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Abstract

Physical inactivity is a leading risk factor in public health and inactive people are more

vulnerable to having non-communicable diseases (NCDs), for example, autoimmune

diseases, strokes, most heart diseases, diabetes, chronic kidney disease, and others. In

addition, levels of physical activity may be an indicator of health problems in older

adult individuals, a particular problem in many societies where there is a growing

ratio of old adults age 65 and over. Identifying levels of physical activity may have a

significant effect on fitness and reducing healthcare costs in the future. Thus, finding

approaches for measuring the individuals’ activities is an important need, in order to

provide information about their quality of life and to examine their current health

status.

This thesis explores the possibility of using low-cost wearable accelerometer based iner-

tial sensors to determine activities during daily living. Two data sources were used for

this investigation. The first was a locally collected data set recorded from individuals

with Parkinson’s disease in their own homes where they were asked to stand up from

their favourite chair and then do different daily activities (Bridge data set). The second

was a data set collected in a movement laboratory of the Fredrich-Alexander university

and measures 19 participants doing daily activities (sit, stand, washing dishes, sweep-

ing, walking, etc) in controlled conditions (Benchmark data set). Both studies used

accelerometer based measurements as these are widely used in wearable and portable

technologies such as smartphones, and are now finding use in health care applications.
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Two areas of research are considered. In the first, accelerometer data were considered

in relation to the surface of a sphere of radius 1g (i.e. magnitude of the acceleration due

to earth gravitate). This research looked at sensor placement, window size and novel

features based on the ‘gravity sphere’. Decision Trees and Näıve Bayes classifiers were

used as a baseline classifier on both data sets and k-Nearest Neighbour was used on

the Bench Mark data set only. The classification results of a small set of activities of a

single individual from first data set show that Näıve Bayes (NB) had a better overall

accuracy rate than Decision Trees (DTs), where the results are 85.41% and 78.56% for

both NB and DTs respectively.

The second area of work considered the possibility of using models of the dynamic

system of the human movement as the basis for movement classification. Data from

the accelerometers were used to evaluate two approaches that exploited the modelling

capacity of a system identification algorithm. The two methods, which are called Pre-

diction Measuring (PM) and Model Matching (MM), used the recursive least square

method to identify a model for each class (activity). The Benchmark data set was used

to verify the proposed methods. PM method achieved better classification accuracy

comparing to MM method, with 71% and 59% respectively.
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Chapter 1

Introduction

The need for inexpensive and high-quality health care is needed across the world [4]

and across a range of conditions. Many methods and actions have been considered in

an attempt to tackle this issue including new intelligent technologies [5]. For example,

sensors and devices that are used to detect and normalise sleep apnea, accurate and

painless diabetes monitoring, continuous temperature monitoring and fall detection for

old adults and individuals with Parkinson’s, stroke, frailty, obesity and cardiovascular

diseases.

Recently, the ability to monitor the patient’s status at home and enabling individuals

to measure their well-being has acquired a high interest from multidisciplinary research

groups [6]. Wearable technology that is used as healthcare monitoring systems can gen-

erate a substantial amount of data. The accurate analysis of this data is the key to gain

the benefits of such a system. Machine learning and dynamical systems methods can

be exploited to recognise patterns in data and provide useful information to individuals

and healthcare providers.

This thesis develops new approaches for recognising human activities in relation to

healthcare monitoring. The main focus is on extracting useful features from the sensor

data in an efficient and adaptable way. A unique approach of this work is the use of
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1.1. Motivations

system identification techniques to classify individual’s activities.

Two concepts are explored, a Models Matching (MM) method and Predictions Mea-

suring (PM) method. The approaches of human activities detection and classification

using data of wearable sensor (primarily work has focused on sensors mounted on the

person’s lower-back/hip, wrist and ankle) are presented and the results are analysed

and discussed. Two data sets were used for this purpose: Bridge data sets from the

SPHERE project and, a Benchmark data set from Friedrich Alexander University in

Germany.

1.1 Motivations

Finding methods to assess the individuals’ activities of daily life and to carry out long-

term monitor of their current health status is an urgent need in healthcare. This was

recognised in a general area by Lord Kelvin who said “if you can not measure it, you

can not improve it”. There are two main factors that are relevant to long-term health

monitoring. First, there is a rapidly increasing percentage of older adults around the

world. In 2015, the United Nations reports for world population estimates that people

aged 60 or over comprise a 12% of world population [7]. The reports show that the older

adults’ population has grown steadily by 3.26% per year. Second, inadequate physical

activity is a leading risk factor in public health. It results in more than three million

deaths each year, according to World Health Organisation 2013 [8]. That is because

physically inactive people are more susceptible to chronic diseases. These factors are

likely to cause a substantial impact on healthcare costs [9].

An automatic, accurate, real-time, reliable and easy to use and apply method to monitor

individuals at risk in their home continuously could provide early detection of specific

health threat factors, which would allow early and effective intervention [10]. New intel-

ligent technologies might enable transparent detection and evaluation of the activities

2



1.2. Medical health and ageing issues

of daily life [11]. Recently, there has been a noticeable interest in health monitoring by

using the latest advances in wearable technology. This technology could be used as a

way of assessing health related activity and might enable older adults’ people to live

independently and in safety at home while reducing the cost of their healthcare.

1.2 Medical health and ageing issues

Aging population and inactivity are the two important issues that put the healthcare

system around the world under high pressure. This section presents these issues and

referring to some statistics and future predictions.

1.2.1 Population demographics

The fast increase of people aged over 60 globally is a significant issue that should be

taken into consideration for public health. According to the United Nations report [7],

there is a rise in the percentage of population over a specific age as a consequence of

increasing life expectancy and decline of fertility throughout the world, which can be

described as population ageing. For example, in 2015, 12% of the world population was

comprised of people aged 60 or above with a growth rate of approximately 3% per year

[7]. By 2030, the number of older people in the world will be about 1.4 billion, and by

2050 it will be 2.1 billion. This means that by 2050, roughly 25% of the population

throughout the world (except Africa and some particular regions) will be aged 60 or

above. Figure 1.1a shows the age world, major continents, region and Iraq population

distribution in 2015, it is obvious that the percentage of people aged 60 or over is 12%

of the world people, persons aged 15-59 are 62% and people aged 15 years and under

are 26% [2]. Whereas, figure 1.1b

shows the expected age population distribution for the same places for 2050, where the

high percentage of the older adult in this year can be seen [2]. The increasing number

3



1.2. Medical health and ageing issues

(a) For year 2015

(b) For year 2050

Figure 1.1: Percentage of total population by broad age group, both sexes (per 100
total population) of the world, major continents, regions and Iraq. Figures created
using United Nation data [2]

4



1.2. Medical health and ageing issues

of older people means a rise in the number of people needing healthcare. For example,

in the UK about one-third of older adults have at least one fall a year with a risk of

having injury with potential for broken bones [12]. In addition, it can result in other

problems, for example, the individual losing confidence and feeling like he/she has lost

his/her independence.

1.2.2 Healthy ageing

In addition to the population ageing effects on healthcare, premature death and in-

creasing rate of mortality may occur because of a number of reasons. According to a

World Health Organisation (WHO) report for recommendations on physical activity

for health, one of these reasons is physical inactivity which has been recognised as the

fourth primary risk factor in general health [13]. The report shows that physical inac-

tivity results in more than three million deaths each year, which means it is responsible

for 6% of global mortality, following hypertension (13%), tobacco (9%) and high blood

glucose (6%).

In addition, the report shows that the level of lack in physical activity is growing

globally with dangerous consequences for the public health and for the spread of non-

communicable diseases (NCDs), and with risk factors such as overweight, raised blood

pressure and increased blood sugar. Another WHO report [14] shows that approxi-

mately half of the total worldwide disease burden was considered as NCDs. It estimates

that the burden of roughly 30% of ischemic heart disease, 27% of diabetes and 25% of

breast and colon cancer have been principally caused by physical inactivity. Further-

more, it gives an estimation that six out of every ten deaths are due to NCDs. The

implications of physical inactivity affect all age groups, even children.

The overall conclusion, which confirmed by scientific evidence (WHO [13]) for the age

group 5-17 years, points out that essential health benefits for children and youth could

5



1.3. Objectives and challenges

be provided by physical activity. Janssen [15] and Janssen et al. [16] suggested that

approximately one hour of varied (moderate and vigorous) intensity physical activity

per day could sustain healthy cardiorespiratory and metabolic risk profile for adolescents

and children [17]. Sofi et al. [18], Cook et al. [19] and Warburton et al. [20] found

a direct link between physical inactivity and metabolic health, including increasing of

the risk of diabetes and metabolic syndrome. They recommended that for adults aged

18–64 years, spending of at least 150 minutes per week of moderate-intensity physical

activity can improve cardiorespiratory fitness and reduce the risk of coronary heart

disease (CHD), cardiovascular disease (CVD), stroke, and hypertension. Moreover,

WHO states that for both age groups 18–64 and older aged 65 and above substantial

health benefits gained by regular physical activity [13].

A similar health benefit is provided by moderate or vigorous intensity physical activity

in both the above adult age groups [17]. Although additional health benefits are related

to higher levels of physical activity, suggestions based on evidence that engaging in

physical activity above 300 minutes per week results in a decreased marginal benefit of

moderate intensity activity and increasing injuries risk for older adult’s age group [13].

These factors cause a major impact on healthcare costs [9]. Thus, it is necessary to

monitor and assess the physical activity of the individuals and find successful approaches

for achieving that.

1.3 Objectives and challenges

The objective of the research conducted for this thesis is to accurately classify human

activities of daily living (ADL) from data collected by residential healthcare wearable

sensors, such as being developed by SPHERE, by reducing the complication of clas-

sification that depend on statistic operations and invest the dynamics in the human

body postures and movements for this purpose. There are many research challenges
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1.3. Objectives and challenges

in this area, including: individual privacy concerns, data storage and processing. This

section highlights in more detail the research challenges and the corresponding research

questions identified as the focus for this thesis.

• Extract of useful features from the wearable sensors data. A wearable

sensor used for monitoring an individual’s health status can generate a wealth of

data. This data is complex, difficult to interpret and it can not be used directly

by the person, carer or clinicians. Detecting, recognising and analysing of human

activities from this sensor data would provide more useful information for these

individuals. The knowledge obtained in real-time can be used to direct decision

processes related to health and well-being.

Existing works have demonstrated how to use a vast number of features extracted

from wearable sensors to recognise human activities. This results in highly com-

plex classification methods with high time and power consumption. To determine

if it is possible to find significant features that can reduce the amount of data be-

ing processed and help the classification algorithms to achieve good classification

accuracy is a current research challenge. That can be formulated as the first of

three research questions:

What are the key significant features in accelerometer sensor data that help to

achieve high classification accuracy?

• Invest the dynamic characteristics in the data. Building a real-time system

to recognise and analyse, thus can monitor the health status of the individuals,

is an important need to indicate emergency situations such as falling and send

appropriate help. Creating such a system can be achieved by using a method that

considers human movements as a dynamical system. Exploiting the dynamics of

human movement in the accelerometer sensor data have been poorly investigated

previously. The challenge here is to find the viability of a time series approach
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to classifying human activities using accelerometer data. This challenge can be

expressed as the second research question:

Could a time-series method be applied to classify human activities using accelerom-

eter data?

• Specify the best position of the sensor on the person body. A health

monitoring system that is based on wearable sensors needs to be attached in

some way to the individual in order to monitor his/her current health status and

to analyse a long term data to discover any changes in his/her health. Using many

wearable sensors would be inconvenient which may make the system inapplicable.

It is important to find if it is possible to use only one or a few sensors to recognise

human activities accurately and to find the best location on the human body that

enables the sensor(s) to collect significant data. This challenge can be expressed

as:

Can one wearable sensor recognise human activities in high accuracy and what is

the best location for the sensor on the human body?

1.4 Contribution to knowledge

The contributions to knowledge for this thesis follow on from the research challenges

identified and the formulation of associated research questions. These contributions

are:

1. A model-based approach to movement classification. This thesis explored two con-

cepts, the first was that of updating and matching a model of the movement to a

database of previously recorded models. The second was to measure the predictive

power of a database of previously stored models. Both approaches would allow models

to both identify changes to movement patterns, and adapt to movement patterns.

2. A new approach to processing accelerometer data based on the idea that these
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sensors measure both the person’s movement and acceleration due to gravity. This

allows features to be identified with respect to a ‘gravity sphere’ where postures become

simply areas on the sphere and movements are considered with respect to the surface

of the sphere.

1.5 Publication

A paper was published in Expert Update (2017), SGAI Workshop on data stream

mining techniques and applications [21].

1.6 Thesis structure

An outline of the structure of this thesis is given here to facilitate navigation of the

document.

Chapter 2 considers wearable sensors in healthcare. Two areas are considered: sensors

to identify movement, and sensors to monitor physiological signals.

Chapter 3 outlines the machine learning and pattern classification techniques used in

this thesis as well as some important techniques that could be used to extend this work.

Chapter 4 outlines the dynamical systems approach that forms the basis for the model

matching (MM) and the prediction measuring (PM) methods concepts explored in this

thesis.

Chapter 5 identifies the gravity sphere as a key concept in processing accelerometer data

and shows some ways this approach can be used to identify movements and postures.

Chapter 6 identifies the concepts of the model matching (MM) and the prediction

measuring (PM) methods for movement classification.

Chapter 7 gives conclusions and presents further possible areas for research.
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Chapter 2

Monitoring of Human Activities for

Healthcare Purposes

To live a healthily and actively life or at least to fulfil activities of daily living (ADL), a

human needs to achieve certain physical activities in various scales. Thus, monitoring

human physical activities is essential for assessing both patients and healthy individuals

to determine their well-being needs. These ADL may include lying, sitting, standing,

walking, stairs ascending, stairs descending, running, cycling, housekeeping, eating,

chatting, watching, etc.. Every one of these activities could be taken in further detail

to consider each aspect of daily life and professional activities. Furthermore, gaining

knowledge about the ordinary tasks of a person is conjectured to be key to treat dis-

orders in the human body. Some of the essential information could be provided from

laboratory investigations such as video tape, clinical gait and audio-visual recordings.

However, these examinations may miss a substantial amount of valuable data. Wear-

able sensors can be used as an alternative to clinical gait lab data collecting in both

health and disease situations, and for different activities in various environmental con-

ditions. A key benefit is the data collected in the context of activities for daily living.

Thus, monitoring of human physiological activity might help patients with cardiovas-
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cular, neurological or pulmonary diseases, for example, cardiac insufficiency, high blood

pressure, Parkinson’s, epileptic seizures, asthma [22][23]. If detailed analysis of sensors

worn in an everyday context can be done successfully, then abundant benefits could be

gained for persons, family members and for the healthcare systems by using home-based

recordings of human activity.

This chapter reviews the literature related to exploiting wearable sensors to detect ADL

in a residential environment for healthcare purposes. The focus will be on the inertial

measurement units (IMU) which are considered the most commonly used sensors to

achieve this purpose [24][25]. Video cameras and ambient sensors used for human ac-

tivity recognition are not considered in this review as they do not allow easy collection

of ADL activities in the home context.

2.1 Wearable sensors

Although there are many types of sensors that are used to gather information for

different purposes, over the last two decades there has been growing interest in studying

and utilising sensors to collect data related to human health. Monitoring of human

activities and physiological parameters has to be achieved with sufficient accuracy and

through a sustained time period so that important events such as falls, stumbles, near

falls or unusual gait conditions can be recorded. Rapid development in microelectronics,

micromechanics, and other technologies have yielded non-invasive sensors providing fast

and accurate measurements and requiring lower power consumption. These sensors,

which consider the primary element of monitoring systems, help in satisfying the above

necessities.

Various types of wearable sensors can be used for measuring human activities. These

sensors will be considered in three categories: bio-metric sensors, motion sensors and

environmental sensors. In the context of this thesis, the following taxonomy will be as-
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sumed. Bio-metric sensors are used to measure physiological signals such as heart rate,

blood pressure, blood oximetry, respiration, galvanic skin response, heat flux, hydration

level, blood sugar, perspiration, or muscle activation (e.g. using mechanomyography

(MMG) or electromyography (EMG)). Motion sensors are used to capture individ-

ual movements, in particular inertial sensors including gyroscopes, accelerometers, and

magnetometers can capture a set of parameters related to movements. Inertial mea-

surement units (IMUs) can be used for biomechanical modelling and can be made for

9 degrees of freedom (DoF) tracking by merging a tri-axial accelerometer, gyroscope,

and magnetometer. Finally wearable environmental sensors are assumed to measure

parameters such as temperature, light, or pressure changes.

In order to use wearable sensors in a practical way, it should meet a number of important

principles. They should be reliable, easy to use, non-invasive and provide accurate and

relevant feedback to the user in an appropriate and easy-access format [26]. The sensors

can be worn as accessories, clipped or combined into shoes or clothing, and/or attached

directly to the person’s skin using a clip, belt, strap or adhesive material. Significant

advances have been achieved in sensors technology in the last ten years such as micro-

elector-mechanical systems (MEMS) and physiological sensors [27]. Low power wireless

communication feature enables this new technology to be used as wearable devices

without a need to consider the restrictions of wires, recharging and data storage.

2.1.1 Bio-metric sensors

The healthcare literature reports that in order to determine the clinical disorder, various

sets of important vital signs should be monitored. The five vital signs that are the most

significant to be assessed are heart rate, blood pressure, respiration rate, blood oxygen

saturation and body temperature. Continuous monitoring for these signs could be made

to evaluate individuals’ health especially the individuals with chronic health-related
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conditions (e.g. Parkinson’s disease, strokes, COPD (Chronic Obstructive Pulmonary

Disease), frailty, etc.).

Additional vital signs can be added to the previous one, such as the glucose level, urine

output, pain, level of consciousness, capnography (to assess ventilation), and stroke

volume (to assess heart performance). According to Ahrens [28] and Coventry [29],

Changes in patient’s physiology could be accurately recognised by combining all of the

previous vital signs.

Different types of wearable sensors are used to monitor these vital signs. Integral

analysis of all these data streams could be effective for better management of the disease

conditions. Each one of these wearables could be used to gather data of one sign or a

number of signs as discussed in the following subsections.

2.1.1.1 Electrocardiogram (ECG)

The ECG is important to analyse the heartbeat rhythm and to predict acute myocardial

infarction and coronary events. The ECG’s waveform analysis takes a key role in

the identifying of cardiovascular diseases (CVD), including: atrial fibrillation, angina,

arrhythmia, atherosclerosis, congestive heart failures (CHF), coronary artery disease,

heart attack, bradycardia and tachycardia [30, 31].

Wearable devices that used for medical purposes and ECG monitoring have an advan-

tage which is the improvement of early detection of atrial fibrillation. That’s because

of continuous monitoring for a long period compared with Holter (Holter monitor is a

device used to track heart rhythm by attaching it to the patient chest. For example it

might be connected for one day, two days, or a week on a yearly basis).

Currently, Ag/AgCl electrodes are commonly used to transform the heart ionic current

to electron current in wires. They characterized by reliability, compacting and low cost.

However, because of their wet component and adhesive attributes, skin irritation can

be caused. In addition, the contact between the electrode and the skin may be reduced
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during long periods of monitoring as a result of gel dryness. Holters are generally

used for long monitoring, their main drawback is the interruption of patient daily life

routine. Dry electrodes and fabric embedded electronics using different materials have

been developed to work around this problem [32, 30]. Human sweat is used by these

electrodes to sustain contact with the skin rather than conductive gel. Although this

type of electrodes does not cause skin irritation, they are not consider as clinically

acceptable for now due to their not adhesive property which affects, with motion, the

accuracy of the measurements. Because motion can change the external pressure which

results in affecting the electrode contact with the skin.

A dry, flexible and stretchable sensors has been developed by Luo et al. [33] that

overcome skin irritation and to decrease the noise caused by body motion, which still

needs to be used inside the medical environment as it is attached to the skin.

A non-contact capacitive electrode is another type of ECG sensors. Aleksandrowicz and

Leonhardt in [34] reported that these devices have the ability to collect the ECG signals

without contacting the skin directly, but they are affected by movement artefacts,

compared to traditional electrodes.

2.1.1.2 Heart rate

Heart rate is a typical vital sign and it has become a fundamental measuring in human

healthcare, fitness and sports activities. By monitoring this sign, important information

about human physiologic status can be provided. Simply, ECG and photoplethysmog-

raphy (PPG) signals can be used to extract this vital signal [35].

Both of these physiological signals contain comparable heart rate information, although

they belong to different physiological sources and have dissimilar morphologic informa-

tion. Simple, but not necessary reliable, PPG have become more common with the

introduction of wearable devices such as the Apple Watch.

Ballistocardiogram (BCG) [36] or inertial sensors [37] are other methods to monitor
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heart rate. However, the heart rate extracted using these ways do not have functional

measurement comparing with ECG and PPG.

As a simple indicator of the cardiovascular system status, the analysis of heart rate

variability is gaining vast attention. In addition, it is an indicator of the individual

psychophysiological status as it may be used to detect fatigue, stress or anxiety mea-

surements [28, 38].

2.1.1.3 Blood pressure (BP)

It is a significant cardiopulmonary parameter, which points out the pressure applied by

blood against the arterial wall. Information about the blood flow and cellular oxygen

delivery can be provided indirectly by BP. Cardiovascular diseases prediction can be

improved by measuring the blood pressure several times a day using ambulatory BP

monitoring, especially for patients who have high blood pressure which considers the

most threats to the global burden of diseases [29, 39].

Using the traditional methods for measuring blood pressure continuously could lead

to undesirable side effects, such as skin irritation, sleep disruption and stress level

increasing. New technologies have been developed to solve this issue [32]. Recently, an

experimental watch-type prototype has been proposed by Woo et al. [40] as a wearable

device giving a real-time monitoring blood pressure continuously using a pressure sensor

near the radial artery, providing a precise measurement on a smart-phone.

In general, direct blood pressure measurement is unlikely to be feasible in practical

wearable sensors. However, it is likely that blood pressure can be modelled by combining

data streams such as ECG, respiration and inertial data.

2.1.1.4 Respiration rate

Respiration rate is considered an essential physiological parameter in a patient’s moni-

toring. Assessing of respiration rate provides accurate and key health information in a
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number of cases as in acidosis [29]. It is very important to use ambulatory monitoring

of respiration rate to detect respiratory diseases symptoms, i.e sleep apnea, asthma

and chronic obstructive pulmonary diseases; and in improving the administration of

the treatment. This continuous monitoring is especially important for children who

have a pulmonary disease [29, 35]. A better respiration performance can be achieved

particularly for the athletes by analysing their respiration rate data [29, 35, 38].

Normally, This vital sign is estimated from the acquired respiratory waveform that re-

flects the chest volume difference during the breathing. Currently, there are three main

methods to obtain the respiration rate: elastomeric plethysmography (EP), impedance

plethysmography (IP) and respiratory inductive plethysmography (RIP). Using an elas-

tic belt, the EP method transforms the current difference of piezoelectric sensors in to

voltage. A prototype garment was developed by Guo et al. [41] to measure accurately

the volume change of chest and abdominal using a piezoresistive fabric sensor. The IP

technique is based on impedance changes of the chest surface because of expansion and

contraction of the breathing process. A uniform vest has been developed to be used

for soldiers, using this technology [42]. The RIP method depends on a magnetic field

generated by a wire loop with a suitable current. An opposing proportional current

will be created in a second loop due to the chest volume difference changing the area

enclosed by the loop [43].

In addition to these three main technologies, there is a number of techniques to calculate

the respiratory waveform, such as using accelerometers [44], optical fibres [45], polymer-

based transducer sensors [46], got from the ECG signal [47], derived from pulse oximetry

[48], etc. A review has been made by Al-Khalidi [49] about the technique used to assess

respiration rate. This review referred to several methods that are not applicable to be

exploited in wearable devices, for example using acoustic methods or infrared cameras.

Recently, a polymer called Polypower is using to gather the respiration rate. When this

polymer stretched in one direction it will change its electrical attenuation. Tognarelli
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et al. [50] are using this method to acquire the chest volume difference, presenting the

potentiality of dielectric active polymer in this area [50, 51].

2.1.2 Inertial measurement units (IMU)

Inertial sensors sense the object’s linear and angular acceleration, possibly linking these

to the earth’s magnetic field. Most of them sense the acceleration in three orthogonal

axes. Therefore, they can be exploited in measuring complicated applications with

significant accuracy [52]. Commonly available inertial sensors types now include gyro-

scopes, accelerometers and magnetometers, which used to measure the angular velocity,

acceleration and magnetic fields, respectively [19]. Each of these measurements is up

to three orthogonal axes. By merging a tri-axial gyroscope, accelerometer, and magne-

tometer inertial measurement units (IMUs) can be made for 9 degrees of freedom (DoF)

tracking. By this, they can be used to measure the full kinematic mobility. However,

these measurements are subject to noise and often involve an offset that complicates the

process of integrating the acceleration measurements to estimate position and angle.

Generally, an accelerometer is a device which senses differences in acceleration. Fig-

ure 2.1 depicts the three major elements of a simple accelerometer. An accelerometer

sensing element is a mass, made of some sort, which affected in response to an accel-

eration vector. A spring is holding the mass in its resting position and a displacement

transducer is used to measure the mass movement amount according to an applied ac-

celeration.

Figure 2.2 depicts a diagram which illustrates the mechanism of sensing differences in

acceleration in MEMS accelerometers. In this figure, the sensing element (mass), which

is made of a deposited polysilicon layer, is simply a backbone that has fingers extended

from it and is suspended by elastics at both sides. The elastics ends are attached to

underlying silicon stanchions which act as the anchor points. Fixed plates (electrodes)
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Figure 2.1: A diagram of a basic components of a simple accelerometer.

are attached to the anchor points as well, which act as the displacement transducer.

The elastics provide the spring function that showed for the simple accelerometer of

figure 2.1.

In these sensors, the scale of mechanical elements was reduced to microelectronic scale

by utilizing microelectronic processing techniques [53]. Therefore, a single chip of

MEMS can contain both the mechanical sensor components and their associated signal

processing electronics. These sensors comprise one fixed plate and one mobile plate.

The fixed plates remain stationary within the device, while the mobile plates connected

with flexible structure which hold a mass between them. When the mass experiences an

acceleration, it will respond with a force according to Newton’s third law (f=ma). This

force is exerted on the springs and the mass moves proportion ally to the acceleration.

This will result in a difference in the distance between the mass movable plate and the

external fixed plates. These external plates act like a capacitor.
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Figure 2.2: A diagram of a MEMS accelerometer showing mass and flexible beams as
its basic components.

If these plates are driven with an alternating voltage, a change in capacitance propor-

tional to the plate separation can be measured and will be proportional to the difference

in the distance between them. This capacitance change is measured by electronic cir-

cuitry. The output of this circuitry will be the acceleration measurement.

IMUs have been exploited for applications in a substantial number of domains, for ex-

ample automotive [53], aerospace [54] and crash testing [55]. However, as the IMUs

are to be employed in recognition and analysis of ADL and human activity recognition

(HAR), section 2.2 will be focused on the use of inertial sensors for human monitoring.

2.1.3 Environmental sensors

Environmental sensors are used to sense the subject surroundings which related signif-

icantly to human body monitoring in several aspects. The commonly used sensors are
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light, temperature, humidity, sound, and air pollutants.

The human body is subjected to the influence of its outdoor environment during daily

activities, sport or rehabilitation exercises. This influence should be monitored with

environmental sensors to examine the ambience characteristics that the individual is

subjected to, for example, the temperature and the humidity are essential to assess

dehydration [56]. In an indoor environment, it is easy to estimate the individual’s

metabolic rate using environmental sensors because of the non-contribution of exterior

influences. Jin et al. [57] have shown that a number of daily indoor activities could be

recognised by measuring temperature, light and humidity patterns.

Furthermore, these sensors can be used to evaluate the quality and quantity of sleep

by collecting temperature, sound and light data. For instance, by joining the inertial

sensor with a sound sensor it is possible to assess sleep disorders especially for people

who live near airports [58].

Worn environmental sensors are included here for completeness but have yet to be seen

widely in healthcare or consumer applications. They are more common in hazardous

industrial applications such as monitoring the radiation dosage of people working in

the nuclear industries.

2.2 Healthcare applications using inertial sensors

Inertial sensing can be utilised in the recognition of human postures, gait and activities

such as sitting, standing, walking, running, etc. This type of sensing is exploited in

many applications. The literature in the field of inertial sensors applications is vast and

it is not appropriate to include everything here. The following subsection present the

common inertial sensor applications in the literature.

20



2.2. Healthcare applications using inertial sensors

2.2.1 Activity recognition

Activity recognition for healthcare using wearable inertial sensors has substantial appli-

cations. For example, a method for detection of behavioural symptoms of autism was

proposed by Minnen et al. [59]. High-level behaviours were detected from low-level ac-

tivities by using three microphones and two accelerometers placed on the participant’s

body and recording the data by an on-body data-logging computer. The researchers

used simple classification routines to good effect. Although three microphones, two

sensors and data logging computer were worn by a person with behavioural syndromes,

the hardware suitability for the application was not discussed.

Niall Twomey [60] achieved promising results in recognising between allergic and non-

allergic individuals using a wearable accelerometer to record the human movements and

ECG to record heart rate variability. He used a GMM classifier to recognise between

the two classes. Such an accurate and non-invasive method is very useful in comparison

with the traditional allergy diagnosis in a clinical environment that required tests such

as blood, skin or challenge test.

An approach presented by Staudenmayer et al. [61] includes data of 48 participants

conducted light, moderate and intense exercise for 10 minutes each exercise. They

achieved very good classification results. In addition, they illustrated how to estimate

the energy expenditure by accelerometer analysis. When compared their acquired re-

sults to the ground truth showed the results were competitive with other researchers,

such as Freedson et al. [62], Swartz et al. [63] and Crouter et al. [64]. The obtained

results included activities required a high level of energy, e.g basketball and racquetball.

However, a test involving such activities should not exceed 20 minutes in length, be-

cause of the metabolic response of individuals after this period could be unreliable [65].

This is because, after the body performs intense or lengthy physical exertion, various

factors will affect the metabolic response which is experienced. Thus, it is possible that
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Staudenmayer et al. [61] results might have been corrupted by this attribute, although

these results were accurate.

In the last decade with integration of the accelerometers in the smartphone, activities

assessments have become accessible for smartphone users. Energy expenditure esti-

mation is one of the research areas that investigated through accelerometer analysis.

An individual’s daily energy expenditure can be estimated using the smartphone ac-

celerometer data alone. In fact, an anti-obesity applications were associated with social

networking websites, where daily achievements can be posted as a way to encourage ex-

ercise [66]. There is great interest in research in activity-based intervention monitoring

to reduce obesity [67, 68, 69].

A comprehensive review of approaches for recognising ADL using only the mobile phone

with the integrated inertial sensor was presented by Pires et al. [70]. They show a

summary of the advantages and disadvantages of various techniques. Their conclusion

was the choice of the best approach depend on a number of factors specific to a particular

application. Bao and Intille [71] used five bi-axial accelerometers to collect data from

20 volunteers performing 20 activities. The set of activities were selected to simulate

ADL at different levels of intensity, which included reading, brushing teeth, walking

and folding laundry. The sampling rate of the accelerometers was 76.25 Hz. A semi-

naturalistic protocol and a controlled collection procedure were both used to in the

data collection. The features extracted from the accelerometer data were mean, energy,

entropy and correlation.

To achieve activities classification, Bao and Intille used Naive Bayes, C4.5 decision

trees, decision tables, nearest neighbour classifiers. They found that a decision tree

classifier achieved the higher classification accuracy with an overall rate of 84%. The

results also showed that a high classification accuracy was achieved with data collected

under the semi-naturalistic protocol comparing with previous researches done on a data

collected in a controlled environment.

22



2.3. Chapter summary

Using multiple sensors to analyse human activities is not realistic for the long term mon-

itoring as the user could find them obtrusive. A single waist-worn triaxial accelerometer

sensor with sampling rate 50 Hz was used by Wang et al. [72]. They used a hidden

Markov model (HMM) to classify data of 13 healthy participants (aged 26 to 50 years)

who performed the following set of activities: walking, standing, sitting down, falling,

jumping and running. The HMM classifier was trained on a subset of the collected data.

Various parameters were investigated and validated on the data not used for training.

The highest classification accuracy of 94.8% was achieved with 7 hidden states and 3

mixture components. In addition, the authors found that most misclassified activities

were sitting and falling which might be because sitting is similar to controlled falling

from the point of view accelerometer signal.

2.3 Chapter summary

This chapter has reviewed the literature related to the use of wearable sensors to detect

ADL in a residential environment for healthcare purposes. The advantages of wearable

sensors in collecting relevant data about human health status that could help to treat

human illness were discussed in comparison to clinical laboratory methods. Three

categories of wearable sensors were described. These were categorised according to the

type of data they collect. These categories are (i) bio-metric sensors, (ii) inertial sensors

including accelerometers and (iii) environmental sensors. The types, advantages and

disadvantages of each one of these three categories were discussed.

As this work used the inertial sensors, these were the main focus of this chapter. The

basic structure and mechanism of these sensors were described along with the domains

that they find typical applications. The investment of the IMU in human activity

recognition was discussed and the literature that used these sensors were reviewed

including algorithms and data sets.
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A key issue with previous work in this area is the reliance on arbitrary features for

classification. This thesis explores a model-based approach to decision making for

healthcare moment analysis as this allows classification decisions to be understood and

may enable other information to be derived from the classification process.
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Chapter 3

Literature on Machine Learning

and Classification

A person’s ability to achieve ADL and his/her physical activity levels are the main

indicators of his/her health and well-being [73, 74]. By monitoring these indicators,

older adults and people with chronic diseases can live independently in their home for

longer [75]. In addition, it is important to monitor human activities in a residential

environment continuously for early detection of disorders and any health issue [73, 76].

Many machine learning algorithms have been exploited to classify human activities.

This chapter reviews classification algorithms applied to the data that can be collected

from wearable sensors using healthcare monitoring systems in a residential environment.

3.1 Features based classification methods

Generally, features based classification methods can be distinguished into two main

types: supervised and unsupervised algorithms. The main differences between them

are the approach used to deal with data and the nature of the data itself. This section

describes some of the widely used algorithms of both types.
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3.1.1 Supervised classification

This type of classification needs previously classified data samples in order to train

the classifier and subsequently classify unknown data. This section provide a brief

explanation of some of the wide use supervised classification algorithms.

3.1.1.1 Decision Trees (DT)

Decision Trees or rule-based algorithms is a widely used classification method. A model

can be constructed by this method from a data set in the form of a decision tree or a

set of decision rules. The root is the starting point that is split into decision nodes.

By repeatedly splitting according to the data values, decision nodes are refining the

class prediction with each level of them. Leaf nodes are the terminals of the tree which

represent the predicted class of unknown data [77]. DT algorithms are available to

automatically generation classification rules based on the data, such as ID3 and C4.5,

although it can be created manually by experientially defining rules. Random tree,

random forest, CART and J48 are examples of other available DT algorithms. Examples

of the use of DT for human activity recognition include [78, 79, 80, 81, 82, 83, 84, 85].

3.1.1.2 Näıve Bayes (NB)

Based on Bayes theorem, Bayesian inference methods relate the prior probability of the

hypothesis, the posterior probability of the hypothesis happening given the features

and the probability of the features given the hypothesis (the likelihood). This approach

combines prior and conditional probabilities to determine the probability of alternative

classifications. It is “a method of classification that uses mathematical probability

theory to find the most likely classification for an unseen instance” [86]. NB can perform

well regardless of the assumption of its dealing with the data features independently,

which often considered as a drawback. NB classifier is a common method for recognising
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activity from sensor data [27]. The Bayesian classification was used by Atallah et al.

[87] for activity recognition from a data of an ear-worn accelerometer sensor.

3.1.1.3 k-Nearest Neighbour (kNN)

It is one of the simplest algorithms used for classification. This method classifies un-

labelled data instance according to the classification of the closest data to it. This is

achieved by measuring the distance between the unlabelled instance and the nearest

labelled instance or instances (i.e. training data) using a distance measure, e.g the

Euclidean or the Manhattan distance measurements, where k is the number of training

instance that must be considered. This results in assigning the unlabelled instance a

label of its nearest neighbour (i.e. instance). Although it is a simple algorithm, it has

been used and reported widely in literature [88, 80, 81, 89, 90, 91, 92, 93]. For example,

a comparison was made by Bicocchi et al. [91] between kNN and a number of instance-

based learning algorithms, these are IB1, IB3, IB6, DD3, DD6, CLOF3 and CLOF6,

using k=1 and a real-life activity set. They show that kNN achieved a classification

precision of about 75%.

3.1.1.4 Support Vector Machine (SVM)

SVM is one of the classification algorithms that have been widely used for human

activity classification [88, 78, 93, 83, 94]. It can be exploited for both linear and non-

linear classification applications. SVM is a binary classification method that finds a

separation between two classes.

However, SVM can be used as a classifier for a multiclass problem by performing multi-

ple binary classifications using the one-versus-all strategy [95]. Using a kernel function,

SVM can achieve mapping for feature vectors, which belong to not linearly separable

sensor data, into a higher-dimensional feature space where a hyper-plane is used to

separate them [27].
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For example, polynomial, Gaussian, radius basis function or hyperbolic tangent func-

tion are common kernels that have been used. Liu et al. [88] in their study to specify the

best configuration for the sensor for activities recognition, they found that SVM outper-

forms kNN and Näıve Bayes classifiers with 75% accuracy using a single accelerometer

attached to the hip and 88% using two accelerometers worn on hip and wrist.

3.1.1.5 Artificial Neural Network (ANN) and deep learning

An ANN is a computational model inspired by information processing in biological

systems which used to describe functions comprising of a network of simple computing

elements or nodes [96]. An ANN structure consists of multiple layers of nodes connected

by weighted links. To achieve the computation of the network output, the ANN inputs

are propagated forward through its layers. This can be achieved by: first, for each

node, finding the sum of the weights multiplied by the input value of all inputs. Then,

using an activation function (e.g. sigmoid function), the node output is calculated. The

internal linking weights are adjusted using methods such as back-propagation to train

the network. The concept of these methods is to reduce the error amount between the

actual network’s output and the target output [97].

ANN have been used widely for human activity classification and recognition, some

instance includes [79, 93, 98, 99]. Altun et al. [93], Parkka et al. [79] and Roy et al. [98]

carried out comparative studies between the ANN performance and other algorithms.

An activity recognition method achieved by Yang et al. [99] consists of two phases.

The first phase implements the classification of activities to either static or dynamic

activities and the second phase implements further detailed activity recognition.

3.1.1.6 Fuzzy logic

Fuzzy logic or fuzzy set theory is multi-valued logic with special properties which aims

via a graded method to modelling of the ambiguity phenomenon and some parts of
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the meaning of natural language. [100]. Fuzzy logic defines input data in terms of

probability, which is the probability the input data describes some attributes [101]. This

method can be used for human activity recognition using data from both ambient and

wearable sensors [102, 103]. Three main steps have been described by Medjahed et al.

[103] for the implementation of fuzzy logic. The first step is to perform the fuzzification

which implies the conversion of the data into fuzzy sets. Then the implementation of a

fuzzy inference system that contains fuzzy rules in the form of IF-THEN rule and fuzzy

set operators (including the complement, union and intersection) [101]. The last step

is to apply the defuzzification that converts fuzzy variables to real values.

3.1.2 Unsupervised classification

This type of classification is known as self-organisation. It does not require previously

labelled data samples. It looks at the structures in the data and builds models using

e.g. probability densities of given inputs. This section presents a brief description of

some of the commonly used unsupervised classification methods.

3.1.2.1 k-Means clustering

k-means is a popular clustering algorithm uses an iterative based-distance method to

update the parameters of each cluster. The object of this approach is to classify the

data according to the distance of a data point to the mean centroid of every cluster.

The training of the classifier starts by identifying k centroids, one for each cluster.

These can be selected randomly or by identifying the initial centroid according to all

of the training data and the follow centroids using the furthest data points from the

initial centroid [101]. This approach may achieve better results by picking the k initial

centroids fairly far apart [104].

The distance of the centroids from the data points is minimised by using an iterative
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process. The data points are assigned to the nearest centroid for each one of them. Then

the centroids are recalculated based on the clusters that are created. This process is

repeated until some convergence criterion have been met. After this, classification data

is assigned to the nearest centroid. k-means clustering was used by Chassemzadih et

al. [90] to define movement transcripts, which formed by representing each motion as

a sequence of basic building blocks called primitives, that used for action recognition.

Machado et al. [105] invested k-means clustering to the human activity recognition

problem using accelerometry successfully predicting activities with an accuracy of 99%

and 89% for the person dependent and independent cases respectively.

3.1.2.2 Gaussian Mixture Model (GMM)

GMM can be considered as a parametric classification method which modelling the

probability distribution of continuous measurements or features. GMM is comprised of

a weighted sum of Gaussian distributions which could be trained using example data

by an algorithm such as expectation maximisation (EM) [82, 106].

For each class, a GMM should be trained. Then, the determination of the new data

class can be done by finding the GMM that have the highest likelihood of producing the

data. Allen et al. [82] used GMM to monitor old adults by recognising their postures

and movements using a single accelerometer data, comparing it to a rule-based Heuristic

system performance. Wang et al. [106] used GMM for the classification of five different

human gait patterns, achieved an overall classification error rate of 4.88%

3.1.2.3 Topic models

Topic models are a machine learning technique whose original purpose is to help the

understanding of large corpora of text. By using a generative statistical model known

as latent Dirichlet allocation (LDA), Topic models are used to discover hidden thematic

patterns in a data set. They have been used in the discovery of routine behaviours,
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e.g. lunch, from activities such as queuing and eating, as showed by Huynh et al. [107]

and White [108]. The stability of topic models’ performance for the discovery of daily

routine was further investigated by Seiter et al. [109]. They achieved that by varying

the attributes (the duration of routines, amount of data and specificity of routines)

of simulated data sets according to the original data collected by Huynh et al. and

identifying optimal values of data set properties desired to obtain robust performance.

3.2 Sequence classification methods

In general, an ordered list of events is called a sequence. An event can be represented

as a numerical value, a symbolic value, a vector of values or a complex data type. One

of the sequence data types is time series which is an order of real values sequenced

according to a timestamp [110].

Sequence classification has been used in a wide range of application such as detec-

tion and recognition, health informatics, information retrieval, genomic analysis, and

finance.

This section locks at less obvious methods for classification and presents a brief expla-

nation of some of these methods.

3.2.1 Kalman Filter (KF)

KF is a widely used statistical state estimation algorithm. A system state estimates

can be determined based on a recursively applied estimation and update algorithm,

and the current system state is based on the system state at the previous time interval.

One of the main advantages of KF is that it requires Little computational power [111].

The common usage of KF is for real-time tracking applications [96, 111].

Usually, KF is used to fuse accelerometer and gyroscope data to supply better predic-

tion; for example, the use of KF in the detection of postural steadiness during quiet
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standing (e.g. standing in one spot without doing any other activity)[112]. KF has the

potential for being used as a classification method on time sequence data by considering

the errors from a family of KF models.

3.2.2 Markov chain

Markov chain is the simplest form of Markov model (Markov model is a random process

model). It is a stochastic process defining a sequence of possible events according to

Markov property, which implies that the probability of each event is determined only

by the state attained in the previous event [113]. This means to find the best possible

estimation for a process future state there is no need to know additional information

about the process past state if its current state is known.

This characteristic results in reducing the number of parameters required for studying

such a process [114]. When the state of a process is only partially observable the Markov

chain will be called hidden Markov model. Markov chains are widely used to model

many real-world processes. Ronao and Cho [115] proposed a two-stage hidden Markov

model framework to recognise human activities using data collected from smartphone

sensors. Their method achieved a classification accuracy of 93%. However, this method

adds a computational complexity which results in consuming the mobile phone battery.

3.3 Chapter summary

This chapter has reviewed the literature related to the classification algorithms ap-

plied to the data that can be collected from accelerometer-based wearable sensors using

healthcare monitoring systems in a residential environment. Machine learning algo-

rithms were classified into two types: features based classification algorithms and se-

quence classification algorithms.

Most of these algorithms depend on extracting and use a number of features from the
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data. In addition, these algorithms use 50% or more of the data set for training which

results in a more time-consuming process. Furthermore, the main issue with the previ-

ous classification work is dealing with the data without looking to the underlying cause

of it.

This work extracts a small number of significant features from the data set to reduce the

time required for the classification process. The research also explores a model-based

approach for classification of human activities which may allow classification decisions

to be understood and may enable more information to be derived from the classification

process. In addition, the proposed method uses 15% of the data set for training which

reduces the amount of the time required for the training process.
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Chapter 4

Dynamic Systems

4.1 Introduction

Extracting useful information from a large amount of data, such as the data gen-

erated by wearable sensors, can be challenging. Machine learning algorithms offer

significant tools for detecting and recognising activities and finding patterns in data

[27, 110, 116, 117]. However, these algorithms do not consider the strong relationship

between physical activity and the dynamic constraints on movement. There is a need

for a fast, real-time and accurate approach to measuring human physical activities and

performance when using wearable sensors data and using this data as part of a process

of activity classification. To benefit from this approach, it is reasonable therefore to

consider humans as a dynamic system.

A potential approach is by learning their dynamic features as a ‘system identification

task’ and using the learned model both to predict future movements, and to classify

activities. In the last two decades, there has been considerable work done on detecting,

tracking, classification and recognition of human activities using camera data [118] and

worn sensor data [27].

This chapter introduces the background theory on dynamic systems, with a focus on
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system identification that underpins the remainder of the work presented in this thesis.

4.2 Human movement representation

Human movement can be considered as a network of dynamic elements such as mass,

muscle stiffness, and joint viscosity. There is much interest in dynamic human mod-

els as a method to understand human movement [119] but less work on model-based

movement classification. Humans are nonlinear systems, but for simple movements the

dynamics can be modelled in a linear form as for example:

mÿ + bẏ + cy = f(t) (4.1)

where m, b and c are constants loosely relating to mass, damping and stiffness, while

y is the resulting position parameter, t is the time instance and f is the force. For

this explanation f(t) can be set to 0 in the absence of an external force effecting the

movement, so

ÿ = − b

m
ẏ − c

m
y (4.2)

As the work performed in this thesis used an accelerometer sensor data, the acceleration

(ÿ) is ’predicted’ by the velocity (ẏ) and position (y). This concept forms the basis for

chapter 6. However, data is collected as a sequence of measurements and it is possible

to show that a sampled version of this type of simple dynamic system is

yn = −a1yn−1 − a2yn−2 ... − anayn−na

where ai are constants. This thesis must consider first that the system is not linear and

second that acceleration measurements are in 3 axes, that is in the Cartesian x, y, z

directions.
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A simple extension is to consider simple polynomials, so models considered in this thesis

will be of the following form:

xn = −a1xn−1 − a2xn−2 ... − d1x
2
n−1 − d2x

2
n−2 ...

−b1yn−1 − b2yn−2 ... − e1y
2
n−1 − e2y

2
n−2 ...

−c1zn−1 − c2zn−2 ... − f1z
2
n−1 − f2z

2
n−2

4.3 A digital signal processing approach

4.3.1 Filter form

In signal processing, a filter is a process where data from the input (for example sensors)

is computed; based on a limited set of past values, sometimes called the window length.

The most common way of setting out the filter is the linear time invariant filter. Linear

because scaling the input scales the output by the same amount. Time is invariant

because results do not have an explicit absolute time, only times relative to the current

output are considered.

Assume linear time invariant filter:

yp = 1
a0

(
N∑
k=0

bk up−k

)
− 1

a0

(
M∑
k=1

ak yp−k

)
(4.3)

The operator q−1 can be used to simply delay the variable by one-time step, and likewise,

the operator q will advance time by one-time step. Most work on filters treat the q

operator in the same way as the z-transform. In practice, the q−1 operator simply

represents storing the variable that is part of a for loop so it can be used on the next
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cycle of the loop. So, equation 4.3 can be written as:

a0 yp =
N∑
k=0

bk q
−k up −

M∑
k=1

ak q
−k yp (4.4)

By expanding the summations, the filter form can be got.

(
a0 + a1q

−1 + a2q
−2 + · · · aMq−M

)
yp =

(
b0 + b1q

−1 + b2q
−2 + · · · bNq−N

)
up (4.5)

a0yp + a1yp−1 + a2yp−2 + · · · aMyp−M = b0up + b1up−1 + b2up−2 + · · · bNup−N (4.6)

Equations 4.3 and 4.4 could be equally well expressed as z-transforms. The choice of

values for the parameters a and b are considered either as part of a filter design, or are

estimated using system identification methods discussed in section 4.5.

Non-linear versions of these filters are commonly used to calculate features for machine

learning methods. Calculations may have some relationship to the underlying system,

for example calculating the standard deviation over the window period, but more often

are simply chosen for their ability to discriminate data within a particular data set.

4.3.2 State space

In some circumstances, it is useful to consider a dynamic system in its state-space form.

It is possible to show that the filter defined in equation 4.3 can also be expressed in

a state-space form. The q operator, discussed in the previous subsection, can also be

applied when considering a state space, but in this case, represents the value of a vector

of states during the previous iteration of the for loop.

General definition of a dynamic system in state space is:

ẋ = f(x) + v or ẋ = f(x, u) + v (4.7)
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Where v is a vector of noise.

Linear dynamic systems (filter form):

ẋ = A x + B u + v (4.8)

Equations 4.7 and 4.8 represents a continuous time system, for example the position,

velocity and accelerations of a person’s centre of gravity. Once data has been measured

by the accelerometer, gyroscope or other sensors, it is only available at discrete points

in time.

4.3.2.1 Linear form of the (discrete) state space equations

The linear form of the sampled data state-space equations can be written as

xn+1 = A′ xn + B′ un (4.9)

where A′ and B′ are matrices. The state vector xn+1 either contains yn+1 or can be

used to calculate yn+1. Like the filter form in equation 4.3, the state space sampled

equation can be expressed in discrete form as:

xn = A′ xn−1 + B′ un−1 (4.10)

Using the q operator the equation 4.9 can be written as qx = A′x + B′u, and by

multiplying by q−1 results x = A′q−1x+B′q−1u, which on implementing the q operator

becomes equation 4.10
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4.4 Dynamic models of type y = ϕTθ

This formulates the data prediction of yn based on data up to and including yn−1. The

concise form of the filter equation 4.3 is thus

yn = ϕTnθ (4.11)

Where ϕTn = [yn−1 yn−2 ... yn−m] and θ = [a1 a2 ... am].

θ thus is a model of the dynamic system.

This form of the equation is common in a systems identification approach to system

modelling.

4.5 System identification

Systems are objects that can be studied, controlled and affected their behaviour by

the human [120, 121]. To achieve these tasks, it is necessary to have a model of the

system. The model is the knowledge of the system’s characteristics. A model could be

given in different forms, e.g verbal, graphical or mathematical form. The mathematical

model can be constructed in a way called system identification, which is the field that

uses experimental data for modelling dynamic systems. Figure 4.1 depicts a simple

structure of a dynamical system. Where u(t) is a control input to the system, v(t) is

uncontrolled input and y(t) is the system output that can be measured and provides

information about the system. In a dynamical system, the input at time t will affect

the output at time instants s > t. Note previous values of y and u are available within

the system as indicated by equation 4.3

The following section will present one of system identification algorithms which will be

considered in chapter 5 for human activity classification purpose.
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Figure 4.1: A dynamical system with input u(t), output y(t) and disturbance v(t),
where t denotes time.

4.6 Recursive least square algorithm with a forget-

ting factor (RLSF)

RLS is the recursive form of the least-squares regression algorithm. To model the

observed system, RLS algorithm takes each new data point in account to correct the

previous estimation of parameters from some linearized correlation thought [122]. This

approach allows for the dynamical application of least squares to time series collected

in real-time [122]. The classic RLSF algorithm is expressed in the following equations

[123][124]:

θ̂(n) = θ̂(n− 1) + K(n) ε(n) (4.12)

ε(n) = y(n) − ϕT (n) θ̂(n− 1) (4.13)

K(n) = P (n) ϕ(n) = P (n− 1) ϕ(n)
λ + ϕT (n) P (n− 1) ϕ(n) (4.14)

P (n) = 1
λ

(
P (n− 1) − P (n− 1) ϕ(n) ϕT (n) P (n− 1)

λ + ϕT (n) P (n− 1) ϕ(n) (4.15)

Where θ̂(n) is the model parameter vector at time instance n. θ̂(n − 1) is the model

based on past information. ϕ(n) is a vector of input values. ε(n) is a prediction error,
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which is the difference between the measured output y(n) and the one step ahead

prediction ŷ(n) made at time (n− 1).

ŷ(n|n− 1, θ̂(n− 1)) = ϕT θ̂(n− 1)

K(n) is a weighting factor that shows how much the different elements of the parameter

vector will be modified by the ε(n) value. λ is the forgetting factor which is added to

the RLS to reduce the effect of the previous inputs and give more priority to the new

input. The algorithm needs to initialise values for θ̂(0) and P (0). It is preferable to

initial θ̂(0) = 0 and P (0) = LN × I, where LN is a large number and I is the identity

matrix.

Figure 4.2 depicts a visualisation of the estimation process. In this figure, an estima-

Figure 4.2: A visualisation of an iterative process of recursive estimation in which an
update mechanism is used to adjust model parameters. This mechanism computed
from a measure of the quality of the model which is, in this model, is indicated by the
error ε(n), redrawn from [3].
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tion ŷ(n) of the current output could be obtained using the model based on previous

information θ̂(n− 1). By comparing this estimation with the observed output y(n) an

error ε(n) will be generated. This, in turn, gives an update to the model by correcting

θ̂(n − 1) to the new value θ̂(n). The recursive ‘predictor-corrector’ structure permits

considerable saving in computation.

Instead of recalculating the least-squares estimation in its entirety, which needs storing

of all previous data, it is both efficient and suitable to solely store the ‘previous’ estimate

calculated at time n, that is θ̂(n), and by involve the new observation only in the

updating step the ‘new’ estimates θ̂(n+ 1) will be acquired. This approach allows us to

build the best representation of the data models for use in the proposed model-based

methods illustrated in chapter 6.
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Chapter 5

Mapping acceleration data to a

sphere to extract relevant features

for human activity classification

5.1 Introduction

A considerable number of methods have been investigated in the literature for ADL

classification using different types of algorithms, as was described in section 2.2.

Many data sets relating to human activities were collected globally [1, 24, 125, 126,

127, 128].

However, the availability, nature and quality of these data sets highly varied. There is a

substantial need for a real data set to be publicly available. However, this is not always

possible because there may be many restrictions. To collect such a data set, it could be

expensive and difficult. In addition to this, there can be ethical constraints to make the

data publicly available. The availability of such a data set would provide a chance for

researchers to validate other’s work, expand it, and perform direct comparisons between

the performances of various methods [1, 129].
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The most important part that the method efficiency depends on is the features extracted

from the data set. Extracting useful features that increase the efficiency of classifications

algorithms is one of the objectives of this chapter. It describes the extraction and

implementation of new features and comparing the result with the work of state-of-art

methods.

This chapter is an expanded version of the work published in [21]. All the experiments

achieved in this chapter and chapter 6 were coded in MATLAB R2018 and run on a

PC machine with an Intel core i5 6200U, CPU 2.4 GHz and 8 GB RAM.

5.2 Data source

Two data sets were used for this work. The first data set is from the EPSRC funded

SPHERE project lead by the University of Bristol, which will be discussed in section

5.2.1. The second data set is a public data set from Fredrick-Alexander University,

which used to compare method of this work with other methods in the literature. Both

data sets will be described in the following subsections.

5.2.1 SPHERE research project data set

The SPHERE research project (http://irc-sphere.ac.uk) aimed to deploy, collect and

analyse data from a range of sensors (including cameras to identify only a person’s

profile, environmental sensors measuring room occupancy, energy and water usage, and

room temperature and wearable inertial sensors) in 100 residential homes in the Bristol

area.

Funded by the EPSRC, SPHERE was a 5 year project to investigate the acquisition and

analysis of information that may be relevant in healthcare management. The research

focused on individuals in residential environments. The main project was completed

in April 2019 with a follow on project starting shortly afterwards. One key aspect of
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this research was to consider the data analysis and data mining techniques that will

enable this data to be used by the individuals, their carers, and researchers to monitor

healthcare related problems [11, 130, 131].

The project was not limited to specific healthcare needs but could include COPD

(chronic obstructive pulmonary disease), Parkinson’s disease, stroke, frailty, depression,

sleep disorders, and obesity [11]. For data collection, the SPHERE research included

body-worn sensors that could operate for up to six months without re-charging while

transmitting key information to the house infrastructure for data storage and analysis

[130, 131].

In preparation for deployment to residential houses in the Bristol area, the University

of Southampton collected data for SPHERE project from a small cohort of individuals

with Parkinson’s disease in Southampton using bespoke wearable sensors [132]. Several

data sets were collected and archived. This work uses the data set known as “Bridge”,

which was collected from 5 individuals in a residential environment over three sessions

for a period of approximately 1-2 hours on different days, and under an ethics protocol

approved by the University of Southampton.

Inertial sensors were placed on the person’s wrists, ankles and waist at the lower back.

Each sensor consist of a triaxial accelerometer with sampling rate set to 50 Hz and

triaxial gyroscope. The individuals were asked to perform various activities such as

sitting in a chair, standing, sit to stand, stand to sit, walking, stairs up, stairs down

and turning.

The data was processed with the Elan software package to associate the data streams

with specific activities. For the work presented in this report, only a data of one par-

ticipant of this data-set was used, which was coded as Mr T data. The reason for

selecting this participant’s data rather the others was because it’s contain an uninter-

rupted sequence of data that covered all of the activities listed above in best sequence

and iterations. Although participants wore sensors on wrists, ankles and waist, just the
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waist worn sensor data was used in this work.

5.2.2 Public data set of Fredrick-Alexander University

A second data set called “Bench Mark” data set was used in this work. “Bench Mark”

data set is available from (http://www.activitynet.org). This data set was collected by

Leutheuser et la. [1] as a public data set for a research. Leutheuser et al. use their data

set to compare their proposed activity classification method with a number of other

classification methods for classifying of Activities of Daily Living (ADL).

This data set was collected from 19 young healthy individuals (age 20 to 34 years, 8

female and 11 male) in controlled conditions in the laboratory. The participants were

asked by the researchers to perform 13 activities, which were sitting, lying, standing,

washing dishes, vacuuming, sweeping, walking outside, ascending stairs, descending

stairs, treadmill running (with speed set to 8.3 km/h) bicycling on an ergometer (with

two different resistance levels 50 W and 100 W), and rope jumping. The collection

period was approximately 1-2 minute(s) for each activity.

Four inertial sensors with triaxial accelerometers with sampling rate set to 204.8 Hz

and triaxial gyroscope were used. These sensors were placed on right wrist, right hip,

left ankle and chest. The data of all participants and all sensors were used in this work.

5.3 Methods used

The methods presented in this research were for extracting useful features from the

data of accelerometer sensor; and apply them on the Bridge and the Bench Mark data

sets, that illustrated in section 5.2.1 and section 5.2.2 respectively.
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5.3.1 Computation of meaningful features

The data analysis recognises that the principal measured component from accelerometer

data is the omnipresent 1g field. Thus, features relating to angle and magnitude with

respect to this field dominate, and movement activities are effectively imposed on this

data. Data from the waist sensor of a single individual from Bridge data set (i.e. Mr T )

was used for preliminary analysis. The data was initially processed by considering the

principal movements of the individual to be in the ‘sagittal plane’ (i.e. forwards and

backwards). For that a measure of jerk (the derivative of acceleration) was estimated.

If (an) is acceleration at sample (n), then jerk (J) can be considered as the following:

Jn ≈
1
T

(an − an−1) (5.1)

Where (T ) is the time between the samples (an and an−1).

The acceleration consists of that due to the individual’s movements and gravity i.e.

an = bn + gn (5.2)

Where (bn) is the acceleration due to the person’s movement and (gn) is gravity.

So that jerk of the person’s movements is:

Jn = 1
T

(bn − bn−1) = 1
T

(an − gn − an−1 + gn−1) ≈ 1
T

(an − an−1) (5.3)

since gravity is constant. A scalar estimate of movement was also considered that

loosely relates to jerk is possible by calculating the dot product of the unit vector.

So
(
Fn = an

|an| ·
an−1

|an−1|
)

gives a scalar feature for each (n) such that if (an = an−1) then

(Fn = 1), but for any movement it will be
( an

|an| ·
an−1

|an−1|
)

i.e. reduced by an amount
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relating to the angle between these two unit vectors. During periods of low movement

such as sitting, standing or sleeping, the person’s acceleration (bn) will be small when

compared to (g), so we can use the component of (g) to estimate accelerometer ori-

entation, resting periods will relate to magnitude of acceleration to the magnitude of

(gn):

|gn| = |an − bn| ≈|an| (5.4)

If the accelerometer is approximately aligned in the sagittal plan (a two dimensional)

assumption of orientation can be made, i.e. movement is primarily in the (X ·Y ) plane.

So orientation with respect to the (x) axis of the accelerometer is given by:

Xacc = gn · x̂n = |gn| · cos θ (5.5)

Yacc = gn · ŷn = |gn| · sin θ (5.6)

Where (θ) is the angle between (gn) and the X axis of the accelerometer and (Xacc) is

the acceleration component along the X axis.

So using equations 5.5 and 5.6 (θ), it can be estimated as
(

tan θ = |g| sin θ
|g| cos θ = Yacc

Xacc

)
.

So (θ) can also be estimated as (θ = atan2(Yacc, Xacc)).

This represents an acceleration with respect to a unit gravity sphere, a concept that is

explored in section 5.4.1 of this chapter. Figure 5.1 shows the accelerometer’s axes and

the gravity vector as a two dimensional, i.e. sagittal plan pose.

According to equation 5.6 the angle between the gravity vector and the pose of the

individual’s trunk (θ) was computed using the arctangent (‘atan2’ function). The

accelerometer axes that used as arguments for ‘atan2’ function are the vertical axis

and the axis that points either forwards or backwards. To extract the features and to

determine the best window size and window type, a non-sliding and sliding windows
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Figure 5.1: A diagram of accelerometer’s axes (x & y) and the gravity considered in
two dimension (i.e. sagittal plane movement).

of sizes 24, 48, 72, 96, 144, 192 and 240 n data samples with 50% overlap were used.

These window sizes represented approximately 0.5, 1, 1.5, 2, 3, 4 and 5 seconds of data.

For classification of activities, three features were extracted for each widow which are

mean, standard deviation and energy. The energy E is computed by adding together

the sum of the squared values for each axis, divided the addition result by three then

divided by the number of samples, as in the following equation:

E =
( n∑
i=1

(x2
i + y2

i + z2
i )
) 1

3n (5.7)

Where n is the sample window size; and x, y & z is the axes of the accelerometer.

Classification was performed using Decision trees (DTs) and Näıve Bayes (NB) clas-

sification methods separately, and validated using 10 fold Cross Validation method.

Classification results are shown in section 5.4 of this chapter.
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5.4 Results already obtained

5.4.1 Evaluation of activity using DTs, NB and kNN classifiers

The obtained results from both of the classification methods show that the 48 sample

sliding window has better classification accuracy than the other windows, with 79% ac-

curacy for DTs and 85% for NB. Table 5.1 shows that NB outperform DTs in recognition

of five activities which are the ambulation acts. While the best results for stationary

acts gained by TDs.

Table 5.1: Classification accuracy (in per cent) for DTs and NB (Parkinson’s disease)
using Bridge’s data set. The results marked by bold indicate the higher classification
accuracy.

Activities DTs NB

Sitting 99.63 96.08

Standing 98.35 97.69

Sit to Stand 68.75 75.00

Stand to Sit 66.67 66.67

Walking 90.91 95.04

Stairs-up 87.50 100.00

Stairs-down 66.67 77.78

Turning 50.00 75.00

Overall Accuracy 78.56 85.41

As a result of the success of the ‘atan2’ function, additional analysis was considered

to allow increase the veracity of the classification of activities. This was done by using

a new method for the visualisation of the accelerometer data. Instead of plotting the

data point in two or three dimensions, the new method considered the plotting of the

gravity vector with respect to a sphere of radius 1g in three dimensions.
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Figures 5.2a and 5.2b show the plotting of accelerometer data of three of the Bridge

(Mr T) data set labelled activities (sitting, standing, and stand-to-sit) without the

sphere and onto the sphere respectively. As shown in Figure 5.2b, it is noticeable

that static and slow movements are characterised by points on or near the surface of

this sphere, and more dynamic movements are characterised by signature trajectories

above or below the surface of the sphere. Such characteristics can’t be observed in

Figure 5.2a. Observation of these activities indicates that the use of the dot product of

successive acceleration vectors should be significantly useful in increasing the accuracy

of the classification algorithm.

The Bench Mark data set of Leutheuser et al [1] was also used to examine the features

gained using both ‘atan2’ function and dot product operation; and for comparison with

Leutheuser’s hierarchical classification approach.

As mentioned in section 5.2.2, the Bench Mark data set was collected using four sensors

with a 204.8 Hz accelerometer and gyroscope from 19 subjects achieved 13 activities.

Leutheuser et al. [1] used a hierarchical classification method which included AdaBoost

(ADA), classification and regression tree (CART), kNN and SVM. They used a sliding

window of 5 second size with a 50% overlap for analysis of the Bench Mark data set.

For each window, the total number of features extracted and used by the researchers

was 152 features for dynamic activities and 12 features for static activities.

All of the four sensors from the Bench Mark data set were used in our analysis. Both of

‘atan2’ function and dot product operation were used to compute features from these

four accelerometer sensors. Because the sensors placed on limbs tend to have a greater

range of movement, the atan2 function was computed for each pair of axes on each of

the 4 sensors. This results in three values for every accelerometer.

For feature extraction and to determine the best window size, a sliding window of size

204, 408, 612, 816, 1020 and 1224 samples was used. This nearly corresponds to 1, 2, 3,

4, 5 & 6 seconds respectively, with a 50% overlap. For classification, three features were
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(a) Plotting the data without the sphere.

(b) Plotting the data onto the sphere. Data points away from the sphere represent the
accelerations needed during movement.

Figure 5.2: Visualisation of the waist accelerometer sensor data for sitting, stand to sit
and standing activities.
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extracted for each accelerometer which are mean, standard deviation and energy; and

mean for every gyroscope axis and energy for each gyroscope (the energy was computed

as illustrated in section 5.3.1, equation 5.7).

The total number of features used in this work for all the four sensors is 52 features. The

classification was performed using DTs, NB and kNN classification methods separately,

and validated using 10 fold Cross Validation method.

The results obtained from DTs, NB and kNN classification methods with the results of

Leutheuser et al approach [1] are shown in Table 5.2. The results show that for DTs the

408 samples (nearly 2s), NB the 1020 samples (nearly 5s) and kNN the 1020 samples

(nearly 5s) sliding windows have better classification accuracy than the other windows,

with overall accuracy 91.38% for DTs, 79.22% for NB and 78.36% for kNN. The results

shown in this table and in Table 5.1 will be discussed in section 5.4.2.
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Table 5.2: Classification accuracy for 13 activities and overall accuracy for DTs, NB,
kNN and [1], using the Bench Mark dataset. The results in bold have highest classifi-
cation accuracy.

Activities
Proposed

DTs

Proposed

NB

Proposed

kNN

Results

from [1]

Sitting 97.1 13.19 70.77 88.9

Lying 98.87 95.22 83.7 100.0

Standing 96.92 89.23 79.78 89.8

Washing Dishes 95.75 96.91 92.02 98.1

Vacuuming 78.08 90.61 57.64 85.4

Sweeping 82.74 69.62 72.18 89.9

Walking 97.04 94.38 94.29 99.0

Ascending Stairs 86.03 93.75 54.69 95.5

Descending Stairs 83.38 88.09 58.84 95.2

Treadmill Running 99.13 98.03 97.27 100.0

Bicycling on Ergometer (50 W) 86.85 7.24 80.65 69.1

Bicycling on Ergometer (100 W) 87.83 95.91 81.05 53.5

Rope Jumping 98.18 97.71 95.8 100.0

Overall Accuracy 91.38 79.22 78.36 89.6

5.4.2 Analysis of results and discussion

In this work, three classification algorithms (Decision Trees (DTs), Näıve Bayes (NB)

and k Nearest Neighbour (kNN)) were applied separately to examine the usefulness

of this proposed method to extract meaningful features of movement (dot product of

acceleration and atan2). These features were used to classify activities for an individual

with Parkinson’s disease; and also as a direct comparison to published Bench Mark data
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from [1].

The application of DTs and NB on the waist sensor data of a single individual with

Parkinson’s disease has shown the advantage of the NB algorithm over the DTs algo-

rithm for these features, with 85.41% and 78.56% overall accuracy respectively.

As outlined in Table 5.1, from the eight activities in the data set, DTs had the best

classification accuracy when compared to NB for sitting and standing activities whereas

NB outperformed DTs in recognition of success for the five dynamic activities. However,

performing the three classification algorithms DTs, NB and kNN on a Bench Mark

dataset using four sensors (placed on the right wrist, right hip, left ankle and chest) for

19 individuals, results in outperforming of DTs algorithm over NB and kNN algorithms.

As shown in Table 5.2, the failure of the NB algorithm was in recognition of sitting,

sweeping and bicycling ergo-meter (50) activities, with classification accuracy 13.19%,

69.62% and 7.24% for each of them respectively. The reason for these poor results is

that the misclassification particularly of SI (sitting), SW (sweeping), and BC50 (bicycle

ergo-meter at 50 W resistance level) by the NB algorithm as shown in Table 5.3.

The uncertainty of NB appears to be between two stationary acts, [sitting and stand-

ing] and between the matched repetitive higher-speed acts, [vacuuming and sweeping,

bicycling ergo-meter (50 W) and bicycling ergo-meter (100 W)]. This could be because

it needs more data for training.

For the same reason, the kNN classification method had lower classification accuracy

comparing to DTs. As shown in Table 5.4, the misclassification is obvious between

the dynamic repetitive acts. That is between [vacuuming and sweeping], [walking,

ascending stairs and descending stairs] and [bicycling ergo-meter (50 W) and bicycling

ergo-meter (100 W)].

There was a high classification accuracy of DTs, so the confusion matrix has not been

shown. It is possible that this classification accuracy may be due to the correlations in

features values that are picked up by the rule-based activity recognition of DTs.
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For instance, the DTs classified sitting and standing as activities having different angles

between the individual’s trunk and gravity vector at the hip and low velocity at the hip,

wrist and ankle sensors. It distinguishes bicycling (50 W) activity from bicycling (100

W) activity because each one of them involves different levels of velocity (moderate and

high) at the ankle sensor.

Also, it differentiates between sweeping and vacuuming, even though both activities

show high energy in wrist acceleration because the two activities are characterised by

different gravitational angles in the wrist sensor. The weaker performance of NB and

kNN approaches may be due to their inability to adequately model such rules.

Comparing these results with the approach of Leutheuser et al [1], it can be noted that

although the DTs method had an overall classification accuracy that is higher than

the results shown in [1], the latter outperforms the DTs method in specific recognition

of eight of the thirteen activities. The better individual recognition results of [1] are

probably due to the hierarchical approach used.

This approach divided the thirteen activities into groups and use an SVM for the initial

group classification and different algorithms to do the sub-group classification. However,

for this data set, this approach had a low classification accuracy for sitting, standing,

bicycling (50 W) and bicycling (100 W).

In addition, this approach used 152 features for each sliding window of dynamic activi-

ties. While our proposed method uses just 52 features for each sliding window. The high

number of features could result in more computational complexity in real-time systems.
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Table 5.3: Confusion matrix for the NB algorithm of the proposed method. Coloured numbers highlight the misclassification
of key activities. Columns are the actual classes and rows are the predicted classes.

SI LY ST WD VC SW WK AS DS RU BC 50 BC 100 RJ

Sitting (SI) 60 7 6 0 1 2 0 0 0 0 2 0 2

Lying (LY) 45 439 2 0 0 0 0 0 0 0 0 0 0

Standing (ST) 316 14 410 7 6 0 0 0 0 0 0 0 0

Washing-Dishes (WD) 7 0 27 912 5 3 0 0 0 0 0 0 0

Vacuuming (VC) 2 0 7 10 415 196 6 0 0 0 2 0 0

Sweeping(SW) 3 0 3 11 28 516 18 0 0 1 5 8 0

Walking (WK) 0 0 0 0 0 1 1933 16 3 2 3 1 0

Ascending Stairs (AS) 0 0 0 0 1 10 32 300 26 0 4 1 0

Descending Stairs (DS) 0 0 0 0 2 15 57 4 244 9 1 0 0

Treadmill Running (RU) 0 0 0 0 0 0 2 0 1 897 25 0 0

Bicycling 50 (BC 50) 0 0 0 0 0 0 0 0 0 0 68 33 3

Bicycling 100 (BC 100) 0 0 0 0 0 1 0 0 0 0 814 886 1

Rope Jumping (RJ) 22 0 0 0 0 0 0 0 3 6 1 0 256
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Table 5.4: Confusion matrix for the kNN algorithm of the proposed method. Coloured numbers highlight the misclassification
of key activities. Columns are the actual classes and rows are the predicted classes.

SI LY ST WD VC SW WK AS DS RU BC 50 BC 100 RJ

Sitting (SI) 322 35 20 17 4 5 2 0 0 0 0 0 6

Lying (LY) 43 385 24 4 1 1 1 0 0 0 0 0 0

Standing (ST) 25 27 363 42 2 4 0 0 0 0 0 0 0

Washing-Dishes (WD) 28 8 39 865 9 10 0 0 0 0 0 1 0

Vacuuming (VC) 6 4 4 4 264 135 5 4 1 0 7 2 1

Sweeping(SW) 9 0 4 8 149 537 7 23 3 0 14 15 2

Walking (WK) 1 0 0 0 8 8 1931 56 62 11 3 2 0

Ascending Stairs (AS) 0 0 0 0 6 18 42 175 46 1 6 5 0

Descending Stairs (DS) 0 0 0 0 1 3 48 46 163 3 6 0 0

Treadmill Running (RU) 0 0 0 0 0 1 6 1 2 890 14 0 0

Bicycling 50 (BC 50) 0 1 1 0 9 12 2 7 0 9 746 151 1

Bicycling 100 (BC 100) 0 0 0 0 5 10 4 8 0 0 127 753 1

Rope Jumping (RJ) 21 0 0 0 0 0 0 0 0 1 2 0 251
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Figure 5.3: Using Bench Mark dataset, DTs accuracy of all sensors for all the 13
activities with different sampling window size.

Nevertheless, this method has been applied to two different data sets, one acquired from

an individual with Parkinson’s disease and the other from 19 young healthy individuals.

The results show that the use of a number of sensors with both accelerometer and

gyroscope has a substantial impact on the classification accuracy for all activities rather

than the use of a single accelerometer sensor. An improvement in the proposed method

might be achieved by exploiting a number of classification algorithms.

Figure 5.3 shows the classification accuracies for DTs for the 13 activities using a number

of sampling window sizes. It is clear that for some activities the use of small window

size results in best classification accuracy, such as sitting and lying. For other activities,

the larger size the better result, such as walking and ascending stairs; while this does

not make a difference for some other activities, such as sweeping.

For that, the use of a combination of different classification algorithms applied to the

proposed features with different window sizes may result in higher classification accu-

racy as well as real-time recognition system for activities of daily living (ADL). There
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is a difference between window sizes of the DTs and NB to achieve the best results from

both the Bridge and the Bench Mark data sets. There are many possible causes but

it should be noted that the Parkinson’s data set was collected in a home environment

while the Bench Mark data collected in a purpose built laboratory.

Furthermore, for more analysis, the data of three static activities (sitting, standing and

lying) of the hip accelerometer sensor of Bench Mark dataset for 14 participants was

visualised by plotting onto a sphere of radius 1g.

This results in, for each activity, the data points of all participants located in a specific

region onto the sphere, as shown in Figure 5.4. In the same way, Figures 5.5 and 5.6

show the projection of the 14 participants and two other participants’ data onto the

sphere for sitting and lying activities respectively. As appears in Figures 5.5 and 5.6,

the data points of the new participants are located in different regions far from the

region of the other 14 participants.

This might be due to a misalignment of the hip sensor of those two participants, which

raises the issues to detect and correct the data of misalignment sensors in order to avoid

the misclassification of activities. This could be achieved by considering the region of

the other data of correct alignment sensors.
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Figure 5.4: Plotting of the Bench Mark dataset hip accelerometer sensor data of 14
participants for sitting, lying and standing activities onto the sphere. The colours
represent different participants.
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Figure 5.5: Plotting of the Bench Mark data set hip accelerometer sensor data of 16
participants for sitting activity onto the sphere. Each colour represents a different
participant. The highlighted data points belong to the data of misalignment sensors.
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Figure 5.6: Plotting of the Bench Mark dataset hip accelerometer sensor data of 16
participants for lying activity onto the sphere. Each colour represents a different par-
ticipant. The highlighted data points belong to the data of misalignment sensors.
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Table 5.5: Classification accuracy for 13 activities for each sensor and all sensors using
DTs, NB and kNN, on the Bench Mark dataset. The bolded results indicate the higher
classification accuracy (in per cent) for each sensor, and the underlined results indicate
the higher classification accuracy for each classification method. The sliding window is
the sampling rate in (Hz).

Sensor

Classification Algorithms

DTs NB kNN

Window

Size
Accuracy

Window

Size
Accuracy

Window

Size
Accuracy

Right Hip 816 83.3 1224 60.43 612 61.34

Right Wrist 612 76.36 1224 56.32 204 49.33

Left Ankle 1020 82.62 1224 68.32 204 65.28

Chest 1224 80.38 1224 63.79 1020 52.13

All Sensors 408 91.38 1020 79.22 1020 78.36

In addition, to determine the best location for the sensor on the individual body, a

comparison experiment was carried out using the Bench Mark data set with the same

previous specifications (i.e. sliding window sizes, extracted features, classification algo-

rithms and validation method).

The results are shown in Table 5.5, which presents the higher overall accuracy sliding

window sizes for each classification method and each sensor. It is obvious that DTs

has the best classification accuracy for every single sensor, where both NB and kNN

have poor accuracy. Although using the data of the right hip sensor results in higher

classification accuracy (i.e. exceed 83%) than the other sensors, it is clear that the

accuracy of using all sensors is highest.

Figure 5.7 shows the accuracy of each sensor for all the 13 activities for DTs with

sampling widow size indicated in Table 5.5. In this figure, it is noticeable that the right

hip sensor has higher classification accuracy for most of the activities. However, in
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Figure 5.7: Using Bench Mark dataset, DTs accuracy of each sensor and all sensors
together for all the 13 activities with sampling widow size indicated in Table 5.5.

activities depending on feet movements (i.e. walking, ascending and descending stairs

and bicycling 50W) the left ankle sensor has the highest accuracy.

5.5 Conclusion

This work has considered the recognition of a small set of activities based on accelerom-

eter data from an individual with Parkinson’s disease. A novel feature set is considered

and a Bench Mark data set of daily household activities is used to provide a compar-

ison. Since accelerometers are primarily in a 1g environment, it is relatively easy to

compute the angle between a sensor worn on the individual’s trunk and the gravity tra-

jectory. This, together with the dot product of successive acceleration vectors, provides

significant features for recognising a person’s activities using accelerometry.
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A Decision Trees classification method with a sliding window of size nearly one second

was shown to be significantly better than a Näıve Bayes approach. This study showed

that the inclusion of data from additional sensors placed on the person’s wrist, ankle

and chest improves the classification process and will lead to enhancing the results,

particularly for the classification of walking activities.

Projecting of accelerometer data onto a 1g sphere helps to illustrate the importance

of this approach and the problems of sensor alignment. A multi-levels classification

system that exploits several algorithms with different window sizes will be exploited in

future work to increase recognition accuracy.

In addition, the detection and correction of data of misaligned sensor will be considered

in future work. It is clear that better knowledge of the underlying cause of the data

will lead to the higher validity of information transmitted at a lower rate. This is

particularly important in the case of long term ambulatory wearable sensors where

data must be transmitted from the individual to a base station through a low energy

channel at a low bit rate.
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Chapter 6

Dynamic System Method for

Classification of Human Activities

6.1 Introduction

One of the basic machine learning tasks is classification. Classical classification algo-

rithms depend on feature vectors. Through the past two decades, such algorithms have

been expanded to classify increasingly complex data, e.g. time-series data [110, 133].

The sampling of time-series data could be irregular and/or sparse in several real-world

applications [110], which creates a challenge for time-series classification. However, in

such applications, the generation processes of data can be well understood and mechan-

ical models representing for the data structure can be developed in a dynamic systems’

form. Such mechanical models’ usage in the classification of time-series would permit

incorporating the domain experts’ knowledge.

In this setting, a human is a physical object moving in a physical space in ways which

can be represented by ordinary differential equations. In other words, the human can

be seen as a dynamical system. This means that acceleration data, which is time-series

data, collected by wearable sensors could be considered as observations of the underlying
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human dynamical system and the classification of observed dynamical systems would

become the machine learning task.

This chapter will present an exploiting and validating of dynamical systems modelling

method for the classification of human daily living activities. This method is Recursive

Least Squares with Forgetting factor (RLSF) which was described in section 4.6. To

our knowledge, this is the first work that exploited such a method for the classification

of human activities from accelerometer sensor data. The Bridge and the Bench Mark

data sets illustrated in section 5.2 were again used in this work.

6.2 Methods used

The work presented in this chapter was to investigate the application of the RLSF

algorithm (described in section 4.6) for the classification of human activities. By ex-

ploiting the RLS algorithm, two classification methods were proposed: The Prediction

Measuring method (PM) and the Model Matching method (MM), which will be both

described in the following subsections.

The main idea of our methods is to identify a model that predicts the same output, or

as close as possible, as the original system. These approaches were developed in order

to improve the classification accuracy of data collected by only one wearable sensor and

reduce training data used for creating a classification model.

6.2.1 Prediction Measuring (PM) method for classification of

human activities

The main idea of this approach is to perform classification by comparing predicted

and actual data samples. Figure 6.1 depicts a graphical model for the proposed PM

classification system. As shown in the figure, the first step is the input of sensor data
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followed by the pre-processing step which could imply down-sampling or oversampling

the data, and/or any essential preparation of data before processing.

To choose the best data sampling rate, several experiments were performed by using

the data in its original sample rate and by down-sampling it to 75%, 50% and 25%.

Two methods were used for down-sampling: first ‘resample’ a MATLAB function that

detrends and interpolates the data, and second a ‘picking method’, which involves

picking one two or four data samples from every four data points depending on the

down-sampling percentage.

The picking method achieved the best classification results. Thus, in the experiments

presented in this thesis, the data frequency rate of Bench Mark data set was down-

sampled from 204 Hz to 51 Hz by picking every fourth sample which makes up 25%

of the data. In the third step, the data is partitioned into training data and testing

data. To determine the best segment size of training data (of Bench Mark data set)

that can be used to create the system identification model for each activity in the data

set, a range of window sizes was evaluated, that is 51, 102, 255, 510, 765 and 1020 data

samples.

These window sizes represented approximately 1, 2, 5, 10, 15, and 20 seconds of data

respectively. The test data that was used for validating the model in the rest of the

data after selecting the training set. For example, if the total activity recorded time for

an activity is 120 seconds and the training set is for 15 seconds, the testing set will be

105 seconds which corresponds to 12.5% for the training set and 87.5% for the testing

set.

After data partitioning, a model mi (where i = 1 to c, and c is the number of classes

in the data set) will be created for each class (or labelled human activity) using RLSF

algorithm which described in section 4.6. Algorithm 1 illustrates the steps of model

creation, where θ̂(n) is the model parameter vector, n the time instance, T the window

size, y(n) the output measured at time (n), λ the forgetting factor and ϕ(n) a vector
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of input values.

Algorithm 1: Create the model mi using RLSF
initialization: Set λ = 0.99, θ̂(0) and P (0);
for n = 1 to T do

At time step n, measure current output y(n);
Recall past y’s to form ϕ(n);
Apply RLSF algorithm for θ̂(n) and P (n);
Update θ̂(n) −→ θ̂(n− 1) and P (n) −→ P (n− 1);

end
The model mi = θ̂

A number of structures have been tried for the algorithm input vector ϕ(n). Table 6.1

lists these structures in descending order according to the classification accuracy results

acquired when they used.

Table 6.1: Structures tried for the algorithm input vector ϕ(n). X, Y and Z are the
axes of the accelerometer sensor.

Order Description ϕ structure

1st One previous data point

squared.

[X2
n−1 Y

2
n−1 Z

2
n−1]

2nd One previous data point. [Xn−1 Yn−1 Zn−1]

3rd One previous data point

squared and not squared.

[Xn−1 Yn−1 Zn−1 X
2
n−1 Y

2
n−1 Z

2
n−1]

4th Two previous data points. [Xn−1 Yn−1 Zn−1 Xn−2 Yn−2 Zn−2]

5th Two previous data points,

the first one squared.

[Xn−1 Yn−1 Zn−1 Xn−2 Yn−2 Zn−2 X
2
n−1 Y

2
n−1 Z

2
n−1]

The testing set of data is divided into 1, 2, or 5 seconds 50% sliding windows of data

points. Each model mi will apply to each sliding window to predict the data points

of the window. The final step of the PM method is measuring the Euclidean distance
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between the predicted data point of each class model and the actual data points of the

sliding window. The Euclidean distance (dE) is calculated as in equation 6.1 [133]. The

mean of the Euclidean distances for each class model will be calculated and the class

model that achieves the smallest distance will be the class of that window.

Figure 6.2 shows the functionality of the new data point prediction, distance measuring

and best class selection.

dE =

√√√√ T∑
n=1

(ŷn − yn)2 (6.1)
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Figure 6.1: Graphical model for the proposed PM classification training and validating
processes. The method validation is further detailed in figure 6.2 and in the text.
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Figure 6.2: Graphical model for PM method new data point prediction and distance
measuring. Each model mi predicts the next data point given data so far. The most
accurate prediction based on the Euclidean distance to the actual data point is chosen
as the best model for that window.

6.2.2 Model Matching (MM) method for classification of hu-

man activities

This approach has the main idea to create a reference model using training data, then

create another model using testing data and then compare the models. Figure 6.3

depicts a graphical model for the proposed MM classification system. As shown in the

figure, all the steps of this method, except the penultimate and final steps, are the

same as the steps of PM method that described in section 6.2.1. The penultimate step

includes using of RLSF to create a model mg for each sliding window using testing data.
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In the final step, a comparison will apply between the model mg and each of the models

mi that created using training data. For comparison, the Euclidean distance will be

calculated between the model mg and each of the models mi. The data class that

related to the model mi that achieved smallest distance with model mg will be set as

the class for the window.

Figure 6.3: Graphical model for the proposed MM classification system.
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6.3 Results obtained for classification of ADL by

the proposed methods

The PM and MM methods were applied on the Bench Mark data set for each participant

separately and the mean of the accuracy of all participants was calculated and presented

for each experiment in this section. This is because when applying these proposed

methods on the whole data set of 19 participants a low classification accuracy was

noticed. This might be due that these methods are very dedicated to recognising each

individual’s data alone. Due to this, it is difficult to compare the proposed methods’

classification results with state-of-art methods results in the literature.

However, for comparison purposes, three conventional methods (DTs, NB and kNN)

were applied on the Bench Mark data set in the same way as applied PM and MM

methods. For the proposed PM and MM methods, the 15 seconds training data and 5

seconds sliding window of testing data were used in all experiment which their results

are presented in this section, and the forgetting factor was set to λ = 0.95. These

settings achieved the best classification accuracy among other settings. As mentioned

in section 6.2.1, a number of input structures to the algorithm were investigated. The

first structure (will refer to this structure as ‘Squared’) and the second structure (will

refer to it as ‘Not-squared’) shown in table 6.1 gave better classification accuracy than

the others. Just these two structures were used in the results presented in this section.

Figure 6.4 depicts a chart of comparison of classification sensitivities for both approaches

PM and MM in both structures Squared and Not-squared. The results presented in

this chart are the mean of the results obtained from applying the proposed classifica-

tion methods PM and MM on the hip sensor of Bench Mark data set 19 participants

individually.

From the results presented in figure 6.4, it is clear that the PM method in Square

structure achieved the best classification accuracy while the MM method in Not-squared
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Figure 6.4: Comparing the hip sensor sensitivities results for both approaches PM and
MM in both structures Squared and Not-squared.

structure gave a slightly better result than the Squared MM. The overall classification

accuracy of the PM Squared is (71%), the MM Squared is (56%), the PM Not-squared

is (61%) and the MM Not squared is (59%).

An experiment was performed to find the best location to place the wearable sensor

on the human body. Figures 6.5 and 6.6 depict a comparison between classification

sensitivities results of PM Squared method and MM Squared method respectively for

human activities data of hip, wrist, ankle and chest sensors.

The overall classification accuracy of the PM method for the hip sensor is (71%), wrist

sensor (57%), ankle sensor (57%) and chest sensor (68%). The total classification

accuracy of the MM method for the hip sensor is (56%), wrist sensor (45%), ankle

sensor (43%) and chest sensor (49%).
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Figure 6.5: Classification sensitivities of activities for all participants separated using
Squared one previous data point PM method.

Figure 6.6: Classification sensitivities of activities for all participants separated using
Squared one previous data point MM method.

Figure 6.7 shows the results of classification sensitivities of the proposed PM Squared

method and three conventional methods that are DTs, NB and kNN. All methods were

applied on the hip sensor of Bench Mark data set. Only the proposed features in
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Figure 6.7: Comparing classification sensitivities of proposed PM method with DTs,
NB and kNN.

chapter 5 were used with conventional methods.

For the comparison, the conventional methods were applied to the participant separately

in the same way as the proposed method, the data set partitioned into 70% training set

and 30% testing set, and 5 seconds sliding window for feature extracting. as mentioned

above the PM proposed method classification accuracy was (71%), while the accuracy

of DT was (94%), NB was (93%) and kNN was (96%).The Mr T Bridge data set, that

collected from a participant with Parkinson’s in his home, was used for the purpose of

validating the proposed method and for comparison with the DTs method.

Table 6.2 shows the classification accuracy of the DTs algorithms using the method

proposed in chapter 5 and the classification accuracy of the proposed PM method.

The classification accuracy results show that the PM method performed low accuracy

comparing to the DTs algorithm. However, the results demonstrate that a model-based

classification mechanism is viable.
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Table 6.2: Classification accuracy (in per cent) for DTs and PM using Mr T Bridge
data set. The results marked by bold indicate the higher classification accuracy.

Activities DTs PM

Sitting 99.63 89.04

Standing 98.35 53.45

Sit to Stand 68.75 87.60

Stand to Sit 66.67 16.62

Walking 90.91 17.48

Stairs-up 87.50 70.06

Stairs-down 66.67 23.28

Turning 50.00 100.00

Overall Accuracy 78.56 57.19

6.3.1 Analysis of results and discussion

The space of dynamical systems relating to inertial measurement is highly nonlinear

but is often analysis with linear features. For example, rotational measurements are

linear when measured by a gyroscope but depend on the square of the acceleration

measurement when measured with an accelerometer. This can also be seen from the

results presented in figure 6.4, where the PM method with the ‘Squared’ structure

(which is nonlinear) outperformed the PM method with the ‘Not-squared’ structure

(which is linear). These non-linearity characteristics can be considered by appropriate

selection of coordinates or appropriate representation in higher dimensional spaces.

Although true in this case, classifiers with linear features are widely used where the

underlying system can be considered linear. In addition, the PM method with the

‘Squared’ structure achieved better classification result than the MM method, as shown

in the figure.
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The main reason for the big difference in classification accuracy between the two meth-

ods could be the method used to measure the distance between the trained model mi

and the test model mg created by the MM method. The used Euclidean distance is a

simple way of matching the two models.

Thus, there is a need to develop a function for measuring the distance between the

models to enhance the classification accuracy of the method. The result shown in figures

6.5 and 6.6 highlights that the PM method outperform the MM method. Moreover,

these results show that the best location of the wearable sensor is on the hip and the

chest, confirming the observation of King et al. [27].

The PM method classification accuracy of the hip sensor data is (71%) and the chest

sensor data is (68%) which quite higher than the results of other sensors for both

methods PM and MM. This means that the proposed methods achieve better classifying

accuracy using data of sensors located on the human trunk comparing to sensors located

on the limbs. Because limbs have more freedom to move than the trunk, the sensors

placed on the wrist and ankle can acquire higher acceleration and larger variability data

than sensors placed on the hip and chest. This variability and the saturation of the

acceleration measurement could mean that these methods did not perform as well with

such acceleration data.

However, the figures show that the classification results of hip, chest and wrist sensors

are good for sedentary (sitting, lying and standing), and high speed (running, bicycling

and rope jumping) activities.

80



6.3.
R

esults
obtained

for
classification

ofA
D

L
by

the
proposed

m
ethods

Figure 6.8: Confusion matrix in percentage of PM method applied on hip sensor data of 19 participants of the Bench Mark
data set.

81



6.3.
R

esults
obtained

for
classification

ofA
D

L
by

the
proposed

m
ethods

Figure 6.9: Confusion matrix in percentage of PM method applied on wrist sensor data of 19 participants of the Bench Mark
data set.
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Figures 6.8 and 6.9 depict the confusion matrix of the PM method applied on the hip

and wrist sensor respectively. It is clear that the classification method confused between

household activities (vacuuming and sweeping), ambulation activities (walking, stair-up

and stair-down) and cycling activities (bicycl-50 and bicycl-100). Because the nature of

performing each set of these activities is looking similar, each of those activities models

will predict similar data point to the other points estimated by the other models.

Therefore, the proposed classification method will miss-classify these specific activities.

Figure 6.7 depicts a comparison between the PM method in ‘Squared’ structure and

the conventional classification methods (DTs, NB and kNN) using Bench Mark data

set and Table 6.2 shows a comparison between the same proposed method and DTs

using Bridge data set.

Both the figure and the table show that the conventional methods outperform the re-

sults of the PM method. This result is not unexpected as full structures of PM are yet

to be explored. Furthermore, there is an issue that made the PM and MM methods

yield low classification accuracy results comparing to other methods is the approach

used to measure the distance between the predicted and the actual data points. These

methods depend on this measurement to classify the data.

The reason for choosing the Euclidean distance to achieve this task was to reduce the

complexity of the classification method. Thus, to increase the classification accuracy

for both proposed methods, it is suggested to develop a special function that can mea-

sure this distance rather than the Euclidean distance. The high classification accuracy

results of the DTs, NB, kNN algorithms achieved here comparing to their results in

chapter 5 section 5.4.1 are because they applied to each participant’s data separately

from the rest of the participants.

An additional benefit when considering this approach is to reduce the algorithm com-

plexity. Both PM and MM methods have a training time complexity of O(n), where n

is the size of training data. This is a significant achievement comparing to the training
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time complexity of the conventional algorithms such as decision trees O(m,n2), Naive

Bayes O(m,n) and kNN O(n2), where m is the size of the training data and n is the

number of attributes [134, 135, 136].

6.4 Conclusion

This work has investigated the structure and performance of a classification method

using a system identification algorithm to build a dynamical model of the underlying

process. The idea is evaluated in the classification of human activities of daily living

using wearable sensor data.

Two novel methods were proposed for achieving the classification purpose. The two

methods are called Prediction Measuring (PM) and Model Matching (MM). Both of the

methods use the recursive least square algorithm with a forgetting factor to identify a

model for each activity using about 15% of the raw data. The identifying models were

applied on the rest of the data for classification purposes using a Euclidean distance

to measure the predictions. Both approaches were applied to a single accelerometer of

Bench Mark data set which includes data of 19 participants performed 13 human daily

activities, and Bridge data set of a person with Parkinson’s disease performed a small

set of activities.

The proposed PM method achieves good classification accuracy comparing to the MM

method which acquired low classification accuracy. The results were compared to the

results of conventional classification algorithms applied to the same data sets using the

features proposed in chapter 5.

The Decision Tree, Naive Bayes and k-Nearest Neighbour algorithms achieved high

classification accuracy comparing to PM and MM methods. The reason for this is

likely that the misclassification of some activities that tended to have a similar pattern,

that are household activities (washing dishes, vacuuming and sweeping) and walking
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activities (walking, ascending stairs and descending stairs).

Another main reason is the approach used to measure the model prediction in both

methods which is the Euclidean distance. This is particularly true of MM method

where data variance and model quality are determining factors. This raise the need to

think about using an alternative method for measuring distance.

This could be achieved by taking into account the geometry of the space defined by ori-

entations of an accelerometer in earth’s gravity and attempting to compute the geodesic

distances on the surface of 1g sphere rather than a Euclidean distance. This would ne-

cessitate projecting data onto this sphere but keeping the distance above the sphere as

an indication of the movement. Additional research could be done by constraining the

model to reflect simple system dynamics.

Furthermore, the acquired results showed the non-linearity of the system as the results

of squaring the data points in the creation of the model and in the prediction of the new

data points were best than when not squaring them. In addition, the results showed

that the best location for the sensor on the human body is on the hip then on the chest.

This could be because of the nature of these methods, as a time series methods, that

predict the new data point according to the model’s previous knowledge. The model’s

knowledge could be better in the case of sensors placed on the trunk rather than the

sensors worn on the limbs as they have more freedom movement.

Finally, the proposed method validated the usefulness of using the system identification

approaches in the classification of human activities and the ability to classify most of

the basic activities with high accuracy using the hip sensor only.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The aim of the research conducted for this thesis was to find and validate a method to

classify human activities from data collected by wearable non-invasive sensors, which

provide an accurate and reliable assessment for healthcare and individual well being. To

address this aim, three research questions were investigated. This section summarises

the conclusions of the research related to each of these questions.

7.1.1 Extract relevant features for human activity classifica-
tion

Chapter 5 presented the work of considering the classification of human activities of

daily living based on a wearable accelerometer sensor data. Most of the previous re-

searches in the literature used a large set of features to classify the data which result

in increasing the method complexity and the execution time.

The main aim of this work was to find useful features that lead to achieving good

classification accuracy without increasing the complexity of the classification procedure.

To achieve this, the angle between a sensor worn on the person’s trunk and the gravity

trajectory was considered.

It is easy to compute such an angle since the accelerometer is primarily in a 1g envi-

ronment. This angle together with the dot product of successive acceleration vectors
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provides significant features for classifying an individual’s activities using accelerometry.

A data set collected from an individual with Parkinson’s disease in his own home per-

formed 8 activities of daily living that was used to investigate these features. A Decision

Tree classification method with a sliding window of size nearly one second was achieved

classification accuracy (79%) and a Naive Bayes method achieved (85%).

A Bench Mark data set of 19 participants performing 13 daily household activities was

used to provide a comparison with a state-of-art method. The proposed method with

Decision Tree Using four sensors data (52 features were extracted) achieved an over-

all classification accuracy (91.38%) comparing to the state-of-art hierarchical method

which used four sensors data (152 features were used) that achieved (89.6%) overall

accuracy. This result verifies the usefulness of the proposed method to project ac-

celerometer data onto a 1g sphere helps to identify the proposed features, illustrates

the importance of this approach and the problems of sensor alignment.

7.1.2 Exploiting of systems identification approach in classifi-
cation of accelerometer data

Chapter 6 demonstrated the work of considering the human movement as a dynamic

system and investigating one of the system’s identification approaches to recognise

human activities. Two methods Prediction Measuring (PM) and Model Matching (MM)

were proposed for this purpose. Both of the methods use the Recursive Least Square

algorithm with a forgetting factor to identify a model for each class using about (15%)

of the data set.

The model should apply to the rest of the data set to perform the classification pro-

cess. The PM method achieved good classification accuracy (71%) comparing to the

MM method which acquired (59%). Although the classification accuracy results of the

newly proposed methods were not as high as the conventional methods, the PM method

achieved good results using about (50%) of data compared to the other methods that
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used (70%) of data for training. The fewer data for training result in reduced cal-

culations and low use of power and memory. The main reason for the low results of

proposed methods is the approach used to measure the distance between the predicted

and actual data points which is the Euclidean distance.

However, by using this measuring approach, the proposed method can classify the

simple activities in high accuracy and can also differentiate between different sets of

activities (i.e. sedentary, low speed and high speed) in high accuracy. The MM method

possibly demonstrates the problem of model over-fitting. This implies that there is

either insufficient data for a model or there is too much variance in the sensor data.

7.1.3 Validating the best location for the wearable sensor on
the human body

The works presented in chapter 5 and chapter 6 used the proposed methods to inves-

tigate the best location to wear the sensor on the body to collect distinctive measure-

ments of human activities. All the acquired results showed that the hip sensor was

linked with the best classification accuracy comparing to the other locations (wrist,

ankle and chest).

However, hip sensor can recognise the simple ADL in high accuracy but it is useful to

consider another sensor, such as a wrist sensor, to recognise the more detailed activities,

for example, reading, writing, using phone, cooking, etc. In addition, using multiple

sensors can increase classification accuracy. Therefore, depending on the application

and the needed level of accuracy could make the choice between wearing a single sensor

or multiple sensors on different body locations

7.2 Future work

According to the results presented in chapter 5, that showed the outperform of each

of the classification algorithms in recognising a particular set of activities with high
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accuracy and to increase the classification accuracy of the approach proposed in chapter

5, it is feasible to investigate a multi-level classification system that uses a number of

algorithms with different data window sizes.

The system could classify the activities in the first level according to their activity

group (i.e sedentary, moderate and vigorous). Then performs the classification in more

detail.

It is good to present the data in different visualising forms to have a better under-

standing of the underlying cause of the data which will lead to the higher validity of

information transmitted at a lower rate. This is particularly important in the case

of long term ambulatory wearable sensors where data must be transmitted from the

individual to a base station through a low energy channel at a low bit rate.

It is important to investigate a new approach to measure the distance between the

predicted and actual data point for Prediction Measuring (PM) method and to matching

the training and validating models for Model Matching (MM) method. This may be

achieved by considering some features of the space to compute more accurate distance.

The PM and MM methods could run data forward to reduce dependency on the slid-

window, which will result in reducing of the size of processed data. A need to collect

accelerometer data for long-term uses; to examine the PM and MM methods model’s

ability to identify the changes in person’s activity over time, which may due to a

health issue that needs to make the person aware about it. This could be achieved by

performing a routine comparison between the new updated model and the old models.
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[35] M. Chan, D. EstèVe, J.-Y. Fourniols, C. Escriba, and E. Campo, “Smart wearable

systems: Current status and future challenges,” Artificial intelligence in medicine,

vol. 56, no. 3, pp. 137–156, 2012.

[36] L. Giovangrandi, O. T. Inan, D. Banerjee, and G. T. Kovacs, “Preliminary results

from bcg and ecg measurements in the heart failure clinic,” in 2012 Annual Inter-

national Conference of the IEEE Engineering in Medicine and Biology Society,

pp. 3780–3783, IEEE, 2012.

[37] V. Aarts, K. H. Dellimore, R. Wijshoff, R. Derkx, J. van de Laar, and J. Muehlst-

eff, “Performance of an accelerometer-based pulse presence detection approach

compared to a reference sensor,” in 2017 IEEE 14th International Conference

on Wearable and Implantable Body Sensor Networks (BSN), pp. 165–168, IEEE,

2017.

[38] X.-F. Teng, Y.-T. Zhang, C. C. Poon, and P. Bonato, “Wearable medical systems

for p-health,” IEEE reviews in Biomedical engineering, vol. 1, pp. 62–74, 2008.

[39] J. R. Turner, A. J. Viera, and D. Shimbo, “Ambulatory blood pressure monitoring

in clinical practice: a review,” The American journal of medicine, vol. 128, no. 1,

pp. 14–20, 2015.

[40] S. H. Woo, Y. Y. Choi, D. J. Kim, F. Bien, and J. J. Kim, “Tissue-informative

mechanism for wearable non-invasive continuous blood pressure monitoring,” Sci-

entific reports, vol. 4, p. 6618, 2014.

94



References

[41] L. Guo, L. Berglin, U. Wiklund, and H. Mattila, “Design of a garment-based

sensing system for breathing monitoring,” Textile research journal, vol. 83, no. 5,

pp. 499–509, 2013.

[42] F. Seoane, I. Mohino-Herranz, J. Ferreira, L. Alvarez, R. Buendia, D. Ayllón,

C. Llerena, and R. Gil-Pita, “Wearable biomedical measurement systems for as-

sessment of mental stress of combatants in real time,” Sensors, vol. 14, no. 4,

pp. 7120–7141, 2014.

[43] G. G. Mazeika and R. Swanson, “Respiratory inductance plethysmography an

introduction.” http://www.pro-tech.com/. Accessed: 12-06-2018.

[44] A. Jin, B. Yin, G. Morren, H. Duric, and R. M. Aarts, “Performance evaluation

of a tri-axial accelerometry-based respiration monitoring for ambient assisted liv-

ing,” in 2009 Annual international conference of the IEEE engineering in medicine

and biology society, pp. 5677–5680, IEEE, 2009.

[45] M. Krehel, M. Schmid, R. Rossi, L. Boesel, G.-L. Bona, and L. Scherer, “An

optical fibre-based sensor for respiratory monitoring,” Sensors, vol. 14, no. 7,

pp. 13088–13101, 2014.

[46] Y.-Y. Chiu, W.-Y. Lin, H.-Y. Wang, S.-B. Huang, and M.-H. Wu, “Development

of a piezoelectric polyvinylidene fluoride (pvdf) polymer-based sensor patch for

simultaneous heartbeat and respiration monitoring,” Sensors and Actuators A:

Physical, vol. 189, pp. 328–334, 2013.

[47] H. Sharma, K. Sharma, and O. L. Bhagat, “Respiratory rate extraction from

single-lead ecg using homomorphic filtering,” Computers in biology and medicine,

vol. 59, pp. 80–86, 2015.

95

http://www.pro-tech.com/ 


References

[48] P. S. Addison, J. N. Watson, M. L. Mestek, J. P. Ochs, A. A. Uribe, and S. D.

Bergese, “Pulse oximetry-derived respiratory rate in general care floor patients,”

Journal of clinical monitoring and computing, vol. 29, no. 1, pp. 113–120, 2015.

[49] F. Q. AL-Khalidi, R. Saatchi, D. Burke, H. Elphick, and S. Tan, “Respiration rate

monitoring methods: A review,” Pediatric pulmonology, vol. 46, no. 6, pp. 523–

529, 2011.

[50] S. Tognarelli, L. Deri, F. Cecchi, R. Scaramuzzo, A. Cuttano, C. Laschi, A. Menci-

assi, and P. Dario, “Analysis of a dielectric eap as smart component for a neonatal

respiratory simulator,” in 2013 35th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), pp. 457–460, IEEE, 2013.

[51] X. Guo, Y. Huang, Y. Zhao, L. Mao, L. Gao, W. Pan, Y. Zhang, and P. Liu,

“Highly stretchable strain sensor based on swcnts/cb synergistic conductive net-

work for wearable human-activity monitoring and recognition,” Smart Materials

and Structures, vol. 26, no. 9, p. 095017, 2017.

[52] N. J. Twomey, “Digital signal processing and artificial intelligence for the auto-

mated classification of food allergy,” 2013.

[53] G. J. Galvin, T. J. Davis, and N. C. MacDonald, “Micromechanical accelerometer

for automotive applications,” Nov. 21 2000. US Patent 6,149,190.

[54] P. M. Hayton, B. Schölkopf, L. Tarassenko, and P. Anuzis, “Support vector nov-

elty detection applied to jet engine vibration spectra,” in Advances in neural

information processing systems, pp. 946–952, 2001.

[55] W. Castro, M. Schilgen, S. Meyer, M. Weber, C. Peuker, and K. Wörtler, “Euro-
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[120] P. Stoica and T. Söderström, “System identification,” Prentice-Hall International,

1989.
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