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Abstract 

 

Advances in neuroimaging techniques have been critical to identifying new biomarkers for brain 

diseases. Resting State Functional Magnetic Resonance Imaging (rsfMRI) non-invasively 

quantifies the Blood Oxygen Level Dependent (BOLD) signal across brain regions with high 

spatial resolution; whilst temporal resolution of Electroencephalography (EEG) in measuring the 

brain’s electrical response is unsurpassed. Most of the statistical and machine learning methods 

used to analyze rsfMRI and EEG data, are static and linear, fail to capture the dynamics and 

complexity of the brain, and are prone to residual noise. The general goals of this thesis 

dissertation are i) to provide methodological insight by proposing a statistical method namely 

point process analysis (PPA) and a machine learning (ML) multiband non-linear EEG method. 

These methods are especially useful to investigate the brain configuration of older participants 

and individuals with neurodegenerative diseases, and to predict age and sleep quality; and ii) to 

share biological insights about synchronization between brain regions (i.e., functional 

connectivity and dynamic functional connectivity) in different stages of mild cognitive 

impairment and in Alzheimer’s disease. The findings, reported and discussed in this thesis, open 

a path for new research ideas such as applying PPA to EEG data, adjusting the non-linear ML 

algorithm to apply it to rsfMRI and use these methods to better understand other neurological 

diseases.  

 

 

 

 

 

  



Resumen 

Los avances en las técnicas de neuroimagen han sido fundamentales para identificar nuevos 

biomarcadores de enfermedades cerebrales. La resonancia magnética funcional en estado de 

reposo (rsfMRI) cuantifica de forma no invasiva la señal dependiente del nivel de oxígeno en 

sangre (BOLD) en todas las regiones del cerebro con una alta resolución espacial, mientras que 

la resolución temporal de la electroencefalografía (EEG) para medir la respuesta eléctrica del 

cerebro es insuperable. La mayoría de los métodos estadísticos y de aprendizaje automático 

utilizados para analizar datos de rsfMRI y EEG son estáticos y lineales, no captan el dinamismo 

y la complejidad del cerebro y son propensos al ruido residual. Los objetivos generales de esta 

tesis doctoral son i) proporcionar una visión metodológica proponiendo un método estadístico, 

llamado análisis por proceso de puntos (PPA), y un método de aprendizaje automático (ML) 

multibanda no lineal de EEG. Estos métodos son especialmente útiles para investigar la 

configuración cerebral de participantes de edad avanzada y de individuos con enfermedades 

neurodegenerativas, y para predecir la edad y la calidad del sueño; y ii) compartir conocimientos 

biológicos sobre la sincronización entre regiones cerebrales (es decir, la conectividad funcional y 

la conectividad funcional dinámica) en diferentes etapas del deterioro cognitivo leve y en la 

enfermedad de Alzheimer. Los hallazgos, comunicados y discutidos en esta tesis, abren un camino 

para nuevas ideas de investigación, como la aplicación de PPA a datos de EEG, el ajuste del 

algoritmo ML no lineal para aplicarlo a rsfMRI y el uso de estos métodos para comprender mejor 

otras enfermedades neurológicas. 

  



Resum 

Els avenços en les tècniques de neuroimatge han estat fonamentals per identificar nous 

biomarcadors de malalties cerebrals. La ressonància magnètica funcional en estat de repòs 

(rsfMRI) quantifica de manera no invasiva el senyal dependent del nivell d'oxigen a la sang 

(BOLD) a totes les regions del cervell amb una alta resolució espacial, mentre que la resolució 

temporal de l'electroencefalografia (EEG ) per mesurar la resposta elèctrica del cervell és 

insuperable. La majoria dels mètodes estadístics i daprenentatge automàtic utilitzats per analitzar 

dades de rsfMRI i EEG són estàtics i lineals, no capten el dinamisme i la complexitat del cervell 

i són propensos al soroll residual. Els objectius generals daquesta tesi doctoral són i) proporcionar 

una visió metodològica proposant un mètode estadístic, anomenat anàlisi per procés de punts 

(PPA), i un mètode d‟aprenentatge automàtic (ML) multibanda no lineal d‟EEG. Aquests 

mètodes són especialment útils per investigar la configuració cerebral de participants d'edat 

avançada i d'individus amb malalties neurodegeneratives, i per predir l'edat i la qualitat del son; i 

ii) compartir coneixements biològics sobre la sincronització entre regions cerebrals (és a dir, la 

connectivitat funcional i la connectivitat funcional dinàmica) en diferents etapes del 

deteriorament cognitiu lleu i en la malaltia d'Alzheimer. Les troballes, comunicades i discutides 

en aquesta tesi, obren un camí per a noves idees de recerca, com l'aplicació de PPA a dades d'EEG, 

l'ajust de l'algorisme ML no lineal per aplicar-lo a rsfMRI i l'ús d'aquests mètodes per 

comprendre'n millor d'altres malalties neurològiques. 

 

  



 

  



 

1. Introduction 

1.1. Neuroimaging techniques to study the brain spatio-temporal dynamics: 

rsfMRI and rsEEG  

 

Rapid advances in statistics, technology and neuroscience are enabling the identification of 

biomarkers to predict and diagnose brain diseases. The present thesis applies innovative statistical 

and machine learning (ML) methods to resting-state functional magnetic resonance imaging 

(rsfMRI) and electroencephalography (rsEEG) data, in order to better understand mechanisms of 

healthy and pathological ageing.  

rsfMRI and rsEEG are commonly used to measure intrinsic spatial-temporal brain dynamics1, and 

each offer advantages to understanding brain function (Bandettini, 2009). rs-fMRI measures 

spontaneous brain activity, indirectly by quantifying the changes in blood oxygenation, the Blood 

Oxygen Level Dependent (BOLD) response. This non-invasive technique provides excellent 

spatial resolution (i.e., 1-2 mm), although temporal resolution has a time scale in seconds. On the 

other hand, EEG measures the electrical signals produced by the brain via electrodes attached to 

the scalp, and thus provides a high temporal resolution (sample rates between 250 and 2000 Hz), 

but poorer spatial resolution. EEG is also typically more easily accessible, portable, and has lower 

cost. The passive assessments involved in resting-state methods are also advantageous for 

participants who might find completion of experimental tasks challenging (e.g., those with 

neurodegenerative diseases or psychiatric illnesses).   

Subsequent sections in this introduction will provide i) a brief explanation of the linear and non-

linear rsfMRI methods used in the present thesis studies to study synchronicity between brain 

regions, i.e., functional connectivity (FC); ii) a synthetic description of the studies and the main 

characteristics of the samples, i.e., aging and Alzheimer’s disease (AD); iii) an explanation of the 

challenges of using rs-fMRI data; iiii) an introduction to a novel non-linear rsEEG machine 

learning method (ML) to classify aging, with particular reference to interactions with sleep 

quality2. 

1.2. Linear and non-linear rsfMRI methods  

 
1 Understanding the healthy brain and the brain with pathology requires of techniques that capture the brain 
changes in activity and connectivity of specific regions over time, i.e., spatial and temporal dynamic data. rsfMRI 
and EEG are tools that provide this type of information. 
2 It is worth noting that 3 out of the 4 studies in the present thesis dissertation are rsfMRI studies, for this reason 

much of the space dedicated in this introduction is related to this specific neuroimaging technique.     

 



Functional connectivity (FC) is a popular neuroscience method for determining the temporal 

correlation or synchronization between activity from spatially distant brain regions. FC can be 

obtained by means of the rsfMRI BOLD response, which is sensitive to capturing the spontaneous 

and intrinsic neural activity (Biswal et al., 1995; Fingelkurts et al., 2005; Chen et al., 2016). 

Traditional rs-fMRI methods to explore FC, have applied single or windowed frame analysis. The 

outcome when conducting this type of analysis, is a single value of statistical dependence, i.e., 

the Pearson’s Correlation Coefficient (PCC) between pairs of regions when using the whole time 

series, or as many values as windows when segmenting the timeseries. In this latter approach, 

namely sliding windows analysis (SWA) the the variability in FC over over the scan, i.e., dynamic 

FC (dFC), can be captured. Nevertheless, the fact that in both approaches the mean of the 

segment/s’ BOLD signal is computed, i.e., in the classic FC the average of each entire timeseries 

and in SWA the average of each segment of each time series the relevant transient changes over 

the scan are hindered, as these are cancelled out when averaging the signals.  

Whilst from a classic FC point of view, the linear PCC of two whole timeseries has been 

considered robust as all the volumes or time points are included in the analysis, alternative 

approaches that captures neural avalanches of information might reduce noise and provide us with 

insight that reflects more accurately the biological nature of the brain (Keilholz et al., 2017). In 

this sense, transient changes detected in the BOLD signal, might be of great relevance when 

considering the FC from a neurophysiological perspective. Neurons do not function in isolation; 

they organize throughout the cortex in large groups, forming transient assemblies. In contrast to 

single neurons, these assemblies are strong, i.e., damage of single neurons do not influence the 

way the information is presented. Additionally, these assemblies represent avalanches of intrinsic 

neuronal information that produce a hemodynamic response, similar to the response that occurs 

when participants respond to a stimulus or task. Considering the characteristics of neuronal 

assemblies, non-linear methods that capture uniquely those spontaneous events, might yield more 

accurate information of the brain spatio-temporal dynamics, while at the same time reduce 

computational demands (D’Atri et al., 2021). Most of the nonlinear approach focuses on the 

amplitude of the signal, and assumes that time points or volumes with a higher activation, are 

caused by the avalanche of intrinsic neuronal information (Tagliazucchi et al., 2012, 2016). 

Identifying relevant events or points in the signal seems to be especially relevant when comparing 

healthy cohorts with groups with psychiatric or neurological diseases (Keilholz et al., 2017); for 

instance, in post-traumatic stress disorder (Li et al., 2014), attention-deficit hyperactivity disorder 

(Ou et al., 2014), schizophrenia (Miller et al., 2016; Yu et al., 2015), major depression 

(Demirtasxet al., 2016), autism spectrum (de Lacyet al., 2017; Falahpour et al., 2016) and mild 



cognitive impairment3 (MCI) (Chen et al., 2016). It is worth noting that another study detected 

differences between patients with schizophrenia and patients with bipolar disorder, and that these 

two groups are difficult to be differentiated with classic FC methods (Rashid et al., 2016). In 

conclusion, the PPA capability to detect non-linearity and time varying changes in FC is a 

promising method to differentiate stages of neurological diseases, such as Alzheimer’s disease 

(AD).  

1.3. Presentation of the rsfMRI studies and characterization of the samples 

 

The present thesis is composed of a compendium of four articles. In the first three, rsfMRI data 

was used while in the last one rsEEG data was used. In this present section (i.e., 2.2), only the 

rsfMRI studies (i.e., studies 1-3) will be introduced.  

Study 1 presents a in depth description of a novel method based on the detection of relevant events 

of the signal, i.e., amplitude-based events in the BOLD signals. This approach allows the 

extraction of FC, as well as additional measures, such as the delay and directionality, i.e., causal 

or directed FC, also introduced in this paper. Additionally, the performance of the method was 

applied in two samples, one composed by healthy participants and another one by individuals 

with autism from the Autism Brain Imaging Data Exchange (ABIDE) database (Craddock et al., 

2013), to explore non-linear FC. For comparison purposes the classic whole time-series 

correlation FC analysis was also applied.  

While in study 1 the most relevant goal was to thoroughly describe the method and show its 

performance with a couple of examples. The second and third studies focused on providing 

biological insights and less on contributing with methodological novelty. More specifically, study 

2 aimed to explore differences in FC between healthy participants, participants with MCI and 

patients with AD using the classic FC, SWA and the novel PPA, an approach derived from the 

method based on events introduced in the first study (in this second study directionality is not 

explored, only FC). 

Study 3 aimed to investigate whether the functional connectivity (FC) between pairs of brain 

regions decays as a function of their mutual distance in Alzheimer’s disease. Additionally, it 

explored whether age, atrophy, lower scores in executive functioning and global cognition are 

correlated with an FC deficit between contralateral distant homologous regions (Meguro et al., 

2003; Oosterman et al., 2012). Data taken from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) was used for studies 2 and 3, https://adni.loni.usc.edu/  

 
3 Mild Cognitive Impairment (MCI) is often considered a prodromal stage of AD. However, some patients develop other types of neurodegenerative disease, others do not 
develop any and others recover their cognition completely. 

https://adni.loni.usc.edu/


The motivation to apply novel linear and non-linear rsfMRI methods on MCI and AD data and 

extract neurological insight from it was two-fold. First, AD is the most common 

neurodegenerative disorder associated with age that conveys a significant economic and societal 

impact (Scarapicchia et al., 2018). By 2050 it is projected that 115 million people worldwide will 

have Alzheimer’s disease (Rice, L and Bisdas, S, 2017). For this reason, the World Health 

Organization set as a priority in the health agenda around the globe to increase awareness, 

diagnose the disease at an early stage and offer better support to families, caregivers, and patients 

with AD (Cassani et al., 2018). Hence, advances in AD research are essential to find ways that 

reduce the negative impact of the disease. Second, considering these facts, it is crucial to find 

efficient techniques to diagnose AD at a very incipient phase and differentiate the stages of the 

disease. Research studies are key to finding biomarkers that guide the development of 

individualized interventions to reduce the burden of the disease. Until now, AD remains a clinical 

diagnosis, i.e., it can be detected when cognitive symptoms are clear and measurable by means of 

cognitive tests4 and supported by structural MRI to detect atrophy. These tools are time 

consuming and need well-prepared clinicians for an appropriate application and interpretation. 

Moreover, several studies revealed that changes in the brain, such as aberrant functional 

connectivity, appear 10 to 20 years before the onset of structural atrophy and cognitive symptoms 

(Dubois et al., 2016). rsfMRI might enable the detection of these early changes in AD. Although 

several studies have explored FC in patients with MCI and AD, until now results are inconsistent, 

especially in MCI (Badhwar et al., 2017). For this reason, a good cognitive and biological 

characterization of the samples, appropriate rsfMRI preprocessing methods and novel analysis 

that captures relevant neural intrinsic events might be the path to find accurate AD prognostic 

biomarkers. 

MCI is usually a symptomatic prodromal stage of AD. Patients who suffer from it score lower 

than their normative age group in neuropsychological tests but still preserve their autonomy and 

their daily life activities are not affected (Csukly et al., 2016). The pathological changes detected 

in patients with MCI are neuritic plaques, neurofibrillary tangles, and loss of basal forebrain 

cholinergic neurons (Braak and Braak in Yamasaki 2012). The conversion rate from MCI to 

dementia (including AD) is of 10-15% every year. MCI is classified into amnestic MCI (aMCI) 

and non-amnestic MCI (naMCI). While aMCI is associated with a loss of episodic memory and 

usually evolves towards AD, naMCI affects other cognitive functions and evolves towards 

another type of dementia, such as diffuse Body Lewis or frontotemporal dementia (Csukly et al., 

2016).  

 
4 The mini mental state examination (MMSE), the Montreal cognitive assessment (MOCA) and the Alzheimer's Disease Assessment Scale-Cognitive (ADASCog) are the 
cognitive tests more widely used in the clinical practice for screening and assessment of the level of cognitive impairment. 



Several studies in the context of AD have included group samples of participants with MCI 

without characterizing the type. This could explain the contradictory findings in the literature, 

e.g., some studies reported an increased FC between several brain regions in MCI in contrast to 

healthy participants, while others reported the opposite (Badhwar et al., 2017). In light of this, to 

better characterize the MCI sample in study 25, only patients with aMCI were included. 

Additionally, the groups were divided into two aMCI groups, depending on the results of the 

Wechsler Memory Scale Logical Memory II (WMS-R), as suggested by the ADNI. The cutoff 

scores for EMCI out of 25 were 9-11 for a minimum of 16 years of education and a score of 5-9 

for 8-15 years of education. For LMCI a score of 8 or below for 16 years of education or more 

and a maximum score of 4 for those who had 8 to 15 years of education (see the following ADNI 

link for further information on inclusion and exclusion criteria of this group and the AD group 

see)6: 

https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf 

 

1.4. Challenges of dynamic rsfMRI  

 

Despite the potential benefits that BOLD rsfMRI analysis yield to understanding neurological 

diseases, several challenges in the data processing should be considered to avoid spurious results. 

This section provides an explanation of the most relevant issues in rsfMRI analysis that are yet to 

be resolved in the field of neuroscience.  

1. One of the primary sources of signal noise in rsfMRI is head movement during the scan, 

which poses a significant challenge in signal processing. In the currently reported studies, 

DPARSF pipelines were applied to correct head motion artefacts (Chao-Gan et al., 2010). 

DPARSF, is a user-friendly software that calls the functions in Statistic Parametric 

Mapping (SPM), a Matlab-based package for signal processing. DPARSF ensures that all 

brain volumes are aligned and generates a report with details on the realignment 

parameters estimated. As suggested by the DPARSF developers, participants with a head 

movement of rotation or translation over 2 mm needed to be excluded (Chao-Gan et al., 

2010). Although these procedures based on realignment and regression cannot 

completely remove the noise caused of the signals by head motion, they are able to reduce 

it considerably and are the best choice available until the moment  (Keilholz et al., 2017).  

 
5 MCI participants were only included in study 2.  
6 Further characterization of the MCI and AD samples can be found in the ADNI website or in the method section of studies 2 and 3 of the present dissertation. 

https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf


2. Another issue in neuroscience, yet unresolved, that deserves special attention is how to 

parcellate the brain so that results are valid and that comparison across studies is possible. 

Until now, there is no consensus regarding the best way to segment the brain for rsfMRI 

analysis. However, the most common approaches to map the brain can be divided into 

two groups: the data-driven and the atlas-based (i.e., using a template) parcellations. 

Data-driven parcellations do not consider anatomy or function. Conversely, the 

parcellation depends on certain parameters that the researcher sets, such as that the size 

between nodes does not differ, that nodes do not occupy space in the two hemispheres or 

that the parcellation contains a specific number of nodes (Alexander-Bloch et al., 2012). 

The main disadvantage of this type of parcellation is that it is sensitive to the clustering 

parameters used. Additionally, interpreting and comparing results with other studies is 

difficult using a data-driven approach (Shen et al., 2013). On the other hand, although 

using an atlas or a template is limited due to variability in neuroanatomy across brains, in 

general, it enables a good delineation of the structures of the brain. There are several 

parcellation atlases available for the analysis of structural and functional networks, e.g., 

the Harvard-Oxford, the Tailarach Daemon and the LONI probabilistic brain atlas 

(LPBA40) to mention a few (Yao et al., 2015). Nevertheless, the most popular one is the 

automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) which 

segments the brain into 90 or 116 regions7, a manageable number for whole-brain 

analysis. The AAL yields an excellent delineation of cortical areas, which is essential for 

network analysis (Arslan et al., 2018). Additionally, its popularity makes it a good option 

of choice for interpretation and comparison purposes. For these reasons, the AAL atlas 

was used in studies 1-3 of this dissertation.  

3. As mentioned, the SWA is a commonly used dFC, based on the linear correlation between 

signals. Applying this method, the variability of brain region synchronicity across time is 

captured. This method is considered a dynamic FC approach, in contrast to the classic FC 

method, based on the correlation of average across the entire time series. The degree of 

time-varying changes in FC captured by the SWA depends on the window size. Smaller 

windows are more sensitive in detecting changes over time but present a reduced signal 

to noise ratio (SNR). On the other hand, wider windows, average the windows over longer 

segments approaching the classic FC method, and consequently loosing dynamic 

information (Keilholz et al., 2017). The perfect size to preserve stability and dynamicity 

would probably be the one that captures a whole brain configuration, i.e., a state of the 

brain in time and space, however the amount of time the brain takes to change from one 

state to another is unknown. Some researchers, however, have discussed other ways to 

 
7 The AAL 116 includes the cerebellum, the AAL 90 excludes it. 



choose an optimal window size. According to several investigators, an appropriate size 

should be selected by considering the lowest frequency. If the lowest frequency is not 

present in the first window, usually windows of 50 to 100 sec, then spurious fluctuations 

might be present (Leonardi and Van De Ville, 2015). Considering these findings, to 

ensure a good trade-off between sensitivity and robustness, in study 2, where a SWA was 

conducted and the frequency of the BOLD signal ranged between 0.1 and 0.001 Hz, time 

series were split into windows of 90 seconds (i.e., 30 timepoints or volumes in our case). 

In addition to the suggestions found in the literature, an analysis to optimize the window 

size was conducted and can be found in study 2.  

These aforementioned challenges are relevant as the have an impact in the results and explain 

heterogeneity across findings.  

 

1.5. A novel non-linear rsEEG machine learning method (ML) to classify aging and 

sleep quality 

 

Apart from the use of statistical methods, based on correlations, the amplitude of the signal and 

null hypothesis testing by finding P values (methods used in studies 1, 2 and 3), another way to 

study biological systems is by using machine learning (ML). The selection of which method to 

use should typically be based on the purpose of the study8. The use of traditional statistics is 

suitable to obtain mechanistic insight, as it allows exploration and inference, whilst ML is 

appropriate when the aim is to classify and predict groups or variables, i.e., a class label can be 

guessed for a given input data with more or less accuracy depending on the algorithms used and 

the optimization parameters (Bzdok & Ioannidis, 2019). 

When dealing with big data, e.g., a large number of characteristics or features from the brain, 

algorithms that predict patterns are an optimal alternative to traditional statistics. It is relevant to 

underline that when using ML to predict and classify, the primary goal has traditionally been to 

achieve the highest performance possible, rather than gain insight into the biological significance 

of the results, e.g., the directionality of the results and their interpretation (Bzdok & Ioannidis, 

2019). For instance, in traditional statistics, one could infer that a decrease of activity in the default 

mode network (DMN) in resting state in patients with Alzheimer’s disease in contrast to healthy 

participants might be associated with the accumulation of pathologic protein in this region. 

Conversely, in ML one could predict whether it is possible to distinguish between healthy 

 
8 I highly believe that researchers, especially in the field of neuroscience, should work in collaboration, as different disciplines and skills are required for the study of the brain. 
Instead of using the same methods because of one’s expertise, one should think about the appropriate method for each research question. As a psychologist, when choosing 
the novel ML method of this dissertation, assistance from engineers was needed and highly appreciated.  



participants versus individuals with MCI as a function of brain configuration; or whether an 

intervention works for participants as a function of a combination of brain patterns. Usually, these 

patterns are non-linear, difficult to identify by the researchers and can be processed only with 

specific ML algorithms. 

In contrast to the aims in studies 1-3, that were exploratory and inferential, the aim of study 4 was 

to classify older and younger adults with good and bad sleep quality as a function of awake 

electroencephalography (EEG) brain complexity. Conducting this study and including it as part 

of this present dissertation was motivated by different reasons. First, the relevance of good sleep 

in healthy aging and its relationship with brain configuration9. Second, the presentation of another 

neuroimaging technique (i.e., EEG), that yields an excellent temporal resolution to study the brain 

and, third, the presentation of a novel non-linear ML method (i.e., note that in the first three 

studies, linear and non-linear methods using traditional statistics were presented while in this last 

one a non-linear ML method was used. 

Sleep is essential to maintain one’s mental and physical health. Although demographics show that 

poor sleep is more prevalent in older adults, evidence indicates that age per se cannot explain this 

tendency (Dregan & Armstrong, 2009; Sculin et al., 2017). Conversely, brain complexity, 

understood as the ability of the neuronal circuits to interact at different spatial and temporal scales 

enabling the individual to adapt flexibly to the environment, is a measure that might enable one 

to better understand and classify individuals. Determining whether brain complexity can be used 

to differentiate young and older adults with good and bad sleep quality is a first step to develop 

age and lifestyle interventions.  

Several studies have used single non-linear features of complexity from wake EEG signals and 

demonstrated their usefulness to classify participants as a function of sleep quality and / or aging. 

Some of these are the correlation dimension (D2), a measure of the connectedness of the system 

(Jeong et al., 2001); the Hurst Exponent (H), a measure of statistical self-dependence of the brain 

activity over multiple scales of time and space, e.g., the self-similarity of the time series (Colombo 

et al., 2016); and, the entropy, a measure of complexity that indicates the level of disorder in a 

dynamic system (Faust and Bairy, 2012)10. Proceeding from these results that suggest the 

appropriateness of these features to classify aging and sleep quality, here we propose an 

algorithm, already used in a recent study to classify Alzheimer’s disease, developed by coauthors 

of study 4 of the present dissertation (Silva et al., 2022). The novelty of this algorithm resides in 

the fact that it extracts and combines 10 non-linear features of complexity instead of single 

features. It was hypothesized that feeding different machine learning methods, e.g., logistic 

 
9 Brain configuration as organization of the functional brain in time and space. 
10 All these non-linear features are thoroughly described in study 4. 



regression, decision trees, k-nearest neighbour, with this algorithm to identify brain patterns in 

each group, would enable an excellent classification performance. 

The sample used in study 4 is the same as in a previous publication (Crook-Rumsey, 2020). The 

study was approved by the Health Research Authority, UK (REC reference: 17/EM/1010), and 

participants provided informed consent. Participants were divided into four groups depending on 

their age (i.e., younger adults aged 20-34, older adults aged >=65) and their sleep quality (good 

vs. bad), as assessed using the global score of the Pittsburg Sleep Quality Inventory (PSQI). 

Scores range from 0 to 21. Scores > 5 are indicative of poor sleep or significant sleep disturbance 

(Buysse et al., 1989). None of the participants presented any psychiatric nor neurological disease. 

To make sure that none of them presented MCI, they were assessed with the Hopkins Verbal 

Learning Test-Revised (HVLT-R), a test that captures subtle differences in cognition (Benedict 

et al., 1998). For further detail on the participants, the psychometric characteristics of the scales, 

the EEG signal processing or the analysis see the method section of study 4.  

In the next section the titles of the studies, the state of the manuscript (i.e., submitted to a journal, 

under review or accepted) and the contribution of the authors and co-authors will be detailed.  

 

1.6. Contribution of authors and co-authors of the studies 

 

Study 1:  

Cifre, I*., Miller Flores, M., Penalba-Sánchez, L., Ochab, J.K., and Chialvo, D.R. (2021) 

Revisiting Nonlinear Functional Brain Co-activations: Directed, Dynamic, and Delayed. 

Frontiers in neuroscience. (October 2021, Vol.15) https://doi.org/10.3389/fnins.2021.700171 

IC designed, pre-processed, analysed the data and wrote the manuscript, LPS contributed on the 

analyses, writing and revision, MMF and OJK reviewed the article, DRC designed and supervised 

all the steps of the study. 

Study 2: 

Penalba-Sánchez, L*., Oliveira-Silva, P., Sumich, A., Cifre, I. (2022). Increased Functional 

connectivity patterns in mild Alzheimer’s Disease: A rsfMRI study. Frontiers in Aging 

Neuroscience. Accepted. 

LPS conducted the data preprocessing, analysis and wrote the manuscript. IC and AS contributed 

in the design of the study. IC provided technical support in the data preprocessing and analysis. 

IC, AS and POS contributed to manuscript revision, and approved the submitted version. 

https://doi.org/10.3389/fnins.2021.700171


Study 3: 

Cifre, I*., Penalba-Sanchez, L., Ochab, J., Rubido, N., Chialvo, D.R. (2022). The distance-

dependent brain functional connectivity is normal in ipsilateral but disturbed between 

homologous-contralateral regions in Alzheimer disease. Ready to submit. 

IC and LPS designed the study, pre-processed, analysed the data and wrote the manuscript; JO 

and NR assisted in writing and reviewing the article; DRC worked on the design of the study and 

supervised all the steps of the study.  

Study 4: 

Penalba-Sánchez, L*., Silva, G., Crook-Rumsey, M., Sumich A., Rodrigues, M.P., Oliveira-

Silva, P., Cifre, I. (2022). Classification of sleep quality and aging as a function of brain 

complexity: a multiband non-linear EEG analysis. Submitted. 

LPS designed the study, organized and pre-processed the data, conducted part of the analysis and 

wrote the manuscript; GS and PMR proposed the algorithm, helped in the analysis and reviewed 

the manuscript; MCR collected EEG and sleep self-reported data and helped in the preprocessing; 

AS, POS and IC supervised all the steps of the study and reviewed the manuscript.  
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The center stage of neuro-imaging is currently occupied by studies of functional

correlations between brain regions. These correlations define the brain functional

networks, which are the most frequently used framework to represent and interpret a

variety of experimental findings. In the previous study, we first demonstrated that the

relatively stronger blood oxygenated level dependent (BOLD) activations contain most

of the information relevant to understand functional connectivity, and subsequent work

confirmed that a large compression of the original signals can be obtained without

significant loss of information. In this study, we revisit the correlation properties of these

epochs to define a measure of nonlinear dynamic directed functional connectivity (nldFC)

across regions of interest. We show that the proposed metric provides at once, without

extensive numerical complications, directed information of the functional correlations,

as well as a measure of temporal lags across regions, overall offering a different and

complementary perspective in the analysis of brain co-activation patterns. In this study,

we provide further details for the computations of these measures and for a proof of

concept based on replicating existing results from an Autistic Syndrome database, and

discuss the main features and advantages of the proposed strategy for the study of brain

functional correlations.

Keywords: fMRI, resting state networks, functional connectivity, dynamic functional connectivity, autism (ASD)

1. INTRODUCTION

The large scale dynamics of the brain exhibits a plethora of spatio-temporal patterns. Since the first
description of voxel-wise correlation networks (Eguíluz et al. , 2005), there has been a continuous
interest in developing better ways to derive brain “networks” from fMRI time series data. Common
to all is the identification of functional “nodes” [i.e., fMRI time series extracted from regions of
interest (ROI)], functional edges (i.e., the cross-correlations), which allows for the subsequent
graph analysis. An important methodological challenge has been always to define an adequate
coarse graining of the brain imaging data to compress 1,000 of the so-called blood oxygenated
level dependent time series. The usual analysis aims at the identification of bursts of correlated
activity across certain regions, which requires extensive computations, complicated in part by the
humongous size of the data sets.
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In the previous study, we proposed that the timing of the brief
epochs of relatively stronger BOLD activations contain a great
deal of functional connectivity (FC) information (Tagliazucchi
et al., 2011, 2012). The results of subsequent work (Liu and Duyn,
2013; Liu et al., 2013; Petridou et al., 2013; Wu et al., 2013; Amico
et al., 2014; Jiang et al., 2014; Li et al., 2014; Allan et al., 2015; Chen
et al., 2015; Tagliazucchi et al., 2016) seems to provide ample
support to this idea, by confirming the functional relevance of
such relatively large amplitude BOLD events under a variety
of conditions.

The is study goes beyond the analysis of correlations between
BOLD time series to explore and define a set of measures of the
nonlinear directed dynamic functional correlation across ROIs.
The use of such measures, despite its simplicity, may help to
expand at once the perspective of the usual FC paradigms, such as
seed correlation maps and networks, into the realms of nonlinear
time-dependent directed correlations.

The study is organized as follows: In the next section, we
describe the essence of the method, starting with the basic
procedure to define the BOLD-triggered events followed by a
description of the available correlation measures that allow a
proper definition of the functional connectivity between the
events, including a definition of directionality and temporal lag
of the events. Section 3 contains the analysis of a simple example
as a proof of concept of healthy subject fMRI data set, followed
by the replication and further analysis of a voxel-wise published
data set from Autism Syndrome in order to show the method
features. This study closes with a discussion of the advantages
and limitations of the method and potential implications of the
results. Derivations and further technical details are condensed
in the Supplementary Material.

2. METHODS

The analysis to be discussed can use BOLD time series recorded
indistinctly from either resting state conditions or during an
experiment in which the subject is performing a given task. The
most common approach to determine functional connectivity
is to compute Pearson’s linear correlation between BOLD time
series (van den Heuvel and Hulshoff P., 2010; Finn et al., 2015).
In contrast, the objective of the present analysis is to determine
the relation between relatively large amplitude BOLD activations
from a given pair of signals. In this section, it will be discussed:
2.1 how large amplitude events are selected given series of fMRI
data; 2.2 correlations computed with the selected events; 2.3 how
directionality is understood when working with events; and 2.4
how the dynamic connectivity, understood here as lags between
time series, is computed.

2.1. Definition of BOLD-Triggered Events
First, each BOLD time series is z-scored (its mean is subtracted,
and it is divided by its SD). Next, a threshold for detecting strong
activity is chosen, (typically the results remain unchanged when
using a range of 1 − 2 SDs) and for each time series, the timing
of each upward threshold crossing is determined (Figure 1A).
Note that the number of threshold crossings depends on the
auto-correlation of the BOLD signals (which stays in the range

0.6–0.85 Ochab et al., 2019) and more generally on the exponent
of the 1/f α frequency spectrum. Empirically, for the threshold
of 1σ , in a BOLD signal we find on average 8.5 ± 2.8 upward
crossings per 4 min of fMRI scan.

The timing is further used to define the seed or source events.
For a given seed voxel or region of interest (ROI), they consist
of segments of BOLD time series starting typically 4− 5 s before
and ending 9 − 15s after the crossing (which translates to 2 − 3
TRs before and 4− 7 TRs after, with TR = 2.3 in the data we are
using as a proof of concept in this study). This timescale is chosen
by the typical duration of these events, which in turn is dictated
by the longest timescale of the hemodynamic response function
(∼ 10− 15 s).

Finally, for each seed event, the target events are extracted
from all the other BOLD time series at the exact same times
as the seed, see Figures 1B,C. The average time courses of the
events follow typically a smooth pattern, although they do exhibit
variability, for both the seed (see Figure 1D) and targets (see
Figures 1E,F). If the interest of a given experiment is to define
an average inter-relation measure between ROIs, then all the
seed and target events can be averaged (as shown by red-and-
black circles in Figures 1D–F), for instance over the entire scan
fMRI session.

2.2. Correlations
Once the source and the target events are extracted from the
BOLD time series, a few options of computing correlations
are possible:

1. rP(i, j) linear Pearson’s correlation between the whole time
series i and the whole time series j (computed in section III
where we perform a proof of concept). This option is not
related to events, but in the next section we will compute for
comparison purposes,

2. r
(k)
E (i, j) linear correlation between a k-th source event in time
series i and a respective target event in time series j . This
option seems the most plausible when analyzing transient
events, for instance localized tics on a motor disease.

3. r̄E(i, j) = 1/K
∑K

k=1 r
(k)
E (i, j) average linear correlation

between K source events in time series i and respective target
events in time series j,

4. rC(i, j) linear correlation between concatenated source events
in time series i and concatenated respective target event in
time series j,

5. rE(i, j) linear correlation between an average source event
in time series i and an average target event in time series
j (computed in section III where we perform a proof
of concept).

In this study, we will only use measures defined by 1 and 5.
The other choices, 3, 4, are not discussed here, but it is worth
considering them in future studies to obtain statistically less
biased estimators of correlations.

2.3. Directionality
Given two regions of interest i and j, the linear Pearson
correlation between their BOLD time series by definition is
symmetric, i.e., rP(i, j) = rP(j, i). It is not the case, if the
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FIGURE 1 | Definition of the large amplitude BOLD events: For each source region (A), BOLD-triggered events (asterisks) are defined at the times at which the BOLD

signal crosses an arbitrary threshold [here set to 1σ , denoted by the dashed line in (A)]. For each detected source event, a target event is extracted (coinciding with

the times of the source) from the BOLD signals of the other regions of interest (as the two examples in (B,C) denoted by vertical lines). Subsequently, the extracted

events can be averaged (D–F), and used for further computation of correlations, delays, and directionality.

correlations are computed using events. Then, the distinction
between source and target becomes relevant, as shown in
Figure 2A. The shaded areas in the plots mark the positions of
source events of each of the two relatively strongly correlated
ROIs. Visibly, the first two events are common for both time
series, but for instance the BOLD activations around TR = 30
and TR = 40 are source events for ROI 2 but not for ROI 1.

Consequently, the set of events over which one computes
correlations when ROI 1 is considered the source is different
from those observed when ROI 2 is considered the source, as it
can be seen in Figure 2B. The four plots in Figure 2B, shows an
example for two ROI’s in which (in a matrix format) the sources

as columns and the targets as rows. The top left panels contain
the source events of ROI 1 (and its average) and the top right
one its target (ROI 2). Similarly, the bottom right panel shows the
source events extracted from ROI 2 (and its average) and the left
bottom one its target (ROI 1). So even though the BOLD series
of both regions are highly correlated, the source and target events
are different, and hence, the event correlation is not symmetric
rE(i, j) 6= rE(j, i).

The asymmetry in the correlations may indicate that
on average, the co-activations between regions have a
preferred direction. Being cautious about extrapolating these
results to neuronal activation, we can estimate and assess a
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global correlation asymmetry of the functional connectivity
by computing

A =
∑

i,j

(

rE(i, j)− rE(j, i)
)

, (1)

for a given region, or similarly to determine the asymmetry
of each ROI, or of each pair of time series i and j. In
practice, we computed this metric subtracting the transposed
mean correlation matrix from the non-transposed one (see
Supplementary Material 1).

The directionality can be also computed , in the spirit of
analysis of point processes (Tagliazucchi et al., 2012, 2016; Cifre
et al., 2020), from the relative number of events occurring
simultaneously in two regions. For instance, in Figure 2, there
are two out of six source events in ROI 1 that are also triggers
(i.e., above threshold) in ROI 2, and two out of five in ROI 2
that are also triggers in ROI 1. This approach takes into account
event amplitudes, which to a large extent could be also achieved
by computing covariance instead of the Pearson correlation
between source and target events. Below, we call such ratio
event directionality.

2.4. Delays
Several studies (Mitra et al., 2014, 2015a,b; Mitra and Raichle,
2016, 2018) have provided consistent evidence for the presence
of very slow (>1 s) fluctuations in the fMRI BOLD signal
propagating throughout the neocortex, thalamus, striatum, and
cerebellum. More recently, these slow waves of activity were
shown to be associated with spontaneous arousal fluctuations
that, in turn, can account for the topographic organization of the
brain functional connectivity (Raut et al., 2021). This information
was gathered by the use of conventional lagged cross-covariance
between pairs of BOLD time series xi(t) and xj(t) extracted from
regions i and j:

Ci,j(τ ) =
1

T

T
∑

t=1

xi(t + τ )xj(t) (2)

where τ is the lag (in units of TRs). The value of τ (i, j) at
which Ci,j(τ ) exhibits an extremum defines the delay between
signals xi and xj. To improve the resolution beyond multiple
integers of TR, a parabolic interpolation of the cross-covariance
extremum allows to determine the temporal lags with a finer
resolution, as done in Mitra et al. (2014). Since by definition
the time delay matrix τ (i, j) is anti-symmetric, i.e., τ (i, j) =

−τ (j, i), the information on the cross-covariance value and
the lags can be used to determine the structure of the entire
spatio-temporal processes.

Here, we propose a different approach to determine temporal
delays. Instead of computing (Equation 2) of the entire BOLD
time series, we make use of the fact that the BOLD-triggered
events have a well-defined timing (see Figure 3). Given a source
time series xi(t) and a target time series xj(t), we obtain a set
of ki source events. For each source event in xi(t), we find the
closest peak in xj(t) irrespective of its size and whether it occurred
before or after the source event. We search for the peak within a

window of [−6, 8] TRs from the source threshold crossing. As
shown in Figure 3, to obtain a finer timing of both the source
and target peak we also use a parabolic fit. The lag τ (i, j) is then
defined as the difference between the timing of the target and
the peaks of the source parabola. As a technical side note, when
getting a peak value at the left or right edge of the time windowwe
do not perform the parabola peak estimation, which could have
unbounded values, but we set the lag to −6 or 6, respectively. If
there is a particular interest, the same approach could be used to
search for a negative peak (i.e., a de-activation) following a source
event and estimate the activation de-activation delay between
specific ROIs.

Since the sets of source (threshold crossing) events of xi(t)
and xj(t) can be (and usually are) different, the matrix τ (i, j) is,
in general, non-symmetric irrespective of the length of the time
series. Additionally, for each i, j pair of ROIs we can obtain a set of
delays for each individual source event k: τ (k)(i, j), an average of
these values τ̄ (i, j), or alternatively a delay between average events
τ (i, j) (like the ones in Figures 1D–F).

3. RESULTS

In this section, we will proceed to describe the performance
of the method. It will be carried out on two settings: The
first (section 3.1) corresponds to the analysis of BOLD time
series from 90 ROIs defined by the automated anatomical
labelling (AAL) parcelation (Tzourio-Mazoyer et al., 2002),
and the second (section 3.2) describes a voxel-wise functional
connectivity analysis using both the classical Pearson correlation
and our methodology. From the outset, we note that the objective
of these comparisons is not to re-interpret or scrutinize the
study under replication, but only to illustrate the use and caveats
of our method. The validation of our method needs to wait
for the use of this approach by others in different settings. To
facilitate those enquires, the code is available at the repository
https://github.com/remolek/NFC.

3.1. Functional Connectivity, Delay, and
Directionality Computed From AAL
Parceled Time Series
Here, we will provide examples of typical results of the
computations explained previously. To that aim, we will use
fMRI BOLD data from 32 healthy participants downloaded
from the Autism Brain Imaging Data Exchange (ABIDE)
database (Craddock et al., 2013). Each dataset comprises 90
AAL preprocessed time series (using Data Processing Assistant
for Resting-State fMRI (DPARSF) pipeline). In all cases,
the time series are demeaned and normalized to their SD
(i.e., z-scored),

Typical results from the computations using both, the
standard FC approach and our method are presented in Figure 4.
For each of the three measures and for both methods, the figure
shows a matrix from single subject results, a mean matrix of the
whole group and the distributions for each of the computations.

First, Figure 4A shows typical results obtained from
Pearson’s correlations between all the time series, and
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FIGURE 2 | Example of directionality in source events of two regions of interest. (A) The shaded areas indicate the location of the source events (BOLD activity around

threshold crossing). The source events of ROI 2 may appear at different times than source events of ROI 1 (e.g., around TR = 30 and TR = 40). (B) Individual events

(in gray) and their averages (in red for ROI 1 and blue for ROI 2); source events are shown in the diagonal subplots, and target events in the off-diagonal ones. Different

sets of source events for each ROI give rise to asymmetry in the correlations between any two regions.

FIGURE 3 | Estimation of the delay τ between two events with finer resolution than the TR. First, the peak of the source event is centered at time TR = 0 to estimate

the closest peak of the target signal (here around time TR = 2). To obtain a better resolution of the delay between the two signals, two parabolas are fitted to three

points in each of the peaks. The time between the peaks of the parabolas is used to define the delay τ .

note that the distribution exhibits the usual Gaussian
shape. This is not the case for the distribution of
event correlations (Figure 4B) that is expected for the
sampling distribution of Pearson’s estimator for a small
length of time series. This feature is further discussed in
Supplementary Material 3.

Figure 4C shows the matrix and the distribution of
the edges’ directionality computed as the proportion
of shared events between regions (two leftmost panels)
as explained in section 2.3. The alternative measure
performed by subtracting the transposed matrix is shown
in Supplementary Material 3.
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FIGURE 4 | Examples of the matrices and distributions for each calculation performed over a fMRI dataset of 90 time series from the AAL atlas Tzourio-Mazoyer et al.

(2002). The first and the second columns corresponds to a single subject statistics, while the average results from a group of healthy subjects (n = 32) are shown in

the third and the fourth column. (A–E) show results for Pearson functional correlations, event correlations, event asymmetry, Pearson’s delay, and event delay,

respectively. For each measure, the first and the third columns show results in a matrix format, while the second and the fourth columns show the distributions of each

measure (mean values and S.D. error bars are used for the group distributions).

Delay between time series is shown in Figure 4D, for
shifted time series as in Mitra and Raichle (2018) and
Figure 4E, for delay computed using events. Note that for

Figure 4D, the apparent asymmetry is due to the TRs
subtracted at the beginning and end of the signal, to allow
the computation, while for Figure 4E, the event selection
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FIGURE 5 | Comparison between Pearson’s correlation of the BOLD time series and the correlation of the large amplitude BOLD events. (A) Results for zero-lag

seed-voxel correlations using the left ventral agranular insula as seed. It is shown the Z-transformed Pearson’s correlation one-sample t-test for each group of

participants (first-second columns for AU and third-fourth for HS) and two-sample t-test to assess differences between groups (fifth and sixth columns of brain

surfaces) (GFR corrected voxel p < 0.001, cluster p < 0.05). (B) The same distribution of columns as (A), for the results of correlating the large events (Z-transformed,

GFR corrected voxel p < 0.001, cluster p < 0.05). (C) Correlations from A and B compared, gray areas show coincidences between metrics, pink shows correlations

only detected in A and green correlations only detected in (B).

between target and source, so it is not an artifact of
the computation.

To further inspect the behavior of these metrics, we
computed average path length and clustering coefficient of the
networks given a certain threshold, and it can be seen in
Supplementary Material 2.

3.2. Replication of Voxel-Wise Functional
Connectivity Findings
As a further test of the computations explained above,
we have used fMRI data from the ABIDE preprocessed
database (Craddock et al., 2013) to replicate recent findings
on functional connectivity between insular sub regions on
Autism Syndrome patients Xu et al. (2018). ABIDE is an
open database with thousands of pre-processed fMRI brain
scans of Autistic Syndrome patients (AU) and age-matched
Healthy subjects (HS) http://preprocessed-connectomes-project.
org/abide/quality_assessment.html (Rolls et al., 2016; Zheng

et al., 2016; Dadi et al., 2019). For these computations, we
collected a sample of 47 AU and 32 HS. TheMRI data acquisition
as the preprocessing pipeline used can be accessed here: http://
preprocessed-connectomes-project.org/abide/Pipelines.html.

3.2.1. Pearson’s Correlations
For each subject, the average BOLD time series from six insular
subregions (using brainnetome functional atlas, Fan et al., 2016)
as extracted and correlated using Pearson’s correlation with all
the rest of the voxels of the brain (gray matter masked) as
in Xu et al. (2018). One-sample t-test was computed for each
group of participants (AU and HS) to result in the correlation
pattern of each insular subregion, obtaining comparable results
as in Xu et al. (2018) (Figure 1). In this study, we are showing
results from the left ventral agranular insula subregion as a
proof of replication. As in Xu et al. (2018), HS resulted in
higher correlation of this ROI with bilateral precuneus cortex (see
Figure 5).
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FIGURE 6 | Directionality computed from-insula and to-insula for all brain voxels. (A) Shows group averages for asymmetry from insula subregion mean time series to

the rest of the brain for Autistic patients (left columns), Healthy subjects (middle columns), and histograms showing the distribution of these directionalities. (B) Shows

the same computations but for directionality from all the brain to the Insula subregion mean time series.

3.2.2. Nonlinear Functional Co-activations
Following the method explained in Tagliazucchi et al. (2011),
relevant events from themean time series of left ventral agranular
insula subregion were extracted (triggering events where the
amplitude is above a 1 S.D. threshold, 2 TR previous to this
trigger, and 4 TR after). All time series from all the voxels in
the brain (gray matter masking) corresponding to those events
were extracted. Then, the correlations between the average source
event of the insula and the average target event of each voxel were
computed. As it can be observed in Figure 5B, similar results to
Pearson’s correlation of the whole signal were obtained (note that
here we have only taken into account the signal from events, not
the whole time series). The same cluster of higher correlation
between insula and precuneus cortex in the HS group can be
observed by computing a two-sample t-test (GFR corrected,
p-voxel= 0.001, p-cluster= 0.05).

3.2.3. Directionality
As it has been explained above, the correlation value between
two signals (i,j) obtained when computing relevant events is
not symmetric. The correlation of the source events with its
target r(i, j) is not necessarily the same as the correlation of
the events of that target, acting as a source, with the original
source, acting as a target r(j, i). The difference between this r(i, j)
and r(j, i) can be understood in terms of directionality of the

correlations. To test whether the functional activity of the left
ventral agranular insula exhibits such property, we computed
directionality across the whole brain. Overall, we have observed
only very small differences (see histograms in Figure 6) but they
are no significant differences between groups in specific areas
(Figure 6, GFR corrected all p > 0.05). This contrasted with
the significant findings we found for the correlation and delay
computations (Figures 5, 7. The density distributions shown in
Figure 6 (right panels) indicate that in both, HS and AU subjects,
the correlations are directed (asymmetric) and that the mode of
the directionality is most frequent in the AU subjects (depicted in
light blue) than in the HS (p < 0.01).

3.2.4. Delay
All previous computations correspond to correlations computed
at equal time. In addition, it is straightforward to estimate the
average delay between the peak of the source events to the peak
of its closest target events. We computed this delay measure from
the source events extracted from the left ventral agranular insula
in respect to all the rest of the brain voxels. Comparing the delays
between the groups, it can be seen that while the left postcentral
gyrus and the precuneus cortex exhibit a positive delay in the
AU group, the HS subjects show a negative delay (Figure 7). To
illustrate these delay differences, Figure 8 shows examples of time
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FIGURE 7 | Comparison of the delays values estimated with the Pearson (A) and the event correlation (B) for AU and HS. Left columns show the average delays for

AU, middle columns the average delays for HS, and the right column the comparison between groups (AU minus HS). The two circles (postcentral gyrus) indicate

significant differences not evident with standard methods (GFR corrected voxel p < 0.001, cluster p < 0.05). (C) Compares (A,B), where gray areas show

coincidences between metrics; pink shows areas where B>A, and green shows A>B.

series of the postcentral gyrus and the ventral agranular insula for
a single AU subject (Figure 8A) and an HS subject (Figure 8B).

4. DISCUSSION: FEATURES,
ADVANTAGES, AND LIMITATIONS OF THE
PROPOSED STRATEGY

Since its introduction, almost a decade ago, it has been suggested
that the point process (or its variants) extracted from the
large amplitude BOLD deflections contains enough dynamical
information (Tagliazucchi et al., 2011, 2012), to identify the
timing and the location of epochs of high correlations among
brain regions. This identification has acquired relevance in the
context of dynamical functional connectivity see, for instance,
the reviews by (Keilholz et al., 2017) and (Iraji et al., 2020).
In line with this, the recent report of Esfahlani et al. (2020)
emphasizes the fact that few events of co-activation can estimate

the functional connectivity architecture of a system, a finding
that is in full agreement with our original arguments. Thus, it is
important to remark that behind all these reports there is a basic
reason why these few points contain most of the information as
discussed recently (Cifre et al., 2020).

Emphasizing the relevance of relatively high amplitude
BOLD signal while compressing the data motivated the two
paradigms we have proposed previously, namely, the point
process (Tagliazucchi et al., 2012) and the so-called rBeta
technique (Tagliazucchi et al., 2011). Both attempt to capture the
spatio-temporal dynamics with the smallest possible sampling
with a trade-off between temporal and spatial resolution. The
point process compresses in the temporal domain, which implies
that to smoothly represent spatio-temporal correlated patterns,
one needs to sample more voxels. On the other hand, the rBeta
approach uses much fewer voxels, but at the expense of keeping
additional temporal information around each threshold crossing.
These two variants have demonstrated two main advantages
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FIGURE 8 | Single subject postcentral gyrus (blue lines) and ventral agranular insula (red lines) BOLD time series. (A) shows example data from an AU, (B) shows data

from a HS. Black circles show several instances in which the delays between the time series are consistent with the statistics compiled from the entire groups shown

in Figure 7. The example shows that the insular events on the AU patient are usually preceding the postcentral events, resulting in a negative delay, while the opposite

results are observed on the BOLD time series of the Healthy Subject.

comparing to the above-mentioned functional connectivity
measures, the first one is that they imply a data size reduction
and less computational resources to obtain comparable results
to full time series analyses, and second, as these are only
focusing on relevant high amplitude time-points, or events, non-
significant events occurring during the scan are not blurring
the computations.

It is important to remind that, in terms of neurophysiology,
the observed changes in the BOLD signal can not be simply
and exclusively attributed to change in neural responses (Aguirre
et al., 1998; Noseworthy et al., 2003; Handwerker et al., 2004; Raut
et al., 2021). The HRF variability has been pointed several times
as a common confounder in the determination of functional
connectivity using Pearson’s correlation of the BOLD signals
(Rangaprakash et al., 2018; Yan et al., 2018). It has been suggested
the need to de-convolve the BOLD signal in order to obtain a
confounder-free robust FC [as discussed in Wu et al. (2013) and
more recently in Wang et al. (2020)].

In that regard, the present approach explicitly takes into
account such variability because the source events extracted
from any given ROI represents (by construction) the local
HRF. This similarity was already noted in Tagliazucchi et al.
(2012) by comparing the de-convolved BOLD signal using
either a canonical HRF or the source event extracted by our
approach (see Figure 1D in Tagliazucchi et al., 2012). The most

recent work of Urunuela et al. (2021) summarizes this point
very well: “deconvolution approaches hold a close parallelism
to recent methodologies aiming to understand the dynamics
of neuronal activations and interactions at short temporal
resolution and that focus on extreme events of the fMRI signal
(Lindquist et al., 2007).” In that work, the authors provide a
very persuading evidence of such parallelism: “Figure 6 shows
that the innovation- or activity-inducing CAPs computed from
deconvolved events in a single resting-state fMRI dataset closely
resemble the conventional CAPs computed directly from extreme
events of the fMRI signal (Tagliazucchi et al., 2011, 2012, 2016;
Liu andDuyn, 2013; Liu et al., 2013, 2021; Cifre et al., 2020; Zhang
et al., 2020; Rolls et al., 2021).”

The nonlinear dynamic functional connectivity method
we are proposing offers an unexplored and widely different
perspective in the analysis of brain co-activation patterns
without much numerical complications, since it implies no more
than thresholding and the computation of linear correlations,
facilitating a simple interpretation of the resulting functional
connectivity paths. The fact that the correlations are computed
from events identified either as sources or targets allows for a
straightforward definition of directed graphs (i.e., asymmetric
correlation matrices). These source-target relations may lead to
novel approaches to understand brain dynamics, for instance, as
in the example of Autism Syndrome in which the computation
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of delays between events showed uncovered distinct information.
Indeed, the Pearson correlation, computed between left ventral
agranular insula and postcentral gyrus, does not show any
differences between AU and HS, while it has been reported
that postcentral gyrus has a differential connectivity in Autistic
Syndrome when analyzing big samples Gu et al. (2015).
However, when we computed the delays from insula to other
regions, differences between the two groups in Postcentral
Gyrus appeared, which leads us to think that this differential
connectivity may be expressed on a spatio-temporal domain.
Another example is the additional difference we have found
between the two groups concerning a weaker functional
connectivity between precuneus cortex and ventral agranular
insula, which is accompanied by the above-mentioned differences
in delay (Figure 7B).

Note two practical advantages provided by the present
approach. The results are highly reproducible on correlations
asymmetry and delays, being robust to changes in the threshold
used to extract the source events. The method is equally
applicable to the analysis of fMRI data during a task, by extracting
the source events from the task convolved with a HRF function.
A similar approach can be used to study dynamic functional
connectivity fluctuations possibly due to ongoing cognition, as
suggested in Gonzalez-Castillo et al. (2014).

Further testing of the method should be performed to
identify more specifically its limitations. For instance, we
have not compared the method with results obtained from
sliding-window Pearson’s correlation, a widely used method to
inspect dynamics in functional connectivity (Hutchison et al.,
2013; Preti et al., 2017). In further work, we expect that
will uncover a relation between this window-based functional
connectivity and the information provided from the delays of
our method. Another point that deserves to be clarified is
the meaning of the peaks in the delay distribution, something
already intriguing from previous results obtained using Pearson’s
correlation delays (see Figure 5 in Mitra et al., 2015a), which
was recently related to very slow arousal fluctuations (Raut et al.,
2021).

Finally, we shall mention that while here we concentrated on
the activation events, i.e., denoted by the BOLD signal upward
crossing of a threshold, the same method can be applied without
modification to de-activation events. In such a way, graphs of
regions of interest to are correlated with the deactivation of

regions can be obtained, something that we are not aware was
considered before.

In conclusion, we have analyzed undisclosed properties of
the previously published rBeta method (Tagliazucchi et al.,
2011). Overall, these calculations provide a different kind
of information than the usual Pearson correlation of the
entire BOLD time series. As a proof of concept, we have
used the method to replicate a recently published study
of functional connectivity in Autism Syndrome, reproducing
their main findings and uncovering additional features. Given
that the proposed approach implementation is simple and
robust, it is expected that future work can be dedicated
to validate and extend the method to other settings and
experimental paradigms.
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ABSTRACT 

Background: Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder. 
In view of our rapidly aging population, there is an urgent need to identify Alzheimer’s Disease (AD) 

at an early stage. A potential way to do so is by assessing the functional connectivity (FC), i.e., the 

statistical dependency between two or more brain regions, through novel analysis techniques. Methods: 
In the present study, we assessed the static and dynamic FC using different approaches. A resting state 

(rs)fMRI dataset from the Alzheimer’s disease neuroimaging initiative (ADNI) was used (n= 128). The 
blood oxygen level dependent (BOLD) signals of 116 regions of 4 groups of participants, i.e., healthy 

controls (HC) (n=35), early mild cognitive impairment (EMCI) (n= 29), late mild cognitive impairment 

(LMCI) (n= 30) and Alzheimer’s disease (AD) (n= 34) were extracted and analyzed. FC and dynamic 
FC were extracted using Pearson’s correlation, sliding-windows correlation analysis (SWA) and the 

Point Process analysis (PPA). Additionally, graph theory measures to explore network segregation and 
integration were computed. Results: Our results showed a longer characteristic path length and a 

decreased degree in EMCI in comparison to the other groups. Additionally, an increased FC in several 

regions in LMCI and AD in contrast to HC and EMCI was detected. These results suggest a 
maladaptive short-term mechanism to maintain cognition. Conclusion: The increased pattern of FC in 

several regions in LMCI and AD is observable in all the analysis, however, the PPA enabled us to 

reduce the computational demands and offered new specific dynamic FC findings.  

1. INTRODUCTION 

Alzheimer’s disease (AD) is the most prevalent progressive neurodegenerative disease associated with 
age. It typically starts with a preclinical stage and progresses through mild cognitive impairment (MCI) 

to clinically relevant AD (i.e., dementia type AD). Although great effort has been made to identify AD 
biomarkers, AD remains a clinical diagnosis. Early and accurate prediction of the disease remains 

limited. To address the increasing burden of AD, the dynamic brain changes associated with shifts in 

cognitive function that underpin what causes dementia must be understood. Abnormal brain 
connectivity has been observed 20 years prior to the onset of brain atrophy and clinically relevant 

symptoms of AD (Ashraf et al., 2015; Nakamura et al., 2017). Thus, relative risk of development of 
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MCI and dementia might be determined based on resting state functional connectivity (FC). It is 

therefore critical to thoroughly understand aberrant FC at each stage of the disease in order to improve 

strategies for early intervention.  

Resting state functional magnetic resonance imaging (rsfMRI) data, acquired while the participants are 

awake without performing any task, can be used to assess intrinsic brain functional connectivity. By 
means of this high spatial resolution neuroimaging technique, the Blood Oxygen Level Dependent 

(BOLD) signal across brain regions is quantified (Yamasaki et al., 2012; Sporns, 2013; Liu et al., 2015; 

Xue et al., 2019;). Some investigators have analysed the BOLD signals using graph analytical methods 
to explore the network’s topological features of patients with AD (Toussaint et al., 2014; Jie et al., 

2016; Bhuvaneshwari and Kavitha, 2017; Xu et al., 2020). For instance, the characteristic path length 
supposedly reflects functional integration of brain networks. Hence, a shorter path length indicates 

efficient communication between regions. On the other hand, the clustering or modular coefficients 

provides information regarding the segregation of the networks, i.e., degree of specialization of brain 
regions. Seminal research revealed a decreased path length and clustering coefficients in AD in 

comparison to healthy patients (Supekar et al., 2008; Krienen and Buckner, 2009). Other studies 
reported a decrease in clustering degree and modularity in AD(Brier et al., 2014) and MCI (Seo et al., 

2013) but a similar characteristic path length relative to individuals without MCI or AD. 

FC and dynamic functional connectivity (dFC) are measures of signal synchronicity that allow 
researchers to analyse the gradual and continuous changes of the BOLD signal, which are represented 

by signal correlations of the whole signal or selected windows, respectively (for a detailed technical 
description see: (Chen et al., 2017; Keilholz et al., 2017a; Scarapicchia et al., 2018; Zhang et al., 2020). 

Three metanalyses (Li et al., 2015; Jacobs et al., 2013; Badhwar et al., 2017) and another study (Kim 

et al., 2016) using FC revealed a decrease in default mode network (DMN) connectivity in AD, mostly 
involving the precuneus (PCu) and the posterior cingulate cortex (PCC). These areas are implicated in 

episodic memory and attentional processing and are typically affected in AD (Jacobs et al., 2013). In 
MCI, results are less consistent. Some studies have found an increase in FC in the mentioned regions, 

while others have found the opposite. Additionally, increased limbic connectivity has been seen in 

MCI (Badhwar et al., 2017) and increased connectivity of the salience network (SAL) has been 
observed in both MCI and AD (J. Wang et al., 2013; Thomas et al., 2014). Such inconsistent findings 

in FC may reflect the heterogeneity of MCI subtypes, which might be differentiated, for example, by 

symptoms and extent of illness progression (Badhwar et al., 2017).  

Additionally, seminal researchers have been discussing that an increase in functional connectivity 

between brain regions in MCI and early stages of AD has been seen to take place when the 
communication between specific brain regions is impaired. This has been interpreted as reflecting 

recruitment of alternative paths within the system. (Hillary and Grafman, 2017; Marek and Dosenbach, 
2018), (Oldham and Fornito, 2019). The DMN, SAL and frontoparietal network (FPN) are networks 

that have been reported to become hyperconnected at some stage during disease progression. These 

multimodal networks connect several regions and integrate information processing, providing high-
value at a high-cost (Hillary and Grafman, 2017; Marek and Dosenbach, 2018). An increase in FC 

between alternative paths is efficient and adaptive in the short term. However, rich hubs are a perfect 
place for betamyloid deposition, which can lead to secondary damage caused by metabolic stress and 

eventual breakdown of the system (Hillary and Grafman, 2017). Thus, hyperconnectivity that takes 
place at the beginning of many neurodegenerative diseases may be followed by hypoconnectivity 

between these recruited paths and cognitive decline, as the illness progresses (Marek and Dosenbach, 

2018).  
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A further source of inconsistent FC findings in MCI and AD may be the use of different methods and 

parameters. For instance, preprocessing steps, parcellation methods, window size used, p values, 

number of samples or inclusion and exclusion criteria (Tam et al., 2015; Badhwar et al., 2017). With 
regards to samples, studies that used exploration methods (e.g., correlation, clustering algorithms, or 

matrix decomposition) and other statistical methods (e.g., t-test, ANOVA, Bayesian inference) 
typically do not compare across the finer stages of illness (e.g., HC, EMCI, LMCI and AD), although 

some machine learning studies have done so. There have, however, been comparisons of HC, MCI, 

and AD (Zhang et al., 2020); HC, EMCI and LMCI (Cai et al., 2015; Lee et al., 2016); HC with 
AD(Zheng et al., 2017), HC with EMCI (Zamani et al., 2021), HC with amnestic MCI (L. Wang et al., 

2013; Jie et al., 2016); HC with amnestic vs non amnestic MCI. Nevertheless, the precise trajectory for 
FC from HC to AD remains unclear.   

One of the limitations of traditional FC approaches is the high demand on computational processing 

and sensitivity to residual noise. As the BOLD signal usually presents the same stereotypical pattern, 
larger amplitude BOLD signal peaks likely provide the most critical information, i.e., neural events 

(Aguirre et al., 1998; Cifre et al., 2020;). Several studies suggest that patients with neurological and 
psychiatric diseases present greater variability in the BOLD signal over the scan session (Keilholz et 

al., 2017). Hence, these peaks might be highly useful in these cases as they might reveal key intrinsic 

brain connectivity that can only be detected when assessing the amplitude of the signals (Keilholz et 
al., 2017). In fact, a higher recognition accuracy between healthy participants and patients with autism 

has already been detected in our previous work (Cifre et al., 2021) using a Point Process Analysis 
(PPA), a method that captures these relevant events. Other researchers obtained similar results, thereby 

successfully differentiating across groups, when applying the PPA to patients with diabetes (Li et al., 

2014).  

Using the PPA method, local peaks of the BOLD time series are selected to generate a co-activation 

matrix that defines the co-occurrence of points. Apart from reducing noise, the bursts of correlated 
activity between regions are not required when using the PPA. This phenomenon occurs because the 

assumption behind this method is that those events with a higher amplitude, i.e., peaks, contain 

avalanches of neural information that are the consequence of intrinsic activity between communities 
of neurons (Cifre et al., 2021). Previous work exploring the BOLD activation showed similar results 

when using a seed-based approach and a PPA, i.e., the activation maps when using a seed-based 
approach, selecting all the time points (between 140 to 240) in comparison to when using a PPA, 

selecting just those time points that surpass 1 SD of the BOLD signal, (between 4 and 8 points) were 

similar. Additionally, when exploring the changes in brain integration or connectivity, the PPA is more 
sensitive to capturing changes across groups (Tagliazucchi et al., 2011; Tagliazucchi et al., 2012; 

Hutchison et al., 2013; Cifre et al., 2020; Cifre et al., 2021). To our knowledge, PPA has never been 
applied to rsfMRI datasets of patients with AD and MCI. This method might offer an efficient way to 

manage big data sets and to better understand the changes in the FC dynamics across the different 

stages of the disease.   

The main goal of this present study was to explore FC and dFC across groups. A PPA was applied to 

a dataset of patients with AD, LMCI, EMCI and age and sex-matched healthy individuals (HC). 
Additionally, to compare findings with other classical methods, pairwise correlations of the whole 

BOLD signal, graph theory measures and a SWA were applied. In line with previous literature, it was 
expected to find [1] differences across the four groups in FC and variability within and between the 

DMN, SAL, visual networks (VS) and CEN; [2] an increased FC in EMCI and LMCI and a slightly 

decreased FC in AD in several networks in contrast to the other groups and [3] more subtle differences 
across groups when using the PPA in comparison to the other methods. 
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2. MATERIALS AND METHODS 

Participants: 

All rsfMRI, T1 MRI and demographic data from participants were downloaded from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/)(Franzmeier et al., 2017). 36 HC 
age and sex matched, 29 with EMCI, 30 with LMCI group, and 34 with AD. All the images correspond 

to the screening visit, which are coded in ADNI2 as Screening MRI-New Pt (V02). Between groups, 

there were no differences in age, sex, and years of education. Patients with AD presented significantly 
lower scores in the screening assessment cognitive test Mini Mental State Examination (MMSE) in 

comparison with the three other groups. Expectedly, there were no differences between groups in 
episodic memory measured by the Scale Logical Memory II (delayed paragraph A recall) from the 

Wechsler Memory Scale) cognitive tests (see Table 1). A participant from the HC group was 

eliminated before the analysis because some time series were missing. Further inclusion and exclusion 
criteria is exposed in detail in the “ADNI 2 Procedures manual” (pages 27-30); access is available 

through this link: (http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-
manual.pdf). Data access was approved by contacting the ADNI Ethics Committee 

(http://adni.loni.usc.edu/data-samples/access-data/) and sending a request with a proposed analysis 

and the name of the principal investigators. 

Data acquisition: 

T1 and fMRI images were acquired using Philips Medical Systems Scanners and underwent control at 
Mayo Clinic. The fMRI images were obtained with a field strength of 3.0 tesla, with a repetition time 

of 3s, an echo time of 30ms, a flip angle of 80 degrees, matrix 64 x 64, 140 volumes, 48 slices per 

volume and a slice thickness of 3.3 mm. The voxel size was 3.3 x 3.3 x 3.3 mm3. For further details on 
MRI acquisitions see the “MRI scanner protocol” at (http://adni.loni.usc.edu/wp-

content/uploads/2010/05/ADNI2_MRI_Training_Manual_FINAL.pdf). 

Data preprocessing  

The MATLAB toolbox “Data Processing Assistant for Resting-State fMRI” (DPARSF) (Yan and 

Zang, 2010) was used to preprocess the data. First, slice timing and head motion correction were 
applied. No subjects with a mean movement on translation or rotation over 2 mm were found. Then, 

registration was performed to the corrected fMRI image. Last, normalization using the Montreal 
Neurological Institute (MNI) space, spatial smoothing (with an 8 mm full-width half maximum 

Gaussian Kernel) and bandpass filtering (0.001-0.1Hz) to remove low-frequency scanner drift and 

physiological noise of the fMRI images were applied. 

The automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) was used to extract 

116 Regions-Of-Interest (ROIs) of the preprocessed rsfMRI dataset. This parcellation method has been 
shown to be optimal to understand the FC between brain regions (Arslan et al., 2018). The voxels 

within each ROI were averaged to obtain a time series per ROI. Each time series contains 140 

timepoints (3seconds TR, i.e., 420 seconds in total). 

All the analysis described in the following subsections (see Figure 1) were performed using MATLAB 

ver. R2018a. 

 

 

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_MRI_Training_Manual_FINAL.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_MRI_Training_Manual_FINAL.pdf
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Static FC analysis with Pearson’s correlation:   

The Pearson’s correlation coefficient (PCC) between entire timeseries was computed to extract the FC 
in a pairwise manner (ROI to ROI correlation) per participant. Hence, correlation matrices of 116 x 

116 (ROI * ROI) were obtained per each subject. Then, a one-way analysis of variance (ANOVA) and 
post hoc comparisons were conducted to explore differences between groups. Those regions that 

presented differences in FC across groups were checked for outliers; more specifically, whether the FC 

was three scaled median absolute deviations (MAD) away from the median, for each participant in 
each group was explored. Then the FC was computed again after removing these participants.  

Graph theory measures:  

To explore some characteristics of the brain networks, such as the integration and segregation, several 

graph theory measures were computed (Rubinov and Sporns, 2010). More specifically, we computed 

the clustering coefficient to measure local connectivity and segregation, the global path length to 
measure the average shortest path between two nodes, to reveal how efficient communication between 

regions or how integrated the brain is, and last, the mean degree, to quantify the mean number of edges 
connected to a node, i.e., mean of all node degrees. These measures were computed by converting the 

FC matrices into binary graph matrices that represent nodes and edges.  

The brain is a highly centralized network, often called a scale free or power law network (Sporns et al., 
2004; Haimovici et al., 2013). This type of structure shows an exponential or power relationship 

between the degree of connectivity of a node and its frequency of occurrence, more specifically, the 
brain contains a few rich hubs or nodes that connect to several regions and many nodes connected to 

just a few regions, i.e., the majority of nodes present a low degree. Taking this fact into consideration, 

to satisfy small worldness or scale freeness of features, different thresholds were used to binarize the 
static FC matrices before performing graph theory measures, i.e., raw FC values (PCC), from 0.1 to 

0.5 at intervals of 0.01. A threshold of 0.3 was selected. Hence, those ROI-to-ROI connections that 
exceeded a threshold of 0.3 (PCC value) were set to 1, whilst those below 0.3 were set to 0 (note that 

the possible FC values range was −1 ∼ 1, absolute values were not used). This threshold apart from 

ensuring scale freeness, enables one to better differentiate among groups (see Supplemenatry 

material). Other researchers using rsfMRI datasets, concluded that a threshold between 0.21 to 0.4 is 
optimal to enable differentiation of groups (Aurich et al., 2015; Ahmadi et al., 2021; Ye et al., 2015;  

Ng et al., 2021). Graph theory measures were performed using the brain connectivity toolbox: 
(https://sites.google.com/site/bctnet/).  

After extracting the brain network features, a one-way analysis of variance (ANOVA) and post hoc 
comparisons were conducted to explore differences between pairs of groups. 

Temporal variability of FC by means of Sliding window correlation (SWA) and standard 

deviation: 

A SWA was used to explore the dFC of our samples, more specifically the temporal variability of FC. 

In order to use a window length that captured fast changes in the signal while also keeping an optimal 
level of robustness, a window size assessment was performed prior to the analysis (Leonardi and Van 

De Ville, 2015). This trade-off between sensitivity and specificity was examined by computing the 

mean correlation of the mean of all ROI-to-ROI correlations and exploring how the mean FC value 
varied as a function of window size (see Figure 2). The same procedure was used to explore the mean 

of the standard deviation (SD) of each window matrix as a function of window size. The length window 
assessment was performed for overlapping windows from 5 to 140 time points (i.e., from 15 to 420 

seconds), with an increment of one time point (Mokhtari et al., 2019). 

https://sites.google.com/site/bctnet/
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Once the optimal window size was selected, SWA was performed. First, the FC between each pair of 

regions was computed for each window, obtaining as many connectivity matrices as windows. Then, 

the variability (i.e., standard deviation of FC across windows for each ROI-to-ROI) was computed, 
obtaining one covariance matrix per group. 

A one-way analysis of variance (ANOVA) and post hoc comparisons were conducted to explore 
differences between pairs of groups. 

 

Figure 2 

 

Point Process Analysis, PPA:  

The main difference between the static functional connectivity and PPA is that the former keeps all the 
timepoints for the analysis while the latter one just includes those points that surpass a threshold of 1σ 

(Cifre et al., 2020; Cifre, Flores, et al., 2021; Tagliazucchi et al., 2012). The steps conducted in the 

PPA consisted of first thresholding the timeseries of each ROI considering the amplitude of the BOLD 
signal. Only those events or peaks that surpass 1 σ were selected (see Tagliazucchi et al., 2012). 

Empirically, for the threshold of 1σ in a BOLD signal, we find on average 8.5 ± 2.8 upward crossings 
per 4 min of fMRI scan. This number of points has been proven to be sufficient by other authors 

(Tagliazucchi et al., 2012). This is because the BOLD signals that are upward situated are non-linear 

events that contain the most relevant information and follow a power law. Second, all those points of 
the timeseries that surpassed 1 SD of the BOLD signal were selected as relevant. Co-activation binary 

matrices for each timepoint were generated, e.g., in timepoint 1 FC between ROI 1 and ROI 2 the 
signal is relevant (both surpass 1 SD), in timepoint 1 ROI 1 and ROI 3 in time 1 signal is not relevant 

(<1 SD…). This is conducted for all the 140 timepoints for each 116 pairs or ROIs. Finally, a matrix 

of addition was copmputed for each pair of ROIs per participant, e.g., connectivity between ROI 1 and 
ROI 2 in PPA was acquired by adding all the timepoints that were relevant throughout the time series. 

This is similar to the correlation matrix obtained in the classic FC, but in the PPA instead of computing 
the correlation between pairs of regions, the summation of the number of relevant points is obtained 

(see Supplementary material).  

A one-way analysis of variance (ANOVA) and post hoc comparisons were conducted to explore 
differences between pairs of groups. 
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Statistical analysis: 

A one-way analysis of variance (one-way-ANOVA) and multiple comparison tests corrected with 

Bonferroni correction at p < .05 were used to compare results across groups in all the analysis conducted, i.e., 

FC, graph theory measures, SWA and PPA. This method for multiple comparisons is one of the most 

commonly used for rsfMRI analysis (Lindquist and Mejia, 2015). 

 

3. RESULTS 

 Static Functional Connectivity (FC) 

The results showed an increased in FC between several ROIs in LMCI and AD in comparison to HC 

and EMCI (see Table 2). More specifically, the AD presented an increased FC between the angular 
gyrus (left) and cerebellum crus II (left) in contrast to the EMCI and between the superior occipital 

gyrus (right) and calcarine fissure (left). Relative to HC, AD also presented an increase in FC between 
the thalamus and the inferior frontal gyrus (left), between the middle temporal gyrus (left) and the 

caudate nucleus (left), between the vermis 9 and the occipital superior (left) and between the caudate 

(right) and the frontal inferior gyrus (left). The only regions that presented a decreased FC in AD in 
comparison to HC were the middle temporal gyrus (right) and the superior occipital gyrus (left). 

To explore whether this pattern of connectivity was also present globally, the mean FC of all ROI-to-
ROI correlations of each group was conducted. Results did not show a significant difference across 

groups (see Figure 3). 

 Graph theory measures 

Additionally, the clustering coefficient, degree, and global characteristic path length network measures 

were computed.  

Patients with EMCI presented a significant longer characteristic path length and a shorter mean degree 

in comparison to LMCI, AD and HC. Results in mean clustering coefficient did not show significant 

differences amongst groups (see Table 3). 

 

 Sliding window correlation analysis 

As expected, the variability when computing SD across windows using short windows, i.e., from 1 to 

20 time points (3 to 60 seconds), was substantially higher and the correlation was lower than when 

computing it for longer windows, i.e., 120 to 139 time points. Window lengths from 30 to 120 TR 
showed increased stability. Hence, the time series were divided into overlapping windows of 30 time 

points, i.e., 90 seconds to have as many windows as possible to ensure a good trade-off between 
sensitivity and robustness. Our windows are short enough not to miss FC fluctuations in our BOLD 

data and long enough to be robust and only real fluctuations. Previous studies also indicated enough 

variability and robustness in windows between 30 to 60 time points in rsfMRI studies (considering the 
frequency of the BOLD signal being 0.1-0.001 Hz) (Esposito et al., 2019). 

Greater differences in variability across groups were detected between several areas of the DMN and 
the attentional networks (executive and dorsal), between the left auditory cortex and the right 

dorsolateral frontal cortex as well as, between the right cerebellum right and the left sensory motor 

cortex and between areas within the right cerebellum (see Table 4). Expectedly, the group that showed 
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more variability in FC amongst windows is the EMCI group that showed a decrease in the static FC 

(analysis explained in the subsection above). Moreover, the AD showed a decrease in variability and 

presented an increase in sFC.  

 PPA 

Some overlap in the results of the static FC and the PPA was detected (see Table 5). The LMCI and 
AD presented an increased FC between several brain regions in comparison to the HC and the EMCI. 

Specifically, the AD group, when compared with the LMCI, presented a higher FC between the 

cerebellum crus I (left) and the angular gyrus (left); an increased FC when compared with the EMCI, 
between the caudate (left) and the frontal gyrus (triangularis part) and also increased FC in comparison 

to HC between the insula (left) and the middle frontal gyrus (left), between the parahippocampus (right) 
and the insula (left), between the insula (left) and the inferior frontal triangular part (right) and between 

the thalamus (right) and the frontal inferior triangular part (left). The AD only presented a decrease in 

FC in contrast to LMCI between the cerebellum (right) and the amygdala (right).  

The LMCI presented a higher FC in comparison to EMCI between the cerebellum (right) and the basal 

ganglia) and between the superior frontal gyrus medial (left) and the inferior frontal triangular part 
(right). The LMCI also presented a higher FC compared to HC between the parietal superior gyrus 

(right) and the orbital medial gyrus (right). The LMCI only presented a decrease in FC between the 

precuneus (right) and the middle occipital gyrus (right) in comparison to HC. 

To summarize, Figure 4 displays a general view of the results obtained using FC, PPA and SWA. As 

shown in the images, both the static FC and the PPA results showed an increase in connectivity between 
specific regions in the AD and the LMCI and a decrease in connectivity in EMCI. Additionally, the 

SWA results showed that variability in FC between brain regions across time is higher in the EMCI, 

which is statistically coherent with the fact that correlation, or FC between regions is reduced in this 
group. The PPA was more sensitive in detecting changes across groups.  

 

4. DISCUSSION 

This study aimed to explore FC across stages of AD using the PPA and other classical methods. It was 

hypothesized that the connectivity in and between the DMN, SN, CEN and VN would be altered in 
MCI and AD. Our results showed several differences across groups within and between the mentioned 

networks and other additional networks. Moreover, it was expected that there would be an increase in 
FC for EMCI but a decrease in AD for the mentioned networks. Unexpectedly, an increase in 

connectivity in LMCI and AD and a slight decrease in EMCI in contrast to the other groups was found. 

Last, as expected, the PPA was the most sensitive method when capturing differences in FC across 

groups. A discussion of the results obtained using the different methods is provided below.  

4.1. Static FC and PPA: an increased FC in LMCI and AD 

A reduction in mean functional connectivity between several brain regions, mostly in posterior and 

medial areas, as well as an increase in the FC variability across windows of time was expected in AD 

in comparison to EMCI and LMCI. However, our results showed a higher FC in LMCI and AD, but a 
decrease in EMCI in comparison to the other groups between several brain regions. This suggests a 

non-linear connectivity pattern that begins with an optimal connectivity in HC, followed by a slightly 
decrease in EMCI, and then by an enhancement of FC between several regions in LMCI and mild AD. 

Some researchers used rsEEG (Bonanni et al., 2021) and rsfMRI and reported an increase in FC 
between multiple brain regions in prodromic AD and a decrease in AD. This mechanism is 
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hypothesized by the authors to be caused due to a GABAergic-glutamatergic dysregulation. 

Additionally, a post-mortem study (Snowden et al., 2019) that analysed brain tissue found that patients 

with AD presented a GABAergic increase and a glutamate decrease in AD in the inferior temporal 
gyrus, the most vulnerable region to accumulate TAU tangles. Consequently, an inhibitory 

environment and decrease of action potentials takes place. Taken together, we would expect to observe 
an increase in connectivity in prodromic AD and MCI followed by a decreased FC in AD. In our study, 

however, a decreased FC was only observed in EMCI followed by an increased FC in LMCI and AD. 

The exception to this was for a pair of posterior regions that presented a decreased in connectivity in 
AD, i.e., right middle temporal gyrus and right superior occipital gyrus. This increased FC in LMCI 

and AD was only seen in the current study by differentiating EMCI and LMCI, not often done in 
previous work. Moreover, in a post-mortem study, patients with AD were older and presented moderate 

or severe AD, where decreased connectivity is more expected due to an increase of cellular death and 

atrophy. Furthermore, it is well established that a high release of glutamate is neurotoxic and might be 
one of the causes of neuronal death (Maragos et al., 1987). Here, it can be hypothesized that the 

increased FC observed in LMCI and AD groups could be enhanced by a low GABAergic or inhibitory 
activity along with a high or excitatory activity in areas where TAU is not yet installed (e.g., thalamus, 

caudate and/or cerebellum). On the other hand, early pathologic damage might explain the decreased 

FC in AD between the right middle temporal gyrus and the right superior occipital gyrus.  

An increased FC has also been associated with mal(adaptive) rewiring of the brain after pathologic 

damage occurs. This idea is not mutually exclusive to the neurotransmitter dysregulation hypothesis 
and the two mechanisms might co-occur in an additive fashion. Some authors have distinguished two 

types of hyperconnectivity rewiring after brain damage: a local hyperconnectivity and a global 

hyperconnectivity (Snowden et al., 2019). The former states that local alternative paths close to 
damaged brain areas are used to ensure that communication between networks is possible to preserve 

function. The latter refers to the brain using multimodal or rich nodes, independently to the localization 
of the brain damage, in order to ensure the maintenance of cognitive function. Following the popular 

stages of AD degradation as proposed by from Braak and Braak’s (1995) research, the first areas 

damaged in AD (stages I and II) due to TAU deposition are the posterior ones, more specifically, the 
brain stem followed by the entorhinal. These areas are then followed by the limbic and whole neocortex 

in more advanced stages (III-IV), and then the hippocampus and anterodorsal thalamic nucleus. As the 
participants of our study present mild AD, this sign of increased FC in some posterior areas might 

indicate that certain regions of the posterior cortex could be affected but other areas are still preserved 

and can be recruited. A study showed increased correlations between occipital regions. Some 
investigators presented the same results regarding hyperactivity in AD in the middle occipital gyrus, 

lingual gyrus and visual cortex and explained the finding as an adaptation of the brain networks in 
response to disease (Wang et al., 2019). 

Although several researchers have justified an increased FC in neurodegenerative diseases as an 

adaptive mechanism of neuroplasticity to protect behaviour and cognition against brain damage, the 
mechanisms behind FC and its relationship with cognition and behaviour are not well understood yet. 

Multiple factors play a role in FC and at the time of writing there is a lack of understanding of what is 
really causing a specific pattern of FC, i.e., what factors can explain an increased or decreased FC. 

Currently, interpretations of results in FC have been speculative. Could, for instance an increase in FC 
in several areas be explained simply by structural disconnection and not by compensatory mechanisms? 

A study conducted by Patel et al. (2018) revealed that structural disconnection in patients with multiple 

sclerosis could explain an increase in rsfMRI (Wang et al., 2019). Whether this increased in FC is due 
to neural compensatory mechanisms or not needs to be further investigated using multimodal 

neuroimaging techniques.  
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4.2. Additional measures performed: Graph theory measures 

Patients with EMCI showed a longer characteristic path length in contrast to the patients with LMCI 

and AD, probably reflecting a need in EMCI to connect interregionally due to local damage. In 
comparison, in LMCI and AD there might be more widespread pathology, more areas connected in a 

more disorganized way and presenting shorter paths. A shorter characteristic path length in HC is 
probably a sign of efficiency in connectivity between long distant areas, while in AD shorter paths 

might mean disrupted connectivity and the whole brain is more connected but in a disorganized 

manner, i.e., a decrease in metastability. A study reported a disrupted global metastability in AD 
(Córdova-Palomera et al., 2017). Other studies reported longer mean characteristic path lengths in MCI 

(J. Wang et al., 2013). 

It can be speculated that in LMCI and at the beginning of AD the brain might be rewiring in a 

widespread manner, finding local and global alternative paths to maintain cognitive functioning. This 

adaptive and short-term solution might incur, however, a high cost for the network, as usually any 
alternative paths that involve rich hubs generate the proper environment to facilitate the formation and 

accumulation of TAU protein tangles (Bonanni et al., 2021). 

4.3. Sliding windows correlation analysis (variability among windows) 

It has been reported that patients with pathology might present more variability in the BOLD signal 

over time. The SD of the correlation metrics across windows allowed us to see the variability in FC 
between pairs of regions. Usually, regions with a greater variability imply a lower correlation (Rolls, 

Cheng and Feng, 2021) .  

Significant differences in variability across windows were found between groups. Results showed that 

the EMCI presented a greater variability over time in most connections. This finding is aligned with 

the static FC results that showed a decreased correlation between several brain regions. Most of the 
ROIs detected are similar for static FC and PPA analysis.  

4.4. Specific brain regions affected in AD and LMCI with decrease FC (Static FC analysis, 

SWA and PPA) 

Besides this decrease-increase in FC patterns, the specific brain regions that presented a sharp abnormal 

connectivity show consistency with other studies. For instance, several studies have reported a decrease 
in FC in EMCI between thalamus (left/right) and frontal gyrus and between the temporal and occipital 

gyrus (Cai et al., 2015). Additionally, a study showed that AD participants presented a larger caudate 
nucleus volume in AD, probably reflecting a compensation mechanism of damage in the closest areas 

such as the hippocampus. Pathology in the hippocampus could explain an increasing stimulation of the 

caudate nucleus, causing an increase in volume and FC between it and cortical brain regions (Persson 
et al., 2018). 

On the other hand, the cerebellum was classically thought to be unaffected in MCI and AD (Chételat 
et al., 2008). However, grey matter atrophy in the cerebellum, and pathological changes, such as 

betamyloid deposits and neurofibrillary tangles have been observed (Ciavardelli et al., 2010; Córdova 

et al., 2017). The current results showed abnormal connectivity in the cerebellum and between the 
cerebellum and other regions (cerebellum crus II and DMN, sensory motor and cerebellum VII, 

cerebellum 8 and cerebellum 7b). Other studies also found aberrant FC within the cerebellum (Cai et 
al., 2015) and between the Crus II and the DMN (Toussaint et al., 2014). 

The precuneus, a specific region of the DMN, is a relevant hub that enhances connectivity between 
several brain regions. A decreased FC between this and other regions has been associated with changes 

in the brain’s vulnerability of early Alzheimer’s disease. Our PPA results showed a decreased FC in 
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LMCI in contrast with HC (Nelson et al., 2010; Yokoi et al., 2018). A decreased FC of the precuneus 

might be the cause of increased FC in regions next to this region (local hyperconnectivity hypothesis) 

and far from this region (global hyperconnectivity hypothesis). 

4.5. Added value of SWA and the PPA to the static FC 

Although our results showed some overlap or complementarity across methods, for instance areas or 
networks, there were also differences across methods. It is worth noting that the PPA was able to detect 

more changes across groups.  

Some areas that showed aberrant FC detected by means of the SWA and the PPA were not detected in 
the static FC. For instance, the AD presented less variability and more synchronicity between the 

auditory and middle frontal gyrus in comparison to the HC and the EMCI. In addition, the AD group, 
in contrast to the HC and the EMCI, presented increased FC and decreased variability between regions 

of the auditory network, e.g., insula, superior temporal and the dorsal (right), such as the inferior frontal 

triangular part, middle frontal gyrus. Finally, the EMCI presented a decreased connectivity in contrast 
to the LMCI between the executive function network and the dorsal. 

When comparing the SWA and the PPA, a higher variability from the SWA was obtained in the EMCI 
in comparison to the HC between a region in the executive function network and the dorsal, and in the 

PPA a higher correlation in the LMCI than in the EMCI. These couple of findings made us hypothesize 

that there is a stronger synchronicity between these areas in LMCI and HC and less in EMCI. Without 
performing the PPA we could not have seen the difference in FC between these regions. 

Last, the PPA was the method that allowed us to have a more comprehensive or complete view of the 
aberrant connectivity across the different stages of the disease. That is to say, we could gauge the subtle 

changes across groups like an increase in LMCI in comparison to EMCI between the dorsal network 

and the CEN, as well as an increase and decrease in FC between some ROIS of the cerebellum and the 
basal ganglia in LMCI and AD. 

This study presents some limitations. First, the optimization of window parameters to conduct the SWA 
as well as the threshold to binarize the FC matrix and extract graph measures, were carefully selected 

after a literature revision and a variability and correlation assessment for each window size, nonetheless 

the optimization of parameters in FC research is an issue that should be further investigated with novel 
analysis. Second, the structural parcellation method used in the present study, the AAL, is commonly 

used for task and rsfMRI studies. Although some studies have used connectivity-driven parcellations 
and they have shown more consistency with the subjacent resting state connectivity, anatomical 

parcellations yield the same or even better delimitation of cortical areas which is relevant for network 

analysis. Given these claims, the selection of a specific parcellation over others will not impact many 
of the results. As suggested by Arslan and colleagues (2018) in their systematic comparison of 

parcellation methods, researchers performing network analysis should use any parcellation method 
available. Third, the participants with eMCI, lMCI or AD, presented a clinical diagnosis and their 

memory was objectively affected. However, a biological characterization of the participants was not 

conducted and would enable generalization of findings.  

Comparing results across methods was a difficult task because some results were similar across 

methods, but several differences could also be found. This happened because the methods used 
measured different FC constructs: static FC, variability in FC and dFC. Hence, expecting similar global 

results in terms of differences between some networks or patterns of increased or decreased 
connectivity in several brain regions at a specific stage of the disease was logical, however expecting 

similar findings across methods, at a finer scale, i.e., small regions was not achievable.  
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CONCLUSION 

Our results showed that the EMCI presented a similar but slightly decreased FC to HC in several brain 

areas, while the LMCI and mild AD presented an increased FC in several regions. These results suggest 
that the pathology is less dispersed in EMCI and the brain configuration is similar to the HC. When the 

pathology advances in LMCI and AD, the brain might react by compensating through using the 
available resources such as the recruitment of alternative paths. This might enhance a high glutamate 

and low gabaergic activity next to regions where pathologic proteins are installed and in rich hubs such 

as the thalamus. The analysis performed provided some overlap in the results. For instance, they 
showed an increased FC in LMCI and AD involving a specific frontal region, i.e., the frontal inferior 

triangular (left) and posterior regions mostly within the visual network, the DMN, the auditory, 
cerebellum, basal ganglia, and thalamus. However, and as expected, results also show differences in 

the areas affected when applying the different methods. This was expected as the literature review 

shows this heterogeneity because what we are measuring across methods fits under the same “FC” 
umbrella, but it is not the same, i.e., static FC, variability and dFC are different measures. To end, 

SWA and PPA added new results and this last method is the most efficient when dealing with datasets 
and sensitive differentiating changes across the stages of the disease.  

Future studies should include a larger sample and diverse AD groups that reflect all the stages of the 

disease, i.e. amnestic EMCI, amnestic LMCI, mild AD, moderate AD and severe AD. Additionally, 
longitudinal studies that track the connectivity across years, as well as post mortem studies to explore 

the brain tissue of different patients that died at different stages of the disease would be highly useful 
to understand the relationship between neurotransmitters, pathological protein and FC at the different 

stages of AD. Finally, novel machine learning approaches could be used to compare and integrate 

findings.  
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TABLES 

Table 1. 

Information of the participants included in this study 

 Group Between-group differences 

  HC EMCI LMCI AD f p 

Number 35 29 30 34 - - 

Sex (M/F) (15 / 21) (13 / 16) (18 / 12) (16 / 18) - 
Chi 2 = 2.21 p = 

0.52 

Age  (SD) 73.60 (5.75) 71.36 (5.46) 70.63 (8.23) 72.44 (7.09) 1.08 p = 0.36 

Years of ed.  (SD) 16.37 (2.36) 15.96 (2.41) 16.85 (2.60) 15.5 (2.75) 1.72 p = 0.167 

MMSE  (SD) 28.53 (1.92) 27.76 (1.94) 27.60 (1.47) 22.69 (2.53) 54.5 p < 0.0001a b c 

LDELT  (SD) 13.50 (3.48) 8.65 (1.80) 4.46 (2.92) 1.31 (1.97) 122.28 p < 0.0001 a  b c d e f 

MOCA  (SD) 25.49 (1.91) 24.11 (2.50) 21.61 (3.69) 16.5 (5.24) 38.45 p < 0.0001a b c d f 

Note. a AD < EMCI; b AD < LMCI; c AD < HC; d EMCI < LMCI; eEMCI < HC; f LMCI < HC; The table displays means, 

standard deviations and differences in age, years of education (Years of ed.), scores in the Mini Mental State Examination 

(MMSE), in the Scale Logical Memory II (delayed paragraph A recall) (LDELT) and in the Montreal cognitive assessment 

(MOCA). Statistical analysis of variance (ANOVA) was used to assess differences. Differences in gender were assessed using 

a Chi Squared test. HC, healthy controls; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD, 

Alzheimer’s disease.  

 

Table 2. 

Pairs of brain regions showing significant differences in FC between groups when performing a one-way ANOVA 

Network ROI Network ROI P value Post hoc 

 FC  (SD)  

Cerebellum Cerebellum: 

Crus II (left) 

DMN Parietal lobe 

0.0007 

AD>EMCI 

0.38 (0.2) > 0.13(0.32) 

 Cerebellum 2nd 

Non-motor: 

VIIB (right) 

Sensory motor Central region: 

Postcentral 

gyrus (left) 

0.0021  

AD>EMCI 

0.47 (0.24) > 0.25 (0.23) 

 Vermis 9 Visual II 
Occipital 

superior (Left) 
0.0022  

AD>NC 

0.34 (020) > 0.13 (0.25) 
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Visual I Occipital lobe: 

medial surface, 

calcarine 

fissure (left) 

Visual II Occipital lobe 

(lateral): 

Superior 

occipital gyrus 

(right) 

0.0007 

AD > EMCI 

0.67 (0.17) > 0.50 (0.20) 

 Occipital lobe: 

inferior 

surface, 

Lingual gyrus 

(right) 

Visual II Occipital 

inferior gyrus 

(right) 
0.0015 

LMCI > EMCI; NC > EMCI 

0.62 (0.12) > 0.49 (0.21); 0.62 

(0.16) 

 

Auditory  Temporal lobe: 

middle 

temporal gyrus 

(right) 

Visual II Occipital lobe 

(lateral): 

Superior 

occipital gyrus 

(left) 

0.0025 

AD<NC 

0.11 (0.29) < 0.34 (0.20) 

 

Basal ganglia Caudate (right) Dorsal left Frontal lobe: 

Inferior frontal 

gyrus 

0.0022  

AD > NC 

0.45 (0.19) > 0.25 (0.25) 

 Subcortical 

grey nuclei: 

Caudate 

nucleus (left) 

Dorsal left Temporal 

lobe: middle 

temporal gyrus 

(left) 

0.0022 

AD > NC 

0.39 (0.21) > 0.22 (0.23) 

Thalamus Sub cortical 

gray nuclei 

(right) 

Ventrolateral 

prefrontal 

cortex 

Frontal lobe: 

Inferior frontal 

gyrus 

triangular part 

(Left) 

0.0008 

AD > NC 

0.50 (0.14) > 0.30 (0.20) 

Note. The table displays the ROI to ROI Functional connectivity (FC) results and the differences between groups. HC, 

healthy controls; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment AD, Alzheimer’s 

disease; DMN, default mode network. 

 

Table 3. 

Graph theory measures 

Mesure HC  

 (SD)       

EMCI 

 (SD) 

LMCI 

 (SD) 

AD 

 (SD) 

p Group differences 

Path length 1.568 (0.61) 1.606 (0.61) 1.501 (0.577) 1.516 (0.585) .05 EMCI > LMCI; EMCI > 

AD 
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Cluster coeff. 0.783 (0.11) 0.776 (0.11) 0.793 (0.04) 0.796 (0.11) .52 ----- 

Degree 67.5 (23.98) 51.689 (23.71) 60.534 (24.11) 59.431(24.14) .02 EMCI<LMCI; EMCI<AD 

Note. Table 3 displays results in graph measures: the mean, standard deviation, and the significant differences between 

groups in path length, cluster coeff. (Clustering coefficient) and degree. The EMCI, early mild cognitive impairment group, 

presented a higher path length and a lower degree in comparison with the other groups.  

 

Table 4. 

Between group differences in mean ROI to ROI dispersion across windows using a one-way ANOVA 

Network ROI Network ROI P value Post hoc 

 (SD) 

Cerebellum Cerebellum 7b 

(right) 

Sensory motor Postcentral gyrus 

(left) 0,0007 

AD < EMCI 

0.15 (0.07) < 0.21 (0.07) 

 Cerebellum 8 

(right) 

Cerebellum Cerebellum 7b 

(right) 

0.0008 AD < EMCI; AD < LMCI 

0.07 (0.07) < 0.12 (0.06); 

0.07 (0.07) < 0.12 (0.07) 

Basal ganglia Caudate (right) Dorsal right Middle frontal 

gyrus orbital 

(right) 
0,0016 

HC < EMCI 

0.17 (0.063) < 0.22 (0.045) 

DMN Superior 

frontal gyrus, 

medial orbital 

(left) 

DMN Angular gyrus 

(left) 
0,0016 

AD < EMCI 

0.15 (0.05) < 0.17 (0.052) 

 Superior 

frontal gyrus, 

medial orbital 

(left) 

Dorsal left Middle frontal 

gyrus, orbital 

(left) 0,0011 

AD < EMCI 

0.15 (0.06) < 0.17 (0.05) 

 

Auditory Temporal pole: 

superior 

temporal gyrus 

(left) 

Dorsal right Frontal lobe: 

Middle frontal 

gyrus (right) 
0,0004 

AD < EMCI 

0.14 (0.052) < 0.19 (0.062 
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Rolandic 

operculum 

(left) 

Sensory motor Supplementary 

motor area (left) 

0,0011 

LMCI < EMCI; AD < 

EMCI 

0.15 (0.04) < 0.21 (0.07); 

0.16 (0.04) < 0.21 (0.07) 

Executive 

function 

Superior 

frontal gyrus 

orbital (left) 

Dorsal left Supramarginal 

gyrus (left) 0,0018 

HC < EMCI 

0.16 (0.05) < 0.22 (0.07) 

Note. Overlapping SWA, Sliding Window Analysis, results with a window size of 30 time points (TR = 3 seconds) and 

an increment of 1 time point for each slide. One-way ANOVA Significant differences between groups at a p < 0.05. HC, 

healthy controls; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment AD, Alzheimer’s 

disease. 

 

Table 5: 

Differences in FC using the Point Process Analysis 

Network ROI Network ROI P value Post hoc 

Cerebellum Cerebellum 10 

(right) 

Basal ganglia  Amygdala 

(right) 

0,0001 

EMCI < LMCI; 

AD < LMCI 

3.03 (2.14) < 6.3 

(3.23); 3.61 (2.82) 

< 6.3 (3.23) 

 

Cerebellum Crus1 

(left) 

DMN 

Angular gyrus 

(left) 
0,0003 

LMCI < AD 

4.3 (2.71) < 7.05 

(0.62) 

 Cerebellum crus I 

(left) 

Dorsal left Middle temporal 

gyrus (left) 
0,0015 

EMCI < AD 

7.68 (3.21) < 9.97 

(3.52) 

Visual III Middle occipital 

gyrus (right) 

DMN Precuneus 

(right) 
0,0012 

LMCI < HC 

7.8 (3.74) < 11.22 

(3.53) 

Basal ganglia Caudate (right) Dorsal left Frontal lobe: 

Inferior frontal 

gyrus triangular 

part (left) 

0,0006 

EMCI < AD 

5.34 (2.37) < 7.9 

(2.93) 
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 Parahippocampal 

(right) 

Auditory Insula (left) 

0,0014 

HC < AD 

3.71 (2.12) < 5.85 

(2.74) 

 Caudate nucleus 

(left) 

Dorsal left  Inferior frontal 

gyrus, triangular 

part (left) 

0,0018 

HC < AD; EMCI < 

AD 

5.51 (2.48) < 7.76 

(3.40); 

5.41 (2.47) < 7.76 

(3.40) 

Thalamus Sub cortical gray 

nuclei: Thalamus 

(right) 

Dorsal left Inferior frontal 

gyrus triangular 

part (left) 
0,0020 

AD > HC 

8.97 (3.08) > 6.31 

(2.44) 

DMN Superior frontal 

gyrus, medial orbital 

(right) 

Dorsal right Parietal superior 

gyrus (right) 
0,0012 

HC < LMCI 

7.14 (3.82) < 7.36 

(3.69) 

 Superior frontal 

gyrus medial orbital 

(right) 

Dorsal right Angular gyrus 

(right) 

0,0016 

EMCI < LMCI; 

HC < LMCI 

6.51 (3.36) < 8.1 

(3.35);  

7.25 (3.70) < 8.1 

(3.35) 

Auditory Insula (left) Dorsal left Inferior frontal 

gyrus triangular 

part (left) 
0,0009 

HC<AD 

6.8 (2.72) < 9.58 

(3.66) 

 Insula (left) Dorsal (right) Inferior frontal 

gyrus triangular 

part (right) 
0,0015 

HC<AD 

5.4 (2.88) < 7.14 

(3.87) 

Executive 

function 

Superior frontal 

gyrus medial (left) 

Dorsal (right) 

Inferior frontal 

gyrus triangular 

part (right) 

0,0014 

EMCI < LMCI 

6.96 (3.25) < 8.33 

(3.21) 

 

Note. Table 5 displays the differences between groups in dynamic functional connectivity (dFC) between pairs of regions 

(ROIs) measured by points that surpass a threshold of BOLD signal activation of 1 standard deviation (sd). HC, healthy 
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controls; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment AD, Alzheimer’s disease; DMN, 

default mode network. 

 

FIGURES 

Figure 1 

 

Note. Figure 1 displays the methods used in the study. First the fMRI and T1 image acquisitions were downloaded from 

the Alzheimer’s disease neuroimaging initiative (ADNI) database. Then the images were preprocessed using the 

DPARSF pipelines. Timeseries from 116 regions of interest (ROIs) were extracted using the automated anatomical 

labelling (AAL) atlas. These 116 timeseries were used to perform three main analyses displayed on the right side of the 

figure namely, Functional Connectivity (FC), Sliding Window Analysis (SWA) and Point Process Analysis (PPA). The 

top right side of the figure shows the FC where the Pearson’s Correlation Coefficient of each pair of regions was 

computed using the mean whole signal of each timeseries; the middle right side of the figure shows the SWA, that 

consisted on dividing the timeseries into non-overlapping windows, computing the FC for each window and determining 

the variability in FC across windows; the third plot on the right side of the image shows the PPA, this is a single frame 

analysis where points that surpass the threshold of 1SD of each timeseries were selected, coincident points between pair 

of regions where summed and displayed in a matrix of addition. The fourth plot on the right side of the image displays the 

graph measures conducted in the study. To test statistical significance of each analysis a one-way-ANOVA with multiple 

comparison tests were conducted corrected with Bonferroni at p < .05. 

 

Figure 2  
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Note. The Figure represents the window size analysis before conducting the sliding window correlation analysis. 2a. Global 

FC as a function of window size. The Y axis represents the mean FC or correlation of all the ROI to ROI correlations 

windows of a participant with AD. The X axis shows the 140 time points of the whole time series. Each time point represents 

3s (TR= 3s). The mean correlation varies as a function of window size. Shorter windows present a lower mean correlation 

while windows from 30 or above present a higher correlation. 2b. The Y axis represents the mean standard deviation (SD) 

of the SD of all the ROI to ROI correlations across windows of a participant with AD. The X axis shows that this mean SD 

varies as a function of window size. Shorter windows present a higher variability while windows of 30 time points or above 

present a lower SD. 2c. The plot shows the difference between the mean correlation of all ROI to ROIs using a certain 

window size and the global static 2d. The difference in the variability amongst windows using window sizes higher than 

30 fluctuates around 0, meaning that results in SWA are almost the same, no matter the window length chosen.    

 

Figure 3 

 



Increased Functional Connectivity in Alzheimer’s 

26 

 

Note.  Figure 3 shows no significant differences between groups were found globally in FC (subplot on the left), SWA 

(subplot in the middle) and PPA (subplot on the right). 

 

Figure 4 

 

Note.  Figure 4 shows between group significant differences between specific brain networks in: static functional 

connectivity (sFC), point process analysis (PPA) and variability in functional correlation across windows applying sliding 

window correlation analysis (SWA). Dorsal = dorsal network; DMN = Default Mode Network; SM = Somatosensory 

network; VLPC = Ventrolateral prefrontal cortex; BG = Basal Ganglia; Thala = thalamus; VI = Visual network I; VII = 

Visual network II; Cereb = Cerebellum; CEN = Central Executive Network; AN = Auditory Network. 
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Supplementary Material 

 

Supplementary 1. Optimization of thresholding based on mean degree and small-world 

estimation 

After computing the FC, the correlation (FC) matrices were transformed into binary matrices to 

compute graph measures (raw correlation values were used). Until the moment it does not exist an 

accurate way to choose a threshold to study brain networks, however, several researchers using rsfMRI 
datasets used a threshold between 0.2 to 0.5 as it provided scale freeness and enabled differentiation of 

groups. For this reason, an analysis of our data to ensure these two characteristics was conducted. In 
this analysis, we assessed the global degree using different correlation thresholds, i.e., from 0.1 to 0.5 

at intervals of 0.01. A threshold of 0.3 was finally chosen because the mean degree when using this 

threshold is not too high not too low, satisfying the smallworldness feature of the brain, this way those 
nodes that are highly connected with several regions and the ones that are only connected to a few 

regions were captured. Moreover, this threshold allows a good discrimination across groups (see plot 
below). Those ROI-to-ROI connections that exceeded a threshold of 0.3 (Pearson’s correlation 

coefficient raw value) were set to 1, whilst those below 0.3 were set to 0. 

                                            

Note. The figure shows the mean degree (mean number of nodes connected to another node), y axis 
and the threshold set, x axis. Smallworldness is most preserved at a threshold between 0.3 and 0.5. 

Showing that the mean degree is not too high, not too low, revealing a few highly connected networks 
and many with a low degree. It also shows that differentiation between groups is more evident when 

binarizing the matrix using one of this range of thresholds. 

Researchers in the following studies used a similar threshold to binarize FC matrices before 

performing graph theory: 

• Ahmadi, H., Fatemizadeh, E., & Motie-Nasrabadi, A. (2020). Multiclass classification of 

patients during different stages of Alzheimer’s disease using fMRI time-series. Biomedical 

Physics and Engineering Express, https://doi.org/10.1088/2057- 

https://doi.org/10.1088/2057-
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• Aurich, N. K., Filho, J. O. A., da Silva, A. M. M., &#38; Franco, A. R. (2015). Evaluating the 

reliability of different preprocessing steps to estimate graph theoretical measures in resting state 

fMRI data. Frontiers in Neuroscience, (FEB), https://doi.org/10.3389/fnins.2015.00048 

• Ng, A. S. L., Wang, J., Ng, K. K., Chong, J. S. X., Qian, X., Lim, J. K. W., Tan, Y. J., Yong, 

A. C. W., Chander, R. J., Hameed, S., Ting, S. K. S., Kandiah, N., & Zhou, J. H. (2021). 
Distinct network topology in Alzheimer’s disease and behavioral variant frontotemporal 

dementia. Alzheimer’s Research and Therapy, 13(1). https://doi.org/10.1186/s13195-020-
00752-w 

• Ye, M., Yang, T., Qing, P., Lei, X., Qiu, J., & Liu, G. (2015). Changes of functional brain 

networks in major depressive disorder: A graph theoretical analysis of resting-state fMRI. 

PLoS ONE, 10(9). https://doi.org/10.1371/journal.pone.0133775 
 

 

Supplementary 2. Steps Point Process Analysis 

Below, an explanation of the three steps conducted in the PPA are explained: 

1. Signals thresholding (1sd). First, signals were thresholded, as shown in the figure below. 

                                                                                  

 

 

2. Co-activation matrices: then, all those points of the timeseries that surpassed 1 SD of the 

BOLD signal were given a 1 (relevant) and the rest were given a 0 (non-relevant), then co-
activation matrices for each timepoint were generated, e.g., in timepoint 1 of ROI 1 and ROI 2 

the signal is relevant as both surpass 1 SD, in timepoint 1 ROI 1 and timepoint 1 ROI 3 in time 
the signal is not relevant as it does not surpass the threshold (< 1 SD…). This is conducted for 

all the 140 timepoints for each 116 pairs or regions. The figure below displays whether each 

pair of ROIs are coincident in each timepoint.  

                             

Figure extracted from Cifre et al., 2017 (reference below). 

Figure extracted from Tagliazucchi et al., 2016 (reference below). 

https://doi.org/10.3389/fnins.2015.00048
https://doi.org/10.1371/journal.pone.0133775
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3. Matrix of addition: Then, a matrix of addition was extracted for each pair of ROIs, i.e., 

connectivity between ROI 1 and ROI 2 in PPA is acquired by adding all the timepoints that 
were relevant in all the time series. Similar to a correlation matrix, but here instead of 

correlation between pairs of regions we are computing a summation of the number of relevant 

points thorough the timeseries. 

                 

  

See these references below for a comprehensive explanation of the method: 

Cifre, I., Zarepour, M., Horovitz, G., Cannas, S. and Chialvo, D. (2017). On why a few points suffice 

to describe spatiotemporal large-scale brain dynamics, arXIv. 

https://doi.org/10.48550/arxiv.1707.00759. 

 Cifre, I., Zarepour, M., Horowitz, S.G., Cannas, S.A. and Chialvo, D.R. (2020). Further results on 
why a point process is effective for estimating correlation between brain regions, Papers in Physics, 

12(June), pp. 1–8. https://doi.org/10.4279/pip.120003. 

Tagliazucchi, E., Balenzuela, P., Fraiman, D. and Chialvo, D.R. (2012). Criticality in large-scale 
brain fmri dynamics unveiled by a novel point process analysis, Frontiers in Physiology, 3 FEB. 

https://doi.org/10.3389/fphys.2012.00015.   

Tagliazucchi, E., Siniatchkin, M., Laufs, H., & Chialvo, D. R. (2016). The voxel-wise functional 

connectome can be efficiently derived from co-activations in a sparse spatio-temporal point-process. 

Frontiers in Neuroscience, 10(AUG). https://doi.org/10.3389/fnins.2016.00381. 

 

Figure extracted from Tagliazucchi et al., 2016 (reference below). 

https://doi.org/10.4279/pip.120003
https://doi.org/10.3389/fphys.2012.00015
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ABSTRACT2

Neuro-degenerative diseases induce a spectrum of brain alterations, including gray and white3
matter disturbances. The focus of the present work is to determine the manner in which the4
functional connectivity (FC) between pairs of brain regions decays as a function of their mutual5
distance. We find that in Alzheimer’s disease (AD) patients, the FC between homologous6
contralateral regions decays faster (with distance) than in healthy subjects (HS). In contrast,7
we observe no differences in the decay for intra-hemispheric regions, suggesting a probable8
involvement of the Corpus Callosum. Our analysis uncovers a FC deficit between contralaterally9
distant homologous areas, which in turn is significantly correlated with the patient’s executive10
function and cognitive impairment scores but not with their age and degree of brain atrophy.11
Overall, our results highlight a new aspect of the structural/functional changes in AD patients and12
its possible consequences over brain function.13

14

Keywords: Alzheimer’s disease; Aging; Functional Neuroimaging; Corpus Callosum.15
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INTRODUCTION
Alzheimer’s disease (AD) is a progressive and degenerative disease that affects the central nervous system16
in many different ways; it produces inflammation (1; 2) leading to atrophy and cellular death (3; 4; 5).17
These effects cause various behavioral alterations, such as memory loss, reduction in daily activities (6),18
anosognosia (7), and other psychological symptoms which are present even years before a diagnosis19
is reached (8). Despite the intensive research activity on AD - there are over 12 thousand PubMed20
“Alzheimer’s disease” entries just in 2020 and 257 of those are systematic reviews - we still lack a complete21
understanding of what are its causes, how it develops, or how to treat it.22

The loss of white matter across the brain due to AD has been particularly studied in the Corpus Callosum23
area, leading to the suggestion that AD may be seen as an inter-hemispheric disconnection syndrome (9).24
This idea, for example, motivated studies using behavioral experiments (10; 11; 12), where patients were25
seen to perform better on ipsi-hemispheric tasks. The same motivation was behind electro-encephalography26
studies(13), which revealed lower coherence between hemispheres. Results in the same line were reported27
using magneto-encephalography (14; 15), and diffusion tensor imaging (16), where the Corpus Callosum’s28
fractional anisotropy alterations were found to be related to frontal inter-hemispheric differences with29
respect to healthy subjects (HSs). However, white-matter losses in the Corpus Callosum are not AD-specific,30
or location specific (other regions also experience white-matter losses), but rather a common aspect of31
neuro-degenerative diseases. In particular, Fronto-Temporal Dementia (bvFTD) (17; 18; 19) has been32
found to be more affected frontally than at the Corpus Callosum (20; 21).33

During the last two decades, resting-state functional imaging (rsfMRI) became central in neuroimaging,34
in particular to develop biomarkers of neuro-degenerative diseases (22; 23). For example, studies have35
revealed alterations of the Resting-State Networks (RSN) in AD patients, particularly of the Default-Mode36
Network (DMN), as reported by (24; 25; 26) (for a detailed review, see Table 1 of (23)) and bvFTD patients,37
reported in, for instance, (27; 28; 29). Other reports demonstrated alterations to the network’s topological38
characteristics of AD patients (30; 31; 32), showing decrease in clustering coefficients, path length, and39
other network characteristics, such as hub connectivity (33; 30; 34). In spite of this vast literature, it is still40
unclear how potential alterations in the Corpus Callosum due to AD may alter the functional connectivity,41
probably with the exception of the results in (35).42

In this work, we study an AD dataset demonstrating a striking alteration of the functional connectivity43
between brain regions which depend on their mutual distance and hemispheric location (ipsi/contralateral).44
The results show that the correlations between the BOLD time-series recorded from homologous45
contralateral regions decay more rapidly (with distance) in patients with AD than in healthy subjects,46
suggesting a key role of the Corpus Callosum in the functional alterations of the disease.47

HS (n=22) AD(n=17) Difference
Sex
Male 8 7

Female 14 10 n.s.
Age 75.23 74.00 n.s.

MMSE 28.82(1.13) 21.154(3.41) p<.001
MoCA 25.17(2.24) 16.6(4.27) p<.001

Table 1. Sample Demographics

This is a provisional file, not the final typeset article 2
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DATASETS AND METHODS
The datasets analyzed here were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)48
database (https://adni.loni.usc.edu, (36; 37; 38; 39)). The data corresponding to subject scores were49
obtained from the same database at https://adni.loni.usc.edu/data-samples/access-data/, for MMSE and50
MoCA in the Section “Study Data”, subsection Assessments Neuropsychological and for the Atrophy51
in the Section “Study Data”, subsection Imaging. The data-set is composed of 22 Healthy Subjects (HS;52
14 women; age X̄ = 76.5[7.57]) and 17 participants with Alzheimer’s Disease (AD; 7 women; age53
X̄ = 76.64[8.02]) (Further details are shown in Table 1).54
Data acquisition and preprocessing55

Functional volumes were acquired using a Philips Intera 3T, consisting of 48 slices (3.3mm56
thickness)(number of volumes=140; TR = 3000ms; TE = 30ms; Flip angle = 90; matrix 64x64). Functional57
data were preprocessed using statistical parametric mapping software (SPM12; http:// fil.ion.ucl.ac.uk/spm)58
and DPARFS toolbox (http://rfmri.org/DPARSF). After deleting the first five volumes, the images were59
slice-time corrected, aligned to the mean volume of the session scanning, normalized (EPI template)60
and smoothed (using an 8-mm full-width half-maximum Gaussian kernel). The final spatial resolution of61
the images was 3x3x3mm. A total of 116 time-series of the mean BOLD activity from each ROI were62
extracted following the parcelation on the AAL atlas (40). These time series were correlated (using Pearson63
correlation, unless stated otherwise), to obtain a 116x116 correlation matrix for each subject. To describe64
the correlation between the ROI’s activity as a function of distance, the Euclidean distances between each65
pair of ROI centroids were extracted from the AAL atlas data. We remark that these values do not represent66
necessarily geodesic distances, (i.e., those that the tracks may traverse to connect with the interacting67
ROI’s).68

RESULTS
Functional connectivity is usually described as a scalar measure, i.e., a single number that represent the69
correlation between two regions. In this work, instead, we attempt to explore FC as a function that estimate70
how the correlation decays as a function of the distance. Therefore, this section is organized as follows:71
First, the similarities and differences of scalar FC (see Fig. 1) are presented. Then, how FC decays as a72
function of distance is explored (in Fig. 2). Such work unveils the fact that BOLD correlation decays faster73
between homologous contralateral ROIs. Then, control for possible artifacts are described (Figs. 4 and 5)74
including the analysis of the correlation decay in the brain three main axis but within the same hemisphere.75
In these computations, the FC value may involve tracks of comparable lengths, but excludes any structure76
traversing the Corpus Callosum. Then it is tested whether the decay could be related to subjects’ motion,77
such as head rotation or translation (Fig. 3), as it has been shown that movement can alter functional78
connectivity. Subsequently, it is explored whether the differences may be related with other participant’s79
variables, such as brain atrophy, executive functioning and cognitive impairment scores (Fig. 5).80

Figure 1 illustrates the basic statistics computed in the two groups of subjects studied. Panels A and B81
shows the histogram of the Pearson correlation (< r >) values computed for the BOLD signal recorded82
from all pairs of ROIs. As expected, the distributions are centered at null values, for both AD and HS83
groups, however notice that there are significant differences, specially for relatively small < r > values.84
The group average correlation matrices for the 116× 116 ROIs are depicted in Panels C and D. In these85
matrices (as well as those in E and F) the ROIs entries are grouped according to which left (L) and right86
(R) hemispheres and which resting state network they belong (denoted with labels and color codes). Panel87
E depicts the distance matrix for the AAL atlas used in this study because, as it was mentioned already, we88
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are interested not only on the potential alterations of the FC values, but also on its decay with the ROIs89
mutual distance.90

Figure 1. Summary of the basic correlation statistics computed from the BOLD time series in the Healthy
Subjects (HS) and Alzheimer Disease (AD) groups. Panels A and B show the distribution of correlations
between all pairs of ROIs in HS and AD subject, using solid lines with circles for the group average
and thinner gray lines for the single subject distributions. The AD and HS correlation values exhibiting
significant differences are denoted with asterisks in Panel B (t-Student test, with Bonferroni corrections
at p < .001) Panels C and D correspond to the group average correlation matrix between pairs of ROIs
BOLD time series for the HS and AD subjects, respectively. As a reference, Panel E illustrate the mutual
distances between ROIs, (from the AAL atlas (40). The results in Panel F identify the ROIs pairs that
exhibits significant group FC differences (t-Student test, with Bonferroni corrections p < .001).

This is a provisional file, not the final typeset article 4
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Figure 2. Distance-dependent correlations between ROIs as a function of their centroids distance. On the
left panels the values correspond to the standard Pearson correlation and those on the right panels to their
cumulative values, both as a function of distance. Top panels shows for the Whole brain (n = 116× 116),
middle ones for ipsilateral ROIs (n = 58× 58) and the bottom panel the homologous contralateral ROIs
(n = 58). The center panels show, as bar plots, the fitted average slopes of decay, CoD for all cases. Note
that the AD group exhibits a significantly (p < .001) faster decay of the correlation for the homologous
contralateral ROIs.

Distance-dependent functional connectivity91

It is accepted that, in general, the FC of two brain regions nearby is relatively high and that it progressively92
decays with distance (41; 42). The interest here is limited to determine if a large-scale pattern of FC decay93
can be a useful healthy metric. Of course, considering the intricacies of the brain morphology and structure94
a precise fitting is out of the question, rather the objective is to find a simple non-parametric index that95
suffice to identify such potential pattern of decay. We compare the correlations decays as a function of96
the distance between the ROIs. Three cases are considered here, as presented in Fig. 2: In panel A the97
whole-brain correlations (i.e., for all pairs of ROIs) are considered. In the results of panel B only the98
computations of the ipsilateral correlations are considered (i.e., between ROIs from the same hemisphere).99
Finally, the results on panel C show the correlations from the activity of homologous contralateral regions100
(for instance: auditory left with auditory right, somatosensory left with somatosensory right, and so on).101
For better visualization (but not for statistical purposes) on the right panels the same data is plotted102
as cumulative correlations. This format helps to emphasize the monotonic increasing behaviour of the103
correlations vs. distance function exhibited by the homologous contralateral pairs, which contrast with the104
non-monotonicity of the other cases.105

As a simple metric of the pattern of decay, we computed the linear slopes of the correlation decays,106
dubbed here CoD. This index estimates the decay rate (i.e., the negative slope) for the Pearson correlation107
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value between pairs of ROIs as a function of the distance between the ROIs’ centroids). The resultant slopes108
helped us to quantify the possible differences between the two groups of subjects. Simple inspection of the109
bottom plots of Fig. 2 revels that the homologous contralateral correlations of the AD patients decay faster110
in comparison with the HS group. The statistical analysis, as shown in the box-plots of Fig. 2 confirm that,111
there are significant differences between the CoD obtained from homologous contralateral ROIs (t = 33.9;112
p < .001). These results are robust, despite the small sample and the simplicity of the CoD definition, we113
found that similar differences are obtained under changes in the definition of the CoD (see Appendix).114

115

Changes in the CoD are unrelated to head motion116

Since it is well-known that resting-state functional connectivity can be severely contaminated by the117
subject’s head motion during recording (43) this issue need to be analyzed. This was done by computing118
the linear regression between the value of CoD and the mean rotation, as well as between CoD and the119
mean translation. Results are shown in Fig. 3, where it can be seen that none of the regression models120
resulted in significant correlations for either data-set or group studied.121

Figure 3. Linear regression between movement and correlation decay with distance, CoD. The linear
regression between subjects’ averaged-rotation (left panel) and translation (right panel) with CoD for the
full sample and for each group (all p > .05) are denoted inside each subplot by the R2 for each regression
and its p-value.

Changes in the CoD are absent in intra-hemispheric data122

A second test, conducted to clarify the origin of the differences found, is to compare the correlations123
between ipsi-lateral pairs of ROIs with comparable distance to those of the homologous contra-lateral ROI124
pairs. In that way, if an unknown hidden process affects the correlation globally must also appear in these125
test datasets. To do that, the correlation results were split into 3 main axes: antero-posterior, left-right, and126
superior-inferior, where the correlation and distance are computed for each pair of ROIs as long as one127
of these planes is crossed. For example, when computing antero-posterior ROI pairs, the correlation is128
computed only if there is a change in the Y coordinate’s sign between the ROIs while X and Z coordinates129
remain unchanged. The results of these calculations show no existence of significant differences except130
for an isolated pairs of ROIs belonging to the X plane (see arrow in Fig. 4B, (all p < .01, Bonferroni131
corrected).132
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Figure 4. Intra-hemispheric distance-dependent correlations computed between areas crossing the anterior-
posterior coronal plane (panel A, pairs of ROIs computed n = 730), the sagittal mid-plane (panel B,
pairs of ROIs computed n = 946) or the superior-inferior axial plane (panel C, pairs of ROIs computed
n = 950).Correlations represent (similar to Fig. 2) averages for each group. No significant differences
were found between the CoD values from the HS vs AD groups. The black arrow in panel B denotes the
only significantly different result (all p < .01, Bonferroni corrected), which corresponds to one ROI pair
with d ∼ 80mm. Insets box diagrams show schematically how the planes are defined. Note that here, in
contrast with Fig. 2, all ROIs are selected within the same hemisphere.

Changes in CoD relates to Cognitive Impairment and Executive Function scores but not133
with Age and Atrophy score134

In order to study whether other measures are related to contra-lateral correlation decays, CoDm, we135
apply a linear regression model where CoD is set as dependent variable and Age, Atrophy, Cognitive136
impairment (measured using Mini Mental State Examination test, MMSE (44)) and Executive Functioning137
(measured using Montreal Cognitive Assessment, MOCA (45)) values are set as predictors. This model has138
an adjusted R2 = 0.362 (F-statistic vs. constant model: 4.55, p-value p = .008), where MMSE and MOCA139
result as significant predictors (R2 = .311 and R2 = .29 respectively, both p < .01), while Atrophy and140
Age result non-significant (Fig, 5).141

142
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Figure 5. Linear regressions between subjects’ variables and their correlation decay slopes, CoD (Fig. 2).
Left panel shows age, middle left panel shows atrophy (computed mean from atrophy z-scores on ADNI
database), middle right panel shows Cognitive impairment (MMSE score (44)) and right panel shows
Executive function (MOCA score (45)). Adjusted R2 and p-values correspond to each individual regression.

DISCUSSION
In this study, we have explored the idea that Alzheimer’s Disease may be evaluated as a disconnection143
syndrome due to the white matter alteration of long tracks, including the corpus callosum (9). This idea has144
been supported by a diversity of results from studies on structural connectivity, electroencephalography145
and behavioral studies, like (10; 11; 12) among others. In this work, we evaluate how that degeneration can146
be reflected on a differential decay of the functional connectivity over distance in patients in respect to that147
of healthy aging subjects. Such index, which we have named as CoD was measured on HS and AD data148
from the public available ADNI database.149

Overall, the results show that healthy subjects exhibit significantly higher correlations on distant150
homologous contralateral areas compared to patients with AD (Fig. 2). Interestingly, these differences151
are absent when the analysis is done over similar but homotopic distances (as antero-posterior pairs of152
ROIs, which are even more distant than contralateral areas (Fig. 4). This finding suggests that mainly tracks153
traversing the Corpus Callosum may be responsible for the observed differences. Despite several other154
observations reporting structural differences ((17; 18; 19)), to our knowledge, the present results are the155
first demonstration at the level of fMRI.156

Furthermore, regressing CoD with phenotypic measures (Fig. 5), shows that there is a significant157
relationship between CoD and executive functions as well as cognitive impairment (47; 48), while it seems158
that no relation can be uncovered in this sample for age and brain atrophy.159
Limitations160

Several caveats are known to affect the fMRI studies of neuro-degenerative patients. Perhaps the most161
important is the well-known fact that head motion produces important artifacts affecting the estimation162
of functional connectivity (43). This concern was addressed here by applying regression of both head163
rotation and translation to test whether the observed CoD differences were caused by motion. We found no164
evidence for a significant association between CoD and measures of head motion. Hence, we consider that165
head motion is unlikely to explain the present results. Each group’s size was moderate, which of course it166
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can be an important drawback, but also it highlights the magnitude of the disturbance we uncovered which167
is able to reach significance despite the small sample size. Future work is warranted.168

CONCLUSIONS
In conclusion, the present results describe the stereotypical way that the correlation of the BOLD signal169
between brain regions decays as a function of its (Euclidean) distance. The main findings show that the170
correlation between homologous contralateral ROIs decays more rapidly in AD patients than in healthy171
subjects. In contrast, we observe no differences when similar computations were conducted within the172
same hemisphere. These results may be relevant to interpret the functional changes observed in neuro-173
degenerative diseases, highlighting the need for a combined evaluation of structural/functional changes174
of the process. The results of this unprecedented study, highlight the merits of a distance-dependent FC175
metric. Further research is needed to confirm the reliability of these results in other brain conditions, as176
well as to explore its eventual value as a biomarker signature for neuro-degenerative diseases.177
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APPENDIX
Similar findings are obtained with an alternative definition of CoD327

As mentioned in the main text the present findings are robust to alternative calculations of the rate of328
correlation decay. Fig. 6 shows the result of considering the correlation versus distance as piece-wise linear.329
We find similar conclusions for the two CoD computed, each one for distances shorter or longer than330
∼ 70mm.331

332

Significant differences in pair correlations are found throughout most of the RSNs333

As seen in the results presented in Fig. 1F there are multiple pairs of ROIs which in our sample exhibit334
significant differences, some of them in which the functional connectivity of AD is larger than the ones of335
HS and viceversa. Despite that, no single pattern emerges indicating that certain RSN are more altered than336

This is a provisional file, not the final typeset article 12

/doi/10.1006/nimg.2001.0978
/doi/10.1006/nimg.2001.0978
/doi/10.1006/nimg.2001.0978
http://dx.doi.org/10.1093/cercor/bhi016
http://dx.doi.org/10.1016/j.neuroimage.2014.10.044
http://dx.doi.org/10.1016/j.neuroimage.2014.10.044
http://dx.doi.org/10.1016/j.neuroimage.2014.10.044


Cifre et al. FC versus Distance

Figure 6. Correlation decay slopes, CoD compared across groups as in Fig. 2, fitting the decay for
distances shorter or longer than ∼ 70 mm. Note, similar to the results presented in Fig. 2, that significant
differences are only found for homologous contralateral pairs of ROIs.

Figure 7. The significant differences shown in Fig. 1 spread over most RSN without a preference. The
figure shows the number of cases (normalized by the number of ROIs at that distance) in which a given
ROI-pair exhibits significant differences in the correlation, grouped by RSN. Insets in the middle plots
show the results only for the homologous contralateral pairs of ROIs.

others. To explore that, in Fig 7 we plot as stacked bars the results of counting the number of significant337
ROIs (i.e., the dots in Fig. 1F) within each and across hemispheres, being coloured according to the RSN338
they belong to. The labels LL and RR correspond to the intra-hemispheric correlations Left and Right339
respectively.The label LR refers to the inter-hemispheric Rigth-Left ones (which are exactly symmetric340
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with the Left-Right). We could no find a prevalent pattern, suggesting that our analysis is unable to establish341
if the disturbances prevails on a given RSN.342
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Abstract  

Study objectives: Understanding and classifying brain states as a function of sleep quality with 

age has important implications for developing targets for lifestyle-based interventions involving 

sleep hygiene. The current study uses an algorithm that captures non-linear features of brain 

complexity to differentiate awake electroencephalography (EEG) states, as a function of age and 

sleep quality.  

Methods: Fifty-eight participants (aged 20 – 80) were assessed using the Pittsburgh Sleep 

Quality Inventory (PSQI) and awake resting state EEG. Groups were formed based on age and 

sleep quality (younger adults n = 24, mean age = 24.7 years, SD = 3.43, males n = 14, good 

sleepers n = 11; older adults n = 34, mean age = 72.87; SD = 4.18, males n = 13, good sleepers n 

= 9). Ten non-linear features were extracted from multiband EEG analysis to feed several 

classifiers followed by a leave one out cross-validation.  

Results: Brain state complexity accurately predicted i) age in good sleepers, with 75% mean 

accuracy (across all channels) for lower frequencies (alpha, theta and delta) and 95% accuracy 

at specific channels (temporal, parietal); and ii) sleep quality in older groups with a moderate 

accuracy (70 and 72%) across subbands with some regions showing greater differences. It also 

differentiated younger good sleepers from older poor sleepers with 85% mean accuracy across 

all subbands, and 92% at specific channels. Lower accuracy levels (<50%) were achieved in 

predicting sleep quality in younger adults.  

Conclusions: The algorithm discriminated excellently older vs younger groups and could be used 

to explore intragroup differences in older adults to predict sleep intervention efficiency 

depending on their brain complexity.  

Keywords: sleep quality, PSQI, EEG, non-linear multiband analysis, classification, machine 

learning, healthy aging 
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Statement of Significance: 

Classifying older and younger adults considering their brain configuration is a first step to 

develop sleep age-based interventions. This is the first study to i) extract 10 non-linear measures 

of brain complexity from EEG data from healthy young and older individuals with subjective 

good and bad sleep quality; ii) classify participants by their age and sleep quality feeding 

machine learning (ML) methods with an algorithm based on the mix of non-linear measures, and 

iii) understand which EEG subbands and brain regions are more altered when comparing young 

vs older adults with good and bad sleep quality as well as between groups of age. 

 

  

 

Abbreviations: YG = Young adults with good sleep quality; YB = Young adults with bad sleep 

quality; OG = Older adults with good sleep quality; OB = Older adults with bad sleep quality; Y = 

Younger adult groups; O = Older adult groups. 
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Introduction 

Good sleep quality is essential for maintaining one’s cognitive and mental health over the 

lifespan1–3, with critical repercussions at a personal, societal, and economic level. 

Understanding, poor sleep quality in the older adults is particularly important, as it is associated 

with risk of several noncommunicable diseases (e.g., diabetes, cardiovascular diseases and 

obesity) and may contribute to cognitive decline and memory impairments 4–7, through 

mechanisms such as increases in blood pressure, evening cortisol levels, proinflammatory 

cytokines, and sympathetic tone. 6–8  

Changes in sleep patterns are part of a healthy aging process 9 but these changes do not imply a 

decrease in sleep quality. Research shows that there are many older individuals that report to 

have an optimal sleep quality or even better than in middle age and that they remain free of 

sleep disorders such as obstructive sleep apnea or insomnia. 3,10 Individual differences, 

associated with age such as a decrease in the amplitude of brain electrical activity and 

synchronization11, a small decline in white matter volume and mild atrophy in cortical regions  

might be factors contributing to a decline in sleep quality. 12,13 

In order to increase sleep quality, interventions have been conducted showing a stronger effect 

in younger in comparison to older adults, especially in cognitive outcomes. This diminished 

success in the older samples could be attributed first, to applying the interventions without 

adjusting them to their age and second, to the inclusion of participants with mild cognitive 

impairment or higher rates of atrophy in the hippocampus and frontal regions, areas involved in 

the acquisition and consolidation of new memories. These participants, despite presenting an 

improvement in physiological sleep, such as an increase in deep sleep waves, and sleep spindles, 

could not strengthen memories due to reduced thalamic-cortical network support.3  

A good sleep might not contribute to good memory consolidation when certain circuits are 

impaired but might be highly useful to slow down other physiological processes such as insulin 
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levels or psychological ones such as mood swings and stress, preventing diabetes or 

psychological disorders.1,3 Exploring whether individuals with good and bad sleep quality can be 

classified as a function of their brain configuration is essential to developing interventions that 

efficiently tackle sleep disturbances. Neuroimaging, self-reported sleep questionnaires, non-

linear signal processing techniques and ML might enable researchers and clinicians to 

discriminate groups considering time/space dependent mechanisms of the awake resting state 

brain, namely complexity, activity and connectivity.1 

In the present study, we aimed to answer the question “Can we differentiate the sleep quality 

of younger and older adults as a function of brain complexity using wake resting state EEG 

data?”. Until now, this has been difficult to address when using linear  statistical approaches 

because the brain is a dynamic, complex, and chaotic system.  

EEG is a promising widely used tool in sleep medicine that tracks the changes in the electrical 

activity of cortical regions over time caused by post-synaptic potentials from thousands of 

neurons. 14 It has an excellent temporal resolution, and it is inexpensive and easy to transport.15 

Most studies exploring sleep quality and /or aging with waking EEG data have used linear 

methods of analysis, treating the whole time series as deterministic. However, EEG data from 

human brains reveals that the brain behaves under deterministic chaos, i.e., its behaviour is 

neither stochastic nor completely predictable. 16 Considering this, several neuroscientists have 

started to frame their research using the theory of non-linear dynamics and chaos, as it fits 

better the biophysiological data. 17–19 Under this paradigm, researchers have extracted non-

linear features, i.e., measures, from the EEG time series to study different aspects of the human 

brain such as the relationship between brain complexity, age and sleep.20,21  

Brain’s complexity can be defined as the ability of the neuronal circuits to interact at different 

spatial and temporal scales enabling the individual to flexibly adapt to the environment. 

Complexity has been associated with increased health and greater probabilities of survival and 
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has been reported to be decreased in patients with cognitive impairment and 

neurodegenerative diseases.22,23 Healthy aging has been associated with a shift in local / global 

complexity balance, with more information being encoded at a local level and less at a global 

one. A lack of this shift in older individuals predicts worse cognitive outcomes. One of the 

functions of sleep is regulating the complex organization of the dynamic brain, by balancing the 

cortical excitatory-inhibitory activity.24 Recently some descriptors of complexity have been 

extracted from EEG signals to understand aging processes and sleep quality. The most used are 

the Correlation Dimension (D2), Long Range Temporal Correlations (LRTC), energy, and entropy.  

Some investigators extracted the correlation dimension (D2), a measure of connectedness of the 

system, before and after sleep deprivation. Using classic statistics, they concluded that 

participants with sleep deprivation showed reduced D2 values reflecting a decrease in 

topological complexity.25  

Another way to measure complexity is by assessing the memory of the system using Long-Range 

Temporal Correlations (LRTC) measures. Colombo et al., (2016) 24 extracted one of the LRTC 

features from the signals, namely the Hurst Exponent (H), to measure statistical self-dependence 

of the brain activity over multiple scales of time and space, i.e., the self-similarity of the time 

series. The authors explored the impact that subjective insomnia has on complexity for each 

frequency subband. Using non-parametric statistics, they found that participants with worse 

sleep quality presented a higher LRTC suggesting a decrease in brain balanced excitability.  

Energy has been seen to change as a function of sleep and age.26  Investigators explored the 

influence of the amount of sleep hours of young adults on energy change, by feeding a support 

vector machine (SVM), k-nearest neighbour (KNN) and discriminative graph regularized extreme 

learning machine (GELM), with EEG power spectral density (PSD) for each subband. The results 

indicated that GELM was the best classifier to discriminate between conditions in the gamma 
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frequency (62.16 % accuracy) and 83.57% when including the channels that achieved higher 

accuracies.26 

Entropy is a measure of complexity that indicates the level of disorder in a dynamic system. High 

levels of entropy signify less order and increased irregularity which translates into a 

dysfunctional brain organization that needs to be compensated by other networks. Studies have 

reported an increase in entropy in healthy aging in comparison to younger and middle-aged 

adults.27 Additional findings on entropy revealed that the aging brain is characterized by being 

less complex, implying a reduced repertoire of behaviours or a reduced flexibility to adjust to 

different situations, more irregular and less connected across hemispheres and modules. 28 

A recent study showed that by mixing all these measures of complexity into a single algorithm 

and feeding several classifiers with this information healthy older adults and older adults with 

Mild Cognitive Impairment (MCI) can be classified excellently.29 

Evidence showed the potentiality of non-linear measures of complexity to better understand 

aging and / or sleep. Nonetheless, until now, previous studies exploring healthy samples as a 

function of age and sleep used i) one non-linear feature and classical statistics to explore 

differences in sleep between groups of young adults24–26; ii) one or more non-linear features 

(i.e., when using more than one these were explored separately,) and classical statistics to 

explore differences in brain configuration between young and older adults18; iii) one or more 

non - linear features and ML techniques to classify sleep (Wang, Li et al., 2016); and iiii) one non-

linear feature and ML to classify younger adults vs older adults.28 

The aim of the present study was to determine whether older and younger adults with good and 

bad sleep quality can be classified as a function of brain complexity. The PSQI 30, wake rsEEG 

data, an algorithm that integrates combination of EEG non-linear features of complexity 

extracted from the EEG data and ML techniques were used.  

Method 
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Participants 

The cohort used in this study overlaps with that in a previous publication31 .The study was 

approved by the Health Research Authority, UK (REC reference: 17/EM/1010), and participants 

provided informed consent.  

Fifty-eight right-handed volunteers were included in the current study. Participants were divided 

into four groups (see below) depending on their age (i.e., younger adults aged 20-34, older 

adults aged >=65) and their sleep quality (good vs bad), as assessed using the PSQI30. For a PSQI 

description see section “data-description”. 

• Group 1: n = 11 young adults with good sleep quality (YG) (scores <5 in PSQI); n = 5 

females and n = 6 males (mean age = 23.36; sd = 2.70) 

• Group 2: n = 13 young adults with bad sleep quality (YB) (scores >5); n = 5 females and 

n = 8 males; (mean age = 25.53; sd = 3.54) 

• Group 3: n = 9 older adults with good sleep quality (OG) (scores <5 in PSQI30); n = 4 

females and n = 5 males; (mean age = 73.77; sd = 5.45) 

• Group 4: n = 25 older adults with bad sleep quality (OB) (scores > 5 in the PSQI); n = 17 

females and n = 8 males; (mean age = 72.56; sd =3.40) 

Young participants were recruited from the Nottinghamshire area. Older participants were 

recruited through the Trent aging panel, an internal Nottingham Trent University database of 

older adult study volunteers. 

Participants presented normal or corrected to normal vision, no history of psychiatric, cognitive, 

or neurological disorder, and no medication that could interfere with the EEG recordings. 

Participants were asked not to consume alcohol 24 hours before the recordings and caffeine and 

nicotine 3 hours prior. To guarantee that none of the participants presented MCI they were 

assessed with the Hopkins Verbal Learning Test-Revised (HVLT-R).32 The HVLT-R in comparison 
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to other scales such as the Mini-Mental State Examination (MMSE) 33 has very high sensitivity 

and specificity enabling to capture of subtle differences in cognitive decline.  

Data description 

Sleep quality assessment (PSQI):  

Sleep quality was assessed using the standardized self-rated questionnaire PSQI.13,30 It is 

composed of 19 items that measure 7 domains, i.e., sleep quality, sleep latency, sleep duration, 

sleep efficiency, sleep disturbances, use of sleep medication, and daytime dysfunction, all of 

them are summarized in a global score. Given poor sleep quality in normal aging has been 

associated with all the elements measured by the PSQI 30, the global PSQI score was used to 

differentiate bad vs good sleep in the current study. This tool has been reported to be optimal 

to assess sleep quality. It has a diagnostic sensitivity of 89.6 and a specificity of 86.5 (kappa .75 

p<.001). Scores range from 0 to 21. Scores > 5 are indicative of poor sleep or significant sleep 

disturbance.30  

 EEG Data collection: 

Eyes closed resting state EEG data was recorded using a 128-channel Active Two Acquisition 

system (BioSemi, Amsterdam, Netherlands) at a sampling rate of 2048 Hz and processed at 24-

bits. Seven additional channels were applied around the face to help with artifact detection. To 

reduce the computational load of data 32 channels, were used for the data analysis: 'A1', 'A7',' 

A15', 'A17', 'A19' 'A23','A28', 'A30', 'B2', 'B4', 'B11', 'B16', 'B22', 'B26','B29', 'C4', 'C7', 'C11', 'C15', 

'C16', 'C21', 'C24', 'C28','C29', 'C30', 'D4','D10','D16','D19', 'D23', 'D26', ‘D31’ (localizations are 

displayed in Figure 1). The location of channels captures the electrical activity through all the 

regions of the scalp. The use of these scalp widespread 32 channels has been reported to be 

optimal by several researchers.14  The location correspondence of the biosemi electrodes in 10/5 

international system is displayed in Supplementary material. 
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EEG Data preprocessing: 

MATLAB ver. R2018a and EEGLAB34 were used to preprocess the EEG data. Raw EEG data was 

converted into 32 real value data vectors representing data extracted from each of the EEG 

channels. Data was imported referenced to linked mastoids, high and low pass filtered between 

0.1 Hz and 45 Hz, downsampled to 256 Hz and the DC component has been removed. Bad 

channels were visually inspected, manually removed, and interpolated. An independent 

component analysis (ICA – runica) was used to discard those components that showed ocular 

and muscular artifacts, i.e., runica – visual inspection of scalp topographies and activity spectra 

– rejection of noisy data “eye blinking / muscle”. To reduce computational demands, from the 

five minutes of EEG recorded data, only one minute was used for the data analysis, i.e., a total 

of 15361-time points and 32 channels. The first minute of the signal was selected to capture the 

most attentive moment and avoid sleepiness in older adults with bad sleep quality. Revising 

other studies one minute of data is sufficient to conduct this type of analysis.35  

EEG signal processing and feature extraction: 

The subsections below describe the steps followed by the data pre-processing. These include 

multi-band decomposition, feature extraction, data normalization, and classification (see Figure 

2 for an overview of the methods). 

Multiband decomposition 

For each participant and channel, the EEG time series were split into 5s windows, i.e., a total of 

12 windows. Then, a global windowing average was calculated, obtaining a 5s mean signal per 

each channel and each participant. After, an EEG signal decomposition into frequency subbands 

was performed for each participant, per channel. EEG subbands delta (δ, 0.1-4 Hz), theta (θ, 4-

8 Hz), alpha (α, 8-16 Hz), beta (β, 16-32 Hz), and gamma (ɣ, 32-45) were extracted from the 

broadband signal using discrete wavelet transform (DWT). DWT is one of the most used tools to 

perform time-frequency analysis for non-stationary data (Vetterli & Kovačević, 1995). In contrast 
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to the classic Fourier Transform, where the frequency is extracted, but time frequency is lost, 

using DWT, wavelets are localized both in frequency and time, ensuring optimal time and 

frequency resolutions.  

In the present study, DWT was used, with a biorthogonal 3.5 wavelet. This type of wavelet is 

often preferred as it adjusts to the EEG original signals with very little deformation 36. DWT was 

performed through an octave band critically decimated filter bank.37,38 The signal was 

transformed into approximation and details, using a scalar function and a wavelet function. The 

values obtained for each participant, each channel, and each subband were used as input values 

for the feature extraction.  

Feature extraction 

The non-linear nature of the EEG data was assessed with the tool provided by 39 Then, two main 

steps were conducted [1] reconstruction of the attractor from the state space from 

observations, [2] extraction of features of complexity [2.1] features from attractor: correlation 

dimension, Lyapunov exponent and approximate entropy (descriptors of the attractor) from 

state space, [2.2] features from time series: long-term memory measures, fractal measures, 

energy, and entropy.  

[1] Attractor reconstruction from the state space with time delay embedding 

Detecting an order or structure behind the EEG time series is a challenging task as the data is 

complex and chaotic.40 In consequence, the extraction of certain descriptors or features directly 

from the time series is not an easy procedure. However, when reconstructing this type of data 

from “time-series or time-trace” to “state space” a hidden order can be observed. The state 

space represents every single state of the dynamic system, the brain, in an m-dimensional plot 

forming a geometric structure called an attractor. Note that a state of a dynamic system can be 

defined as the configuration of the system at a specific time. In the present study, each state is 

represented by EEG channel values at a specific time point of the time series. The most 
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implemented approach to reconstructing the phase space of EEG signals is the “time delay 

embedding”. The minimal dimension of the state space, i.e., acquired by “embedding” enables 

the extractions of non-linear features to explore the whole dynamic system and the interaictions 

within it in a non-ambiguous way. Some of these non-linear features are the topology 

(connectedness), general structure, prediction of states, the correlation dimension, and the 

causality between variables.29,41  

In the present study, a reconstruction of the state space using time delay embedding is given by: 

𝑥𝑖 = [x(i), x (i +τ),…,x(i + (m – 1) τ)], 

Where τ is the incorporation delay and m is the dimensionality. The values τ and m were 

obtained following the methods in Faust and Bairy (2012)42. The vector sequence 𝑥𝑖, i= 1, 2, …, 

M, where, M =N – (m −1)τ, form the reconstructed attractor.42,43  

[2] Feature extraction 

The ten features presented below were extracted per channel (32 channels), each participant 

and each subband. 

[2.1] Features extracted from the reconstructed attractor 

Once the phase space was determined, the correlation dimension and Lyapunov exponent and 

the approximate entropy were extracted. These measures enable us to determine the 

complexity and balance of the brain: 

Correlation dimension (D2): it is a measure that describes the complexity of the system based 

on the topology or connectedness of the attractor; in other words, it estimates the space and 

distribution occupied by different points of the fractal attractor. For instance, two points in the 

attractor might be very close in time but far in space. It is estimated based on the correlation 

integral, a function of variable distances: 



13 
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Where M is the number of data points or length or the attractor and Θ is the Heaviside function, 

i.e., this function attributes a value of 0 for negative inputs and of 1 for positive ones. C(r) 

determines the probability that two pairs of points of the attractor {xi, xj} present a distance 

between them equal to or less than r.29,41,42 From this, the correlation dimension can be 

estimated as: 

D2 =   lim
𝑟→0

 
𝑙𝑜𝑔𝐶(𝑟,𝑀)

log (𝑟)
 

Lyapunov exponent (LLE), measures the stability of the attractor and quantifies chaos. Chaotic 

or strange attractors perform two processes: [1] a process of expansion that consists of 

trajectories starting from the same or similar point diverging and then [2] a process of folding as 

time evolves, in other words, trajectories go back to the initial state converging (close to each 

other). LLE determines the rate of expansion and folding. The largest the rate (LLE), the more 

chaotic is the attractor. LLE rate of an attractor should be a positive value to be chaotic. For each 

state of the state, the largest exponent LLE can be extracted by finding the state x j that satisfies 

minj ||xi − xj||, such that |i − j| > Tm, where Tm is the mean period. The estimates are given by 

29,44  

𝜆(𝑖) =
1

𝑀+2
∑ 1

𝑘𝑇𝑠
𝑀
𝐾=1  In 

||𝑥𝑖+𝑘 −𝑥𝑗+𝑘||

||𝑥𝑖−𝑥𝑗  ||
 

where Ts is the sampling period. The LLE is defined by the slope of the best linear approximation 

of λ(i). 44 
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Approximate entropy (APet): computes the rate at which information of the dynamic system is 

lost over time.43 It is defined as: 

ApET(m,r,N) = 
1

𝑁−𝑚 + 1
∑ log [𝐶𝑖 

𝑚𝑁−𝑚+1
𝑖=1 (𝑟)] − 

1

𝑁−𝑚 
 ∑ log[C𝑖

𝑚+1  (𝑟)] ,𝑁−𝑚
𝑖=1  

Where 

𝐶𝑖      
𝑚 (𝑟) =  

1

𝑁 − 𝑚 +  1
∑ θ(𝑟 − ||

𝑁−𝑚+1

𝑗=1

𝑥𝑖 − 𝑥𝑗||), 

 

is the probability of the point 𝑥𝑖 on the attractor to be segregated from the other points by a 

distance inferior or equal to r.  

 

[2.2] Features extracted directly from the time series 

In this subsection, the features extracted directly from the time series are described. These are 

long-term memory measures (Hurst Exponent, Detrended Fluctuation Analysis), fractal 

dimension measures (Higuchi algorithm, Katz Algorithm), energy, and entropy. 

Long Term Memory Measures 

The Hurst Exponent (H) is used to assess long-range statistical self-dependence of a time series, 

i.e., self-correlation, smoothness, and self-similarity of a single time series.42,43 It can be 

estimated as:  

H = 
log (𝑅/𝑆)

log (𝑁)
, 
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R/S is a rescaled range. H is estimated by the slope of the best linear approximation of  

log[R(n)/S(n)] as a function of log(N), see21 for computation details of R(n)/S(n). The more 

irregular the EEG signal is, the closer to 0 will be H.41 

Detrended Fluctuation Analysis (ΔΔ): Similarly, to Hurst Exponent, detrended fluctuation, 

measures the statistical dependency on non-linear signals. However, this latter one, explores 

exclusively self-similarity, in other words, long-range correlations of a time series. 43,45,46  From 

x(n), the cumulative deviation series is calculated as follows: 

𝑦(𝑘) =  ∑[𝑥(𝑖) −  �̅�].  

𝑘

𝑖=1

 

                 

A linear approximation denoted by ym(k) is estimated for each m-long segment of 𝑦(𝑘). The 

following formula defines the average fluctuation of the signal as a function of m: 

𝐹(𝑚) = √
1

𝑁
∑[𝑦(𝑘) − 𝑦𝑚(𝑘)]2.

𝑁

𝑘=1

 

The scale exponent Δ signifies the correlation properties of the signal x(n), represented by the 

slope of the best linear approximation of log F(m) as a function of log m.46  

Fractal Dimension Measures:  

Fractal Dimension with Higuchi algorithm (FDh): a fractal is a geometric figure that is divided 

by smaller identical subfigures, it presents self-similarity at different scales. This type of figure is 

used to model and assess real-world problems as its shape is more natural than conventional 

geometric figures. The brain presents attractors with the structure of a fractal. In EEG 

processing, the fractal dimension measures the complexity of the brain by detecting transient 

events in the waveforms.42 This feature can be calculated directly from the signals, 

reconstruction of the attractor is not needed. There are several algorithms to compute the FD, 
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in the present study the Higuchi Algorithm was used due to its excellent capacity for accuracy 

achieved in seminal research. 42  

For m = 1, …, n and k = 1, …, kmax, where kmax is obtained experimentally despite kmax = 8 was 

initially proposed, a distance measure is computed as. 41–43 

𝐿𝑚(𝐾) =
𝑁−1

[𝑎]𝑘
∑ |

[𝑎]
𝑖=1 x(m + ik) – x(m + (i – 1)k|, 

where a = (N – m)/k and ⌊a⌋ represents the largest integer equal to or less than a. The averaged 

distance is computed as L(k) = ∑ =  Lm(k)/k
k
m   for k = 1, … , kmax. The FD estimate, denoted 

by FDH, is then given by the slope of the best linear approximation of ln[L(k)] as a function of 

ln(1/k). 

Fractal dimension with Katz Algorithm (FDk): Additionally, the Katz47 algorithm (FDk) was used 

to determine FD: 

𝐹𝐷𝐾 =  
log (𝐿/𝑎)

log (𝑑/𝑎)
, 

where L is the sum of the distances between the successive points of x(n), a is the average 

distance between the successive points, and d is the greatest distance between x(1) and the 

remaining points of x(n). 

 

Energy and entropy: 

Energy (EN): energy is one of the most used measures to explore aging processes. It detects the 

slowing down of brain frequencies or shifts from high frequencies to low frequencies in aging 

has been widely reported.43  

𝐸𝑁 =  ∑ |𝑥(𝑛)|2.

𝑁

𝑛=1
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Entropy (ETs and ETL): Similarly to LLE, entropy measures the loss of information of its dynamics. 

A positive entropy denotes chaos, it means that it takes more time to expand than to fold back, 

i.e., produces more information than it destructs. Entropy detects the amount of randomness 

or uncertainty in the EEG signal, in other words, it assesses how ordered or disordered the peaks 

of the signal are. A low entropy reflects predictability or repetition in the EEG signal patterns. 

The Shannon (ETs) and Logarithmic (ETL) entropies 29,48,49 can be estimated as: 

𝐸𝑇𝑆 =  − ∑ |𝑥(𝑛)|2 log[|𝑥(𝑛)|2]

𝑁

𝑛=1

 

And 

𝐸𝑇𝐿 =  − ∑ log[|𝑥(𝑛)|2]

𝑁

𝑛=1

 

  

|After extracting the non-linear features DE, LLE, H, Δ, FDh, FDk, EN, ETs, ETL, and APet, data 

was organized per pairs of groups. Features were normalized using z-scores per each pair of 

groups, i.e., YG and OB, YB and OB, YG and OG, OB and OG, YG and YB. The normalized values 

obtained per each feature were used as input for the ML techniques SVM, KNN, LR and DT.  

To ensure the results are generalizable, a leave one-out cross-validation procedure was used. 

Due to the limited amount of data, all were used in the cross-validation. 

 

Results 

Best classifier 
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The topographic maps in Figure 3 display the results of the best classifier for each pair of groups. 

Mean accuracies were assessed to select the best classifier. See supplementary material where 

the accuracies reached in each classifier are displayed. 

Discriminatory capacity 

Generally, as displayed in Figure 4, the results showed an excellent mean accuracy capacity of 

the algorithms to discriminate the following groups [1] YG vs OB (different age, only bad sleep 

in older) [2] YB vs OB (different age, bad sleep in both), [3] YG vs OG (different age, same good 

sleep), and [4] YB vs OG (different age, bad sleep in young) (see points 1 to 4 in Figure 4 showing 

accuracy levels); a good accuracy [5] OG vs OB (same age, different sleep quality) and a low 

accuracy [6] YG vs YB (same age, different sleep quality) (see Figure 4). Considering these results, 

when comparing groups of different ages, i.e., YG-OB, YB-OB, YG-OG, YB-OG, “bad sleep” in 

combination with “older age” constitute the variables that allow better to differentiate the 

groups, followed by “aging” (independently of sleep) and last, “bad sleep” in young. Additionally, 

when comparing groups of the same age, i.e., OG vs OB, YG vs YB, the older groups are easier to 

discriminate than the younger ones. This could be explained by the fact that the brain complexity 

and energy are not that affected in young participants that do not sleep well or because the 

algorithms used are better to capture differences between young vs old.  

Regarding mean accuracies in the different subbands, results showed an excellent classification 

accuracy in the alpha, theta, and delta subbands when comparing young vs older adults, 

especially when comparing the YG vs OB, with an accuracy of 80 % in alpha, 82 % in theta and 

85% in delta (see Table 1). The older groups’, i.e., OG vs OB mean discriminatory capacity in all 

subbands was lower than when comparing Y vs O but preserved (over 70%). Lower mean 

accuracy levels were found when comparing the YG vs YB (see Table 1). Nonetheless, the 

classification accuracies of specific EEG channels, show an optimal discrimination between the 

young groups in all the sub-bands except in gamma (see Table 1 YG vs YB, highlighted in blue). 
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Differences in specific regions across groups 

In this subsection, the most relevant results of accuracy levels in specific channels will be 

presented.  

Young versus old  

As displayed in the topography maps in Figure 3 and the biosemi plots in Figure 5 the YG vs OB 

are the study groups that present a higher discriminatory capacity. Generally, the areas that 

show higher differences between age groups are the frontotemporal regions (affected in 

gamma, alpha, and theta). Additionally, some occipital and parietal regions are markedly 

affected especially in the theta and delta subbands.  

Regarding specific channels, the regions that enable a higher discriminatory capacity between 

the Y vs O in the slow rhythms, i.e., delta and theta, are within the temporal-parietal and 

occipital (especially the channel B16). This might indicate age-related changes, independently of 

sleep quality, as it is present when comparing all pairs of groups Y vs O, but it is not present 

when comparing OG vs OB nor YG vs YB. Conversely, the occipital (EEG channel A 30) seems to 

be related to bad sleep quality in O (see Table 2), this area cannot discriminate between young 

with good sleep vs old with good sleep). Additionally, channel A23 in the Occipital seems to be 

related to bad sleep both in young and older adults.  

Regarding the alpha subband, the frontotemporal region C11 is the most different when 

comparing the YG vs OB, and it is associated with a bad sleep quality only in older adults, as this 

result is also present when comparing the YB vs OB and the OG vs OB.  

Results in the gamma and beta subbands in Y vs O suggest that some occipital regions especially 

the A23 are associated with a bad sleep quality in older participants (this is evident as in all pairs 

of groups where OB is present, this region shows a great accuracy performance). Conversely, 

the left frontotemporal region (D23) is associated with older adults with good sleep, as we can 
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see only this region is different between YG-OG, and YB-OG (see Figure 5 and supplementary 

material). 

Old good versus old bad 

When comparing the OG vs OB, an overall >=71% accuracy in all subbands was achieved. As 

mentioned in the last section, results show that regions C11 (frontotemporal in alpha) and A23 

(occipital in gamma and beta) are associated with bad sleep in the older group. 

Young good versus young bad 

The highest mean accuracy achieved by the YG vs YB was 50 % in the alpha subband. However 

specific channels in beta, alpha, theta, and delta reached accuracy levels > 70%.  

The parietal central line (channel A19) in the alpha subband, seems to be associated with bad 

sleep in young adults, note that the algorithms can discriminate this region between the groups 

YG vs YB as well as between YB vs OG, (see Figure 1). Other channels that allow differentiating 

YG and YB but not other pairs of groups are the channel D19 (parietal) in the beta, B29 (fronto-

central) in theta, and D31 (inferior parietal) in the delta subband.  

 

Discussion 

The aim of this study was to classify young and older adults with good and bad sleep quality as 

a function of brain complexity. Whilst similar algorithms have been used to discriminate healthy 

older adults from those with neurodegenerative diseases using resting state EEG data 29, the 

current study is the first to demonstrate the utility in classifying groups based on healthy ageing 

and sleep quality. 

The algorithm achieved excellent mean accuracies when comparing young vs older adults. 

Moderate to high accuracies when comparing the older adult groups, e.g., older with good sleep 
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quality with older adult with bad sleep quality, and low accuracies when classifying the younger 

groups, i.e., younger adults with bad sleep vs younger adults with good sleep quality. 

Additionally, the algorithm enabled excellent discrimination between all pairs of groups in 

specific subbands and regions.  

Brain configuration in the lower frequencies, i.e., alpha, theta and delta subbands, seems to play 

an important role in the aging process, especially in temporal and parietal regions. This can be 

seen when comparing the older vs younger groups, independently of their sleep quality. This is 

aligned with several studies that indicate changes in older adults in the slower rhythms in several 

regions, achieving accuracy levels of 75.5%. 50,51 These changes, have been hypothesized by 

several authors to be caused by a generalized slowing of the nervous tissue, a decrease of 

cerebral perfusion and metabolism and inhibition mechanisms.52  

Additionally, results showed that, although age, allowed discrimination between groups (e.g., 

YG vs OG), even a higher accuracy is achieved when both age and sleep quality are taken into 

account (i.e., young adults with good sleep quality vs older adults with bad sleep quality). This 

may reflect an interaction between aging and sleep quality on brain function. 

Evidence suggests that changes in theta and delta frequencies are associated with sleep 

deprivation and bad sleep quality.53  According to a systematic review, the hypothesis underlying 

this finding is that delta is a marker of homeostatic sleep drive, the more we are awake, or sleep 

deprived the higher is delta. 54 Changes in the delta subband apart from denoting typical brain 

aging seem to be associated with sleep deprivation and bad sleep quality independently of age. 

Münch et al. (2004)53 found that young cohorts show a more pronounced delta activity in frontal 

while the older present a decrease. This, according to the authors might indicate a “pre-frontal 

tiredness” due to a bad sleep quality and the aggregated “frontal tiredness” due to  ageing. Our 

results, although cannot show directionality, showed that frontal along with some temporal 

regions seem to be altered in the delta and theta subbands in older adults with bad sleep quality 
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in comparison to younger adults with good sleep. Furthermore, our findings suggest that the 

occipital region is generally affected both in young and older adults with bad sleep quality, 

however while the former group only seem to present alterations in the delta and theta 

subbands, the latter presents differences in the occipital in all the subbands, especially markedly 

in the gamma, beta and alpha subbands. This finding is aligned with a study that found 

differences in the occipital regions when comparing older vs young.55 

When comparing the young cohorts, the algorithm achieved good discrimination accuracies only 

in specific regions and subbands. More precisely, occipital and parietal regions seem to be 

affected in young adults with bad sleep quality in the alpha, beta and delta frequencies. 

Additionally, some areas in the fronto temporal left in gamma and beta are associated with 

younger adults with good sleep. The low mean classification accuracy of the young groups, i.e., 

YG versus YB, might reflect that sleep does not alter significantly the brain configuration in 

younger adults and that bad sleep quality in older adults affects the brain configuration in a 

more widespread manner than in younger adults. Another hypothesis could be that the 

algorithm is not good enough to discriminate between younger groups.   

This study presents some limitations. First, only the first minute of data was used to decrease 

processing computational time. Although, it has been demonstrated that one minute of EEG 

data is sufficient for this type of analysis, future studies should include longer time series or 

assess whether the accuracy levels change over different time windows. Second, a search for 

the best combination of non-linear features was not performed. A recent study conducted by 

some of the co-authors indicated that this combination of features is optimal to classify healthy 

older adults and older adults with neurodegenerative diseases.43 Accuracy levels in the younger 

groups might be improved by using another combination of features. This takes several days of 

computational work. We propose future studies to investigate whether another combination of 

features allows better discrimination of young samples. Third, the effects of age and the ones 
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on sleep quality are not easy to disentangle and although we can determine the classification 

accuracies with high confidence and which subbands are more affected in each pair of groups, 

answering the questions “which of these changes are more associated with a bad sleep quality 

and which ones with age?” or “is there a decrease or increase in delta or theta subbands”? is 

not possible, only inferences can be made by comparing all the results of all pairs of groups. 

Four, this study has a small sample. To reduce the possible overfitting as much as possible a 

leave-one-out cross-validation was used. However, future work should be conducted to validate 

this method with bigger samples. Five, cognitive impairment was assessed using the HVLT, and 

it is assumed that the older adults were healthy, however they could have some preclinical early 

pathologic aging that was not controlled such as tauopathy and beta-amyloid accumulation and 

/ or higher atrophy in the hippocampus and frontal regions than the expected for healthy aging. 

Six, within-group differences were not explored, for instance “is it possible to discriminate the 

individuals with a very bad sleep quality from those with a moderate bad sleep quality?” or “can 

brain complexity be used to classify individuals with specific sleep disturbances such as latency 

or number of awakenings per night?”. These gaps and questions should be investigated as might 

be the base to create individualized interventions.  

In conclusion, this study demonstrates that the algorithm is efficient in classifying the older vs 

the younger participants with good and bad sleep quality included in the present study. It is the 

first study that classifies excellently younger and older adults with good and bad sleep as a 

function brain configuration, using a mix of non-linear features.  

Future studies using EEG and non-linear features along with ML techniques might enable to 

predict which intervention is better depending on age, lifestyle, and brain configuration to 

improve sleep quality.56  
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Figure captions 

Figure 1. Channels’ location  
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Note. Small circular colours display the signals acquired from the 32 electrodes used for the study. Specific colours signify broader 

brain regions, in purple frontal areas, in green fronto-central, in yellow central, in red frontotemporal, in blue parietal, in grey inferior 

parietal, and in pink occipital 

Figure 2. Methodology overview 

 

Note. Figure 2 displays an overview of the methodology used in the present study. From left to right, 32 channels were carefully 

chosen from the 128 acquired, time-series of the 32 channels were selected from them and split into 5-second windows, a global 

windowing average was performed to comprise each time-series data in just one 5s window, then DWT = Discrete Wavelet 

Transform has been applied to achieve the conventional sub-bands per subject and electrode. Features were extracted for each sub-

band and each subject. Non-linear features were organized per binary groups and z-score normalization was performed per study 

group pairs. Non-linear features normalized were the input of classifiers. SVM = support vector machine; KNN = K-nearest neighbour; 

log regr. = logistic regression; trees = decision trees. 
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Figure 3. Topographic maps 

 

Note. Figure 3 displays the topographic maps classification results at calp Level for Each Pair of Groups. YG =Young adults’ good 

sleep; YB = Young adults’ bad sleep; OG = Older adults’ good sleep; OB = Older adult bad sleep. 

Figure 4. Influence of sleep and age on the discriminatory capacity 
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Note. 1 = YG (young adults with good sleep quality) vs OB (older adults with bad sleep quality), 2 = YB (young adults with bad sleep 

quality) vs OB, 3 = YG vs OG (older adults with good sleep quality), 4 = YB vs OG, 5 = OG vs OB, 6 = YG vs YB. Results show the highest 

mean accuracy level reached in each pair of groups (in the subband with the highest accuracy).  

Figure 5. Biosemi plots 
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Note. Figure 5 displays the Biosemi plots. It shows the regions that allow better discrimination between pairs of groups. Subplots 1 

to 4 show differences in brain configuration between pairs of different ages, i.e., young - older; subplots 5 and 6 between pairs of 

groups of the same age (young – young; older – older). Small circular colours display the signals acquired from the 32 electrodes 

used for the study. Specific colours signify broader brain regions, in purple frontal areas, in green fronto-central, in yellow central, 

in red frontotemporal, in blue parietal, in grey inferior parietal, and in pink occipital. Black circles surrounding specific circular colours 

(EEG channels) signalize regions that allow discriminating with an accuracy of>70% in all subbands between groups, except for the 

gamma YG-YB, with a 65%. 

Tables 
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Table 1. Classification accuracy of young adults with good sleep vs old adults with bad sleep 

Group Classifier Mean / max Gamma Beta alpha Theta Delta 

YG vs OB Cosine KNN Mean  70% 73% 80% 82% 

 

85% 

  Max 75% 89% 89% 89% 92% 

YB vs OB Cosine KNN Mean 68% 72% 77% 78% 83% 

  Max 76% 87% 87% 89% 92% 

YB vs OG Coarse KNN Mean 60% 62% 75% 79% 80% 

  Max 82% 82% 91% 91% 91% 

YG vs 

OG 

Linear SVM Mean  59% 56% 67% 70% 77% 

  Max 90% 70% 90% 90% 95% 

OG vs 

OB 

Linear SVM Mean  72% 72% 72% 71% 71% 

  Max 85% 82% 74% 76% 79% 

YG vs YB Logistic 

regression 

Mean 43% 50% 49% 47% 50% 

  Max 63% 75% 88% 71% 75% 

Note. YG = Young adults good sleep; YB = Young adults bad sleep; OG = older adults good sleep; OB = Older adults bad sleep; 

Classifier = Machine learning method that classified with a higher accuracy level for each pair of groups; Mean = mean global 

accuracy level of all channels; Max = maximum accuracy achieved in at least one channel. In light orange mean accuracies => 70; 

in dark orange mean accuracies =>80; in light blue maximum accuracy in at least one channel =>70; in dark blue maximum 

accuracy in at least one channel => 80. 
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Supplementary material 

Supplementary 1 

Biosemi and 10/5 international system plots 

  

Note. The plot on the left displays the biosemi nomenaclature and the one on the right the 10/5 international system nomenclature and the approximate correspondence location. Electrodes 

in colours are the ones included in the analysis. See below the list where the names of the electrodes in biosemi nomenclature and 10/5 international are specified. 

 

Name of EEG locations – Biosemi (10/5 international) 

'A1'  Central (CZ) 

'A7' Parietal (P3) 

'A15' Occipita (O1) 

'A17' Occipital (PO3) 



'A19' Parietal (PZ) 

'A23' Occipital (OZ) 

'A28' Occipital (O2) 

'A30' Occipital (PO4) 

'B2' Central (CP2) 

'B4' Parietal (P4) 

'B11' Inferior parietal (P8) 

'B16' Parietal (CP6) 

'B22' Central 

'B26' Fronto temporal (T8) 

'B29' Fronto central (FT8) 

'C4' Fronto central (F6) 

'C7' Fronto temporal (F8) 

'C11' Fronto central (F2) 

'C15' Frontal (AF4) 

'C16' Frontal (FP2) 

'C21' Frontal (Fz) 

'C24' Fronto central (F1) 

'C28' Frontal (AF1) 



'C29' Frontal (FP1) 

'C30' Fronto central (FC6) 

'D4' Fronto central (F3) 

'D10' Fronto temporal (FC5) 

'D16' Centra (CP1)l 

'D19' Parietal 

'D23' Fronto temporal (T7) 

'D26' Parietal (CP5) 

'D31' Inferior parietal (P7) 

            

 

 

  



Supplementary 2: accuracies reached with different machine learning methods 

Young good vs old bad: 

 

Note. Young good vs old bad 

 

 

 

 

 

 

 

 

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 63% 67% 73% 77% 78% Mean 63% 67% 73% 77% 78% Mean 63% 67% 73% 77% 78% Mean 62% 66% 72% 72% 75%

Max 83% 89% 86% 89% 92% Max 83% 89% 86% 89% 92% Max 83% 89% 86% 89% 92% Max 81% 81% 89% 89% 97%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 69% 69% 77% 79% 86% Mean 69% 69% 69% 69% 69% Mean 55% 62% 69% 72% 80% Mean 70% 72% 78% 82% 86%

Max 78% 83% 86% 89% 92% Max 69% 69% 69% 69% 69% Max 69% 81% 86% 86% 92% Max 75% 83% 86% 89% 92%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 67% 69% 76% 79% 85% Mean 59% 66% 75% 79% 84% Mean 58% 66% 70% 76% 81% Mean 69% 70% 70% 72% 70%

Max 78% 83% 83% 92% 89% Max 75% 83% 86% 89% 94% Max 75% 81% 83% 92% 94% Max 78% 75% 78% 81% 75%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 69% 69% 69% 69% 69% Mean 70% 73% 80% 82% 85% Mean 69% 72% 79% 81% 86% Mean 64% 68% 77% 81% 85%

Max 69% 69% 69% 69% 69% Max 75% 89% 89% 89% 92% Max 78% 86% 86% 89% 92% Max 75% 83% 83% 92% 92%

CoarseKNN CosineKNN CubicKNN WeightedKNN

FineTree MediumTree CoarseTree LogisticRegression

LinearSVM QuadraticSVM CubicSVM FineGuassianSVM

MediumGuassianSVM CoarseGuassianSVM FineKNN MediumKNN



Young bad vs old bad:  

 

Note. Young bad vs old bad 

Young bad vs old good:  

 

Note. Young bad vs old good 

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 62% 65% 69% 72% 76% Mean 62% 65% 69% 72% 76% Mean 62% 65% 68% 73% 77% Mean 63% 66% 68% 69% 74%

Max 84% 82% 87% 87% 92% Max 84% 82% 87% 87% 92% Max 84% 82% 87% 87% 92% Max 79% 76% 84% 79% 84%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 65% 66% 72% 72% 82% Mean 66% 66% 66% 66% 66% Mean 53% 57% 67% 70% 78% Mean 67% 71% 76% 77% 83%

Max 74% 76% 82% 84% 89% Max 66% 68% 68% 66% 68% Max 74% 82% 82% 95% 87% Max 76% 79% 84% 87% 89%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 67% 69% 74% 75% 82% Mean 59% 62% 68% 71% 81% Mean 56% 58% 69% 73% 79% Mean 64% 66% 66% 66% 66%

Max 76% 82% 84% 87% 89% Max 84% 79% 89% 87% 92% Max 76% 79% 87% 87% 92% Max 74% 71% 74% 74% 74%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 66% 66% 66% 66% 66% Mean 68% 72% 77% 78% 83% Mean 67% 71% 76% 76% 82% Mean 61% 66% 72% 74% 82%

Max 66% 66% 66% 66% 66% Max 76% 87% 87% 89% 92% Max 79% 79% 87% 89% 87% Max 79% 76% 84% 89% 89%

CoarseKNN CosineKNN CubicKNN WeightedKNN

FineTree MediumTree CoarseTree LogisticRegression

LinearSVM QuadraticSVM CubicSVM FineGuassianSVM

MediumGuassianSVM CoarseGuassianSVM FineKNN MediumKNN

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 53% 60% 73% 76% 72% Mean 53% 60% 73% 76% 72% Mean 53% 60% 73% 76% 72% Mean 63% 63% 64% 66% 70%

Max 91% 86% 95% 100% 95% Max 91% 86% 95% 100% 95% Max 91% 86% 95% 100% 95% Max 86% 82% 100% 100% 100%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 57% 58% 69% 78% 78% Mean 59% 59% 59% 59% 59% Mean 55% 57% 68% 68% 78% Mean 60% 62% 75% 79% 80%

Max 68% 77% 86% 95% 95% Max 59% 59% 59% 59% 59% Max 77% 82% 91% 95% 100% Max 82% 82% 91% 91% 91%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 58% 61% 69% 79% 78% Mean 58% 60% 66% 75% 79% Mean 58% 59% 67% 72% 78% Mean 58% 58% 61% 61% 61%

Max 86% 77% 86% 100% 95% Max 77% 91% 86% 95% 100% Max 82% 91% 86% 95% 100% Max 73% 68% 68% 77% 86%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Canais Gamma Beta alpha Theta Delta

Mean 60% 62% 75% 79% 80% Mean 59% 59% 77% 83% 78% Mean 59% 62% 75% 77% 80% Mean 59% 62% 75% 77% 80%

Max 82% 82% 91% 91% 91% Max 77% 77% 86% 95% 91% Max 77% 73% 91% 91% 95% Max 77% 73% 91% 91% 95%

CoarseKNN CosineKNN CubicKNN WeightedKNN

FineTree MediumTree CoarseTree LogisticRegression

LinearSVM QuadraticSVM CubicSVM FineGuassianSVM

MediumGuassianSVM CoarseGuassianSVM FineKNN MediumKNN



Young good vs old good: 

 

Note. Young good vs old good 

Old good vs old bad: 

 

Note. Old good vs old bad 

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 58% 57% 66% 67% 70% Mean 58% 57% 66% 67% 70% Mean 58% 57% 66% 67% 70% Mean 58% 62% 61% 64% 65%

Max 85% 85% 90% 90% 90% Max 85% 85% 90% 90% 90% Max 85% 85% 90% 90% 90% Max 90% 85% 85% 85% 95%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 58% 53% 68% 71% 76% Mean 55% 55% 55% 55% 55% Mean 50% 56% 59% 63% 72% Mean 57% 57% 72% 77% 80%

Max 80% 75% 80% 90% 95% Max 55% 55% 55% 55% 55% Max 75% 85% 80% 95% 90% Max 75% 70% 85% 85% 90%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 59% 56% 67% 70% 77% Mean 62% 60% 63% 69% 75% Mean 59% 60% 63% 70% 72% Mean 52% 50% 54% 55% 60%

Max 90% 70% 90% 90% 95% Max 90% 85% 85% 90% 95% Max 85% 85% 90% 85% 90% Max 65% 65% 75% 75% 90%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 55% 55% 55% 55% 55% Mean 55% 56% 70% 77% 78% Mean 58% 56% 68% 73% 80% Mean 56% 52% 64% 73% 77%

Max 55% 55% 55% 55% 55% Max 75% 75% 80% 85% 90% Max 75% 80% 80% 90% 90% Max 75% 75% 85% 85% 85%

CoarseKNN CosineKNN CubicKNN WeightedKNN

FineTree MediumTree CoarseTree LogisticRegression

LinearSVM QuadraticSVM CubicSVM FineGuassianSVM

MediumGuassianSVM CoarseGuassianSVM FineKNN MediumKNN

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 61% 61% 60% 63% 67% Mean 61% 61% 60% 63% 67% Mean 61% 61% 60% 63% 68% Mean 64% 63% 58% 61% 65%

Max 85% 79% 85% 85% 85% Max 85% 79% 85% 85% 85% Max 85% 79% 85% 85% 85% Max 71% 71% 74% 71% 82%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 74% 74% 73% 73% 73% Mean 74% 74% 74% 74% 74% Mean 64% 63% 59% 59% 62% Mean 73% 74% 73% 74% 74%

Max 79% 79% 74% 74% 74% Max 74% 74% 74% 74% 74% Max 82% 82% 74% 76% 79% Max 76% 76% 76% 76% 79%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 72% 72% 72% 71% 71% Mean 68% 67% 63% 65% 67% Mean 64% 67% 60% 59% 65% Mean 74% 74% 73% 73% 73%

Max 85% 82% 74% 76% 79% Max 85% 85% 76% 79% 85% Max 85% 88% 74% 79% 79% Max 79% 79% 74% 76% 74%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 74% 74% 74% 74% 74% Mean 74% 73% 74% 74% 74% Mean 74% 74% 73% 73% 74% Mean 74% 74% 73% 73% 74%

Max 74% 74% 74% 74% 74% Max 76% 74% 76% 76% 79% Max 74% 74% 76% 74% 79% Max 74% 74% 76% 74% 79%

CoarseKNN CosineKNN CubicKNN WeightedKNN

FineTree MediumTree CoarseTree LogisticRegression

LinearSVM QuadraticSVM CubicSVM FineGuassianSVM

MediumGuassianSVM CoarseGuassianSVM FineKNN MediumKNN



Young good vs young bad 

 

Note. Young good vs young bad 

 

 

 

 

 

 

 

 

 

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 47% 48% 49% 53% 49% Mean 47% 48% 49% 53% 49% Mean 47% 48% 49% 53% 49% Mean 43% 50% 49% 47% 50%

Max 71% 75% 71% 83% 79% Max 71% 75% 71% 83% 79% Max 71% 75% 71% 83% 79% Max 63% 75% 88% 71% 75%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Canais Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 50% 52% 47% 46% 48% Mean 54% 54% 54% 54% 54% Média 43% 48% 49% 47% 55% Mean 57% 61% 56% 56% 59%

Max 63% 79% 63% 67% 58% Max 54% 54% 54% 54% 54% Maximo 67% 88% 79% 71% 75% Max 75% 75% 75% 75% 71%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Canais Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 49% 53% 45% 44% 47% Mean 43% 48% 49% 52% 56% Média 46% 51% 49% 53% 55% Mean 48% 51% 51% 51% 51%

Max 67% 75% 71% 75% 79% Max 71% 79% 75% 67% 75% Maximo 67% 79% 71% 71% 71% Max 71% 71% 75% 71% 67%

Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta Channel Gamma Beta alpha Theta Delta

Mean 54% 54% 54% 54% 54% Mean 60% 58% 56% 54% 54% Mean 58% 61% 56% 56% 61% Mean 47% 47% 46% 47% 51%

Max 54% 54% 54% 54% 54% Max 83% 79% 71% 71% 79% Max 75% 75% 75% 71% 75% Max 67% 75% 63% 71% 67%

CoarseKNN CosineKNN CubicKNN WeightedKNN

FineTree MediumTree CoarseTree LogisticRegression

LinearSVM QuadraticSVM CubicSVM FineGuassianSVM

MediumGuassianSVM CoarseGuassianSVM FineKNN MediumKNN



Supplementary 3:  

 

EEG brain configuration changes in theta and delta subbands in young vs older adults 

Subband YG vs OB YB vs OG YB vs OB YG vs OG 

Theta D4  C4  B26 D19  

 B2  B16  A30  

 A30  A19    

Delta B16 C7  B16 D26  

 A23  A23    

  A19    

  A15    
Note. Table 2 displays the channels that presented higher differences between the study groups in the theta and delta subbands. 

YG = Young Adults with Good Sleep Quality; OB = Older Adults with Bad sleep Quality; YB = Young Adults Bad Sleep Quality; OG = 
Older Adults Good sleep Quality; Highlighted in blue the most representative channels indicating bad sleep in ageing; Channels in in 
green indicate age related changes; In orange the channel related to bad sleep independently of age. Only the theta and delta 
subbands are displayed as they are the ones that showed greater accuracy levels. (See below a biosemi plot with the biosemi EEG 
channels’ locations). In black changes due to age and / or sleep (difficult to disentangle). 

 

 

Regions most affected when comparing the older groups  

Subband OG vs OB 

Gamma A23  

Beta A23  

Alpha Several 
Theta A1  

Delta C29  

 C7   
Note. Table 3 displays the channels that presented higher differences between the study groups. OG = Older with Good Sleep Quality 
and the OB =Older with Bad Sleep Quality. In this table, all the subbands are displayed as accuracy levels are homogeneous across 
them. 

 



General Conclusions 

 

The main aims of this thesis dissertation were i) to describe and demonstrate the 

methodological advantages of the PPA, ii) to explore the FC, and the dFC in AD and iii) to 

introduce a non-linear ML technique to classify age and sleep quality as a function of brain 

complexity. 

Here it was demonstrated that the PPA has two main advantages. The first is that only a few 

data points from the BOLD rsfMRI signal are needed to perform the analysis. The second is that 

the data points included are based on the relevant neural events, i.e., intrinsic activation events 

identified by considering the signal’s amplitude. This is useful when dealing with big datasets 

and when comparing the FC of healthy individuals with the FC of patients with a brain disease, 

which seems to have an increased variability over time. Considering this, our results suggest the 

PPA is more sensitive capturing changes across the stages of AD.  

The AD biological insights extracted from this dissertation can be summarized into two main 

findings. First, patients with AD seem to present reduced connectivity between contralateral 

brain regions compared to healthy participants. These differences, however, are not present 

when exploring the FC of ipsilateral brain regions. These results support the idea that AD is a 

“disconnection syndrome” caused by the alteration of long white matter tracks, especially of the 

corpus callosum, associated with increased global atrophy and reduced cognitive functioning 

(Delbeuck et al., 2003). 

The second main finding is that FC and dFC seem to have a non-linear progression change across 

the stages of the disease. This is characterized by a decrease in several brain regions in EMCI in 

comparison to healthy subjects, an increased FC in LMCI in comparison to HC and EMCI and an 

increased FC in mild AD in comparison to all the other groups. This FC pattern of progression  

had not been reported yet in the literature, probably because most studies using statistical 

approches did not split the MCI group into EMCI and LMCI. 

These two findings are complementary, and one could be explained by the other. The fact that 

AD participants in study 3 showed a decreased in FC (as a function of distance) between long 

distant contralateral brain regions could explain the abnormal increased in FC between several 

brain regions in study 2. As suggested by other researchers, these increased FC in LMCI and mild 

AD might indicate compensatory mechanisms that can be adaptive short term but not in the 

mid-long term. In fact, researchers inferred that an abnormal increased FC between several 



regions could be explained by an accumulation of pathologic protein in close regions and that 

these compensatory mechanisms generate, at the same time, an increase of this pathologic 

protein, developing a mal(adaptive) loop (Ashraf et al., 2015). Future studies could include 

patients with moderate and severe AD to explore the progress of FC in these stages. I 

hypothesize a linear reduction of FC in the last AD stages due to the massive and widespread 

brain atrophy and its association with decreased connectivity (Badhwar et al., 2017; Wang et al., 

2020).  

The non-linear dFC method, PPA, represents a gate for several future research ideas. Some of 

these are i) to conduct further research to validate the method to be used in the context of AD 

and other neurodegenerative diseases; ii) to apply the PPA to explore other brain diseases; iii) 

to apply PPA to task fMRI; iv) to apply PPA to other neuroimaging modalities such as to EEG data. 

The PPA is a "minimalistic"1 and fast research tool that needs to be validated. Ultimately, this 

method might be able to be used in a clinical context to make predictive, prognostic and clinical 

diagnoses of AD and other brain diseases. The PPA might be a promising tool to distinguish 

healthy patients and patients with brain pathology in a highly efficient way. In addition to the 

advantages already reported, one of the main aspects to consider when applying PPA is the 

threshold set to select the relevant points that denote strong activity in the PPA. This is the only 

free parameter. This topic was deeply explored by Tagliazucchi et al. (2012). In their paper, they 

demonstrated that any threshold of the BOLD signal between 1 and 2 SD is optimal, as results 

remain unchanged. Using a threshold within this range is fundamental to extract uncontaminated 

BOLD temporal points.  

Some additional ideas for future studies that will potentially enable the identification of FC 

biomarkers for AD are related to the characterization of the samples. To deeply understand the 

neural underpinnings of AD, it is relevant to keep in mind that the first stage of the disease, 

known as preclinical AD, is characterized by tauopathy, betamyloidosis and a lack of presence of 

cognitive symptoms2.The presence of just one biomarker (amyloidosis or tauopathy) is not 

considered preclinical AD. However, it indicates risk for AD (AR-AD), albeit less so than someone 

with a preclinical AD (Dubois et al., 2019). Considering these facts, and as suggested by other 

authors, future studies exploring connectivity could consider a deeper biological 

characterization of the samples, especially of the healthy and MCI participants. This finer 

 
1 Minimalistic here means that only a few datapoints are needed, which means less computational demands.  
2 AD was discovered in the late 20th century, examining patients postmortem who had brain pathology associated 
with AD, i.e., tauopathy and betamyloidosis, but who had not shown any symptom. This concept has now evolved 
being possible to explore the presence of AD biomarkers in vivo (Dubois et al., 2019).   



description of the samples in studies exploring FC could help determine the likeliness of healthy 

participants to develop MCI and of MCI to develop a clinical AD (Canevelli et al., 2019). 

The algorithm used to classify age and sleep quality achieved excellent accuracy levels, especially 

when comparing the young vs. the older groups. The main advantage of this non-linear ML 

approach is the ability to include several features (not only synchronicity between regions) to 

capture the brain complexity and enable classification. Future studies with a more significant 

sample should be conducted to validate the method. In addition, this algorithm could be used 

in future research to classify sleep quality in MCI vs. healthy older adults. Additionally, future 

investigations could include a feature search selection to determine which of the features of 

complexity extracted from the signal are best to classify age and sleep quality. This step was not 

performed in study 4 because high accuracies in the older groups, which were the main target, 

were already reached. However, the algorithm could probably be adjusted to classify with higher 

accuracy the younger groups. Another idea for future studies would be to perform ANOVA to 

determine the directionality of the findings and extract biological meaning, i.e., mixing classical 

statistics and ML. Eventually, this tool could be employed in clinical practice to classify patients’ 

sleep quality and to select the most appropriate intervention considering brain complexity. 

In conclusion, this thesis presented novel methods to study FC, dFC and global brain complexity 

in the context of aging and AD using rsfMRI and rsEEG DATA with classical statistics and ML. The 

results obtained revealed that these methods are sensitive to capturing synchronicity and 

complexity changes across healthy older adults and AD groups. Further studies are needed to 

validate these methods and findings. If results are as expected, the PPA and the non-linear 

multiband EEG algorithm could potentially be used as a clinical tool for early diagnosis of AD, 

sleep disturbances associated with age and other brain diseases. For a graphical display of the 

general conclusions, see “My Ph.D. studies chart”.  
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INPUTS ACTIVITIES OUTPUTS

Study 1 

Study 3

Study 4

rsfMRI dataset from ADNI 
(HC, MCI, AD) 

Preprocess :
DPARSF pipelines

 
Analysis:

CoD
FC

Graph theory
SWA
PPA 

Study 2

5 Internal presentations 
(HNL-UCP, APE-NTU,  
Neuroinformatics-AUT, 

EEG-NTU)

Invited lecturer (MRI 
basics at UCP, and 

cognitive reserve at NTU)

4 Conference 
presentations (APE 2020, 

2021, OHBM 2021, 
2022,)

3 articles (1 accepted, 2 
under review)

 OUTCOMES
FUTURE 
STUDIES

- Methodologic 
insight: thorough 
description of a novel 
method (PPA) and 
exemplification 
(reduce timepoints). A 
research tool to use in 
future studies.

- Biological insight: A 
better understanding 
of the temporal 
dynamics in AD and 
MCI (faster 
connectivity decay in 
controlateral areas in 
AD and correlation 
with atrophy and 
cognition, non-linear 
FC pattern in stages 
MCI-AD.

- Methodological insight: 
Accurate  classifiers to 
differenciate sleep 
quality and aging as a 
function of brain 
complexity.

- Validate and apply the 
PPA to explore other 
brain diseases.

- Explore the 
deactivation evens 
(i.e., valleys)

- Apply PPA to task fMRI 
and EEG data.

- Longitudinal studies to 
validate the non-linear 
progression of FC in 
MCI-AD.

- Investigate FC non- 
amnestic MCI.

- Include moderate and 
severe AD groups.

- Regression analysis 
between biological 
makers (TAU, 
Betamyloid), dFC and 
cognitive measures.

A "minimalistic" clinical 
tool to find predictive, 

prognostic and 
diagnostic biomakers of 

AD and other brain 
diseases.

A clinical tool to classify 
patients.

A potential tool for 
selection of sleep 
interventions as a 
function of brain 

complexity. 

My Ph.D. Studies: 

Novel non-linear approaches to understanding the dynamic brain: knowledge from rsfMRI and EEG studies. 

Assistance of experts 
(engineers and 

psycholgists NTU, 
UCP and CEMSC)

Co-supervisors 
expertise: statistics 

and ML, MRI, EEG, 
ageing

rsEEG dataset from NTU
(Younger adults, Older 

adults)
Preprocess:

 EEGLAB

Analysis:
Multibad decomposition

Feature extraction
 ML 

1 Internal presentation 
1 article (under review)

LONG TERM 
OUTCOMES

- Assess whether the 
accuracy levels change 
when including more 
data points.

- Assess variability of 
accuracies over 
windows.

- Perform a search of 
best combination of 
features (specially for 
young groups).

- Validate the method 
with bigger samples.

- Apply the algorithm to 
classify stages and 
types of MCI and 
healthy vs non-healthy 
(brain) aging
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