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Abstract

Artificial Intelligence (AI) has transformed the way we interact with technology

e.g., chatbots, voice-based assistants, smart devices, and so on. One particular area that

has gained tremendous attention and importance is learning through multimodal data

sources within AI systems. By incorporating multimodal learning into AI systems,

we can bridge the gap between human and machine communication, enabling more

intuitive and natural interactions. Multimodal learning is the integration of multiple

sensory modalities, such as text, images, speech, and gestures, to enable machines

to understand and interpret humans and the world around us more comprehensively.

In this thesis we develop strategies to exploit multimodal data (specifically text and

images) along with linguistic knowledge, making multimodal systems more reliable

and accurate for various vision and language tasks.

In the first part of the thesis, we focus on developing AI systems that can understand

the visual world around us and respond in a more natural and human-like manner. This

task is popularly known as image captioning. Despite the significant progress in this

task, the image captions generated by the models are extremely generic and template-

like for visually similar images. We address this limitation and generate detailed and

image-specific captions by exploiting prior and implicit linguistic knowledge, without

the need for more labeled data or computational overhead. Unlike previous work, our

proposed method generates captions that reflect the image in detail.

To further allow AI models to better understand and interpret context, in the second

part of the thesis we leverage information from multiple modalities to gather a more
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comprehensive understanding of the visual data by generating scene graphs. Unlike

image captioning that provides a high-level interpretation of the scene, in this setting a

key question is – how do different objects/entities in the scene interact with each other?

Collecting large amounts of labeled data that can capture every possible interaction is

very expensive and infeasible. Hence, we propose an efficient training strategy that

generates complete and informative scene graphs from incomplete and missing labels

using the knowledge of label informativeness from linguistics.

In the third part of the thesis, we study the narrative descriptions of images gener-

ated from human speech i.e., natural language, to enable natural interaction between

humans and machines. One fundamental and challenging problem when dealing with

natural language is the task of coreference resolution. For example, in the sentence

“John saw a dog. He petted it,” coreference resolution determines that “he” refers to

“John” and “it” refers to the “dog.” While coreference resolution may seem straight-

forward to humans, it poses several significant challenges for AI systems. Without

proper coreference resolution, models will struggle to derive the correct meaning

and produce coherent outputs. To address this important and complex problem, we

propose a novel benchmark dataset for multimodal coreference resolution to evaluate

coreference resolution in text and narrative grounding in images. We also propose a

weakly supervised method with rule-based linguistic knowledge to address multimodal

coreference resolution without a large supervised training dataset.

Finally, we address the limitations of the weakly supervised learning setup in

multimodal coreference resolution by proposing a semi-supervised learning strategy.

By using a small labeled and a large unlabeled dataset with robust self-supervised and

pseudo-labeled loss functions, we achieve strong performance gains for coreference

resolution and narrative grounding in a data-efficient way.

Our work addresses important aspects in vision and language and paves the way

for interesting future avenues. In the last part of the thesis, we discuss in more detail

directions for the future that are important for advancing the field and unlocking its full

potential. Hence, continued research is needed to push the boundaries of multimodal

learning.
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Chapter 1
Introduction and Background

Multimodal learning, which combines vision (i.e., images, videos) and language

(i.e., text), plays a crucial role in advancing artificial intelligence (AI) systems (Sander-

son, 2023). Multimodal learning can be divided into discriminative and generative

tasks. For the discriminative tasks, the main goal is to either find matching between

the two modalities of image and text (Jia et al., 2021; Lee et al., 2018b; Li et al.,

2019b; Radford et al., 2021; Wang et al., 2018) or develop understanding of one

modality based on the other (Chen et al., 2019a, 2020; Li et al., 2021; Singh et al.,

2022; Wang et al., 2015) e.g., image-to-text retrieval, image search based on text. In

generative tasks, the aim is to generate one modality conditioned on the other, for

instance, generate text based on the image (Cho et al., 2021; Pan et al., 2004; You et al.,

2016) or generate image based on text (Nichol et al., 2021; Qiao et al., 2019a,b; Xu

et al., 2018). By leveraging both visual and textual information, multimodal learning

enables machines to perceive the world more comprehensively and understand it in a

way that is closer to human cognition (Wagman, 1991). Below are some key reasons

why multimodal learning is important in AI:

• Enhanced perception: Vision and language are two primary modalities through

which humans perceive and understand the world. By integrating visual and

textual inputs, AI models can gain a more holistic perception of their envi-

ronment, allowing them to better recognize objects, scenes, and people. This

improves the accuracy and robustness of various AI applications such as object
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detection (Girshick, 2015; Lin et al., 2014; Ren et al., 2015), image classification

(Deng et al., 2009; Simonyan and Zisserman, 2014), and scene understanding

(Kazemzadeh et al., 2014; Krishna et al., 2017; Plummer et al., 2015).

• Contextual understanding: Combining vision and language enables AI sys-

tems to understand the context of the visual content. Language provides valuable

semantic information that complements visual cues, helping machines grasp

the relationships, attributes, and characteristics of objects or scenes (Krishna

et al., 2017; Yang et al., 2018; Zhang et al., 2017c, 2019). For instance, when

a model learns to associate the word “riding” with visual representations of

“person riding bicycle”, it develops a deeper contextual understanding of the

concept.

• Richer representations: Multimodal learning enables the creation of richer

and more expressive representations of data. By fusing visual and textual

features, AI models can capture intricate details and nuanced relationships that

may not be fully captured by a single modality alone. This can lead to more

powerful and meaningful representations that can be leveraged in a wide range

of downstream tasks such as image captioning (Anderson et al., 2018b; Cho

et al., 2021; Huang et al., 2019b; Pan et al., 2004; You et al., 2016), visual

question answering (Alayrac et al., 2022; Anderson et al., 2018b; Antol et al.,

2015; Chen et al., 2020; Lu et al., 2016b; Shih et al., 2016; Singh et al., 2022),

and visual storytelling (Ferraro et al., 2016; Hsu et al., 2020; Huang et al., 2016).

• Improved communication and interaction: The ability to comprehend both

vision and language facilitates more effective communication between AI sys-

tems and humans. For example, multimodal models can interpret and respond to

natural language queries about visual content, enabling intuitive and interactive

interfaces. This opens up possibilities for applications like virtual assistants

(White, 2018), chatbots (Yang et al., 2022b), and human-robot interaction sys-

tems (Kosuge and Hirata, 2004; Sheridan, 2016) that can understand and generate

multimodal inputs.
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• Bridging the semantic gap: The semantic gap refers to the mismatch between

low-level sensory data (e.g., pixels) and high-level semantic concepts (e.g., ob-

jects, actions, relationships). Multimodal learning helps bridge this gap by

learning meaningful representations that connect visual and textual information

(Chen et al., 2019a, 2020; Li et al., 2021; Singh et al., 2022; Wang et al., 2015).

This enables AI models to bridge the semantic divide and generate more accurate

and semantically coherent outputs.

Hence, multimodal learning, which combines vision and language, is vital in AI as

it enhances perception, fosters contextual understanding, enables richer representations,

improves communication and interaction, and helps bridge the semantic gap. By

leveraging the synergy between vision and language, AI systems can achieve a more

comprehensive understanding of the world, resulting in more sophisticated and capable

AI applications. Next, we present a preliminary background on the main goals of this

thesis which is centered around developing robust vision and language models.

1.1 Background

1.1.1 Vision and language tasks

Our goal in this thesis is to develop multi-modal learning systems i.e., combine visual

and textual modalities for enhancing the capabilities of AI models. Real-world data

available on the web is highly multi-modal, for instance, images associated with text

(Changpinyo et al., 2021b; Krishna et al., 2017; Lin et al., 2014; Plummer et al., 2015).

The progress in vision and language tasks holds great promise for applications in

areas like robotics and autonomous systems (Anderson et al., 2018c, 2021; Kosuge

and Hirata, 2004; Lynch et al., 2023; Sheridan, 2016; Tellex et al., 2020), content

understanding (Cho et al., 2021; Nichol et al., 2021; Pan et al., 2004; Qiao et al.,

2019a,b; Xu et al., 2018; You et al., 2016), assistive technologies (Huang et al., 2022;

Lancioni and Singh, 2014), and human-computer interaction (Gupta et al., 2014;

Karray et al., 2008; Pustejovsky and Krishnaswamy, 2021). Hence, it is crucial to
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develop AI systems that can learn from multi-modal information sources. By enabling

machines to understand and generate language in the context of visual information,

these tasks contribute to building more intelligent and intuitive systems that can

effectively interact with and interpret the world around us.

a truck carries a load of police
motorcycles.

Image Captioning 

Scene Graph Generation

Multimodal Coreference Resolution

Figure 1.1 Overview of the vision-language tasks of (a) image captioning (Lin et al.,
2014), (b) multimodal coreference resolution (Guo et al., 2022) and, (c) scene graph
generation (Krishna et al., 2017).
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In this thesis, we are interested in developing accurate and reliable models for

several vision and language tasks. Several works have introduced the tasks that focus

on using both the vision and text modalities (Fig. 1.1 presents a visualization of a few

such tasks) such as visual question answering (Alayrac et al., 2022; Anderson et al.,

2018b; Antol et al., 2015; Chen et al., 2020; Lu et al., 2016b; Shih et al., 2016; Singh

et al., 2022), image captioning (Anderson et al., 2018b; Cho et al., 2021; Huang et al.,

2019b; Pan et al., 2004; You et al., 2016), referring expression comprehension and

grounding (Kazemzadeh et al., 2014; Plummer et al., 2015; Yu et al., 2016, 2018b),

visual commonsense reasoning (Zellers et al., 2019), image-text retrieval (Chen et al.,

2019a, 2020; Li et al., 2021; Singh et al., 2022; Wang et al., 2015), visual dialog (Das

et al., 2017), scene graph generation and visual relationship understanding (Krishna

et al., 2017; Yang et al., 2018; Zhang et al., 2017c, 2019), multimodal coreference

resolution (Kong et al., 2014; Ramanathan et al., 2014; Rohrbach et al., 2017), visual

generation from text (Nichol et al., 2021; Qiao et al., 2019a,b; Xu et al., 2018) and

visual storytelling (Ferraro et al., 2016; Hsu et al., 2020; Huang et al., 2016). These

tasks involve extracting information from visual data and integrating it with textual

information to enable machines to comprehend and generate language that corresponds

to visual content.

Initial attempts to solve vision and language tasks involved processing the image

with gist and sift based features (Chu and Zhao, 2014; Oliva and Torralba, 2006;

Xie et al., 2018) or by extracting high-level concepts from images such as objects,

actions, and attributes (Krishna et al., 2017). The textual data was processed either

using dependency parsing (Nivre, 2005) or markovian-based language models (Bengio

et al., 1999). With the advent of deep learning, the above methods were replaced by

modern methods such as processing images with a Convolutional Neural Network

(CNN) (Simonyan and Zisserman, 2014) or a Vision Transformer (ViT) (Dosovitskiy

et al., 2020) and processing text using sequential models such as recurrent neural

networks (RNNs) (Sutskever et al., 2011), long short term memory networks (LSTMs)

(Graves and Graves, 2012) and gated recurrent units (GRUs) (Chung et al., 2014).

These methods are really powerful and generalized for learning robust representations.
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Subsequently, the vision and text features are fused using either early fusion or late

fusion techniques (Moens et al., 2018) depending on the downstream task. However,

these sequence-based models e.g., RNNs struggle to encode long sentences and retain

context from language effectively due to vanishing/exploding gradients. This led to

the surge in efficient transformer based models such as BERT (Bidirectional Encoder

Representations from Transformers) (Devlin et al., 2018) and GPT (Generative Pre-

Trained Transformer) (Radford et al., 2019) which do not rely on sequential processing

due to the self-attention mechanism (Vaswani et al., 2017) and this laid the foundation

for many vision and language models (Chen et al., 2020; Li et al., 2021; Singh et al.,

2022; Su et al., 2019).

1.1.2 Role of linguistic knowledge

Several tasks in vision and language (VL) (Anderson et al., 2018b; Antol et al., 2015;

Lin et al., 2014) require a source of knowledge to learn and extract concepts (Liu and

Singh, 2004), entities (Sun et al., 2018), facts (Wang et al., 2017) and commonsense

knowledge (Ilievski et al., 2021). For instance, imagine an image of a person drowning

and screaming in a swimming pool. Given a question associated with this image:

“Why is the person screaming?”, requires developing models that can rely on linguistic

knowledge (specifically, commonsense knowledge and facts in this example) along

with visual and text feature encodings to correctly answer the question. As humans

we are good at reasoning about this and can tell that the person is afraid of drowning

and does not know how to swim, that’s why he is screaming. In this thesis, we wish to

incorporate varied sources of knowledge during learning for improving generalization

and contextual understanding in a variety of VL tasks. Next, we discuss briefly all the

sources of linguistic knowledge and their importance for VL tasks.

External knowledge is the encyclopedic knowledge necessary for addressing vision

and language tasks that require factual knowledge and cannot be solely addressed

using signals from vision and text data. For example, answering the given question –

Where and when was Barack Obama born? requires extracting the relevant knowledge

source from Wikipedia. Sources of text-based external knowledge include Wikipedia
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(Voss, 2005), Wikidata (Vrandečić and Krötzsch, 2014), DBPedia (Auer et al., 2007)

and ConceptNet (Liu and Singh, 2004). All of these knowledge sources contain a vast

amount of information that is useful for tasks requiring fact-based knowledge such as

knowledge-based visual question answering (Marino et al., 2019; Shah et al., 2019).

For instance, in VQA, given an image of a tomato and avocado salad and the question

“What is the number of calories in this salad”, the aim is to answer the question by

processing the image and text and if needed extracting knowledge from an external

database.

Commonsense knowledge is the type of knowledge that humans have perceived about

the world. For example, dogs bark and lemons are sour. Commonsense knowledge is

not only limited to physical commonsense but also includes visual, social, temporal,

and behavioral commonsense (Ilievski et al., 2021). One of the largest sources of

commonsense knowledge sources is ConceptNet (Liu and Singh, 2004) which contains

millions of commonsense facts about a variety of entities. This led to the surge in

the development of linguistic tasks (Bao et al., 2014; Hermjakob et al., 2000) that

rely on ConceptNet for reasoning and understanding. More recently, there has been

an emergence in vision and language tasks that require high-level cognition and

commonsense reasoning about the world, which is quite an easy task for humans but

not for machines (as illustrated in the example of a person drowning in water above).

A few such tasks include visual commonsense reasoning (Zellers et al., 2019), Visual

COMET (Park et al., 2020), and Perceptual IQ (An et al., 2022).

Internal or implicit knowledge does not rely on external knowledge sources but

rather obtains extra knowledge from the existing data (Davison et al., 2019) which

can be knowledge of the language, world knowledge, physical knowledge, or com-

monsense knowledge. This can be achieved by pre-training models on large-scale data

without any human supervision and then using them as unstructured knowledge bases.

There are different family of models and architectures such as autoencoders (Hinton

and Salakhutdinov, 2006; Vincent et al., 2008) or transformers (Devlin et al., 2018;

Vaswani et al., 2017) that can be trained with a self-supervised objective function

(Radford et al., 2019; Vaswani et al., 2017) on a unlabeled dataset, and subsequently



8 Introduction and Background

the knowledge stored in the weights of the network can be used as sources of in-

ternal knowledge. Recently, large language models (LLMs) (Sanderson, 2023) are

a strong example of this type of internal knowledge, which if queried or prompted

effectively, leads to strong gains in performance for knowledge-intensive tasks (Bao

et al., 2014; Hermjakob et al., 2000). Apart from the importance of implicit knowledge

in knowledge-intensive tasks, it is very effective for learning useful priors for transfer

learning and generalization (Raina et al., 2006).

Rule-based or lexical knowledge refers to linguistic information and rules that govern

the structure, meaning, and usage of words and language. This form of knowledge

helps in generalizing the knowledge contained in millions and billions of examples

by defining preset rules in language. It encompasses the knowledge of vocabulary,

grammar, syntax, semantics, and linguistic rules that guide the composition and

interpretation of language (Fiez and Raichle, 1997; Pustejovsky and Boguraev, 1993).

It encompasses aspects such as word definitions, synonyms, antonyms, word senses,

part-of-speech (POS) tags, morphological properties, and lexical semantic knowledge

(Voutilainen, 2003). Lexical knowledge allows models to understand and reason about

individual words and their meanings.

It also includes knowledge about word order, sentence structures, phrase structures,

syntactic categories, and syntactic dependencies (Nivre, 2005). Rule-based linguistic

knowledge enables models to parse and understand the grammatical structure of sen-

tences, facilitating syntactic analysis and generation of grammatically correct language

(Ding et al., 2017). Rule-based linguistic knowledge includes various linguistic rules

and constraints that govern the formation and interpretation of language. These rules

encompass aspects such as agreement rules, tense and aspect rules, negation rules,

subject-verb agreement, and other syntactic, morphological, and phonological rules

(Anderson, 1982). Knowledge of these rules enables models to generate and interpret

language according to the specific rules and constraints of the language. In natural

language processing, these resources serve as valuable references and tools for building

models that can process, understand, and generate human language accurately.
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Discussion. In particular, to make AI systems that mimic human learning, relying on

raw inputs from vision and text modalities alone is not sufficient. Aside from sensory

modalities, humans also acquire knowledge from external sources, from experience

in the form of commonsense, and from learning and memorizing. Hence, research

efforts have been made to incorporate these sources of knowledge (Section 1.1.2)

into learning of vision and language models (Gui et al., 2021; Marino et al., 2021;

Yang et al., 2022c). To test these knowledge-enhanced VL models, several datasets

and tasks have been proposed that particularly focus on evaluating the importance of

knowledge in learning. Some of these tasks include knowledge-based visual question

answering (Marino et al., 2019; Schwenk et al., 2022; Shah et al., 2019), visual

commonsense reasoning with commonsense facts (Zellers et al., 2019), knowledge

in visual reasoning (Zhang et al., 2021c) and compositional reasoning (Hudson and

Manning, 2019; Johnson et al., 2017) and knowledge in visual dialog (Lu et al., 2017;

Zhang et al., 2022). It is important to note that all the above mentioned tasks have

been designed to evaluate the use of external and commonsense knowledge sources.

However, in this thesis, we do not focus on specific reasoning and querying over these

knowledge sources for VL tasks but instead focus on how to use both internal and

rule-based lexical knowledge for improving the learning of VL models.

1.2 Motivation

The success of existing vision and language models hinges predominantly on large

labeled datasets with bounding box annotations for grounding text in images (Krishna

et al., 2017; Lin et al., 2014; Plummer et al., 2015) or images paired with high-

quality textual descriptions (Changpinyo et al., 2021b; Lin et al., 2014; Schuhmann

et al., 2022). However, creating these datasets can be prohibitively expensive and

does not scale well. Human labelers are either needed to write detailed captions

and descriptions for tens or hundreds of thousands of images or annotate images

exhaustively with bounding boxes corresponding to words in the text, which is costly

and time-consuming. This process also inevitably introduces subjective human biases
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into the training data. For example, labelers may describe the same image differently

based on their own backgrounds and perspectives. The expense and effort required to

produce these large labeled datasets pose a major bottleneck to developing powerful

multimodal AI systems. Motivated by these limitations, we propose to exploit internal

and lexical knowledge for vision and language (VL) tasks, especially with limited

labeled data. In Section 1.3, we discuss in detail the challenges and limitations that

motivate us to develop knowledge-enhanced vision and language models.

Specifically, we investigate these challenges for the following vision and language

tasks: image captioning (Lin et al., 2014), scene graph generation (Krishna et al.,

2017), and multimodal coreference resolution (Guo et al., 2022; Rohrbach et al., 2017)

(see Fig. 1.1 for visualization of these tasks). We first briefly describe these three tasks:

1) image captioning involves generating a natural language description describing the

content of the image, 2) scene graph generation requires understanding the image in

finer detail by detecting objects, relationships between objects and the attributes of

these objects and then generating a well-connected graph of the image and, 3) multi-

modal coreference resolution involves comprehending the contextual information in

the language i.e., links between nouns and pronouns and then establishing connections

with specific regions in an image i.e., visual grounding.

These three tasks require the VL model to understand the visual content in the

image in detail (scene graphs), generate semantically and contextually appropriate

captions for the visual content (image captioning), and link expressions or references

across modalities, such as connecting pronouns in text with corresponding visual

entities (multimodal coreference resolution). By bridging the gap between visual and

textual modalities effectively we develop more reliable and robust models that can be

used for real-world applications such as human-robot interaction and assistive agents.

1.3 Challenges

Variability in visual content. Visual content varies from one object to another

(e.g., different types of dog) and from one scene to another (e.g., different types of
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beach). To capture this visual variability, we need to collect precise and fine-grained

annotations, describing the content of the image in detail. Figure 1.2 shows examples of

a set of images with different visual attributes, such as varied actions and backgrounds

but all are labeled with the same caption “A man holding a tennis racket on a court”.

In Chapter 2 of this thesis, we identify this limitation and how difficult it is to capture

the variability in visual content in natural language hence making it challenging to

generate a single detailed, precise, and correct caption. Hence, we propose to generate

captions for an image with varied linguistic expressions or levels of detail, helping

models to handle visual variability and not suffer from collapsing to producing a single

type of caption for every image, also known as “mode collapse”.

a man holding up a tennis racket on a court.

(a) (b) (c)

Figure 1.2 Example of images with visual variability (attributes, actions, foreground,
and background) labeled with the common caption “a man holding up a tennis racket
on a court” (Lin et al., 2014).

Variability in language: Natural language is inherently ambiguous and, different

interpretations or descriptions are possible for the same visual input. This ambiguity

makes it challenging for learning a comprehensive and holistic vision and language

system, that can generalize to different annotator styles and perspectives. In Chapter 3

to Chapter 5, we address this problem for the tasks of scene graph generation and

multimodal coreference resolution. Language variability affects the representation of

relationships and structures in scene graphs. Different annotators may describe object

relationships using different linguistic patterns (for instance, as shown in Fig. 1.3(a),

one annotator could say “man sits on bench” and the other one could say “man on

bench”), resulting in variations in the structure and organization of the scene graph.
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Moreover, language variability introduces ambiguity and contextual dependencies

in coreference resolution as shown in Fig. 1.3(b). The interpretation of references

depends on the surrounding linguistic and visual context, for instance, as shown in

Fig. 1.3(b), this man with a white object in his hands is the man squatting down and

not the one standing on the extreme right. Variations in language usage and expressions

make it challenging to determine the correct referents, resulting in potential errors in

multimodal coreference resolution.

man sits on bench
man on bench

Few people are standing and these people are sitting 
like squat position and this man holding an object in his

hands which is white in color and we can see plants. In the
background we can see building, grass and sky. 

(a) (b)

Figure 1.3 (a) Example of language ambiguity on scene graph generation (Krishna et al.,
2017) and (b) Example of narrative language for multimodal coreference resolution
(Pont-Tuset et al., 2020; Rohrbach et al., 2017).

Missing annotations: Missing annotations are prevalent in several vision tasks such

as image classification where an image is only labeled with one positive label but has

multiple positive labels (Cole et al., 2021). This incompleteness hampers the ability

of the models to fully understand and reason about the image, potentially leading to

inaccurate or incomplete predictions. We particularly study the problem of missing

annotations in scene graph generation in Chapter 3 of this thesis as shown in Fig-

ure 1.3(a). The dataset is either labeled with the relation “on” or “sits on”. Missing

annotations may introduce biases in the scene graph representation. If certain types

of relationships are missing from the annotations, the resulting scene graphs may not

adequately represent the diversity and complexity of real-world scenes. Biases in

annotations can lead to biased models and biased downstream applications, impact-
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ing fairness and generalization. Hence, in Chapter 3 of this thesis, we particularly

address this limitation where certain types of relationships are overrepresented or

underrepresented in the dataset due to annotation limitations.

Difficulty in getting large-scale annotated data: Obtaining large-scale annotated data

for detailed and fine-grained annotations is very time-consuming and resource intensive.

For instance, take the example of scene graph generation (Krishna et al., 2017), the

annotators need to identify objects, their attributes, and relationships between objects

and draw bounding boxes for each object, making the annotation process very costly.

In Chapter 4 and Chapter 5 of this thesis, we propose data efficient approaches for

the challenging task of multimodal coreference resolution, where it is very costly

to get fully annotated data. For tasks such as this, annotators need to possess a

solid understanding of both visual and linguistic concepts and requires a combination

of domain knowledge, linguistic skills, and familiarity with annotation guidelines.

Hence, hiring annotators in bulk is not the most effective solution. Moroever, the

cost associated with collecting and annotating such datasets is very high, especially

when considering the expertise required and the need for iterative annotation processes.

To address these challenges, we propose methods that do not rely on large scale

annotated training data whilst still achieving impressive performances for multimodal

coreference resolution.

1.4 Contributions

The main contribution of this thesis is to utilize different forms of prior knowledge to

improve vision and language tasks. Specifically, we incorporate implicit knowledge

and rule-based lexical knowledge to enhance contextual understanding.

• In Chapter 2, we focus on addressing bias in generating natural language descrip-

tions from images, known as image captioning. We leverage implicit knowledge

about language structure and semantics to address mode collapse and improve

generalization from limited data. Our method relies on latent variables i.e., top-

ics to capture contextual relationships between image regions and caption words.
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Moroever, linguistic knowledge captured via autoencoding captions provides

regularization on the syntactic and semantic structure. Together, these allow for

generating more accurate and coherent captions.

• In Chapter 3, we target to address subjective human biases in training data for

generating scene graphs from images. We employ rule-based lexical knowledge

to learn informative object relations without full supervision. Our method

exploits lexical properties of relation labels, obviating the need for complete

relation annotations. This facilitates learning complex inter-object relationships

from biased data.

• In Chapter 4, we propose an evaluation dataset for multimodal coreference

resolution (MCR). Resolving the task of MCR requires comprehending the

contextual dependencies between linguistic references and visual context. This

contextual understanding is a fundamental aspect of general AI, as it allows

systems to capture the nuanced and interdependent nature of real-world scenes

and language.

• Training the model for MCR in a fully-supervised setting is extremely expensive

due to the nature of annotations required to train models for MCR. In Chapter 4,

we propose a novel weakly supervised approach by exploiting the rule-based

lexical knowledge for coreferences by relying on only paired image-caption

data, without any bounding-box labels and coreference chain annotations. The

lexical rules act as a regularizer to align textual entities with visual context.

• Finally, in Chapter 5, we extend the capabilities of the model to learn coref-

erences and the integration of the two modalities. Specifically, we propose a

semi-supervised vision and language learning framework that relies on a small

set of labeled data and on a large set of unlabeled data. The model builds on the

capabilities of transferring prior implicit knowledge from the labeled set to the

unlabeled set for inferring referential relationships, understanding contextual

information, and making logical associations between linguistic expressions and

visual entities.
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1.5 Thesis outline

This thesis consists of the following chapters including this introduction – Chapter 2,

which proposes the use of prior linguistic knowledge for improving image captioning

and generating visually detailed captions. Chapter 3 focuses on scene graph gener-

ation and presents a new method that efficiently leverages the lexical knowledge to

learn detailed scene graphs from partially annotated data. Chapter 4 focuses on multi-

modal coreference resolution. In this chapter, we present a new benchmark dataset

for evaluating multimodal coreference resolution and a data efficient approach – a

weakly supervised method for resolving coreferences by leveraging lexical knowledge.

Chapter 5 evaluates the dataset proposed in Chapter 4 by addressing the limitations of

the weakly supervised method and proposing a semi-supervised method that relies on

a small labeled set with annotations for coreference resolution in text and narrative

grounding in images. Chapter 6 summarizes our contributions and introduces ideas for

future research.

Chapter 2 to Chapter 5 each contain a paper that has been peer-reviewed and

accepted for publication in a conference. The publications included in this thesis are:

• Chapter 2 is based on “Injecting prior knowledge into image caption generation.”

Arushi Goel, Basura Fernando, Thanh-Son Nguyen, and Hakan Bilen. In

Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020,

Proceedings, Part II 16, pp. 369-385. Springer International Publishing, 2020

(Oral Presentation) (Goel et al., 2020).

• Chapter 3 is based on “Not all relations are equal: Mining informative labels

for scene graph generation.” Arushi Goel, Basura Fernando, Frank Keller, and

Hakan Bilen. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 15596-15606. 2022 (Goel et al., 2022a).

• Chapter 4 is based on “Who are you referring to? Coreference resolution in

image narrations.” Arushi Goel, Basura Fernando, Frank Keller, and Hakan

Bilen. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pp. 15247-15258. 2023 (Goel et al., 2023b).
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• Chapter 5 is based on “Semi-supervised multimodal coreference resolution in

image narrations.” Arushi Goel, Basura Fernando, Frank Keller, and Hakan

Bilen. In Proceedings of the 2023 Conference on Empirical Methods in Natural

Language Processing, EMNLP, 2023 (Goel et al., 2023a).

• Chapter 6 summarizes our contributions and proposes directions for future work.



Chapter 2
Injecting prior knowledge into image

caption generation

Automatically generating natural language descriptions from an image is a challenging

problem in artificial intelligence that requires a good understanding of the visual and

textual signals and the correlations between them. The state-of-the-art methods in

image captioning struggle to approach human-level performance, especially when

data is limited. In this chapter, we propose to improve the performance of the state-

of-the-art image captioning models by incorporating two sources of prior knowledge:

(i) conditional latent topic attention, that uses a set of latent variables (topics) as an

anchor to generate highly probable words and, (ii) a regularization technique that

exploits the inductive biases in the syntactic and semantic structure of captions and

improves the generalization of image captioning models. Our experiments validate that

our method produces more human interpretable captions and also leads to significant

improvements on the MSCOCO dataset in both the full and low data regimes.

This chapter begins with an introduction of the background of image captioning

models, limitations of these methods and the key idea of the proposed method for

incorporating knowledge in captioning models in Section 2.1, reviewing related work in

Section 2.2, elaborating the proposed method in Section 2.3, evaluating and analyzing

the proposed method on multiple image captioning backbones in Section 2.5 and

conclusion and discussion in Section 2.6.
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2.1 Introduction

In recent years there has been a growing interest to develop end-to-end learning

algorithms in computer vision tasks. Despite the success in many problems such as

image classification (He et al., 2016) and person recognition (Joon Oh et al., 2015),

the state-of-the-art methods struggle to reach human-level performance in solving

more challenging tasks such as image captioning within limited time and data which

involves understanding the visual scenes and describing them in a natural language.

This is in contrast to humans who are effortlessly successful in understanding the

scenes which they have never seen before and communicating them in a language. It is

likely that this efficiency is due to the strong prior knowledge of structure in the visual

world and language (Chomsky, 2014).

Motivated by this observation, in this chapter we ask “How can such prior knowl-

edge be represented and utilized to learn better image captioning models with deep

neural networks?”. To this end, we look at the state-of-the-art encoder-decoder image

captioning methods (Anderson et al., 2018a; Vinyals et al., 2015; Xu et al., 2015)

where a Convolutional Neural Network (CNN) encoder extracts an embedding from

the image, and a Recurrent Neural Network (RNN) decoder generates the text based

on the embedding. This framework typically contains two dynamic mechanisms to

model the sequential output: i) an attention module (Bahdanau et al., 2014; Xu et al.,

2015) that identifies the relevant parts of the image embedding based on the previous

word and visual features and ii) the RNN decoder that predicts the next words based

on its previous state and attended visual features. While these two components are

very powerful to model complex relations between the visual and language cues, we

hypothesize that they are also capable of and at the same time prone to overfitting to

wrong correlations, thus leading to poor generalization performance when the data

is limited. Hence, we propose to regulate these modules with two sources of prior

knowledge.

First, we propose an attention mechanism that accurately attends to relevant image

regions and better cope with complex associations between words and image regions.

For instance, in the example of a “man playing tennis”, the input visual attention
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LSTMCLTA

Ours: A man jumping up to 
hit a tennis ball.

LDA Topic 
Prior

Sentence 
Prior

CaptionsCNN 
Encoder

Ours: A man standing on a 
tennis court holding a racket.

Figure 2.1 Our final model with Conditional Latent Topic Attention (CLTA) injected
with Latent Dirichlet Allocation (LDA) Topic Prior and Sentence Prior (Sentence
Auto-Encoder (SAE) regularizer) both rely on prior knowledge to find relevant words
and generate non-template like and generalized captions compared to the same baseline
caption for both images - A man hitting a tennis ball with a racket.

encoder might only look at the local features (tennis ball) leaving out the global visual

information (tennis court). Hence, it generates a trivial caption as “A man is hitting

a tennis ball”, which is not the full description of the image in context (as shown in

Fig. 2.1).

We solve this ambiguity by incorporating prior knowledge of context via latent

topic models (Blei et al., 2003), which are known to identify semantically meaningful

topics (Chang et al., 2009), into our attention module. In particular, we introduce a

Conditional Latent Topic Attention (CLTA) module that models relationship between a

word and image regions through a latent shared space i.e., latent topics to find salient

regions in an image. Some image regions and word representations may project to the

same set of latent topics more than others and therefore more likely to co-occur. Tennis

ball steers the model to associate this word with the latent topic, “tennis”, which further

is responsible for localizing tennis court in the image. If a region-word pair has a higher

probability with respect to a latent topic and if the same topic has a higher probability

with respect to some other regions, then it is also a sa. ient region and will be highly

weighted. Therefore, we compute two sets of probabilities conditioned on the current

word of the captioning model. We use conditional-marginalized probability where

marginalization is done over latent topics to find salient image regions to generate the

next word. Our CLTA is modeled as a neural network where marginalized probability
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is used to weight the image region features to obtain a context vector that is passed to

an image captioning decoder to generate the next word.

Second, the complexity in the structure of natural language makes it harder to

generate fluent sentences while preserving a higher amount of encoded information

(high Bleu-4 scores). Although current image captioning models are able to model

this linguistic structure, the generated captions follow a more template-like form, for

instance, “A man hitting a tennis ball with a racket.” As shown in Fig. 2.1, visually

similar images have template-like captions from the baseline model. This limitation

might be due to the challenge of learning an accurate mapping from a high-dimensional

input (millions of pixels) to an exponentially large output space (all possible word

combinations) with limited data. As the sentences have certain structures, it would be

easier to learn the mapping to a lower dimensional output space. Inspired by sequence-

to-sequence (seq2seq) machine translation (Gehring et al., 2017; Luong et al., 2015a;

Sutskever et al., 2014; Wiseman and Rush, 2016), we introduce a new regularization

technique for captioning models coined SAE Regularizer. In particular, we design and

train an additional seq2seq sentence auto-encoder model (“SAE”) that first reads in

a whole sentence as input, generates a lower fixed dimensional vector and, then the

vector is further used to reconstruct the input sentence. Our SAE is trained to learn the

structure of the input (sentence) space in an offline manner by exploiting the regularity

of the sentence space.

Specifically, we use SAE-Dec as an auxiliary decoder branch (see Fig. 2.3). Adding

this regularizer forces the representation from the image encoder and language decoder

to be more representative of the visual content and less likely to overfit. SAE-Dec is

employed along with the original image captioning decoder (“IC-Dec”) to output the

target sentence during training, however, we do not use SAE regularizer at test time

reducing additional computations.

Both of the proposed improvements also help to overcome the problem of training

on large image-caption paired data (Lin et al., 2014; Liu and Singh, 2004) by incorpo-

rating prior knowledge which is learned from unstructured data in the form of latent

topics and SAE. These priors – also known as “inductive biases” – help the models
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make inferences that go beyond the observed training data. Through an extensive

set of experiments, we demonstrate that our proposed CLTA module and SAE-Dec

regularizer improves the image captioning performance both in the limited data and

full data training regimes on the MSCOCO dataset (Lin et al., 2014).

2.2 Related work

Here, we first discuss related attention mechanisms and then the use of knowledge

transfer in image captioning models.

Attention mechanisms in image captioning. The pioneering work in neural machine

translation (Bahdanau et al., 2014; Cho et al., 2014a; Luong et al., 2015b) has shown

that attention in encoder-decoder architectures can significantly boost the performance

in sequential generation tasks. Visual attention is one of the biggest contributors in

image captioning (Anderson et al., 2018a; Fang et al., 2015; Huang et al., 2019a;

Xu et al., 2015). Soft attention and hard attention variants for image captioning

were introduced in (Xu et al., 2015) based on whether the attention has access to the

entire image or only a patch. In soft-attention, the alignment weights are learned and

placed “softly" over all patches in the query image. Whereas, in hard attention, the

models selects only one patch of image to attend at a time. Anderson et al. (2018a)

propose a variant of the self-attention mechanism (Vaswani et al., 2017) that has

shown impressive performance for sequence understanding tasks. The bottom-up

and top-down self-attention proposed by Anderson et al. (2018a) looks at a set of

salient image regions using a bottom-up attention. The top-down mechanism uses

task-specific context to predict an attention distribution over the image regions. This

combined mechanism enables attention to be calculated at the level of objects and other

salient image regions. While this attention mechanism is highly useful, for certain

words the attended region may however be irrelevant. To address this, Huang et al.

(2019a), propose attention on attention (AoA). Interestingly, they use attention at both

the encoder and the decoder step of the captioning process. In the encoder, AoA helps
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to better model relationships among different objects in the image and in the decoder,

AoA filters out irrelative attention results and keeps only the useful ones.

Our proposed attention significantly differs in comparison to these attention mech-

anisms. First, the traditional attention methods, soft-attention (Bahdanau et al., 2014)

and scaled dot product attention (Vaswani et al., 2017) aim to find features or regions

in an image that highly correlates with a word representation (Anderson et al., 2018a;

Bahdanau et al., 2014; Sharma et al., 2018). In contrast, our conditional-latent topic

attention uses latent variables i.e., topics as anchors to find the relationship between

word representations and image regions (features). Some image regions and word

representations may project to the same set of latent topics more than others and

therefore more likely to co-occur. Our method learns to model these relationships

between word-representations and image region features using our latent space. We

allow competition among regions and latent topics to compute two sets of probabilities

to find salient regions. This competing strategy and our latent topics guided by pre-

trained LDA topics (Blei et al., 2003) allow us to better model relationships between

visual features and word representations. Hence, the neural structure and our attention

mechanism are quite different from all prior work (Anderson et al., 2018a; Bahdanau

et al., 2014; Huang et al., 2019a; Xu et al., 2015).

Knowledge transfer in image captioning. It is well known that language consists of

semantic and syntactic biases (Bao et al., 2019; Marcheggiani et al., 2018). We exploit

these biases by first training a recurrent caption auto-encoder to capture this useful

information using (Sutskever et al., 2014). Our captioning auto-encoder is trained

to reconstruct the input sentence and hence, this decoder encapsulates the structural,

syntactic, and semantic information of input captions. During captioning process, we

regularize the captioning RNN with this pre-trained caption-decoder to exploit biases

in the language domain and transfer them to the visual-language domain. To the best

of our knowledge, no prior work has attempted such knowledge transfer in image

captioning. (Zhou et al., 2019b) encodes external knowledge in the form of knowledge

graphs using Concept-Net (Liu and Singh, 2004) to improve image captioning. The

closest to ours is the work of (Yang et al., 2019) where they propose to generate scene
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graphs from both sentences and images and then encode the scene graphs to a common

dictionary before decoding them back to sentences. However, the generation of scene

graphs from images itself is an extremely challenging task. Besides obtaining an

encoding for a graph is more challenging than obtaining a representation for sentences.

Finally, we propose to transfer syntactic and semantic information as a regularization

technique during the image captioning process as an auxiliary loss. Our experiments

suggest that this leads to considerable improvements, especially in more structured

measures such as CIDEr (Vedantam et al., 2015).

2.3 Method

We first review image captioning with attention in Section 2.3.1, introduce our CLTA

mechanism in Section 2.3.2, and then our sentence auto-encoder (SAE) regularizer

in Section 2.3.3.

2.3.1 Image captioning with attention

Image captioning models are based on encoder-decoder architecture (Xu et al., 2015)

that use a CNN as the image encoder and a Long Short-Term Memory (LSTM) (Hochre-

iter and Schmidhuber, 1997) as the decoder – see Fig.2.1.

The encoder takes an image as input and extracts a feature set v = {vvv1, . . . ,

vvvR} corresponding to R regions of the image, where vvvi ∈ RD is the D-dimensional

feature vector for the ith region. The decoder outputs a caption y by generating one

word at each time step. At time step t, the feature set v is combined into a single vector

vvvt
a by taking weighted sum as follows:

vvvt
a =

R

∑
i=1

α
t
i vvvi (2.1)

where α t
i is the CLTA weight for region i at time t, that is explained in the next section.

The decoder LSTM φ then takes a concatenated vector [vvvt
a|yyyt−1] and the previous

hidden state ht−1 as input and generates the next hidden state ht:
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ht = φ([vvvt
a|Eyyyt−1],ht−1,Θφ ) (2.2)

where, | denotes concatenation, yyyt−1 ∈ RK is the one-hot vector of the word generated

at time t− 1, K is the vocabulary size, hhht ∈ Rn is the hidden state of the LSTM at

time t, n is the LSTM dimensionality, and Θφ are trainable parameters of the LSTM.

The word embedding matrix E ∈ Rm×K is trained to translate one-hot vectors to word

embeddings as in (Xu et al., 2015), where m is the word embedding dimension. Finally,

the decoder predicts the output word by applying a linear mapping ψ on the hidden

state and vvvt
a as follows:

yyyt = ψ([ht|vvvt
a],Θψ) (2.3)

where Θψ are trainable parameters. Our LSTM implementation closely follows the

formulation in (Zaremba et al., 2014). In the next section, we describe our proposed

CLTA mechanism.

2.3.2 CLTA: Conditional latent topic attention

At time step t, our CLTA module takes the previous LSTM hidden state (hhht−1) and

image features to output the attention weights α t . Specifically, we use a set of latent

topics to model the associations between textual (hhht−1) and visual features (vvv) to

compute the attention weights. The attention weight for region i is obtained by taking

the conditional-marginalization over the latent topic l as follows:

α
t
i = P(region = i|ht−1,vvv) =

C

∑
l=1

P(region = i|ht−1,vvv, l)P(l|ht−1,vvvi) (2.4)

where l is a topic variable in the C-dimensional latent space. To compute

P(l|ht−1,vvvi), we first project both textual and visual features to a common C-dimensional

shared latent space, and obtain the associations by summing the projected features as

follows:
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qqqt
i =Wscvvvi +Whchhht−1 (2.5)

where Wsc ∈ RC×D and Whc ∈ RC×n are the trainable projection matrices for visual

and textual features, respectively. Then the latent topic probability is given by:

PL = P(l|hhht−1,vvvi) =
exp(qqqt

il)

∑
C
k=1 exp(qqqt

ik)
(2.6)

Afterwards, we compute the probability of a region given the textual, vision

features, and latent topic variable as follows:

rrrt
i =Wsrvvvi +Whrhhh

t−1 (2.7)

P(region = i|hhht−1,v, l) =
exp(rrrt

il)

∑
R
k=1 exp(rrrt

kl)
(2.8)

where Wsr ∈RC×D and Whr ∈RC×n are the trainable projection matrices for visual and

textual features, respectively.

The latent topic posterior in Eq. (2.6) is pushed to the pre-trained LDA topic prior

by adding a KL-divergence term to the image captioning objective. We apply Latent

Dirichlet Allocation (LDA) (Blei et al., 2003) on the caption data. Then, each caption

has an inferred topic distribution QT from the LDA model which acts as a prior on the

latent topic distribution, PL. For doing this, we take the average of the C-dimensional

latent topics at all time steps from 0, . . . , t−1 as:

PLavg =
1
t

t−1

∑
k=0

P(l|hhhk,vvvi) (2.9)

Hence, the KL-divergence objective is defined as:

DKL(PLavg||QT ) = ∑
c∈C

PLavg(c)× log(
PLavg(c)
QT (c)

) (2.10)
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Up-Down:  A dirty 
bathroom with a toilet 

and a sink.

CLTA:  A bathroom 
with a toilet and a roll 

of toilet paper.

Top-20 Topic Words:  toilet, bathroom, white, 
floor, small, wall, next, sitting, tiled, tile, seat, 

urinal, public, restroom, stall, room, paper roll, 
lid, dirty.

Up-Down:  A kitchen 
with a refrigerator and 

a stove.

CLTA:  A kitchen with 
wooden cabinets and 

stainless steel appliances.

Top-20 Topic Words: kitchen, refrigerator, 
cabinet, white, sink, appliance, counter, fridge, 
small, wood, stove, wooden, steel, large, floor, 

stainless, area, top, clean, island.

Figure 2.2 Image-Caption pairs generated from our CLTA module with 128 dimensions
and visualization of Top-20 words from the latent topics.

This learned latent topic distribution captures the semantic relations between the

visual and textual features in the form of visual topics, and therefore we also use this

latent posterior, PL as a source of meaningful information during the generation of the

next hidden state. The modified hidden state ht in Eq. (2.2) is now given by:

ht = φ([vvvt
a|Eyyyt−1|PL],ht−1,Θφ ) (2.11)

We visualize the distribution of latent topics in Figure 2.2. While traditional “soft-

max" attention exploits simple correlations among textual and visual information, we

make use of latent topics to model associations between them.

2.3.3 SAE regularizer

Encoder-decoder methods are widely used for translating one language to another

(Bahdanau et al., 2014; Cho et al., 2014b; Sutskever et al., 2014). When the input and

target sentences are the same, these models function as auto-encoders by first encoding

an entire sentence into a fixed-(low) dimensional vector in a latent space, and then

reconstructing it. Autoencoders are commonly employed for unsupervised training in

text classification (Dai and Le, 2015) and machine translation (Luong et al., 2015a).

In this chapter, our SAE regularizer has two advantages: i) acts as a soft constraint

on the image captioning model to regularize the syntactic and semantic space of the

captions for better generalization and, ii) encourages the image captioning model

to extract more context information for better modeling long-term memory. These

two properties of the SAE regularizer generate semantically meaningful captions for
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Image Captioning
Model

LSTM's 
Hidden State

SAE's 
Decoder 𝑦𝑠𝑎𝑒

𝑦𝑙𝑠𝑡𝑚

SAE Regularizer

𝐿( , )𝑦∗ 𝑦lstm

𝐿( , )𝑦∗ 𝑦sae

Figure 2.3 Illustration of our proposed Sentence Auto-Encoder (SAE) regularizer with
the image captioning decoder. The captioning model is trained by adding the SAE
decoder as an auxiliary branch and thus acting as a regularizer.

an image with syntactic generalizations and prevents the generation of naive and

template-like captions.

Our SAE model uses network architecture of (Sutskever et al., 2014) with Gated

Recurrent Units (GRU) (Chung et al., 2014). Let us denote the parameter of the

decoder GRU by ΘD. A stochastic variation of the vanilla sentence auto-encoders

is de-noising auto-encoders (Vincent et al., 2008) which are trained to “de-noise”

corrupted versions of their inputs. To inject such input noise, we drop each word in the

input sentence with a probability of 50% to reduce the contribution of a single word to

the semantics of a sentence. We train the SAE model in an offline stage on the training

set of the captioning dataset. After the SAE model is trained, we discard its encoder

and integrate only its decoder to regularize the captioning model.

As depicted in Figure 2.3, the pre-trained SAE decoder takes the last hidden state

vector of captioning LSTM hhh as input and generates an extra caption (denoted as ysae)

in addition to the output of the captioning model (denoted as ylstm). We use the output

of the SAE decoder only in train time to regulate the captioning model φ by implicitly

transferring the previously learned latent structure with SAE decoder.

Our integrated model is optimized to generate two accurate captions (i.e., ysae and

ylstm) by minimizing a weighted average of the two loss values:

argmin
Ω

λL (y∗,ylstm)+(1−λ )L (y∗,ysae) (2.12)
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where L is the cross-entropy loss computed for each caption, word by word against

the ground truth caption y∗, λ is the trade-off parameter, and Ω are the parameters of

our model. We consider two scenarios that we use during our experimentation.

• First, we set the parameters of the SAE decoder ΘD to be the weights of the

pre-trained SAE decoder and freeze them while optimizing Equation (2.12) in

terms of Ω = {Θφ ,Θψ ,E}.

• Second, we initialize ΘD with the weights of the pre-trained SAE decoder and

fine-tune them along with the LSTM parameters, i.e., Ω = {Θφ ,Θψ ,E,ΘD}.

As discussed in Section 2.3.2, we also minimize the KL divergence in Eq. (2.10) along

with the final regularized objective in Eq. (2.12) as:

argmin
Ω

λL (y∗,ylstm)+(1−λ )L (y∗,ysae)+ γDKL(PLavg ||QT ) (2.13)

where γ is the weight for the KL divergence loss.

Discussion. An alternative way of exploiting the information from the pre-trained

SAE model is to bring the representations from the captioning decoder closer to the

encodings of the SAE encoder by minimizing the Euclidean distance between the

hidden state from the SAE encoder and the hidden state from the captioning decoder at

each time-step. However, we found this setting is too restrictive on the learned hidden

state of the LSTM and resulting in poor captioning performance.

2.4 Experiments

Dataset. Our models are evaluated on the standard MSCOCO 2014 image captioning

dataset (Lin et al., 2014). For fair comparisons, we use the same data splits for

training, validation and testing as in (Karpathy and Fei-Fei, 2015) which have been

used extensively in prior works. This split has 113,287 images for training, 5k images

for validation and testing respectively with 5 captions for each image. We perform
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evaluation on all relevant metrics for generated sentence evaluation - CIDEr (Vedantam

et al., 2015), Bleu (Papineni et al., 2002), METEOR (Denkowski and Lavie, 2014),

ROUGE-L (Lin and Och, 2004) and, SPICE (Anderson et al., 2016).

Implementation details. For training our image captioning model, we compute the

image features based on the Bottom-Up architecture proposed by (Anderson et al.,

2018a), where the model is trained using a Faster-RCNN model (Ren et al., 2015) on

the Visual-Genome Dataset (Krishna et al., 2017) with object and attribute information.

These features are extracted from R regions and each region feature has D dimensions,

where R and D are 36 and 2048 respectively as proposed in (Anderson et al., 2018a).

We use these 36×2048 image features in all our experiments.

2.4.1 Experimental setup

LDA topic models. The LDA (Blei et al., 2003) model is learned in an offline

manner to generate a C dimensional topic distribution for each caption. Briefly, the

LDA model treats the captions as word documents and group these words to form C

topics (cluster of words), learns the word distribution for each topic (C×V ) where V

is the vocabulary size and also generates a topic distribution for each input caption,

QT where each Cth dimension denotes the probability for that topic.

Sentence auto-encoder. The Sentence Auto-encoder is trained offline on the MSCOCO

2014 captioning dataset (Lin et al., 2014) with the same splits as discussed above. For

the architecture, we have a single layer GRU for both the encoder and the decoder.

The word embeddings are learned with the network using an embedding layer and the

dimension of both the hidden state and the word embeddings is 1024. During training,

the decoder is trained with teacher-forcing (Bengio et al., 2015) with a probability of

0.5. For inference, the decoder decodes till it reaches the end of the caption token. The

learning rate for this network is 2e-3 and it is trained using the ADAM (Kingma and

Ba, 2014) optimizer.
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Image captioning decoder with SAE regularizer. The architecture of our image

captioning decoder is the same as the Up-Down model (Anderson et al., 2018a)

with their “soft-attention” replaced by our CLTA module and trained with the SAE

regularizer. We also retrain the AoANet model proposed by Huang et al. (2019a)

by incorporating our CLTA module and the SAE regularizer. In the results section,

we show improvements over the Up-Down and AoANet models using our proposed

approaches. Note, the parameters for training Up-Down and AoANet baselines are

same as the original setting. While training the captioning models together with

the SAE-decoder, we jointly learn an affine embedding layer (dimension 1024) by

combining the embeddings from the image captioning decoder and the SAE-decoder.

During inference, we use beam search to generate captions from the captioning

decoder using a beam size of 5 for Up-Down and a beam-size of 2 for AoANet.

For training the overall objective function as given in Equation 2.13, the value of

λ is initialized by 0.7 and increased by a rate of 1.1 every 5 epochs until it reaches

a value of 0.9 and γ is fixed to 0.1. We use the ADAM optimizer with a learning

rate of 2e-4. Our code is implemented using PyTorch (pyt) and is available at https:

//github.com/goelarushi/WS-IC.

2.5 Results

First, we study the caption reconstruction performance of vanilla and denoising SAE,

then report our model’s image captioning performance on MS-COCO dataset with

full and limited data, investigate multiple design decisions, and analyze our results

qualitatively.

2.5.1 Sentence auto-encoder results

An ideal SAE must learn mapping its input to a fixed low-dimensional space such

that a whole sentence can be summarized and reconstructed accurately. To this end,

we experiment with two SAEs, Vanilla-SAE and Denoising-SAE, and report their

reconstruction performances in terms of Bleu4 and cross-entropy (CE) loss in fig.2.4.

https://github.com/goelarushi/WS-IC
https://github.com/goelarushi/WS-IC
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Figure 2.4 Error Curve for the Sentence Auto-Encoder on the Karpathy test split. The
error starts increasing approximately after 20 epochs.

Models Bleu-4 ↑ CE-Loss ↓

Vanilla SAE 96.33 0.12
Denoising SAE 89.79 0.23

Table 2.1 Bleu-4 Evaluation and Reconstruction Cross-Entropy Loss for the Sentence
Auto-Encoder on the Karpathy test split of MSCOCO 2014 caption dataset (Lin et al.,
2014).

The vanilla model, when the input words are not corrupted, outperforms the

denoising one in both metrics. This is expected as the denoising model is only trained

with corrupted input sequences. The loss for both the Vanilla and Denoising SAE start

from a relatively high value of approximately 0.8 and 0.4 respectively, and converge

to a significantly low error of 0.1 and 0.2. For a better analysis, we also compute the

Bleu-4 metrics on our decoded caption against the 5 ground-truth captions. As reported

in Table 2.1, both models obtain significantly high Bleu-4 scores. This indicates that

an entire caption can be compressed in a low-dimensional vector (1024) and can be

successfully reconstructed.

2.5.2 Image captioning results

Here we incorporate the proposed CLTA and SAE regularizer to recent image-captioning

models including Up-Down (Anderson et al., 2018a) and AoANet (Huang et al., 2019a)

and report their performance on MS-COCO dataset in multiple metrics (see Table 2.2).
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Models
cross-entropy loss cider optimization

B-1 B-4 M R C S B-1 B-4 M R C S

LSTM-A (Yao et al., 2017) 75.4 35.2 26.9 55.8 108.8 20.0 78.6 35.5 27.3 56.8 118.3 20.8
RFNet (Jiang et al., 2018) 76.4 35.8 27.4 56.8 112.5 20.5 79.1 36.5 27.7 57.3 121.9 21.2
Up-Down (Anderson et al., 2018a) 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4
GCN-LSTM (Yao et al., 2018) 77.3 36.8 27.9 57.0 116.3 20.9 80.5 38.2 28.5 58.3 127.6 22.0
AoANet (Huang et al., 2019a) 77.4 37.2 28.4 57.5 119.8 21.3 80.2 38.9 29.2 58.8 129.8 22.4

Up-Down† 75.9 36.0 27.3 56.1 113.3 20.1 79.2 36.3 27.7 57.3 120.8 21.2
Up-Down† + CLTA + SAE-Reg 76.7 37.1 28.1 57.1 116.2 21.0 80.2 37.4 28.4 58.1 127.4 22.0
Relative Improvement +0.8 +1.1 +0.8 +1.0 +2.9 +0.9 +1.0 +1.1 +0.7 +0.8 +6.6 +0.8

AoANet∗ 77.3 36.9 28.5 57.3 118.4 21.6 80.5 39.1 29.0 58.9 128.9 22.7
AoANet† + CLTA + SAE-Reg 78.1 37.9 28.4 57.5 119.9 21.7 80.8 39.3 29.1 59.1 130.1 22.9
Relative Improvement +0.8 +1.0 -0.1 +0.2 +1.5 +0.1 +0.3 +0.2 +0.1 +0.2 +1.2 +0.2

Table 2.2 Image captioning performance on the “Karpathy” test split of the MSCOCO
2014 caption dataset (Lin et al., 2014) from other state-of-the-art methods and our
models. Our Conditional Latent Topic Attention with the SAE regularizer significantly
improves across all the metrics using both cross-entropy loss and cider optimization.
† denotes our trained models and * indicates the results obtained from the publicly available
pre-trained model.

The tables report the original results of these methods from their publications in the top

block and the rows in cyan show relative improvement of our models when compared

to the baselines.

The baseline models are trained for two settings - 1) Up-Down†, is the model

re-trained on the architecture of Anderson et al. (2018a) and, 2) AoANet†, is the

Attention-on-Attention model re-trained as in Huang et al.Huang et al. (2019a). Note

that for both Up-Down and AoANet, we use the original source code to train them in

our own hardware. We replace the “soft-attention" module in our Up-Down baseline

by CLTA directly. The AoANet model is based on the powerful Transformer (Vaswani

et al., 2017) architecture with the multi-head dot attention in both the encoder and

decoder. For AoANet, we replace the dot attention in the decoder of AoANet at each

head by the CLTA which results in multi-head CLTA. The SAE-decoder is added as a

regularizer on top of these models as also discussed in Section 2.4.1. As discussed

later in Section 2.5.5, we train all our models with 128 dimensions for the CLTA and

with the Denoising SAE decoder (initialized with hhhlast).

We evaluate our models with the cross-entropy loss training and also by using the

CIDEr score optimization (Rennie et al., 2017) after the cross-entropy pre-training

stage (Table 2.2). For the cross-entropy one, our combined approach consistently
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Models 50% data 75% data 100% data

Bleu-4 CIDEr Bleu-4 CIDEr Bleu-4 CIDEr
Up-Down 35.4 112.0 35.8 112.7 36.0 113.3
Up-Down+CLTA 36.3 113.7 36.3 114.5 36.5 115.0
Up-Down+CLTA+SAE-Reg 36.6 114.8 36.8 115.6 37.1 116.2

AoANet 36.6 116.1 36.8 118.1 36.9 118.4
AoANet+CLTA 36.9 116.7 37.1 118.4 37.4 119.1
AoANet+CLTA+SAE-Reg 37.2 117.5 37.6 118.9 37.9 119.9

Table 2.3 Evaluation of our CLTA and SAE-Regularizer methods by training on a
subset of the MSCOCO “Karpathy” Training split.

improves over the baseline performances across all metrics. It is clear from the results

that improvements in CIDEr and Bleu-4 are quite significant which shows that our

approach generates more human-like and accurate sentences. It is interesting to note

that AoANet with CLTA and SAE-regularizer also gives consistent improvements

despite having a strong transformer language model. We show in Section 2.5.4 the

differences between our captions and the captions generated from Up-Down and

AoANet. Our method is modular and improves on state-of-the-art models despite the

architectural differences. Moreover, the SAE decoder is discarded after training and

hence it brings no additional computational load during test time but with a significant

performance boost. For CIDEr optimization, our models based on Up-Down and

AoANet also show significant improvements in all metrics for our proposed approach.

2.5.3 Learning to caption with less data

Table 2.3 evaluates the performance of our proposed models for a subset of the

training data, where x% is the percentage of the total data that is used for training.

All these subsets of the training samples are chosen randomly. Our CLTA module

is trained with 128 dimensions for the latent topics along with the Denoising SAE

Regularizer initialized with the last hidden state of the LSTM (Up-Down+CLTA+SAE-

Reg). Despite the number of training samples, our average improvement with CLTA

and SAE-Regularizer is around 1% in Bleu-4 and 2.9% in CIDEr for the Up-Down
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Up-Down: A dog laying on the floor in front of a mirror.
+CLTA: a black and white dog laying on the floor.
+CLTA+SAE-Reg:  a black and white dog laying on a 
wooden floor.
 

Up-Down: A box of doughnuts with donuts in it.
+CLTA: a box filled with different types of donuts.
+CLTA+SAE-Reg:  a  box filled with  lots  of  different 
flavoured donuts.

 
Up-Down: A yellow bike with a bicycle on the street.
+CLTA: a yellow bike with a yellow umbrella attached 
to it.
+CLTA+SAE-Reg: a bicycle with an umbrella attached 
to it.

 

GT:  a  black and white  dog wearing a  santa  claus  hat 
lying on the floor.
 

GT: a box that contains multiple kinds of doughnuts.
 

GT: a bicycle with an umbrella and a basket.
 

AoANet: a train station with a train station with trains.

+CLTA: a train station with several trains parked in it.
+CLTA+SAE-Reg: a train station with several trains on 
the tracks.

 
GT: a train station with several trains in the station.
 
AoANet: a rear view mirror shows a dog in the rear view 
mirror.
+CLTA: a rear view mirror with a dog hanging out the 
window.
+CLTA+SAE-Reg:  a  rear  view mirror  showing a  dog 
looking out the window.

 
GT: dog looking out the window of a car in rearview 
mirror.
 
AoANet: a bench sitting under a tree in a park.
+CLTA: a park bench sitting in the middle of a forest.
+CLTA+SAE-Reg: a park bench sitting in the middle of 
a forest.

 
GT: a park bench surrounded by a green forest of trees..
 

Figure 2.5 Example of generated captions from the baseline Up-Down, AoANet, our
proposed CLTA and, our final models with both CLTA and SAE Regularizer.

model and 0.8% in Bleu-4 and 1.2% in CIDEr for the AoANet model. The significant

improvements in Bleu-4 and CIDEr scores with only 50% and 75% of the data

compared to the baseline validates our proposed methods as a form of rich prior.

2.5.4 Qualitative results

In Fig. 2.5, we show examples of images and captions generated by the baselines

Up-Down and AoANet along with our proposed methods, CLTA and SAE-Regularizer.

The baseline models have repetitive words and errors while generating captions (in

front of a mirror, a dog in the rear view mirror). Our models correct these mistakes

by finding relevant words according to the context and putting them together in a

human-like caption format (a rear view mirror shows a dog has the same meaning as

a rear view mirror shows a dog in the rear view mirror which is efficiently corrected

by our models by bringing in the correct meaning). From all the examples shown, we

can see that our model overcomes the limitation of overfitting in current methods by

completing a caption with more semantic and syntactic generalization (e.g., different

flavoured donuts and several trains on the tracks).

2.5.5 Ablation study

Conditional latent topic attention (CLTA). Table 2.4a depicts the results for the

CLTA module that is described in Section 2.3.2. Soft-attention is used as a baseline
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Models Baseline CLTA
Soft-Attention 128 256 512

Bleu-4 36.0 36.5 36.6 36.7
CIDEr 113.3 115.0 115.2 115.3

(a) Evaluation scores for the Up-Down model with soft-attention and ablations of our CLTA
module.

Models SAE-Decoder hhh Bleu-4 CIDEr

Baseline No - 36.0 113.3

CLTA-128
Vanilla

First 36.9 115.8
Last 36.8 115.3

Denoising
First 36.8 116.1
Last 37.1 116.2

CLTA-512 Denoising Last 37.2 115.9

(b) Additional quantitative evaluation results from different settings of the SAE decoder when
trained with image captioning decoder. hhh denotes the hidden state.

Table 2.4 Ablative Analysis for different settings on our (a) CLTA module and, (b)
SAE regularizer training.

and corresponds to the attention mechanism in (Xu et al., 2015) which is the main

attention module in Up-Down image captioning model by Anderson et al. (2018a).

We replace this attention with the CLTA and evaluate its performance for different

numbers of latent dimensions, i.e., topics (C). The models trained with latent topic

dimensions of 128, 256, and 512 all outperform the baseline significantly. The higher

CIDEr and Bleu-4 scores for these latent topics show the model’s capability to generate

more descriptive and accurate human-like sentences. As we increase the dimensions of

latent topics from 128 to 512, we predict more relevant keywords as new topics learned

by the CLTA module with 512 dimensions are useful in encoding more information

and hence generating meaningful captions.

Image captioning decoder with SAE regularizer. Table 2.4b reports ablations for

our full image captioning model (Up-Down with CLTA) and the SAE regularizer. As

discussed in Section 2.3.3, SAE decoder (parameters defined by ΘD) is initialized with

the hidden state of the image captioning decoder. During training, we test different
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settings of how the SAE decoder is trained with the image captioning decoder: (1)

Vanilla vs Denoising SAE and, (2) hhhfirst vs hhhlast, whether the SAE decoder is initialized

with the first or last hidden state of the LSTM decoder. For all the settings, we fine-tune

the parameters of GRUD (ΘD) when trained with the image captioning model (the

parameters are initialized with the weights of the pre-trained Vanilla or Denoising

SAE decoder).

The results in Table 2.4b are reported on different combinations from the settings

described above, with the CLTA having 128 and 512 dimensions in the image cap-

tioning decoder. Adding the auxiliary branch of SAE decoder significantly improves

over the baseline model with CLTA and in the best setting, Denoising SAE with

hhhlast improves the CIDEr and Bleu-4 scores by 1.2 and 0.6 respectively. As the SAE

decoder is trained for the task of reconstruction, fine-tuning it to the task of captioning

improves the image captioning decoder.

Initializing the Vanilla SAE decoder with hhhlast does not provide enough gradi-

ent during training and quickly converges to a lower error, hence this brings lower

generalization capacity to the image captioning decoder. As hhhfirst is less represen-

tative of an entire caption compared to hhhlast, vanilla SAE with hhhfirst is more helpful

to improve the captioning decoder training. On the other hand, the Denoising SAE

being robust to noisy summary vectors provide enough training signal to improve the

image captioning decoder when initialized with either hhhfirst or hhhlast but slightly better

performance with hhhlast for Bleu-4 and CIDEr as it forces hhhlast to have an accurate

lower-dim representation for the SAE and hence better generalization. It is clear from

the results in Table 2.4b, that Denoising SAE with hhhlast helps to generate accurate and

generalizable captions. From our experiments, we found that CLTA with 128 topics

and Denoising SAE (with hhhlast) has better performance than even its counterpart with

512 topics. Hence, for all our experiments in Section 2.5.2 and Section 2.5.3 our topic

dimension is 128 with Denoising SAE initialized with hhhlast.
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2.6 Conclusion and discussion

In this chapter, we have introduced two novel methods for image captioning that

exploit prior knowledge and hence help to improve state-of-the-art models even when

the data is limited. The first method exploits the association between visual and textual

features by learning latent topics via an LDA topic prior and obtains robust attention

weights for each image region. The second one is an SAE regularizer that is pre-trained

in an autoencoder framework to learn the structure of the captions and is plugged

into the image captioning model to regulate its training. Using these modules, we

obtain consistent improvements on two investigate models, bottom-up top-down and

the AoANet image captioning model, indicating the usefulness of our two modules as

a strong prior.

Although the proposed method addresses major shortcomings in image captioning,

there are certain limitations that can be important considerations for future work. First,

as the SAE regularizer is trained with a self-supervised objective i.e., reconstruction of

the caption, it can be pre-trained on a much larger dataset such as Conceptual Captions

(Changpinyo et al., 2021b) or Visual Genome (Krishna et al., 2017) in addition to

the MSCOCO dataset (Lin et al., 2014). Pre-training on a large dataset would be

useful when the image captioning model is trained on limited data, especially on

domains where paired image-caption data is expensive to obtain such as fashion (Yang

et al., 2020), news articles (Ramisa et al., 2017), etc. Second, in our proposed method

the model uses the topics learned from the set of captions as a prior. While this

acts as a very good regularizer to find important image regions, there is no explicit

information injected from the topics during inference time. We hypothesize that

training a standalone image-to-topic model and then using the learned topics as inputs

to the image captioning model can help generate highly specific image captions.

Ever since this work, the models used for image captioning have seen a paradigm

shift due to two reasons – 1) release of large image-caption datasets such as Visual

Genome (Krishna et al., 2017), Conceptual Captions (Changpinyo et al., 2021b)

and LAION- 5B (Schuhmann et al., 2022) and, 2) the replacement of sequential

models such as recurrent neural networks (Zaremba et al., 2014) by transformer-
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based generative methods (Vaswani et al., 2017). This led to the development of

powerful vision and language models such as VisualBERT (Su et al., 2019), UNITER

(Chen et al., 2020), OSCAR (Li et al., 2020) (to name a few) where the visual

transformer encoder and the text transformer encoder interact with each other using

a cross-attention mechanism (Devlin et al., 2018). These models are then trained on

large-scale image caption paired datasets with self-supervised objectives showing good

generalization capabilities for tasks such as image captioning. This form of large-scale

pretraining (Chen et al., 2020; Mokady et al., 2021) followed by fine-tuning on the

target task such as image captioning can be seen as a way of using internal or implicit

knowledge as discussed in this chapter with the SAE regularizer but with more model

parameters and trained on much larger data (Changpinyo et al., 2021b).

More recently, with the growth in large language models such as GPT2 / GPT3

(Sanderson, 2023) and large vision encoders such as Vision Transformers (ViTs)

(Dosovitskiy et al., 2020), there has been increasing amounts of work in developing

methods that rely on frozen backbones of these large vision and language models

and learn a transformation from the image space to the text space (Chen et al., 2020;

Li et al., 2022a, 2023a). Such family of methods leverage all forms of knowledge

stored in the parameters of these large models and show great improvements in the

task of image captioning. This aligns with the takeaways of this chapter indicating the

usefulness of using knowledge for developing robust models for image captioning.



Chapter 3
Not all relations are equal: Mining

informative labels for scene graph

generation

In the previous chapter, we study the task of image captioning for providing fine-

grained details of an image – an ideal task for encouraging interaction between visual

and language domains. However, describing an image in language goes beyond

providing a high-level understanding of the scene. It also requires spatially localizing

the objects present in the scene, defining the attributes (color, shape, etc.) of these

objects, and what relationships they have with each other. For instance, imagine a

human giving a command to the robot, (Place the “knife" on the “table"). For the

robot to act on this command, it has to develop an understanding of the objects (knife

and table), where they are located in the scene, and then understand the relationship

between them (on). In this chapter, we move from captions to graphs, an intermediate

task between low-level object recognition and high-level scene understanding (Sadeghi

and Farhadi, 2011) also known as scene graph generation. The task of scene graph

generation is to predict triplets of the form (subject, predicate, object) where subject

and object are the objects in an image and predicate is the relation between them.

Hence, predicting multiple triplets from an image i.e., a scene graph would not only
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help in a detailed understanding of a scene but also aid in generating image captions

that capture visual variability of images (Nguyen et al., 2021).

Specifically, in this chapter, we study scene graph generation (SGG) that aims to

capture a wide variety of interactions between pairs of objects, which is essential for

full scene understanding. We investigate the use of lexical knowledge for learning

fine-grained visual details from images from incomplete and biased labeled data.

Existing SGG methods trained on the entire set of relations fail to acquire com-

plex reasoning about visual and textual correlations due to various biases in training

data. Learning on trivial relations that indicate generic spatial configurations like ‘on’

instead of informative relations such as ‘parked on’ does not enforce this complex

reasoning, harming generalization. To address this problem, we propose a novel frame-

work for SGG training that exploits relation labels based on their informativeness.

Our model-agnostic training procedure imputes missing informative relations for less

informative samples in the training data and trains an SGG model on the imputed labels

along with existing annotations. We show that this approach can successfully be used

in conjunction with state-of-the-art SGG methods and improves their performance

significantly in multiple metrics on the standard Visual Genome benchmark. Further-

more, we obtain considerable improvements for unseen triplets in a more challenging

zero-shot setting.

This chapter begins with an introduction of the background of scene graph genera-

tion methods, limitations, and the key ideas of our proposed method for addressing

bias in scene graph in Section 3.1, related work in Section 3.2, elaborating the way

to acquire lexical knowledge and incorporate that in our proposed method in Sec-

tion 3.3, discussing the experimental details in Section 3.4, evaluating and analyzing

the proposed method on multiple SGG backbones in Section 3.5 and conclusion and

discussion in Section 3.6.
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Implicit Relations
Explicit Relations

(a) (b)

Figure 3.1 (a) An example of a scene graph with implicit and explicit relations. (b)
Per-class Recall@100 for an SGG model trained either on only explicit (orange) or
implicit (blue) relations.

3.1 Introduction

In this chapter, we look at a structured vision-language problem, scene graph generation

(Krishna et al., 2017; Xu et al., 2017), which aims to capture a wide variety of

interactions between pairs of objects in images. SGG can be seen as a step towards

comprehensive scene understanding and benefits several high-level visual tasks such as

object detection/segmentation (Girshick, 2015; He et al., 2017; Ren et al., 2015), image

captioning (Anderson et al., 2018b; Huang et al., 2019b; Lin et al., 2014), image/video

retrieval (Faghri et al., 2017), and visual question answering (Antol et al., 2015; Lu

et al., 2016b). In the literature, SGG is typically formulated as predicting a triplet

of a localized subject-object pair connected by a relation (e.g., person wear shirt).

Broadly, recent advances in SGG have been obtained by extracting local and global

visual features in convolutional neural networks (Hung et al., 2019; Simonyan and

Zisserman, 2014; Zhang et al., 2019) or graph neural networks (Lin et al., 2020; Xu

et al., 2017; Yang et al., 2018) combined with language embeddings (Mikolov et al.,

2013; Pennington et al., 2014) or statistical priors (Zellers et al., 2018) for predicting

relations between objects.

Despite the remarkable progress in this task, various factors (long-tail data dis-

tribution, language or reporting bias (Misra et al., 2016)) in the established SGG

benchmarks (e.g., Visual Genome (Krishna et al., 2017)) have been shown to drive
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existing methods towards biased and inaccurate relation predictions (Tang et al., 2019,

2020). One major cause is that each subject-object pair is annotated with only one pos-

itive relation, which typically depends on the annotator’s preference and is subjective,

while other plausible relations are treated as negative.1 For instance, a subject-object

pair man–beach in Fig. 3.1a is only annotated with one relation as man on beach, even

though other plausible relations are available such as standing on. Hence, the models

(Hung et al., 2019; Li et al., 2017b; Tang et al., 2019; Zellers et al., 2018) trained on

this data become biased towards more frequently occurring labels, as reported in Tang

et al. (2020). To alleviate the biased training, Tang et al. (2020) employs counterfactual

causality to force the SGG model to base its predictions only on visual evidence rather

than the data bias. Wang et al. (2020b) propose a semi-supervised technique that

jointly imputes the missing labels of subject–object pairs with no annotated relations to

obtain more balanced triplet distributions. Suhail et al. (2021) propose an energy-based

method that can learn to model the joint probability of triplets from a few samples and

thereby avoids generating biased graphs with inconsistent structure.

While the recent methods (Chiou et al., 2021; Suhail et al., 2021; Tang et al., 2020;

Wang et al., 2020b) successfully tackle the bias towards more frequently occurring

labels, this chapter studies another type of bias related to label informativeness. It

also manifests itself in missing annotations and has not been addressed in SGG before.

In particular, we hypothesize that certain relation labels (implicit labels) are more

informative than others (explicit labels) and training on implicit labels improves a

model’s ability to reason over complex correlations in visual and textual data.

Our key intuition comes from prior computational and cognitive models (Logan

and Sadler, 1996) and recent work (Collell et al., 2018) that categorize relations into

explicit (or spatial) and implicit, based on whether the relation defines the relative

spatial configuration between the two objects implicitly or explicitly (e.g., man stand-

ing on beach vs. man on beach in Fig. 3.1a). Explicit relations are often easy to

learn, e.g., from the spatial coordinates of subject–object pairs, thanks to their highly

deterministic spatial arrangements, while implicit ones are often challenging due to

1Note that both training and test sets of the standard benchmarks are subject to the similar biases.
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the relative spatial variation and require deliberate reasoning. To test our hypothesis,

we conduct experiments where we train an SGG model either only on explicit, or only

implicit relations and evaluate them on a test set including both types (i.e., zero-shot

implicit or explicit relation classification), see Fig. 3.1b. Surprisingly, training only on

implicit relations obtains good performance not only over implicit ones but also unseen

explicit ones (only 2% lower in average training on explicit relations and 4% lower

when trained on all labels), while training only on explicit relations performs poorly

on implicit relations (where the performance drops to 0.1% from 24.3%).2 In other

words, training on implicit labels enables the model to better generalize to unseen

explicit labels. However, due to partially annotated training data, many subject-object

pairs are only labeled by explicit relations, and their implicit relations are missing and

obscured by explicit ones.

Motivated by our analysis, we design a novel model-agnostic training procedure

for SGG that jointly extracts more information from partially labeled data by mining

the missing implicit labels, trains an SGG model on them, and boosts its performance.

In particular, our method involves a two-stage training pipeline. The first stage trains

an SGG model on a subset of training data including only annotated implicit relations,

which allows the model to learn rich correlations in the data and encourages it to

predict more informative implicit labels in the next stage. The second stage includes

an alternating procedure that imputes missing implicit labels on the subset of samples

annotated with explicit relations, followed by training on both the annotated and

imputed labels, called label refinement. In this stage, a model is prone to confirm to

its own (wrong) predictions to achieve a lower loss as observed in semi-supervised

learning (Arazo et al., 2020; Tarvainen and Valpola, 2017). To prevent such overfitting,

we regularize the model with a latent space augmentation strategy. We demonstrate

that our method yields significant performance gains in the SGG task for the standard

and zero-shot settings on the Visual Genome (Krishna et al., 2017) when applied to

several existing scene graph generation models.

2We provide the full analysis in Section 3.5 and Chapter B.
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In short, our contributions are as follows. We identify a previously unexplored issue,

missing informative labels in the standard SGG benchmark, and address this through a

model agnostic training procedure based on alternating label imputation and model

training with effective regularization strategies. This method can be incorporated into

state-of-the-art SGG models and boosts their performance by a significant margin.

3.2 Related work

Scene graph generation. SGG has been extensively studied in the past few years with

the goal of better understanding the object relations in an image by either focusing on

architecture designs (Chen et al., 2019b; Li et al., 2017b; Tang et al., 2019; Xu et al.,

2017; Yang et al., 2018; Zellers et al., 2018) or feature fusion methods (Dornadula

et al., 2019; Gu et al., 2019; Hung et al., 2019; Li et al., 2018; Yan et al., 2020; Zareian

et al., 2020a,b; Zhang et al., 2019). Lu et al. (2016a) introduced the VRD task and

dataset and proposed a combination of visual features with language priors to learn a

relationship triplet. Bin et al. (2019) and Zhan et al. (2019) exploit mutual relations

and undetermined relationships respectively for visual relationship detection. Liang

et al. (2018) design a ranking-based objective function to give high relevance to the

annotated relationships. A limitation of their approach is that the model will fail to

produce multiple plausible predicates for some pairs and overfit to the training data.

Kolesnikov et al. (2019) augment the object detection pipeline with a novel box

attention mechanism to model pairwise interactions between objects. Li et al. (2017a)

formulate the visual relationship triplets as a visual phrase instead of treating each entity

separately. Some related works leverage graph-based formulations for message passing

between objects and triplets (Li et al., 2017b, 2018; Mi and Chen, 2020; Xu et al., 2017;

Yin et al., 2018; Zellers et al., 2018). Zhuang et al. (2017) propose a context-aware

interaction recognition framework that leads to zero-shot generalizations.

To further improve relationship detection Plummer et al. (2016) and Yu et al. (2017)

use multiple-cues and linguistic priors from external Wikipedia data respectively. The

fusion of semantic, spatial and visual features also play an important role. VTransE
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(Zhang et al., 2017a) and its extension UVTransE (Hung et al., 2020) project different

transformations of appearance features fused with language and spatial features to a

predicate space. Inayoshi et al. (2020) combine image feature maps with semantic

and spatial features before flattening them thus keeping the spatial information in the

region proposals. Zhang et al. (2019) design graphical contrastive losses to address

incorrectly paired objects in images and shows strong performance on frequently

occurring relation triplets. Zhou et al. (2019a) propose RLM-Net a two-stage pipeline

where first they suppress object pairs by learning relevance probabilities for pairs and

then learn a graph-based predicate recognition model with multi-modal features. They

cluster predicates with similar spatial positions and then smooth out the classification

scores using a graph neural network.

Recently, Tang et al. (2019, 2020) reported that the performance gains from

these methods largely come from improved performance only on the head classes

(frequently occurring relations) while the performance on most other relations is poor.

They propose replacing the biased evaluation metric Recall@k with mean-Recall@k

to assign equal importance to all labels. The same authors Tang et al. (2020) report that

the bias in the data often drives SGG models to predict frequent labels and propose

to use counterfactual causality i.e., measure the difference in predictions between the

original scene and a counterfactual one to remove the effect of context bias and focus

on the main visual effects of the relation. Chiou et al. (2021) addresses the bias in

scene graph generation by learning from positive and unlabeled object pairs. Suhail

et al. (2021) propose an energy based loss that learns the joint likelihood of objects and

relations instead of learning them individually. This helps to incorporate commonsense

structure (man riding horse and man feeding horse occurring together are highly

improbable) and in better context aggregation. Unlike (Suhail et al., 2021; Tang et al.,

2020), our focus is on extracting more information from the training data through

mining informative labels. In fact, we show that our model is orthogonal to theirs and

boosts performance when incorporated into theirs. The most similar to ours, Wang

et al. (2020b) proposes a semi-supervised method that employs two deep networks,

where the auxiliary one imputes missing labels of unlabeled pairs and self-trains on
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them and transfers its knowledge to the main network. Unlike Wang et al. (2020b),

who treat all the labels equally, our method only imputes informative implicit labels.

This is crucial, as shown in Table 3.3, because, without such consideration, imputing

labels cannot extract any substantial information from unlabeled samples leading to

only minor gains. In addition, our framework is more efficient as it involves only a

single network that jointly infers labels and trains on them, outperforming Wang et al.

(2020b) significantly.

Label completion. There is a rich body of work in the literature that focuses on

learning from partial/missing labels in a multi-label learning setting where each image

is labelled for multiple categories with some missing labels (Bucak et al., 2011; Cabral

et al., 2011; Cole et al., 2021; Durand et al., 2019; Huang et al., 2021; Mahajan et al.,

2018). Common strategies to address this can be divided into two categories: 1) graph-

based methods (Huynh and Elhamifar, 2020; Wu et al., 2018) that exploit the similarity

between samples to predict missing labels, and 2) low-rank matrix completion which

extracts label correlations (Cabral et al., 2011; Durand et al., 2019; Xu et al., 2014;

Yang et al., 2016) to complete missing labels. There is another setting in which

some instances miss all the labels, also called semi-supervised learning in multi-label

classification (Tan et al., 2017; Zhao and Guo, 2015). In this setting, the classifier is

trained for unseen data. While related to our setting, we look at the classification of

relations conditioned on subject–object pairs (rather than on the image level), with

each pair already labeled with one relation (rather than unlabeled images). Finally, we

group the label set in two groups and treat them asymmetrically in our training.

Semi-supervised learning. Semi-supervised learning methods exploit unlabeled

data via either pseudo-labeling or imputation with small amounts of labeled data

(Rizve et al., 2021; Shi et al., 2018) or by enforcing consistency regularization on

the unlabeled data to produce consistent predictions over various perturbations of the

same input (Tarvainen and Valpola, 2017; Verma et al., 2021) by applying several

augmentation strategies such as Mixup (Zhang et al., 2017b), RandAugment (Cubuk

et al., 2020), AutoAugment (Cubuk et al., 2018) or combine both pseudo-labeling

and consistency regularization (Berthelot et al., 2019; Sohn et al., 2020). Inspired
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by pseudo-labeling in semi-supervised learning, the main motivation of our method

is to impute informative missing labels to improve generalization and learn complex

features by relying on partially labeled data and still predict more accurate labels on

the biased test set.

3.3 Method

3.3.1 Revisiting SGG pipeline

In SGG, we seek to localize and classify the objects in an image followed by labeling

the visual relations between each pair of objects (or subject and object). Concretely,

let C and P denote the object and relation classes respectively. Each subject or object

e = (eb,ec)∈ E consists of a bounding box eb ∈R4 and a class label ec ∈C. A relation

tuple is a triplet of the form r = (s, p,o) where the subject s and the object o (s,o ∈ E )

are joined by the relation p ∈ P, e.g., man wearing shirt. Given an image I, we can

then use a set of objects E = {ei}m
i=1 and a set of relations R = {r j}n

j=1, where m and

n are the number of subject/objects and relation triplets in an image respectively, to

define a scene graph S = (E,R). A scene graph can also be written as a combination

of a set of bounding boxes B = {eb
i }

m
i=1, a set of class labels Y = {ec

i }
m
i=1 and a set of

relations R.

The SGG models can be decomposed as:

P(S|I) = P(B|I) P(Y |B, I) P(R|B,Y, I) (3.1)

where P(B|I) is the object detector or bounding box prediction model, P(Y |B, I) is an

object class model and P(R|B,Y, I) is a relation prediction model.

Existing methods (Hung et al., 2020; Li et al., 2017a; Lu et al., 2016a; Tang et al.,

2019; Xu et al., 2017; Zellers et al., 2018; Zhang et al., 2017a; Zhuang et al., 2017)

often employ a two-step process for the scene graph generation task. First, bounding-

box proposals (P(B|I)) with class predictions and confidence scores (P(Y |B, I)) are

extracted using off-the-shelf object detectors (Girshick, 2015; Ren et al., 2015). Then,
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a multimodal feature fusion model combines visual, language, and spatial features

to predict the relation for a given subject-object pair (P(R|B,Y, I)). Several methods

adopt BiLSTMs (Zellers et al., 2018), Bi-TreeLSTMs (Tang et al., 2019) or fully

connected layers (Hung et al., 2020; Zhang et al., 2017a) to encode the co-occurrence

between object pairs for relation prediction.

3.3.2 Missing relation labels

Many visual relations are hypernyms, hyponyms, or synonyms (Ramanathan et al.,

2015; Yang et al., 2021) and hence are non-mutually exclusive. The standard SGG

datasets (e.g., Visual Genome (Krishna et al., 2017)) ignore this fact and only assume

one annotated label per subject–object pair. Which one is assumed strongly depends on

the annotator (manifesting as labeling or language/reporting bias (Misra et al., 2016)).

One way to circumvent this problem is to collect multiple labels for each triplet,

which is however expensive and time consuming. Another potential solution is to

use linguistic sources such as WordNet (Miller, 1995) or VerbNet (Schuler, 2005)

to automatically obtain the missing labels by exploiting the linguistic dependencies

between relations. However, this is not trivial, as some of the relation and spatial

vocabulary in the SGG datasets are not included in WordNet. Moreover, the context

of relations in these language resources does not always allow the right inferences.

For instance, in WordNet, person riding horse does not imply person on horse (no

hyponymy relation), but this is the visual implication in the SGG datasets.

While one can use existing methods (Chiou et al., 2021; Wang et al., 2020b) to

infer the missing labels, the estimated labels can be noisy and uninformative such that

re-training a model on them may not improve the generalization performance. Here,

inspired by previous work (Collell et al., 2018), we propose to group visual relations

into two sets: explicit and implicit.3 Explicit relations encode spatial information

between two objects such as ‘on’, ‘in front of’, or ‘under’ and are typically easy to

learn, even only based on subject–object locations (Collell et al., 2018). The implicit

ones are normally verbs such as ‘riding’, ‘walking’ and for learning them the model

3Further details about the explicit and implicit relations are in Section 3.4 and Chapter B.
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has to find complex correlations in visual and textual data. In existing SGG datasets,

some object pairs are annotated with implicit labels, while other pairs are labeled only

with explicit ones and their implicit labels are missing. We propose to divide the set

of predicate labels P into two sets, explicit and implicit and denote them by E and I

respectively.

3.3.3 Proposed method

In this section, we explain our proposed method for training the relation classifier

fθ to implement P(R|B,Y, I). For each image I, we assume that an object detector

provides a set of candidate subject–object pairs {(s−o)} and each pair is represented

by a d-dimensional joint embedding xxx ∈ Rd including its visual, semantic and spatial

features. Note that we apply our method to various existing SGG models which use

different object detector and joint embedding functions, and we provide these details

in Section 3.4. In particular, fθ is instantiated as a deep neural network parameterized

by θ , takes in a joint feature embedding xxx for a subject–object pair s−o and outputs a

softmax probability over |P| relations, i.e., fθ (xxx) : Rd → R|P|. Our goal is to learn a

relation classifier fθ that can correctly estimate the relation label of a subject-object

pair in an unseen image.

Given a training set D with |D | samples, each including tuples of subject-object

pairs s−o along with the relation label p and the joint feature embedding xxx, which we

denote with X = {(s, p,o,xxx)}|X |i=1 with |X | tuples. We formulate the learning problem

as a minimization of two loss terms:

min
θ

1
|D |

|D |

∑
i=1

(
L I(Xi;θ)+L E(Xi;θ)

)
(3.2)

where L I(Xi;θ) and L E(Xi;θ) are the loss terms defined over implicit and explicit

relations respectively.

For a given image I and its tuple X , we pick the tuples whose relation is annotated

only with implicit relation label (i.e., X I = {(s, p,o,xxx) | p∈ I} ) and define the implicit
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Figure 3.2 Pipeline of our proposed framework for mining informative labels for scene
graph generation. An input image can be represented as a scene graph (in green).
The yellow and blue solid arrows in the scene graph denote ground-truth explicit and
implicit relations, respectively. The scene graph generation model is first trained on
a subset of the implicit relations. In an iterative fashion, we then impute implicit
relations (dashed blue arrows) for the triplets annotated with explicit relations and
train the model with all relations (implicit, explicit, and imputed).

loss term as:

L I(X I;θ) =
1
|X I| ∑

(s,p,o,xxx)∈X I
LCE( fθ (xxx), p) (3.3)

where LCE is the cross-entropy loss. In other words, for the implicit relations, we

follow the standard practice and compute its loss by using its ground-truth implicit

relation label p which is a one-hot vector, as each subject–object pair is annotated with

only one label.

Similarly, we formulate the explicit term L E(XE;θ) for the tuples with explicit

labels:

L E(XE;θ) =
1
|XE| ∑

(s,p,o,xxx)∈XE
LKL( fθ (xxx), p̂) (3.4)

where LKL is the Kullback-Leibler divergence, XE = {(s, p,o,xxx) | p ∈ E} and p̂

is the imputed relation label for the subject-object pair, which is a vector with soft

probabilities. Next, we discuss our method to obtain p̂.

Label imputation. The subject–object pairs that are annotated with explicit relations

only can often be labeled with more informative implicit relation labels. For instance,
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the ground truth label may be person beside table, but person eating at table might

also be correct in this case, and more informative. To impute the missing implicit

relation for a subject–object pair, which is originally annotated with an explicit relation

label, we follow a two-step procedure.

First, we take each subject–object pair annotated with an explicit label from XE

along with its joint embedding and impute its implicit label through the relation

classifier fθ as:

p̄ = arg max
i∈I

[
exp( f i

θ
(xxx))

∑ j∈I exp( f j
θ
(xxx))

]
(3.5)

where f i denotes its logit for the i-th relation class. In words, we compute softmax

probabilities only over implicit relation labels and pick the highest scoring implicit

label to obtain a one-hot vector p̄. Note that one can also obtain a soft probability

vector over all implicit label classes, however, we empirically show that the former

works better.

Second, as the subject–object pair is originally labelled with an explicit label p, we

also use this information and average the imputed label p̄ with its original label p as:

p̂ = (p+ p̄)/2. (3.6)

We call this step as Label Refinement. As p̂ includes equal probabilities (i.e., 0.5)

for each of the explicit and implicit labels, it is not a one-hot vector. Thus, we use

KL divergence Eq. (3.4) to encourage the model to predict both labels. Compared to

standard cross-entropy loss, the KL divergence loss increases the model entropy by

reducing overconfidence, resulting in smoother predictions. Most of the traditional

methods for SGG trained with cross-entropy may get confused by inconsistent an-

notations, where the same relation is labeled with less informative spatial relation in

some images while more informative labels are used in some other images. Our loss

function formulation and multi-label nature of the targets addresses this inconsistency,

unlike previous work (Suhail et al., 2021; Tang et al., 2019).

Latent space augmentation. Our training pipeline is illustrated in Fig. 3.2 which

follows an alternating optimization and consists of two alternating steps where we



52 Not all relations are equal: Mining informative labels for scene graph generation

employ the relation classifier fθ to impute the implicit labels and simultaneously

optimize the classifier parameters θ . The main challenge here is that the model

parameters can overfit to its own imputed labels quickly, resulting in a local optimum

solution. This problem is notoriously known as confirmation bias that also occurs in

many semi-supervised problems (Arazo et al., 2020; Sohn et al., 2020). To prevent

overfitting to the wrong imputed labels, existing solutions include applying various

kinds of data augmentation including standard geometric and color transformations

(DeVries and Taylor, 2017), their combinations (Cubuk et al., 2018, 2020; Yun et al.,

2019) and also generating augmented version of samples (Verma et al., 2019; Zhang

et al., 2017b).

As many SGG methods build on the feature space of an object detector, many

augmentation strategies that are applied to raw pixels are not applicable to our case.

Hence, we use Manifold Mixup (Verma et al., 2019) that generates augmented em-

beddings (in the manifold space rather than in the pixel space) by taking a convex

combination of different pairs of embeddings (xxx and xxx′) and also their labels (p and

p′):

x̃xx = λ .xxx+(1−λ ).xxx′

p̃ = λ .p+(1−λ ).p′
(3.7)

where λ is sampled from a beta distribution, i.e., λ ∼ Beta(α,α) with α as a hyper-

parameter. Note that we apply this augmentation to the whole training set and allow

mixing embeddings across samples from both the implicit and explicit set of relations.

This augmentation acts as a regularizer and accounts for overfitting to the incorrect

imputed labels while training.
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3.3.4 Algorithm

In Algorithm 1, we detail our training pipeline. To obtain the initial parameters θ0, we

first train our model on the tuples with only implicit labels as following (Line 2):

θ0 = arg min
θ

1
|D |

|D |

∑
i=1

L I(Xi;θ). (3.8)

The key intuition behind this is that model learned on only the implicit relations

are more likely to produce confident predictions over implicit labels and hence not

‘distracted’ by explicit relation labels.

After the training on implicit relations, we iteratively impute implicit relation labels

for the subject-object pairs annotated with the explicit relations (Line 5) and update

the model parameters using Eq. (3.2) (Line 7). The model parameters optimized in

Eq. (3.2) take as input the augmented versions of the sample and label pair (as in

Eq. (3.7)) for both the implicit and explicit set of relation labels (Line 6).

Algorithm 1 Our proposed optimization of the SGG model
1: Input: Training set D with |D | samples, each including a set of tuples X with

(s, p,o,xxx) with subject, object and relation label, joint embedding resp., Explicit
and implicit relation sets E and I resp., relation classifier fθ , T number of iterations,
η learning rate.

2: Initialize θ as in Eq. (3.8)
3: for t = 0, . . . ,T do
4: Sample a minibatch B = (X1, . . . ,X|B|)∼D ,
5: Impute p̂: Impute implicit labels p̂t for BE by using Eq. (3.5) and Eq. (3.6),
6: Augment B by applying manifold mixup in Eq. (3.7),
7: Update θ : θt+1 ← θt +η∆θ where ∆θ is the update for θ obtained from

Eq. (3.2),
8: end for
9: return θ

3.4 Experiments

Dataset and evaluation settings. We evaluate our proposed method for scene graph

generation on the Visual Genome (VG) (Krishna et al., 2017) dataset. We use the
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pre-processed version of the VG dataset as proposed in Xu et al. (2017). The dataset

consists of 108k images with 150 object categories and 50 relation categories. The

training, test, and validation split used in the experiments also follow previous work

(Suhail et al., 2021; Tang et al., 2020; Xu et al., 2017).

For evaluation on the Visual Genome dataset, we follow Xu et al. (2017) and

report performance on three settings: (1) Predicate Classification (PredCls). This

task measures the accuracy of relation (also termed as predicate in literature) prediction

when the ground truth object classes and boxes are given. It is not affected by the

object detector accuracy. (2) Scene Graph Classification (SGCls). In this setting, we

know the ground truth boxes and we have to predict the object classes and the relations

between them. (3) Scene Graph Detection (SGDet). This is the most challenging

setting and the models are used to predict object bounding boxes, object classes and

the relations between them. We measure Mean Recall@K (mR@K) (Tang et al., 2019,

2020) to evaluate scene graph generation models. More recent work has preferred

mR@K over regular Recall@K (Xu et al., 2017) due to data imbalance (Tang et al.,

2020). Mean Recall@K treats each relation separately and then averages Recall@K

over all relations. We also measure the zero-Shot Recall, zsR@K, for three settings

of PredCls, SGCls, and SGDet, which helps to evaluate the generalization ability of

the model in predicting subject–relation–object triplets not seen during training.

Model generalization. Our proposed framework has the flexibility to be trained with

any scene graph generation model. Hence, we train with different model architectures

to demonstrate the generalizability of our approach: Iterative Message Passing (IMP)

(Xu et al., 2017), Neural-Motifs (Zellers et al., 2018) and VCTree (Tang et al., 2019).

We also train with two other debiasing methods that build upon these models, Energy-

based Modeling (EBM) (Suhail et al., 2021), where the authors propose to train with

an additional energy-based loss and Total Direct Effect (TDE). where counterfactual

reasoning is used during inference.

Explicit and Implicit relation labels. For the Visual Genome dataset (Krishna et al.,

2017), Xu et al. (2017) released a version of the dataset with 50 relations which are:

above, across, against, along, and, at, attached to, behind, belonging to, between,
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carrying, covered in, covering, eating, flying in, for, from, growing on, hanging from,

has, holding, in, in front of, laying on, looking at, lying on, made of, mounted on, near,

of, on, on back of, over, painted on, parked on, part of, playing, riding, says, sitting on,

standing on, to, under, using, walking in, walking on, watching, wearing, wears, with.

Inspired by (Collell et al., 2018), we divide the relation label space into a set of

explicit and implicit relations. We define explicit relations when the spatial arrange-

ment of objects is implied by the label itself e.g., “on", “below", “next to” and so on.

For implicit relations, the spatial arrangement of objects is only indirectly implied,

“riding”, “walking”, “holding" etc. More specifically, the explicit relations are above,

across, against, along, at, behind, between, in, in front of, near, on, over, under, and

the rest are treated as implicit relations.

Implementation details. Following previous work (Tang et al., 2019, 2020), we

train the scene graph generation models on top of the pre-trained Faster R-CNN object

detector with ResNetXt-101-FPN backbone (Ren et al., 2015). The weights of the

SGG models’ object detector are frozen during training in all three settings – PredCls,

SGCls, and SGDet. The mAP of the object detector on the Visual Genome dataset is

28% using 0.5 IoU. For training each scene graph generation model using our proposed

method, we use the default training settings as in (Suhail et al., 2021; Tang et al., 2020)

for fair comparisons. The models are trained with the SGD optimizer with a batch size

of 12, an initial learning rate of 10−2 and 0.9 momentum.

The models are trained for the first 30,000 batch iterations on the implicit label

subset with the standard cross-entropy loss. After label imputation, the model is

trained on the rest of the imputed data and the implicit subset for another 20,000 batch

iterations. The value of α is set to 4 from which λ is sampled for the mixing function

in the latter half of training. Our code is available here4.

3.5 Results

4https://groups.inf.ed.ac.uk/vico/research/NARE

https://groups.inf.ed.ac.uk/vico/research/NARE
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Predicate Classification Scene Graph Classification Scene Graph Detection
Models Method mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

IMP (Chen et al., 2019b; Xu et al., 2017) - - 9.8 10.5 - 5.8 6.0 - 3.8 4.8
FREQ (Tang et al., 2019; Zellers et al., 2018) - 8.3 13.0 16.0 5.1 7.2 8.5 4.5 6.1 7.1

Motifs (Zellers et al., 2018) - 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6
KERN (Chen et al., 2019b) - - 17.7 19.2 - 9.4 10.0 - 6.4 7.3
VCTree (Tang et al., 2019) - 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0

VCTree-L2+cKD (Wang et al., 2020b) - 14.4 18.4 20.0 9.7 12.1 13.1 5.7 7.7 9.0

IMP (Xu et al., 2017)
Baseline 8.9 11.0 11.8 5.4 6.4 6.7 2.2 3.3 4.1

Ours 12.3 14.6 15.3 7.1 8.0 8.3 6.9 7.8 8.1

Motif-TDE-Sum (Tang et al., 2020; Zellers et al., 2018)
Baseline 17.9 24.8 28.7 9.8 13.2 15.1 6.6 8.9 11.0

Ours 21.3 27.1 29.7 11.3 14.3 15.7 8.4 10.4 11.8

VCTree (Tang et al., 2019)
Baseline 13.1 16.5 17.8 8.5 10.5 11.2 5.3 7.2 8.4

Ours 18.0 21.7 23.1 11.9 14.1 15.2 7.1 8.2 8.7

VCTree-EBM (Suhail et al., 2021)
Baseline 14.2 18.2 19.7 10.4 12.5 13.4 5.7 7.7 9.1

Ours 21.0 24.9 26.5 14.0 16.2 17.1 7.8 10.1 11.8

VCTree-TDE (Tang et al., 2020)
Baseline 16.3 22.9 26.3 11.9 15.8 18.0 6.6 9.0 10.8

Ours 22.2 28.1 30.6 17.8 22.0 23.6 8.4 10.3 11.5

Table 3.1 Scene Graph Generation performance comparison on mean Recall@K (Tang
et al., 2020) under all three experimental settings. We compare the results of our
proposed framework (Ours) with the original model (Baseline) using different SGG
architectures.

PredCls SGCls SGDet
Models Method zsR@20/50 zsR@20/50 zsR@20/50

IMP (Xu et al., 2017)
Baseline 12.17/17.66 2.09/3.3 0.14/0.39

Ours 7.12/10.50 1.57/2.32 1.52/2.48

Motif-TDE-Sum (Tang et al., 2020)
Baseline 8.28/14.31 1.91/2.95 1.54/2.33

Ours 9.33/14.43 1.87/2.99 2.06/3.05

VCTree (Tang et al., 2019)
Baseline 1.43/4.0 0.39/1.2 0.19/0.46

Ours 1.51/3.7 0.36/1.0 0.43/0.95

VCTree-TDE (Tang et al., 2020)
Baseline 8.98/14.52 3.16/4.97 1.47/2.3

Ours 9.11/13.52 4.26/6.20 2.24/3.25

Table 3.2 Zero shot recall performance for our proposed method compared with the
original model (baseline).

3.5.1 Quantitative results

Table 3.1 compares the performance of the state-of-the-art methods when trained

with our proposed training framework on the Visual Genome dataset (Krishna et al.,

2017). Our method consistently improves performance on all three evaluation settings

(PredCls, SGCls, SGDet) when trained with existing methods. With IMP (Xu et al.,

2017) and Motif-TDE-Sum (Tang et al., 2020; Zellers et al., 2018), we obtain an

absolute improvement of 3.4% and 1.7% in PredCls and SGCls, respectively. For the

most challenging setting of SGDet, there is an improvement of 4.7% with the IMP

model, showing the generalization ability of our approach on a visual-only model (no

language/textual features). When debiasing approaches such as TDE (Tang et al., 2020)

and EBM (Suhail et al., 2021) are incorporated, we obtain consistent improvements
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Figure 3.3 Visualization of scene graphs generated by the VCTree-EBM (Suhail et al.,
2021) based learning framework (in orange) and our proposed method using VCTree-
EBM as the backbone (in green).

for VCTree. In both cases, we gain significantly in all the settings and achieve a new

state-of-the-art performance in scene graph generation by combining our proposed

method with VCTree-TDE.

In Table 3.2, we report the zero-shot recall performance and compare it with

baselines. Our proposed method achieves improvements in most of the settings

with different SGG backbones, except for IMP in PredCls and SGCls. IMP being a

visual-only model fails to learn correlations via textual features for different relation

classes and hence performs poorly in zero-shot, due to low recall on explicit relations.

However, the multi-modal nature of Motif and VCTree brings out the strength of our

method in generalizing to unseen triplets during test time.

Predicate Classification
Method Train Label Imputed with Imputed on mR@20/50

Baseline

All - - 17.85/24.75
Explicit - - 14.06/20.34
Random - - 16.99/23.33
Implicit - - 18.24/24.93

Ours
Random Top1 Random 17.11/23.56
Explicit Top1-Explicit Implicit 14.23/20.51
Implicit Top1-Implicit Explicit 21.26/27.14

Table 3.3 Experimental results on the Predicate Classification setting with different
ways of label imputation.
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Figure 3.4 Scene Graph Visualization results for the missing implicit relations imputed
for the triplets annotated with explicit relations. The scene graphs in orange are the
ground-truth triplets with their corresponding imputed implicit relations in green.

3.5.2 Ablative analysis

In this section, we study different components of our method separately to validate their

effectiveness. Table 3.3 evaluates the contribution of our proposed label imputation

strategy. All the models are trained using the Motif-Sum (Zellers et al., 2018) backbone

with TDE (Tang et al., 2020) at inference time, Motif-TDE-Sum. Random implies

that we randomly divide the relation labels into two sets without the knowledge of

explicit and implicit relations. The results in the rows for the method Baseline show

the effect of training with implicit relations on scene graph generation performance. If

the model is trained with the explicit relations only, mean recall drops. There is also

a marginal drop in performance compared to training with all relations when trained

on a random subset of the relations. Even training on a subset of the data with only

implicit relations, we can achieve at-par performance compared to training with all

relations.

We also compare the results under settings when the model is trained on a particular

subset of Train Label with different imputation strategies (results in rows with the

method Ours). The relation labels are imputed on the hold-out relation set with the

top-1 (best) in the set of labels that it was trained on. Training and imputing with the

random or explicit set of labels decreases performance compared to the baseline, with a

significant drop when only explicit relations are considered. This shows the importance

of learning with and imputing implicit relations: they provide useful information about

interactions between object pairs not captured by explicit relations.
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PredCls
Method Mixup Soft/Hard Labels Refinement mR@20/50

Baseline
✗ ✗ ✗ 17.85/24.75
✓ ✗ ✗ 17.43/24.20

Ours

✗ Hard ✗ 18.26/24.23
✓ ✗ ✓ 18.90/25.32
✗ Hard ✓ 20.81/26.78
✓ Hard ✗ 19.90/26.35
✓ Soft ✓ 20.76/27.10
✓ Hard ✓ 21.26/27.14

Table 3.4 Ablation study on our proposed training framework with Motif-TDE-Sum
(Tang et al., 2020; Zellers et al., 2018) as the SGG backbone.

In Table 3.4, we study whether our method improves over the baselines mostly

due to training with Latent Space Augmentation (Manifold Mixup) or combination of

multiple components. Applying manifold mixup on either the baseline (row 2) or with

only explicit ground-truth labels without imputation (row 4) does not provide signifi-

cant gains. This indicates that mixup is effective only when applied to the imputed

implicit labels. This hints that mixup can reduce overfitting to noisy imputations and

allow for imputing more informative labels. We also show that the performance of soft

imputed labels (row 7) is very similar to our proposed method (with hard labels, row

8). Using hard labels reduces noise in the predictions and encourages the model to

learn from more high-confident predictions.

In Table 3.5, we show the results for training on relation subsets and our final

method on the explicit and implicit set of relations separately. As discussed in Sec-

tion 3.1, when the model is only trained on explicit relations, it fails to generalize to

implicit relations. This is in contrast to training only on the implicit set of relations.

This indicates that implicit relations are rich in information and perhaps learn complex

and generalizable features. Our final method outperforms training on all relations

(original model) and the subset of relations by a significant margin, showing the

strength of mining informative labels for less informative samples.



60 Not all relations are equal: Mining informative labels for scene graph generation

PredCls - mR@50/100
Method Train Relations ↓/Test Relations→ Explicit Implicit

MOTIF-TDE-Sum

All Relations 24.47/28.79 24.96/28.74
Explicit only 22.89/25.34 0.08/0.09
Implicit only 20.10/22.89 24.34/26.03
Ours (final) 24.83/27.80 27.99/30.38

Table 3.5 Performance Comparison on the Explicit and Implicit set of relations sepa-
rately with different subsets of training labels.

3.5.3 Qualitative results

Figure 3.3 visualizes the scene graphs predicted from the baseline VCTree-EBM

(Suhail et al., 2021) model (in orange) and compares it to the scene graphs obtained

via our proposed training framework (in green). Our method consistently predicts

more informative relations such as laying on, walking on, holding instead of simple

prepositional relations such as on, in. Moreover, our method also effectively identifies

triplets with relations that were missed in the baseline. For instance, in the bottom-left

image, our method localizes man holding paper correctly. Our method also corrects

relations that are incorrectly predicted in the baseline, woman watching elephant as

opposed to woman on elephant in the bottom-right image.

In Figure 3.4, we visualize the imputed implicit relations for the triplets annotated

with explicit relations. In orange, we show the ground-truth scene graphs and the

corresponding imputed scene graphs in green. It can be clearly observed from the

ground-truth scene graphs that there is annotator bias towards spatial relations. Our

label imputation strategy is able to find alternate and missing implicit relations for these

triplets and exploit them during training. For instance, our method imputes important

relations such as attached to, hanging from, sitting on which are more descriptive

than their explicit counterpart on. This shows the importance of label imputation and

generating descriptive scene graphs for comprehensive scene understanding.
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3.6 Conclusion and discussion

In this chapter, we proposed a novel model-agnostic training framework for scene

graph generation. We introduced the concept of label informativeness, which had

not been explored in SGG before. A model trained on informative relations is able

to model the visual and textual context better compared to training on simple spatial

relations. We showed how to impute informative relations from the partially labeled

data and jointly train with imputed and ground truth relations. We improved the

performance across models and tasks, including in a zero-shot setting.

There are a few limitations that should be investigated in future work. One

limitation of our approach is its limited ability in predicting implicit relations with

very few samples. More specifically, the distribution of labels for the implicit subset of

relations is long-tailed, with some predicates (e.g., wearing) having more samples than

others (e.g., growing on). Hence, when the model is trained on the implicit relation set,

it might not always assign the low-frequency relations as pseudo-labels for the explicit

set. This can lead to bias towards the frequently occurring implicit relations, leading to

low generalizability for the entire set of informative predicates. Secondly, the division

of the label space into implicit and explicit relations is based on heuristic rules and is

specific to a particular dataset, in our case the Visual Genome dataset. For training and

inference on a different dataset with a unique set of relations, the implicit and explicit

relations will need to be re-defined. In the future, learning this split of relations would

be a more scalable and effective solution.

Addressing some of the limitations mentioned above, our work has steered and

impacted the progress in scene graph generation by acting as strong baselines on a

lot of follow-up work (Adaimi et al., 2023; Li et al., 2023b; Yu et al., 2023). Recent

works have proposed an orthogonal approach to relying on lexical rules for label

space learning by generating more informative triplets using Large Language Models

(LLMs) (Sanderson, 2023) and subsequently train a scene graph generation method on

these newly generated informative labels (Yu et al., 2023).





Chapter 4
Who are you referring to? Coreference

resolution in image narrations

In Chapter 2 and Chapter 3, we develop models for the tasks of image captioning

and scene graph generation. While both of these tasks are undoubtedly crucial for

bridging the gap between the modalities of vision and language, they are limited in

their capabilities to establish a connection between these two modalities, which is in-

dispensable for building AI systems with advanced capabilities. Take the conversation

below between a human and an agent:

Human: Do you see a refrigerator?

Agent: Yes, I do.

Human: In it there is a can of soda, can you bring me that?

To understand the context in the above example, we need to resolve the context

in language i.e., it refers to the refrigerator and that refers to the can of soda. Not

only this but once we have established the context in language, we also need to link

the phrases in the language (e.g., can of soda) to the visual regions for the agent to

act on it. Hence, to further enhance the capabilities of vision and language models,

in this chapter, we move from graphs to narrations by learning correlations in the

language (coreference resolution) and the association between language and images

i.e., grounding, also known as multimodal coreference resolution.



64 Who are you referring to? Coreference resolution in image narrations

Coreference resolution aims to identify words and phrases which refer to the same

entity in a text, a core task in natural language processing. In this chapter, we extend

this task to resolving coreferences in long-form narrations of visual scenes. First,

we introduce a new dataset with annotated coreference chains and their bounding

boxes, as most existing image-text datasets only contain short sentences without

coreferring expressions or labeled chains. We propose a new technique that learns to

identify coreference chains using weak supervision, only from image-text pairs and a

regularization using prior linguistic knowledge. Our model yields large performance

gains over several strong baselines in resolving coreferences. We also show that

coreference resolution helps improve grounding narratives in images.

This chapter begins with an introduction of multimodal coreference resolution

and the key ideas of our proposed method in Section 4.1, related work in Section 4.2,

our proposed Coreferenced Image Narratives (CIN) dataset in Section 4.3, details

of our proposed weakly supervised method with lexical knowledge in Section 5.3,

experimental details in Section 4.5, evaluating and analyzing the proposed method on

the CIN dataset in Section 4.6 and conclusion and discussion in Section 4.7.

4.1 Introduction

Consider the image paired with the long-form description in Figure 4.1, an example

from the Localized Narratives (Pont-Tuset et al., 2020). Can you tell whether the

woman who is wearing spectacles refers to a person or another woman in the text? We

are remarkably good at identifying referring expressions (or mentions) and determining

which of them corefer to the same entity, a task that we regularly perform when we

read text or engage in conversation. The text-only version of this problem is known as

coreference resolution (CR) (Lee et al., 2011, 2017; Sukthanker et al., 2020), a core

task in natural language processing (NLP) with a large literature. While solving text-

only CR requires a very good understanding of the syntactic and semantic properties

of the language, the visual version of CR shown in the example also demands an

understanding of the visual scene. In our example, a language model has to figure



4.1 Introduction 65

In the image we can see there is a person
who is standing and holding cardboard

sheets in her hand and she is  wearing ash
colour jacket and there is another woman
sitting and at the back on the table there are
wine bottles and cardboard boxes and books

and the woman is wearing spectacles.

Figure 4.1 Coreference resolution from an image and narration pair. Each highlighted
block of text is referred to as a mention. The mentions in the same color corefer to the
same entity, and belong to the same coreference chain.

out that a person can be a woman, has hands, and correctly match it with her [hand]

and the woman, but not with another woman. However, a language model alone

cannot answer whether the woman refers to a person or the woman. This can only be

disambiguated after visually inspecting which of the two is wearing spectacles.

Text-only CR has been a crucial component for a range of NLP applications

including question answering (Das et al., 2017; Kwiatkowski et al., 2019), sentiment

analysis (Cambria et al., 2017; Medhat et al., 2014), summarization (Gupta and Lehal,

2010; Shi et al., 2021) and machine translation (Bahdanau et al., 2014; Lopez, 2008;

Wu et al., 2016). Most text-only CR methods are either rule-based (Lee et al., 2011;

Raghunathan et al., 2010) using heuristics such as pronoun match or exact match based

on part of speech tagging or are learned on large annotated text datasets from domains

such as news text or Wikipedia articles (Bengtson and Roth, 2008; Joshi et al., 2020;

Lee et al., 2017, 2018a). State-of-the-art methods (Joshi et al., 2020; Lee et al., 2017)

fail to resolve coreferences correctly in image narrations for a few reasons. First, CR in

image narrations often requires image understanding (see Fig. 4.1). Neural networks

trained on text datasets (Chen et al., 2018; Pradhan et al., 2012) suffer from poor

transferability and a significant performance drop when applied to image narrations

because of domain shift. Image narrations are unstructured and can be noisy, unlike the

well-edited text used during training (such as news or Wikipedia). Moreover, standard

image-text datasets (Changpinyo et al., 2021b; Krishna et al., 2017; Lin et al., 2014;
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Plummer et al., 2015) only contain short descriptions with very few or no cases of

coreference, thus, are not suitable for training text-only CR models.

Some prior work have looked at visual CR for specific tasks. Ramanathan et al.

(2014) and Rohrbach et al. (2017) link character mentions in TV shows or movie

descriptions to character occurrences in videos. More recently, the Who’s Waldo

dataset (Cui et al., 2021) links person names in the caption to their occurrence in

the image. However, these methods rely on a limited set of object categories and

referring expression types (see Table 4.3 discussed below), require annotated training

data, and therefore cannot be applied to long-form unconstrained image narrations that

include open-world object categories and multiple types of referring expressions such

as pronouns (she), common nouns (another woman), or proper nouns (Peter).

In this chapter, we look at the problem of CR in image narrations, i.e., resolving

the coreference of mentions in narrative text that is paired with an image. As the prior

benchmarks in this domain are limited to either a small vocabulary of objects or specific

referring expression types, we introduce a new dataset, Coreferenced Image Narratives ,

CIN which augments the rich long-form narrations in the existing Localized Narratives

dataset (Pont-Tuset et al., 2020). We add coreference chain annotations and ground

each chain by linking it to a bounding box in the corresponding image.

Manually annotating the whole dataset (Pont-Tuset et al., 2020) is expensive, hence

these annotations are provided only for evaluation and are not available for training.

To cope with this setting, we propose a weakly supervised CR method that learns to

predict coreference chains from only paired image-text data. Our key idea is to learn

the linking of the mentions to image regions in a joint multi-modal embedding space

and use the links to form coreference chains during training. To this end, we propose a

multimodal pipeline that represents each modality (image regions, text mentions and

also mouse traces, additionally provided by Pont-Tuset et al. (2020)) with a modality-

specific encoder and then exploit the cross-modal correlations between them to resolve

coreference. Finally, inspired by the rule-based CR (Lee et al., 2011), we incorporate

linguistic rules into our learning formulation in a principled way. We report extensive

experiments on CIN and demonstrate that our method brings significant improvements
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in CR and in weakly supervised narrative grounding, a form of disambiguation that

has been underexplored in visual grounding1.

To summarize our contributions, we introduce (1) the new task of resolving coref-

erences in multimodal long-form textual descriptions (narrations), (2) a new dataset,

CIN , that enables the evaluation of coreference chains in text and the localization

of bounding boxes in images, which is provided with multiple baselines and detailed

analysis for future work, (3) a new method that learns to resolve coreferences while

jointly grounding them from weak supervision and exploiting linguistic knowledge,

(4) a rigorous experimental evaluation showing significant improvement over the prior

work not only in CR but also in weakly supervised grounding of complex phrases in

narrative text.

4.2 Related work

Text-only CR in NLP has a long history of rule-based and machine learning-based

approaches. Early methods (Hobbs, 1978; Raghunathan et al., 2010) used hand-

engineered rules to parse dependency trees, which outperformed all learning-based

methods at the time. Recently, neural network methods (Clark and Manning, 2016;

Joshi et al., 2020; Lee et al., 2017; Wiseman et al., 2016, 2015) have achieved sig-

nificant performance gains. The key idea is to identify all mentions in a document

using a parser and then learn a distribution over all the possible antecedents for each

mention. SpanBERT (Joshi et al., 2020) uses a span-based masked prediction objective

for pre-training and shows improvements on the downstream task of CR. Stolfo et al.

(2022), on the other hand, transfer the pre-trained representations using rules for CR. It

is worth noting that all these learning-based approaches either require large pretraining

data or training data annotated with gold standard (ground-truth) coreference chains,

such as OntoNotes (Pradhan et al., 2012) or PreCo (Chen et al., 2018).

Visual CR includes learning to associate people or characters mentioned in the text

with images or videos (Cui et al., 2021; Ramanathan et al., 2014; Rohrbach et al.,

1Our code and dataset is available at https://github.com/VICO-UoE/CIN.

https://github.com/VICO-UoE/CIN
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2017). Kong et al. (2014) exploit CR to relate texts to 3D scenes. Another direction

is to resolve coreferences in visual dialog (Kottur et al., 2018) for developing better

question-answering systems. Unlike these works, we focus on learning coreferences

from long unconstrained image narrations using weak supervision. A related group

of work (Deng et al., 2021; Li and Sigal, 2021; Yu et al., 2018b,c) aims to ground

phrases in image parts. In visual phrase grounding (Chen et al., 2017; Deng et al.,

2021; Kamath et al., 2021; Li et al., 2022b; Liu et al., 2019a; Yu et al., 2016, 2018b),

the main objective is to localize a single image region given a textual query. These

models are trained on visual grounding datasets such as ReferItGame (Kazemzadeh

et al., 2014), Flickr30K Entities (Plummer et al., 2015), or RefCOCO (Yu et al., 2016).

However, due to short captions, the grounding of text boils down to mostly salient

objects in images. In contrast, grounding narrations which aim at capturing all image

regions is significantly more challenging and cannot be effectively solved with those

prior methods.

Weakly supervised grounding, learning to ground from image-text pairs only, has

recently been used in (Liu et al., 2019b,c, 2022, 2021; Wang et al., 2021) for referring

expression grounding. These methods use phrase reconstruction from visual region

features as a training signal. Other methods (Datta et al., 2019; Gupta et al., 2020;

Wang et al., 2020a) use contrastive learning by creating many negative queries (based

on word replacement) or by mining negative image regions for a given query. Wang

et al. (2020a) is a strong method in this domain, hence we establish it as a baseline

in our experiments. Liu et al. (2021) parses sentences to scene graphs for capturing

visual relation between mentions to improve phrase grounding. However, this cannot

be directly applied to our task, as parsing scene graphs from narrations are typically

very noisy and incomplete. Wang et al. (2021) aims to learn/predict object class

labels from the object detector during training and inference respectively. Due to

the open-vocabulary setting in our dataset, we directly rely on predictions from the

detector and use them as features to avoid the complexity of open-vocabulary object

detection. Furthermore, as we show in the experiments that grounding is useful to

anchor mentions but it is not sufficient to resolve coreferences without prior linguistic
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knowledge. Thus, our method also employs contrastive learning but for learning CR

from weak supervision.

4.3 Coreferenced Image Narratives

Our CIN dataset contains 1880 images from the Localized Narratives dataset (Pont-

Tuset et al., 2020) that come with long-form text descriptions (narrations) and mouse

traces. These images are originally a subset of the test and validation set of the

Flickr30k dataset (Plummer et al., 2015). We annotated this subset with coreference

chains and bounding boxes in the image that are linked with the textual coreference

chains, and use them only for validation and testing. Note that we also include

singletons (i.e., coreference chains of length one). Fig. 4.1 shows an example image

from CIN .

Annotation procedure. The annotation involved three steps: (1) marking the men-

tions (sequences of words) that refer to a localized region in the image, (2) identifying

coreference chains for the marked mentions, including (a) pronominal words such

as him or who that are used to refer to other mentions, (b) mentions that refer to the

same entity (e.g., a lady and that person), and (c) mentions that do not have any links

(e.g., another woman), (3) drawing bounding boxes in the image for the coreference

chains/mentions identified in steps (1) and (2). We created an annotation interface

based on LabelStudio (lab), an HTML-based tool that allows us to combine text, image,

and bounding box annotation. More details are provided in Chapter C.

Dataset #noun phrases #pronouns #coreference chains #bounding boxes

Flickr30k Entities (Plummer et al., 2015) 15,252 ✗ ✗ 17,234
RefCOCO (Yu et al., 2016) 10,668 ✗ ✗ 10,668

CIN (Ours) 19,587 1,659 3,310 21,246

Table 4.1 Statistics of relevant noun phrases, pronouns, coreference chains and bound-
ing boxes on Flickr30k Entities (Plummer et al., 2015), RefCOCO Yu et al. (2016) and
CIN .

Dataset statistics. We split the 1880 images in the dataset into a test and validation set

using the pre-defined split of Plummer et al. (2015). More specifically, we have 1000
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Figure 4.2 Numbers of mentions as part of the coreference chain for pronouns them,
he, it, who, she in CIN .

images in the test set and 880 images in the validation set. It is important to note that

the narrations have a lot of first person pronouns such as I can see . . . . We specifically

instruct the annotators to exclude such mentions that are not a part of any coreference

chain and at the same time cannot be grounded on the image. We elaborate more on

the filtering process for these mentions in Chapter C.

Overall, the dataset has 19,587 noun phrase mentions, 1,659 pronouns, 3,310

coreference chains, and 21,246 bounding boxes. In Table 4.1, we compare the statistics

of CIN with the test/val splits of other related datasets. In Fig. 4.2, we show the

distribution over the frequency and types of mention such as a metal fence or few

people that are referred to using a particular pronoun (them, he, it, who and she). There

is a huge diversity in (1) the categories of the mentions and (2) how many times they

form a part of the coreference chain.

In Table 4.2, we also report the frequency of the top-6 mentions for each pronoun

category to check the diversity of pronoun words in the dataset.

he she who them it
a man (0.28) a woman (0.33) a person (0.18) people (0.11) a board (0.06)

his (0.21) her (0.32) one person (0.16) few people (0.08) a dog (0.05)
him (0.13) a girl (0.13) a man (0.07) two people (0.08) a building (0.04)

a person (0.09) the woman (0.04) the person (0.07) they (0.08) which (0.04)
one person (0.06) a lady (0.03) him (0.04) a few people (0.08) a wall (0.04)

a boy (0.06) a person (0.02) her (0.04) their (0.06) a vehicle (0.03)

Table 4.2 Frequency of top-N mentions for each pronoun category.
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Comparison to existing CR datasets. In Table 4.3, we compare our proposed CIN

dataset to other CR datasets. This comparison shows that most of the other datasets are

either from a restricted domain (shopping, indoor scenes, etc.), have limited mention

types referring to either only people or limited object categories, or do not cover all

possible referring expression types such as common nouns (a person) and pronouns

(he).

Dataset Modality Domain Object categories Referring expression types

NYU-RGBD v2 (Kong et al., 2014) Images Indoor home scenes Household objects Common nouns
SIMMC 2.0 (Guo et al., 2022) Images Shopping Clothing Common nouns

MPII-MD (Rohrbach et al., 2017) Videos Movies People Proper names, Pronouns
Who’s Waldo (Cui et al., 2021) Images WikiMedia People Proper names

CIN (Ours) Images Open-world General objects Common nouns and Pronouns

Table 4.3 Comparison to existing datasets.

4.4 Method

4.4.1 Text-only CR

Given a sentence containing a set of mentions (i.e., referential words or phrases), the

task of CR is to identify which mentions refer to the same entity. This is fundamentally

a clustering problem (Sukthanker et al., 2020). In this work, we use an off-the-shelf

NLP parser (spa) to obtain the mentions. Formally, let S = {m1,m2, . . . ,m|S|} denote

a sentence with |S| mentions, where each mention m contains a sequence of words,

{w1,w2, . . . ,w|m|}. We assign a label yi j to each mention pair (mi,m j), which is set

to 1 when the pair refers to the same entity, and to −1 otherwise. We wish to learn a

compatibility function, a deep network f that scores high if a pair refers to the same

entity, and low otherwise.

Given a training set D that contains |D | sentences with their corresponding labels,

one can learn f by optimizing a binary cross-entropy loss:

min
f

∑
S∈D

|S|−1

∑
i=0

|S|

∑
j=i+1

log(yi j(σ( f (mi,m j)))−
1
2
)+

1
2
) (4.1)
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Front this person[1] is lying on the
floor and raising his[1] leg[1] to top
and above his[2] leg[2] there is a
ball. Far these persons are
standing. This person is ...

Image

Text description

Object  
detector 

Text encoder

Image encoder

Cross 
attention

Trace encoder

image regions 

this person[1], the floor , ..., building  

Mouse traces

Joint encoder 
mentions

this person[1]
his[1], 
his[2],

this person[2]
 

Coreference chains

door

NLP 
 parser 

Temporal 
parser 

traces per mention

......

his leg[1]
his leg[2]

a ball 
 

these persons 

... 

glass

....

person

Figure 4.3 Overview of our pipeline. Our model encodes the image regions obtained
from an object detector using the image encoder. We parse text mentions and mouse
traces from the sentence description, which are then encoded using a text and trace
encoder respectively. Finally, a joint text-trace encoder learns a joint embedding
for text and traces. A cross-attention module attends to the words given an image
region and then we compute the joint probability of the paired mentions, thus forming
coreference chains.

where σ is the sigmoid function. Note that prior methods (Joshi et al., 2020; Lee et al.,

2011, 2017) require large labeled datasets for training and are limited to only a single

modality, text. These methods typically also combine the learning with fixed rules

based on recency and grammatical principles (Lee et al., 2011).

4.4.2 CR in image narrations

Problem definition. Next, we extend the text-only CR to image-text data in the

absence of coreference labels. Let (I,S) denote an image-text pair where S describes

an image I as illustrated in Figure 4.1, and assume that coreference labels for mention

pairs are not present. As in Section 4.4.1, our goal is to identify the mentions that

refer to the same entity in an image-text pair. Each image is defined by |I| regions

I = {r1,r2, . . . ,r|I|} which are obtained by running the pre-trained object detector

(trained on the COCO (Lin et al., 2014) and Visual Genome (Krishna et al., 2017)

dataset) in (Ren et al., 2015) on the image. Each region r is described by its bounding



4.4 Method 73

box coordinates bbb, the text embedding for the detected object category ooo, and the

visual features vvv. More details are provided in Section 4.4.3.

Weak supervision. We use ‘weak supervision’ to refer to a setting where no coref-

erence label for mention pairs and no grounding of mentions (i.e., bounding boxes

are not linked to phrases in the text) are available. Moreover, in contrast to the out-

put space of the object detector (a restricted set of object categories), the sentences

describing our images come from the unconstrained vocabulary. Hence, an object

instance in a sentence can be referred to with a synonym or may not even be present

in the object detector vocabulary (Kuznetsova et al., 2020; Lin et al., 2014). Finally,

the object detector can only output category-level labels and hence cannot localize

object instances based on the more specific instance-level descriptions provided by

the sentences. For instance in Figure 4.1, a person and the woman both are labeled as

person by the object detector.

In addition to image and text, we explore the use of an auxiliary modality, mouse

trace segments provided in (Pont-Tuset et al., 2020). Each mouse trace includes a

sequence of 2D points over time that relate to a region in the image when describing

the scene. As the text in Localized Narratives is transcription of the speech of the

annotators, the mouse traces are synced with spoken words, which we denote as

T = {t1, t2, . . . , t|T |} where |T |= |S|. These features are stacked with textual features

(see Section 4.4.3).

In the weakly supervised setting, the key challenge is to replace the coreference

label supervision with an alternative one. We hypothesize that each mention in a

coreferring pair corresponds to (approximately) the same image region, and it is

possible to learn a joint image-text space that is sufficiently rich to capture such

correlations. Concretely, let g(m,r) denote an auxiliary function that is instantiated

as a deep network and outputs a score for the mention m being located at region r

in image I. This grounding score for each mention can be converted into probability
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values by normalizing them over all regions in the image:

ḡ(m,r) =
exp(g(m,r))

∑r′∈I exp(g(m,r′))
. (4.2)

The compatibility function f can be defined as a sum product of a pair’s grounding

probabilities over all regions:

f (m,m′) = ∑
r∈I

ḡ(m,r)ḡ(m′,r). (4.3)

In words, mention pairs with similar region correlations yield bigger compatibility

scores and are hence more likely to corefer to each other. The key idea is that we

employ the grounding for mentions as anchors to relate coreferring mentions (e.g., a

person and the woman). At test time, we compute f (m,m′) for all the pairs and

threshold them to predict their pairwise coreference labels.

As no ground-truth bounding box for each mention is available for learning the

grounding g, we pose grounding as a weakly supervised localization task as in (Gupta

et al., 2020; Wang et al., 2020a). To this end, we impute the missing bounding boxes

by taking the highest scoring region for a given mention m at each training iteration:

rm = arg max
r∈I

g(m,r). (4.4)

Then we use rm as the pseudo-truth to learn g as following:

min
g ∑

(I,S)∈D
∑

m∈S
− log

( exp(g(m,rm))

∑I′∈D\I exp(g(m,r′m))

)
(4.5)

where r′m = arg maxr∈I′ g(m,r) is the highest scoring region in image I′ for mention m.

For each mention, we treat the highest scoring region in the original image as positive

and other highest scoring regions across different images as negatives and optimize g

for discriminating between the two. However, as the denominator requires computing

g over all training samples at each iteration, which is not computationally feasible, we

instead sample the negatives only from the randomly sampled minibatch.
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Linguistic constraints. Learning the associations between textual and visual features

helps with disambiguating coreferring mentions, especially when mentions contain

visually salient and discriminative features. However, resolving coreferences when it

comes to pronouns (e.g., her, their) or ambiguous phrases (e.g., one man or another

man) remains challenging. To address such cases, we propose to incorporate a reg-

ularizer into the compatibility function f (m,m′) based on various linguistic priors.

Concretely, we construct a look-up table for each mention pair q(m,m′) based on the

following set of rules (Lee et al., 2011):

(a) Exact string match. Two mentions corefer if they exactly match and are noun

phrases (not pronouns).

(b) Pronoun resolution. Based on the part-of-speech tags for the mentions, we set

q(m,m′) to 1 if m is a pronoun and m′ is the antecedent noun that occurs before the

pronoun.

(c) Distance between mentions. Smaller distance is more likely to indicate corefer-

ence since mentions occur close together if they refer to the same entity.

(d) Last word match. In certain cases, the entire phrases might not match but only

the last word of the phrases.

(e) Overlap between mentions. If two mentions have one or more overlapping words,

then they are likely to corefer.

Finally, we include q(m,m′) as a regularizer in Eq. (4.5):

min
g ∑

(I,S)∈D
∑

m∈S

(
− log

( exp(g(m,rm))

∑I′∈D\I exp(g(m,r′m))

)
+λ ∑

m′∈S
|| f (m,m′)−q(m,m′)||2F

) (4.6)

where λ is a scalar weight for the Frobenius norm term. Note that f is a function of g

(see Eq. (4.3)). We show in Section 4.6 that incorporating this term results in steady

and significant improvements in CR performance.
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4.4.3 Network modules

Our model (illustrated in Figure 4.3) consists of an image encoder ei and text encoder

et to extract visual and linguistic information respectively and a cross-attention module

a for their fusion.

Image encoder ei takes in a dr-dimensional vector for each region r that consists

of a vector consisting of bounding box coordinates bbb ∈ R4, text embedding for the

detected object category ooo ∈ Rdo and visual features vvv ∈ Rdv . The regions are extracted

from a pre-trained object detector (Ren et al., 2015) for the given image I. The image

encoder applies a nonlinear transformation to this vector to obtain a d-dimensional

embedding for each region r.

Text encoder et takes in the multiple mentions from a parsed multi-sentence image

description S produced by an NLP parser (spa) and outputs a d-dimensional embedding

for each word in the parsed mentions. Note that the parser does not only extract nouns

but also pronouns as mentions.

Mouse trace encoder em takes in the mouse traces for each mention parsed above af-

ter it is preprocessed into a 5D vector of coordinates and area, (xmin,xmax,ymin,ymax,area)

(Meng et al., 2021) and outputs a dm-dimensional embedding. In Changpinyo et al.

(2021a); Pont-Tuset et al. (2020), mouse trace embeddings have been exploited for

image retrieval, however, we use them to resolve coreferences. We concatenate each

mention embedding extracted from et with the mouse trace encoding em, denoted as

etm and apply additional nonlinear transformations (Joint encoder in Fig. 4.3) before

feeding into the cross-attention module.

Cross-attention module a takes in the joint text-trace embeddings for all the words

in each mention and returns a d-dimensional vector for each m by taking a weighted

average of them based on their correlations with the image regions. Concretely, in this

module, we first compute the correlation between each word w (or joint word-mouse

trace) and all regions, take the highest correlation over the regions through an auxiliary
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function ā:

ā(w) = max
r∈I

( exp(etm(w) · ei(r))
∑r′∈I exp(etm(w) · ei(r′))

)
(4.7)

where · is the dot product. The transformation can be interpreted as the probability of

word w being present in image I. Then we compute a weighted average of the word

embeddings for each mention m:

a(m) = ∑
w∈m

ā(w)etm(w). (4.8)

Similarly, a(m) can be seen as the probability of mention m being present in image I.

Scoring function g(m,r) can be written as a dot product between the output of the

attention module and region embeddings:

g(m,r) = a(m) · ei(r). (4.9)

While taking a dot product between the two embeddings seemingly ignores the corre-

lation between text and image data, the region embedding ei(r) encodes the semantic

information about the detected object category in addition to other visual features and

hence results in a high score only when the mention and region are semantically close.

Further implementation details about the modules can be found in Section 4.5 and

Chapter C.

4.5 Experiments

We train our models on the Flickr30k subset of the Localized Narratives (Pont-Tuset

et al., 2020) which consists of 30k image-narration pairs, and evaluate on the proposed

CIN dataset, which contains 1000 and 800 pairs for test and validation respectively.

Evaluation metrics. To evaluate the CR performance, we use the standard link-based

metrics MUC (Vilain et al., 1995) and BLANC (Recasens and Hovy, 2011):2

2Refer to (Lee et al., 2017; Luo and Pradhan, 2016) for a more detailed discussion of CR metrics.
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(a) MUC F-measure counts the coreference links (pairs of mentions) common to the

predicted chain R and the ground-truth chain K by computing MUC-R (recall) and

MUC-P (precision).

(b) BLANC measures the precision (BLANC-P) and recall (BLANC-R) between the

ground-truth and predicted coreference links and also between non-coreferent links.

(c) Narrative grounding. For evaluating narrative grounding in images, we consider

a prediction to be correct if the IoU (Intersection over Union) between the predicted

bounding box and the ground truth box is larger than 0.5 (Gupta et al., 2020; Wang

et al., 2020a). We report percentage accuracy for evaluating narrative grounding for

both noun phrases and pronouns. Further details about the metrics are in Chapter C.

Inputs and modules. For the image modeling, we extract bounding box regions,

visual features, and object class labels using the Faster-RCNN object detector (Ren

et al., 2015). For the text modeling, we use Glove embeddings (Pennington et al.,

2014) to encode the object class labels and the mentions from the textual branch. For

the mouse traces, we follow (Pont-Tuset et al., 2020) and extract the trace for each

word in the sentence and then convert it into bounding box coordinates for the initial

representation. The model discussed in Section 4.4 referred to as ‘Ours’ in Section 4.6

uses the transformer backbone for the image, text, and trace encoders (more details in

Chapter C).

Baselines. We consider the following baselines to fairly compare and evaluate our

proposed method:

(a) Text-only CR: For all these methods, we directly evaluate the coreference chains

using the narration only without the image. (1) Rule-based (Lee et al., 2011): In

this method, a multi-sieve rule-based system is used to find mentions in the sentence

and the coreference chains, (2) Neural-Coref (Lee et al., 2017): Instead of rules, this

method is trained end-to-end using a neural network on a large corpus of Wikipedia

data to detect mentions and coreferences, and (3) Similarity-based: We compute the

cosine similarity between mentions using Glove word features and threshold them to

get coreference chains.
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Method Text Image MT MUC-R MUC-P MUC-F1 BLANC-R BLANC-P BLANC-F1

Rule-Based (Lee et al., 2011) ✓ ✗ ✗ 5.6 10.13 6.4 3.3 4.1 4.9
Neural-Coref (Lee et al., 2017) ✓ ✗ ✗ 0.11 0.17 0.13 1.59 36.99 3.23

Similarity-based ✓ ✗ ✗ 7.07 14.43 9.06 37.48 65.17 45.98

GLIP (Li et al., 2022b) ✓ ✓ ✗ 0.13 0.12 0.12 21.71 61.40 31.66
VisualBERT (Su et al., 2019) ✓ ✓ ✗ 18.17 6.08 8.06 23.90 44.07 22.38
UNITER (Chen et al., 2020) ✓ ✓ ✗ 16.92 7.15 8.83 27.64 55.30 29.20
VinVL (Zhang et al., 2021b) ✓ ✓ ✗ 16.76 8.60 9.75 34.56 58.07 36.56
MAF† (Wang et al., 2020a) ✓ ✓ ✗ 25.86 10.18 13.21 37.68 61.14 38.17

MAF++ ✓ ✓ ✗ 19.07 15.62 15.65 41.25 65.04 47.21

Ours
✓ ✓ ✗ 22.07 17.10 17.58 42.72 65.92 48.29
✓ ✓ ✓ 24.87 18.34 19.19 43.81 66.35 48.53

Table 4.4 CR performance on CIN dataset. MT denotes mouse trace and † denotes our
trained model.

(b) Visual-text models: The baselines discussed below are not trained for CR and

hence we post-process their output in order to evaluate for CR. (1) VisualBert (Su

et al., 2019), UNITER (Chen et al., 2020) and VinVL (Zhang et al., 2021b) are vision-

language models trained on image-caption data and fine-tuned on downstream tasks

such as VQA, NLVR. To test it for CR, we compute the cosine similarity for the

multi-modal mention embeddings in a zero-shot way. (2) GLIP (Li et al., 2022b):

GLIP is trained on large-scale image-text paired data with bounding box annotations

and shows improvement in object detection and visual phrase grounding. To evaluate

it for CR, we predict bounding boxes for the mentions in the narrations from GLIP. If

the IoU overlap between the mentions is greater than 0.7, then we consider them to

form a coreference chain, (3) MAF† (Wang et al., 2020a): MAF is a weakly supervised

phrase grounding method, originally trained on the Flickr30k-Entities (Plummer et al.,

2015). We train this model on narrations data and evaluate CR by computing Eq. (4.3).

(4) MAF++: We retrain the MAF† model on the narrations with our regularization

term. Architecturally our method differs from the MAF† in two aspects: i) we employ

a transformer to encode visual and text features unlike the MLP in theirs and ii) we

attend to the mouse traces when present (not present in MAF) and word features jointly

whereas they directly compute the similarity function.
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4.6 Results

Coreference resolution. In Table 4.4, we report CR performance of the baselines

and our method. Our method significantly outperforms all the text-only and visual-text

baselines on all the metrics. The text-only CR baselines in the first three rows fail to

effectively resolve conferences from narrations. It is important to note that a relatively

high number in BLANC scores (compared to MUC) occurs because this measure also

counts non-coreferent links (i.e., mentions that are not paired with anything), whereas

MUC only measures pairs that are resolved.

The rule-based method (Lee et al., 2011) uses exact match noun phrases, pronoun-

noun matches, and the distance between mentions as hard constraints. It achieves low

scores on all metrics and especially on BLANC. The reason for this is the limitation

of the rule-based heuristics: For instance, in long narrations, if a pronoun such as she

occurs farther to its referent (e.g., the woman) than the predefined distance, it will not

form a coreference chain. In contrast, as we apply rules as a soft constraint, we are

able to make more flexible decisions in our method. Neural-Coref (Lee et al., 2017),

a deep network on a pre-trained large-corpus of labeled CR data, obtains low scores

on CIN for both MUC and BLANC. This is due to the large domain gap between

the source and target data as well as the ambiguity in resolving the mentions without

visual cues. Similar observations are made when pre-trained CR methods are applied

to other domains such as biomedical text (Lu and Poesio, 2021) or social media (Aktaş

et al., 2020). Lastly, the similarity-based baseline performs poorly, as the utilized

off-the-shelf word vectors are not trained to cluster corefering mentions. The relatively

high scores on BLANC are due to the frequent non-coreferents in our narratives.

This kind of approach clusters words with similar meaning together e.g., woman and

another woman (both representing female entities) or he and she (both pronouns).

Next, we compare our method to the visual grounding baselines that use both

image and text input. Our method also outperforms these baselines: Though GLIP is

pre-trained on large-scale data with ground-truth boxes for each object in captions,

these captions are usually short and do not contain multiple mentions of entities, unlike

in our data. Hence GLIP acts more like an object detector, fails to link coreferring pairs
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(low MUC scores), and merely identifies singletons (higher BLANC scores). While

it is nontrivial to finetune GLIP on our data without groundtruth boxes, we finetuned

MAF on our data, as its training does not require groundtruth boxes; we denote this as

MAF†. This is the strongest baseline on our task, as training it on narrations including

the pronouns reduces the domain gap and enables it to resolve coreferences well.

However, this method obtains low precision by incorrectly linking visually similar

mentions (that do not belong together) such as trees, plant, flowers. When the training

is regularized with the linguistic priors from our method, denoted as MAF++, its

performance significantly improves on both MUC and BLANC. The constraint helps

to push away the negative mentions (trees, plant, etc.) and encourages the model

to learn unique embeddings for them. Due to the self-attention in the transformer

architectures, Ours without mouse traces (MT) achieves better performance than

MAF++, a simple MLP baseline. The performance difference between our method

without using mouse-traces and MAF++ can be explained by the better architecture

described previously. Finally, our method achieves the best performance gains in CR

thanks to the mouse traces and improved architecture over MAF.

Ablation on mouse traces In Table 4.4, we also analyze the contribution of modeling

mouse traces (second last row). Adding the mouse traces improves performance on

CR across all metrics. We hypothesize that the mouse traces provide a strong discrimi-

native location prior to the textual mentions, which helps the model to learn a better

compatibility score. To visualize qualitatively, consider the example in Figure 4.3, the

same mention this person points to two different visual regions – one with the person

holding the ball and the other person standing next to the door. In such cases, mouse

traces provide a strong signal for disambiguation. But in many cases, mouse traces are

noisy and can link mentions that are very close to each other in the image, referring to

two different regions. In the above example, mouse traces for these persons and this

person have a significant overlap and hence act as a noisy prior. Therefore, without

the visual/image region features, it is very challenging to address the problem with

mouse traces alone.
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Method Reg Noun Phrases Pronouns Overall

MAF† (Wang et al., 2020a) ✗ 21.60 18.31 20.91
MAF++ ✓ 25.58 22.36 24.91

Ours
✗ 27.62 23.46 26.75
✓ 30.27 25.96 29.36

Table 4.5 Grounding accuracy (%) for noun phrases and pronouns and the overall
accuracy on the CIN dataset.

Narrative grounding Not only does our method show performance gains on CR

but also outperforms the baselines on another challenging task of narrative grounding.

Table 4.5 compares results from our methods and baselines. We directly compare with

the weakly supervised method for a fair comparison. MAF† (Wang et al., 2020a) is

originally evaluated on the Flickr30k-Entities (Plummer et al., 2015) dataset where

the textual descriptions are significantly shorter (i.e., single sentence) than the image

narrations in our dataset. The performance of MAF on our dataset is significantly lower

(21% vs 61% on Flickr30k-Entities), which indicates that narrative grounding is a

challenge in itself and cannot be addressed off-the-shelf by phrase grounding methods.

When trained with the regularizer, the localization performance improves for both

nouns and pronouns with our method and MAF++. With the help of regularization,

the model learns to attend to different regions of the image for semantically similar

mentions as they might be two separate entities (e.g., five people and the people in

Fig. 4.4).

CR Grounding

MT Regularization MUC-R MUC-P MUC-F1 BLANC-R BLANC-P BLANC-F1 Acc (%)

✗ ✗ 21.84 12.29 14.09 40.15 62.82 43.69 25.97
✓ ✗ 20.19 15.79 16.26 41.91 65.42 47.82 26.75

✓ L1 20.76 15.47 16.05 41.73 64.94 47.09 27.65
✓ MSE 21.58 16.40 17.00 42.19 65.37 47.60 28.50

✗
Frobenius Norm

22.07 17.10 17.58 42.72 65.92 48.29 28.31
✓ 24.87 18.34 19.19 43.81 66.35 48.53 29.36

Table 4.6 Ablation study with different regularizer types and with/without mouse
traces.

Further ablations. In Table 4.6, we start by exploring the impact of training using

our proposed architecture without incorporating mouse traces and the regularizer. This
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CR Grounding
Attention Type MUC-F1 BLANC-F1 Acc(%)

Average 17.02 48.26 28.83
Cross attention 19.19 48.53 29.36

Table 4.7 Our method with/without cross attention.

leads to a decrease in both coreference (CR) and grounding performance. Although

the model manages to capture certain coreference links, it also generates a noticeable

number of incorrect associations (resulting in lower precision scores, row 1) when

compared to the model trained with mouse traces (row 2).

In subsequent rows, we investigate the effects of using different regularizers during

training. Notably, using the Frobenius norm as a constraint brings improvements in

performance, in contrast to using L1 and mean squared error (MSE) regularizers. This

improvement can be attributed to the Frobenius norm’s ability to impose a more solid

constraint on the learned coreference matrix. It’s important to note that the final row

in the table corresponds to our proposed model, which combines mouse traces and the

Frobenius norm regularizer (MT+Frobenius norm).

In Table 4.7 we compare the performance of our final method under two settings:

(1) directly averaging the word features or (2) attending over the words by using

the image as the query as discussed in Section 4.4. The MUC-F1 and narrative

grounding scores are 17.02 and 28.83 respectively for the (1) setting and 19.19 and

29.36 respectively for the (2) setting. Both the narrative grounding accuracy and the

coreference evaluation get a boost in performance for visually aware word features.

More often than not, the word phrases are relatively short (e.g., the machine) and hence

the model does not always learn to disambiguate better with attention to the grounding.

On the other hand, this technique is especially useful for CR because the flow of visual

information to the word features acts as a prior to cluster mentions that refer to the

same region but are referred to with different mentions/entities in the text (e.g., the

machine and an equipment).

Qualitative results Figure 4.4 qualitatively analyzes CR and narrative grounding.

We visualize the narrative grounding results from our proposed method on the images.
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in the middle of the picture,
we see a person who is
wearing the costumes is
walking on the road[1]. 

on the left side, we see
the people are
walking. 

at the bottom, we see
the road[2] and we see
an object which looks
like a water sprinkler.

which

in front of them, we see
a baby trolley and a
baby is sitting in the
baby trolley.

a baby

a
person,

who

the road[1],
the road[2]

an object, 
a water sprinkler

the people 
them

a
person,

who

the road[1],
the road[2]

an object

a water
sprinkler

the people
Ours

(w/o Reg)

Ours a baby trolley,
a baby,

the baby trolley

the baby trolley

a baby trolley,
a baby

Predicted coreference chains

Figure 4.4 Qualitative results of predictions on the CIN dataset. The colored mentions
in the text indicate the ground truth coreference chains. The solid and dotted bounding
boxes on the image denote the correct and incorrect grounding respectively for our
proposed method. We also show the predicted coreference chains for our final method
with and without regularizer.

The model correctly resolves and localizes phrases such as a person, who, the people,

them, and a baby trolley, the baby trolley. Whereas, the model fails to ground and chain

the instance a baby. It is interesting to note that our model pairs an object and water

sprinkler, thereby resolving ambiguity in what the object might refer to. But it fails to

add which to this coreference chain. Moreover, without the language regularizer, our

method fails to link them to the people. It is very hard to learn coreferences for these

pronouns as they come with a weak language prior and hence are difficult for the model

to disambiguate. Our model (without regularization) misses the referring expression

of the baby trolley to refer to the instance of the trolley before. With the help of rules

(e.g., last token match), we can resolve these pairs more often than not. Hence, we

clearly show the challenging problem of coreferences we are dealing with and indicate

the great potential for developing models with strong contextual reasoning.

4.7 Conclusion and discussion

In this chapter, we introduced a novel task of resolving coreferences in image narra-

tions, clustering mention pairs referring to the same entity. For benchmarking and

enabling the progress, we introduce a dataset – CIN – that contains images with

narrations annotated with coreference chains and their grounding in the images. We

formulate the problem of learning CR by using weak supervision from image-text pairs

to disambiguate coreference chains and linguistic priors to avoid learning grammati-
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cally wrong chains. We demonstrate strong experimental results in multiple settings

on our proposed dataset for coreference resolution and narrative grounding in images.

While our method shows considerable improvements when compared to strong

baselines in multimodal coreference resolution, there are certain limitations. Firstly,

our model relies on input from mouse traces during both training and inference

which are challenging to obtain and are not universally available for standard datasets.

While mouse traces provide an important link between the semantic knowledge from

sentences and the spatial information in images, developing a model without mouse

traces will be a more flexible approach. Secondly, the language rules for coreferences

are either too strict such as exact match of phrases, or too generic such as pronoun

match. Relying on such pre-defined rules is harmful for generalization. Hence, directly

learning coreferences from data could be highly effective in addressing the noise

induced by the language rules during learning.

In the next chapter, we show (1) build a standalone model without the need for

mouse traces during training or inference and (2) how to directly learn coreferences

from image-narration data without any pre-defined linguistic rules.





Chapter 5
Semi-supervised multimodal coreference

resolution in image narrations

In the previous chapter, we introduced a new benchmark dataset, Coreferenced Image

Narratives (CIN), to benchmark multimodal coreference resolution. We also developed

a weakly supervised method to predict coreference chains using rule-based/lexical

language priors and simultaneously perform narrative grounding in images. In this

chapter, we seek to further explore the modeling of multimodal coreference resolu-

tion i.e., where a series of sentences i.e., narration is paired with an image. This poses

significant challenges due to fine-grained image-text alignment, the inherent ambiguity

present in narrative language, and the unavailability of large annotated training data.

Contrary to Chapter 4, we present a data-efficient semi-supervised approach to tackle

these challenges, that utilizes image-narration pairs to resolve coreferences and nar-

rative grounding in a multimodal context. Our approach incorporates losses for both

labeled and unlabeled data within a cross-modal framework. Through rigorous evalua-

tion, we demonstrate that our proposed approach outperforms strong baselines both

quantitatively and qualitatively for the tasks of coreference resolution and narrative

grounding.

This chapter begins with revisiting the problem of multimodal coreference resolu-

tion as discussed in Chapter 4, limitations of the weakly supervised method proposed

in Chapter 4 and the key ideas of our proposed method in Section 5.1, related work in
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Section 5.2, elaborating our proposed method in Section 5.3, discussing the experi-

mental details in Section 5.4, evaluating and analyzing the proposed method on the

CIN dataset in Section 5.5 and conclusion and discussion in Section 5.6.

5.1 Introduction

In linguistic processing, coreference resolution is a standard task that aims to identify

referring expressions such as noun-phrases and pronouns, which refer to the same

entity. It is fundamental to many standard problems including question answering (Das

et al., 2017; Kwiatkowski et al., 2019), sentiment analysis (Cambria et al., 2017;

Medhat et al., 2014), summarization (Gupta and Lehal, 2010; Shi et al., 2021) and

machine translation (Bahdanau et al., 2014; Lopez, 2008; Wu et al., 2016). In this

chapter (similar to Chapter 4), we focus on a multimodal coreference resolution (MCR)

scenario where the coreferences occur in a narration paired with an image and also

link to an image part as shown in Fig. 5.1. Here resolving coreferences is challenging,

as mentions referring to different entities can be very similar when encoded by a

language model, e.g., one boy, the other boy, the boy. Hence it demands a fine-

grained understanding of each modality and as well as across them. In particular, it

requires simultaneously grounding instances by identifying fine-grained visual details

(e.g., disambiguating them by recognizing the action ‘crying’, spotting ‘white color

t-shirt and cream color short’ or ‘a white color sticker on the head’), and capturing

long-range dependency across sentences (e.g., two small boys and their).

MCR has recently gained increasing attention, with several notable studies (Cui

et al., 2021; Das et al., 2017; Guo et al., 2022; Hong et al., 2023; Huang et al., 2018;

Parcalabescu et al., 2021; Ramanathan et al., 2014). However, many of them focus

on images with simple short sentences, such as ‘A woman is driving a motorcycle. Is

she wearing a helmet?’ (Das et al., 2017; Parcalabescu et al., 2021), or are limited

to identifying movie characters or people (Cui et al., 2021; Ramanathan et al., 2014).

In Chapter 4, we introduced a challenging and unconstrained MCR problem (see

Fig. 5.1) including a dataset, Coreferenced Image Narratives (CIN), with both people
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we can see two small boys are sitting on a
white color mat and in that one boy is crying
and he is wearing a yellow color t-shirt and
grey color short. The other boy is wearing

white color t-shirt and cream color short and
he is also holding some object in his hand.
On the head of the boy we can see a white

color sticker and on their t-shirts we can see
some text and designs also.

Figure 5.1 Example image-narration pair from the Coreferenced Image Narratives
dataset. Phrases marked in the same color corefer to the same entity which is also
grounded in the image. We do not show singletons for brevity.

and objects as referents with long sentence narrations. As manually annotating a large

dataset with coreferencing and grounding labels is expensive, the authors provide

annotations only for evaluation purposes. We also proposed a weakly supervised

method that learns to jointly ground mentions in images and use them as anchors along

with prior linguistic rules (Lee et al., 2011) to group coreferring mentions from only

image and narration pairs without the annotations. Nevertheless, this method has

multiple shortcomings: 1) weakly supervised grounding fails to disambiguate multiple

instances of the same object class, boy (one boy, the other boy), 2) language rules

such as exact match of phrases are either too strict or too generic e.g., pronoun match,

linking pronouns to one antecedent (one boy, he, he, his) and, (3) they require an

additional modality, mouse traces to learn coreferences which can be expensive to

obtain.

Motivated by these limitations, we argue that it is not guaranteed to successfully

resolve coreferences from only image-narration pairs in cases where multiple instances

from the same object category are present, which is more often than not referred to

in the narration. Since full manual annotations of coreference and bounding boxes

is expensive, we propose to resolve coreferences and ground mentions in a semi-

supervised setting where only a few data samples are labeled. Our approach involves

a customized multi-modal fusion model that combines image region features and

mention features from narrations through cross-attention (Li et al., 2021; Vaswani
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et al., 2017). We investigate different task-specific losses for training on labeled

and unlabeled data and show that naively combining the training on the labeled and

pseudo-labeled data suffers from severe overfitting (Arazo et al., 2020). Hence, we

propose a robust loss function and thresholding-based training scheme to effectively

learn from the unlabeled set. This unique approach results in consistent performance

improvements with the inclusion of unlabeled data during training.

Our main contributions are 1) a vision-language framework for MCR trained on a

small labeled and an unlabeled dataset, 2) novel task-specific losses (on both labeled

and pseudo-labeled data) for learning joint multi-modal embeddings for coreference

resolution while simultaneously improving narrative grounding, 3) extensive evaluation

of our proposed method on the CIN dataset and ablation studies to validate our design

choices, showing consistent performance gains compared to baselines on coreference

resolution and narrative grounding.

5.2 Related work

Multimodal coreference resolution. MCR involves comprehending the contextual

information in the language and establishing connections with specific regions in an

image. Recently, considerable efforts have been dedicated to developing datasets

that can effectively address this intricate task. Parcalabescu et al. (2021) introduced

the VALSE dataset, which encompasses various coreference scenarios. However,

this dataset focuses on the downstream task of visual question answering without

evaluating coreference resolution or grounding. Hence, we evaluate our method in

CIN dataset proposed in Chapter 4 that contains coreference chain and grounding

annotations. Another approach to MCR datasets involves linking people’s names

mentioned in the text to corresponding images and resolving pronouns that connect to

those specific names (Cui et al., 2021; Hong et al., 2023; Ramanathan et al., 2014).

However, our main focus is to resolve coreferences in a generic scenario (with visual

complexity) unlike the others that are either limited to only people names/characters
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(Cui et al., 2021; Hong et al., 2023; Ramanathan et al., 2014) or have simple sentences

(Das et al., 2017; Parcalabescu et al., 2021).

Vision-Language learning. Existing work on vision and language understanding

employ either pre-trained object detector features (He et al., 2017; Ren et al., 2015) as

an image encoder, ViT (Dosovitskiy et al., 2020) or a CNN (Simonyan and Zisserman,

2014) combined with a transformer-based text encoder (Devlin et al., 2018). To model

cross-modal interaction between the image and text encoders, UNITER (Chen et al.,

2020), ALBEF (Li et al., 2021) and VinVL (Zhang et al., 2021b) employ a multimodal

encoder. They are pre-trained on large-scale image-caption pairs such as COCO (Lin

et al., 2014), Conceptual captions (Changpinyo et al., 2021b; Sharma et al., 2018),

Visual Genome (Krishna et al., 2017). The pre-training objectives are implemented

with image-text contrastive loss, masked language modeling, and image-text matching

loss. Our method is inspired by the same family of architectures and is trained using a

set of self-supervised and task-based objectives in a semi-supervised learning fashion.

Semi-Supervised learning. There is a large body of work in semi-supervised learning

(Ouali et al., 2020; Van Engelen and Hoos, 2020; Zhai et al., 2019). These methods

typically exploit unlabeled data via either pseudo-labeling with small amounts of

labeled data (Arazo et al., 2020; Lee et al., 2013; Rizve et al., 2021; Sohn et al., 2020;

Zhang et al., 2021a) or by enforcing consistency regularization (Abuduweili et al.,

2021; Berthelot et al., 2019) on the unlabeled data to produce consistent predictions

over various perturbations of the same input by applying several augmentation strate-

gies (Cubuk et al., 2018, 2020; Zhang et al., 2017b). Our method draws inspiration

from pseudo-labeling literature and uses a robust loss function and thresholding to

counter overfitting to pseudo-labels.

5.3 Method

5.3.1 Task overview

Our goal is a) to group mentions (i.e., referential words or phrases) in the narration

that corefer to the same entity and, b) ground each mention to a region in an image.
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Formally, let N = {m1,m2, . . . ,m|N|} denote a narration with |N|mentions for an image

I with |I| regions where I = {r1,r2, . . . ,r|I|}. We wish to learn an embedding function

f that takes in an image I and its narration N, parsed to contain a set of mentions, and

outputs a score for a mention pair (m,m′):

f (m) · f (m′)
| f (m)|| f (m′)|

(5.1)

The mention pair m and m′ corefer if the score in Eq. (5.1) is high, otherwise they do

not.

For grounding of the mention m on the image region r, we also learn another

function g that outputs a score for the mention m being located at region r in image I.

Next, we describe in detail our methodology to learn the two functions f and g.

5.3.2 Model architecture

In Fig. 5.2, we illustrate our model architecture. Each image is parsed into a set of

regions through a pre-trained object detector (Ren et al., 2015), where each region r is

represented by a d-dimensional joint embedding vvvr ∈Rd including its visual, semantic

and spatial features. In particular, the visual encoder fv is instantiated as a transformer

block that takes in a joint feature embedding vvvr for the object region r and outputs a D

dimensional embedding, i.e., fv(vvvr) : Rd → RD.

Furthermore, we encode the words in each narration N using a tokenizer (Devlin

et al., 2018) to get a set of tokens for the words w ∈ RV where V is the vocabulary

size. The text encoder ft which is also a transformer block that takes in the word

token w and outputs a D dimensional embedding, i.e., ft(w) : RV → RD. The mention

embeddings are computed by averaging its corresponding word representations as:

ft(m) = 1
|m|∑w∈m ft(w) where, |m| indicates the mention length in words, and the

embeddings ft(m) have the same dimensionality as the visual features.

Next, the multi-modal encoder f fuses the visual features from the visual encoder

fv(vvvr) with the mention features from the text encoder ft(m). Similar to the cross-

modal architectures (Li et al., 2021; Zhang et al., 2021b), the embeddings from the
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Figure 5.2 Illustration of our model architecture and training methodology. The pre-
extracted image regions are fed into the visual encoder, the narrations are fed into the
text encoder, and both modalities are fused using a multimodal encoder. The model
is optimized using self-supervised objectives (in grey) and specialized task-based
losses on both the labeled data (in yellow boxes) and the pseudo-labeled data (in green
boxes).

text encoder are first encoded using self-attention layers (Vaswani et al., 2017). Then,

a multi-head cross-attention module integrates the textual and visual features. In the

cross-attention module, the self-attended mention embeddings ft(m) are treated as

the query, while the image representations fv(vvvr) are treated as keys and values. The

attention weights between the mention m and the region r are given as:

g(m,r) =
exp( ft(m)T . fv(vvvr)√

d
)

∑r′∈I exp( ft(m)T . fv(vvvr′)√
d

)
(5.2)

where, softmax is computed over the image regions for each mention. This atten-

tion matrix (or the grounding function) g from the multi-head cross attention learns
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fine-grained mention to region alignment scores. Finally, the vision-aware mention

embedding is represented as:

f (m) = g(m,r). fv(vvvr) (5.3)

where, f (m) ∈ RD. This weighted embedding is then passed to a feed-forward mod-

ule (Li et al., 2021) with an MLP and layer normalization. All the transformer

encoders/blocks are based on the architecture proposed by Li et al. (2021). It is impor-

tant to note that compared to the previous chapter, in this chapter the proposed model

fuses vision and text features with a multimodal encoder, unlike theirs.

5.3.3 Semi-Supervised learning

Concretely, we aim to learn the parameters of the modules fv, ft , and f given a training

dataset D with |D | samples of image-narration pairs. Specifically, we use a small

labeled set Ds = {xi,yi}|Ds|
i=1 where xi = {I,N} is the image-narration input pair and

yi = ∀m∈N{P(m),A(m),bm} is the label for the input pair. In particular, the label

for each mention m in the narration is given as: P(m) and A(m), the set of positive

and negative mentions respectively for the mention m and bm, the bounding-box

coordinates of the region corresponding to the mention m.

Due to unavailability of a large labeled training set, we leverage the unlabeled

data Du = D \Ds where Du = {xi}|Du|
i=1 with only image-narration pairs as inputs. Our

overall training objective is the joint loss function as follows:

∑
(x,y)∈Ds

1
|Ds|

Ls(x,y)+ ∑
x∈Du

1
|Du|

Lu(x) (5.4)

where, Ls is the supervised loss and Lu is the unsupervised loss. First, we discuss

how to formulate task-based supervised losses on the dataset Ds.

(S1) Coreference loss (CR) Specifically, we propose to learn the similarity between the

mention embeddings using a supervised contrastive loss (Khosla et al., 2020) which is
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defined as:

Lcr = ∑
m∈N

−1
|P(m)| ∑

p∈P(m)

log
exp( f (m). f (p)/τ)

∑a∈A(m) exp( f (m). f (a)/τ)

(5.5)

where τ is the temperature. This loss helps to cluster embeddings for coreferring

mentions together and push the embeddings of non-referrants away from each other.

(S2) Grounding loss (GD) To align the mention m and region r, we use the grounding

function g defined in Eq. (5.2). In particular, we first define the ground-truth binary

alignment on the labeled training set Ds. For the ground-truth bounding box bm for a

mention m we compute the intersection over union (IoU) between this bounding-box

and the R pre-extracted image regions. This is crucial because we don’t have the

exact region-mention match for the detections from the object detector. Following

this, we get the binary alignment function, h(m,r) which is 1 for the mention m and

the detected image region r if the region r has the maximum IoU overlap with the

ground-truth bounding box bm otherwise 0. Once, we have the ground-truth alignment

h(m,r), we compute the cross entropy loss as:

Lgd =− ∑
m∈N

∑
r∈I

h(m,r)log(g(m,r)) (5.6)

(S3) Bounding box regression loss (BBR) We further propose to add additional supervi-

sion to refine the object proposals from the detector for a mention. For each mention m,

the ground-truth bounding box localization is represented as bm = (x,y,w,h). To learn

refinements, we predict the bounding-deltas from the model as δm = (δx,δy,δw,δh) for

each mention m. We then take the highest scoring region for a given mention m as:

rm = arg max
r∈I

g(m,r). (5.7)

Our goal is to learn a transformation that maps a proposed box rm to a ground-truth

box bm. We then apply the smooth-L1 loss following Ren et al. (2015) denoted as

Lbbr. Further details about this loss are given in Chapter D.
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Next, we discuss how to train on the unlabeled subset of the dataset by generating

pseudo-labels for the coreference and grounding tasks.

(U1) Pseudo coreference loss (PCR) Given the unlabeled dataset Du, we compute

the pseudo coreferring pairs for the mentions in N. More specifically, we compute

pseudo-positives P̂(m) and pseudo-negatives Â(m) for a mention m by computing the

cosine similarity between the embeddings as in Eq. (5.1). For each mention m, if the

similarity with another mention m′ is greater than a threshold then we label it as a

positive otherwise a negative. Finally, we compute the triplet loss as:

Lpcr = ∑
m∈N

max(|| f (m)− 1
|P̂(m)| ∑

p∈P̂(m)

f (p)||2

−|| f (m)− 1
|Â(m)| ∑

a∈Â(m)

f (a)||2 +α,0)
(5.8)

where α is the margin, f (m) is the embeddings for the query mention m, 1
|P̂(m)|∑p∈P̂(m) f (p)

is the mean of embeddings of the pseudo-positive labels P̂(m) and 1
|Â(m)|∑a∈Â(m) f (a)

is the mean of embeddings of the pseudo-negative labels Â(m).

The key intuition behind using the mean in a triplet loss formulation is to reduce

overfitting to the noise in the pseudo labels. This works better in practice compared

to the contrastive loss formulation in Eq. (5.5) or mining a random positive/negative

label for the standard triplet loss, especially when dealing with pseudo labels.

(U2) Pseudo grounding loss (PGD) Furthermore, we compute the pseudo grounding

loss on the unlabeled training dataset. Specifically, we impute the pseudo-labels from

the grounding function, g(m,r). We only consider the samples when the grounding

score is greater than a certain confidence threshold t which is set to 0.9 in our exper-

iments. The high threshold value ensures to consider only confident samples in the

unlabeled set and eliminates learning from noisy samples. We denote this label after

binary thresholding as ĥ(m,r). The pseudo grounding alignment loss is denoted as:

Lpgd = ∑
m∈N

∑
r∈I
−ĥ(m,r)log(g(m,r)) (5.9)
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Apart from the above mentioned task-based losses, we combine the standard image-

text pretraining losses (Li et al., 2021; Vaswani et al., 2017). These losses help to learn

better unimodal representations before fusion.

(U3) Image-Text contrastive loss (ITC) Following the training paradigm in Chapter 4,

we incorporate the contrastive loss to align the image and narration pairs to learn better

representations before fusion. This loss is defined as:

Litc = ∑
m∈N
− log

( exp( fv(vvvr) ft(m))

∑r′∈I exp( fv(vvvr′) ft(m)))

)
(5.10)

where fv(vvvr) ft(m) is the mention-region matching score from the visual and text

representations before fusing in the multi-modal encoder and vvvr are the raw features

for the highest scoring region for a mention m.

(U4) Masked language modeling loss (MLM) To fine-tune the pre-trained BERT model

(Devlin et al., 2018) on the image-narration data, we also use the pre-trained task of

masked language modeling as proposed in Vaswani et al. (2017). In particular, the

input word tokens are randomly masked and are replaced by a special masking token.

The model needs to predict the mask token based on the unmasked words. This task is

trained with a cross-entropy loss, Lmlm.

Hence, our overall training objective in Eq. (5.4) is a combination of specialized

task losses on the labeled training set Ds (Lcr, Lgd and Lbbr) and the unlabeled

training set Du (Lpcr and Lpgd) and global pre-training objectives on the entire

training dataset D (Litc and Lmlm).

5.3.4 Inference

To obtain the coreference scores, we form chains by measuring the cosine similarity

between the mentions as described in Eq. (5.1), consider the pairs with similarity

higher than a predefined threshold as positive. When evaluating narrative grounding,

we extract the cross-attention scores from the last layer of the multimodal encoder. For

each mention, we identify the region with the highest softmax score as the positively

referred region.
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5.4 Experiments

Method
Modality MUC B3 CEAFφ4 CoNLL

Text Image R P F1 R P F1 R P F1 F1

Neural Coref (Lee et al., 2017) ✓ ✗ 0.11 0.17 0.13 - - - - - - -

longdoc (Toshniwal et al., 2021) ✓ ✗ 7.79 8.43 7.24 62.27 76.10 67.69 48.77 84.95 61.02 45.31

VisualBERT (Su et al., 2019) ✓ ✓ 18.17 6.08 8.06 69.01 36.08 41.03 21.25 57.10 28.67 25.92

UNITER (Chen et al., 2020) ✓ ✓ 16.92 7.15 8.83 68.34 44.29 50.22 28.12 72.78 38.91 32.65

VinVL (Zhang et al., 2021b) ✓ ✓ 16.76 8.60 9.75 68.49 62.32 61.30 42.88 80.81 53.69 41.58

MAF (Wang et al., 2020a) ✓ ✓ 19.07 15.62 15.65 - - - - - - -

WS-MCR (Goel et al., 2023b) ✓ ✓ 24.87 18.34 19.19 - - - - - - -

Ours
✓ ✗ 13.30 14.12 12.55 67.91 79.48 72.41 56.05 86.20 67.05 50.67

✓ ✓ 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table 5.1 Coreference resolution results on the CIN dataset from our proposed method
and other state-of-the-art unimodal and multi-modal baselines.

Datasets. We evaluate our proposed method on the CIN dataset proposed in Chapter 4

that consists of 1000 test and 880 validation image-narration pairs from the Flickr30k

split of the Localized Narratives dataset (Pont-Tuset et al., 2020) annotated with

coreference chains and bounding boxes. We use the test split of the CIN dataset to

report the performance on CR and narrative grounding. The annotations from the

validation split are used as the small labeled set during training. The unlabeled dataset

is the Flickr30k training subset of the Localized Narratives dataset (Pont-Tuset et al.,

2020). This training split consists of 50k image-narration pairs but is not annotated

with bounding boxes or coreference chains.

Implementation details. For the image regions, we extract bounding box regions,

visual features, and object class labels using the Faster-RCNN object detector (Ren

et al., 2015) as discussed in Chapter 4. We use a 4-layer transformer architecture for

the text encoder and the multi-modal encoder similar to the ALBEF (Li et al., 2021)

framework. The weights of the transformer encoders are initialized with BERT (Devlin

et al., 2018). The visual encoder is a stack of two transformer encoder layers. Each

transformer encoder layer includes a multi-head self-attention layer and an FFN. There

are two heads in the multi-head attention layer, and two FC layers followed by ReLU

activation layers in the FFN. Training details are in Chapter D.
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Evaluation. We report results for coreference resolution and narrative grounding.

For the former, we use the standard CoNLL F1 score which is the average of three

coreference based metrics: MUC, B3, and CEAFφ4. For the latter, we follow the same

procedure as discussed in Chapter 4 and report the grounding accuracy for both noun

phrases and pronouns. More precisely, if the overlap between the ground-truth box and

the predicted box is greater than 0.5, then it is considered to be a correct prediction.

5.5 Results

5.5.1 Coreference resolution

Table 5.1 reports the coreference resolution performance on the CIN dataset for our

method and the baselines. Further details about the baselines are given in Chapter D.

The text-based baselines Neural Coref (Lee et al., 2017) and longdoc (Toshniwal et al.,

2021) are evaluated in a zero-shot way on the task. Their low CoNLL F1 scores

indicate the incapability of the model to generalize to new domains which is in line

with what has been evaluated extensively in the coreference literature (Porada et al.,

2023; Toshniwal et al., 2021; Yang et al., 2022b). Moreover, it validates the need for

multi-modal models for the task of multimodal coreference resolution.

We further compare to strong multi-modal baselines by directly evaluating the

VLMs in a zero-shot way on the CIN dataset. Interestingly, all three methods, Vi-

sualBERT (Su et al., 2019), UNITER (Chen et al., 2020) and VinVL (Zhang et al.,

2021b) perform better in MUC and B3 compared to the text-based baseline, longdoc

(Toshniwal et al., 2021) but drop in performance on the average CoNLL F1 scores.

These results show the inability of these models to effectively find singletons, hence

leading to poor performance in the precision scores. Moreover, we can conclude that

the vision and language pre-trained models fail to generalize for MCR.

We also compare two weakly supervised methods that are trained on the CIN

dataset, MAF (Wang et al., 2020a) and the weakly supervised method proposed in

Chapter 4, WS-MCR. MAF is a weakly supervised grounding method trained with

ITC that is evaluated for CR and WS-MCR learns weakly-supervised grounding and
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CR combining the ITC loss and prior linguistic rules. Both of these methods improve

significantly in MUC scores compared to other zero-shot unimodal and multi-modal

baselines. We directly report results for these baselines from the previous chapter.

Finally, we compare with the text-only variant (without any image) of our method.

This method improves over the baselines on the CoNLL F1 scores. The significant

gains in performance of our final method, with both text and image, combined with

label supervision shows the importance of carefully tuning the model with a small

amount of labeled data and large amounts of pseudo-labeled data.

Method Noun Phrases Pronouns Overall

MAF (Wang et al., 2020a) 21.60 18.31 20.91
WS-MCR (Goel et al., 2022b) 30.27 25.96 29.36

Ours (ITC + MLM) 27.44 22.77 26.45
Ours (Full) 32.58 28.45 31.71

Table 5.2 Comparison of narrative grounding performance on the CIN dataset.

5.5.2 Narrative grounding

In Table 5.2, we present a comprehensive comparison between the baselines and our

proposed approach to the task of narrative grounding. This task is both challenging and

crucial, as it evaluates the precise alignment between image regions and phrases in tex-

tual data. Notably, our proposed method goes beyond the traditional alignment of noun

phrases and also addresses the critical aspect of grounding pronouns, which is vital

for multimodal coreference resolution. We measure noun phrase grounding, pronoun

grounding, and overall accuracy to measure performance, similar to Section 4.5.

Remarkably, our proposed method exhibits superior performance compared to

weakly supervised baselines, showcasing a remarkable margin of approximately 2%

and 2.5% in noun phrase and pronoun grounding accuracy, respectively. Furthermore,

when compared to our unsupervised baseline, namely “Ours (ITC + MLM)", the in-

clusion of labeled and pseudo-labeled data yields a significant performance boost of

approximately 6%. These results clearly demonstrate the significance of training with
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both grounding alignment and coreference resolution loss, highlighting the mutual

benefits derived from this approach.

5.5.3 Ablation study

Data type % Samples CoNLL F1

Labeled
20% 60.04
50% 61.24

Unlabeled
20% 56.82
50% 59.11

Table 5.3 CR performance by changing the amount of labeled and unlabeled data
during training.

Varying labeled and unlabeled data. We study the impact of labeled data on the

learning process, allowing us to showcase the strengths of our approach. In Table 5.3,

we measure the model’s performance on CoNLL F1 scores at different proportions

of labeled data (20% and 50%). Remarkably, despite the limited amount of labeled

data samples, the model demonstrates consistently high performance without any

significant drop. This highlights the exceptional ability of our model to effectively

learn from a small labeled set, without relying on a large number of annotated training

samples.

Furthermore, to validate the efficacy of our proposed method, we also investigate

the influence of unlabeled data samples during training. Following the same data split

as in the supervised experiments, we observe the changes in performance indicated by

row 2 in Table 5.3. As the quantity of unlabeled samples increases, the model exhibits

enhanced coreference resolution performance. This result reinforces the ability of our

proposed method to leverage and effectively learn from pseudo-labeled data. Detailed

results are in Chapter D.

Impact of different loss functions. In Table 5.4, we assess the performance of coref-

erence resolution by incorporating various losses proposed in Section 5.3. Throughout

the training process, the model consistently integrates the self-supervised objectives of

ITC and MLM, results in first row of Table 5.4.
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Losses MUC B3 CEAFφ4 CoNLL

ITC MLM CR BBR GD PCR PGD R P F1 R P F1 R P F1 F1

✓ ✓ ✗ ✗ ✗ ✗ ✗ 23.81 25.83 23.12 69.32 85.87 76.41 61.00 89.69 72.05 57.19

✓ ✓

✓ ✗ ✗

✗ ✗

22.70 21.40 20.23 69.05 80.03 73.66 55.52 87.09 67.20 53.70

✓ ✓ ✗ 23.86 24.52 22.31 69.31 84.15 75.67 59.50 89.15 70.80 56.26

✓ ✓ ✓ 27.68 29.04 26.66 69.93 85.43 76.61 60.92 90.61 72.26 58.51

✓ ✓ ✓ ✓ ✓
✓ ✗ 30.66 32.82 30.31 70.70 86.09 77.33 62.64 92.92 74.27 60.64

✓ ✓ 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table 5.4 Ablation study on our proposed method with the combination of the proposed
losses.

Integrating the supervised contrastive coreference resolution loss, CR, in addition to

ITC and MLM, results in a significant performance drop. Due to the limited availability

of labeled data, the model struggles to effectively generalize for coreference resolution,

leading to overfitting and consequently lower F1 scores. However, by progressively

incorporating the bounding box regression loss, BBR, and the grounding alignment loss

GD, we get a much stronger training signal even with a small labeled set. This multi-

task training objective contributes to an impressive improvement of approximately

1.5% in the CoNLL F1 score.

Subsequently, we investigate the impact of incorporating loss on pseudo-labeled

data. By introducing the pseudo coreference loss, denoted as PCR, we observe a remark-

able improvement of approximately 2% in the CoNLL F1 scores. This result highlights

the significance of leveraging pseudo clusters and underscores the effectiveness of

our proposed robust triplet loss, which computes the triplet loss using the mean of

positive and negative embeddings. Notably, this approach successfully incorporates

pseudo-labeled data without leading to overfitting while achieving substantial perfor-

mance gains. Consequently, our final proposed method, which integrates the pseudo

grounding loss, PGD, exhibits the most superior overall performance, validating the

potency of pseudo-labels for both coreference resolution and grounding.

Choice of coreference resolution loss. In Table 5.5, we examine the impact of

different types of coreference resolution losses. We present a comparison of the

following loss combinations: 1) Binary cross-entropy loss (BCE) applied to both
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CR Loss MUC B3 CEAFφ4 CoNLL

on Ds on Du R P F1 R P F1 R P F1 F1

BCE BCE 23.63 23.55 21.57 69.50 81.94 74.47 57.68 88.01 68.95 55.00

CR CR 28.20 22.47 23.08 70.10 76.29 72.40 52.32 87.22 64.71 53.40

CR RTC 29.24 32.41 29.46 70.37 86.71 77.45 63.14 92.59 74.55 60.49

CR PCR 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table 5.5 Performance comparison with the choice of coreference resolution loss on
the labeled dataset Ds and the unlabeled dataset Du.

Ds and Du, 2) Supervised contrastive loss (CR) applied to both Ds and Du, and 3)

Supervised contrastive loss (CR) on Ds and random triplet mining loss (RTC) on Du.

We observed a significant performance drop when training with the BCE loss,

compared to utilizing the supervised contrastive loss. The supervised contrastive loss

effectively promotes the learning of more discriminative embeddings for the clusters,

unlike the binary cross-entropy loss. Consequently, the embeddings become more

robust for CR, contributing to improved performance.

Interestingly, when applying the supervised contrastive loss to Du (row 2), we

observed a drop in performance. Our hypothesis is that the contrastive loss tends to

overfit in the presence of noisy pseudo labels, leading to a degradation in performance.

In contrast, our pseudo triplet loss formulation PCR is softer in penalizing noisy pseudo

labels. This allows the model to gradually adapt and become more resilient to such

noise, resulting in a more efficient clustering of mentions. We also compare to another

ablation where instead of taking the mean of the embeddings for pseudo-positive labels

and pseudo-negative labels, we sample a random positive and negative label (results in

row 3) abbreviated as RTC. Randomly sampling the labels generalizes better than the

other ablations but the mean cluster embeddings outperform than randomly selecting

samples.

5.5.4 Qualitative results

In Fig. 5.3, we qualitatively visualize the performance of our method and compare it

with the weakly supervised baseline from Chapter 4. Our model correctly separates
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in this image i can see people sitting in train
and the front man is sleeping and a man

standing and the background is blurry.

Ours

in this image i can see people sitting in train
and the front man is sleeping and a man

standing and the background is blurry.

WS-MCR (Goel et al., 2022)

Figure 5.3 Visualization for grounding and coreference resolution. The colored boxes
in the image correspond to the mentions with the same color in the sentence.

the mentions the front man and the the man both during CR and grounding, whereas

the WS-MCR method as discussed in Chapter 4 incorrectly assigns the mention the

man to the the front man and grounds it incorrectly too (denoted by the blue dotted

line). Hence, our semi-supervised method can effectively learn to disambiguate the

instances based on the visual details which is also helpful for coreference resolution.

5.6 Conclusion and discussion

In conclusion, this chapter addresses the fundamental and challenging task of mul-

timodal coreference resolution where a narration is accompanied by an image. We

propose a data efficient semi-supervised approach that incorporates task-based losses

for both labeled and unlabeled data, operating within a cross-modal framework. Our

method achieves remarkable results for CR and narrative grounding tasks on the CIN

dataset, showcasing its effectiveness in handling the complexities of MCR.

We also outline some limitations of this work that are important considerations

for future work. First, the current model’s performance in coreference resolution

and grounding is limited by the use of a pre-trained object detector. The detectors

pretrained for object detection task have a limited object category vocabulary and lack

in fine-grained properties including adjectives, human actions, and the open vocabulary

found in narrations. This forces the model to rely on a predetermined set of regions and

object classes, preventing it from directly learning region coordinates for a mention on
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an image. To improve performance, we envision the development of an end-to-end

approach that eliminates this reliance on pre-defined regions.

Second, our model currently depends on ground-truth mentions to resolve coref-

erences and ground them. In the future, one promising direction would be to detect

mentions simultaneously with coreference resolution and grounding. This would

significantly improve the applicability of our proposed method and reduce dependence

on off-the-shelf mention detectors or ground-truth annotations.

Third, we evaluate our proposed method without performing pre-training using

large-scale image-narration datasets. Future work could consider how multimodal

CR improves when incorporating specialized fine-grained pre-training objectives. As

opposed to relying on image–text matching and masked language modeling, alternative

methods such as fine-grained grounding alignment, context modeling or sentence

completion could also be used as better pre-training strategies. Then, either the

methods could be evaluated in a zero-shot way as shown in our experiments with

VLMs, or fine-tuned using our proposed semi-supervised framework.





Chapter 6
Discussion and Future work

In this chapter, we summarize our contributions and propose directions for future

research.

6.1 Summary of contributions

In Section 1.3, we highlighted the core challenges while training vision and language

models for a variety of important tasks, especially image captioning, scene graph

generation, and multimodal coreference resolution. Here, we review the contributions

in the light of the challenges discussed in Section 1.3:

• variability in visual content: in Chapter 2, we introduce a model by incor-

porating two sources of implicit knowledge – 1) using latent language topics

as anchors to find more salient image regions and, 2) transferring knowledge

from a pre-trained sentence auto-encoder to the image captioning model. This

enables us to learn the visual content in detail and generate semantically diverse

image descriptions capturing the variations in images. Our experiments show

that training with implicit knowledge helps to improve performance even when

the data is limited.

• variability in language: in Chapter 3, we propose a model that captures the

subjectivity in annotator interpretations for scene graph generation by using

lexical knowledge. We propose a strategy to divide the label space according
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to linguistic rules and then use them to learn diverse and informative relations

between objects, an important component in a scene graph. In Chapter 4, we

investigated the question of variability in language for resolving coreferences.

The complexity in narrative language and its relations to visual content was

resolved by a joint vision-language model and in particular thanks to lexical

knowledge rules that provided a strong language prior to resolve referrant

expressions in language.

• missing annotations: an important contribution in Chapter 3 is to address

missing annotations that arise due to variability in language and annotator

subjectivity. Our proposed method takes care of the incomplete annotations with

label relations learned from lexical knowledge. Incorporating this prior during

learning helps to predict informative and plausible relations for scene graphs

instead of overfitting to a single and uninformative relation.

• difficulty in getting large-scale annotated training data: we make two con-

tributions to address this challenge. First, in Chapter 4 by relying on weak

supervision from image-narration pairs and prior lexical knowledge to learn

multimodal coreference resolution i.e., clustering co-referrant mentions in text

and linking these mentions to image regions. Second, in Chapter 5, we learn

coreferences using a semi-supervised approach where we use a small labeled

training set with coreference and bounding box labels along with a large unla-

beled set. Hence, we benefit from transferring knowledge from a small subset of

labels to the unlabeled data for learning complex associations in language and

its association to images.

6.2 Future work

In this section, we propose possible directions for future work. First, we present some

ideas to improve fine-grained modeling and reasoning in vision and language, and then

we outline the importance of learning robust image and text correlations as discussed

in this thesis for different tasks and problems.
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6.2.1 Improving reasoning in vision and language

Generating narrations for images. Recent advances in multimodal foundational

models (Li et al., 2022a, 2023a; Singh et al., 2022), have shown remarkable progress in

generating concise captions for images which is also the main focus in Chapter 2. How-

ever, creating detailed narratives, such as extensive textual descriptions for an image,

is equally vital. This task requires a deep comprehension of the context and intricate

relationships that exist between various entities within both the textual description

and the image. The ultimate aim is for the model to produce narratives that are not

only coherent and contextually accurate but also richly descriptive. These narratives

should encompass references to the objects, scenes, and the complex interplay between

entities within the image.

However, when it comes to generating extensive descriptions, standard image

captioning models face significant challenges (Meng et al., 2021). The descriptions

they generate tend to exhibit repetitive patterns, often lacking a nuanced understanding

of contextual references, which if addressed can significantly enhance the quality and

depth of the generated narratives. To address these limitations, a potential solution

involves incorporating the simultaneous learning of coreferences and narrative ground-

ing as an auxiliary task. In this approach, narrative grounding will serve as a robust

signal to guide the model in focusing on important image regions for description, while

coreference resolution will aid in capturing the intricate relationships and connections

between various entities within the narrative. By using this dual-task approach, we can

significantly improve the comprehensiveness and contextual richness of the narratives

generated for the images.

Using scene graphs for resolving coreferences and narrative grounding. In

Chapter 3 of this thesis, we propose to generate image-based scene graphs which can

also be a valuable tool for resolving coreferences and narrative grounding, especially

in the context of visual scenes and complex narratives as in the CIN dataset. Scene

graphs can help with this by providing a structured representation of objects and their

attributes in a given scene or image. When analyzing the text, one approach could be
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to extract triplets from the text and then learn a matching between the image-based

scene graph and the text-based scene graph to determine what a pronoun or noun

phrase is referring to. For example, consider an image paired with the sentence, “A

cat is sleeping on the couch next to a dog. She has black and white fur.” From the

scene graph of the image, we can extract relevant triplets such as cat - sleeping on

- couch, cat - next to - dog, cat - has - white and black fur. Simultaneously, we can

parse triplets from the text using a text-based scene graph parser (Schuster et al., 2015)

which will result in triplets of the form cat - sleeping on - couch and she - has - white

and black fur. From matching the image scene graph with the text scene graph, we

can determine that she refers to the cat and not the dog.

However, due to the complexity of narrations the triplets extracted from the text-

based parser might not be complete, making it challenging to learn a perfect matching

between visual scene graphs and text scene graphs. Hence, it is crucial to devise meth-

ods that could address this noise and effectively use scene graphs as an intermediate

representation for resolving coreferences.

Single-stage model for grounding and reasoning. In our models, detailed in

Chapter 4 and Chapter 5, our approach involves a two-step process: first, we identify

candidate object bounding boxes by utilizing a pre-trained object detector, and second,

we then train a join vison-language model to align phrases to object regions and reason

about the linked entities in text. It’s important to note that due to this two-stage process,

the model’s performance (especially for grounding) is limited by the quality of object

detection, as we can only match the phrases to regions that have been correctly detected

in the first step. To address this issue, following previous work such as Li et al. (2022b),

we can learn a single-stage method that learns to detect object regions for the phrases

directly from the image using a regression objective during training. In this process,

the model will automatically learn to disambiguate relevant regions for a phrase and

also learn to link phrases based on the surrounding context. The main challenge is the

unavailability of annotated training data for paired narration regions and coreferences.

One possible solution could be to use distant supervision by aligning the image region

to a labeled dataset for object detection by using the mouse traces in the Localized
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Narratives dataset. This could provide noisy supervision for phrase-region matching

for the narrations which can then be used in an end-to-end learning framework.

6.2.2 Beyond reasoning on images using vision and language

Conditional image generation. Recent advances in generative image modeling

have enabled remarkable progress in conditional image generation. Two popular

approaches are Generative Adversarial Networks (GANs) (Creswell et al., 2018) and

diffusion models (Croitoru et al., 2023), which can synthesize highly realistic images

given a text description (Li et al., 2019a; Qiao et al., 2019b). This has sparked great

interest in text-to-image generation, where a textual query or caption is transformed

into a corresponding image (Nichol et al., 2021; Qiao et al., 2019a,b; Xu et al., 2018).

Such methods hold promise for creative applications like image editing (Brooks et al.,

2023; Ling et al., 2021), image super-resolution (Saharia et al., 2022), inpainting

(Wang et al., 2023; Yu et al., 2018a) and so-on. An alternative technique is a grounded-

language-to-image generation (Li et al., 2023c,d), which leverages explicit spatial

layout information and grounded text to enable more controlled image synthesis.

A promising research direction is to combine these complementary strengths

- utilizing automatic scene graph parsing and captioning of a reference image to

extract rich semantic representations as discussed in Chapter 2 and Chapter 3, then

leveraging these to assist image generation from a text prompt and conditioned on the

automatically generated layout. By automatically constructing detailed scene graphs

and captions from reference images, the amount of human input needed for controlled

image synthesis could be greatly reduced. Rather than manually specifying object

bounding boxes and relationships, a user could simply provide an example image and

a text description of the desired edit. This could significantly lower the barrier to

utilizing advanced generative image models in creative workflows.

Extending the Coreferenced Image Narratives (CIN) dataset to videos. The

multimodal coreference resolution framework proposed in this thesis in Chapter 4 and

Chapter 5 focuses on static images. However, extending these coreference capabilities
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to video could enable an even richer grounding of language in visual data. Video

introduces a temporal dimension, where models must leverage cues across frames to

track entities and resolve references. For instance, consider a video where a person

is sitting on a sofa in one frame, then cooking in the kitchen in the next frame. This

requires understanding temporally that the same person is involved in two different

tasks across the frames. This connects to challenges in multiple object tracking (Sun

et al., 2020) and attaching textual descriptions to tracked identities (Sadhu et al., 2021;

Yang et al., 2023).

Enabling more robust video-grounded coreference could unlock new possibilities

in tasks like automatic video captioning (Yang et al., 2023), vision-and-language

navigation (Anderson et al., 2018c), and action recognition (Jhuang et al., 2013; Yang

et al., 2022a). For video captioning, correctly binding pronouns to visually tracked

people/objects could improve caption coherence and factual consistency. In navigation

scenarios, resolving references like “the person you just saw” can help agents interpret

instructions containing temporal dependencies. And for action recognition, linking

textual descriptions to tracked entities could provide useful supervision and context.

Overall, by extending the static image coreference models proposed in this thesis

to the video domain, there is an exciting opportunity to enable a richer understanding

of events, actions, and relationships as they unfold over time. This could lead to AI

systems that can not only resolve coreference in images but also reason about the

interactions and narratives depicted in videos or even live environments. Tackling the

additional challenges introduced by visual dynamics represents a promising research

direction.

Evaluation of large vision and language models. Recent work has demonstrated

impressive capabilities of large-scale vision-language models like UNITER(Chen

et al., 2020), ALBEF (Li et al., 2021), Flamingo (Alayrac et al., 2022), BLIP (Li

et al., 2022a), BLIP-2 (Li et al., 2023a), and PaLI (Chen et al., 2022) across a variety

of multimodal tasks. Leveraging massive datasets (Penedo et al., 2023; Schuhmann

et al., 2022) and model sizes (Hoffmann et al., 2022), these models have achieved

strong performance even with zero-shot transfer or simple fine-tuning, particularly on
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high-level tasks like image captioning (Lin et al., 2014) and visual question answering

(Antol et al., 2015). However, evaluating these powerful models on fine-grained

vision-language tasks could provide unique insights into their learned representations.

Two promising directions are extending assessments to scene graph generation

(Chapter 3) and multimodal coreference resolution (Chapter 4 and Chapter 5). As

discussed in this thesis, these tasks require grounding textual concepts and relationships

to specific image regions, going beyond caption-level understanding. This grounding

could be approached by formulating the tasks as question answering, with scene

graph links or coreferent expressions encoded as queries. However, this would mainly

assess the alignment of modalities rather than structured representation. Alternately,

models could be adapted to directly output connected graphs aligning detected entities

and phrases. Although this latter approach requires architectural changes to support

structured outputs, it could enable more nuanced probing of learned cross-modal

reasoning.

Overall, evaluating emerging multimodal models on structured scene-level tasks

beyond captioning presents exciting research for the future. Success would demonstrate

deeper semantic visual understanding, including inferring relationships and resolving

ambiguity. By innovating new model architectures and training techniques tailored

for these challenging tasks, we can continue pushing towards human-like language

grounding abilities. Benchmarking performance on scene graphs and coreference thus

provides informative next steps beyond standard vision-language benchmarks.
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Image Captions Ground Truths

AoANet: a little boy sitting on a chair with a laptop.
+CLTA+SAE-Reg: a baby sitting on a suitcase on the floor.
Top-20  Topic  Words:  luggage,  boy,  suitcase,  bag,  child, 
young,  sitting,  shoe,  elephant,  kid,  next,  little,  small,  piece, 
bench, clothes, floor. airport, case, standing.

GT1: young boy sitting on top of a briefcase.
GT2: a little boy sitting on a suitcase on the floor.
GT3: a toddler boy is sitting on a brief case.
GT4: a young baby sits on top of a briefcase.
GT5: a small child sitting on top of a briefcase.

AoANet: a row of motorcycles parked next to each other.
+CLTA+SAE-Reg: a row of motorcycles parked on the side 
of a street.
Top-20  Topic  Words:  wall,  street,  motorcycle,  brick,  city, 
building,  row,  meter,  group,  next,  parking.  side,  clock,  two, 
lined, front, sidewalk, parked, road, graffiti.

GT1: a row of motorcycles parked in front of a building.
GT2: a number of motorbikes parked on an alley.
GT3: a bunch of motorcycles parked along the side of the 
street.
GT4: a back ally neighborhood with motor bikes in a row.
GT5: a bunch of motorcycles parked on the side of the road.

AoANet: a vase filled with white and white flowers.
+CLTA+SAE-Reg: a glass vase with some flowers and a doll.
Top-20 Topic Words: flower, vase, purple, group, vas, white, 
table,  sitting,  filled,  glass,  rose,  watch,  watching,  together, 
around, small, large, yellow, next, green.

GT1: a doll standing next to a vase filled with flowers and 
plants.
GT2: a clear vase contains some white pretty flowers.
GT3: white flowers in a vase with arranged leaves
GT4: flowers are placed in a vase with large leaves.
GT5: a flower arrangement in a clear glass vase next to a doll.

AoANet: a woman sitting at a table with a cup of coffee.
+CLTA+SAE-Reg:  a  woman sitting at  a  table  eating a  hot 
dog.
Top-20  Topic  Words:  woman,  table,  holding,  eating,  girl, 
sitting,  standing,  group,  hand,  food,  sandwich,  plate,  young, 
front, little, picture, lady, hold, next, man.

GT1: a girl eating a hotdog at a wooden table.
GT2: an asian child eating a hot dog sitting at a table.
GT3: a little girl posing for a picture while eating food.
GT4: a young girl smiles while enjoying her meal.
GT5: little girl smiles for the camera as she eats her sandwich.

AoANet: a person on a surfboard in the water.
+CLTA+SAE-Reg: a man is para sailing in the ocean.
Top-20  Topic  Words:  kite,  man,  surfboard,  water,  flying, 
wave, board, person, ocean, riding, surfer, surf. surfing, group, 
fly. beach, sky. large, top, red.

GT1: a surfer wrangles a parachute with a scenic mountain 
background.
GT2: a paraglider who has just landed in the ocean
GT3: a person riding a surf board with a parachute in a body of 
water
GT4: a man in the water kite surfing on a board.
GT5: a man kite boarding over a large body of water.

AoANet: a display case filled with lots of different flavored 
donuts.
+CLTA+SAE-Reg:  a  box  of  donuts  with  different  types  of 
sprinkles.
Top-20 Topic Words: group, many, different, several, various, 
two, together, type. colorful, donut, bunch, watching, around, 
color, plate, crowd. table, filled, others, gathered.

,


GT1: a display of yummy looking chocolate covered donuts 
with sprinkles.
GT2: donuts on a tray in a display case
GT3: a bunch of doughnuts with sprinkles on them
GT4: tray of chocolate donuts with sprinkles in a display case.
GT5: a tray full of sprinkle covered, chocolate glazed 
doughnuts.

AoANet: a couple of people sitting on a bench.
+CLTA+SAE-Reg: two people sitting on a bench looking out 
at the ocean.
Top-20  Topic  Words:  people,  two,  group,  sitting,  bench, 
couple,  standing,  wooden,  park,  woman,  one,  water,  next, 
around. near, several, another, together, sits, crowd.

,


GT1: a couple is sitting on a bench in front of the water.
GT2: two people sitting on a bench silhouetted against the sea.
GT3: two people are sitting on a bench together in front of 
water.
GT4: the silhouette of two people sitting on a bench in front of 
the water.
GT5: a couple sits on a park bench and watches the water

Figure A.1 Qualitative examples of generated captions from the baseline AoANet
model and AoANet with our proposed CLTA and SAE Regularizer. We also visualize
the Top-20 Topic words from the learned latent topic space in our CLTA module.
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Learning on Implicit Relations
Learning on Explicit Relations

Figure B.1 Class Wise Recall@100 for the set of Implicit and Explicit Relations by
training on a subset of relations. All models are trained with Motif-TDE-Sum (Tang
et al., 2020; Zellers et al., 2018).

Explicit Relations above across against along at behind between in in front of near on over under
# of Instances 47341 1996 3092 3624 9903 41356 3411 251756 13715 96589 712409 9317 22596

Table B.1 Explicit Relations for the Visual Genome Dataset (Krishna et al., 2017).

ab
ov

e
ac

ro
ss

ag
ai

ns
t

al
on

g at
be

hi
nd

be
tw

ee
n in

in
 fr

on
t o

f
ne

ar on
ov

er
un

de
r

an
d

at
ta

ch
ed

 to
be

lo
ng

in
g 

to
ca

rry
in

g
co

ve
re

d 
in

co
ve

rin
g

ea
tin

g
fly

in
g 

in fo
r

fro
m

gr
ow

in
g 

on
ha

ng
in

g 
fro

m ha
s

ho
ld

in
g

la
yi

ng
 o

n
lo

ok
in

g 
at

ly
in

g 
on

m
ad

e 
of

m
ou

nt
ed

 o
n of

on
 b

ac
k 

of
pa

in
te

d 
on

pa
rk

ed
 o

n
pa

rt 
of

pl
ay

in
g

rid
in

g
sa

ys
sit

tin
g 

on
st

an
di

ng
 o

n to
us

in
g

wa
lk

in
g 

in
wa

lk
in

g 
on

wa
tc

hi
ng

we
ar

in
g

we
ar

s
wi

th

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
10

0

VCTree-EBM-Ours
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Figure B.2 Relation-wise Recall using the VCTree-EBM (Suhail et al., 2021) as
the backbone SGG model trained with our proposed method (Ours) vs. the method
proposed in (Suhail et al., 2021) (Baseline).

B.1 Dataset statistics

For the Visual Genome dataset (Krishna et al., 2017), Xu et al. (2017) released a

version of the dataset with 50 relations and 150 object categories. These 50 relations

are: above, across, against, along, and, at, attached to, behind, belonging to, between,

carrying, covered in, covering, eating, flying in, for, from, growing on, hanging from,

has, holding, in, in front of, laying on, looking at, lying on, made of, mounted on, near,
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Implicit Relations attached to and belonging to carrying covered in covering eating flying in for from growing on hanging from has holding laying on looking at
# of Instances 10190 3477 3288 5213 2312 3806 4688 1973 9145 2945 1853 9894 277936 42722 3739 3083

Table B.2 Implicit Relations for the Visual Genome Dataset (Krishna et al., 2017).

Implicit Relations lying on made of mounted on of on back of painted on parked on part of playing riding says sitting on standing on to using walking in walking on watching wearing wears with
# of Instances 1869 2380 2253 146339. 1914 3095 2721 2065 3810 8856 2241 18643 14185 2517 1925 1740 4613 3490 136099 15457 66425

Table B.3 Implicit Relations for the Visual Genome Dataset (Krishna et al., 2017).

of, on, on back of, over, painted on, parked on, part of, playing, riding, says, sitting on,

standing on, to, under, using, walking in, walking on, watching, wearing, wears, with.

In Table B.1, we present the explicit set of relations with the number of training

instances for each relation in the Visual Genome dataset. Similarly, in Table B.2 and

Table B.3, we define the implicit set of relations1 and their frequency in the Visual

Genome dataset.

B.2 Additional results

Quantitative studies. In Figure B.1, we present the class-wise recall for all the

relation classes in the Visual Genome dataset (Krishna et al., 2017) for training on a

subset of relations i.e., either learning only on explicit relations or only on implicit

relations. All the models are trained with the MOTIF-TDE-Sum SGG model (Tang

et al., 2020; Zellers et al., 2018). The class-wise performances clearly indicate the

generalizability of training only on implicit relations as it achieves at-par/similar

performances on the explicit relations, whereas the model only trained on explicit

relations performs poorly on implicit relations.

Figure B.2 compares the class-wise performances for the VCTree model trained

with only Energy Based Modeling (EBM) (Suhail et al., 2021) and also with our

proposed method. The performance gains of our model over the baseline in the

implicit relations such as “carrying”, “eating”, “covering”, walking” etc. shows the

importance of mining these informative relations from less informative samples while

still maintaining recall of the explicit relations hence, improving generalization.

Regular recall results. In Table B.4, we show the Regular Recall@k results for differ-

ent SGG backbone architectures when trained with our proposed method compared to

1We break down the implicit relations into two tables for better visualization.
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the baseline. Although there is no significant improvement in Regular Recall (when

compared to the improvements obtained from mean recall), the at-par performance

with the baseline shows that our method maintains the performance on frequent rela-

tions while improving significantly on the more informative/infrequent relation classes

(as measured by mean recall).

Predicate Classification Scene Graph Classification Scene Graph Detection
Models Method R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

Motif-TDE-Sum (Tang et al., 2020; Zellers et al., 2018)
Baseline 33.38 45.88 51.25 20.47 26.31 28.79 11.92 16.56 20.15

Ours 33.36 43.53 47.44 24.31 29.91 31.75 14.59 17.96 19.70

VCTree (Tang et al., 2019)
Baseline 59.82 65.93 67.57 41.49 45.16 46.10 24.90 32.02 36.30

Ours 58.66 64.69 67.05 35.49 38.71 39.51 24.63 31.52 36.42

VCTree-EBM (Suhail et al., 2021)
Baseline 57.31 63.99 65.84 40.31 44.72 45.84 24.21 31.36 35.87

Ours 57.42 64.37 66.43 35.42 38.79 39.66 23.70 30.74 35.62

VCTree-TDE (Tang et al., 2020)
Baseline 40.12 50.83 54.91 26.00 33.03 35.97 13.97 19.43 23.34

Ours 36.90 47.62 52.03 25.67 32.83 35.76 15.20 19.00 20.98

Table B.4 Scene Graph Generation performance comparison on Regular Recall@K
(Tang et al., 2020) under all three experimental settings. We compare the results of our
proposed framework (Ours) with the original model (Baseline) using different SGG
architectures.

Qualitative studies. We present additional qualitative visualizations in Figure B.3

and Figure B.4. Our proposed method predicts informative relations for both the set

of pairs present in the ground truth and the new set of object pairs that further help

to define a scene comprehensively. In the quantitative evaluation, we only reward

object pairs that have corresponding ground truth relations, hence, the relations for the

remaining set of object pairs can only be visualized qualitatively.
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21-woman wearing 7-jacket
21-woman wearing 22-pant
23-street in front of 21-woman
14-sign on 12-pole
8-person wearing 7-jacket 
8-person walking on 13-sidewalk 
20-window on 1-building  
8-person carrying 0-bag  
7-jacket on 8-person
10-pant on 21-woman

6-car parked on 3-street 
16-sign attached to 12-pole 
8-person carrying 0-bag
8-person walking on 13-sidewalk
3-car parked on 23-street  
21-woman carrying 0-bag
19-vehicle parked on 23-street
20-window of 1-building 
21-woman walking on 13-sidewalk
14-sign attached to 12-pole 
18-tile on 13-sidewalk

Ground Truth Triplets Predicted Triplets

Ground Truth Triplets Predicted Triplets

2-man on 3-sign 
5-window on 0-building 
5-window on 7-window

5-window of 0-building
4-sign attached to 6-building
4-sign attached to 0-building 
0-building has 7-window
1-fence sitting on 0-building
2-man painted on 3-sign 
1-fence sitting on 4-sign 
7-window on 6-building
0-building behind 4-sign 
3-sign under 4-sign
0-building has 5-window

Figure B.3 Additional Qualitative Results with the ground truth triplets and the pre-
dicted triplets from the VCTree-EBM model trained with our proposed training frame-
work. The predicted triplets are from the SGCls setting.
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Ground Truth Triplets Predicted Triplets

10-woman with 9-phone 
10-woman holding 9-phone 
0-bag with 1-bottle
3-girl with 7-glass
5-girl with 8-jean
3-girl with 7-glass
10-woman with 9-phone
6-girl with 1-bottle 
6-girl with 0-bag
3-girl with 7-glass 
5-girl with 9-phone

3-girl wearing 7-glass
10-woman holding 9-phone
5-girl looking at 9-phone
2-boy looking at 9-phone
1-bottle in 0-bag
4-girl holding 9-phone 
3-girl looking at 9-phone
0-bag has 1-bottle
10-woman with 4-girl
7-glass on 5-girl
6-girl wearing 8-jean
4-girl wearing 8-jean

Ground Truth Triplets Predicted Triplets

4-bottle near 9-screen 8-wire laying on 5-desk
8-wire holding 6-lamp
1-bottle behind 9-screen
7-window on 9-screen
4-bottle sitting on 5-desk
0-bag laying on 5-desk
1-bottle sitting on 5-desk
2-bottle on 5-desk 
6-lamp on 5-desk
9-screen laying on 5-desk
3-bottle on 5-desk
2-bottle in 7-window
0-bag laying on 9-screen
5-desk near 7-window
4-bottle near 8-wire

Figure B.4 Additional Qualitative Results.



Appendix C
Who are you referring to? Coreference

resolution in image narrations

C.1 Annotation details

Localized Narratives dataset. Pont-Tuset et al. (2020) proposed the Localized

Narratives dataset, a new form of multimodal image annotations connecting vision

and language. In particular, the annotators describe an image with their voice while

simultaneously hovering their mouse over the region they are describing. Hence,

each image is described with a natural language description attending to different

regions of the image. In addition to textual descriptions (obtained using speech-to-text

conversion), they additionally provide mouse traces for the words.

The Localized Narratives dataset is built on top of COCO (Lin et al., 2014),

Flickr30k (Plummer et al., 2015), ADE20k (Zhou et al., 2017) and Open Images

(Kuznetsova et al., 2020). The statistics of the individual datasets are shown in

Table C.1.

Localized Narratives Subsets (Pont-Tuset et al., 2020) #images #captions #words/capt.
COCO 123,287 142,845 41.8

Flickr30k 31,783 32,578 57.1
ADE20k 22,210 22,529 43.0

Open Images 671,469 675,155 34.2

Table C.1 Statistics of Localized Narratives for COCO, Flickr30k, ADE20k, and Open
Images.
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Annotation tool and analysis. We develop an HTML-based interface on the Label

Studio annotation tool (lab). Figure C.1 shows the annotation interface from Label

Studio. We hired 6 high-quality annotators (all from computer science background) for

an average of 54 hours of annotation time. The annotators were trained with the exact

description of the task and given a pilot study before proceeding with the complete

annotations. The pilot study was useful to correct and retrain annotators if needed. As

shown in Figure C.1, the annotators had to select a mention in the caption with a given

label (C1, C2, etc.) in Step 1 and draw a bounding box in the image for the selected

mention in Step 2 (with the same label).

Figure C.1 Annotation interface from Label Studio.

For Step 1, if the mention is coreferring then it is selected with the same label to

define coreference chains. It is important to note that the captions are pre-marked with

noun phrases parsed from (spa). The annotators are instructed to correct the phrases if

they are wrong (e.g., for a mention glass windows, the parser parses glass and windows

as two different mentions rather than belonging to the same label/cluster) and remove

the phrases that do not correspond to a region in the image.

In Step 2, if there are plural mentions such as two men, we ask the annotators to

draw two separate bounding boxes for this. In the case of mentions such as several
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people if the people are less than five, they are instructed to draw separate bounding

boxes otherwise a group bounding box (covering all the people).

Given the challenging nature of the task, we doubly annotate 30 images with

coreference chains and bounding boxes to compute the inter-annotator agreement.

More specifically, for the coreference chain we compute Exact Match which denotes

whether the coreference chains annotated by the two annotators are the same. We

get an exact match of 79.9% in the coreference chains, which is a high agreement

given the complexity of the task. For the bounding box localization, we compute the

Intersection over Union (IoU) to compute the overlap between the two annotations.

It is considered to be correct/matching if the IoU is above 0.6. We achieve bounding

box accuracy of 81% on this subset of images. This analysis shows good agreement

between the annotators given the subjective nature and complexity of the task.

Coreferenced Image Narratives dataset. In total, we annotate all the 1000 test im-

ages and 880 validation images (out of 1000) in the Flickr30k dataset. The text descrip-

tions from the Localized Narratives dataset are very noisy with a lot of words/sequence

of words. We manually filter phrases such as - in this image, in the front, in the

background, we can see, i can see, in this picture. If there are some other mentions

that are pre-marked and not filtered, we ask the annotators explicitly to filter them out.

By doing this, we make sure that the dataset is clear of any unnecessary and noisy

mentions.

All the words that are marked as mentions and are not noun phrases (as detected

by the part of speech tagger (spa)) are considered as pronouns e.g., them, they, their,

this, that, which, those, it, who, he, she, her, him, its.

Statistics for the Coreferenced Image Narratives . In Figure C.2, we show the

statistics for the frequency of pronouns in the dataset. Few pronouns (e.g., he, it, them)

are more frequent than the others. Overall, the occurrence of pronouns is frequent to

conduct a fair evaluation of the coreference based models. Similarly in Figure C.3, we

evaluate how many mentions occur in the coreference chains. Coreference chains with

2 and 3 mentions have a very high frequency in the dataset. There are few chains that
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Figure C.2 Total number of occurrences of pronouns in Coreferenced Image Narra-
tives .

Figure C.3 Number of coreference chains with 2 or more than 2 mentions in a chain in
Coreferenced Image Narratives .

have longer mentions (e.g., 6 and 7). Hence, we can safely conclude that the dataset is

a powerful tool to evaluate coreference chains and learn complex coreferencing and

grounding models. Moreover, the average length of the mentions (excluding pronouns)

is 1.93.

C.2 Evaluation metrics

In this section, we discuss in detail the evaluation metrics used for CR and narrative

grounding. For CR, we use the MUC and the BLANC metrics, which are discussed

below.
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(a) MUC F-measure. It measures the number of coreference links (pairs of mentions)

common to the predicted R and ground-truth chains K. It involves computing the

partitions with respect to the two chains:

MUC-R =
∑

Nk
i=1(|Ki|− |p(Ki)|)
∑

Nk
i=1(|Ki|−1)

, (C.1)

MUC-P =
∑

Nr
i=1(|Ri|− |p

′
(Ri)|)

∑
Nr
i=1(|Ri|−1)

(C.2)

where Ki is the ith ground-truth chain and p(Ki) is the set of partitions created by

intersecting Ki with the output chains; Ri is the ith output chain and p
′
(Ri) is the set of

partitions created by intersecting Ri with the ground-truth chains; and Nk and Nr are

the total number of ground-truth and output chains, respectively.

(b) BLANC. Let Ck and Cr be the pairs of coreference links respectively, and Nk and Nr

be the set of non-coreference links in the ground-truth and output respectively. The

BLANC Precision and Recall for coreference links is calculated as follows:

Rc =
|Ck∪Cr|
|Ck| and Pc =

|Ck∪Cr|
|Cr| , where Rc and Pc are the recall and precision respec-

tively.

Similarly, recall Rn and precision Pn for non-coreference links (Nk and Nr) are

computed. The overall precision and recall are:

BLANC-R = (Rc+Rn)
2 and BLANC-P = (Pc+Pn)

2 , respectively.

For evaluating narrative grounding in images, we consider a prediction to be correct

if the IoU (Intersection over Union) score between the predicted bounding box and the

ground truth box is larger than 0.5 (Gupta et al., 2020; Wang et al., 2020a). Following

(Kamath et al., 2021), if there are phrases with multiple ground truth boxes (e.g., several

people), we use the any-box protocol i.e., if any ground truth bounding box overlaps

the predicted bounding box, it is a correct prediction. We report percentage accuracy

for evaluating narrative grounding.
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C.3 Implementation details

Inputs and modules. For the image modeling, we extract bounding box regions,

visual features, and object class labels using the Faster-RCNN object detector (Ren

et al., 2015). We use Glove embeddings (Pennington et al., 2014) to encode the object

class labels and the mentions from the textual branch. For the mouse traces, we follow

(Pont-Tuset et al., 2020) and extract the trace for each word in the sentence and then

convert it into bounding box coordinates for the initial representation. All the modules

i.e., image encoder, text encoder, trace encoder, and joint text-trace encoder are a stack

of two transformer encoder layers. Each transformer encoder layer includes a multi-

head self-attention layer and an FFN. There are two heads in the multi-head attention

layer, and two FC layers followed by ReLU activation layers in the FFN. The output

channel dimensions of these two FC layers are 2048 and 1024, respectively. The input

to the joint text-trace encoder comes from the separate text and trace encoder branches.

We add a special embedding to the learned embeddings following (Chen et al., 2020)

to distinguish between the two modalities (text and trace) in the transformer encoder.

Training details. The whole architecture is trained end-to-end with the AdamW

(Loshchilov and Hutter, 2017) optimizer. We train the transformer encoders with the

learning rate of 3e-5, batch size of eight, weight decay of 0.01, and the loss coefficient

λ of 0.001. We train the model for 60 epochs and choose the best-performing model

based on the validation set.

C.4 Zero-shot results on Flickr30k dataset

Method zs-MUC-R zs-MUC-P zs-MUC-F1 zs-Grounding Acc. (%)

VinVL 59.16 60.78 57.24 -
MAF† 61.97 68.46 63.91 57.1

Ours (w/o MT) 70.11 68.67 68.48 59.4

Table C.2 Zero-shot performance on the Flickr30k entities dataset.

In Table C.2, we evaluate our model and baselines using the zero-shot setting on

the Flickr30k entities dataset Plummer et al. (2015) for CR and grounding. These
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results indicate that our method better generalizes to unseen CR chains and narrative

grounding than the baselines.

C.5 Additional qualitative results

In Fig. C.4, we show additional qualitative results from our proposed method. The

model correctly chains mentions and grounds them to the correct entities in the image

even for complex and ambiguous cases. Our model finds coreferences for people

(e.g., [a man, his]) or for objects (e.g., [a barbecue grill, it]). Moreover, it also finds

links for plurals such as [two men, them]. There is a huge potential in learning to

disambiguate the mentions in the descriptions and this work paves the way for future

research.
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Narration: this image is taken outdoors. at the top of the image there is sky with
clouds[1]. in the background we can see there are many plants[2] and trees[3]. we
can see the mesh[4]. there are many rocks[5]. at the bottom of the image there is
the floor[6]. we can see the swimming pool[9] with water[10] in it[11]. in the
middle of the image a kid[12] is standing on the floor[13] and he[14] is holding a
stick[15] in the hand[16] and playing. we can see the balls[17] in the water[20].

Narration: in this picture i can see a man[0] doing stunts with a
bicycle[1], he[2] is wearing a cap[3] on his[5] head[4]. i can see
three people[6-8] in the back, they[9-11] are riding bicycles[12]. i
can see the ground[13] at the bottom and the trees[14] in the
background and it[15] looks like grass[16] on the ground[17] in
the back.
Predicted Coreference Chains: [a man[0], he[2], his[5]],

     [three people[6-8], they[9-11]]  Predicted Coreference Chains:  [a kid[12], he[14]],
      [the swimming pool[9], water[10], it[11], the water[20]] ,
      [the floor[6], the floor[13]]

Narration: on the left side of the image there is a person[0]. in front of that
person[1] there is a barbecue grill[2] with a food item[3] on it[4]. and there
are few people[5] standing. this is an edited image. and there is a blur
background. and there are few other things in the background.

Narration: in front of the picture, we see two men[0]. the man[2] on the left side is wearing
the spectacles[3] and he[4] is trying to talk something. the man[5] on the right side is wearing
the goggles[6] and an orange cap[7]. it[8] looks like a man[9] is holding a wooden stick[10].
behind them[11-12], we see the people[13] and some of them[14] are wearing the orange
color caps[15]. this picture is blurred in the background.

Predicted Coreference Chains:  [the man[2], he[4], a man[9]],
      [two men[0], them[11-12]]  

Predicted Coreference Chains:  [a person[0], that person[1]],
      [a barbecue grill[2], it[4]]

Figure C.4 Additional qualitative results for coreference chains. For each image, we
show the predicted coreference chain (mentions more than 2) and the grounding results
for the corresponding mentions in the chain. The colored mentions in the descriptions
are the ground-truth coreference chains.



Appendix D
Semi-supervised coreference resolution

in image narrations

D.1 Baselines

Method MUC B3 CEAFφ4 CoNLL

R P F1 R P F1 R P F1 F1

Weights from ALBEF (Li et al., 2021) 31.70 25.97 26.47 70.78 78.35 73.77 54.58 89.02 66.94 55.73

Ours (Weights from BERT (Devlin et al., 2018)) 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table D.1 CR performance with ALBEF (Li et al., 2021) as pre-trained weights.

Grounding MUC B3 CEAFφ4 CoNLL

threshold R P F1 R P F1 R P F1 F1

0.0 28.20 22.47 23.08 70.10 76.29 72.40 52.32 87.22 64.71 53.40

0.5 31.18 30.04 28.92 70.80 82.67 75.76 59.68 92.18 71.77 58.82

0.7 30.48 33.34 30.58 70.63 86.74 77.58 63.30 93.22 74.85 61.01

0.9 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table D.2 Performance of our proposed method by varying the grounding threshold t
to include samples above this threshold in Eq. (5.9).

We consider the following baselines to fairly compare and evaluate our proposed

method:

(a) Text-only CR: For all these methods, we directly evaluate the coreference chains

using the narration only without the image. (1) Neural-Coref (Lee et al., 2017): This
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method is trained end-to-end using a neural network on a large corpus of Wikipedia

data to detect mentions and coreferences. For this baseline, we use the predicted

mentions instead of the gold mentions. (2) longdoc (Toshniwal et al., 2021): This

is a strong transformer-based method using Longformer-Large as the backbone for

coreference resolution, trained on multiple datasets. We use the gold mentions to

predict coreference chains for this model.

(b) Multi-modal CR: We evaluate strong vision and language models for the task on

coreference resolution on the CIN dataset. (1) VisualBERT (Su et al., 2019), UNITER

(Chen et al., 2020), VinVL (Zhang et al., 2021b): All these three baselines are strong

vision language models trained on image-caption data and shows improvements on a

variety of downstream tasks such as VQA, NLVR etc. To test it for CR, we compute

the cosine similarity for the multi-modal mention embeddings in a zero-shot way.

(2) MAF (Wang et al., 2020a): MAF is a weakly supervised phrase grounding method,

originally trained on the Flickr30k-Entities (Plummer et al., 2015). We train this model

on narrations data and evaluate it for CR as elaborated in Chapter 4. (3) WS-MCR: As

discussed in Chapter 4, this is a weakly supervised method for multimodal coreference

resolution trained on the CIN dataset. We train a vision and text encoder with an

image-text contrastive loss and weak prior linguistic rules as a regularizer.

D.2 Bounding box regression loss (BBR)

We define the smmoth-L1 loss (Ren et al., 2015) for the bounding box transformation

as follows:

Lbbr =

0.5(bm−b′m)
2/β , if |bm−b′m|< β

|bm−b′m|−0.5∗β , otherwise
(D.1)

where β is set to 1 following previous work (Girshick, 2015; Ren et al., 2015), b′m are

the transformed bounding box coordinates after applying the delta transformation δm

on the maximum region proposal rm similar to (Girshick, 2015).
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D.3 Training details

The whole architecture is trained end-to-end with the AdamW (Loshchilov and Hutter,

2017) optimizer. The initial learning rate of the model is 1e-5. The learning rate is

gradually warmed up for 2 epochs with a unit multiplier and then decayed following

a step scheduler with a step size of 10 epochs and gamma of 0.95. We use a batch

size of eight and a weight decay of 0.01. The model is trained for 30 epochs and we

choose the best performing model based on the test set. The model is trained on 4

V100 GPUs with data parallelism. All code and models will be made available at

https://github.com/VICO-UoE/CIN-SSL.

D.4 Further ablations

Pre-trained weights from ALBEF (Li et al., 2021). In Table D.1, we show CR

results by replacing the text-encoder and the multi-modal encoder in our model from

the ALBEF (Li et al., 2021) framework with 6 transformer blocks in each encoder.

Moreover, we use the pre-trained weights from ALBEF (Li et al., 2021) and then fine-

tune them using our semi-supervised training strategies. Despite strong pre-training

from ALBEF, the model does not fine-tune and transfer well to the task of MCR

compared to our method which is initialized with BERT weights.

Varying the threshold for pseudo-grounding loss. In Table D.2, we compare the

results with different grounding thresholds for the pseudo grounding loss. Including

all the pseudo predictions (threshold of 0.0) leads to a significant drop in performance

showing the importance of thresholding-based training strategy. Furthermore, as

presented in the results the threshold of 0.9 works best compared to 0.5 and 0.7.

Varying the amount of labeled and unlabeled data. In Table D.3 and Table D.4, we

present detailed results from the discussion in Section 5.5.3 on different CR metrics

by varying the amount of labeled and unlabeled data.

https://github.com/VICO-UoE/CIN-SSL
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% Ds
MUC B3 CEAFφ4 CoNLL

R P F1 R P F1 R P F1 F1

20% 26.40 31.18 27.26 69.83 88.26 77.75 64.25 92.02 75.11 60.04

50% 28.65 34.13 29.91 70.26 88.83 78.27 64.55 92.56 75.53 61.24

100% 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table D.3 CR performance by varying the number of labels in the labeled dataset.

% Du
MUC B3 CEAFφ4 CoNLL

R P F1 R P F1 R P F1 F1

20% 30.96 27.09 27.20 70.84 79.36 74.23 56.49 90.79 69.04 56.82

50% 30.87 29.97 28.83 70.75 83.58 76.23 60.24 92.02 72.27 59.11

100% 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table D.4 CR performance by varying the number of labels in the unlabeled dataset.

D.5 Qualitative results

In Fig. D.1 and Fig. D.2, we present detailed qualitative visualizations. Figure D.1

shows the coreference chains predicted by our proposed method and the baseline,

WS-MCR in Chapter 4. The baseline model misses the instances of his to relate it to

the the man (row 2, column 2) which is correctly clustered by our method. Moreover,

WS-MCR cannot relate big orange color building to the building (row2, column

4) unlike our method. This highlights that our method is able to learn fine-grained

correlations between the image regions and text to effectively resolve such ambiguities.

Despite significant advantages, our method still fails to resolve cases like some other

people by clustering them into the same chain. We believe that the model needs

more complex visual understanding (localize different instance of some other people)

and contextual knowledge from text (people standing on road vs people standing on

footpath) for these specific cases.

In Fig. D.2, we show grounding of the corresponding mentions on the image

from our proposed method in Chapter 5 and the baseline WS-MCR. Compared to

the baseline, our method successfully grounds entrance door, some other people and
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in this image we can
see a man is dancing
on a road, and the
man is wearing white
color shirt and black
color pant.

we can also see a red and
white color cloth in 
his hand, and the man is
also wearing a orange and
black color belt around his
chest

 on the road we can see a
grey color car is parked,
and we can also see some
other people also standing
on the road
by holding flags

on the footpath we can see two women are
sitting and talking with each other, and in that
one woman is holding a baby, and we can also
see some other people are also standing on
the footpath, and in the background we can see a
big orange color building with white color glass
windows, and we can also see the entrance door
of the building.

in this image we can
see a man is dancing
on a road, and the
man is wearing white
color shirt and black
color pant.

we can also see a red and
white color cloth in 
his hand, and the man is
also wearing a orange and
black color belt around his
chest

 on the road we can see a
grey color car is parked,
and we can also see some
other people also standing
on the road
by holding flags

on the footpath we can see two women are
sitting and talking with each other, and in that
one woman is holding a baby, and we can also
see  some other people are also standing on
the footpath, and in the background we can see a
big orange color building with white color glass
windows, and we can also see the entrance door
of the building.

Ground Truth

Ours

in this image we can
see a man is dancing
on a road, and the
man is wearing white
color shirt and black
color pant.

we can also see a red and
white color cloth in 
his hand, and the man is
also wearing a orange and
black color belt around his
chest

 on the road we can see a
grey color car is parked,
and we can also see some
other people also standing
on the road
by holding flags

on the footpath we can see two women are
sitting and talking with each other, and in that
one woman is holding a baby, and we can also
see some other people are also standing on
the footpath, and in the background we can see a
big orange color building with white color glass
windows, and we can also see the entrance door
of the building.

WS-MCR (Goel et al., 2022)

Figure D.1 Coreference resolution for an image-narration pair. We break down the
full narration as individual sentences in the columns for simplicity. The rows from top
to bottom show ground-truth annotations, predictions from the WS-MCR method in
Chapter 4 and Ours in Chapter 5. The mentions in the same color form a part of the
coreference chain.

two women. Hence our method clearly exhibits strong coreference resolution and

grounding capabilities compared to previous work.
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Figure D.2 Visualization of Grounding and CR performance. Zoom in for better
visualization of bounding boxes.
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