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Abstract—This paper investigates a digital twin (DT) and
reconfigurable intelligent surface (RIS)-aided mobile edge com-
puting (MEC) system under given constraints on ultra-reliable
low latency communication (URLLC). In particular, we focus on
the problem of total end-to-end (E2E) latency minimization for
the considered system under the joint optimization of beamform-
ing design at the RIS, power, bandwidth allocation, processing
rates, and task offloading parameters using DT architecture. To
tackle the formulated non-convex optimization problem, we first
model it as a Markov decision process (MDP). Later, we adopt
deep deterministic policy gradient (DDPG) based deep reinforce-
ment learning (DRL) algorithm to solve it effectively. We have
compared the DDPG results with proximal policy optimization
(PPO), modified PPO (M-PPO), and conventional alternating
optimization (AO) algorithms. Simulation results depict that the
proposed DT-enabled resource allocation scheme for the RIS-
empowered MEC network using DDPG algorithm achieves up to
60% lower transmission delay and 20% lower energy consumption
compared to the scheme without an RIS. This confirms the
practical advantages of leveraging RIS technology in MEC
systems. Results demonstrate that DDPG outperforms M-PPO
and PPO in terms of higher reward value and better learning
efficiency, while M-PPO and PPO exhibit lower execution time
than DDPG and AO due to their advanced policy optimization
techniques. Thus, the results validate the effectiveness of the DRL
solutions over AO for dynamic resource allocation w.r.t. reduced
execution time.

Index Terms—Deep reinforcement learning, reconfigurable
intelligent surface, mobile edge computing, digital twin, ultra-
reliability and low-latency communication.

I. INTRODUCTION

MOBILE edge computing (MEC) has emerged as a
potential solution to enable ultra-reliable low latency

communication (URLLC) for various real-time processing
and mission-critical applications such as autonomous driving,
heterogeneous internet of things (IoT), remote surgery, and
industrial automation [1]–[3]. URLLC requires low latency
and high reliability, which are difficult to achieve in traditional
centralized architectures [4]–[6]. MEC helps overcome these
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challenges by providing a more distributed and efficient net-
work structure. With MEC, data can be processed locally at the
edge, reducing the amount of data that needs to be transmitted
over long distances. In particular, MEC allows decentralization
of processing and storage, i.e., brings computing and storage
resources closer to the end user, which enables faster and more
reliable communication [7], [8]. Moreover, MEC provides a
flexible and scalable infrastructure that can adapt to changing
demands and support multiple applications with low-latency
communication and high reliability, and thus constitute a
driving technology for the fifth-generation and beyond wireless
networks [9]–[13]. Although MEC offers energy-efficient and
agile cloud services; however, radio access coverage and
reliable task offloading become sensitive in line-of-sight (LoS)
blockages and harsh fading environments.

Thanks to another frontier technology, called reconfigurable
intelligent surface (RIS), which has been recently identified as
the key enabler for smart propagation environment, especially
under the poor channel and energy-constrained scenarios [14]–
[16]. Generally, RIS is composed of a large number of passive
elements made up of meta-surface, which can dynamically
control the reflection of incident radio signals. These passive
elements are connected to a control unit that can adjust their
properties in real-time, and thus provide a highly flexible and
efficient way to reconfigure the radio wave environment [17],
[18]. RIS offers a number of benefits for MEC and URLLC,
including improved communication quality and coverage,
enhanced reliability, low latency, customizable and scalable
solutions. These benefits make RIS a promising technology for
5G and beyond, enabling new and innovative communication
scenarios and improving the performance and capabilities of
future communication systems.

Besides, Metaverse has been envisaged to synergize and
promote next-generation web and social networking applica-
tions by realizing a blended space of the physical and seamless
virtual worlds [19], [20]. Interestingly, DT-enabled Metaverse
architectures are recently contemplated as a holistic digital
mapping technology of physical entities for intelligent re-
source allocation and network management in the system [7]–
[11], [21], [22]. By incorporating DT into MEC, we can create
virtual replicas of physical entities for real-time monitoring,
analysis, and prediction [8]–[10]. This integration enables
informed decision-making, improves resource management,
and enhances operational efficiency. MEC’s real-time analytics
and low-latency processing amplify scalability, flexibility, and
cost-efficiency. It also reduces network congestion, strengthens
data privacy and security, and enhances user experiences.
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Offline functionality ensures continuity in limited connectivity
environments, making DT with MEC a compelling solution for
process optimization and innovation [7], [8]. Overall, DT can
provide a scalable, immersive, and efficient platform for MEC
by enabling real-time interaction between users and digital
objects and reducing the reliance on central nodes [7]–[13],
[22], [23].

A. Background

Recent studies in [3], [24]–[29] reveal that the RIS deploy-
ment significantly boosts channel gain diversity which remark-
ably improves the MEC performance w.r.t. energy and spectral
efficiency, task offloading rates or E2E delay, computations
capabilities, and others when compared to the case without
an RIS. The authors of [30] examined a simultaneously trans-
mitting and reflecting RIS (STAR-RIS) system to minimize
energy consumption in an MEC, and the optimization problem
focused on transmission and reflection time and coefficients,
as well as transmit power and data offloading size, to reduce
total energy consumption. The authors of [27] studied the
potential use cases of RIS for MEC systems and confirmed
the intelligent beamforming design and resource allocation
for RIS-aided MEC networks could effectuate the stringent
requirements of emerging applications. For instance, the work
in [3] demonstrated that the optimal beamforming design for
the RIS-aided MEC system efficiently ameliorates the energy
efficiency by 30-50% under given strict regulations on URLLC
parameters. The authors of [2] proposed a new system design
for an MEC that balances resources for local computation and
task offloading while minimizing users’ power consumption.
It also introduces a user-server association policy and a two-
time scale mechanism that improves reliability and delay
performance.

Besides, recent works in [17], [18], [31]–[34] focused on
developing deep reinforcement learning algorithms (DRLs) for
optimizing the phase shift matrices of the RIS-based networks.
For URLLC systems under a finite blocklength (FBL) regime,
a novel twin-delayed deep deterministic policy gradient algo-
rithm was used to maximize the total achievable FBL rate,
considering feedback delay and phase shift constraints of the
RIS [17]. A deep learning-based channel extrapolation was
implemented over both antenna and time domains to reduce
the pilot overhead, considering the acquisition of the time-
varying cascaded channels in RIS-assisted communication
systems [18]. The authors of [8]–[10] investigated the problem
of latency minimization for task offloading associated with
MEC for the industrial IoT. Similarly, a latency minimization
problem for DT-assisted MEC was studied in [22] under the
given constraints on the quality of services and computation
resources in multi-MEC servers-based industrial IoT networks.
Further, a DT framework was investigated in [7] for aerial
vehicular networks to maximize the overall energy efficiency
of roadside units while satisfying the dynamic requirements
of resource demand. The authors of [12] studied the task
offloading problem in UAV-enabled MEC using DT to mini-
mize energy consumption. The optimization includes mobile
terminal units association, UAV trajectory, transmission power,

and computation capacity allocation using Double deep Q
network (DDQN), closed-form expression, and an iterative
algorithm.

B. Motivation and Contributions

Undoubtedly, the integration of DT and MEC offers nu-
merous advantages, enhancing system performance and ca-
pabilities as demonstrated in [8]. While the considered DT-
enabled MEC system in [8] is commendable, there exist
several challenges while dealing with it, which are highlighted
as follows:

1) Resource Allocation Computational Complexity:
Moreover, integrating DT with MEC introduces com-
plexities in terms of system integration. For example,
MEC system comprises various components, including
edge servers (ESs), network infrastructure, and user
devices, which must seamlessly interact with the DT.
Hence, the straightforward implementation of general
alternating optimization (AO) solution presented in [8]
may not be effective for large-scale networks.

2) Worst-channel conditions: In real-time scenarios, se-
vere blockages often prevent the possibility of main-
taining line-of-sight communication between the base
station (BS) and user terminals (UTs). In such cases,
relying solely on the direct link as considered in [8] for
communication becomes impractical.

3) Detailed Performance Analysis: Indeed, the perfor-
mance results for DT-enabled MEC in [8] are commend-
able and interesting; however, the detailed investigation
of convergence analysis, time complexities of all algo-
rithms, and examining the impact of factors such as
bandwidth, number of BS antennas, number of users are
majorly missing.

Essentially, the investigation of effective resource allocation
schemes and catering of better channel conditions for users
are imperative for optimizing MEC networks, serving as
the primary motivation behind this work. Indeed, RIS-aided
communication can enhance the efficiency and performance
of the MEC by smartly reconfiguring the radio environment
and enabling more reliable communication at the edge of
the network [3], [25]–[30] while overcoming the challenges
posed by worst-channel conditions. Noteworthy, the adoption
of RIS with DT can tackle the aforementioned limitation
of DT-MEC systems and can render a promising innovative
communication solution for future MEC systems. The uncon-
ventional integration can result in an enhanced user experience
by reducing latency, improving communication quality, and
enabling real-time interaction in the virtual environment. The
potential benefits of the integration of RIS and DT for MEC-
driven URLLC are detailed below:

1) Improved Network Performance and User Experience:
The integration of RIS and DT can lead to improved
network performance by leveraging the ability of RIS to
manipulate the radio wave environment and the virtual
nature of the DT to provide a flexible and scalable
network infrastructure.
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TABLE I: Comparative summary of state-of-the-art and our work

Paper RIS MEC Conventional al-
gorithm

DRL URLLC DT Performance metric

[3] ✓ ✓ ✓ ✗ ✓ ✗ Energy efficiency maximization
[7] ✗ ✓ ✗ ✓ ✗ ✓ Average Latency optimization
[8] ✗ ✓ ✓ ✗ ✓ ✓ Total E2E latency minimization
[9], [10] ✗ ✓ ✓ ✗ ✓ ✓ Latency minimization
[11] ✗ ✓ ✗ DTA, DDQN ✗ ✓ Latency minimization
[12] ✗ ✓ ✗ DDQN ✗ ✓ Energy consumption minimization
[13] ✗ ✓ ✗ DDN ✗ ✓ Energy consumption minimization
[17] ✓ ✗ ✗ TD3 ✓ ✗ Total achievable FBL rate maximization
[18] ✓ ✗ ✗ ✓ ✗ ✗ Normalized MSE for channel exploration
[21] ✗ ✓ ✓ ✗ ✓ ✗ Overall latency optimization
[22] ✗ ✓ ✓ ✗ ✗ ✓ Worst-case Latency minimization
[25] ✓ ✓ ✗ DDPG ✗ ✗ The long-term computation offloading delay

minimization
[27] ✓ ✓ ✓ ✗ ✗ ✗ Latency minimization
[28] ✓ ✓ ✗ DDQN, DQN ✗ ✗ Computing sum rate maximization
[29] ✓ ✓ ✓ ✗ ✗ ✗ Average energy consumption minimization
[30] ✓ ✓ ✓ ✗ ✗ ✗ Minimization of sum energy consumption

Our paper ✓ ✓ ✓ DDPG, PPO, M-PPO ✓ ✓ Total E2E latency minimization

2) Moreover, it can result in an enhanced user experience
by reducing latency, improving communication quality,
and enabling real-time interaction in the virtual environ-
ment.

3) Increased Efficiency and Scalability: RIS and Metaverse
can improve the efficiency of communication networks
by reducing the reliance on central nodes and enabling
faster and more reliable communication.

4) Improved Latency and Reliability: The URLLC con-
straints on FBL transmission can be made tighter (such
as a reduction in block-length/packet size or packet error
probability) with RIS-aided communication such that it
can achieve much lower latency and higher reliability,
along with the guaranteed QoS for all users when
compared to the scheme without an RIS.

Despite its potential merits, there exist distinct research con-
tributions in RIS-empowered MEC and Metaverse-empowered
MEC as illustrated in Table I. To the best of the authors’
knowledge, the detailed investigation of DT-driven architecture
for RIS-assisted MEC systems for URLLC has not been ad-
dressed remarkably in the literature, which is quite interesting.
Although interesting, the inclusion of RIS-aided communica-
tion in the DT-MEC systems makes the problem much more
challenging to solve the original optimization problem for DT-
MEC architecture in dynamic channel environments. Moti-
vated by this background, we investigate an RIS-empowered
DT-MEC-URLLC system to ensure stringent requirements of
ultra-low latency and high-reliability task offloading for edge
users with better energy efficiency. The major contributions of
this paper are listed as follows:

1) Unlike [8], we investigate the RIS-empowered DT-
MEC-URLLC system to captivate improved network
performance of the MEC system. In particular, we focus
on the total E2E latency minimization problem for the
devised system subject to the given constraints on edge
caching, task-offloading policies, transmit power, energy
consumption at the UT, allocated bandwidth, data size,
the processing rates of UT and ES, and RIS phase shifts
matrices.

2) To leverage dynamic channel conditions, we model the
formulated optimization problem as a Markov decision
process (MDP) and later solve it using deep determin-
istic policy gradient (DDPG) based DRL algorithm and
compare it with proximal policy optimization (PPO) and
Modified PPO (M-PPO) algorithms. In particular, the
DRL algorithms allow our system to learn and adapt to
changing conditions, leveraging real-time data from the
DT to make informed decisions and optimizations. This
approach effectively tackles the complexities associated
with the dynamic nature of DT and the integration
challenges within the MEC system, demonstrating our
strong motivation to overcome these obstacles.

3) Finally, we compare and analyze the computational
complexity and latency performance of the DDPG, PPO,
and M-PPO w.r.t. to the conventional AO approach. Our
extensive results demonstrate that the DDPG based DRL
algorithm exhibits lower execution time consumption
than AO and achieves better minimum latency perfor-
mance compared to the PPO and M-PPO algorithms.
Moreover, M-PPO, followed by PPO has lower execu-
tion time than DDPG and AO due to their advanced
policy optimization techniques. These findings highlight
the effectiveness of DRL algorithms in optimizing the la-
tency in the RIS-empowered DT-MEC-URLLC system.
Moreover, we validate that the proposed RIS-empowered
DT-MEC-URLLC system with optimal phase signifi-
cantly reduces E2E latency and energy consumption
compared to only DT-MEC system. This confirms the
benefits and practicality of leveraging RIS technology
in dynamic MEC systems.

C. Organization

The rest of this paper is organized as follows. Section II
describes the considered RIS-empowered DT-MEC-URLLC
system. The optimization problem formulation is presented in
Section III. Section IV and Section V outline the proposed
solution using the DRL and AO approaches, respectively.
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Fig. 1: An illustration of RIS-empowered DT-MEC-URLLC system.

Numerical simulations are presented in Section VI to verify the
theoretical results. Finally, Section VII concludes this paper.

II. SYSTEM MODEL

We consider an RIS-empowered DT-MEC-URLLC system
where a set of 𝑀 single-antenna UTs communicate with a
multi-antenna BS for task offloading under given constraints
on FBL transmission. It is assumed that all UTs lie in the dead
zone such that there is no direct link between BS and the UT
due to severe blockages, and the task offloading is carried
out via an RIS consisting of 𝑁𝑅 passive elements as shown in
Fig. 1. The edge caching and task computations are carried out
by the ES located at the BS, which renders low E2E latency
for intensive task offloading from UTs. Table II summarizes
the list of symbols. Note that the symbols associated with the
algorithms are defined in the description of the algorithm itself.

Denoting G1 = Z𝑑
−𝛾
𝐵𝑅

A1 ∈ C𝐿×𝑁𝑅 and g2,𝑚 =

Z𝑑
−𝛾
𝑈𝑅,𝑚

a2,𝑚 ∈ C𝑁𝑅×1,∀𝑚 ∈ M ≜ 1, . . . , 𝑀 as the channel
gain for RIS-BS and the 𝑚𝑡ℎ UT-RIS , respectively. Here 𝑑𝐵𝑅
and 𝑑𝑈𝑅,𝑚 are the distance between the RIS-BS and the 𝑚𝑡ℎ

UT-RIS, {Z, 𝛾} are the large-scale model coefficients, and A1
and a2,𝑚 are the corresponding small-scale fading coefficients.
We assume that perfect channel state information (CSI) 1of
the whole system is available at the BS for resource allocation
design [37]. Let us define the reflection-coefficient matrix, i.e.,
phase-shifter matrix at RIS as

𝚽 = diag
{
Φ1, . . . ,Φ𝑁𝑅

}
, (1)

where 𝜙𝑛 ≜ 𝑒 𝑗 \𝑛 ,∀𝑛 ∈ N ∈ N ≜ {1, . . . , 𝑁𝑅} is the reflection
coefficient and \𝑛 is the phase shift induced by the 𝑛𝑡ℎ RIS
element. Overall, the effective channel gain for the 𝑚𝑡ℎ UT
can be given as

𝑔𝑚 = G1𝚽g2,𝑚,∀𝑚 ∈ M, (2)

For the sake of simplicity2, we consider maximum-ratio com-
bining (MRC) based beamforming at the BS owing to its low-
computational complexity and near-optimal performance with

1The perfect channel state estimation is obtained by performing channel
estimation techniques as given in [35], [36].

2Factly, the adopted MRC technique may not render optimal beamforming
under many scenarios such as high SINR regime, imperfect CSI estimation,
multi-user deployment, and others. However, the primary focus of this work
is to study the impact of RIS on the MEC system in terms of latency, and the
detailed study of the involved active receive beamforming has been excluded
from this work.

a large number of BS antennas such that z𝑚 = G1𝚽g2,𝑚,∀𝑚 ∈
M, where z𝑚 is the active receive beamformer at the BS. Now,
the signal-to-noise (SNR) for the 𝑚𝑡ℎ UT can be given as

Γ𝑚 (𝑝𝑚, 𝑏𝑚,𝚽) =
𝑝𝑚

G1𝚽g2,𝑚
2

𝑏𝑚𝐵𝑊0
, (3)

where 𝐵 is the bandwidth of the system, 𝑝𝑚 denotes the power
transmitted by the 𝑚𝑡ℎ UT, 𝑊0 is the single-side noise spectral
density, and 𝑏𝑚 is the allocated bandwidth coefficient of the
𝑚𝑡ℎ UT.

Under FBL coding, the explicit relation between the max-
imum achievable rate (in bit/sec) and transmission latency
(in secs) for the considered URLLC MEC system can be
expressed as [13], [38]

𝑅𝑚 (𝑝𝑚, 𝑏𝑚,𝚽) ≈
𝐵

ln 2

[
𝑏𝑚 ln (1 + Γ𝑚 (𝑝𝑚, 𝑏𝑚,𝚽))

−

√︄
𝑏𝑚𝑉𝑚 (𝑝𝑚, 𝑏𝑚,𝚽)

𝜓𝐵
𝑄−1 (𝜖𝑚)

]
, (4)

𝑇co
𝑚 (𝑝𝑚, 𝑏𝑚,𝚽) =

𝐷𝑚

𝑅𝑚 (𝑝𝑚, 𝑏𝑚,𝚽)
, (5)

where 𝜓 and 𝜖𝑚 denote the transmission time interval and
decoding error probability respectively, 𝑄(𝑥)−1 is the in-

verse Q-function such that 𝑄(𝑥) = 1√
2𝜋

∫ ∞
𝑥

exp
(
−𝑡2

2

)
𝑑𝑡,

Γ𝑚 (𝑝𝑚, 𝑏𝑚,𝚽) represents the SNR of the 𝑚𝑡ℎ UT, 𝑉𝑚
is the channel dispersion given by 𝑉𝑚 (𝑝𝑚, 𝑏𝑚,𝚽) = 1 −
[1 + Γ𝑚 (𝑝𝑚, 𝑏𝑚,𝚽)]−2, and 𝐷𝑚 is the data size (in bits).

A. DT architecture

DT projects the physical world into the virtual world by
replicating the physical objects with 3D digital facsimiles
and companions using tools such as Automod, DELMIA,
Modelica, FlexSim, etc. The DT communicates and controls
the physical system effectively in real-time3. The proposed
system is modeled by DT is presented as 𝐷𝑇 = {M̂, K̂},
where M̂, K̂ represent the virtual DT notation of 𝑀 UTs
and 𝐾 ESs respectively. The automatic control (analyzing
and optimizing the data) and management (collecting and
visualizing the data) of the system are performed by DT
based on real-time updated data from physical objects. DT
architecture renders optimized solutions concerning estimated
processing rates, allocated transmit power, and task offloading,
improving overall system performance. Denote the processing
rate estimated at the UT by 𝑓 ut

𝑚 and the difference between
the real value and the estimated value of the processing rate
is given by 𝑓 ut

𝑚 . The local processing at the 𝑚𝑡ℎ UT is served
by DT and is defined by DTut

𝑚 =

(
𝑓 ut
𝑚 , 𝑓

ut
𝑚

)
.

3DTs of ES and MEC systems can estimate the performance of physical
systems by constantly interacting with them and updating themselves with
actual network topology and requests from mobile devices. The DTs can
establish a digital representation system similar to the physical environment
for obtaining the estimated performance value of the system without learning
about the implementation details of mobile devices and ESs in the system
[22], [39].
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TABLE II: List of symbols

Symbols Description Symbols Description
G1 Channel gain of RIS-BS link 𝑀 Number of UTs
g2,𝑚 Channel gain of 𝑚𝑡ℎ UT-RIS link 𝑑𝐵𝑅 Distance between the RIS and BS
{A1 and
a2,𝑚}

small-scale fading coefficients 𝑇co
𝑚 Transmission latency (in secs)

𝜌 Power parameter constant 𝑑𝑈𝑅,𝑚 Distance between 𝑚𝑡ℎ UT and RIS
{Z , 𝛾} Large-scale model coefficients 𝜙𝑛 Reflection coefficient
𝑁𝑅 Number of reflecting elements \𝑛 Phase shift induced by the 𝑛𝑡ℎ RIS element
𝑔𝑚 Effective channel gain for the 𝑚𝑡ℎ UT z𝑚 Active receive beamformer at the BS
Γ𝑚 Signal-to-noise (SNR) for the 𝑚𝑡ℎ UT 𝐵 Bandwidth of the system
𝑝𝑚 Power transmitted by the 𝑚𝑡ℎ UT 𝑊0 Single-side noise spectral density
𝑏𝑚 Allocated bandwidth coefficient of the 𝑚𝑡ℎ UT 𝑅𝑚 Maximum achievable rate (in bit/sec)
𝑇𝐸2𝐸
𝑚 Total end-to-end latency (in secs) 𝜓 Transmission time interval
𝜖𝑚 Decoding error probability 𝑄−1 Inverse Q-function
𝑉𝑚 Channel dispersion 𝐷𝑚 Data size (in bits)
M̂, K̂ Virtual DT notation of 𝑀 UTs and 𝐾 ESs 𝑓 ut

𝑚 Processing rate estimated at the UT
𝑓 ut
𝑚 Difference between the real value and the estimated value

of the processing rate
DTut

𝑚 Local processing at the 𝑚𝑡ℎ UT that is served by DT

𝐽𝑚 A tuple representing the task at the 𝑚𝑡ℎ UT 𝜍𝑚 Required cycles for computation
𝑇max
𝑚 Maximum task latency 𝝔 Part of tasks that are locally performed at the UTs
(1 − 𝜚𝑚 ) Portion of the UT offloaded tasks executed by the ES 𝑇ut

𝑚 Latency incurred in accomplishing a task at the 𝑚𝑡ℎ UT
locally

�̃�ut
𝑚 Estimated processing latency Δ𝑇ut

𝑚 Deviation latency
𝑇es
𝑚 Latency incurred at the ES to perform the task offloaded

from the 𝑚𝑡ℎ UT
𝑓 es
𝑚 Processing rate estimated at the ES

𝑓 es
𝑚 Difference between the real processing rate and estimated

processing rate at ES
s ≜ {𝑠𝑚} Integer decision variables

𝑇𝑚 Edge caching enabled total E2E latency 𝐸tot
𝑚 Total energy consumption

𝐸
cp
𝑚 Energy consumption for computation 𝐸cm

𝑚 Energy consumption for communication
𝐹ut

max Maximum processing rate at UT 𝐹es
max Maximum processing rate at ES

𝐸max
m Maximum energy budget at 𝑚𝑡ℎ UT Ses

max Maximum edge computing capacity of ES
𝑅𝑚𝑖𝑛 Minimum uplink rate S Sequence of states
A Sequence of actions P𝑠𝑠′ (𝑎) State transition probability
R Sequence of rewards 𝜌 Power parameter constant

B. Computation Model

A tuple representing the task at the 𝑚𝑡ℎ UT is defined as
𝐽𝑚 =

(
𝐷𝑚, 𝜍𝑚, 𝑇

max
𝑚

)
, where 𝜍𝑚 and 𝑇max

𝑚 denote the required
cycles for computation and the maximum task latency, respec-
tively. The part of tasks that are locally performed at the UTs
is represented by 𝝔 ≜ {𝜚𝑚}∀𝑚 and the portion of the UT
offloaded tasks executed by the ES is given by (1 − 𝜚𝑚).

The latency incurred in accomplishing a task at the 𝑚𝑡ℎ UT
locally is expressed as

𝑇ut
𝑚

(
𝜚𝑚, 𝑓

ut
𝑚

)
=

𝜚𝑚𝜍𝑚

𝑓 ut
𝑚 − 𝑓 ut

𝑚

, (6)

where 𝑇ut
𝑚 = 𝑇ut

𝑚 + Δ𝑇ut
𝑚 . Here, 𝑇ut

𝑚 = 𝜚𝑚𝜍𝑚/ 𝑓 ut
𝑚 and Δ𝑇ut

𝑚 =

𝜚𝑚𝜍𝑚 𝑓
ut
𝑚 /

[
𝑓 ut
𝑚

(
𝑓 ut
𝑚 − 𝑓 ut

𝑚

)]
represent the estimated processing

latency and the deviation latency, respectively. Note that the
deviation latency represents the additional time required due
to the variability in the processing rate of the UTs.

Consequently, the latency incurred at the ES to perform the
task offloaded from the 𝑚𝑡ℎ UT is presented as

𝑇es
𝑚

(
𝜚𝑚, 𝑓

es
𝑚

)
=
(1 − 𝜚𝑚) 𝜍𝑚
𝑓 es
𝑚 − 𝑓 es

𝑚

,

where 𝑓 es
𝑚 is the processing rate estimated at the ES and, 𝑓 es

𝑚

denotes the difference between the real processing rate and
estimated processing rate at the ES.

C. Total E2E Latency and Energy Consumption

In MEC, tasks are generated at UT and offloaded to ES for
processing, which can cache data related to the task to reduce
latency. Using integer decision variables, s ≜ {𝑠𝑚} | 𝑠𝑚 ∈
{0, 1},∀𝑚, we characterize task caching techniques which
specify the status of the task 𝐽𝑚. Two possible operations are
observed based on the status of the cache at the ES, i.e., 1) if
𝑠𝑚 = 0, then proceed with task offloading, and 2) if 𝑠𝑚 = 1,
then calculate edge processing latency.

Here, we consider only uplink transmission latency, as UTs
receive the small controlled messages with more power from
BS. Therefore, the edge caching enabled total E2E latency and
the total energy consumption are formulated as

𝑇E2E
𝑚

(
𝜚𝑚, 𝑠𝑚, 𝑝𝑚, 𝑏𝑚,𝚽, 𝑓

ut
𝑚 , 𝑓

es
𝑚

)
=

𝑠𝑚𝜍𝑚

𝑓 es
𝑚 − 𝑓 es

𝑚

+ (1 − 𝑠𝑚)
[
𝑇ut
𝑚

(
𝜚𝑚, 𝑓

ut
𝑚

)
+ 𝑇co

𝑚 (𝑝𝑚, 𝑏𝑚,𝚽) + 𝑇es
𝑚

(
𝜚𝑚, 𝑓

es
𝑚

) ]
.

(7)

𝐸 tot
𝑚

(
𝑠𝑚, 𝜚𝑚, 𝑓

ut
𝑚 , 𝑝𝑚, 𝑏𝑚,𝚽

)
= (1 − 𝑠𝑚)

(
𝐸

cp
𝑚 + 𝐸cm

𝑚

)
,

= (1 − 𝑠𝑚)
[
𝜚𝑚

𝜌

2
𝜍𝑚

(
𝑓 ut
𝑚 − 𝑓 ut

𝑚

)2
+ (1 − 𝜚𝑚) 𝑝𝑚𝐷𝑚
𝑅𝑚 (𝑝𝑚, 𝑏𝑚,𝚽)

]
.

(8)
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where 𝐸cp
𝑚 and 𝐸cm

𝑚 are the energy consumption for compu-
tation and communication, respectively, and 𝜌 is the power
parameter constant [8].

III. PROBLEM FORMULATION

The prime objective of this work is to minimize the total
E2E latency among 𝑀 UTs for the considered RIS-empowered
DT-MEC-URLLC system by jointly optimizing the RIS phase-
shift matrix, portions of offloading tasks, allocated bandwidth
at each UT, processing rate estimates at the UT and ES w.r.t.
URLLC, energy consumption at the UTs, and edge caching
parameters, i.e., caching policies and computing capacity. The
problem for the total E2E latency can be formulated as

min
𝜚𝑚 ,𝑠𝑚 ,𝑏𝑚 , 𝑝𝑚
𝚽, 𝑓 ut

𝑚 , 𝑓
es
𝑚

𝑀∑︁
𝑚=1

𝑇e2e
𝑚

(
𝜚𝑚, 𝑠𝑚, 𝑝𝑚, 𝑏𝑚,𝚽, 𝑓

ut
𝑚 , 𝑓

es
𝑚

)
, (9a)

s.t. 𝑇e2e
𝑚

(
𝜚𝑚, 𝑠𝑚, 𝑝𝑚, 𝑏𝑚,𝚽, 𝑓

ut
𝑚 , 𝑓

es
𝑚

)
≤ 𝑇max

𝑚 ,∀𝑚,
(9b)

𝑀∑︁
𝑚=1

[
𝑠𝑚 𝑓

es
𝑚 + (1 − 𝑠𝑚) (1 − 𝜚𝑚) 𝑓 es

𝑚

]
≤ 𝐹es

max,

(9c)
𝐸 tot
𝑚

(
𝑠𝑚, 𝜚𝑚, 𝑓

ut
𝑚 , 𝑝𝑚, 𝑏𝑚,𝚽

)
≤ 𝐸max

𝑚 ,∀𝑚, (9d)
𝑅𝑚 (𝑝𝑚, 𝑏𝑚,𝚽) ≥ 𝑅min,∀𝑚, (9e)∑︁𝑀

𝑚=1
𝑏𝑚 ≤ 1,∀𝑚, (9f)

|𝜙𝑛 | ∈ 1, ∀𝑛 ∈ N , (9g)∑︁𝑀

𝑚=1
𝑠𝑚𝐷𝑚 ≤ 𝑆es

max, (9h)

𝝔 ∈ 𝒜, p ∈ 𝒫, f ∈ ℱ,∀𝝔 ∈ {𝜚1, . . . , 𝜚𝑚},
p ∈ {𝑝1, . . . , 𝑝𝑚}, f ∈ { 𝑓1, . . . , 𝑓𝑚}, (9i)

where 𝒫 ≜
{
𝑝𝑚,∀𝑚 | 0 ≤ 𝑝𝑚 ≤ 𝑃max

𝑚 ,∀𝑚
}
,

𝒜 ≜ {𝜚𝑚,∀𝑚 | 0 ≤ 𝜚𝑚 ≤ 1,∀𝑚}, 𝐸max
𝑚 , and ℱ ≜{

f =
{
𝑓 ut
𝑚 , 𝑓

es
𝑚

}
,∀𝑚 | 0 ≤ 𝑓 ut

𝑚 ≤ 𝐹ut
max ,∀𝑚; 0 ≤ 𝑓 es

𝑚 ≤ 𝐹es
max

}
are the uplink transmission power, the collection of offloading
decisions constraints, the maximum energy consumption
at UT, and the processing rates, respectively. The reflection
coefficient of the 𝑛𝑡ℎ RIS element is denoted by the equation
𝜙𝑛 = 𝑒 𝑗 \𝑛 with 0 ≤ \𝑛 < 2𝜋,∀𝑛, where \𝑛 signifies the
𝑛𝑡ℎ RIS phase shift. Here, the constraints (9b) and (9c)
indicate maximum latency requirements and the maximum
computing capacity of ES, respectively. The maximum energy
consumption requirement of the UT is described in constraint
(9d). The constraints (9e) and (9f) represent the QoS for
the uplink rate and the bandwidth allocation requirement,
respectively. The constraint involving the RIS phase shift
matrix is presented by (9g). Finally, constraint (9h) represents
the maximum caching capability of ES and ensures that it
does not exceed capacity, which affects E2E latency and
system performance if exceeded [8], [22].

Primarily, the formulated resource allocation design prob-
lem in (9) is a nondeterministic polynomial time (NP)-hard
problem that is intractable in closed-form due to the strong
coupling of continuous and discrete variables, i.e., power
allocation, edge caching parameters, bandwidth allocation, and
others. In other words, the objective function and the respective

constraint exhibit an implicit and coupled relationship with
the optimization variables, which is hard to realize. Owing
to the strong coupling of variables in the (9b),(9c), (9d), and
(9e) of the formulated problems, the global optimal solution
is hard to obtain and thus exhibits non-convex behaviour. In
general, there exists no standard and systematic mathematical
optimization schemes, which can provide the globally optimal
or near-optimal solution for these non-convex problems in
polynomial time. Although the exhaustive search may solve it,
the implementation of a generic exhaustive search algorithm
is not practically feasible as its computational complexity
grows exponentially over the number of variables. Overall, it
is imperative to solve it using sophisticated machine learning
algorithms or necessary to transform the problem in (9) into
some tractable sub-problems that can be solved separately
and alternately over multiple iterations. In the sequel, we aim
to tackle the aforementioned challenges and develop efficient
and effective approaches to provide resource allocation for the
problem in (9).

IV. DT-DRIVEN DRL ALGORITHMS

The utilization of Deep Reinforcement Learning (DRL) in
our research is motivated by its advantages for addressing the
challenges of online task offloading in a fast fading channel
environment. Conventional methods like AO or heuristic local
search techniques have limitations, such as the risk of local
optima and the impracticality of adapting to changing environ-
ments. The DRL-based methods offer computational efficiency
advantages over AO due to its parallelizable architecture, end-
to-end learning capability, model-free approach, and experi-
ence replay mechanism. DRL algorithms can leverage parallel
computing architectures, learn directly from raw data, adapt
to varying conditions, and achieve sample-efficient learning.
While various DRL algorithms have been explored, including
value-based methods like DQN and policy-based methods
like PPO, we have chosen to adopt the Deep Deterministic
Policy Gradient (DDPG) algorithm due to its importance
in our problem. DDPG offers several key advantages for
our task offloading scenario. Unlike DQN-based approaches,
DDPG avoids the computational expense associated with ex-
ponentially growing wireless devices. Additionally, compared
to PPO, DDPG demonstrates higher sampling efficiency in
addressing the offloading problem, making it more practical
for real-world applications. Moreover, DDPG is well-suited
for problems with large state-action spaces, ensuring efficient
exploration and decision-making. While the Soft Actor-Critic
(SAC) algorithm has been considered for task offloading and
offers advantages such as improved exploration and stability,
its higher computational complexity limits its efficiency for
large state-action spaces. In contrast, DDPG strikes a balance
between efficiency and effectiveness, making it the preferred
choice for our problem, which involves precise control actions
in an evolving environment.

Here, we adopt the proposed DT-driven DDPG based DRL
Algorithm as shown in Fig. 1, which reflects physical world
objects and network parameters on the virtual ground and
transmits the state of the network (𝑆(𝑡)), and later solves the
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Fig. 2: An illustration of proposed DT-driven DDPG based DRL Algorithm

digitally-mapped dynamic optimization problem using DRL
algorithm4. It leverages the benefits of both DT and DRL
techniques to optimize the network parameters and physical
world objects. This algorithm solves the MDP5 by modeling
the optimization problem as a sequence of states (S), actions
(A), state transition probability (P𝑠𝑠′ (𝑎) with 𝑠 = 𝑆𝑡 , 𝑠

′ =

𝑆𝑡+1 ∈ S), 𝑎 ∈ A, and rewards R, i.e., M = (S,A,P,R).
Nevertheless, the use of the DRL algorithm is crucial in this
case because it enables the agent to learn from its actions
and the environment and adjust its strategy accordingly to get
optimal policy 𝜋∗ for minimizing the total E2E latency.

A. Proposed DDPG based DRL algorithm

The proposed DT-driven DDPG based DRL algorithm as
illustrated in Fig. 2 is an innovative approach to solve dynamic
optimization problems in a virtual environment. DDPG based
DRL algorithm uses deep neural network (DNN) technique
onto the deterministic policy gradient algorithm, which ap-
proximates deterministic policy function ` and action value
function 𝑄 with neural network. There are two networks,
namely, the primary network and the target network as
shown in Fig. 2. The primary network adopt a critic network(
Critic P = 𝑄′

(
𝑆𝑡 , 𝑎

′
𝑡 | \𝑄

′ ) )
and a actor network

(
Actor P

= `′
(
𝑆𝑡 | \`

′ ) )
to represent the DNN model used for training,

while the target network adopts a critic network
(
Critic T =

𝑄
(
𝑆𝑡 , 𝑎𝑡 | \𝑄

) )
and a actor network

(
Actor T= ` (𝑆𝑡 | \`)

)
to represent the copy of the primary network used for making
predictions during testing. Here 𝑆(𝑡) and 𝑎 ∈ {𝑎(𝑡), 𝑎′ (𝑡)}
denote the state and the action of the networks, respectively.
Generation of Q- learning targets requires the weights of
the primary network and target network, which are given
as \𝑄

′
, \`

′
and \𝑄, \` , respectively. The target network

parameters are softly updated with the target update rate (𝜏)

4 In the DRL approach, we assume that the same computation task with
the same set of task parameters is processed in each time step over the
optimization horizon.

5To tackle the formulated non-convex optimization problem, by consid-
ering the current state, action, and immediate reward, our approach adheres to
the Markovian property, enabling us to formulate the problem as an Markov
decision process (MDP). Later, we adopt DDPG based deep reinforcement
learning (DRL) algorithm to solve it effectively.

Algorithm 1 Proposed DT-driven DDPG-based DRL algo-
rithm to solve the problem (9)

1: Initialize:
- Primary network: 𝑄′

(
𝑆𝑡 , 𝑎

′
𝑡 | \𝑄

′ )
and

`′
(
𝑆𝑡 | \`

′ )
with weights \𝑄

′
and \`

′
.

- Target network: 𝑄
(
𝑆𝑡 , 𝑎𝑡 | \𝑄

)
and

` (𝑆𝑡 | \`) with weights \𝑄 ← \𝑄
′

and
\` ← \`

′
.

- Replay buffer 𝑅𝐵, phase shift matrix of the
RIS 𝚽, learning rate 𝜏.

2: for each episode do
3: Receive initial observation state 𝑆1 with DT;
4: for each step 6 do
5: Select action 𝑎𝑡 ;
6: Observe reward 𝑅𝑡 and new state 𝑆𝑡+1;
7: Store 𝐿𝑡 transitions in 𝑅𝐵 ← (𝑆𝑡 , 𝑎𝑡 , 𝑅𝑡 , 𝑆𝑡+1);
8: Sample a part of 𝑅𝐵 transition randomly
(𝑆𝑖 , 𝑎𝑖 , 𝑅𝑖 , 𝑆𝑖+1);

9: Set 𝑦𝑖 according to (12);
10: Update soft 𝑄 by minimizing 𝐿 according to (11);
11: Update the policy parameter ` according to (10);
12: Update \𝑄 : \𝑄 ← 𝜏\𝑄

′ + (1 − 𝜏)\𝑄;
13: Update \` : \` ← 𝜏\`

′ + (1 − 𝜏)\`;
14: end for
15: end for

Algorithm 2 Proximal Policy Optimization (PPO) / Modified
PPO (M-PPO)

1: Initialize:
- Policy 𝜋 with a parameter \ 𝜋 .
- Clipping parameter = 0.2.

2: for each episode do
3: Receive initial observation state 𝑆1 with DT;
4: for each step do
5: Select action 𝑎𝑡 based on 𝑆𝑡 using the current

policy and execute;
6: Observe reward 𝑅𝑡 and new state 𝑆𝑡+1;
7: Collect set of trajectories with 𝐿𝑡 transitions←
(𝑆𝑡 , 𝑎𝑡 , 𝑅𝑡 , 𝑆𝑡+1);

8: Compute advantage function according to (20);
9: for each epoch do

10: Update actor network:
11: Compute surrogate objective function ac-

cording to (19).
12: Update policy parameter using (21)
13: if using Modified PPO then
14: Compute 𝜖𝑡 according to (22);
15: Compute surrogate objective function in

(19) by replacing 𝜖 with 𝜖𝑡 ;
16: end if
17: end for
18: end for
19: end for

in each iteration as given in 12 and 13 steps of the Algorithm
1.

In particular, the proposed algorithm is designed as an actor-
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critic network, where the primary actor network represents the
agent, learns the optimal policy through trial and error, and
outputs an action 𝑎𝑡 based on the input environment state 𝑆𝑡 .
The primary critic network evaluates the actions taken by the
agent and provides feedback in the form of a reward value 𝑟𝑡
and the next state 𝑆𝑡+1. Then, the transitions (𝑆𝑡 , 𝑎𝑡 , 𝑅𝑡 , 𝑆𝑡+1)
are collected in replay buffer 𝑅𝐵 and a random mini-batch
of 𝐿𝑡 transitions (𝑆𝑡 , 𝑎𝑡 , 𝑅𝑡 , 𝑆𝑡+1) is selected for training the
model using the replay buffer technique.

Further, the policy gradient is determined from the selection
of 𝐿𝑡 transition samples using the replay buffer technique, and
thus, it is given by

∇\`′ 𝐽≈
1
𝐿𝑡

𝐿𝑡∑︁
𝑖=1
∇𝑎𝑄′

(
𝑆, 𝑎 | \𝑄′

)�����
𝑆=𝑆𝑖 ,𝑎=𝑎𝑖

∇\`′ `′
(
𝑆 | \`′

)������
𝑆=𝑆𝑖

.

(10)

To update the primary critic network, the loss function has to
be minimized. By minimizing the loss function, the primary
critic network is updated. The loss function can be presented
as [40]

𝐿𝐹

(
\𝑄

′
)
=

1
𝐿𝑡

𝐿𝑡∑︁
𝑖=1

(
𝑦𝑖 −𝑄′

(
𝑆𝑖 , 𝑎𝑖 | \𝑄

′
))2

, (11)

where 𝑦𝑖 is defined as

𝑦𝑖 = 𝑅𝑖 + _𝑄
(
𝑆𝑖+1, `

′ (𝑆𝑖+1 | \`) | \𝑄
)
. (12)

Here, the discount factor _ ∈ [0, 1] determines the trade-
off between immediate and future rewards by exponentially
decreasing the importance of future rewards.

The combination of DT architecture and DRL algorithm
makes the proposed algorithm highly adaptable to changing
environments and provides better learning and stability capa-
bilities. Overall, the proposed algorithm has the potential to
significantly improve the performance of dynamic optimiza-
tion problems in virtual environments.

We define the framework for the proposed algorithm as
follows:
• State Space: The state space components in DDPG are

the variables that the agent uses to make decisions, and
they depend on the environment. In this problem, as there
exists no direct path, the state space is given by the
indirect link channel gain as follows

𝑆𝑡 =

{
G1, g2,1,G1, g2,2, · · · ,G1, g2,𝑀

}
. (13)

• Action Space: The action space is defined as follows:

𝑎𝑡 ={𝜚′𝑚,B,𝚽′, P, S, F𝑢𝑡 , F𝑒𝑠} , (14)

where all the terms associated with (14) are defined
respectively as

𝜚′𝑚 = {𝜚1 (𝑡), 𝜚2 (𝑡), · · · , 𝜚𝑀 (𝑡)} ,
B = {𝑏1 (𝑡), 𝑏2 (𝑡), · · · , 𝑏𝑀 (𝑡)},
𝚽′ = {𝚽1 (𝑡),𝚽2 (𝑡), · · · ,𝚽𝑀 (𝑡)},
P = {𝑝1 (𝑡), 𝑝2 (𝑡), · · · , 𝑝𝑀 (𝑡)},
S = {𝑠1 (𝑡), 𝑠2 (𝑡), · · · , 𝑠𝑀 (𝑡)},
F𝑢𝑡 = { 𝑓 𝑢𝑡1 (𝑡), 𝑓

𝑢𝑡
2 (𝑡), · · · 𝑓

𝑢𝑡 (𝑡), 𝑓 𝑢𝑡𝑀 (𝑡)},

F𝑒𝑠 = { 𝑓 𝑒𝑠1 (𝑡), 𝑓
𝑒𝑠
2 (𝑡), · · · 𝑓

𝑒𝑠 (𝑡), 𝑓 𝑒𝑠𝑀 (𝑡)} .

• Reward: The reward function of the proposed optimiza-
tion problem is presented as

𝑅𝑡 = 𝑇
E2E
𝑚

(
𝜚𝑚, 𝑠𝑚, 𝑝𝑚, 𝑏𝑚,𝚽, 𝑓

ut
𝑚 , 𝑓

es
𝑚

)
. (15)

The state-value function 𝑉𝑆 is defined by following the
policy 𝜋 at the state 𝑆 as follows: 𝑉 𝜋

𝑆
= E{R | 𝑆, 𝜋},

where E is the expectation operation. The state-action
value 𝑄 is obtained when the agent at the state 𝑆 takes
action 𝑎 following the policy 𝜋 as follows:

𝑄 𝜋 (𝑆, 𝑎) = E(𝑅(𝑆, 𝑎)) + _
∑︁
𝑠′∈S

𝑃𝑠𝑠′ (𝑎)𝑉𝑆 (𝑠′) , (16)

where 𝜋 represents the agent policy. The notation E{·}
denotes the expectation function, which calculates the
average value over all possible outcomes.

Algorithm 1 summarizes the proposed DT-driven DDPG-based
DRL algorithm, which solves the total E2E latency minimiza-
tion problem with multiple iterations until the convergence for
the objective is achieved. Note that an episode in Algorithm 1
refers to a sequence of interactions between the agent and the
environment. The initial observation state of 𝑆1 is randomly
chosen.

B. Proximal Policy Optimization (PPO)/Modified PPO (M-
PPO)

The Algorithm 2 is a combination of the Proximal Policy
Optimization (PPO) and M-PPO. PPO is a policy optimization
algorithm that aims to find an improved policy by iteratively
updating the policy based on observed trajectories [41], [42].
M-PPO extends PPO by incorporating modifications to the
value function update. We define the policy by 𝜋 with the pa-
rameter \𝜋 . Here, we train the policy and adjust the parameter
to find an optimal policy 𝜋∗ by running the SGD over a mini-
batch of 𝐿𝑡 transitions (𝑆𝑖 , 𝑎𝑖 , 𝑅𝑖 , 𝑆𝑖+1). The policy parameters
are updated for optimizing the objective function as follows:

\ 𝜋𝑖+1 = argmax
\ 𝜋

1
𝐿𝑡

𝐿𝑡∑︁
𝑖=1
∇𝑎𝑖L (𝑆𝑖 , 𝑎𝑖; \ 𝜋) . (17)

In both PPO and M-PPO algorithm, the agent interacts with the
environment to find the optimal policy 𝜋∗ with the parameter
\ 𝜋
∗

that maximizes the reward as

L (𝑆, 𝑎; \ 𝜋) = E
[
𝜋\ 𝜋 (𝑆, 𝑎)
𝜋\𝑜𝑙𝑑 (𝑆, 𝑎)

𝐴𝜋 (𝑆, 𝑎)
]
. (18)

Here, if we use only one network for the policy, the excessive
modification occurs during the training stage. Thus, we use
the clipping surrogate method as follows:

Lclip (𝑆, 𝑎; \ 𝜋) =E
[
min

( 𝜋\ 𝜋 (𝑆, 𝑎)
𝜋\𝑜𝑙𝑑 (𝑆, 𝑎)

𝐴𝜋 (𝑆, 𝑎),

clip
(
𝜋\ 𝜋 (𝑆, 𝑎)
𝜋\𝑜𝑙𝑑 (𝑆, 𝑎)

, 1 − 𝜖, 1 + 𝜖
)
𝐴𝜋 (𝑆, 𝑎)

) ]
,

(19)

where 𝜋\ 𝜋 (𝑆, 𝑎) denotes the policy distribution of the actor
network, 𝜋\𝑜𝑙𝑑 (𝑆, 𝑎) represents the policy distribution of the



9

TABLE III: Complexity Analysis of DDPG, PPO, and M-PPO

Algorithm Complexity
DDPG 𝑂[ (10𝑁 + 9)𝐻1 + 𝐻1𝐻2 + 𝐻2 + (9𝑁 + 9)𝐻1

+ 𝐻1𝐻2 + 𝐻2𝑁 ]
PPO 𝑂[2( (9𝑁 + 9)𝐻1 + 𝐻1𝐻2 ) + 𝐻2 (𝑁 + 1) + 𝜖 ]
M-PPO 𝑂[2( (9𝑁 + 9)𝐻1 + 𝐻1𝐻2 ) + 𝐻2 (𝑁 + 1) + 𝜖𝑡 ]

old actor network, and 𝜖 is a clipping parameter. The advantage
estimate 𝐴𝜋 is formulated as

𝐴𝜋 = 𝑅𝑡 + _𝑉 (𝑆𝑡+1) −𝑉 (𝑆𝑡 ), (20)

where 𝑅𝑡 is the observed return and 𝑉 (𝑆𝑡 ) is the estimated
value of the state 𝑆𝑡 .
The policy is then trained by a mini-batch 𝐿𝑡 and the param-
eters are updated by

\𝑖+1 = argmax
\𝜋

E
[
Lclip (𝑠, 𝑎; \𝜋)

]
. (21)

In M-PPO with adaptive clipping, the adaptive clipping pa-
rameter 𝜖𝑡 is introduced, which is dynamically adjusted based
on the policy’s behavior. The adaptive clipping parameter is
derived from the Kullback-Leibler (KL) divergence between
the current policy and the old policy:

𝜖𝑡 = 𝜖 · sign
(
KL

(
𝜋\old ∥𝜋\𝑡

)
− 𝛿

)
. (22)

Here, 𝛿 is a small constant and KL
(
𝜋\old ∥𝜋\𝑡

)
represents the

KL divergence between the old policy and the current policy.
In M-PPO, the adaptive clipping parameter 𝜖𝑡 replaces the
fixed threshold 𝜖 used in the surrogate objective function for
policy update of the standard PPO. By dynamically adjusting
the 𝜖𝑡 based on the KL divergence, M-PPO ensures that the
policy updates are controlled and aligned with the current
policy’s behavior.
This adaptive clipping mechanism allows for more accurate
and stable policy updates. It prevents excessive updates when
the policy deviates significantly from the old policy, and it
allows larger updates when the policy is closer to the old
policy. By dynamically adjusting the clipping parameter, M-
PPO can adapt to different scenarios and improve the stability
and convergence properties of the optimization process. The
algorithm continues to iterate over episodes and steps, updat-
ing the networks and improving the policy through PPO and
M-PPO until convergence is achieved.

C. Computational Complexity

In the table III, we provide the complexity analysis for
DDPG, PPO, and M-PPO algorithms. The table includes the
dimensions of input layer, hidden layers, and output layer
for each network involved in the algorithms. The complexity
analysis table provides an overview of the computational
complexity of the DDPG, PPO, and M-PPO algorithms. In
the table, N represents the number of RIS elements. For
DDPG, the dimensions of the input layer, the first hidden
layer, the second hidden layer, and the output layer in the
critic network are 10𝑁 + 9, 𝐻1, 𝐻2, and 1, respectively. In
the actor-network, the dimensions of the input layer, the first
hidden layer, the second hidden layer, and the output layer
are 9𝑁 + 9, 𝐻1, 𝐻2, and 𝑁 , respectively. Consequently, the

overall complexity of the DDPG algorithm can be expressed
as 𝑂 [(10𝑁 + 9)𝐻1 +𝐻1𝐻2 +𝐻2 + (9𝑁 + 9)𝐻1 +𝐻1𝐻2 +𝐻2𝑁].

For PPO, the actor network and critic network share similar
dimensions. The input layer, the first hidden layer, and the
second hidden layer of both networks are defined as follows:
9𝑁 + 9, 𝐻1, and 𝐻2. The output layer for the actor and the
critic networks are 𝑁 and 1, respectively. Consequently, the
complexity of the PPO algorithm is estimated as 𝑂 [2((9𝑁 +
9)𝐻1 + 𝐻1𝐻2) + 𝐻2 (𝑁 + 1) + 𝜖], where 𝜖 represents the clip
factor.

For M-PPO, the network dimensions remain the same as
PPO, including the actor and critic networks. Therefore, except
the clip factor 𝜖𝑡 , the complexity analysis for M-PPO is the
same as that for PPO : 𝑂 [2((9𝑁+9)𝐻1+𝐻1𝐻2)+𝐻2 (𝑁+1)+𝜖𝑡 ].

V. BASELINE ALTERNATING OPTIMIZATION FRAMEWORK

In this section, we use the conventional AO method to
solve the optimization problem of minimizing the total E2E
latency for the proposed system. Note that the problem in (9)
is a non-convex optimization problem as its objective function
and constraints are non-convex and exhibit strong coupling
of coupled integer and continuous variables, thus making it
highly computationally complex to solve using exhaustive
search methods. In order to solve it, we decouple the joint
optimization problem in (9) into different sub-problems. Then,
a unified solution based on the AO method is proposed
which jointly solves these sub-problems in an alternating
and iterative manner. Clearly, the joint solution is developed
in the following subsections by solving four sub-problems:
caching policy optimization, offloading policy optimization,
joint communication and computation resource optimization,
and RIS phase-shift matrix optimization.

In our work, we employ a similar analysis to that described
in [8] for optimizing the variables s, 𝝔, and {b, p, f}. We refer
to these optimization problems as subproblems, namely SP1,
SP2, and SP3, respectively, as outlined in [8]. Here, we only
provide the optimization solution for passive beamforming
design, i.e., phase-shift optimization for RIS, and refer to it as
SP4 problem. The details are as follows:

A. Phase-shift optimization

By fixing other variables, the problem of the phase-shift
optimization is given by

SP4: min
𝚽(𝑖) |s(𝑖+1) , 𝜚 (𝑖+1) ,

b(𝑖+1) ,p(𝑖+1) ,fut (𝑖+1)
𝑚 fes (𝑖+1)

𝑚

∑︁𝑀

𝑚=1
𝑇e2e
𝑚 (𝚽) , (23a)

s.t. (9b), (9d), (9e), (9g). (23b)

The problem in (23) is non-convex due to the non-convex
objective function and constraints (9b) and (9e). Next, we
approximate the non-convex parts

√
𝑉𝑚 in the constraint by

the first-order Taylor series. We introduce the new variable
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𝛾𝑚 as given as follows, where 𝛾𝑚𝑖𝑛 is the lower bound of the
rate 𝛾𝑚.

𝛾𝑚 =
𝑝𝑚

G1𝚽g2,𝑚
2

𝑏𝑚𝐵𝑊0
,

= { 𝑝𝑚

𝑏𝑚𝐵𝑊0
}(G1𝚽g2,𝑚)𝐻G1𝚽g2,𝑚,

= 𝐾3 (G1𝚽g2,𝑚)𝐻G1𝚽g2,𝑚,

≥ 2ℜ
{(
Φ[𝑖 ]

)𝐻
H𝑚𝑚H𝐻

𝑚𝑚𝚽

}
− ||H𝑚𝑚𝚽

[𝑖 ] | |2, (24)

where H𝑚𝑚 = G1G2,𝑚 and G2,𝑚 = diag{g2,𝑚}.
Morover, the constraint (9e) is approximated using 𝛾 [𝑖 ]𝑚 as

𝐵

ln 2

[
𝑏𝑚 ln (1 + 𝛾𝑚) − 𝐷𝑚𝑄−1 (𝜖𝑚) {[1 − (1 + 𝛾 [𝑖 ]𝑚 )−2]− 1

2[(
1 + 𝛾 [𝑖 ]𝑚

)−3
×
(
𝛾𝑚 − 𝛾 [𝑖 ]𝑚

)
−
(
1 + 𝛾 [𝑖 ]𝑚

)−2
+ 1

]
}
]
≥ 𝑅min,

(25)

where 𝐷𝑚 =

√︃
𝑏𝑚
𝜙𝐵
𝑄−1 (𝜖𝑚).

Lastly, the non-convex objective function (23a) which in-
cludes 𝑇e2e

𝑚

(
𝜚
(𝑖+1)
𝑚 , 𝑠

(𝑖+1)
𝑚 , 𝑏

(𝑖+1)
𝑚 , 𝑝

(𝑖+1)
𝑚 , 𝑓

(𝑖+1)
𝑚 ,𝚽𝑖

)
can be ap-

proximately represented as follows, by using an inner approx-
imation.

𝑇e2e
𝑚 ≤ T (𝑖+1)

𝑚1 ≜
(
1 − 𝑠 (𝑖+1)𝑚

) [ 𝜚
(𝑖+1)
𝑚 𝜍𝑚

𝑓
ut(𝑖+1)
𝑚 − 𝑓 ut(𝑖+1)

𝑚

+𝐷𝑚𝜏𝑚
(
𝑏
(𝑖+1)
𝑚 , 𝑝

(𝑖+1)
𝑚 ,𝚽𝑖

)
+

(
1 − 𝜚 (𝑖+1)𝑚

)
𝜍𝑚

𝑓
es(𝑖+1)
𝑚 − 𝑓 es(𝑖+1)

𝑚


+ 𝑠

(𝑖+1)
𝑚 𝜍𝑚

𝑓
es(𝑖+1)
𝑚 − 𝑓 es(𝑖+1)

𝑚

. (26)

Overall, we approximate the problem in (23) into its equivalent
convex form as

SP4: min
𝚽,𝜸 |s(𝑖+1) , 𝜚 (𝑖+1) ,

b(𝑖+1) ,p(𝑖+1) ,fut (𝑖+1)
𝑚 fes (𝑖+1)

𝑚

𝑇
(𝑖) )
𝑚1 ,

s.t. (9b), (9d), (9g), (24), (25), (27)

which is solved iteratively until convergence.
Since the problem in (27) involves 𝑁𝑀 scalar decision vari-

ables and 4𝑀 +𝑁 linear or quadratic constraints. The average
worst-case computational complexity of solving this problem
at each iteration is on the order of O

(
(𝑁𝑀)2

√
4𝑀 + 𝑁

)
.

VI. NUMERICAL RESULTS AND DISCUSSIONS

Here, we investigate the system performance of the pro-
posed DDPG based DRL algorithm for the RIS-empowered
DT-MEC-URLLC system through extensive numerical simu-
lation. Note that the simulation results for the DRL algorithm
are carried out using Python 3.10.7 and TensorFlow 1.13.0,
while the AO is implemented using the CVX toolbox [43]
in MATLAB. We fix the locations of the BS and the RIS
at [0,0] and [50,40], respectively, while UTs (𝑀 = 15 or
𝑀 = 30) are deployed in 100 m × 100 m square area [2].
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Fig. 3: Convergence of total E2E latency

TABLE IV: Simulation parameters

Hyper-parameter Value
Learning rate for the critic-network 0.0002
Soft update coefficient 0.0005
Learning rate for actor-network 0.0001
Mini-batch size 64
Discount factor 0.9
Number of neurons for two hidden layers [512, 512]
Replay buffer capacity 1000000
Variance of the action noise 0.1

The number of RIS elements and the number of antenna
elements are set as 𝑁𝑅 = 32 and 𝐿 = 8, respectively.
Furthermore, other simulation parameters are set as 𝐵 = 5
MHz, 𝑊0= -163 dBm/Hz , 𝐸𝑚𝑎𝑥𝑚 = 3 mJ, 𝑆𝑚𝑎𝑥𝑒𝑠 = 40 Kb, 𝐷𝑚
= 1354 bytes, [𝑚 ≜

𝜍𝑚
𝐷𝑚

= [100,300] cycles/byte, 𝐹𝑚𝑎𝑥
𝑙𝑜𝑙

=
1.5 GHz, 𝐹𝑚𝑎𝑥𝑒𝑠 = 30 GHz, 𝑇𝑚𝑎𝑥𝑚 = 10 ms, 𝑃𝑚𝑎𝑥𝑚 = 23 dB,
\ = 10−16 Watt-sec3/cycle3, 𝜖 = 10−7 [8]. The path loss
parameters are set as Z = 0.5 and 𝛾 = 2 and the small-scale
fading coefficients are assumed to be Rayleigh distributed.
Moreover, we model the neural network setup with various
hyper-parameters as [44], which are given in Table IV. As
a performance benchmark, we compare the performance of
the proposed DDPG based DRL algorithm in Algorithm 1 for
the considered RIS-empowered DT-MEC-URLLC system with
random-phase shift design and without RIS case. Although, we
consider that the UTs are severely blocked due to blockages,
however, in order to evaluate the benefit of RIS links, we
consider that there exists a weak LOS path between the BS
and UTs such that the path loss parameters for the direct link
are set as Z = 0.6 and 𝛾 = 1.8.

Firstly, we examine the convergence behavior of the pro-
posed algorithm with varying numbers of episodes in the
proposed DDPG based DRL framework, and the number of
iterations in the AO approach7 is illustrated in Fig. 3. For

7Note that the input parameters for AO are chosen based on the values
at which the DRL algorithm tends to converge. This approach allows us
to compare the performance of AO and DRL, although it may not be a
completely fair comparison due to the different input parameter settings. It
is important to note that the comparison between AO and DRL may not
be entirely fair, as the input parameters for AO are chosen based on the
convergence behavior of the DRL algorithm. However, despite this limitation,
our work fills a critical research gap as there is no existing literature that
specifically addresses the system model we consider.
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Fig. 4: Impact of bandwidth and number of BS antennas

16 64 128 256 512
60

65

70

75

80

85

90

95

100

105

110

115

T
o

ta
l 
E

2
E

 l
a

te
n

c
y
 (

m
s
)

DDPG,Optimal phase RIS

DDPG, Random phase RIS

DDPG, Without RIS

AO, Optimal phase RIS

PPO,Optimal phase RIS

M-PPO,Optimal phase RIS

17.2 %

58 %34.7 %
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this analysis, we set 𝑆𝑚𝑎𝑥𝑒𝑠 = 50kb and the task complexity
parameter [𝑚 = 200. Interestingly, the proposed DDPG based
DRL algorithm requires a significantly less number of episodes
for training as the results converge within 20 episodes only.
This rapid convergence is due to several factors, such as the
effectiveness of the DDPG algorithm in handling continuous
action spaces, the use of target networks for stability, and
the utilization of experience replay to break the correlation
between consecutive samples, allowing for more efficient
exploration and learning. The relatively small number of steps
in each episode and the efficient exploration strategy contribute
to the algorithm’s ability to converge quickly. However, the
convergence using the AO approach is attained within only
10 iterations. Importantly, the increase in the number of
UTs increases the overall computational tasks, which further
increases the total E2E latency for the considered system.
Overall, the proposed scheme offers a cost-effective resource
allocation with an acceptable offloading decision even with
large numbers of UTs. Mainly, the AO-based algorithm is
advantageous when the system parameters, such as channel
state information, computation task parameters, and system
constraints, are known or easily estimated. In such cases, AO
can provide a computationally efficient solution by optimizing
transmission powers, processing rates, and other variables in
a single shot. This makes AO suitable for scenarios requiring
real-time or near real-time optimization. Nevertheless, the AO
algorithm serves as a valuable benchmark scheme for DRL-
based algorithms in our work.

Table V presents a comparison of the execution times of var-
ious algorithms (DDPG, AO, PPO, and M-PPO) as the number
of RIS elements varies. The DRL-based approaches dynam-
ically allocate channels based on real-time traffic demands,
potentially resulting in lower latency. In contrast, AO adopts
predetermined rules for static channel allocation and follows
an iterative and sequential optimization approach, which can
be computationally expensive. The DRL-based method offers
the advantage of learning policies directly from observations
without explicit optimization problems, making it computa-

TABLE V: Execution time (ms)

Algorithm 𝑁𝑅 =32 𝑁𝑅 =64 𝑁𝑅 =128 𝑁𝑅 =256
DDPG 24.52 24.85 25.53 26.50
AO 1283 1562 1985 3571
PPO 18.05 19.6 21.7 22.8
M-PPO 16.1 17.4 18.7 19.8

tionally efficient. Additionally, the utilization of parallelization
and learning from experience enables faster convergence and
improved performance. Table V clearly demonstrates that the
running time of the AO algorithm increases with the number
of RIS elements (𝑁𝑅) due to its polynomial computation
complexity, while the DRL algorithm’s running time remains
approximately constant. The DRL-based algorithm exhibits
lower running time consumption and demonstrates better min-
imum latency performance, thus highlighting its effectiveness
in comparison to AO. Moreover, M-PPO and PPO outperform
DDPG in terms of execution times due to their enhanced opti-
mization capabilities and convergence speed. These algorithms
employ advanced policy optimization techniques, resulting in
faster convergence to optimal solutions and reduced execution
times. In summary, the table and figure provide strong evi-
dence supporting the superiority of DRL algorithms in terms
of running time efficiency and performance compared to AO.

Fig. 4 illustrates the impact of total transmission bandwidth
on the system performance of the considered RIS-empowered
DT-MEC-URLLC system w.r.t. latency. As bandwidth in-
creases, the maximum number of tasks that can be executed
in a specific time slot increases, which in turn results in a de-
crease in the computation latency of the system. Interestingly,
the considered system initially undergoes high-performance
amelioration up to 8 MHz, however, the performance gain
becomes nearly trivial with a gradual increase of bandwidth.
Moreover, we discuss the impact of increasing the number of
BS antennas on the total E2E latency. Intuitively, the increase
in the number of antennas increases the available phase-shifter
at the BS, which improves the channel gain diversity, and this
further decreases the E2E latency. Conclusively, the increase
in available resources significantly increases the MEC per-
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Fig. 7: Impact of number of UTs (𝑀)

formance [28]. However, regarding the impact of increasing
the number of BS antennas on the total E2E latency, we find
that the decrease in latency is not significant with a gradual
increase in bandwidth. As the number of antennas increases,
the complexity of signal processing and coordination between
antennas increases, which can introduce delays and overhead
that offset the gains from improved channel gain diversity.
Therefore, while increasing the number of BS antennas does
improve the channel gain diversity and contribute to latency
reduction, the diminishing returns from signal processing
complexity and system overhead lead to a relatively modest
decrease in the total latency.

Fig. 5 discusses the impact of a number of RIS elements
on the system’s latency performance. The increase in the
number of passive elements at RIS results in improved channel
gain diversity, i.e., high beamforming, which in turn improves
the SNR-associated computational offloading and decreases
the latency of the considered MEC system. The proposed
beamforming design attains better performance gain when
compared to the random phase-shift design. Moreover, the
consideration of RIS deployment for the MEC URLLC sys-
tem significantly outperforms the conventional MEC URLLC
system without RIS. Conclusively, the optimal beamforming
design with 𝑁𝑅 = 256 renders approximately 35% better per-
formance than random beamforming, moreover, the proposed
RIS-empowered DT-MEC-URLLC system achieves 58% bet-
ter performance than the case without an RIS. Primarily,
the performance gain, i.e., low latency offloading, becomes
dominant for large-scale RIS deployment (𝑁𝑅 > 100) and
sophisticated beamforming design.

Moreover, we compare the latency performance of the con-
sidered MEC system w.r.t. optimal and random beamforming
design at RIS and the case without RIS for varying energy
consumption budget (𝐸𝑚𝑎𝑥𝑚 ) as shown in Fig. 6. For the
given data size, the increase in the maximum allowed energy
consumption at the UTs decreases for all the considered
schemes. Obviously, task offloading latency or rate can be
improved at the expense of high transmit power consumption.

Primarily, RIS-aided communication can ensure improved sys-
tem performance under the given URLLC restrictions. Overall,
the MEC system with RIS-aided communication ascertains
lower latency while ensuring low energy consumption and
high reliability when compared to those without the RIS
scheme. Importantly, Fig. 5 and Fig. 6 depict that the total
E2E latency of the proposed DDPG based DRL algorithm
attains performance closer to the AO-based algorithm. We
further investigated the performance of the DRL algorithms,
specifically DDPG, PPO, and M-PPO with optimal phase,
for the RIS-empowered DT-MEC-URLLC system. The results
reveal that DDPG achieves the lowest latency among the
three algorithms, followed by M-PPO and PPO. This can be
attributed to DDPG’s ability to effectively explore and exploit
the action space, allowing it to converge to optimal policies
more efficiently. Moreover, the adaptive clipping method em-
ployed in M-PPO improves performance compared to PPO
by dynamically adjusting the clipping range, enabling better
exploration and preventing policy divergence.

Fig. 7 illustrates the impact of the number of UTs on the
total E2E latency. For this analysis, we set 𝑆𝑚𝑎𝑥𝑒𝑠 = 5kb and the
task complexity parameter [𝑚 = 900. Intuitively, the amount
of data that needs to be transmitted and processed increases
with UTs, which in turn increases overall latency drastically. In
other words, the increased demand for network resources re-
sults in a higher load on the network and processing resources,
thus leading to increased E2E latency. Moreover, the increased
number of UTs may also result in more network congestion,
leading to longer waiting times for data transmission and
processing. For 𝑁𝑅 = 32, the latency starts at approximately
12.6 ms for five UTs and goes up to approximately 125.8 ms
for 30 UTs. When compared to 𝑁𝑅 = 128, it is observed that
latency attains 19.1 ms for five UTs and reaches 150.5 ms for
30 UTs. The comparative results of 𝑁𝑅 = 32 and 𝑁𝑅 = 128
reveal that latency decreases with increased 𝑁𝑅, which is due
to improved signal quality, reduced interference, and increased
signal strength, as well as the ability to dynamically control
the radio environment in real-time.
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Fig. 8: Impact of task complexity and edge caching capacity
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Fig. 9: Impact of average UT offloading and ES processing rate

Fig. 8 reveals the impact of task complexity and edge
caching capacity on the system’s latency performance. Al-
though there is no implicit relation between task complexity
and edge caching capacity, they are interdependent in many
situations. A complex task that requires a lot of data may
benefit from a larger edge caching capacity to reduce the
amount of data that needs to be transferred over the network.
Conversely, a smaller edge caching capacity results in higher
latency as more data must be retrieved from a distant server.
The simulation results indicate that, for any given task com-
plexity, there is a linear increase of 33.3% in the latency when
the maximum edge caching capacity (𝑆𝑚𝑎𝑥𝑒𝑠 ) increases from 40
Kb to 60 Kb. The proposed algorithm’s latency increases with
an increase in task complexity, whereas it decreases with an
increase in the 𝑆𝑚𝑎𝑥𝑒𝑠 . Conclusively, a network with high edge
caching capacity and low task complexity aids in achieving
minimum latency, as shown in Fig. 8.

Finally, the joint impact of average UT offloading, ES pro-
cessing rate, and deviation values significantly on the latency
performance of the system are depicted in Fig. 9. Here, “ES
processing rate” refers to the ability of the ES to process data
and respond to requests. A higher processing rate results in
lower latency as the ES can process requests faster. Conversely,
a lower processing rate results in higher latency. This results
show that as the maximum processing rate of the ES increases,
the total end-to-end latency of UT decreases. The total latency
decreases by nearly 5.6 ms when the maximum processing rate
of the ES (𝐹𝑚𝑎𝑥𝑒𝑠 ) increases to 38 GHz. A smaller deviation
value, i.e., variability in the processing time for a given task,
leads to lower latency, and an increase in deviation results in
higher latency. Further, an increase in average UT offloading
will result in reduced latency performance, and the proposed
task offloading model is effective when the percentage of
tasks being offloaded by UTs increases [8]–[10]. Overall,
the behavior of average UT offloading, ES processing rate,
and deviation values are interrelated and affect the latency
performance of the system.

VII. CONCLUSIONS

This paper studied an unconventional RIS-aided MEC sys-
tem for URLLC using DT driven framework. Primarily, we
focused on the problem of total E2E latency minimization for
the task offloading for the considered MEC system subject to
the joint design of RIS beamforming, resource (power and
bandwidth) allocation, processing rates and task offloading
parameters associated with the DT framework. We proposed
DT-driven DDPG-based DRL algorithm to solve the formu-
lated problem. We conducted a comparison and analysis of
different approaches, including DDPG, PPO, M-PPO, and the
conventional AO, to assess their computational complexity
and latency performance under various network parameters.
The findings indicate that the proposed DDPG-based DRL
algorithm outperforms AO in terms of execution time con-
sumption and achieves better minimum latency performance
compared to PPO and M-PPO algorithms. Furthermore, M-
PPO exhibits lower execution time than DDPG and AO due to
their advanced policy optimization techniques. These results
highlight the effectiveness of DRL algorithms in optimizing
latency in the devised system. Additionally, the simulation
results validate the benefits of the proposed RIS beamforming
technique, showing a 30-40% performance gain over random-
beamforming design. The RIS-assisted MEC system also
achieves a 60% lower transmission delay and 20% lower
energy consumption compared to the MEC system without
RIS. This confirms the practical advantages of leveraging RIS
technology in MEC systems.
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