assumes that (1) in the first step - the translation and rotation parameters 

are approximated [28] and (2) in the final step - fine registration is performed by algorithms such as normal 

distribution transform (NDT) algorithm and its variants [37–39] or Iterative Closest Points (ICP) algorithm or its 

variants [38,40]. A review of the commonly used methods for TLS registration can be found in the article [41]. 

Several challenges are encountered during data registration in Terrestrial Laser Scanning (TLS) point cloud 70 

processing. These challenges pertain to ensuring the accurate spatial distribution of data, addressing control point 

identification, enhancing automation in the process, and conducting robustness analysis. This becomes especially 

critical when examining extensive and intricate heritage sites where the deployment of marked control points is 

unfeasible. Furthermore, in the case of multi-temporal data alignment, the issue of establishing correspondences 

between reference points also arises. Consequently, automatic tie-point detection methods are necessary to 75 

mitigate these challenges effectively. 

This paper aims to present the possibility of using the TLS-SfM method for the orientation of point clouds from 

terrestrial laser scanning of the interiors of historic and public buildings. This research compares the utilisation of 

selected 2D hand-crafted and learned methods for finding tie points. This article presents the effectiveness of 

different algorithms (AFAST, ASIFT, ASURF, LoFTR, SuperGlue and KeyNet with AffiNet and HardNet) in the 80 

point detection step with extended quality and robustness analysis based on the reliability assessment. The interiors 

of historical 17th-century basements at the Royal Castle in Warsaw without decorative structure (Test Site I and 

II), the Museum of King Jan III's Palace at Wilanow with decorative elements, ornaments, and materials on walls 

(Test Site III) and flat frescos (Test Site IV), narrow office (Test Site V) and shopping mall (Test Site VI), were 

selected for this study. For such objects, the distribution of the signalised points utilised in the data registration 85 

process may not be possible owing to the inability to distribute it on historical wall fragments, the deployment of 

tripods that would have the effect of obscuring the objects under development and the spatial distribution of points 

(caused by the complex shapes of the objects being developed), which would affect the accuracy of registration 

and error detection according to robustness theory. 

The method for point cloud registration is based on intensity rasters (together with a depth map) and an extended 90 

Structure-from-Motion (TLS-SfM) approach. The advantage of the method for point cloud registration over the 

Target-based method is that more automatically detected tie points are used for orientation with better spatial 

distribution and robust outliers' detection regarding the reliability theory. The Iterative Closest Points (ICP) method 



is based on the point-to-point and point-to-plane approaches, which require clouds to be pre-oriented when 

connecting point clouds to guarantee the final registration's correctness. In the TLS-SfM approach, such a 95 

condition is unnecessary since the selection and elimination of tie points are utilised in a two-step manner through 

descriptor matching and geometrical verification based on the RANSAC algorithm. 

This article is divided into five main sections. Section 2 presents the fundamental principles of the hand-crafted 

and learned feature detectors and descriptors. Section 3 contains a description of the test sites and the approach 

used. Section 4 presents the results of the detector assessments, and Section 5 concludes the proposed study, 100 

highlighting the advantages and limitations of using different affine 2D detectors and future work approaches. 

 

2. Principle of work 

2.1 TLS point cloud registration 

Several methods of TLS data registration exist, which may be generally divided (followed by Vosselman and 105 

Maas (2010) proposed definitions) into target-based and feature-based [16,43–49]. The TLS data registration 

methods are generally based on the corresponding features between two or more datasets. Still, the main 

differences might be seen in determining and matching these corresponding points. Despite the existence of two 

different approaches to the determination of tie points, to define the relationship between the local instrument and 

the global reference system, Equation (1) is used: 110 
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(1) 

 

In this Equation, the coordinates of the object points (reference points) correspond to the vector (𝑋𝑖 𝑌𝑖 𝑍𝑖)
𝑇, 

points in the local (scanner) coordinate system and are represented by the vector (𝑥𝑖𝑗 𝑦𝑖𝑗 𝑧𝑖𝑗)𝑇, the scanner 

position (𝑋𝑖
𝑐 𝑌𝑖

𝑐 𝑍𝑖
𝑐)𝑇 scanner rotation 𝑀𝑖𝑗  (three Euler angles 𝜔,𝜑, 𝜅 that are used to construct the rotation 

matrix).  115 

The least-square estimation is required to determine the exterior orientation parameters for the oriented point. 

Teunissen (2003) used the well-known Gauss-Markow linear model (a linearised form of the nonlinear input 

relationships), which is also used in the TLS/photogrammetric bundle adjustment process [51]. To determine the 

normal equation matrix and vector, the least-square adjustment is used with the following analytic form (Equations 

(2 - 4)): 120 

𝑦 + 𝑒 = 𝐴𝑥;   𝑒 ~ (0, 𝐶𝑒) 
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𝐴𝑇𝑃𝐴𝑥 =  𝐴𝑇𝑃𝑦 (3) 

𝑃 =  𝐶𝑦
−1 (4)  

where: 𝐴 - coefficient matrix (m×n) (m—number of observational equations, 𝑛- number of unknowns), 

𝑟𝑎𝑛𝑘(𝐴) = 𝑢 (full rank); 𝑥 -  parameter vector (n×1); 𝑦- observation vector (m×1) (uncorrelated observations); 

𝐶𝑒 -  observation error covariance matrix (m×m) (positively determined) is also the observation result covariance 

matrix, i.e., Ce ≡ Cy. 
 125 

The selection and arrangement of tie points in the point cloud orientation process play a crucial role. When 

considering the possibilities of using tie points in the data orientation process, it is essential to consider their use 



in accuracy and detecting, locating, and eliminating outliers that may occur during the adjustment process. 

Reliability theory deals with diagnosing outliers in observations and datasets used in the alignment process [52–

57]. 130 

In this article, the proposed reliability approach will compensate for the orientation quality based on the local 

reliability criteria, which enables determining if the pair of tie points is correctly matched. The proposed quality 

assessment method will focus on the RMSE on control and check points evaluation and consider the points' spatial 

distribution. Based on the least square method (Equations 2 and 3), the formula for local reliability criteria is 

determined (Equation (5)), which is called the "disturbance-response" dependency and is one of the basic elements 135 

of reliability theory: 

𝑣 =  −𝑅𝑦 

𝑅 = 𝐼 − 𝐴(𝐴𝑇𝐴)−1𝐴𝑇 
(5) 

where: 𝑅 - reliability matrix of the tie points; 𝐼 - identity matrix, 𝐴 - coefficient matrix based on the tie points. 

The analysis of the internal reliability factors, based on the diagonal value of the matrix R (an orthogonal 

projection operator), that values are between <0,1>. It is stated that if: (1) {𝑅}𝑖𝑖 = 0 the tie point is uncontrolled 

by other points; (2) {𝑅}𝑖𝑖 = 1 the tie point is fully controlled by other points; (3) {𝑅}𝑖𝑖 >140 

0.5 tie point (in relation to other points) is well distributed regarding reliability theory. This method is very 

useful for automatically analysing and selecting the TLS point registration [58]. 

2.2 TLS point featured-based cloud registration  

The current state-of-the-art approach for TLS data registration is based on two main methods, namely, (1) point-

based (provided control points/ markers) and (2) feature-based methods [42]. One of the feature-based methods is 145 

Structure-from-Motion (SfM), which is carried out in the following steps: (1) feature extraction; (2) feature 

matching; (3) geometric verification; (4) reconstruction initialisation; (5) image registration; (6) triangulation, and 

(7) bundle adjustment (Fig. 2). To generalise, the SfM approach might be divided into two main parts: the 

correspondence search phase (1–3) and iterative reconstruction phase (4–6) [46,59–62]. 

 150 
Fig. 2. Incremental SfM methodology [59]. 

The classical SfM uses the group of collected images. Still, in the case of TLS registration, the point cloud 

should be converted into the spherical raster based on the cartographical Equation (Eq. 6 -8). Referring to Fig. 3, 

a TLS with the panoramic architecture acquire the spherical coordinate observation defined as a ρ – the measured 

distance between the object and scan position, θ – horizontal direction and φ – vertical (elevation) angle. These 155 

values might be expressed concerning the Euclidean coordinate system (Equations (6 – 8)): 

𝜌𝑖𝑗 = √𝑥𝑖𝑗
2 + 𝑦𝑖𝑗

2 + 𝑧𝑖𝑗
2  (6) 

𝜃𝑖𝑗 = arctan (
𝑦𝑖𝑗

𝑥𝑖𝑗
) (7) 

𝛼𝑖𝑗 = arctan (
𝑧𝑖𝑗

√𝑥𝑖𝑗
2 + 𝑦𝑖𝑗

2

) 
(8) 

 

 

 

 160 

 



 

(a) 

(b) 

𝒙 = 𝒓 ∗  𝜽 

𝒚 = 𝒓 ∗  𝜽 
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𝒓
            𝝋 =  

𝒚

𝒓
 

Fig. 3. Relation between spherical coordinates and coordinates on spherical photographs (a) Graphical representation of the 

relation between polar coordinates measured and the raster image in spherical projection [63], (b) formula for recalculation of 

polar coordinates to spherical projection, and (c) formula for recalculation of x,y spherical projection onto polar coordinates. 

A spherical image (for which the raster grey-level value assumes the laser beam reflectance intensity value) is 165 

used, together with the map of depth (i.e., the distance to the analysed object), for TLS data orientation. This point 

cloud representation is applied and implemented in many commercial software tools [46,64–67]. The main 

advantage of that data representation is the possibility of using raw data with the highest resolution and without 

the interpolation of new values of pixel coordinates. It is also possible to generate an intensity raster of any 

resolution, and this can be done by converting new pixel values based on the formulas shown in Fig. 3. 170 

To compare the points in different rasters, it is necessary to determine the invariant features. The detection and 

description of features for each characteristic point are essential for the process of detection of homologous points 

because the final points' recognition as tie points is carried out by matching their relative descriptors in the process 

of data orientation. There are two approaches usually applied: (1) the Approximate Nearest Neighbour-Based Point 

Matching [68] and (2) Brute Force matching [69]. 175 

2.3 The fundamental principles of the 2D feature 

Feature detection (also called extraction) is the first and the most essential step in the SfM methodology that relies 

on the detectors. The key extraction principle is to recognise each raster data (image from a group of processed 

images) and a group of characteristic points (also called keypoints) based on the local characteristic of the intensity. 

For feature extraction, different methods and algorithms can be used, such as point detectors [70], line detectors 180 

[71] or blob detectors [72], which affects the robustness of the detected features and efficiency of the matching 

method. 

Those features should have the following properties that allow to determine the characteristics of the detector " 

[73]: (1) Repeatability – the possibility to detect a high percent of the features possible to recognise the scene part 

visible in both images taken under different viewing conditions; (2) Distinctiveness/informativeness - the intensity 185 

patterns used for detecting points should show a lot of variations; (3) Locality - the neighbourhood used to 

determine the point should be local in order to reduce the probability of occlusions and invariant of the photometric 

and geometric deformations; (4) Quantity – a number of the detected features that should be sufficiently large and 

allow to detect features even on small objects (however, number of keypoints depends directly on the application); 

(5) Accuracy – definition of the quality and possibility of feature localisation in regards to the scale-space and 190 

photometric and geometrical distortions; (6) Efficiency – determination of the required time for feature detection 

(important in the time-critical applications)".  

At present, there are two distinct approaches for detecting keypoints in images. The first approach involves 

utilising a group of hand-crafted algorithms, such as Scale-Invariant Feature Transform (SIFT) introduced by 

Lowe [74] and Speeded Up Robust Features (SURF) proposed by Bay and Ess [75]. The second approach, a 195 

learned-based feature extraction approach, employs methods such as SuperGlue or LoFTR. Hand-crafted detectors 

operate by detecting keypoints based on the grayscale gradient values in the local neighbourhood, using either 

blob detectors like SIFT, SURF, or CenSurE, or corner detectors like FAST introduced by Rosten and Drummond 

[76] and BRISK proposed by Leutenegger et al. [77][REF], which compare grayscale differences with the analysed 

pixel. Point and blob detectors found wide application in the orientation of point clouds from terrestrial laser 200 

scanning [63]. The advantages of using point and blob detectors are (1) the speed of detection and match of tie 

points - might be extracted very efficiently, (2) the accuracy of localisation and scale-invariant, (3) stability over 

varying viewpoints and (4) the accuracy of TLS data registration [73,78]. One of the significant limitations of 

these detectors is that they were designed to use images projected in the central projection. Such an approach 

assumes that standard image deformations might be expected. For this reason, using spherical rasters from point 205 



cloud conversions can result in significant deformations that contribute to problems concerning explicit 

identification and matching keypoints [19,46,63,79]. This problem can be solved in two ways: (1) using different 

mapping representations (i.e., "virtual image", orthoimage or Mercator representation) [60,63] or (2) adding an 

affine component to the detectors [80]. 

In recent years, novel learning-based solutions have been developed to overcome the limitations of hand-crafted 210 

methods. These solutions encompass various approaches. The first approach, known as "detect-then-describe," 

involves using a learned detector and descriptor, which can either be fully learned or combined with hand-crafted 

and learning-based methods. Notable works in this domain include Barroso-Laguna et al. [81], Verdie et al. [82] 

for the detector, Ebel et al. [83], and Mishchuk et al. [84] or the descriptor. 

The second approach, "end-to-end," aims to jointly optimise the entire pipeline to extract sparse image 215 

correspondences. Examples of end-to-end methods include SuperPoint, introduced by DeTone et al. [85]; 

SuperGlue, proposed by Sarlin et al. [86]; and DISK, presented by Tyszkiewicz et al. [87]. These end-to-end 

methods have been utilised to enhance both the repeatability and reliability of keypoints, leading to improved 

success rates in image matching and more accurate pose estimation, as demonstrated by Remondino [88]. 

More recently, researchers such as Choy et al. [89], Rocco et al. [90], and Li et al. [91] introduced a new approach, 220 

"end-to-end detector-free local feature matching methods." These methods eliminate the feature detector phase 

and directly generate dense descriptors or dense feature matches. Notably, Sun et al. [92] introduced the LoFTR 

approach, which builds upon the Transformer architecture proposed by Vaswani et al. [93]. In contrast to the 

sequential process of image feature detection, description, and matching, LoFTR establishes pixel-wise dense 

matches at a coarse level and subsequently refines these matches at a fine level. 225 

2.4 The Feature Description, Matching and Images Registration 

To match characteristic points in several photographs, it is necessary to describe their features based on their 

neighbourhood [72]. This is carried out by descriptors, which enable the determination of the invariant features 

that form the basis for comparing points in different photographs. The characteristic points' descriptions can be 

unified using one descriptor for each detector. For that purpose, the operations of the SIFT descriptor were utilised 230 

[72]. The operations of the SIFT descriptor consist of two stages: (1) calculation of the gradient (scale) and 

orientation of each point within the neighbourhood of a key point and (2) determination of a 128-element vector 

of features (a descriptor). The Gaussian images are used to determine the orientation of keypoints, which 

corresponds to the scale of a given keypoint. For each image point, the gradient module and orientation are 

calculated. The keypoints' features are measured in relation to the determined orientation, which results in the 235 

description being independent of the rotation. The SIFT algorithm considers the gradient module and orientation 

within the neighbourhood of 16 × 16 for a given keypoint. Then, this area is divided into regions of 4 × 4 size, in 

which the resultant orientation histograms are re-created. The consequent gradient module for eight orientations 

is determined within each area based on the particular points of the modules. Thus, the point feature descriptor is 

a vector of 4 × 4 × 8 = 128 elements. The vector is normalised to reduce the influence of illumination. The next 240 

stage of considering points as tie points in image data orientation is their relative matching. In this article, the 

Approximate Nearest Neighbourhood-Based Point Matching [60] was used. At the end of the final iterative, the 

bundle adjustment process relies on the methodology described in subsection 2.1. 

3. Methodology 

3.1 Selected Test Site 245 

The proposed method for automatic Terrestrial Laser Scanning data registration that involves the use TLS-SfM 

with hand-crafted and learned features to detect non-signalised tie points on point clouds was tested at six different 

sites, namely historic 17th-century basements at the Royal Castle in Warsaw without decorative structure (Test 

Site I and II), Museum of King Jan III's Palace at Wilanów with decorative elements, ornaments, and materials on 

walls (Test Site III) and flat frescos (Test Site IV), narrow office (Test Site V) and shopping mall (Test Site VI). 250 

The Test Sites I and II are constructed of bricks filled with mortar. It has an irregular shape with a ceiling in the 

form of arches, with a maximum height of approximately 3.2m and a minimum of about 2.1m. Due to its historical 

character and the prevailing humidity conditions, the part of the room has damp walls and fragments of bricks 

crumble, making it impossible to place the signalled control points on the object. On the other hand, it was 

impossible to place the points on tripods because of the size and dimensions of the individual rooms. If the target-255 

based methodology is implemented, it will increase the number of required scanner positions, leading to inaccurate 

point cloud registration. 

 



 
(a)                                                                                (b) 260 

Fig. 4. (a) The floor plan with marked dimensions and Terrestrial Laser Scanning (TLS) positions (red dots). Each name of the 

laser scanner position contains the name of the selected test site (I and II) and specified id (1,2,3,4, etc.). For each TLS position, 

the height (h) was also defined as (b) a spherical map of point clouds for each Test Site. 

 

Both Test Sites were marked with check points (that were not used for orientation parameters determination but 265 

were used for the independent quality assessment), which were placed at different heights. All points were 

measured with Total Station Leica TCRP 1202 with angular accuracy 2sec., linear accuracy 2mm +2ppm. TLS 

data used in this work was acquired by phase-shift scanners Z + F 5006h (Test Sites I, II and IV-VI) and Z+F 5003 

from different positions and heights with an angular resolution 360°/320°  and point resolution 6.3mm/10m (Test 

Site III). Figure 4 presents the floor plan with marked dimensions for Test Sites I and II, including Terrestrial Laser 270 

Scanning (TLS) positions and marked reference points. 

The Test Site I is a regular-shaped facility with dimensions of approx. 5.6m x 5.1m. A ventilation pipe runs through 

the centre of the room (halfway up the room) and is used to dehumidify the room, which limits the placement of 

the scanner stations. It was necessary to increase the number of scanner positions used for a full Test Site inventory 

and the number of marked control points. The Test Site II has dimensions of 7.4m x 5.1m and is divided by curves 275 

at 1/3 and 2/3 of the distance. In addition, it has recesses and long windowpanes. Therefore, increasing the number 

of signalised points and scanner positions was necessary, which resulted in some points not being visible on all 

scans.  

Test Sites III and IV are two decorated historical chambers at the Museum of King Jan III's Palace at Wilanów. 

Test site III: "The Queen's Bedroom" was characterised by geometric complexity in the form of rich ornaments, 280 

bas-reliefs, and facets. Moreover, mirrors in golden frames, decorative fireplaces, fabrics, etc., hung on the walls 

(Figure 5). Test Site III is dimensions are approximately 6.4m x 7.3m x 5.3m.  

 
Fig. 5. The point cloud in the spherical projection of Test Site III with marked points (red circles) [63]. 
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Figure 5 presents the distribution of scanner positions and the scanning distances. Five out of six scans were 

acquired with the selected fragment of a chamber (the incomplete extent). The seventh scan (acquired with the full 

angular resolution) was applied as the reference scan. Sixteen marked points were distributed over the test site 

(considered as check points in further analyses), which were used for TLS data orientation.  

 290 

Test site IV: "The Chamber with a Parrot" is characterised by the small number of ornaments and the lack of 

bas-reliefs, facets, or fabrics on the walls. In this Test Site, the walls were painted with patterns, which imitated 



spatial effects. Figure 6 presents the distribution of scanner positions and scanning distances, where the first scan 

was considered the reference scan. Due to the restriction on placing marked points on historical surfaces, 

automatically detected points defined as check points were used for the accuracy analysis. The dimensions of Test 295 

Site IV are approximately 4.2m x 4.2m x 2.6m. 

 
Fig. 6. The point cloud in the spherical projection of Test Site IV without marked points [63]. 

 

The Test Site V is the office room at the main hall of Warsaw University of Technology. The smooth walls 300 

characterise the selected Test Site without the texture; lamps and power wires were on the ceiling, and the floor 

was covered with dark carpet. Figure 7 presents the distribution of scanner stations and scanning distances. The 

dimensions of the office room are approximately 7.4m x 5.9m x 4.5m. 

 
Fig. 7. The point cloud example in the spherical projection of Test Site V with marked check points (red circles) 305 

[63]. 

 

The Test site VI is the "Empty shopping mall". The walls of the room were smooth, without texture. Lamps, 

electric wires, and an air-conditioning system were on the ceiling; the floor was concrete. Figure 8 presents the 

distribution of scanner stations and scanning distances. Scan three was used as the reference scan, and eight marked 310 

points were distributed over the test site (considered as check points in further analyses), which were used for TLS 

data orientation. The dimensions of the Test Site VI are approximately 21.5m x 7.1m x 6.3m.  

 
Fig. 8. The point cloud example in the spherical projection of test site VI with marked check points (red circles) 

[63]. 315 



3.2 The TLS-SfM approach 

The approach based on a modified SfM algorithm was used to register the TLS-derived point. Figure 9 shows 

a schematic of the data processing using the TLS-SfM method. 
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Fig. 9. Workflow of the proposed TLS-SfM point cloud registration approach.  

The TLS-SfM method is a multi-stage approach that consists of the following steps: 320 

1) Conversion of point clouds to raster form (3D-2D). 

To convert point clouds to raster form, unprocessed raw data was selected to generate rasters with the maximum 

possible resolution (for each raster) and do not require interpolating the coordinate values for pixels. The 

mathematical relationship between cartesian and spherical coordinates was described by Fangi [44]. The data 

conversion from 3D to 2D consisted of converting the coordinates of the points from Cartesian to spherical based 325 

on equations 6 – 8. The x and y coordinates in the raster area correspond to the values of the vertical and horizontal 

angles, respectively, and the intensity of the laser beam reflection and the X, Y, and Z coordinates of the points, 

respectively, are used to assign grey level values of the new raster. As a result of this step, 4 rasters are generated 

for each point cloud. 

2) Corresponding search 330 

In the proposed TLS-SfM method, the process of finding tie points (feature detection and description) has been 

implemented using detect-the-describe, detect & describe (end-to-end) and describe-to-detect (end-to-end 

detector-free local feature matching methods) approaches. The detect-than-describe approach used a two-stage 

data transformation based on affine-based feature point detection and feature description using a descriptor. For 

both cases, both hand-crafted and learned-based algorithm approaches were used. A detailed description of the 335 

algorithms used is presented in subsection 3.3. This step is performed for all possible pairs of rasters. To determine 

these pairs, the methods of permutations without repetitions are used: 

(
𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
 (9) 

where: k = 2 (a pair of scans), n - the number of all scans. 

Descriptor matching (for detect-than-describe and end-to-end methods) is performed using the Approximate 340 

Nearest Neighbourhood-Based Point Matching algorithm and L2 distance metrics. 

3) Tie points XYZ determination 

The 2D coordinates of the pre-matched tie points detected on the intensity rasters were used to interpolate the 

coordinates of the XYZ points. The X, Y and Z rasters generated in the first data processing step were used for 

this purpose, respectively. The bilinear method was used as the interpolation method.  345 

4) Tie point geometrical verification 

The geometrical verification of the detected tie points (based on 3D coordinates, performed in the iterative 

process (RANSAC method) with the following assumptions – full registration (the accuracy on control and check 

points do not exceed 5 mm and covariances factors are higher than 0.5), initial registration used for final 

registration bases on the ICP (threshold 10 mm) and non-registration (values on control and check higher than 10 350 

mm). The output of this data processing step was (1) the set of correct tie points, (2) the linear RMSE value of the 

scan pair match, (3) the number of tie points and (4) approximate transformation parameters. 

5) Incremental reconstruction 

The Incremental reconstruction process starts with selecting the reference scan to which the other point clouds 

will be registered. To do this, the pair of point clouds for which the highest number of tie points was first detected 355 

is selected. From this pair of points, the point cloud with more connections to the other scans is selected. To match 

the remaining pairs of scans, the process is performed iteratively according to the following steps: 

(a) Localise a new pair of scans to the current pre-registered point clouds,  

(b) Compute the approximate point clouds registration parameters, 

(c) Find correspondence points on multiple point clouds, 360 

(d) Repeat steps a-c until all pairs of scans have been added. 

The result of this stage is an approximation of the mutual orientation parameters and all possible connections 

between point clouds. 

6) Final bundle adjustment 

A final bundle adjustment is based on early iterative matching of the point clouds to the reference scan. This 365 

involves determining the orientation elements of the point clouds with simultaneous filtering of outlier 

observations based on RMSE error values and reliability coefficients. In addition, based on the measured control 

points, it is possible to orient the point clouds to the reference coordinate system. As a result of the TLS-SfM 

Final bundle 
adjustment

Exterior orientation parameters determination 
in the form of transformation matrix for all scans



process, point cloud orientation elements are obtained in the adopted reference system. 

3.3 Overview of the investigated algorithms and evaluated criteria 370 

This study investigates the quality improvement and completeness of the TLS registration process using 2D 

raster data and affine-detectors. To compare and verify the results of the point cloud registration, based on the 

selected hand-crafted and learned features, the multi-stage TLS-SfM registration methodology was followed.  

(1) Hand-crafted affine detectors, namely, corner detector (AFAST) and blob detectors (ASURF and ASIFT), 

were tested. The use of affine in feature point detection involves two steps: (a) multiple virtual image generation 375 

(which includes the skew, tilt, and rotation) to simulate the influence of the affine and (b) for each virtual image, 

apply the detector: 

• FAST (Features from Accelerated Segment Test) [76] utilises corner keypoints in images to detect by 

comparing the brightness intensities of pixels in a circular neighbourhood around each pixel of interest. 

The technique will classify the pixel as a corner depending on the neighbourhood's brightness and number 380 

of contiguous pixels and then to the central pixel using a threshold value. The FAST corner detector is 

based on a decision tree structure that allows for quick evaluation of the pixel intensities, making it 

suitable for real-time applications. 

• SIFT (Scale-Invariant Feature Transform) [74] – the purpose of SIFT is to detect and describe distinctive 

image keypoints. The advantage of this technique is its invariant nature to the scale changes, rotations, 385 

and changes in illumination, which makes it robust to variations in image conditions. The working 

principle of the SIFT algorithm is identifying stable keypoints using a scale-space representation of the 

image and applying a Difference of Gaussians (DoG) operator to detect local extrema. These keypoints 

are then described based on their surrounding gradient orientations, resulting in highly distinctive and 

invariant feature descriptors. 390 

• SURF (Speeded-Up Robust Features) [75] offers faster computation. It provides robustness against image 

transformations by utilising integral images to efficiently calculate various image filters, such as the Haar 

wavelet responses, which capture both local intensity and orientation information. SURF detects 

keypoints by identifying locations with extreme responses in scale-space and orientation.  

(2) Authors implemented the learned-based features: 395 

• SuperGlue [94] for reliable correspondence between keypoints across different images. Unlike 

traditional hand-crafted methods, SuperGlue predicts the matching likelihood and establishes matches 

directly from the input data. It consists of two main components: (1) a learned embedding network and 

(2) a geometric verification module. The embedding network is used to map keypoints from two images 

into a shared feature space, where their similarity is measured. The geometric verification module uses 400 

the learned embeddings to estimate a geometric transformation between the keypoints and refine the 

matches. SuperGlue can leverage rich contextual information and handle challenging scenarios such as 

occlusions and viewpoint changes owing to jointly learning feature representation and the matching 

process. 

• LoFTR (Local Feature Transformer) is an end-to-end detector-free local feature-matching method 405 

introduced by Sun et al. [92]. LoFTR creates dense pixel-wise correspondences between images using a 

Transformer-based architecture. LoFTR directly predicts dense correspondences without needing a 

feature detector, unlike traditional approaches that require separate stages for feature detection, 

description, and matching. It operates in two steps: (1) coarse matching and (2) fine matching. LoFTR 

employs a self-attention mechanism in the coarse matching stage to allow each pixel to attend to its 410 

neighbours and capture their contextual information to create a pixel-wise dense matching. The coarse 

matching stage is used to provide the initial estimation of correspondences. LoFTR uses a hierarchical 

refinement network to refine the initial matches in the matching stage. This network takes the initial 

correspondences and iteratively refines them by considering local spatial relationships and context. 

LoFTR improves the accuracy and reliability of the correspondences by iteratively refining the matches. 415 

LoFTR's Transformer-based architecture captures long-range dependencies and global contextual 

information, enhancing the quality of the dense correspondences. This approach eliminates the need for 

explicit feature detection and produces dense descriptors directly, leading to improved matching 

performance. 

• KeyNet detector + AffNet + HardNet descriptor (later called KeyNetAffine) – is a combined hand-420 

crafted and learned method to detect features. KeyNet is a state-of-the-art keypoint detector [81] that 

leverages deep learning techniques to detect distinctive image keypoints. KeyNet utilises a convolutional 

neural network (CNN) architecture, which is trained on large-scale datasets with annotated keypoints. 



KeyNet, to maximise the detection accuracy and robustness, identifies salient and repeatable keypoints, 

which allows for optimising the network parameters. This detector is highly adaptable to diverse image 425 

conditions due to excellent handling of variations in scale, rotation, and illumination, demonstrating 

outstanding performance in keypoint-based applications, namely, image matching, object recognition, 

and visual tracking. The HardNet is a feature descriptor used in computer vision applications, particularly 

for matching and recognition tasks. The HardNet descriptor [84] is designed to capture and encode 

distinctive information from image patches, making it robust to variations in scale, rotation, and lighting 430 

conditions. The descriptor is computed by extracting local patches around keypoints and encoding them 

into fixed-length feature vectors. HardNet can handle challenging scenarios, such as significant viewpoint 

changes and occlusions, owing to focusing on the most informative and discriminative patches. HardNet 

utilises a Siamese neural network architecture that learns to optimise the feature representation for 

improved matching accuracy. During training, pairs of matching and non-matching patches are used to 435 

learn discriminative feature embeddings. 

To evaluate the accuracy of TLS point cloud on learned-based methods, it was decided to use those 

approaches trained on images depicting historical buildings and architectural objects (for LoFTR - 

MegaDepth, SuperGlue and KeyNetAffine - PhotoTurism, respectively). The additional retrained learned-

based descriptors were chosen due to the desire to test ready-made solutions and compare them with hand-440 

crafted methods.The quality improvement and completeness of the TLS registration process were compared 

against several metrics presented in Table 1. 

Table 1. Metrics for evaluating the hand-crafted and learned-based features. 

Metrics Description 

Number and tie point 

distribution 

The high number of points can lead to detecting the correct points used in 

the registration step. Additionally, it also affects the possible determination 

of tie points between multiple scans and the final robustness of the 

registration.  

The completeness of data 

registration 

The data registration is understood as the ability to orientate all pair scans to 

each other with a minimum number of connections and determine the 

robustness and effectiveness of the TLS-SfM approach. 

The registration accuracy The registration accuracy determines the final quality of matching between 

points clouds on marked check points. The final step of documentation 

generation results in the final accuracy of 3D models and documentation 

The reliability assessment The reliability assessment makes it possible to assess the correctness of the 

geometric distribution of the tie points in a fully automatic manner. By 

meeting the minimum requirements for the values of these coefficients, it is 

possible to assess whether a network of tie points is robust.  

The distance between a pair 

of point clouds 

The analysis of the distance between point clouds allows independent control 

of the accuracy of matching whole and fragmented point clouds. Such a 

metric enables the accuracy of the fit to be assessed for objects for which it 

is not possible to distribute marked reference points. This allows the results 

to be compared independently with stat-of-the-art approaches, namely 

Iterative Closest Point and Target-based. 

4. Results and Discussion 

4.1 Automatic pairwise point cloud registration- accuracy evaluation 445 

To assess the detector's or affine-detector's applicability in the TLS registration process, the accuracy of the 

orientation of all possible overlapping pairs of scans from different heights and distances from scanned surfaces 

was analysed. The results are presented in Table 2 and marked in colour: (1) green - the complete registration with 

the X, Y and Z with RMSE ≤ 0.005m and covariance factor > 0.5; (2) orange - preliminary orientation; obtained 

parameters should be treated as the initial parameters for Iterative closest Point (ICP) registration and (3) red – no 450 

registration because the points were not well distributed and/or the RMSE < 0.01m and/or covariance < 0.5. 

Additionally, due to the processing of point clouds of wall fragments (rather than the entire room) on Test Site III, 

it was decided to mark "x" pairs of scans that do not overlap. 
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Table 2. The accuracy of the TLS registration for detectors and a-detectors. 
Test Site I- Basement at the Royal Castle 

AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine 



 2 3 4  2 3 4  2 3 4  2 3 4  2 3 4  2 3 4 

1    1    1    1    1    1    

2    2    2    2    2    2    

3    3    3    3    3    3    
 

Test Site II- Basement at the Royal Castle 
AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine 

 2 3 4 5 6  2 3 4 5 6  2 3 4 5 6  2 3 4 5 6  2 3 4 5 6  2 3 4 5 6 

1      1      1      1      1      1      
2      2      2      2      2      2      
3      3      3      3      3      3      
4      4      4      4      4      4      
5      5      5      5      5      5      

Test Site III – "The Queen's Bedroom"  
AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine 

 2 3 4 5 6  2 3 4 5 6  2 3 4 5 6  2 3 4 5 6  2 3 4 5 6  2 3 4 5 6 

1   x x x   1   x x x   1   x x x   1   x x x   1   x x x   1   x x x   

2   x x x   2   x x x   2   x x x   2   x x x   2   x x x   2   x x x   

3           3           3           3           3           3           

4           4           4           4           4           4           

5           5           5           5           5           5           
 

Test Site IV – "The Chamber with a Parrot"  
AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine 

 2 3 4  2 3 4  2 3 4  4 5 6  4 5 6  4 5 6 

1       1       1       1       1       1       

2       2       2       2       2       2       

3       3       3       3       3       3       

 
Test Site V - The office room 

AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine 
 2 3 4 5 6 8 9  2 3 4 5 6 8 9  2 3 4 5 6 8 9  2 3 4 5 6 8 9  2 3 4 5 6 8 9  2 3 4 5 6 8 9 

1        1        1        1        1        1        
2        2        2        2        2        2        
3        3        3        3        3        3        
4        4        4        4        4        4        
5        5        5        5        5        5        
6        6        6        6        6        6        
8        8        8        8        8        8        

 460 
Test Site VI – Empty shop (shopping mall) 

AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine 

 2 3 4 5 6 7  2 3 4 5 6 7  2 3 4 5 6 7  2 3 4 5 6 7  2 3 4 5 6 7  2 3 4 5 6 7 

1       1       1       1       1       1       

2       2       2       2       2       2       

3       3       3       3       3       3       

4       4       4       4       4       4       

5       5       5       5       5       5       

6       6       6       6       6       6       

 

The results in Table 2 show that only AFAST (point detector) and ASIFT (blob detector) allow for correct 

registration of all pairs of scans for all test sites. The remaining algorithms should be analysed individually for 

each test site. The LoFTR approach obtained the worst results: for Test Site I, only 1 of 6; Test Site II, 0 of 15; 

Test Site III, 0 of 9; Test Site IV 6 of 6; Test Site V, 0 of 28 and Test Site VI 0 of 20 pairs of scans were correctly 465 

oriented (full orientation). For the other learned-based approaches for point detection, significantly better results 

were obtained. In the case of the SuperGlue detector for Test Site I, 2 of 6; Test Site II, 11 of 15; Test Site III, 8 

of 9; Test Site IV, 6 of 6; Test Site V, 24 of 28 and Test Site VI 6 of 21 pairs of scans were correctly registered. 

With the KeyNetAffine, it was possible to register all pairs of scans from Test Site IV, 5 of 6 pairs of scans for 

Test Site I, 12 of 15 for Test Site II, 1 of 9 for Test Site III, 16 out of 28 for Test Site V and 3 of 21 for Test Site 470 

VI.  

When the multi-position TLS point clouds are registered, not only the percentage of the correctly aligned point 

cloud is necessary, but also the possibility of a global registration for all possible point clouds. The full registration 

(based on results of full and preliminary pair of scans orientation) for Test Site I, II, III, IV and V. For Test Site 

VI, it was impossible to perform the multi-position registration. The incompleteness of a pair of scan registrations 475 

for Test Site I and IV might affect the robustness of the global adjustment and approximately equivalence 

redundancy of the tie point on point clouds. 



The hand-crafted detectors are the potential solution to overcome the problems mentioned above. Table 2 shows 

that the full multi-stage registration was conducted for Test Sites I – V. The worst results were obtained for Test 

Site VI, for which full registration was only possible with the ASIF and AFAST detectors.  480 

The analyses of the performance of point/blob detectors and a-detectors on test fields characterised both by 

different textures, structures, numbers, and decorations and by scanner positions to varying distances from walls 

and heights demonstrated that:   

• Using the LoFTR approach, it was not possible to correctly register point clouds obtained by scanner 

positions, for which corresponding fragments were measured at significantly different angles to the normal vector 485 

surface (i.e., acute angles to the normal vector surface) and for significantly different distances from the scanner 

position. This influenced the occurrence of significant "distortions" in the spherical projection caused by the 

cartographic conversion of the 3D data from the 2D form.  

• Hand-crafted algorithms allow more resistant tie points to be detected, which translates into more 

correctly oriented scan pairs. The SIFT and SURF algorithms are based on greyscale gradients, making them scale-490 

invariant and more robust. The performance difference is based on using a filter (CenSurE and SiFT - Laplasian 

centre-surround and Difference of Gaussian algorithms, respectively) and a Hessian (SURF and Difference of 

Boxes detector). For this reason, with these detectors, it was possible to detect a higher number of correctly 

matched keypoints, which affected the higher number of correctly registered pairs of scans.  

• Applying affine significantly improved the quality of the TLS point cloud pairwise and multi-stage 495 

registration. The use of ASIFT and AFAST allowed the orientation of point cloud pairs, necessary for final multi-

position registration, for all Test Sites. This is also noticeable when applied to the KeyNetAffine approach. 

Compared to other learned-based methods, it was possible to orient more pairs of scans with a wide baseline (Test 

Site I, II and VI). For the orientation of short baseline pairs of scans characterised by high distortion (Test Site III 

and V), significantly better results were obtained for the SuperGlue approach. 500 

4.2 The number of detected and matched keypoints after the final bundle adjustment 

The number of tie points obtained after the full bundle adjustment process was analysed to assess the influence 

of the hand-crafted and learned features in the TLS registration process and the selection of the appropriate 

features. Table 3 presents the number of all tie points used in the full bundle adjustment and points for cases for 

which full bundle adjustment was impossible (marked with a cross). 505 

 

Table 3. The number of all tie points used in the full bundle adjustment and points for cases for which full bundle 

adjustment was impossible (marked with a cross) 
 

 Detector 
Test Site  

I  

Test Site  

II 

Test Site  

III  

Test Site  

IV 

Test Site  

V 

Test Site  

VI 

AFAST 70,977 108,218 5,144 146,662 37,215 877 

ASIFT 60,308 123,808 3,392 106,386 14,597 496 

ASURF 27,871 92,659 1,184 128.360 13,290 648 

SuperGlue 3,024 6,518 1,916 15,796 8,268 1,264 x 

LoFTR 3,295 1,359 293 x 16,907 324x 0 

KeyNetAffine 2,726 7,682 1,838 6,938 7,387 176 x 

 510 

The number of used tie points presented in Table 3 indicated that hand-crafted detectors recorded the highest 

number of keypoints for all Test Sites apart from Test Site VI, for which the SuperGlue approach detected the 

most points. When considering the ratio of the number of points detected by the hand-crafted versus learned-based 

approach, it can be concluded that 26 times more were detected for Test Site I (AFAST - KeyNetAffine), 91 for 

Test Site II (ASIFT – LoFTR), 2.8 for Test Site III (AFAST - KeyNetAffine), 21 for Test Site IV (AFAST - 515 

KeyNetAffine), and 5 for Test Site V (AFAST -  KeyNetAffine). Due to the lack of full bundle adjustment of all 

scans using Learned features, it was impossible to calculate the points ratio for the two approaches. 

The analyses presented in Table 3 also show that, on average, the most tie scores were detected for AFAST and 

the least for KeyNetAffine. The significant difference in the number of points detected for the two approaches for 

Test Site I, II and IV is due to the characteristics of the sites. Test Site I and II is a historic brick cellar with an 520 

arched ceiling, and Test Site IV is a room with paintings imitating the spatial effect. For this reason, hand-crafted 

detectors, notably the AFAST detector (due to its mode of operation), detect significantly more points than other 

Test Sites characterised by less such unambiguous detail. 



Their spatial distribution should also be considered when assessing the quality of the tie points used in the 

bundle adjustment process. This is crucial, as it impacts the quality of registration and the accuracy of the entire 525 

process. Figure 10 shows the distribution of points used in full bundle adjustment and points for cases for which 

full bundle adjustment was impossible (marked with a cross). 



Test 

Site 

      

I 

 AFAST ASIFT ASURF SuperGluex LoFTR KeyNetAffine 

II 

      
 AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine 

III 

      
 AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine 

IV 

      
AFAST ASIFT ASURF SuperGlue LoFTR KeyNetAffine 



V 

     
 

AFAST ASIFT ASURF SuperGlue LoFTRx KeyNetAffine 

VI 

   

 

 

 

 

 

 

X 

 

AFAST ASIFT ASURFx SuperGluex LoFTRx KeyNetAffinex 

Fig. 10. The tie points distribution used for TLS point cloud registration for each method. 
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The analysis shows that despite the lower number of tie points detected by Learned-based methods compared 

to Hand-crafted detectors, their placement guarantees a correct point cloud registration. As with the number of 

points analysed, the distribution of points should be assessed independently for each Test Site: 

• Test Site I - The points detected by the hand-crafted detectors for all detectors have a similar spatial 

distribution. Noticeably, the issues are clustered in the lower part of the room and the middle of the ceiling. An 535 

uneven distribution characterises points detected using the LoFTR algorithm, and an increased density of points 

on wall sections is noticeable. For KeyNetAffine, the points are evenly distributed, and unlike for LoFTR, there 

are no areas with a significantly higher point density. When analysing the results for SuperGlue, there is a 

significant density of points in one part of the basement due to the inability to detect tie points on the minimum 

number of pairs of scans mortising full bundle adjustment. 540 

• Test Site II: The distribution of scores for all methods is similar for Test Site I. For the hand-crafted 

algorithms, the most points (highest density) were detected and used on the two walls visible on all scans. 

Significantly fewer points are on the ceiling, and the highest density was obtained in the central part of the 

basement. The best results were obtained for the ASURF, AFAST and ASIFT algorithms. For the learned-based 

algorithms, the best distribution of points (both points were on the ceiling and the walls) while maintaining a 545 

similar density for the entire basement was obtained for KeyNetAffine and the worst for LoFTR, for which points 

were mainly distributed on the walls in groups of different thicknesses. For the SuperGlue method, most points 

were distributed on the walls mapped on all scans and a small number on the ceiling. However, it should be 

emphasised that the number and distribution of points detected by the learned-based methods allowed the correct 

registration of all point clouds. 550 

• Test Site III - For Test Site III, which contains rich ornaments, bas-reliefs, and facets, the distribution of 

tie points was similar for all hand-crafted and learned-based methods except for the LoFTR algorithm. In summary, 

it can be concluded that the best distribution was obtained for points detected using the SuperGlue approach. 

• Test Site IV - As for Test Sites I and II, in this case, a higher point density for points detected by hand-

crafted methods. For this type of algorithm, it is noticeable that there is a higher point density for areas where there 555 

is a more significant change in grey degree gradients. For this reason, these points are not evenly distributed 

throughout the study area. For learn-based methods (SuperGlue and KeyNetAffine), the distribution of points is 

more even than for hand-crafted methods. As for the previous Test Sites of the learned-based algorithm group, the 

most points were detected using the SuperGlue approach, the least using LoFTR. 

• Test Site V - In the case of an office room test field characterised by a lack of diverse texture and equipped 560 

with furniture and office equipment, the number, density, and distribution of tie points were similar for the AFAST, 

ASIFT, ASURF, SuperGlue and KeyNetAffine algorithms. As for the previous Test Sites, the worst results were 

obtained for the LoFTR-based approach, for which all point clouds could not be registered. 

• Test Site VI - An analysis of the distribution of tie points detected on the empty shopping mall scans 

shows that only hand-crafted ASIFT and AFAST detectors could orient all point clouds. This was due to the 565 

conversion of the 3D data to 2D and the influence of the presence of significant distortion in the image. Considering 

that points were searched on wide-based point clouds, applying the abovementioned methods allowed the detection 

of an adequate number of points evenly distributed over the entire study area. Comparing the results for points 

detected on rasters generated from pairs of scans with smaller baseline between point clouds and less distortion, 

the use of learned-based methods allowed the detection of a more significant number of correctly detected tie 570 

points. For this reason, when planning a survey of this type of object, it is crucial to decide whether to make fewer 

point clouds and use affine-detector-based hand-crated methods or to add several scanner stations to reduce the 

baseline between point clouds and use learned-based algorithms. 

4.3 The comparison with the current state-of-the-art methods 

To assess the accuracy and correctness of the presented approach for point cloud orientation based on affine-575 

detectors and point clouds converted to raster form, it was decided to compare point clouds with the commonly 

used approach based on signalised control points (target-based registration) implemented in Z+F LaserControl 

software [47] and the Iterative Closest Points (ICP) method implemented in the open-source CloudCompare [48]. 

4.3.1 The target-based 

The target-based method relies on the marked points and is commonly applied for TLS point cloud registration. 580 

These points should be evenly distributed across the investigated object. To compare results from the feature-based 

registration method with "normal" and affine detectors, the obtained results were compared with the TLS target-

based registration from Z+F LaserControl software. To automatically analyse the influence of the geometrical 

point distribution with reliability assessment, the values of the covariance factors were compared. Results are 

shown in Table 4.  585 



Table 4. Comparison of results of TLS joint/full registration method for all scans and the target-based registration method 

with reliability assessment for all Test Sites 

 

RMSE on Marked Check Points [mm] 

Detector Test Site I Test Site II Test Site III Test Site IV Test Site V Test Site VI 

AFAST 3.4 3.9 2.3 2.5 2.0 9.0 

ASIFT 1.8 2.3 1.9 2.8 1.8 4.9 

ASURF 3.7 5.0 2.5 2.6 2.1 x 

SuperGlue x 4.1 4.7 2.6 1.9 x 

LoFTR 4.2 10.5 x 2.7 x x 

KeyNetAffine 3.6 2.3 5.5 2.5 2.4 x 

Target-Based Method 3.5 4.4 5.7 2.8 1.3 3.8 

The Reliability indices – minimum values 

Detector Test Site I Test Site II Test Site III Test Site IV Test Site V Test Site VI 

AFAST 0.94 0.98 0.66 0.99 0.94 0.10 

ASIFT 0.98 0.78 0.58 0.99 0.65 0.60 

ASURF 0.97 0.99 0.94 0.99 0.93 x 

SuperGlue x 0.28 0.51 0.98 0.87 x 

LoFTR 0.76 0.59 x 0.94 x x 

KeyNetAffine 0.51 0.89 0.86 0.98 0.86 X 

Target-Based Method 0.35 0.20 0.22 0.23 0.29 0.28 

x – too low number of tie points 

 590 

Results presented in Table 4 show that the differences between the RMSE values on marked check points 

(obtained from multi-position TLS registration) depend on Test Sites.  

• For Test Site I, significantly higher accuracy of full-bundle adjustment can be observed on points 

detected with the ASIFT detector compared to the commonly used Target-based approach. The linear RMSE value 

was 2 times lower (1.8 mm). For the other algorithms, the linear RMSE values were similar to those of the Target-595 

based approach and were for AFAST - 3.4 mm, ASURF - 3.7 mm, KeyNetAffine - 3.6 mm and Target-based 3.5 

mm, respectively. For the LoFTR --value method, the RMSE was 4.2 mm (0.7 mm higher) than the Target-based 

approach. The significant impact of using a Hand-crafted detector can be seen by analysing the minimum 

covariance factors. This contributed to fulfilling the network's controllability condition and improving the 

geometric distribution of tie points for the minimum values (above 0.5, which is the threshold value). There is a 600 

noticeable increase in values from 0.35 for Target-based to 0.94 for AFAST, 0.98 for ASIFT, 0.97 for ASURF, 

0.76 for LoFTR and 0.51 for KeyNetAffine. 

• For Test Site II, varying linear RMSE values are evident. The best results were obtained on points 

detected with ASIFT and KeyNetAffine - linear RMSE values of 2.3 mm - 2 times lower than for Target-based. 

For AFAST and SuperGlue, the linear RMSE values are lower than for Target-based. Only for ASURF, which is 605 

0.6 mm higher than Target-based and LoFTR - 6.1 mm. Analysing the values of the minimum reliability indices, 

as for Test Site I, a significant increase in their values (which translates into a better geometric distribution and 

resistance to the influence of outliers) for all methods except SuperGlue. 

• In the case of Test Site III, the RMSE's deviation on detectors is approximately 2 times lower than Target-

based (5.7 mm) for Hand-crafted detectors and similar to Target-based (but still lower) for Learned-based 610 

approaches. The covariance factor for the Hand-crafted method is in the range of 0.58 – 0.98, for Learned-based 

methods in the range of 0.51 – 0.86 and for target-based is 0.22. As mentioned, full registration for all scans with 

the LoFTR algorithm was impossible. 

• For Test Site IV, both Hand-crated and Learned features provided comparable results; therefore, it is 

difficult to judge if it is necessary to use the Learned-based method, as the obtained mean RMSE values for 615 



detectors and target-based method are similar. The minimum covariance factors values (about 0.98) are about 4.5 

times better than the target-based method (0.23).  

• For Test Site V, similar results for Hand-crafted (2.5 mm – 2.8 mm) and Learned-based methods (1.9 

mm – 2.4 mm) but slightly worse than Target-based (1.3 mm). The minimum covariance factor for both methods 

is in the range of 0.65 – 0.94, and for target-based is 0.29. In this case, orienting the point clouds using LoFTR-620 

detected points was also impossible. 

• Completing the multi-station registration scans for Test Site VI was impossible due to the challenge of 

finding the corresponding points for Hand-crafted and Learned methods, except ASIFT and AFAST. Comparing 

values of RMSE, similar values can be seen for ASIFT and target-based methods. However, the AFAST detector 

demonstrated approximately 2-2.5 times worse performance. The min covariance factors for the AFAST, ASIFT 625 

and target-based methods were 0.1, 0.60 and 0.28, respectively. 

4.3.2 Iterative Closest Points (ICP) 

To assess the accuracy of TLS data registration using affine-detectors, the results were compared with the point-

to-point ICP method using open-source CloudCompare software, commonly used in point cloud registration. The 

quality of point cloud matching was assessed by analysing the linear distance between pairs of point clouds. Point 630 

cloud resampling was performed with a fixed distance (1mm) between points. Figures 11 - 16 show the example 

of the worst scenario for all Test Sites. Each figure contains 8 histograms showing the probability density function 

of linear deviations between point clouds using the target-based method, the ICP point-to-point, Hand-crafted 

detectors (AFAST, ASIFT, ASURF) and Learned-based features (SuperGlue, LoFTR and KeyNetAffine). 
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(a) (c) (e) (g) 

   
 

(b) (d) (f) (h) 
Fig. 11. The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site I: (a) 

Target-based method, (b) ICP point-to-point, (c) AFAST, (d) ASIFT, (e) ASURF, (f) SuperGlue, (g) LoFTR,  

(h) KeyNetAffine. 

 

Based on the analysis of the results for Test Site I (Fig. 11), it can be seen that results obtained from ASIFT, 640 

ASURF, SuperGlue, LoFTR, Target-based and ICP methods are similar to a chi-square distribution. Still, better 

results are obtained from the detector-based approach.  

 

    
(a) (c) (e) (g) 



    
(b) (d) (f) (h) 

Fig. 12. The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site II: (a) 

Target-based method, (b) ICP point-to-point, (c) AFAST, (d) ASIFT, (e) ASURF, (f) SuperGlue, (g) LoFTR,  645 

(h) KeyNetAffine. 

 

For Test Site II (Fig. 12), all histogram shapes except the Target-based and LoFTR methods are similar to a 

chi-square distribution. The distance for 95% of the points for the Target-based method algorithm does not exceed 

6 mm. The histogram peak of probability density histogram of linear deviations between the worst oriented pair 650 

of scans by LoFTR shows that deviations are higher than 10 mm and registration was performed incorrectly. 

 

    
(a) (c) (e) (g) 

    
(b) (d) (f) (h) 

Fig. 13. The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site III: (a) 

Target-based method, (b) ICP point-to-point, (c) AFAST, (d) ASIFT, (e) ASURF, (f) SuperGlue, (g) LoFTR,  

(h) KeyNetAffine. 655 

 

Test Site III's best point cloud matching results were obtained for the ICP-based approach (Fig. 13b). The results 

obtained from Hand-crafted detectors (Fig. 13c – e) are similar to those obtained from target-based registration 

(Fig. 13a). The peaks of histograms are approximately 2 mm. The shapes of the linear deviations histograms for 

Learned-based approaches (Fig. 13 f – h) are "flat", indicating more significant errors in deviations between point 660 

clouds than for Hand-crafted methods. 

 

    
(a) (c) (e) (g) 

    
(b) (d) (f) (h) 

Fig. 14. The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site IV: (a) 

Target-based method, (b) ICP point-to-point, (c) AFAST, (d) ASIFT, (e) ASURF, (f) SuperGlue, (g) LoFTR,  

(h) KeyNetAffine. 665 



 

Based on the analysis of the results for Test Site IV (Fig. 14), the results obtained from all methods (except 

KeyNetAffine) are similar to a chi-square, which were obtained by the Target-base and ICP point-to-point 

approaches. Despite not obtaining a chi-square distribution for the KeyNetAffine methods, it should be considered 

that the scans were oriented correctly as, for 95% of the points, the distance does not exceed 4 mm, which does 670 

not exceed a scanning point resolution of 6mm/10m. 

 

    
 

(a) (c) (e) (g) 

    
(b) (d) (f) (h) 

Fig. 15. The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site V: (a) 

Target-based method, (b) ICP point-to-point, (c) AFAST, (d) ASIFT, (e) ASURF, (f) SuperGlue, (g) LoFTR,  

(h) KeyNetAffine. 675 

 

Results obtained for Test Site V (Fig. 15) show that point clouds were oriented correctly using algorithms based 

on Hand-crafted detectors. In contrast, for the ASIFT detector, the distribution of values takes the shape of a chi-

square distribution and coincides with histograms obtained for the target-based and ICP methods. Similar to the 

results obtained for Test Site IV (not chi-square distribution of other detectors) for the Learned-based approach, 680 

the deviations of 95% of the points do not exceed 6 mm, which does not exceed a scanning point resolution of 

6mm/10m. 

   
(a) (b) (c) 

  

 

(d) (e)  

Fig. 16. The probability density histogram of linear deviations between the worst oriented pair of scans for Test Site VI: (a) 

Target-based method, (b) ICP point-to-point - CloudCompare, (c) AFAST, (d) ASIFT, (e) ASURF, (f) KeyNetAffine. 
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The worst results for comparing point cloud distances were obtained from empty shop using the Target-based 

method (Fig. 16 a). This was due to the 12mm/10m scanning resolution, which translated into point cloud density 

and the ability to identify signalised points. For this reason, it is recommended to use the ICP method, which allows 

for the correct orientation of the data. Despite this, the probability density histogram of linear deviations between 

the worst oriented pair of scans shows that the distances between clouds do not exceed the accepted scanning 690 

resolution of 12mm/10m, which can be considered an acceptable registration result. 

In summary, the data orientation results presented using an affine-detector allow robust registration, and 

choosing the ASIFT detector allows for complete data registration. 



5. Conclusion 

This article evaluated the quality improvement and completeness of the TLS registration process using 2D raster 695 

data from spherical images and Hand-crafted and Learning features in the multi-stage TLS point cloud registration. 

For this study, to compare and verify the detectors and A-detectors, the Royal Castle in Warsaw without decorative 

structure (Test Site I and II), Museum of King Jan III's Palace at Wilanow with decorative elements, ornaments, 

and materials on walls (Test Site III) and flat frescos (Test Site IV), narrow office (Test Site V) and shopping mall 

(Test Site VI) were used. The performed experiments demonstrated that: 700 

• The proposed TLS point cloud registration approach is a fully automatic solution independent of the 

object's interior type. 

• The selection of a suitable detector should depend on the test site being measured. In the case of cultural 

heritage interiors (characterised by a good texture and number of ornaments), it is possible to use both Hand-

crafted detectors AFAST, ASURF, ASIFT and Learned-based SuperGlue and LoFTR. For the point cloud 705 

registration of public buildings, it is recommended to use detectors such as AFAST or ASIFT. On the other hand, 

using the ASIFT detector allowed for point cloud registration regardless of the geometry dependencies between 

individual scans and the test field being developed. 

• It is recommended to use the ASIFT or AFAST detector for TLS point cloud registration because these 

detectors could perform the multi-station registration at all Test Sites. Another solution might be to consider 710 

increasing the number of posts to minimise significant deviations on spherical images and use Learned methods, 

namely SuperGlue and KeyNetAffine. 

• The use of the affine hand-crafted detectors allows for detecting the high number of tie points, improving 

the accuracy and completeness of the TLS registration process compared to the learning-based approach. The 

number of ties detected increased for cultural heritage sites by 21 – 91 times and for public objects by about 2.8 – 715 

5 times. 

• In analysing the accuracy of point cloud orientation on signalised check points, two cases should be 

considered separately, i.e., decorated rooms and public facilities. For decorative sites, the smaller values can be 

observed for linear RMSE errors for hand-crafted features (values approximately 2 times smaller) than those 

obtained by the Target-based approach and similar to Target-based values for the Learned-based approach. When 720 

comparing the results obtained for public interiors, it can be observed that similar accuracies to the target-based 

method were obtained for hand-crafted features and learned-based (where it was possible to register all scans). 

That proves that using a-detectors for point cloud orientation is correct and reasonable. 

• For low internal reliability indices, we have relatively low controllability of observations and thus low 

detection of outliers at the reference points. An important consideration is the number of points and their geometric 725 

distribution. In the target-based method, it is challenging to distribute many points and sometimes even impossible, 

while in the feature-based approach, a large number of points are automatically detected. A large number of points 

distributed over the entire surveyed object allows for relative control of points and the correct removal of outliers. 

• By analysing the internal reliability indices, using a-detectors allows for increased controllability of points 

and the detection of outliers in the dataset. This fulfilled the network's controllability condition, with 0.5 being the 730 

acceptable threshold value. Comparing results obtained from Hand-crafted and Learned features with values 

obtained for the points detected with the Target-based method, it can be observed that for Test Site I, the minimum 

value is 0.51 – 0.97, while for the target-based method, the minimum is 0.35. For Test Site II, the minimum is 

between 0.59 – 0.98 (only for SuperGlue is 0.28), while for the target-based method, the average is 0.20. For Test 

Site III, the average minimum covariance factors values (0.71) are about 3.2 times better compared to the target-735 

based method (0.22); for Test Site IV, the minimum covariance factors for the targets-based method is 0.23 and 

about 4 times worse than the detector-based method. In the case of Test Site V, the minimum covariance factor 

for the detector-based method is in the range of 0.65 – 0.94, while for the target-based method, it is 0.29 and for 

the Test Site VI, the minimum covariance factors are 0.10, 0.60 and 0.28 for AFAST, ASIFT and target-based, 

respectively. 740 

• The proposed robust method for point cloud registration based on intensity rasters (together with a depth 

map) and affine-detectors allows us to obtain similar results as commonly used target-based and Iterative Closest 

Points methods. The advantage of the proposed approach for point cloud orientation over the Target-based method 

is that more automatically detected tie points are used for orientation, with better spatial distribution and robust 

outliers detection regarding the reliability theory. When registering point clouds using the ICP method, the clouds 745 

must be pre-oriented, as this guarantees the correctness of the final registration. In the affine-detectors approach, 

such a condition is not required since the selection and elimination of tie points are utilised in a two-step manner 

through descriptor matching and geometrical verification based on the RANSAC algorithm.  

• The obtained TLS registration results based on learned-based methods (on data trained on the images by 

the authors of the solutions) attest to high performance and use in data orientation. To further improve the accuracy 750 



and completeness of the data orientation on objects with poorer texture and less ornamentation (Test Sites V and 

VI), the authors plan to prepare a test dataset based on intensity rasters based on TLS point clouds.   
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