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RESEARCH ARTICLE

Short-term step reduction reduces citrate synthase activity without altering
skeletal muscle markers of oxidative metabolism or insulin-mediated signaling
in young males

Sophie J. Edwards, Brandon J. Shad, Ryan N. Marshall, Paul T. Morgan, Gareth A. Wallis,* and
Leigh Breen*
School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom and MRC-
ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom

Abstract

Mitochondria are critical to skeletal muscle contractile function and metabolic health. Short-term periods of step reduction (SR) are
associated with alterations in muscle protein turnover and mass. However, the effects of SR on mitochondrial metabolism/muscle oxi-
dative metabolism and insulin-mediated signaling are unclear. We tested the hypothesis that the total and/or phosphorylated protein
content of key skeletal musclemarkers of mitochondrial/oxidativemetabolism, and insulin-mediated signaling would be altered over 7
days of SR in young healthymales. Eleven, healthy, recreationally activemales (means ± SE, age: 22 ± 1 yr, BMI: 23.4 ± 0.7 kg·m2) under-
went a 7-day period of SR. Immediately before and following SR, fasted-state muscle biopsy samples were acquired and analyzed for
the assessment of total and phosphorylated protein content of key markers of mitochondrial/oxidative metabolism and insulin-medi-
ated signaling. Daily step count was significantly reduced during the SR intervention (13,054 ± 833 to 1,192 ±99 steps·day�1, P< 0.001).
Following SR, there was a significant decline in maximal citrate synthase activity (fold change: 0.94 ± 0.08, P < 0.05) and a significant
increase in the protein content of p-glycogen synthase (P-GSS641; fold change: 1.47 ±0.14, P < 0.05). No significant differences were
observed in the total or phosphorylated protein content of other keymarkers of insulin-mediated signaling, oxidativemetabolism,mito-
chondrial function, ormitochondrial dynamics (all P>0.05). These results suggest that short-term SR reduces themaximal activity of ci-
trate synthase, a marker of mitochondrial content, without altering the total or phosphorylated protein content of key markers of
skeletal musclemitochondrial metabolism and insulin signaling in young healthymales.

NEW & NOTEWORTHY Short-term (7 day) step reduction reduces the activity of citrate synthasewithout altering the total or phospho-
rylated protein content of keymarkers of skeletal musclemitochondrial metabolism and insulin signaling in young healthymales.

insulin sensitivity; mitochondria; physical inactivity; skeletal muscle; step reduction

INTRODUCTION

Musculoskeletal disuse occurs during illness (i.e., bed rest)
and injury (i.e., limb immobilization). In addition to these
periods of severe disuse, periods of reduced ambulation also
occur throughout the human life span in times of illness and
injury, as well as through gradual reductions in physical ac-
tivity lifestyle habits with age in the absence of injury/ill-
ness. Periods of physical inactivity and reduced physical
activity across the lifespan are accompanied by skeletal mus-
cle atrophy (1–3), a decline in aerobic capacity (4), and a
reduction in whole body insulin sensitivity (5–7). However,
the mechanisms underpinning these responses remain to be
fully elucidated and this is having a meaningful impact on
the development of therapeutic interventions to improve
patient treatment and outcome in attenuating skeletal mus-
cle atrophy and impairments in muscle metabolism. Indeed,

with the knowledge of specific proteins that may be altered
during disuse, this may offer insights into specific targets for
novel treatments during periods of disuse to offset muscle
atrophy.

Disuse atrophy is underpinned by alterations to muscle
protein turnover, primarily attributed to the reductions in
myofibrillar protein synthesis rates (8–11). Recent evidence
has also suggested that disuse atrophy is accompanied by
alterations to mitochondrial metabolism and impaired aero-
bic capacity (12–16). Mitochondria are mechanically sensi-
tive organelles (17) that are critical to contractile function
(18), fuel utilization, andmetabolic health (19, 20), which dic-
tate aerobic capacity (21–23). Therefore, it is plausible that
alterations in mitochondrial function during disuse may not
only underpin reductions in aerobic capacity, but also con-
tribute to muscle atrophy and impaired insulin sensitivity.
In models of more severe musculoskeletal disuse (e.g., bed
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rest/immobilization), reductions in mitochondrial respira-
tory capacity (12), protein synthesis rates (11, 24), and oxida-
tive phosphorylation (OXPHOS) complexes proteins (7, 12)
have been noted in the first 14 days of disuse (25, 26).
Furthermore, mitochondria morphology is ultimately de-
pendent upon the fine balance between rates of mitochon-
drial fission and fusion. Preclinical models suggest that disuse
events are accompanied by alterations to the mitochondrial
dynamics (27), with the balance tilting toward mitochondrial
fission (28), resulting in an increase of fragmented mitochon-
dria (29–31). Although significant alterations in mitochondrial
gene expression (e.g., COX7A2, ATP5E, andMRPS36) has been
noted following 2 wk of step reduction (SR) in overweight and
older adults (32), whether short-term SR in young adults results
in similar alterations to muscle mitochondrial metabolism as
more severe, longer-term models of disuse has not yet been
explored.

Disuse-induced alterations in mitochondrial fragmentation
and, thus, functioning have been implicated in the develop-
ment of impaired insulin sensitivity, which is dampened dur-
ing periods of severe disuse (5–7). Mitochondrial abnormalities
are commonly observed in metabolically compromised
patients (33) with an accompanying increase in reactive
oxygen species (ROS) production, alterations in fuel utili-
zation, and increases in mitochondrial fission often noted
(34, 35). In preclinical models of severe disuse (i.e., hind
limb unloading), mitochondrial dysfunction has been linked
to alterations in fuel utilization through a shift toward gly-
colysis (36), which may underpin changes in whole body in-
sulin sensitivity. Importantly, whole body insulin sensitivity
appears to be preserved in insulin resistant models following
a decline in ROS generation (34). Although muscle mito-
chondrial dysfunction may precede reductions in insulin
sensitivity during periods of severe disuse (i.e., bed rest/
immobilization), this has yet to be investigated in the con-
text of SR. Therefore, we aimed to determine the impact of 7
days of SR on the expression of key skeletal muscle markers,
of mitochondrial/oxidative metabolism, and insulin-medi-
ated signaling in young healthy males. Our hypothesis was
that 7-day SR in young males would 1) reduce the maximal
activity of oxidative enzymes (i.e., citrate synthase (CS) as a
marker of mitochondrial content), 2) reduce the total and
phosphorylated protein content of key signaling intermedi-
ates involved in oxidativemetabolism, 3) promotemitochon-
drial fission (assessed via total and phosphorylated protein
content of proteins involved in mitochondrial dynamics),
and 4) dampen the expression and phosphorylation of
markers involved in the maintenance of skeletal muscle in-
sulin sensitivity.

METHODS

Participants

The current study represents an extended retrospective
analysis of a previously published study from our collective
group (37). Eleven healthy, young males (means ± SE age:
22 ± 1 yr; BMI: 23.4±0.7 kg·m�2) completed 7 days of SR.
Before obtaining written informed consent, participants
received oral and written information regarding the nature
of the intervention and the possible risks of participation. All

participants were deemed in good general health based on
their responses to a general health questionnaire and were
only excluded if they were diagnosed with existing health
conditions (e.g., hypertension, diabetes), were a current
smoker, and/or were suffering from musculoskeletal injury.
If deemed eligible, participants were provided with an
ActivePAL3 (PAL Technologies Ltd., Glasgow, UK) to assess
step count for the 7 days before the step-reduction interven-
tion. Participants that averaged <7,000 steps·day�1 were
excluded from participation. Study approval was granted by
the Research Ethics Service Committee West Midlands,
Edgbaston, United Kingdom (Reference: 16/WM/0011), and
the study was conducted in accordance to the Declaration of
Helsinki. The intervention was registered at clinicaltrials.gov
before data collection (Identifier: NCT02624011).

Experimental Design

Participants were instructed to maintain their habitual
physical activity levels for 7 days. Thereafter, participants
were instructed to refrain from any structured physical activ-
ity and reduce their step count to �1,500 steps·day�1 for the
7-day period of SR. Activity was measured throughout the
intervention using an ActivePAL3 accelerometer. During SR,
participants were provided with visual feedback on daily
step count through a hip worn pedometer (Yamax Digi-
Walker SW-200). Following the 7-day period of habitual
physical activity and again following the 7-day period of SR,
participants reported to the laboratory at 0800 h in an over-
night fasted state, where a muscle biopsy was obtained from
the middle portion of the vastus lateralis using a suction-
adapted percutaneous needle biopsy technique under local
anesthesia (1% lidocaine). Muscle samples were freed from
any visible nonmuscular material and rapidly frozen in liq-
uid nitrogen before being stored at�80�C for future analysis.
A more comprehensive description (including dietary con-
trol) of the experimental protocol can be found in our previ-
ous publication (37).

Western Blotting

Snap-frozen muscle samples (�50 mg) were manually
homogenized on ice using a pestle in 10 μL of a standard
extraction buffer per 1 mg tissue. Samples underwent cen-
trifugation at 2,500 g, 4�C for 5 min, and the supernatant
was removed for Western blot analysis. Gels were loaded
according to the protein concentration assessed by the DC
protein assay (Bio-Rad, CA), before Western blot aliquots of 2
μg/1 μL were prepared in 4� laemmli sample buffer and
ddH2O. Before analysis, samples were left at room tempera-
ture overnight to denature, to maintain membrane integrity.
Equal amounts of protein (18–30 μg) were loaded onto
Criterion TGX Precast Midi protein gels (Bio-Rad) or home-
made 12.5% protein gels, and separated by SDS-PAGE at a
constant voltage of 100 V for 10 min and then 150 V for 1 h.
Protein samples were then transferred at a constant voltage
(100 V for 1 h) to a polyvinylidene difluoride (PVDF) or pro-
tran nitrocellulose membrane. The membranes were then
incubated overnight at 4�C with a validated primary anti-
body; total OXPHOS human antibody cocktail [ab110411;
1:1,000 in 5% BSA:Tris-buffered saline-Tween 20 (TBST)], ci-
trate synthase (CS; CST143095 1:1,000 in TBST), total acetyl-

SHORT-TERM STEP REDUCTION AND OXIDATIVE METABOLISM

1654 J Appl Physiol � doi:10.1152/japplphysiol.00650.2021 � www.jap.org
Downloaded from journals.physiology.org/journal/jappl at Manchester Metropolitan Univ (149.170.083.095) on November 15, 2023.

http://www.jap.org


CoA carboxylase (ACC; CST3676 in TBST), p-ACCS79

(CST36615 in TBST), total 50 AMP-activated protein kinase
(AMPKa; CST2757, 1:1,000 in TBST), phospho-AMPKaT172

(CST2535, 1:1,000 in TBST), peroxisome proliferator-acti-
vated receptor gamma coactivator 1-a (PGC1a; MM3248419,
1:1,000 in 5% BSA:TBST), Calcium/calmodulin-dependent
protein kinase type II (CAMKII; CST3362 1:500 in 5% BSA:
TBST), PGC-1 and ERR-induced regulator inmuscle protein 1
(PERM1; HPA031712, 1:500 in 5% BSA:TBST), mitochondrial
transcription factor A (TFAM; SAB1401383 1:1,000 in 5%
BSA: TBST), nitric oxide synthase (NOS; AB76198, 1:1,000 in
5% BSA:TBST), manganese superoxide dismutase (mnSOD;
AB214675, 1:1,000 in 5% BSA:TBST), p-DRP1S616 (CST4494,
1:1,000 in TBST), total dynamin-related protein 1 (DRP1;
CST5391, 1:1,000 in TBST), mitofusin 2 (MFN2; CST143095,
1:1,000 in TBST), mitochondrial fission factor (MFF;
CST84580, 1:1,000 in TBST), p-MFFS176 (CST49281, 1:1,000 in
TBST), total unc-51 like autophagy activating kinase (ULK1
CST4773, 1:1,000 in 5% BSA:TBST), p-ULK1S555 (CST5869
1:1,000 in 5% BSA:TBST), optic atrophy protein 1 (OPA1; BD
Bioscience, 612607, 1:1,000 in TBST), mitochondrial fission 1
(FIS1; Atlas Antibodies, HPA017430, 1:1,000 in TBST), insulin
receptor B (IR; CST23413, 1:1,000 in 3% BSA:TBST), total in-
sulin receptor substrate (IRS; CST2390, 1:1,000 in 5% BSA:
TBST), phosphoinositide 3-kinase (PI3K; CST4257, 1:1,000 in
5% BSA:TBST), total protein kinase B (Akt; CST9272, 1:1,000
in TBST), p-AktS473 (CST4060, 1:1,000 5% BSA in TBST), p-
AktT308 (CST9275, 1:5,000 in TBST), glucose transporter
type 4 (GLUT4; CST2213, 1:1,000 in TBST), total glycogen
synthase kinase-3 (GSK3ab; CST5676, 1:1,000 in TBST), p-
GSK3abS21/9 (CST9331, 1:1,000 in TBST), total glycogen syn-
thase (GS; CST3886, 1:1,000 in TBST), and p-glycogen syn-
thase (p-GSs641; CST3886, 1:1,000 in TBST). Samples were
then washed 3� 5 min in TBST before undergoing a 1 h incu-
bation with a previously validated horseradish peroxidase
(HRP)-linked anti-rabbit (CST7074, 1:10,000 in TBST) or
anti-mouse (CST7076, 1:10,000 in 5% BSA:TBST) IgG.
Thereafter, immobilon western chemiluminescent HRP sub-
strate (Millipore) was used quantify protein content, visual-
ized using a BOX Chemi XT4 imager with GeneSys capture
software (Syngene UK, Cambridge, UK). Quantification of
bands was achieved using Chemi Genius Bioimaging Gel
Doc System (Syngene, Cambridge, UK), and values were cor-
rected to a loading control (ponceau). Where appropriate,
the phosphorylation of proteins, as a proxy of their activa-
tion was expressed relative to the total amount of each pro-
tein. Data are presented as fold changes from the pre-SR
condition.

Citrate Synthase Activity Assay

Maximal CS enzyme activity was determined as previously
described as a marker of mitochondrial content and adapted
to 96-well microplate format for spectrophotometric analysis
(38). Before measurement, sarcoplasmic homogenates were
prepped at a concentration of 2 μg/μL ddH2O. CS reaction
buffer [50mMpotassium phosphate (KPI) buffer; pH 7.4, 100
μM DTNB, and 115 μM acetyl-CoA in ddH2O], and spectro-
photometer were warmed to 30�C for optimal enzymatic
reactions. For baseline measurements, 10 μL (20 μg protein)
of sample and 186 μL of warm reaction buffer were pipetted

into a 96-well microplate, with a single participant measured
at a time in triplicate. Baseline absorbance was read every 15
s for 3 min at 412 nm in a microplate reader (FLUOstar
Omega, BMG Labtech, Aylesbury, UK). Immediately follow-
ing this baseline measurement, 4 μL of oxaloacetate (100 μM
final concentration) was added to each well to initiate the
reaction before the plate was returned to the spectrophotom-
eter and read again every 15 s for 3 min at 412 nm, tomeasure
the rate of thionitrobenzoate anion (TNB) appearance. The
protocol has previously been validated (38) and enzyme ac-
tivity was calculated as: the D absorbance/min � 1,000/
[(extinction coefficient � volume of sample used in mL) �
(sample protein concentration in mg·mL�1)]. The average
enzyme activity across three replicates was taken forward for
analysis. The within-plate coefficient variation of the three
technical replicates was 3.51± 2.51% and within the assay’s
acceptable range, as previously reported (39).

Statistics

Data are presented as means ± SE. Statistical assumptions
were checked before analysis, and analysis was performed
using SPSS statistics v. 25 (IBM Corp.). Measures of protein
expression and enzymatic activity were assessed using a
paired samples t test (pre-SR vs. post-SR). Missing data were
not imputed and n numbers for each analysis are reported in
figure legends. The level of significance was considered P �
0.05.

RESULTS

Physical Activity and Dietary Intake

Changes in physical activity following step reduction
have previously been published elsewhere (37). Briefly,
daily step count was reduced by �91% during SR
(13,054 ± 2,763 to 1,192 ± 330 steps/day; P < 0.001). The per-
centage of total time spent sedentary (73 ± 6 to 90± 3%; P <
0.001) increased, and percentage of total time spent stand-
ing (17 ± 6 to 8 ± 3%; P < 0.001) and ambulatory (10.0 ± 1.0
to 1.0 ± 0.5%; P < 0.001) decreased during SR. Finally, the
number of daily transitions from a sitting to standing posi-
tion were also significantly reduced during SR (46 ± 8 to
31 ± 10; P < 0.001). Dietary intake, which has been previ-
ously published (37), during habitual activity and SR is
presented in Table 1.

Table 1. Dietary intake during habitual physical activity
and step reduction

Variable Habitual Physical Activity Step Reduction

Energy intake, kcal·day�1 2,625 ± 732 2,380 ±864
Protein, g·kg�1·day�1 2.1 ± 0.7 1.8 ± 0.6�
Protein intake, g·day�1 156 ± 51 133 ± 45�
Carbohydrate intake, g·day�1 297 ± 142 279 ± 165
Fat intake, g·day�1 83 ± 34 77 ± 33
Protein, En% 26± 13 24 ± 12
Carbohydrate, En% 46± 13 46 ± 12
Fat, En% 28±9 29 ± 10

Values are means ± SD, n = 11. �Significant difference between
habitual physical activity and step reduction conditions (P <
0.01).
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Mitochondrial Function

The expression of proteins of mitochondrial function
following 7 days of SR can be viewed in Fig. 1, A and B. No
significant alterations were noted following SR in OXPHOS
CI protein content (fold change, pre vs. post: 0.87 ± 0.19,
P = 0.492), OXPHOS CII protein content (1.00 ±0.08, P =
0.938), OXPHOS CIII protein content (fold change, pre vs.
post: 0.87 ± 0.21, P = 0.534), OXPHOS CIV protein content
(fold change, pre vs. post: 1.01 ± 0.16, P = 0.935), OXPHOS
CV protein content (fold change, pre vs. post: 1.01 ± 0.08,
P = 0.873), TOTAL OXPHOS protein content (fold change,
pre vs. post: 0.98 ± 0.09, P = 0.790), and CS protein content
(fold change, pre vs. post: 0.91 ± 0.08, P = 0.267). In con-
trast, maximal CS activity, a marker of mitochondrial con-
tent, significantly reduced following a 7-days period of SR
(Fig. 1, C and D; fold change, pre vs. post: 0.94 ± 0.08, P =
0.012).

Oxidative Metabolism

Expression of key markers of oxidative metabolism and oxi-
dative stress can be seen in Fig. 2, A and B, respectively. There
were no significant differences in PCG1a protein content (fold
change, pre vs. post: 0.92±0.17, P = 0.514), PERM1 protein con-
tent (fold change, pre vs post: 0.83±0.19, P = 0.074), CAMKII
protein content (fold change, pre vs. post: 1.00±0.08, P =
0.845), or TFAM protein content (fold change, pre vs. post:
0.96±0.07, P = 0.265) following 7-days SR. Furthermore, the

activation (or phosphorylation) of AMPKaT172 (fold change, pre
vs. post: 0.92±0.18, P = 0.597) and ACCS79 (fold change, pre vs.
post: 0.93±0.14, P = 0.523) was not significantly different fol-
lowing the SR intervention. Finally, there were no significant
differences in the protein content of mnSOD (fold change, pre
vs. post: 0.97±0.22, P = 0.840) or NOS (fold change, pre vs.
post: 1.01±0.09, P = 0.942) following 7 days of SR.

Mitochondrial Dynamics

In response to 7 days of SR, no significant differences were
noted in the expression or activation of proteins involved inmi-
tochondrial fission or fusion (Fig. 3, A and B). Specifically, the
expression of FIS1 protein content (fold change: pre vs. post:
1.04±0.19, P = 0.516), MFF protein content (fold change: pre vs.
post: 1.42±0.34, P = 0.152), MFN2 protein content (fold change,
pre vs. post: 0.98±0.28, P = 0.923), and OPA1 protein content
(fold change, pre vs. post: 0.92±0.15, P = 0.329) remained
unchanged following SR. Likewise, the activation (or phospho-
rylation) of DRPS616 (fold change, pre vs. post: 1.19±0.16, P =
0.223) and ULK1S555 (fold change, pre vs. post: 0.96±0.13, P =
0.829) were not significantly different following 7 days of SR.
Finally, the ratio of MFN to total-DRP1 protein content (fold
change, pre vs. post:1.16±0.22, P = 0.141) remained unchanged.

Glucose Metabolism

Alterations of key markers of skeletal muscle glucose me-
tabolism are presented in Fig. 4. In response to 7 days of SR,

Figure 1. Protein content of proteins relating to mitochondrial function in response to 7 days step reduction in young males. OXPHOS CI, OXPHOS CII,
OXPHOS CIII, OXPHOS CIV, OXPHOS CV, total OXPHOS protein content (n = 11), and citrate synthase protein content (n = 11; A), Western blot representative
image (B), citrate synthase activity assay (n = 11;C andD). Data are presented as means ± SE and were analyzed using a repeatedmeasures t test. �Post-SR was
significantly different from pre-SR at the P< 0.05 level. CS, citrate synthase; n, number of subjects; OXPHOS, oxidative phosphorylation; SR, step reduction.
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there was a significant increase in the activation (or phos-
phorylation) of GSS641 (fold change, pre vs. post: 1.47±0.14,
P = 0.012). There were no further significant differences
noted in the phosphorylation of GSK3abS21/9 (fold change,
pre vs. post: 0.97±0.04, P = 0.486), AKTS473 (fold change, pre

vs. post: 0.92±0.13, P = 0.520), or AKTT308 (fold change, pre
vs. post: 0.84±0.06, P = 0.161) following the 7 days interven-
tion. Similarly, the protein content of IR (fold change, pre vs.
post: 0.97±0.17, P = 0.882), IRS (fold change, pre vs. post:
0.96±0.17, P = 0.738), PI3K (fold change, pre vs. post:

Figure 2. Total and phosphorylated protein content of pro-
teins relating to oxidative metabolism (n = 11; A) and oxida-
tive stress (n = 11; B) in response to 7 days step reduction in
young males. C: illustrates a representative Western blot
image of total and phosphorylated protein content of pro-
teins relating to oxidative metabolism and oxidative stress
markers. Data are presented as means ± SE and were ana-
lyzed using a repeated measures t test. ACC, acetyl-CoA
carboxylase; AMPKa, 50 AMP-activated protein kinase;
mnSOD, manganese superoxide dismutase; n, number of
subjects; NOS, nitric oxide synthase; PGC1a, peroxisome
proliferator-activated receptor gamma coactivator 1-a; SR,
step reduction.

Figure 3. Total and phosphorylated protein content of pro-
teins relating to mitochondrial dynamics. A and B: (n = 11) in
response to 7 days step reduction in young males. C: illus-
trates a representative Western blot image of total and
phosphorylated protein content relating to mitochondrial
dynamics. Data are presented as means ± SE and were ana-
lyzed using a repeated measures t test. DRP1, dynamin-
related protein 1; FIS1, mitochondrial fission 1; MFF, mito-
chondrial fission factor; MFN2, mitofusin 2; n, number of
subjects; OPA1, dynamin-like 120 kDa protein; ULK1, unc-51
like autophagy activating kinase.
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0.94±0.13, P = 0.278), and GLUT4 (fold change, pre vs. post:
0.93±0.23, P = 0.558) remained unchanged following 7 days
of SR.

DISCUSSION

We report that in response to 7 days of SR in young,
healthy males there was a significant decline in maximal ci-
trate synthase (CS) activity, a marker of mitochondrial con-
tent. Despite this alteration in maximal CS activity, no
significant declines in the total protein or phosphorylation
content of markers of mitochondrial function (e.g., OXPHOS
complex I-V), oxidative metabolism (e.g., PGC1a, AMPKa), or
mitochondrial dynamics (e.g., FIS1, DRP1, and MFN2) were
noted in response to 7-day SR. Due to the purported link
between alterations in mitochondrial metabolism and fuel
utilization during musculoskeletal disuse, we also examined
the expression and phosphorylation of proteins involved in
skeletal muscle insulin sensitivity. We found a significant
increase in p-GSS641/t-GS in response to 7-day SR. However,
no additional changes in total or phosphorylated protein
content of markers of insulin sensitivity (e.g., IR, AKT, and
GLUT4) were noted.

Previous work in severe models of musculoskeletal disuse
(i.e., bed rest/limb immobilization) in young healthy individ-
uals has demonstrated a significant decline in CS activity (7,
25, 40, 41), which is accompanied by declines in the expres-
sion of CS and the OXPHOS complex proteins (7, 11, 25, 42).
Despite previous evidence of compromised mitochondrial

function following a short-term period (7–14 days) of severe
musculoskeletal disuse, whether the reduced loading and
energetic demand of 7 days of SR would alter mitochondrial
functioning was unknown. Here, we report for the first time
that a significant decline inmaximal CS activity occurred fol-
lowing 7 days of SR, which was not accompanied by altera-
tions in the protein content of CS or OXPHOS CI-V. The
reduction in maximal CS activity is perhaps unsurprising, as
CS is an important regulator of the citric acid cycle and is
inhibited under conditions of a high-energy supply (43).
Though, this is still an important finding. Indeed, maximal
CS activity is considered a robust marker of mitochondrial
content (albeit not function, per se) and thus it is remarkable
that simply reducing steps over a 7-day period, reduces max-
imal CS activity and, thus potentially mitochondrial content.
During periods of SR, there is a reduction in contractile activ-
ity and likely a subsequent reduction in the requirement for
ATP synthesis. Indeed, it is likely that energy intake may
exceed skeletal muscle energetic demand throughout the pe-
riod of reduced ambulation, resulting in the “underutiliza-
tion” of ATP. Since high ATP concentration allosterically
inhibits CS (44), it is plausible that the reduction in contract-
ile activity (and thus ATP usage) would reduce the saturation
of this enzyme with acetyl-CoA and subsequently dampen
its activity and total mitochondrial content. Interestingly,
and in contrast to our hypotheses, any shift in energy utiliza-
tion and enzymatic activity/mitochondrial content was not
severe enough to promote alterations in the expression of CS
or OXHPOS CI-V over 7 days of SR. This finding is also in

Figure 4. Total and phosphorylated protein content of proteins relating to skeletal muscle glucose metabolism (n = 11) in response to 7 days step reduc-
tion in young males (A and B). C: illustrates a representative Western blot image of total and phosphorylated protein content relating to skeletal muscle
glucose metabolism. Data are presented as means ± SE and were analyzed using a repeated measures t test. �Post-SR was significantly different from
pre-SR at the P < 0.05 level. AKT, protein kinase B; GLUT4, glucose transporter 4; GS, glycogen synthase; GSK3ab, glycogen synthase kinase-3ab; IR,
insulin receptor B; IRS, insulin receptor substrate; n, number of subjects; PI3K, phosphoinositide 3-kinase.
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contrast to previous literature in models of bed rest/limb
immobilization (11, 25, 42) and suggests that the complete re-
moval of contractile stimuli and potentially more drastic
alterations in physical activity may be required to alter pro-
tein content in a young population over a 7-day period. Due
to the retrospective sample analysis of a larger experimental
trial, and thus lack of fresh tissue for analysis, we were
unable to determine the OXPHOS respiratory capacity,
which remains a limitation of these data and provides ra-
tionale for further research to measure intramuscular ATP
and general energy utilization across disuse models to fully
resolve this question. Further, it is worthy of note that the
current study does not include a “true” control condition,
such that we did not include a parallel group without the
physical inactivity intervention, and thus cannot discount
any time effects independent of the inactivity intervention
(effect of time per se, repeated biopsies etc.). Nevertheless,
our data does provide novel insights into the compensatory
declines in CS enzymatic activity (and potentially mitochon-
drial content) following as little as 7-day SR in young adults,
without associated alterations in the expression of key
markers of mitochondrial function.

The complete removal of contractile stimuli (e.g., bed rest)
has been shown to trigger a cascade of alterations in the
expression of key signaling intermediates of oxidative me-
tabolism (11, 16, 45, 46), ultimately leading to a reduced rate
of mitochondrial synthesis (11, 24). Here, we hypothesized
that SR would adversely affect the expression and phospho-
rylation of key signaling proteins involved in oxidative me-
tabolism (e.g., AMPKa, PGC1a, ACC, and TFAM) and Ca2þ

handling (e.g., CAMKII and PERM1). In contrast to previous
studies (11, 16, 45, 46), we reported no alterations in the total
expression or phosphorylation of proteins involved in oxida-
tive metabolism. Similarly, there was no significant differ-
ence in the CAMKII or PERM1 protein expression, which
contrasted with previous reports in catabolic conditions (47,
48). Taken together, these data suggest that any alterations
in Ca2þ and AMP:ATP that may occur during 7 days of SR
may not be severe enough to potentiate alterations in mito-
chondrial biogenesis, whereas complete removal of contract-
ile activity may instigate such adverse metabolic responses,
at least in young healthy individuals.

Alterations in oxidative metabolism and Ca2þ handling as
a result of musculoskeletal disuse (49–51) are linked to
increases in ROS production, through the stimulation of the
citric acid cycle and subsequent activation of ROS generating
enzymes (52, 53). Our data may suggest that 7 days of SR
does not provide a robust enough “unloading stimulus” to
significantly alter these parameters, and in combination
with the reduction in maximal CS activity, may explain why
we did not detect any significant alterations in MnSOD or
NOS expression following the 7 days of SR. Furthermore, the
generation of ROS following musculoskeletal disuse has
been putatively linked to myofibrillar protein imbalance and
the subsequent onset of muscle atrophy (27). However, fol-
lowing the 7-day period of SR in the current intervention,
declines in muscle protein synthesis in combination with
increased gene expression of catabolic signaling targets [see
Ref. Shad et al. (37) for these previously published data],
occurred independently of alterations in markers of mito-
chondrial function and ROS production. Taken together,

these data lead us to speculate that with 7 days of SR in
young individuals, alterations in myofibrillar protein turn-
over [as previously published (37)] occur independently from
alterations in the abundance ofmitochondrial proteins.

Mitochondrial morphology is dependent on rates of mito-
chondrial fusion and fission (27). Preclinical models suggest
a shift inmitochondrial dynamics toward fission (28), follow-
ing a period of immobilization, resulting in an increase of
fragmented mitochondria (29–31). However, this is yet to be
consistently demonstrated in human disuse studies. Here,
we report no significant alterations in the total or phospho-
rylated protein content of markers of mitochondrial fission
or fusion following 7 days of SR in young healthy males.
Alterations in mitochondrial dynamics occur in response to
cellular stress (54), thus the lack of significant changes noted
in the expression of markers of mitochondrial dynamics
herein, further suggests that 7 days of SR does not signifi-
cantly impact on cellular energy homeostasis. This finding is
in line with previous work (45), in which no differences in
the content of mitochondrial fission or fusion proteins was
reported following 10 days of best rest. These data shed fur-
ther light on the discrepant alterations in mitochondrial dy-
namics between animal and human models of disuse
atrophy.

The lack of alterations in total protein and/or phosphoryl-
ated protein content of proteins involved in mitochondrial
metabolism and energy homeostasis may explain why we
did not observe any alterations in the total expression or
phosphorylation of signaling intermediates of skeletal mus-
cle glucose uptake (i.e., IR, IRS, Akt, and GLUT4) following 7
days of SR. However, we did note a significant increase in P-
GSS641/t-GS following the intervention, which is a marker of
reduced GS activation. In response to muscular contraction,
there is a reduction in GS phosphorylation, promoting an
increase in GS activity (55), so it is perhaps unsurprising that
a reduction in contractile activity promoted an increase in
GS phosphorylation. This finding may also explain, in part,
the mechanisms underpinning the significant decline in
whole body insulin sensitivity noted in this cohort of partici-
pants following the 7 days SR intervention [see (37) for addi-
tional data]. Importantly, a decline in glycogen content is
key to maintaining skeletal muscle insulin sensitivity. Since
a high-glycogen content reduces GS activity, it is possible
that the increase in GS phosphorylation (which can reduce
GS activity) noted here, may represent a protective mecha-
nism to maintain insulin sensitivity toward homeostatic lev-
els during a period of reduced ambulation (56). The
regulation of GS activity is dependent on various kinases
including GSK3, CAMKII, and AMPK (57). However, we did
not note any significant differences in the protein content or
phosphorylation of these signaling targets, suggesting that,
at least in the current cohort, alterations in the phosphoryla-
tion of GS occurred independently to alterations in total pro-
tein content and/or phosphorylation of proteins involved in
oxidative metabolism and ATP synthesis. Though, it is perti-
nent to note that a limitation of the current study is that no
muscle biopsies were taken under insulin-stimulated condi-
tions and thus the conclusions that can be drawn are
limited.

In conclusion, 7 days of SR in young males caused signifi-
cant declines in maximal CS activity (a marker of
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mitochondrial content), independent to alterations in the
total protein content or phosphorylation of key markers
involved in mitochondrial function, oxidative metabolism,
and mitochondrial dynamics. Furthermore, following the 7-
days SR intervention, there was a significant increase in the
phosphorylation of GS, which occurred independently to
additional alterations in the expression of markers involved
in glucose uptake. These data provide a further resolution to
suggest declines in myofibrillar protein synthesis, demon-
strated in our previous publication, in response to 7 days SR
occur independently to alterations to the expression of key
markers involved in oxidative protein metabolism and glu-
cose uptake in young healthymales.
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