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ABSTRACT Breast cancer is the most common cancer among women and globally affects both genders.
The disease arises due to abnormal growth of tissue formed of malignant cells. Early detection of breast
cancer is crucial for enhancing the survival rate. Therefore, artificial intelligence has revolutionized
healthcare and can serve as a promising tool for early diagnosis. The present study aims to develop
a machine-learning model to classify breast cancer and to provide explanations for the model results.
This could improve the understanding of the diagnosis and treatment of breast cancer by identifying the
most important features of breast cancer tumors and the way they affect the classification task. The best-
performing machine-learning model has achieved an accuracy of 97.7% using k-nearest neighbors and a
precision of 98.2% based on the Wisconsin breast cancer dataset and an accuracy of 98.6% using the
artificial neural network with 94.4% precision based on the Wisconsin diagnostic breast cancer dataset.
Hence, this asserts the importance and effectiveness of the proposed approach. The present research
explains the model behavior using model-agnostic methods, demonstrating that the bare nuclei feature
in the Wisconsin breast cancer dataset and the area’s worst feature Wisconsin diagnostic breast cancer
dataset are the most important factors in determining breast cancer malignancy. The work provides extensive
insights into the particular characteristics of the diagnosis of breast cancer and suggests possible directions
for expected investigation in the future into the fundamental biological mechanisms that underlie the
disease’s onset. The findings underline the potential of machine learning to enhance breast cancer diagnosis
and therapy planning while emphasizing the importance of interpretability and transparency in artificial
intelligence-based healthcare systems.

INDEX TERMS Artificial intelligence, breast cancer, explainable machine learning, model-agnostic,
permutation importance, partial dependence plot, SHAP, supervised learning.

I. INTRODUCTION
According to the World Health Organization (WHO), breast
cancer poses the most significant risk to women [1], since it
is the leading cause of cancer mortality in women worldwide.
Reducing this high mortality rate requires early detection of
the disease. With 2.3 million new cases annually or 11.7% of
all new cancer cases in 2020 [2], breast cancer is the most
frequently diagnosed malignancy. Additionally, 7.8 million
women alive today have received a breast cancer diagnosis in
the last five years [3].

In the United Arab Emirates (UAE), breast cancer is the

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

most common cancer, especially in women younger than 50
years. From around 4000 cases diagnosed with cancer in
the UAE, 21% have been diagnosed with breast cancer [1].
Breast cancer results from the aberrant tissue growth formed
by cancerous cells [4]. Regular breast screening can aid in
early detection and permit treatment, particularly for those
with a high or moderate breast cancer risk [4].

Hence, the earlier the detection of breast cancer, the higher
the possibility of treatment, and the better the chances of sur-
vival. Early research has significantly helped in the treatment
of breast cancer because scientists were aware of the risks
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posed by emphasizing cancer from the onset. The mortality
rate has demonstrated a consistent and lowering trend over
the past few decades thanks to research efforts and early
identification techniques. According to figures from Cancer
Research in the UK, the five-year survival rate for breast
cancer can be as low as 15% if discovered at a later stage
but is virtually 100% if discovered at an early stage. Manual
diagnosis of breast cancer from the images takes a lot of time,
which makes it difficult for the clinician to categorize the
illness. Therefore, it is imperative to automate the diagnosis
of cancer using multiple diagnostic methods.

Mammograms are currently the most used test, although
they still include false positive (high-risk) results that show
abnormal cells and can result in pointless biopsies and proce-
dures. Surgery to remove lesions may occasionally discover
that they are benign. This implies that the patient will un-
dergo needless expensive and unpleasant surgery. Because of
the increasing availability of structured and unstructured data
and the rapid development of analytical methods, artificial
intelligence (Al) is revolutionizing the healthcare industry.
With the increasing importance and applications of Al in
healthcare, there are growing concerns about a lack of trans-
parency and explainability, as well as potential bias in model
predictions. Al can be used to enhance the detection and
diagnosis of breast cancer as well as limit overtreatment.
However, combining AI with machine learning (ML) ap-
proaches makes predictions possible and facilitates precise
decision-making. For instance, determining if the patient
needs surgery based on the findings of the biopsy for the
detection of breast cancer. Therefore, in order to make such
decisions, Explainable Artificial Intelligence (XAI) is em-
ployed.

XAl is a collection of techniques and methods that can
be used to explain the outcomes of the development of ML
models in a way that is understandable to humans [5]. XAI
encompasses two main approaches or methods: the intrinsic
approach [6] in which the internal parameters of the model
are used to generate explanations, and the model-agnostic
approach, which is employed when the model is regarded as
a black box, and the internal parameters can not be accessed.
ML algorithms employed in this study are classified as black
box models. Consequently, model-agnostic methods are uti-
lized to interpret the inner workings of these models and
provide a clearer understanding. Model-agnostic methods
possess the capability to generate explanations independently
of the internal workings of ML models that are considered
"opaque" [6]. A key advantage of these methods is their
versatility, as they can be applied to any ML model. In
this paper, three model-agnostic methods have been used to
provide explanations for the ML model outcome, including
permutation importance, Partial Dependence Plot (PDP), and
Shapley Additive Operations (SHAP).

First, the permutation importance approach [6] aims to
address the most important characteristics of the model.
Hence, after permuting the feature to assess its relevance,
the increase in the model prediction error is calculated. A
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feature is deemed "essential" if rearranging its values leads to
an elevation in model error as the feature was utilized by the
model for forecasting purposes [7]. The PDP [6] is utilized
to investigate how these features affect the predictions. It is
a plot that demonstrates the functional connection between
one or more inputs and the desired outcome. PDP shows
how the most important elements could influence the evolved
prediction. The relationship between the target and a feature
can be shown on the PDP whether it is linear, monotonic,
or more complex [7]. Finally, the SHAP method depends
on Shapley values that provide explanations on specific in-
stances instead of just global explanations [7]. SHAP has
emerged and launched as a Python toolkit for ML [8]. that
delivers a roster of Shapley values for a particular data point,
associating with each feature. This conceptually assumes
that predictions can be clarified by regarding each feature
as a "player" in a game, where the prediction represents the
reward [8].

In light of the above, the contribution of this study can be
summarized as follows.

e We introduce an innovative and explainable machine
learning-based model for breast cancer diagnosis, con-
tributing to advancements in this field.

o The model accurately classifies breast cancers as benign
or malignant, identifying influential factors including
bare nuclei and worst area. These insights enhance
understanding and provide a basis for further investiga-
tions into breast cancer mechanisms as we tried to link
two different breast cancer datasets. To the best knowl-
edge of the authors, the link between the two features
has not been identified in the literature previously.

« By employing model-agnostic methods, the research
addresses the need for interpretability and transparency
in healthcare Al systems. The model explanations aid in
understanding the decision-making process, improving
breast cancer diagnosis and therapy planning practices.

The increasing need for interpretable and transparent ML
models in the healthcare industry stems from the desire
to enhance trust and acceptance among healthcare profes-
sionals and patients. By providing explanations and insights
into their decision-making process, these models can fos-
ter greater confidence and understanding. This heightened
demand arises from the recognition that transparency is
a crucial aspect of deploying machine learning models in
healthcare settings. Consequently, the development of inter-
pretable models has become a vital area of research, aiming
to address this need and promote the widespread adoption of
ML solutions in healthcare.

The major contribution of the paper is the development
of an explainable machine learning-based model for breast
cancer diagnosis. The model can accurately classify cancers
as benign or malignant with high accuracy and provides
insights into the most important factors that contribute to
malignancy. This information can enhance the accuracy of
diagnosis and facilitate the development of more effective
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treatment strategies.

The remainder of this paper is organized as follows:
Section II provides a comprehensive review of the existing
literature on breast cancer diagnosis, covering two datasets,
including the Wisconsin breast cancer (WBC) dataset and
Wisconsin diagnostic breast cancer (WDBC) dataset. In sec-
tion III, we introduce the datasets utilized in this study, offer-
ing a concise description of each one. Section IV delves into
the methodology employed for this research. Subsequently,
in section V, we present the simulation results and engage in
a thorough discussion of their implications. Finally, section
VI summarizes the key conclusions derived from this study
and outlines potential avenues for future research.

Il. LITERATURE REVIEW

This section presents a comprehensive overview of the ex-
isting literature and research that is relevant to the research
question, which focuses on the classification of breast cancer
using explainable ML techniques. The section is divided
into two parts: a literature review on the use of ML for
breast cancer classification using clinical datasets such as
the WBC and WDBC, and a discussion of relevant related
works on ML-based detection of the disease using genetic
breast cancer datasets. This examination aims to provide a
comprehensive understanding of the research question.

A. CLINICAL BREAST CANCER DATASETS

There are a lot of works that predict or classify breast cancer
based on clinical datasets, such as the WBC and WDBC
datasets. For instance, Alshayeji et al. [9] aimed to classify
breast tumors based on the WBC and WDBC datasets using
an artificial neural network (ANN). The ANN model contains
one hidden layer without employing feature selection or
optimization techniques. In the WBC dataset, the shallow
ANN model performed well, with an average precision of
99.85%. The average accuracy for breast cancer detection
with WDBC was 99.47%. However, the use of 100 neurons
in one hidden layer may result in longer training convergence
time, and the model may not effectively capture the complex
features in the dataset. Khandaker et al. [10] developed an
explainable ML model to predict breast cancer. Initially, they
employed gradient-boosting algorithms to train their model,
resulting in a 99% accuracy rate for light gradient boosting
(LGBM) as their best-performing model. Additionally, the
authors applied the SHAP method to provide interpretations
for their model and to investigate the impact and contribution
of each feature in the dataset. Afolayan et al. [11] used Parti-
cle Swarm Optimization (PSO) to optimize the performance
of the Decision Tree (DT) algorithm on the WBC dataset.
The results showed that the system achieved an accuracy of
92.26%, helping to minimize the incidence of breast cancer
by providing early detection and diagnosis.

Vijay Birchha and Bhawna Nigam [12] used the averaged
perceptron ML algorithm to classify breast cancer based on
the WBC dataset. Their ML model achieved 98.4% accuracy
with zero false negative classifications which means the re-
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call equals one. Hence, the averaged perceptron ML classifier
can provide accurate breast cancer classification with zero
positive or negative classifications. One of the limitations of
this study is that the testing set is small which is 12% leading
to unreliability results. Kumar Singh et al. [13] proposed
a new feature selection method based on the Eagle Strat-
egy (ESO) Optimization, Gravitational Search Optimization
(GSO) algorithm, and their hybrid algorithm. The method
was used to classify breast cancer into two groups using the
WDBC dataset. The results showed that the proposed hybrid
algorithm achieved an accuracy of 98.9578%, sensitivity of
0.9705, specificity of 1.000, precision of 1.000, F1-score of
0.9696, and Area Under the Curve (AUC) of 0.9980. The
authors indicated that the proposed method could be used to
develop a clinical prediction system for breast cancer. A big
data-based two-class breast cancer (BC) classification model
was developed by Saad et al. [14] using Deep Reinforcement
Learning (DRL). The model’s stages include data collection,
preprocessing, feature selection, classification, and expla-
nations. Gorilla Troops Optimization (GTO) algorithm was
used for feature selection, Deep Q learning (DQL) for clas-
sification, and LIME for explanation. The model underwent
evaluation on three datasets from the UCI repository: WBC,
WDBC, and WPBC (Wisconsin Prognostic Breast Cancer).
The authors claimed that their proposed model outperformed
the traditional methods, achieving 98.90% accuracy for the
WBC dataset, 99.02% for WDBC, and 98.88% for the WPBC
dataset, respectively. To extract features and use ANN to clas-
sify the images, Tahmooresi et al. [15] and Salma et al. [16]
chose two distinct datasets from WBC and KDD, and they
both employed the Factorization Machine ANN (FM-ANN).
The authors contrasted the outcomes with those of other
methods, namely Radial Basis Function Network (RBF),
Feedforward Neural Network (FNN), and Modular Neural
Network (MNN). Due to the higher number of features,
KDD achieved a superior accuracy of 99.96% after training
and testing. When comparing the outcomes, FM-ANN was
shown to be more precise. Additionally, it is worthwhile to
assess the computational efficiency and scalability of FM-
ANN in relation to other ML techniques.

In another study, khuriwal et al. [17] used deep learning
to help in breast cancer diagnosis based on the WBC dataset,
achieving 99.67% accuracy but around 93% precision, which
is not as good as the other algorithms. However, they used
certain pre-processing algorithms such as label encoder,
normalizer, and StandardScaler for scaled datasets before
training the model. Ahmed et al. [18] evaluated the efficacy
of several variables of the original WDBC for predicting
breast cancer diagnosis using various ML classification al-
gorithms to properly forecast the target class and enhance
it. These algorithms include naive Bayes (NB), multilayer
perceptron (MLP), random forest (RF), and J48. Performance
parameters, including accuracy, precision, kappa statistic, f1-
score, Matthews correlation coefficient (MCC), recall, re-
ceiver operating characteristic (ROC), and precision-recall
curve (PRC), were utilized to compare the results. Among
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the employed algorithms, the NB classifier produced the best
results based on the values of the performance indicators with
97.2779% accuracy. NB assumes independence between the
features, and the features in such a dataset have a kind of
correlation. Hence, other ML algorithms such as support vec-
tor machine (SVM), RF, and XG-boost capture the complex
relationships between the features.

Predictions regarding the types of breast tumors were
made using data from the WBC dataset on breast cancer
tumors by M. F. Ak [19]. Various ML methods such as
k-nearest neighbors (KNN), logistic regression (LR), DT,
RF, SVM, NB, and rotation forests were employed along
with data visualization techniques. The LR model with all
features yielded the highest classification accuracy of 98.1%,
and the proposed method demonstrated improved accuracy
performance. Rahman et al. [20] conducted a comparative
analysis of different ML methods, including SVM, DT, NB,
and KNN. They performed research on the WBC dataset us-
ing adaptive boosting (AdaBoost), extreme gradient boosting
(XGBoost), and RE. The primary objective was to assess
the accuracy, precision, specificity, and sensitivity of data
classification achieved by each algorithm, considering their
effectiveness and efficiency. Based on the experimental find-
ings, XGBoost exhibited the highest accuracy of 98.24% and
the lowest error rate.

Magdy et al. [21] introduced an optimized framework for
identifying breast cancer types and predicting breast cancer
recurrence using seven ML algorithms: LR, XGboost, NB,
RF, KNN, DT, and multilayer perception (MLP) of neural
network. Grid search was employed to optimize the ML
algorithms.The framework’s performance was evaluated on
the following Wisconsin datasets: the WBC dataset, the
WDBC dataset, and the Wisconsin prognosis breast cancer
(WPBC) dataset to determine the best-performing classifier.
The results showed an accuracy of 98.3% for the WBC
dataset, 99.2% for the WDBC dataset, and 78.6% for the
WPBC dataset in predicting cancer recurrence. In another
study, Islam et al. [22] compare five supervised ML tech-
niques, including KNN, SVM, ANNs, RF, and LR. They
assessed the effectiveness of the different ML algorithms in
terms of accuracy, precision, sensitivity, specificity, negative
predictive value, false positive rate, F1 score, false negative
rate, and Matthews Correlation Coefficient. Additionally, the
PRC, AUC, and ROC were evaluated for various strategies.
The findings show that SVM received accuracy, precision,
and F1 scores of 97.14%, 95.65%, and 0.9777, respectively,
while ANNs obtained the highest scores of 98.57%, 97.82%,
and 0.9890, respectively. Krishna Mridha [23] applied many
ML algorithms such as gradient booster, SVM, NB, LR, RF,
KNN, and ANN. Each of these algorithms’ accuracy, cross-
validation, sensitivity, and specificity gains were calculated
and compared. They concluded from the trials that KNN
has the least accuracy (91.22%), whereas RF has the best
accuracy (98.83%). The accuracy of predictions has been
increased using deep learning algorithms ANN. Overall ac-
curacy in the ANN example was 99.73%, correspondingly.
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Sharmin Ara et al. [24] objective is to examine the dataset
and assess how well different ML algorithms perform at
predicting breast cancer. To categorize tumors into benign
and malignant types, SVM, LR, KNN, NB, DT, and RF
classifiers have been used. To choose the best algorithm,
the accuracy of each is calculated and compared. Based on
the investigation, SVM and RF outperform other classifiers
with an accuracy of 96.5%. Durai et al. [25] selected data
mining for disease detection, specifically breast cancer. The
authors compared a linear regressive classifier (LRC) with
BFI, Iterative Dichotomiser 3 (ID3), J48, and SVM. The
results indicate that LRC achieved the highest accuracy of
99.25%. Six alternative SVM algorithms were worked on
by Azar et al. [26]. In order to evaluate the performance
in terms of accuracy, sensitivity, specificity, and ROC, they
compared standard SVM (ST-SVM) with linear program-
ming SVM (LPSVM), Lagrangian SVM (LSVM), smooth
SVM (SSVM), proximal SVM (PSVM), and finite Newton
SVM (NSVM). LPSVM demonstrated the best performance
with an accuracy of 97.1429%, sensitivity of 98.2456%,
specificity of 95.082%, and ROC of 99.38%. Therefore,
LPSVM exhibits the highest performance. Deng et al. [27]
utilized a novel technique called the weighted hierarchi-
cal adaptive voting ensemble (WHAVE). They contrasted
WHAVE’s precision with seven other techniques that had the
best precisions in earlier studies. The maximum performance
value of 99.8% was achieved by WHAVE. Egwom et al.
[28] developed an ML algorithm to categorize breast cancer.
SVMs were used for classification, and linear discriminant
analysis (LDA) was used for feature extraction to accomplish
this. When LDA was employed, and the median was utilized
to compute missing values, they used two datasets, WBC and
WPBC. On the WBC dataset, they achieved an accuracy of
99.2%, recall of 98.0% and precision of 98.0%, and accuracy
of 79.5%, recall of 76.0%, and precision of 59.0% on the
WPBC dataset.

Manikandan et al. [29] proposed a practical approach
based on ML for classifying the SEER breast cancer
dataset. The researchers employed a two-step feature selec-
tion method, which combined variance threshold and prin-
cipal component analysis, to identify relevant features from
the SEER breast cancer dataset. supervised and ensemble
learning techniques such as Ada, XG, gradient, NB, and
DT were utilized to classify the dataset. The performance of
various ML algorithms was assessed using both the train-test
split and k-fold cross-validation methods. The DT algorithm
achieved an accuracy of 98% in both the train-test split and
cross-validation, outperforming other supervised and ensem-
ble learning algorithms in this study on the SEER dataset.

Hou et al. [30] conducted a study to evaluate and com-
pare the predictive performance of four ML algorithms for
detecting breast cancer among Chinese women. The study
utilized a dataset comprising 7127 breast cancer cases and
7127 matched healthy controls for model training and test-
ing. Model performance metrics such as AUC, sensitivity,
specificity, and accuracy were calculated using repeated five-
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fold cross-validation. Among the three advanced ML algo-
rithms (XGBoost, RF, and deep neural network), all three
outperformed LR in terms of accuracy, sensitivity, and area
under the ROC curves (ROC AUC). XGBoost exhibited the
highest performance with an AUC of 0.742, followed by the
RF and the deep neural network with an AUC of 0.728, 0.742,
respectively.

Wang et al. [31] employed Microwave Tomography Imag-
ing (MTI). In this study, the two methodologies Gaussian
Mixture Modeling (GMM) and KNN were contrasted. Ac-
cording to their findings, KNN has a sensitivity of 87%,
compared to 67% for GMM. Accuracy was at 85% for KNN
and 75% for GMM, respectively. Because mammography
scans are less expensive, H. El Massari et al. [32] proposed
an ontological ML model to predict breast cancer based on
the DT algorithm. The approach involves deriving rules from
the DT algorithm that differentiates malignant and benign
breast cancer patients. These rules are subsequently applied
to the ontological reasoner using the Semantic Web Rule
Language. They demonstrated that the ontological model
attained a prediction accuracy of 97.10%. Tanzeel et al.
[33] employed diverse ML methods to predict and detect
breast cancer symptoms early. The utilized algorithms were
DT, KNN, Multilayer Perceptron (MLP) classifiers, SVM,
and RF. Their aim was to differentiate between benign and
malignant cancer cells. Their results revealed that the MLP
model exhibited the highest accuracy of 86% compared to
the other techniques examined.

Rabiei et al. [34] tried to predict breast cancer using
different ML approaches applying demographic, laboratory,
and mammographic data. In this analytical investigation, the
database from Motamed Cancer Institute (ACECR), Tehran,
Iran, had 5,178 independent records, 25% of which be-
longed to breast cancer patients, and each record contained
24 attributes. This study made use of RF, MLP, gradient
boosting trees (GBT), and genetic algorithms (GA). Mod-
els were initially trained using laboratory and demographic
data (20 features). When compared to other approaches, RF
performed better (80% accuracy, 95% sensitivity, 80% speci-
ficity, and an AUC of 0.56). Gradient boosting (AUC=0.59)
outperformed the neural network in terms of performance.
Mugahed et al. [35] used mammograms to identify breast
mass using deep learning, particularly You-Only-Look-Once
(YOLO) approach. Initially, they used a full-resolution con-
volutional network for mammogram segmentation. Subse-
quently, a CNN model was trained on the INbreast dataset
to detect and classify the masses as benign or malignant. The
findings reveal that overall accuracy is 98.96% and F1-score
of 99.24%m using 4 fold-cross validation. Furthermore, the
utilization of FrCN demonstrated an overall accuracy of
92.97% and Fl-score of 92.69%. The performance of the
CNN model was evaluated, resulting in an accuracy of
95.64%, AUC of 94.78%, and F1-score of 96.84%. Massafra
et al, [36] developed an XAI framework to understand breast
cancer invasive disease events (IDEs) such as second cancers,
contralateral, and recurrence, The study was performed on
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486 breast cancer patients enrolled at IRCCS Istituto Tumori
“Giovanni Paolo II” in Bari, Italy. They designed an ML
model to predict the IDEs using SVM, RE, NB, and XG-
Boost. The best-performing model was XG-Boost with AUC
values equal to 93.7% and 91.7% for the 5-year and 10-year
IDE predictions, respectively. The authors determined the
main influencers behind the IDE by analyzing the Shapley
values within two widely employed timeframes in clinical
settings: 5 years and 10 years from the initial tumor diagno-
sis. Maouche et al [37] designed an XAI model for predicting
breast cancer metastasis using clinicopathological data. They
trained their model using the CatBoost classifier achieving
precision of 76.5%, recall of 79.5%, and fl-score of 77%.
The LIME method assessed patient and treatment effects on
breast cancer metastasis, uncovering varying impacts. High
impact factors include no adjuvant chemotherapy, whereas
moderate impact encompasses medullary histological type.
Low-impact factors include oral contraception usage. F.
Silva-Aravena et al. [38] proposed a decision support strategy
for health teams based on ML tools and XAI. Their findings
showed that XG-Boost was the best-performing algorithm
with an accuracy of 81%. In order to identify the relevant
variables and their level of significance in the prediction and
quantify the impact of these features on the clinical condition
of the patients, the researchers used the SHAP. They claimed
that the results would allow health teams to offer early and
personalized alerts for each patient.

It should be noted that our work is distinguished from
all the aforementioned works, which employ ML models to
predict or classify breast cancer. Our primary focus lies in
offering comprehensive explanations and interpretations for
the outcomes generated by the ML model.

B. GENETIC BREAST CANCER DATASETS

Various researchers have utilized genetic datasets for the
prediction and classification of breast cancer. The previous
studies employed an ML approach to predict the risk of breast
cancer by identifying the combination of interacting genetic
variants known as single nucleotide polymorphisms (SNPs)
and demographic risk factors. The research focused on two
distinct groups: group 1, which consisted of factors associ-
ated with familial history, and group 2, which pertained to
estrogen metabolism. The objective was to determine the in-
teractions between genetic and demographic risk factors that
would yield the highest accuracy in predicting breast cancer
risk. By incorporating both interacting genetic features and
group one features, the proposed approach achieved a mean
average precision (mAP) of 77.78 on the Kuopio Breast
Cancer Project (KBCP) dataset. This performance surpassed
the mAPs obtained when using only group one features
(74.19) or interacting SNPs (73.65). When considering solely
group two features, the system achieved an mAP of 72.57.
However, integrating interacting genetic features with group
two features resulted in an improved mAP of 78.00. Further-
more, the study generated gene interaction maps based on
genes associated with SNPs that interacted with demographic
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risk factors. These maps revealed biologically significant
entities relevant to breast cancer, such as networks associated
with angiogenesis, apoptosis, and estrogen. Interestingly, the
findings also indicated that individual demographic risk fac-
tors possess greater predictive value for breast cancer risk
compared to genetic variations. Lee et al. [39] conducted a
study to identify specific germline single nucleotide polymor-
phisms (SNPs) that can effectively predict the occurrence of
radiation-associated contralateral breast cancer (RCBC). The
aim was not only to predict RCBC risk but also to gain new
insights into the underlying carcinogenic process. To achieve
this, the researchers employed a preconditioned RF regres-
sion method for forecasting the probability of developing
RCBC. The model was evaluated using hold-out validation
data, and it yielded an AUC of 0.62 (p = 0.04). This AUC
value indicates the model’s ability to discriminate between
individuals who are at higher or lower risk of RCBC. The
application of ML and bioinformatics techniques to genome-
wide genotyping data demonstrated significant potential in
uncovering plausible biological correlates associated with the
risk of RCBC.

With the advancements in multi-omic data analysis, Rajpal
et al. [40] attempted to uncover the molecular heterogene-
ity of breast cancer using Copy Number Variation (CNV)
data, known for its stability as a genetic variation. However,
existing algorithms often produce biomarkers that are too
complex for clinical interpretation. To address this, the au-
thors introduced XAI-CNVMarker, an explainable Al-based
framework for discovering a small set of interpretable CNV
biomarkers. Deep learning is employed for breast cancer
classification, and different explainable Al methods are used
to identify 44 CNV biomarkers. Through gene set analy-
sis, the paper identifies subtype-specific enriched pathways,
druggable genes, and prognostic outcome-related biomark-
ers. The framework efficacy is validated on METABRIC,
showcasing the potential of explainable Al in discovering
clinically relevant biomarkers. The study achieves a classi-
fication accuracy of 0.712 with a 95% confidence interval
using 5-fold cross-validation.

In another study, S. Kumar and A. Das [41] aimed to iden-
tify diagnostic biomarkers for breast cancer using XAI on
XG-Boost models trained on a binary classification dataset.
It analyzed expression data of Peripheral blood mononuclear
cell from 252 breast cancer patients and 194 healthy women.
By incorporating SHAP values into the XG-Boost model, the
authors discovered ten important genes associated with breast
cancer development, which can be potential biomarkers. The
findings indicated that SVIP, BEND3, MDGA?2, LEF1-AS1,
PRM1, TEX14, MZB1, TMIGD?2, KIT, and FKBP7 genes
significantly influence model prediction. They claimed that
these genes have the potential to serve as early, non-invasive
diagnostic and prognostic biomarkers for breast cancer pa-
tients.

Table 1 indexes various literature reviews for the detection
of breast cancer using ML and various breast cancer datasets.
As can be noticed, various researchers have reported high
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TABLE 1: List of the selected articles and the ML techniques

used
Ref. ML algorithms Evaluation metrics Dataset
99.85% precision WBC
(91 | shallow ANN and 99.47% accuracy WDBC
[10] | LGBM 99% accuracy WDBC
[11] | Decision Tree 92.26% accuracy WBC
[12] | Averaged perceptron ML 98.4% accuracy WBC
98.9578% accuracy,
Eagle Strategy (ESO) 0.9705 sensitivity,
[13] | Optimization, Gravitational | 1.000 specificity WDBC
Search Optimization (GSO) | 1.000 precision,
0.9696 Fl1-score
D Reinf " 98.90% accuracy for WBC, WBC,
[14] | oo - EHROTEEEn 99.02% for WDBC, WDBC,
€ and 98.88% for WPBC WPBC
[15] | RBF and MNN 99.96% accuracy \IZ]];]S
99.67% accuracy
171 | D 1 network WBC
(7 cep neural networ and 93% precision
(18] | NB, MLP, REand J48 97.2779% accuracy WDBC
for NB
DT, RFs, LR, KNN.
! T ’ 1% acc f
[19] | SVM, NB, and ;"j{ % accuracy for WBC
rotation forests.
SVM, DT, NB, KNN, 98.24% accuracy for
20 WBC
(201 and XG-boost XG-boost
98.3% for WBC dataset, WBC
21] LR, XGboost, MLP, NB, 99.2% for WDBC dataset, WDBC
RF, KNN, and DT and 78.6% of accuracy WPBC
in the WPBC.
ANNS obtained the highest
SVM,KNN, RF, ANNs, scores of 98.57% accuracy,
22 WBC
(221 and LR 97.82% precision,
and 0.9890 F1-score
Gradient booster, SVM,
[23] | NB, LR, RF, KNN, 99.73% for ANN WDBC
and ANN
SVM, NB, LR, RF, KNN, 96.5% accuracy for
(24] and DT SVM and RF. WBC
[25] | LRC, ID3, J48, and SVM. 99.25% accuracy WBC
Accuracy of 97.1429%,
ST-SVM with LPSVM, a sensitivity of 98.2456%,
[26] | LSVM, SSVM, PSVM, a specificity of 95.082%, WBC
and NSVM. and ROC of 99.38%
for LPSVM
[27] | WHAVE 99.8% accuracy WBC
WBC accuracy of 99.2%,
recall of 98.0%
and precision of 98.0% WBC
28] | LDA-SVM
(28] WPBC dataset accuracy WPBC
of 79.5%, recall of 76.0%
and precision of 59.0%
Chinese
women
(30) | XG-Boost, RF, and AUC 0.742 for XG-boost breast
Deep Neural Network
cancer
dataset
RF
performed better Motamed
(80% accuracy, Cancer
[34] | RF, MLP, GBT, and GA 95% sensitivity, R
e Institute
80% specificity, (ACECR)
and an AUC of 0.56).
Convolutional neural 95.64% accuracy
35 I st datas
B3| etwork (CNN) 96.84% Fl-score. Nbreast dataset
i
[39] | RF regression (AUC) of 0.62 (p = 0.04) G(Z?P'S';e

values for accuracy, although the AUC values as illustrated
by [39], [30], and [34] may indicate poor fitting during the
training process by the utilized ML algorithms. Based on the
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previous literature review, we can deduce that the authors
focused on proposing ML models to detect breast cancer but
without providing extensive interpretations for their models.
Certain papers such as Mohi et al. [10] and Almutairi et
al. [14] provide explanations for their ML models but they
confine themselves to a single XAl technique for feature
ranking, without delving into the specific impact of these fea-
tures on ML classification. In contrast, this paper presents an
explainable ML model specifically designed for the detection
of breast cancer, addressing the gap in the existing research.

lll. DATASET DESCRIPTION

In this section, a detailed description of both the WBC and
the WDBC datasets is presented. These datasets have been
widely employed in various studies and research endeavors
pertaining to classification and prediction tasks within the
domain at hand. By thoroughly examining the features of
these datasets, we hope to foster a deeper understanding and
appreciation for their significance in facilitating accurate and
reliable classification and prediction analyses.

A. WISCONSIN BREAST CANCER DATASET

The WBC dataset is a well-known dataset in the field of ML
and data analysis of health applications, which is widely used
for classification and regression tasks. The dataset contains
information about breast cancer tumors, including charac-
teristics of the tumor, such as its size, shape, texture, and
other features. The dataset was first introduced in 1992 by
Dr. William H. Wolberg of the University of Wisconsin Hos-
pitals. The WBC dataset contains 699 instances, or samples,
of breast cancer tumor data, each of which has 10 features
associated with it [42].

The first nine features describe various characteristics
of the tumor, such as its radius, texture, smoothness, and
symmetry, while the last feature is a binary label indicating
whether the tumor is malignant or benign. Every feature is
assessed using a scale ranging from 1 to 10, where a score
of 1 indicates a closer proximity to benign characteristics,
and a score of 10 indicates a closer proximity to malignant
characteristics. For example, the clump Thickness feature
measures the thickness of cell clusters in the breast tissue
sample and is rated on a scale from 1 to 10, with 1 being
the thinnest and 10 being the thickest [42].

The marginal adhesion feature evaluates how well the cells
in the breast tissue sample adhere to one another [43], with 1
being the least sticky and 10 being the most. Single Epithelial
Cell Size is a measure for the size of each individual cell in
the breast tissue sample and is measured and graded using
a range of 1 to 10, with 1 denoting the smallest cell and
10 the largest. When a cell’s nucleus is unenclosed by a
cytoplasmic membrane, this condition is referred to as having
"bare nuclei". This feature is zero when the membrane is
absent, while a value of 10 indicates the highest degree
of clumpiness. "Bland Chromatin" is a characteristic that
assesses how chromatin, which is the component of chro-
mosomes, appears in the breast tissue sample’s cells. The
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TABLE 2: WBC description

Parameters Values

Number of instances | 699 instances

Number of features 10 features

Number of inputs 9 inputs (each input has from a scale 1: 10)

Number of outputs two outputs (Malignant and Benign)

TABLE 3: WDBC description

Parameters Values

Number of instances | 569 instances

Number of features 30 features

Number of inputs 28 inputs (the inputs vary from 0 to 2500)

Number of outputs two outputs (Malignant and Benign)

mitoses feature, which counts the number of dividing cells
seen in the breast tissue sample, is evaluated on a scale of 1 to
10, with 1 denoting a low number of mitoses and 10 denoting
a high number. Table 2 summarizes the various parameters
and details for the WCB dataset.

This dataset has been widely used for research in the
field of ML, particularly for binary classification tasks, as
it provides a rich set of features for each sample, making it
an excellent dataset for testing the performance of different
classification algorithms. Many researchers have also used
this dataset to develop and test feature selection and feature
extraction techniques. Overall, the WBC dataset is a valuable
resource for researchers and practitioners in the field of ML,
as it provides a well-defined and well-documented dataset
that can be used to test and compare various classification
algorithms and techniques.

B. WISCONSIN DIAGNOSTIC BREAST CANCER

WDBC is a public dataset that contains the medical records
of breast cancer patients. The dataset was collected by Dr.
William H. Wolberg of the University of Wisconsin Hospitals
in the early 1990s, and it is widely used for research and
development of ML algorithms. The WDBC dataset includes
569 observations, each of which contains 30 attributes. The
first attribute is an ID number, which is unique to each
patient. The second attribute is the diagnosis of breast cancer,
which can be either malignant or benign. The other 28
attributes describe different characteristics of the tumor, such
as its size, shape, and texture.

Table 3 outlines the various parameters and details for the
WDCB dataset. The WDBC dataset is a valuable resource for
researchers and healthcare professionals who are interested in
developing models that can accurately diagnose breast can-
cer. One of the most important aspects of this dataset is that
it is highly accurate. The dataset has also been preprocessed
to remove any redundant or irrelevant features, making it
an ideal starting point for researchers who are interested
in developing ML models for breast cancer diagnosis. One
notable example is the work of Dr. David J. Hand of Imperial
College London, who used the WDBC dataset to compare
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the performance of different ML algorithms for diagnosing
breast cancer.

Dr. Hand found that a simple DT algorithm was the most
effective for diagnosing breast cancer, achieving an accuracy
of over 95%. The WDBC dataset has also been used to
develop more advanced ML models, such as neural networks
and SVM. These models can achieve even higher levels of
accuracy, but they are also more complex and require more
computational resources to train. In summary, the WDBC
dataset is a highly accurate and well-documented dataset that
is widely used for research and development of ML models
for breast cancer diagnosis.

IV. METHODOLOGY

This section outlines the approach and techniques employed
in this study to develop an innovative and explainable ma-
chine learning-based model for breast cancer diagnosis. In or-
der to successfully accomplish the objective of this research,
the following series of steps are diligently executed:

1) The first step of this study involves gathering rele-
vant datasets that comprise information about women
diagnosed with breast cancer, such as the WBC and
WDBC datasets. These datasets usually consist of dif-
ferent attributes or features associated with breast can-
cer, including tumor size, shape, texture, and location.
Through the collection of these datasets,

2) After the data has been collected, the subsequent step
involves the cleaning and preprocessing of the data.
This encompasses various tasks aimed at ensuring the
quality and suitability of the data for the ML model.
Duplicate data points are eliminated to prevent any
biases that may arise from redundant information. Out-
liers, which refer to extreme values that can adversely
impact the model’s performance, are identified and
appropriately handled, either through removal or by
applying statistical techniques to mitigate their influ-
ence. Additionally, the data is normalized or scaled
to ensure that the features are on a consistent scale.
This normalization process helps prevent any particular
feature from dominating the model’s training process
due to its larger magnitude.

3) Following data cleaning and preprocessing, important
features of the model are identified. These features play
a crucial role in breast cancer diagnosis and can be
determined through statistical analysis, domain knowl-
edge, or using feature importance techniques provided
by machine learning algorithms. By selecting the most
relevant features, the model can focus on the most
informative aspects of the data and improve its overall
performance.

4) Once the relevant features are determined, an appro-
priate machine-learning algorithm is selected for the
breast cancer diagnosis problem. Commonly used al-
gorithms in medical diagnosis include SVMs, ANN,
and RF. The selection of the algorithm depends on
various factors such as the size of the dataset, the
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complexity of the problem, and the interpretability
required.

5) The selected algorithm is then trained on the prepro-
cessed dataset using a portion of the data for training
(typically 75%) and another portion for testing (usually
25%) to assess the model’s performance. This training
process involves adjusting the algorithm’s parameters
and optimizing its performance on the given data.

6) After training, the model’s performance is evaluated
using the testing dataset. This evaluation measures
the model’s accuracy, sensitivity, specificity, and other
relevant metrics to assess its diagnostic capabilities. By
analyzing these metrics, researchers can gain insights
into how well the model performs in correctly identi-
fying breast cancer cases.

7) Finally, the model’s output and predictions are an-
alyzed and interpreted using XAI techniques. XAl
helps researchers understand the factors and features
that contribute to the model’s predictions. It provides
insights into the potential diagnosis of breast cancer by
highlighting the most influential factors and providing
a transparent explanation for the model’s decision-
making process.

The block diagram in Fig. 1 illustrates the entire process
of building the machine learning model for breast cancer
diagnosis, encompassing data collection, cleaning and pre-
processing, feature selection and engineering, algorithm se-
lection and training, evaluation, and interpretation using XAl
techniques. This comprehensive approach aims to develop an
accurate and interpretable model that can aid in the diagnosis
and understanding of breast cancer.

V. RESULTS AND DISCUSSION

In this section, the results of using ML to classify breast
cancer based on two datasets (WBC & WDBC) are presented
and discussed.

A. WBC DATASET RESULTS

1) Descriptive Analysis

Firstly, descriptive analysis was performed to represent and
describe the data. Fig. 2 presents the correlation matrix of the
dataset. It is concluded from the correlation matrix that the
uniformity of cell size and uniformity of cell shape are highly
correlated. In addition to that, these features also have a high
correlation with the output class as well as the bare nuclei fea-
ture. To understand the distribution of the data, we used box
plots to compare the distribution of multiple features across
different categories. Box plots provide a visual summary of
the distribution of a dataset, including the spread, center, and
any outliers. Fig. 3 illustrates the box plots for all the features
across the output class, which is malignant and benign. Fig.
4 depicts the histogram of the Malignant and Benign classes.

2) ML Model Results
The study involved the use of different ML algorithms such
as SVM, KNN, RF, and XG-boost. We trained our ML model
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FIGURE 1: The complete process of building our ML model.

using these algorithms, and XG-boost achieved the highest
accuracy. Fig. 5 shows the accuracy and precision of each
algorithm. The precision, which is defined as the number of
correct instances retrieved divided by all retrieved instances
[44], is considered very important in the classification of
any disease. Hence, we focused on the precision of the
ML model which ensures accurate identification of positive
disease cases and minimizes false positives for enhanced
diagnostic reliability.

Fig. 6 shows the precision percentage of each algorithm
for each class. It is clear that KNN is performing better in
classifying the malignant class than XG-boost. Due to the
high correlation between the uniformity of cell size and uni-
formity of cell shape, we can use only one of them as a trial
to improve the model performance. Hence, the uniformity of
cell size was removed. The results indicated that there is an
improvement in the performance in the case of KNN, RF,
and SVM; meanwhile, XG-boost yielded the same result, as
shown in Fig. 7. The model achieved 97.7% using KNN.
As KNN is our best-performing model, its computational
complexity relies on the dataset size, feature count, and the
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chosen value of k which are 699, 8, and 5, respectively.
The time complexity for a single query point in the KNN
algorithm is

O(k * log(n)), (D

where n represents the testing examples and k denotes the
number of neighbors. Table 4 shows the time complexity for
each algorithm to train and test the ML model empowered by
Intel(R) processor, 16 GB RAM, and Core(TM) i7-10750H
CPU @ 2.60GHz. It should be observed that KNN provides
a speedup of up to 80.00% and 84.00%, respectively, when
compared to RF and XG-boost.

TABLE 4: Time for the training and testing process for each
algorithm in WBC dataset

Algorithm | Elapsed time | Time per instance
XG-boost 52 ms 47 us
SVM 7 ms 7 us
RF 40 ms 36 us
KNN 8 ms 8 us
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FIGURE 2: The correlation matrix for WBC dataset

3) XAl Results

After the ML model’s performance has been assessed, it is
critical to explain and analyze the findings in order to com-
prehend the model’s performance. This entails determining
which features are crucial for the model’s predictions, under-
standing the connections between the features and the goal
variable, and identifying any relevant patterns or trends in
the data. This study utilized three model-agnostic techniques
including permutation importance, PDP, and SHAP.

a: Permutation Importance Results

The permutation importance method is used to rank the
features; hence, the most important features are identified.
After permuting the feature, we ascertain its relevance by
calculating the rise in the model’s prediction error. A feature
is deemed "essential" if altering its values causes a rise in
model error. A feature is considered "unimportant” if altering
its values causes the same model error because the feature
was disregarded for the forecast. Fig. 8 shows the results
from the permutation of features, indicating that Bare nuclei
and clump thickness are the most important features. The
y-axis of the permutation importance plot represents the
feature importance scores. These scores are calculated as
the decrease in a model’s score when a particular feature
is randomly permuted. Further interpretations are needed to
prove the permutation’s result. Hence, PDPs and Shap values
are performed in the following sections.
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b: Partial Dependence Plots Results

PDP is a global ML interpretation method. This approach
considers all instances and provides an assessment of the
overall association between a feature and the predicted out-
come. Fig. 9 illustrates the PDP for the Bare Nuclei feature.
A value of 1 represents the absence of Bare Nuclei, while
a value of 10 indicates the highest degree of clumpiness. It
is evident that the model’s prediction for the malignant class
increases as the range of bare nuclei increases, particularly
from 8 to 10, where the blue shaded area represents the
average behavior of the model. Interactive plots can offer
more helpful explanations. For example, clump thickness and
marginal adhesion are used to evaluate the overall architec-
ture of a tissue sample. We can explore the relationship be-
tween changes in the degree of adhesion between individual
cells at the margins of these clusters and changes in the
thickness of cellular clusters. This can help us understand
the potential connection between breast cancer development
and alterations in tissue architecture. Fig. 10 displays the
interaction plot for clump thickness and marginal adhesion
features. The plot shows that when the thickness varies from
one to three and the marginal adhesion is 10 (sticky cells),
the model’s probability of predicting the malignant class
increases.

c: SHAP Results

SHAP method [6] depends on Shapley values that provide
explanations of specific instances instead of global explana-
tions. We can determine which feature is more important for
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FIGURE 3: Box plots of (a) clump thickness feature, (b) uniformity of cell size feature, (c) uniformity of cell shape feature, (d)
marginal adhesion feature (e) marginal adhesion feature, (e) single epithelial cell size feature, (f) bare Nuclei feature, (g) Bland
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Permutation mportance a given prediction using Shapley values. When we need an

e answer for a particular prediction and are less concerned with
knowing the model’s "typical" behavior, SHAP can be useful.
SHAP [7] is used to explain the prediction of an instance x by
calculating the contribution of each feature to the prediction.
A SHAP summary plot was created to assess the contribution
of each feature to the classification of breast cancer. Fig.
11 demonstrates that the Bare nuclei feature has the highest
contribution, which aligns with the result of the permutation.
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FIGURE 12: The weighted accuracy for each algorithm.

which are the extreme values for each feature.

There are several benefits to training an ML model using
only the "worst" characteristics from the WDBC dataset.
First, dimensionality reduction is achieved by the selection
of 10 out of 30 features. Second, the ML model provides a
higher predictive power. compared to the other features in
the dataset, the "worst" features have a stronger correlation
with the prevalence of malignancy. A model may be more
accurate in identifying whether a tissue sample is benign
or malignant by concentrating only on these characteristics.
Finally, improving explainability because fewer features in
a model can make it simpler to analyze and comprehend
the variables that affect the model’s predictions. The best-
performing ML model achieved an accuracy of 99% and a
precision of 94.4% using ANN. The performance of each
model is shown in Fig. 12. The computational complexity for
training our best-performing model, a neural network with 3
layers comprising ¢, j, and k nodes (15, 10, 1, respectively),
using ¢ training examples equals 426, and n epochs set to 100
can be calculated as follows:

O(nt(ij + jk)). (2)

Table 5 shows the time complexity for each algorithm to
train and test the dataset. Despite that ANN has the best
performance, it entails the longest time complexity.
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TABLE 5: Time for the training and testing process for each
algorithm in WDBC

Algorithm | Elapsed time | Time per instance
XG-boost 70 ms 48 us
SVM 162 ms 3.6 us
RF 102 ms 71 us
ANN 4.6 3 ms
High
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FIGURE 13: SHAP summary plot for malignant class WDBC.

To accomplish the entire process of constructing an inter-
pretable ML model, the Shapely values were calculated for
the features that represent only the extreme values in order
to understand the effect of these features on the prediction
of the breast cancer classes. In terms of interpretability, the
"area worst" feature, which is The total area occupied by the
nucleus, is the most contributing feature in the classification
of breast cancer. The SHAP plot in Fig. 13 illustrates that
when the area has a large value, it positively affects the
classification task. This means the larger the value of the area
feature, the higher the model’s prediction of malignant breast
cancer. Different from the existing literature reviews, we
present a systematic framework of an explainable ML model.
Initially, the permutation importance method is employed
to assess the relative importance of input features, allowing
us to identify the most crucial one. Subsequently, a Partial
Dependence Plot (PDP) is developed to gain insight into the
relationship the feature holds with the output. Then SHAP
method is employed to quantify the contribution of each
feature, either on a local or global scale, in the classification
task.

In the literature review, researchers employ a single XAI
method to explore the influential features present within the
dataset. However, our extensive research and results indi-
cated that incorporating a diverse range of XAl techniques
can gain a more comprehensive understanding of the underly-
ing factors that shape the dataset and its predictive outcomes.
Table 6 shows the benchmark of our proposed model with
some recent works utilizing XAI to classify breast cancer.
It should be noted that although the authors claimed high
accuracy for the ML model provided with interpretations,
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TABLE 6: Comparison of the proposed work with some state-
of-the-art works

Ref. Algorithm ML model Accuracy | XAI technique Dataset
[10] Gradient Boosting 99% SHAP WDBC
Deep Reinf . 98.90% for WBC, WBC,
eep Reinforcemen
[14] P . 99.02% for WDBC, LIME WDBC,
Learning
98.88% for WPBC. and WPBC
Permutation
KNN, SVM, .
importance,
Proposed XG-boost, 97.9 % for WBC, Partial WBC,
artia
work RF, 98.6 % for WDBC ara WDBC
dependence plots,
and ANN
SHAP

they limit their approach to only one XAl technique to rank
the features without providing any further details about how
the features affect the ML classification. In addition to that,
our work attempts to link two breast cancer datasets in order
to uncover potential correlations, patterns, and insights that
may arise from the analysis of these complementary datasets.
Through this synergistic approach, we can enhance our un-
derstanding of breast cancer and potentially unveil novel
findings that may have remained undiscovered by studying
each dataset in isolation.

We have emphasized that "bare nuclei" in WBC and the
"area worst" in WDBC are the most contributing feature to
the classification of breast cancer malignancy. However, there
is an indirect relationship between both features. Specifically,
the "Worst Area" attribute in the WDBC dataset could be im-
pacted by abnormal cellular proliferation or division, which
is observable in the "Bare Nuclei" feature. Consequently, this
abnormality may lead to enlarged and irregularly shaped cell
nuclei. However, XAl techniques have their limitations. Mul-
tiple iterations of permutation importance, while providing
valuable insights into feature importance, can significantly
increase the runtime of the analysis. Additionally, the max-
imum number of dependent variables that can be plotted
simultaneously is limited to two, which can hinder compre-
hensive visualizations of complex models. PDPs assume that
the variables displayed in the plot are not correlated with
other variables used in the model, which may not always hold
true and can impact the accuracy of interpretations. Further-
more, the use of KernelSHAP, a global SHAP method, can be
slow due to the computation of Shapley values for numerous
instances, affecting its practicality in large-scale applications.
These limitations highlight the need for further research
and development in XAI to overcome these challenges and
enhance the interpretability and usability of Al models.

VI. CONCLUSION

Advancements in data science and technology have pro-
pelled the interest in developing intelligent systems for early
breast cancer detection. This work proposes a framework for
breast cancer detection including data collection, data pre-
processing, model selection, model evaluation, and finally,
model interpretation. Our best-performing model achieves
an accuracy of 97.7% and a precision of 98.2%, employing
KNN for the WBC dataset. In the WDBC dataset, ANN
obtains the best performance by achieving an accuracy of
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98.6% and a precision of 94.4%. XAl techniques provide
some explanations for the model results, such as permutation
importance methods, PDP, and SHAP methods. The permuta-
tion method indicates that the Bare Nuclei feature is the most
important feature. Besides, PDP aids in our comprehension
of the possible link between changes in tissue architecture
and the growth of breast cancer by finding the relationship
between the thickness of the tissue and the stickiness of
the cells. Finally, Shapely values illustrate that Bare nuclei
are the most contributing feature to malignant breast cancer
detection. The higher values of Bare Nuclei, which means
the absence of the cell membrane, the higher the probability
of the model predicting the malignant class. We find out that
"bare nuclei” in WBC and the "area worst" in WDBC are
the most contributing feature to the classification of breast
cancer malignancy. However, maybe there is an indirect
relationship between both features. For instance, The "Worst
Area" feature in the WDBC dataset may be influenced by
abnormal cell growth or division, which can be seen in the
"Bare Nuclei" feature in the dataset. It may also result in
bigger and more atypically shaped cell nuclei. However,
more investigation and analysis would be required to look
into any possible connections between these characteristics
or the biological processes they are thought to represent.
Future work involves the use of genetic data for the early
prediction of breast cancer. Subsequent research directions
involve incorporating genetic data for early breast cancer
prediction and performing ensemble analyses on the WDBC
datasets to uncover additional properties and insights for
early detection.
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