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Abstract

This work presents the first method for generating triangular surface meshes in three dimensions for the
NURBS–enhanced finite element method. The generated meshes may contain triangular elements that span
across multiple NURBS surfaces, whilst maintaining the exact representation of the CAD geometry. This
strategy completely eliminates the need for de–featuring complex watertight CAD models and, at the same
time, eliminates any uncertainty associated with the simplification of CAD models. In addition, the ability
to create elements that span across multiple surfaces ensures that the generated meshes are highly compliant
with the requirements of the user–specified spacing function, even if the CAD model contains very small
geometric features. To demonstrate the capability, the proposed strategy is applied to a variety of CAD
geometries, taken from areas such as solid/structural mechanics, fluid dynamics and wave propagation.

Keywords: NURBS–enhanced finite element method (NEFEM), mesh generation, de–featuring, exact
geometry, high–order approximation

1. Introduction

The preparation of computer aided design (CAD) models for computational simulations remains one of
the most time consuming parts of the whole simulation process. One aspect that requires a significant amount
of human hours and expert decision making is the de–featuring of complex geometric models [1, 2]. CAD
models often contain multi–scale geometric features that might, or might not, be relevant to a particular
simulation. Using a standard mesh generation algorithm, with a CAD containing such features, usually leads
to several issues, such as the generation of badly shaped elements and excessive and unnecessary local mesh
refinement. Highly distorted elements can have an important impact in the quality of the simulations [3],
whereas unnecessary mesh refinement can pose severe restrictions in the simulation of transient phenomena
using explicit time marching algorithms. The later is of particular importance in a high–order setting, where
coarse elements are preferred, to exploit the full advantage of high–order approximations. In this context,
the presence of a few small elements can make a simulation unaffordable.

Although some semi–automatic tools for de–featuring CAD models exist [4], it is not easy to know if
de–featuring a certain CAD model will induce significant changes in the engineering quantities of interest,
introducing a level of uncertainty into the simulation. In addition, the de–featuring process cannot be
fully automatised, as it is dependent on the physics to be simulated and even on specific parameters of a
simulation. For instance, the level of de–featuring required in heat transfer, solid mechanics, electromagnetics
or fluid mechanics simulations is completely different. This does not only mean that a different de–featuring
is to be performed for the solution of each physical problem, but it poses a more profound issue. When
different physics is to be considered, either the same geometric model is considered for all the physics, with a
non–optimal de–featuring, or different geometric models will be utilised for different physics. This prevents,
for instance, a multi–objective optimisation based on different physics. Even if a single physical problem
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number in a fluid mechanics problem, usually induce different requirements in terms of de–featuring.
In addition to the uncertainty caused by de–featuring CAD models, the generation of meshes for compu-

tational simulations induces an extra level of geometric uncertainty. The CAD model, even if de–featured,
is approximated by a surface discretisation, usually employing triangular or quadrilateral elements. The ac-
curacy of the geometric approximation can be improved by using mesh refinement based on curvature, mesh
sources or high–order elements. However, a factor often not given enough importance is that the resulting
mesh only provides a piecewise C0 description of the original CAD model. When employing high–order
elements, where coarse meshes are preferred, the discontinuous derivative of the normal between elements
can induce non–physical effects, such as diffraction in wave propagation problems, concentration of stresses
in a solid mechanics problem or entropy production in fluid mechanics problems. This effect can even drive
a degree adaptive process towards an incorrect solution [5, 6, 7].

The NURBS–enhanced finite element method (NEFEM), originally proposed in [8], provides a simple
and efficient approach to ensure that the geometry of the CAD model is exactly preserved during the
simulation. The method was extended to three dimensional domains in [9] and it has been applied in a
variety of problems involving heat transfer, electromagnetics, fluid mechanics and solid mechanics [10]. The
NEFEM rationale also provides a powerful strategy for completely avoiding the de–featuring of complex
models, while removing the requirement for small elements in regions where small geometric features are
present. The main idea, similar to the virtual topology framework [11], is to consider elements that span
across multiple surfaces. In contrast to the virtual topology, the elements can include non–smooth variations
of the normal to the geometry and still maintain the exact representation of the geometry.

Despite these advantages, its applicability to problems involving complex geometries has been hampered
by the lack of an automatic mesh generation algorithm. In fact, the lack of automatic mesh generators has
led researchers to apply the NEFEM on unfitted meshes [12, 13, 14] or by using meshless methods [15, 16].
To date, a two dimensional NEFEM mesh generation approach has been available [17] and has demonstrated
the benefit of using such elements. For a two dimensional electromagnetic scattering example, it was shown
in [17] that the use of NEFEM can speed up a simulation by a factor of 140. This speed up is the result
of using large elements, not restricted by the presence of small geometric features, making the use of time
marching algorithms affordable.

This work presents the first three dimensional triangular surface mesh generation strategy for NEFEM.
The proposed approach is capable of producing elements that span across different NURBS surfaces, main-
taining the exact boundary representation and completely removing the need of de–featuring CAD models.
By extending operations such as edge collapse and edge split, an initial finite element mesh is modified to
offer better compliance with the user–defined spacing function. The concept of geometric supporting points,
used to ensure the exact NURBS representation of elements spanning across multiple surfaces, is introduced
and the strategy to compute these points is detailed. In the presence of trimmed NURBS surfaces, a validity
check is performed to ensure that edges do not intersect trimming curves and, when these intersections are
found, an edge curving strategy is proposed to alleviate the problem. Finally, two simple operations are
employed to redefine badly shaped elements. The first is an extension of the traditional swap for edges that
span across multiple surfaces. The second is completely novel and deals with the placement of the newly
introduced geometric supporting points. The work also considers the construction of high–order nodal dis-
tributions on NEFEM triangular surface elements. Although the geometry of the elements is completely
independent of the degree of the approximation used by the solver, this extension is a basic requirement to
ensure that a NEFEM solver can utilise such meshes for an arbitrary order of approximation. The proposed
approach is finally applied to generate meshes for a series of CAD models that contain multi–scale geometric
features. The examples demonstrate the ability of the developed strategy to generate meshes that are valid,
capture the exact geometry and comply with the user–defined spacing function, even in the presence of
geometric features that are much smaller than the required spacing.

The outline of the paper is as follows. In Section 2, the definition of NEFEM entities is extended to
account for the possibility of triangular elements spanning across multiple surfaces. Section 3 summarises the
mesh requirements and presents the proposed technique to generate surface NEFEM meshes. In Section 4,
the generation of high–order nodal distributions on NEFEM surface elements is detailed. Several mesh
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Figure 1: A NEFEM triangular surface element spanning across three different NURBS surfaces.

examples, of increasing complexity, are presented in Section 5, to illustrate the potential of the proposed
technique. Finally, Section 6 summarises the main conclusions.

2. NEFEM geometric entities

In the standard finite element framework, the CAD model is only used at the mesh generation stage, to
define the nodal distribution and the element connectivity. When the surface mesh has been created, finite
element solvers employ an isoparametric formulation, in which the geometry of a surface element is defined
in terms of a polynomial interpolation of the points provided by the mesh generator.

In the NEFEM approach, the exact CAD boundary representation is used to define the curved surface
elements. This guarantees that the resulting elements introduce no geometric error and the geometry is
made persistent throughout the whole simulation process [18].

A new definition of NEFEM surface triangular elements is proposed in this work, generalising the original
definition [9, 19] which assumes that a surface element:

• belongs to a unique NURBS surface,

• is the image, through the NURBS surface parametrisation, of a straight sided triangle in the parametric
space.

In this work, a NEFEM surface triangle is defined as a collection of trimmed NURBS surfaces. This,
more general, definition, allows for a surface element to traverse several NURBS surfaces. In addition, the
edges of the triangle in the parametric space will be allowed to be curved, introducing more flexibility to
guarantee the validity of NEFEM triangles.

Figure 1 shows a general NEFEM triangular element, Ωe, with vertices x1, x2 and x3. The triangle
spans across three different NURBS surfaces, parametrised by S1, S2 and S3, with S2 parametrising a
trimmed surface. The triangular element Ωe is formally defined as the union of three different trimmed
NURBS surfaces, referred to as physical subdomains. In general, the element is expressed as

Ωe =

nsdo⋃

j=1

Ωe,j , (1)

3
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Figure 2: A NEFEM triangular surface element spanning across three different NURBS surfaces, showing the parametric and
physical subdomains that form the element.

where nsdo is the number of physical subdomains that form Ωe. Each physical subdomain is defined as the
image by the NURBS surface parametrisation of a parametric subdomain, namely

Ωe,j = Sj(Λe,j), for j = 1, . . . , nsdo. (2)

The parametric and physical subdomains that form the element depicted in Figure 1 are shown in Figure 2.
To simplify the data structure that will be utilised to store the NEFEM surface element information, para-
metric/physical subdomains are further divided into parametric/physical subelements, which are assumed
to be triangular. The parametric and physical subelements that form the element depicted in Figure 1 are
shown in Figure 3.

To complete the definition of a curved element, it is necessary to specify how the subelement edges are
defined and the extra information required to allow elements spanning across several surfaces. These two
aspects are detailed next.

2.1. Geometric definition of subelement edges

The edges of a parametric subelement, referred to as parametric subedges can be interior to the parametric
space (i.e., with at most one vertex on a p–curve) or boundary edges (i.e., with both vertices on a p–curve).
Parametric subedges with at most one vertex on a p–curve are defined, using a cubic isoparametric mapping,
as

Ψ : [0, 1] → Γλ

ξ 7→ Ψ(ξ) :=
4∑

k=1

λkNk(ξ),
(3)

where λk = (λk, κk) for k = 1, . . . , 4 are the four points in the parametric space of the NURBS that define the
edge Γλ and Ni are the one dimensional Lagrange shape functions in the reference interval [0, 1]. Subedges
with both vertices on a p–curve are simply defined, by trimming the p–curve, as

Ψ : [0, 1] → Γλ

ξ 7→ Ψ(ξ) := Cλ

(
(1− ξ)λ1 + ξλ2

)
,

(4)

whereCλ is the p–curve to which the subedge belongs and [λ1, λ2] is the parametric interval for the trimming.

4
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Figure 3: A NEFEM triangular surface element spanning three different NURBS surfaces, showing the parametric and physical
triangular subelements that form the element.

2.2. Geometric definition of subelements

A parametric subelement Λi
e,j is defined using the mapping

Θ : [0, 1]2 −→ Λi
e,j

(ξ, η) 7−→ Θ(ξ, η) := (1− η)Ψ1(ξ) + ξΨ2(η) + (1− ξ)Ψ3(η)

−(1− ξ)(1− η)x1 − ξ(1− η)x2,

(5)

where Ψ1 is the parametrisation of the first subedge, connecting nodes 1 and 2 of the subelement, Ψ2

is the parametrisation of the second subedge, connecting nodes 2 and 3 of the subelement and Ψ3 is the
parametrisation of the third subedge, connecting nodes 1 and 3 of the subelement. This mapping can be
seen as a particular case of the blending function method [20]. Physical subelements are simply defined as
Ωi

e,j = S(Λi
e,j).

2.3. Geometric supporting points

In the original definition of NEFEM surface elements, an edge of a triangular element is fully described
by specifying the two end nodes. This is not sufficient here because an edge can traverse physical p–
curves, as shown in Figure 1. An enhanced edge description is proposed by introducing the concept of
geometric supporting points (GS–points). The set of GS–points associated to one element Ωe is given by the
intersections of ∂Ωe with the physical p–curves plus the intersections between physical p–curves that are
inside Ωe. The set of GS–points for the element depicted in Figure 1 are shown in Figure 3 as green dots.

It is worth emphasising that GS–points are only used to formally define a NEFEM surface element. They
do not introduce new degrees of freedom in a solver that considers such meshes. Similarly, subelements are
only introduced due to the piecewise nature of a NEFEM surface element, but the only element that is used
in the solver is Ωe.

3. Generation of NEFEM surface meshes

This section introduces the generation of the NEFEM triangular surface meshes suitable for low order
approximations. It is worth emphasising that, in a NEFEM solver, the geometric approximation is com-
pletely decoupled from the solution approximation, i.e. no isoparametric concept is used. Therefore, NEFEM

5
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(a) CAD model (b) Standard FEM surface mesh (c) Desired NEFEM surface mesh

Figure 4: Example illustrating the NEFEM surface mesh generation process.

enables the exact representation of complex geometries even when a low–order approximation of the solution
is employed. Although the same geometry may be variously represented in different CAD models, modern
CAD tools such as [21, 22] provide the functionality to simplify the data and generate standardised CAD
files for the downstream mesh generators. In this paper, it is assumed that the upstream CAD geometry is
watertight.

3.1. Mesh requirements

The requirements for a desired NEFEM surface mesh are:

1. The characteristic element size at a point, h(x), must be dictated by the user and not be restricted
by the presence of small geometric features, i.e. features with characteristic length ℓ ≪ h.

2. The surface discretisation must introduces zero geometric error. This means that all the points of an
element are exactly located on the NURBS surfaces, not only the approximation points, as is usually
the case with traditional mesh generators. This means that the whole surface element coincides with
the NURBS and not only the element nodes are located on the surface, which is what happens in an
isoparametric context.

The first requirement is the most challenging to fulfil and, at the same time, has the most important
implications in terms of developing efficient solvers. The requirement ensures that no de–featuring of complex
geometries is required, as small features will no longer induce undesired small elements. This will mean that
the use of explicit time marching solvers for transient problems will be affordable, as the time step will not
be massively restricted by the presence of a few undesired small elements. However, the requirement implies
that a completely new mesh generation approach must be adopted, enabling elements to traverse through
different NURBS surfaces.

The second requirement introduces the need for a completely new data structure to store the element
information, but it also provides two important desired features. Firstly, it ensures that the solution error
is free of any uncertainty induced by geometric errors, as is the case for standard FEM solvers. Secondly,
it guarantees that the geometry is persistent throughout the whole simulation process, facilitating the
implementation of degree adaptive approaches for high order methods [5, 6].

To illustrate the proposed mesh generation approach, an example is shown in Figure 4(a). The NURBS
surfaces consists of a trimmed flat plate and two cylinders with significantly different radii and height. The
thickness of the plate is much smaller than its length and width. One cylinder has a diameter much larger
than its height, while, for the other cylinder the height is larger than the diameter. The desired spacing
function, h(x), is defined to be constant, with a value much larger than the thickness of the plate and the
height of the flat cylinder. Figure 4(b) shows a triangular surface mesh generated using a standard mesh
generator. It can be clearly observed that small and badly shaped triangles are present in regions where
the desired element size is much larger than a geometric feature. The aim of this section is to explain the
generation of the NEFEM surface mesh shown in Figure 4(c).

6
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Consider a surface manifold Ω ⊂ R3 and a user–specified spacing function h : Ω → R, defining the
spacing at a given location x ∈ Ω. In this work, the spacing function is defined by using a background mesh
and a set of point, line and triangular sources which implement the mesh control in Chapter 17 of [23]. The
first stage of the proposed NEFEM mesh generation approach is to generate an initial FEM mesh, as shown
in Figure 4(b), using a standard surface mesh generator. It is anticipated that the initial mesh will exhibit
the following characteristics:

1. The mesh is watertight, as it discretises the original watertight CAD geometry.
2. The user specified spacing function h(x) is generally respected, but, in regions where geometric features

are smaller than the desired element size, the spacing function will not necessarily be respected.

Figure 4(b) shows an initial triangular mesh for the geometry of Figure 4(a). The mesh has been generated
using a standard FEM mesh generator with uniform spacing.

3.3. Remeshing procedure

Starting from this initial mesh, a remeshing procedure is employed, to create the desired NEFEM ele-
ments, by using local mesh modification operations. The main idea is to loop over the nodes on physical
p–curves, to identify the connected element edges with length smaller than the user–defined spacing. When
these edges have been identified, they are collapsed recursively. This procedure creates the NEFEM elements.
These may span over multiple surfaces to satisfy the requirement of the spacing function.

For the initial surface triangular mesh, Th, the set of edges is denoted by Eh. Each edge is referenced
in terms of the two nodes that it connects, e.g. Ea,b ∈ Eh denotes the edge connecting nodes xa and xb.
To decide if an edge Ea,b of the initial mesh is a valid NEFEM edge, its length, |Ea,b|, computed using the
appropriate NURBS surface or p–curve parametrisation, is compared to the user–defined spacing function
h(x). If the length of the edge is such that

|Ea,b| ≤ h/
√
2, (6)

the edge is considered too short and, therefore, not compliant with the desired spacing. Similarly, if the
length of the edge is such that

|Ea,b| ≥ h
√
2, (7)

the edge is considered too long and, again, not compliant with the desired spacing. Finally, if

h/
√
2 ≤ |Ea,b| ≤ h

√
2, (8)

the edge is considered as compliant with the required spacing and it will be accepted as a NEFEM edge [24].
According to the criteria specified by (6)-(8), three disjoint sets of edges are constructed: the set of short

edges, Es
h, the set of long edges, E l

h and the set of compliant edges, Ec
h, with Eh = Es

h ∪ E l
h ∪ Ec

h.
It is worth noting that non–compliant edges in the initial mesh could be both edges considered to be too

short or too long. Edges to be considered too short are mainly due to the presence of geometric features that
are much smaller than the required spacing. However, edges that are too long could be present in the initial
mesh, as the initial finite element mesh does not consider any smoothing to strictly satisfy that no long edges
are present. The reason for the factor

√
2 in (8) is to ensure that when an edge is regarded as being too long,

i.e. satisfying (7), and it is split into two edges, the resulting edges will both be compliant, according to (8).
It is important to note that the proposed algorithm targets the elimination of edges considered too short,
but this work does not focus on the application of smoothing to strictly ensure that the all the elements
satisfy (8).

The proposed remeshing approach is based on an extension of procedures usually found in standard mesh
generators, such as edge collapse and edge split. The main idea is to identify edges connected to nodes on
physical p–curves that can be collapsed to ensure that the spacing function is respected as much as possible.
If collapsing an edge that was considered too short as per (6), results in the appearance of an edge that
is considered too long as per (7), an edge split is applied. The strategy introduced here is novel, as both
the edge collapse and split are devised to work with edges that traverse physical p–curves. This is not an
operation that is available in standard mesh generators.

7
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proposed in this section is applied sequentially to nodes on the curves. Alternating the numbering of the
physical p–curves may result in different pattern as shown in Figure 5. All those patterns are valid NEFEM
meshes.

(a) A NEFEM mesh generated with intersection curves
of the bottom surface numbered first.

(b) NEFEM mesh generated with an alternative number-
ing of intersection curves.

Figure 5: NEFEM mesh patterns may change due to different numbering of physical p–curves.

3.3.1. Edge collapse

Consider an element patch Th,a ⊂ Th, with the centre node xa being on a physical p–curve. The set of
edges connected to xa is denoted by Eh,a. The edges on Eh,a are denoted by Eai, for i ∈ Ia, where Ia is
the set of indices corresponding to nodes connected to xa. The number of edges in Ia is denoted by nE.
The edges of the element patch Th,a are classified into three subsets of short, long and compliant edges, viz.
Es
h,a = Eh,a ∩ Es

h, E l
h,a = Eh,a ∩ E l

h and Ec
h,a = Eh,a ∩ Ec

h. Figure 6(a) shows an example of an element patch
centred at xa. The set of indices corresponding to nodes connected to xa is Ia = {1, 3, 4, 6, 10, 12}.

If Es
h,a ̸= ∅, the edges in Es

h,a are collapsed sequentially, until the set of short edges is empty. Each time an

edge is collapsed, the sets Es
h, E l

h and Ec
h are updated. The sets Es

h,a, E l
h,a and Ec

h,a are updated accordingly.
The proposed edge collapse implies deleting a point that was on a physical p–curve and creating edges that
traverse physical p–curves. In the example of Figure 6(a), the edge Ea,4 is considered a short edge and
is collapsed, as shown in Figure 6(b). As a result, the updated edges E3,4 and E10,4 traverse the physical
p–curve parametrised by C2.

xa

x10x3

x6

x4

x1

x12

(a) Element patch before edge collapse

x10x3

x6

x4

x1

x12

(b) Triangle strip after edge collapse

Figure 6: Illustration of the edge collapse strategy allowing new edges to traverse physical p–curves.
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points need to be created to account for the intersecting location of the edge and the physical p-curve.
The proposed strategy to create the GS–points will be detailed in the next section. Nevertheless, the exact
length of such edges cannot be computed before creating the GS–points. Therefore, an estimation is made
to assess the length of new edges that will traverse physical p–curves before deciding if an edge needs to
collapse. This is done using the previously computed lengths of existing edges in the element patch. This
estimation is also used to decide if the edge collapse is performed by eliminating either the centre node xa

or the node connected to xa. Owning to this estimation, the resulting element edge length may slightly
violate the imposed compliance criterion. In this process, preference is given to the collapse that maintains
the centre node of the element patch, as this minimises the number of GS–points that needs to be created.
However, it is common to encounter small edges where the two nodes belong to different physical p–curves
and, therefore, the two possible edge collapse operations will induce the need of creating GS–points. In the
example of Figure 6(a), the edge Ea,4 is made of two nodes on different physical p–curves, parametrised byC2

and C4. The edge collapse is made by deleting the central node xa, as shown in Figure 6(b). Before deciding
to collapse the edge Ea,4, the length of the newly created edge E10,4 is estimated as |E10,4| ≈ |E10,a|+ |Ea,4|.

3.3.2. Creation of GS–points

The creation of new edges that traverse physical p–curves requires the creation of GS–points, to ensure
that such edges exactly lie on the surfaces given in the CAD model. The number of GS–points to be created,
nGS, after performing the edge collapse is simply given by the number of edges that traverse a physical p–
curve, i.e. edges where the two end nodes belong to two different NURBS surfaces. For each edge, the index
of the physical p–curve that needs to be traversed is readily available, as it is the curve that contained the
centre node of the element patch, xa. In fact, not only the physical p–curve is known, but also its parametric
coordinate, i.e. λa and j such that xa = Cj(λa), are both known. In the example of Figure 6(b), edges
E3,4 and E10,4 require the creation of one GS–point each and these GS–points will belong to the physical
p–curve parametrised by C2.

The process begins by creating an ordered list, with the three nodes that belonged to the physical p–curve
parametrised by Cj in the original element patch. The order is assigned by using the orientation of the
physical p–curve and the ordered list of nodes is denoted by Ia,j = {x−

a ,xa,x
+
a } ⊂ Ia. The corresponding

parametric coordinates of the three nodes are denoted by λ−
a , λa and λ+

a . To avoid self–intersection with
edges from other element patches, the interval defining the GS–points is taken as

Ia :=

[
λ−
a + λa

2
,
λa + λ+

a

2

]
. (9)

A simple equally spaced distribution of nodes is initially placed in Ia, viz. λa,k for k = 1, . . . , nGS. The GS–
points are obtained by mapping this distribution to the physical p–curve, i.e. gk = Cj(λa,k) for k = 1, . . . , nGS.
Each GS–point is then assigned to an existing edge of the triangle strip, created by the edge collapse. This
operation is easily performed after the triangles of the strip are ordered according to the orientation of the
physical p–curve Cj . Algorithm 1 lists the steps involved in the process of creating the GS–points. This
approach can easily lead to badly shaped elements, but their validity is ensured. A repositioning strategy to
guarantee better shaped elements will be described in Section 3.4. The process of creating the GS–points,
for the example of Figure 6, is illustrated in Figure 7. Two GS–points are created in the physical p–curve
and then associated to the edges E3,4 and E10,4. This allows for the NURBS–enhanced edges to traverse
the physical p–curve parametrised by C2 and lie exactly on the NURBS surfaces S5 and S4.

Remark 2. More complex scenarios, that involve an edge traversing several physical p–curves, are common,
when a CAD model contains very small features, compared to the local requirements of the user–defined
spacing function. Such cases require the creation of multiple GS–points for edges that traverse multiple
physical p–curves. This situation is easily handled by creating the GS–points after a collapse operation is
completed at an element patch level. This means that an edge that traverses multiple physical p–curves is
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Figure 7: Illustration of the process to create the GS–points and to associate them to the edges that traverse a physical p–curve.

A B C
D

Figure 8: An example of NEFEM surface mesh including four NEFEM elements (labelled A, B, C and D) traversing three
surfaces (coloured in brown, pink and blue, respectively), the geometry is based on Figure 4(a).

constructed recursively, by performing several edge collapse operations, one at a time, and creating a GS–
point every time an edge collapse operation is performed. An example of such scenarios is shown in Figure 8,
where four elements are traversing three surfaces after several edge collapse operations.

After the edge collapse strategy is performed sequentially, on all element patches with a node on a
physical p–curve and with at least one short edge, according to (6), the set of short edges will be empty.
However, as a result of the collapse, some newly created edges might become too long. A new edge split
strategy is desired that is capable of handling edges that traverse multiple physical p–curves.

3.3.3. Edge split

When a long edge is created by edge collapse, a new edge split process is performed to ensure compliance
with the requirements of the user specified spacing function. The difficulty in splitting an edge of a NEFEM
surface element lies in the fact that the newly created edges can traverse intersection curves. This situation
is not encountered in the usual edge split utilised in standard mesh generators.

Consider two elements, Ω1 and Ω2 with nodes {x5,x3,x6} and {x3,x5,x4} respectively, that share the
edge E5,3, which traverses at least one physical p–curve and it is regarded as too long. To illustrate the
process, the example shown in Figure 9(a) is considered. The two elements span across two different surfaces,
parametrised by S1 and S5, and traversing a physical p–curve parametrised by C2.

Firstly, a triangular sub–mesh is created, with the advancing front method, by using the element nodes
and the GS–points. The sub–edges of the sub–mesh are depicted with dashed lines in Figure 9(b). Each
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1 Collect xa, x
−
a and x+

a ;

2 Collect the parameters λa, λ
−
a and λ+

a ;
3 Calculate the interval Ia according to (9);
4 Extract the number of GS–points to create nGS;
5 Identify the edges {Ea,k} to add GS–points;
6 for k ← 1 to nGS do
7 Calculate λa,k ∈ Ia;
8 Create GS–point gk = Cj(λa,k);

9 end for
10 Perform the edge collapse and update connectivity;
11 for k ← 1 to nGS do
12 Associate GS–point gk to edge Ea,k;
13 end for

(a) Two NEFEM elements (b) Sub–mesh creation

(c) Mid–point creation (d) Result of the edge split

Figure 9: Illustration of the edge split approach for an edge that traverses two physical p–curves.

sub–edge is associated to a geometric entity, which can be a physical p–curve, if both nodes belong to the
same curve, or a surface, if at least one node does not belong to a physical p–curve. For instance, the sub–
edge connecting g2 and x6 is associated to surface S1, whereas the edge connecting g2 and g7 is associated
to the physical p–curve C2. Next, the mid point of the edge to be split, namely x8 on E5,3, is computed
using the appropriate NURBS surface parametrisation. The objective is to find if new GS–points need to be
created when splitting the edge, i.e. when creating the two new edges connecting nodes x6 and x8 and nodes
x4 and x8. To this end, sub–edges of the sub–mesh are marked if they will be traversed by the new edges
to be created. These sub–edges, such as that connecting g2 and g7, highlighted in red in Figure 9(c), are
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Figure 10: Illustration of the pathfinding results for edge split.

(a) Parametric space (b) Physical space

Figure 11: Illustration of the validity check for an edge that intersects a physical p–curve used to trim a NURBS surface.

identified using a combination of a modified Dijkstra’s Algorithm [25] and an approximation of the geodesic
described in [26]. If the marked edges to be traversed are associated to a physical p–curve, a new GS–point
will be created along this edge, otherwise the new edge can be created by simply joining the two nodes. The
result of the edge split is illustrated in Figure 9(d). A new GS–point g5 is created on the physical p–curve
C2 and is associated to the new edge E8,4.

The detailed steps in the process for edge splitting are listed in Algorithm 2. The Dijkstra–like pathfind-
ing procedure is listed separately in Algorithm 3. A representative pathfinding scenario is also presented
in Figure 10 to show the resulting paths. In this scenario, two elements ΩL and ΩR traverse three surfaces.
Here, ΩL is subdivided into 5 sub–elements and ΩR into 4 sub–elements. The algorithm utilises two stacks,
of sub–edges and sub–elements, to dynamically store the path in a recursive implementation. The solid
arrows in Figure 10 indicate the path successfully found, while the dashed arrows represent the discarded
testing paths when they hit a boundary sub–edge. The sub–edge rendered in red implies a GS–point will
be created.

3.3.4. Validity check

This procedure for creating NEFEM surface elements might lead to non–valid elements in the presence
of trimmed surfaces. A validity check and a mesh local modification is adopted to alleviate this problem.
To illustrate the problem and the approach adopted, a representative scenario illustrated in Figure 11(b)
is considered. The edge connecting nodes xa and xb, Ea,b, is associated to surface S3. However S3 is
trimmed by the physical p–curve depicted in blue, which intersects the edge Ea,b, leading to a non–valid
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1 Collect the vertices for the element pair ΩL and ΩR: xa,xb,xL,xR;
2 Collect the edge to be split Ea,b;
3 Collect the involved surfaces and curves: {Sj} and {Ck};
4 Build the sub–meshM within elements ΩL and ΩR;
5 Extract fromM the sets of boundary sub–edges for the two sides ϵ̄L, ϵ̄R;
6 Create the midpoint x∗ = BisectEdge(E(xa,xb), {Sj});
7 Find the sub–elements ΛL ∈ ΩL and ΛR ∈ ΩR such that x∗ ∈ ∂ΛL ∩ ∂ΛR;
8 Initialise the sub–element stacks LL = {ΛL} and LR = {ΛR};
9 Find the sub–edges e∗ such that x∗ ∈ e∗;

10 Initialise the sub–edge stacks ϵL = {e∗} and ϵR = {e∗};
11 Find sub–edges traversed by the new edge E(x∗,xL): ϵL = FindPath(ϵ̄L, ϵL,LL,x∗,xL);
12 Find sub–edges traversed by the new edge E(x∗,xR): ϵR = FindPath(ϵ̄R, ϵR,LR,x∗,xR);
13 Perform the split, update element connectivity;
14 for el ∈ ϵL do
15 for Ck ∈ {Ck} do
16 if el ∈ Ck then
17 Create a GS–point gl ∈ el;
18 Associate gl to E(x∗,xL);

19 end if

20 end for

21 end for
22 for em ∈ ϵR do
23 for Ck ∈ {Ck} do
24 if em ∈ Ck then
25 Create a GS–point gm ∈ em;
26 Associate gm to E(x∗,xR);

27 end if

28 end for

29 end for

Algorithm 3: Process for pathfinding during edge split: FindPath.

global: The sub–meshM
input: Boundary sub–edges ϵ̄, sub–edge stack ϵa, sub–element stack La;
input: Midpoint x∗ and goal vertex xa;

1 Retrieve current sub–edge ek from top of stack ϵa;
2 Retrieve current sub–element Λk from top of stack La;
3 if xa ∈ Λk then
4 return ϵa
5 else
6 Identify the two sub–edges ei ∈ ∂Λk and ej ∈ ∂Λk other than ek;
7 Identify the corresponding neighbour sub–elements Λi and Λj ;
8 if ei /∈ ϵ̄ then
9 Push ei into stack ϵa;

10 Push Λi into stack La;
11 else if ej /∈ ϵ̄ then
12 Push ej into stack ϵa;
13 Push Λj into stack La;
14 else
15 Add ek into ϵ̄;
16 Pop ek out of stack ϵa;
17 Pop Λk out of stack La;
18 end if

19 end if
20 Recursively update the sub–edge stack: ϵa = FindPath(ϵ̄a, ϵa,La,x∗,xa);

element. Figure 11(a) shows the problem in the parametric space of the surface parametrised by S3. For
each edge that contains one node on a trimming intersection curve, e.g. Ea,b in the example of Figure 11(b),
a validity check is performed. The check simply involves computing the normal to the trimming curve in the
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(a) Parametric space (b) Physical space

Figure 12: Illustration of the validity fix for an edge that is curved to avoid intersection with a physical p–curve used to trim
a NURBS surface.

parametric space and a scalar product. More precisely, if the outward unit normal vector to the parametric
space of S3 is denoted by n and the unit vector defined by the two end points of the edge in the parametric
space is defined by λa,b, the edge is considered valid if n ·λa,b < 0. If a non–valid edge is identified, a simple
strategy is proposed, involving redefining the edge as a cubic curve in the parametric space. To illustrate
the process, consider the cubic specified by the two end points, xa and xb in the example of Figure 11, and
the tangent vectors at the two end points. The tangent vector at the node that belongs to the trimming
curve, xb, is defined as the bisector of the angle formed by the tangent to the trimming curve and the vector
λa,c. The tangent vector to the cubic at the other end, xa, can be adjusted by the user. In the current
implementation it is selected as the bisector of the angle formed by λa,b and λa,c. When the cubic curve
is defined in the parametric space, two additional points are used to store its geometric definition in the
parametric space, as shown in Figure 12(a). In this way, the data structure only contains nodal coordinates
and connectivities but not tangent vectors. The resulting physical curved edge is defined as the image of
the cubic curve by the NURBS surface parametrisation, as depicted in Figure 12(b).

3.4. Mesh enhancements

Standard mesh generators employ a variety of local and global operations to enhance the quality of
the generated elements. These operations include procedures such as edge swap and Laplacian smoothing.
This work is not aimed at defining and improving quality measures for NEFEM surface elements, but at
generating valid surface NEFEM meshes. As quality measures devised for traditional FEs are not suitable
for NEFEM, due to the non–isoparametric nature of the NEFEM rationale, improved quality procedures
will be the subject of future research. However, two local operations are introduced here to redefine badly
shaped elements that are the result of the edge collapse, generation of GS–points and the edge split. The
first operation is unique to the current mesh generation technique and involves sliding GS–points on physical
p–curves. The second operation is the edge swap, which is extended here to consider elements that span
across multiple NURBS surfaces.

3.4.1. Sliding of GS–points

The GS–points used to define the NURBS–enhanced edges can be moved along the corresponding physical
p–curve to improve the shape of the NEFEM surface elements. When generated by mapping an equally–
spaced nodal distribution in the parametric space of the p–curve, as described in Section 3.3.2, the resulting
elements might be largely distorted, depending on the derivative of the NURBS curve parametrisation. An
example of largely distorted elements that may be created by a naive construction of the GS–points is shown
in Figure 13(a).

14



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Before sliding the GS–points (b) After sliding the GS–points

Figure 13: Detail of a NEFEM surface mesh corresponding to the geometry of Figure 4(a) before and after sliding the GS–
points.

Figure 14: Detail of a NEFEM surface mesh after performing multiple edge swaps to the mesh of Figure 13(b).

The proposed approach to produce better shaped elements consists of sliding the GS–points to guarantee
that they conform with the spacing function h(x) along the physical p–curve. The iterative process for
placing the nodes on the physical p−-curves proposed in [26] is utilised here. Figure 13(b) shows the result
of sliding the GS–points of the mesh in Figure 13(a). In this example, the user–specified spacing function
corresponds to a requirement for uniform spacing.

3.4.2. Edge swap

The strategy for performing an edge swap for an element that spans across multiple NURBS surfaces is
closely related to the edge split process presented in Section 3.3.3. The only difference is that the edge to be
swapped is deleted and no mid–node needs to be created. Using the general example in Figure 9, if an edge
swap is to be performed by replacing edge E5,3 by edge E6,4, a sub–mesh is again used to identify the path
that the new edge is to follow and to also identify if new GS–points need to be created as a result of the edge
swap. After the path is identified, the new edge connection E6,4 is created and, when needed, new GS–points
are located and associated to this edge. The criteria used to decide if an edge swap is performed is, as usual,
based on the angles of the triangle. However, in a NEFEM context, the angles of an enhanced triangle must
be computed using the tangent to the enhanced edges by employing the NURBS description. In addition,
the current implementation also computes the length of the proposed new edge before performing the swap.
The edge is swapped only if the length of the resulting edge does not substantially differ from the user
defined spacing. It is worth recalling that the length of an enhanced edge is evaluated using the NURBS
entities and not just defined as the distance between the vertices.

4. Extension to high–order approximations

The strategy described in the previous section enables the generation of NEFEM surface meshes where
the elements are allowed to span across multiple NURBS surfaces. This results in a better compliance with
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in the CAD model. From the point of view of a NEFEM solver, the generated elements only support a linear
approximation of the solution, as the only degrees of freedom of the triangle correspond to the three vertices.
In this section, a novel strategy to generate high–order nodal distributions in NEFEM surface elements is
presented.

4.1. Distribution of high–order edge nodes

The distribution of high–order nodes on NURBS–enhanced edges is similar to the strategy presented
in [17] when generating two dimensional triangular NEFEM meshes. The main difference is that in the two
dimensional case, NURBS–enhanced edges are always defined by NURBS curves, whereas in the current
three dimensional setting, edges could be on NURBS curves and/or on NURBS surfaces. For a NURBS–
enhanced generic edge, connecting nodes xa and xb, Ea,b, the set of nse sub–edges that form Ea,b is denoted
by ϵa,b. The sub–edges in ϵa,b are assumed ordered, such that the first sub–edge e1 starts at xa and the
last sub–edge ense ends at xb. Each sub–edge, connects a node of the original edge and a GS–point or
two GS–points. The length of the sub–edges, lr,s is already available as it is computed during the mesh
generation process. Therefore, the length |Ea,b| of the edge Ea,b is available.

Consider a p–th degree nodal distribution on the reference interval I = [0, 1], namely {ξ}k ∈ I for
k = 1, . . . , p+ 1. The nodal distribution utilised is specified by the user, depending on the type of elements
used by the NEFEM solver, e.g. an equally–spaced nodal distribution or a Fekete nodal distribution [27].
The high order nodes on the NURBS–enhanced edge Ea,b are found in two stages. The sub–edge el that
must contain the k–th high order node, for k = 2, . . . , p, is easily identified by comparing the length of the
sub–edges to the position of the k–th high order node in the reference interval, namely ξk. More precisely,
the l–th sub–edge is such that

1

|Ea,b|
l−1∑

i=1

|ei| ≤ ξk <
1

|Ea,b|
l∑

i=1

|ei|. (10)

Once the subedge is identified, the exact position of the high–order node is computed by iteratively solving
a one–dimensional root finding problem. If the sub–edge is on a physical p–curve, parametrised by Cj , the
position of the k–th high order node is first computed in the parametric space of the p–curve as the root of
the function

G(η) =
1

|Ea,b|

(
l−1∑

i=1

|ei|+
∫ η

λl

∥C ′
j(λ)∥dλ

)
, (11)

where λl is the parametric coordinate of the first vertex of the subedge el. When the root η⋆ of G is obtained,
the physical position of the high–order node is computed as Cj(η

⋆). If the sub–edge that must contain the
k–th node is not on an intersection curve but on a surface, parametrised by Sj , the solution of a slightly
different one dimensional root finding problem is required. This is due to the different definition of the
sub–edge, as described in Section 2.1. The position of the node is obtained by computing the root of the
function

G(η) =
1

|Ea,b|

(
l−1∑

i=1

|ei|+
∫ η

0

∥∥∥∥
dSj(Ψ(ξ))

dξ

∥∥∥∥ dξ
)
, (12)

where Ψ, given in (4), is the isoparametric mapping used to describe a cubic curve in the parametric
space of Sj . Once the root η⋆ of G is obtained, the physical position of the high–order node is computed
as Sj

(
Ψ(η⋆)

)
. A simple bisection method is employed and the integrals appearing in (11) and (12) are

evaluated using an adaptive Gauss–Legendre quadrature. The placement of high–order nodes does not need
to be done sequentially, as the positions of the high–order nodes are independent.

To illustrate this approach to locating high–order nodes on NURBS–enhanced edges, Figure 15, shows
the strategy followed when employing a third order Fekete nodal distribution on a NURBS–enhanced edge
Ea,b. The edge contains a GS–point, g1, and is made of two sub–edges. Sub–edge e1 contains the node xa

and the GS–point g1, while sub–edge e2 contains the GS–point g1 and the node xb. The first high–order
node placed on Ea,b is identified to be placed on the first sub–edge, while the second high–order node must
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Figure 15: Illustration of the procedure to define a third order nodal distribution on an edge that is made of two sub–edges.
The first sub–edge belongs to the physical p–curve parametrised by C1, whereas the second sub–edge is interior to NURBS
surface parametrised by S3.

k

(a) Reference triangle

k

(b) Physical NEFEM element

Figure 16: Illustration of the procedure used to place a high–order node that is interior to a NEFEM element. The example
corresponds to a high–order approximation with degree p = 3.

be placed on the second sub–edge. The figure shows the parametric space of the physical p–curve that is
used to solve the non–linear problem of (11). The figure also shows the parametric space of the NURBS
surface and the mapping Ψ to the reference interval that is used to define a sub–edge on a NURBS surface.

4.2. Distribution of high–order interior nodes

For NEFEM elements with p > 2, the final step in the process consists of placing the high–order nodes
that are interior to the element. For a desired degree of approximation p, an equally–spaced or Fekete
nodal distribution is considered on a reference triangle. This is illustrated in Figure 16(a) for p = 3. For
each interior node, the coordinates in the reference triangle are denoted by ξk = (ξk, ηk). The intersection
between the line connecting the vertex of the reference triangle (0, 1) with ξk and the horizontal axis η = 0,
is given by ξt = (ξk/(1− ηk), 0). The point xt is defined, over the physical edge Eb,c, such that the distance
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(a) Leading edge view (b) Trailing edge view

Figure 17: CAD geometry of the hollow fairing for a turbine engine.

Table 1: Geometric data of the hollow fairing model.

Number of NURBS Surfaces 10
Number of NURBS Curves 22
Minimum curve length 15.62
Maximum curve length 850.74

from xb to xt, measured over Eb,c, is equal to |Eb,c|ξk/(1 − ηk). This is illustrated in Figure 16(b). The
path between xa and xt in the physical space is then found by using an approximation of the geodesic [26].
This path is shown with a dashed line in the example of Figure 16(b). The final step consists of finding
the position of the high–order node, xk, in the physical space. This is done by ensuring that the distance
from xa to xk, measured over the approximate geodesic that joins xa and xt, is equal to da,td̂a,t. Here da,t
denotes the arc length of the approximate geodesic joining xa and xt and d̂a,t is the distance from (0, 1) to
ξt in the reference space. The computation of the position of internal nodes utilises the algorithms, that
have already described in detail, for building a NURBS–enhanced edge, performing an edge split and placing
high–order nodes on element edges. The final position of the high–order node is illustrated in the example
of Figure 16(b).

5. Examples

A number of examples have been included to illustrate the capability of the procedure for generating
surface NEFEM meshes for geometries that contain small geometric features. The selected examples include
a wide range of geometries relevant to different areas of computational engineering, such as solid/structural
mechanics, fluid dynamics and wave propagation. In each example mesh, the edges adjacent to at least one
intersection curve are particularly defined as the edges of interest. These edges of interest in a FEM mesh
are analysed and modified during the generation of the corresponding NEFEM surface mesh.

5.1. Hollow fairing for a turbine engine

The first example considers the generation of a NEFEM surface mesh for a turbine engine fairing with
a uniform spacing function. The CAD model, shown in Figure 17, contains four large surfaces representing
the outer and inner shells, and six narrow and thin surfaces representing the leading and trailing edges
that connect these two shells. The representative dimensions of the model are listed in Table 1. Note
that the lengths of the curves in the CAD model vary significantly, e.g. the length of the longest curve is
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(a) Standard FEM mesh (b) NEFEM mesh

Figure 18: Meshes for the hollow fairing for a turbine engine. Elements highlighted in pink are split in the NEFEM mesh due
to change of length metrics.

(a) Leading edge zoomed in (b) Trailing edge zoomed in

Figure 19: Detailed views of the generated high–order NEFEM mesh with p = 2 for the hollow fairing model. Surfaces are
rendered in distinguishable colours. GS–points are rendered with green dots.

about 54 times larger than that of the shortest curve. More importantly, the user specified spacing in this
example, h(x) = 100, requires elements that have a representative length more than six times larger than
the shortest curve in the CAD model. For this reason, the initial FEM mesh contains a number of small
elements that clearly violate the desired spacing, as depicted in Figure 18(a). The condition number of
the global finite element matrices will be adversely affected by the presence of these small elements. The
presence of a single element with a very short edge length will impose severe restrictions on an explicit time
marching algorithm, if numerical stability is to be achieved. The generated NEFEM surface mesh is shown
in Figure 18(b). Details of the generated NEFEM mesh near the trailing and leading edges, where small
surfaces are present, are shown in Figure 19(a) and (b), respectively. In this model, all surfaces are curved
and, therefore, all surface elements are considered NEFEM elements to ensure that the exact representation
of the domain is maintained. The elements highlighted with pink edges in Figure 18(a) have been split
in the NEFEM mesh. This is because the the edge length of NEFEM elements is evaluated with the arc
length of the approximated geodesic, which is typically longer than the Cartesian distance, thus they would
trigger the edge split process as per (7). The statistics for both meshes are listed in Table 2. The generated
NEFEM mesh has a slightly lower number of nodes and elements, as a result of the edge collapse performed
on the original FEM mesh. Considering the edges of interest, the most significant difference is that the
minimum edge length in the NEFEM mesh is more than nine times larger than the minimum edge length in
the original FEM mesh and more than four times larger than the smallest geometric feature present in the
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Surface mesh p = 1 FEM NEFEM

Number of nodes 345 278
Number of elements 690 556
Number of edges of interest 483 386
Minimum normalised edge length 0.0761 0.7340
Average normalised edge length 0.7617 1.1230
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Figure 20: Histograms of edges of interest in FEM and NEFEM meshes for the hollow fairing.

CAD model. This example shows the ability to produce surface meshes with triangular elements spanning
across multiple NURBS surfaces, while retaining the exact geometric representation. To further illustrate
the potential of the approach, histograms of the normalised edge length for both the original FEM mesh and
the resulting NEFEM mesh are displayed in Figure 20. A comparison clearly shows the ability of the method
to create a mesh in which the majority of elements have an edge length very close to the requirements of the
user–specified spacing function, even in the presence of small geometric features. To conclude this example,
the technique described in Section 4 is applied to construct high order nodal distributions on the surface
NEFEM elements. Figure 21 shows the surface NEFEM meshes obtained for linear, quadratic and cubic
approximation. Note that, in all cases, the same, exact representation of the geometry is guaranteed. The
only use of the high–order nodal distributions is to define an approximation of the solution in a NEFEM
solver.

It is worth noting that, in this example, the virtual topology paradigm [11], would also allow meshing
across different surfaces, as there is a smooth transition of the normal between the surfaces. However, as
has been shown in [7], utilising such meshes in a traditional finite element context will lead to a non–
exact approximation of the geometry. Further, as isoparametric elements only provide a piecewise C0

approximation of the geometry, even if high–order approximations are used, the resulting simulations might
show non–physical singularities in the solution induced by the piecewise C0 geometric approximation. This
is relevant in different applications. In stress analysis, boundaries with C0 continuity might lead to a stress
concentration. In fluid mechanics, corners are known to introduce non–physical entropy. In electromagnetics,
corners can lead to strong singularities of the electromagnetic field. Therefore, the persistence of the true
CAD model in the solver, via the NEFEM approach, is expected to bring several advantages, not only in
terms of efficiency, but also in terms of reliability of the results.

To further illustrate this issue, Figure 22 shows the effect of using elements that traverse surfaces without
a smooth transition of the normal in a FE context. As it can be observed, the approximation of the geometry
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(a) p = 1 (b) p = 2 (c) p = 3

Figure 21: NEFEM surface mesh of the hollow fairing with linear, quadratic and cubic nodal distributions.

Figure 22: Virtual topology enabled FEM surface mesh of the hollow fairing with quadratic isoparametric elements, viewing
from trailing edge. After generating elements that traverse multiple surfaces with no smooth transition of the normal, the
geometry is approximated using quadratic polynomials, losing the exact geometric definition and leading to different physics.

with a high–order element would not reproduce the exact geometric features. In addition, the blunt trailing
edge will not be captured and this is known to lead to significant differences in the physics that can be
reproduced [28].

5.2. Wing with a blunt trailing edge

The next example considers a wing with a blunt trailing edge and is intended to show an ability to
generate a NEFEM surface mesh with a prescribed non–uniform spacing function h(x). The example also
demonstrates the ability of the approach to generate elements that span across multiple surfaces, even when
there is a non–smooth transition of the normal across the surfaces. This is a feature that cannot be achieved
with the virtual topology approach.

Figure 23 shows the CAD geometry of the wing. The model consists of five NURBS surfaces, viz. the top
and bottom surfaces, the tip and root of the wing and the blunt trailing edge. Compared to the previous
example, the ratio between the maximum and minimum curve lengths of the CAD model is even more
extreme and is almost 190 in this example. Representative dimensions of the model are listed in Table 3.
The non–uniform spacing function is defined using a combination of point and line sources [23]. A point
source, shown in Figure 23, is introduced near the trailing edge of the root and two line sources are introduced
near the leading and trailing edges of the wing. The initial FEM and the generated NEFEM meshes are
shown in Figure 24 and Figure 25, respectively. The local refinement induced by the point sources can be
clearly observed in the rear view of both the FEM and NEFEM meshes. However, the element size on the
NEFEM mesh grows rapidly, as the influence of the point source disappears, while the FEM mesh is refined
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(a) Leading edge view (b) Trailing edge view

Figure 23: CAD model of the wing with a blunt trailing edge, a point source is prescribed and illustrated in red spheres.

Table 3: Geometric data of the wing model.

Number of NURBS Surfaces 5
Number of NURBS Curves 9
Minimum curve length 7.27
Maximum curve length 1,381.12

(a) Top view (b) Leading edge view (c) Trailing edge view

Figure 24: FEM mesh of the wing model with views from different aspects.

(a) Top view (b) Leading edge view (c) Trailing edge view

Figure 25: NEFEM mesh of the wing model with views from different aspects.

due to the small thickness of the blunt trailing edge. When the defined spacing is larger than the thickness
of the blunt trailing edge, the generated NEFEM elements span across multiple surfaces, even when there
is a non–smooth transition of the normal between the surfaces.

Remark 3. The scenario in Figure 26(a) presents a state before collapsing edge E4,8 from x4 to x8. This
would typically be prevented by standard mesh generators, due to the creation of two triangular elements
sharing all three nodes, viz. {x2,x5,x8}, and the geometric information that surfaces {S1,S3,S4} intersect
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(a) Scenario before collapsing edge E4,8 (b) Result after collapse

Figure 26: A detailed view of the NEFEM mesh at a corner of the blunt trailing edge.

Table 4: Surface mesh statistics for the wing model.

Surface mesh p = 1 FEM NEFEM

Number of nodes 1,606 1,273
Number of elements 3,208 2,542
Number of edges of interest 1,596 1,357
Minimum normalised edge length 0.1455 0.7214
Average normalised edge length 0.7614 1.2810
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Figure 27: Histograms of edges of interest in FEM and NEFEM meshes for the wing.

at the location of g4 would be discarded. In NEFEM, this collapse is permitted due to the introduction of the
GS–points. As shown in Figure 26(b), the geometric information is preserved by {g4, g6, g7} in the upper
element after the collapse.

The mesh statistics are listed in Table 4, where the element edge length is normalised with respect to
the requirements of the user–specified spacing function. The NEFEM mesh again involves a lower number
of nodes and elements, but the most significant difference is that, considering the edges of interest only, the
minimum edge length in the NEFEM mesh is almost five times larger than the smallest edge in the FEM
mesh. Figure 27 shows the histograms of the normalised edge length of interest for both the original FEM
mesh and the resulting NEFEM mesh. The histogram of the NEFEM mesh shows that the majority of the
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(a) Front view (b) Rear view

Figure 28: CAD model for the falcon aircraft model.

Table 5: Geometric data of the full aircraft model.

Number of NURBS Surfaces 48
Number of NURBS Curves 100
Minimum curve length 0.37
Maximum curve length 10.61

elements comply with the requirements of the spacing function.
It is worth noting that in computational fluid dynamics simulations, preserving the blunt trailing edge

of a wing is crucial to reproduce the correct physics. Numerical simulations and experiments [28] have
confirmed that collapsing the blunt trailing edge might lead to a steady flow, whereas preserving the blunt
trailing edge triggers an unsteady behaviour that induces vibrations and noise. The main problem with
preserving blunt trailing edges is the small thickness (2 mm to 3 mm), which naturally induces very small
elements when using traditional methods. In turn, this leads to restrictions to the time stepping when using
explicit time marching. This is particularly problematic when using high order methods where the objective
is to use very large elements with high order approximations. The objective here is to preserve the geometric
feature exactly and rely on high order approximations to capture the flow physics.

5.3. Complete aircraft

This next example involves a full aircraft model and it is designed to show the ability of the NEFEM
surface mesh generator to handle complex geometries. The CAD model, shown in Figure 28, contains 48
NURBS surfaces and 100 NURBS curves. The geometric data is presented in Table 3. The model contains
a variety of features, including very short curves and small surfaces, smooth transitions between different
surfaces and sharp transitions with a non–smooth normal between surfaces. The minimum curve length is
only 0.37 while the maximum is 10.61, which is nearly 30 times larger. The specified global mesh size is
0.35. The characteristic thickness of the wing is about 0.2, which poses a major limitation on the element
size at the wing tip when using standard mesh generators. In this case, the minimum curve length is
larger than the specific spacing, but compliance with the desired spacing is limited by the thickness of some
NURBS surfaces, rather than a NURBS curve. The initial FEM and the resulting NEFEM meshes are
shown in Figure 29. Two detailed views, near a wing tip and the tip of the tail, of the generated NEFEM
mesh are shown in Figure 30. The figure clearly demonstrates the ability of the method to comply with
the spacing function by creating elements that span across multiple surfaces. The mesh statistics are listed
in Table 6. In the standard FEM mesh, when only the edges of interest are considered, the minimum edge
length could only reach 8.3% of the desired mesh size, owing to the presence of small geometric features.
This is significantly increased to 74.6% in the NEFEM mesh. The histograms, presented in Figure 31,
clearly demonstrate the potential of the approach to guarantee a better compliance with the requirements
of the user–specified spacing function. It is worth noting that edges of interest in the NEFEM mesh do not
strictly follow the desired spacing, even an edge longer than the desired spacing range has been created in
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(a) FEM mesh, front view (b) FEM mesh, engine inlet view

(c) NEFEM mesh, front view (d) NEFEM mesh, engine inlet view

Figure 29: Meshes for the full aircraft model.

(a) Local view near the horizontal tail tip (b) Local view near the vertical tail tip

Figure 30: Detailed views of NEFEM mesh for the falcon aircraft model.

Table 6: Surface mesh statistics for the full aircraft model.

Surface mesh p = 1 FEM NEFEM

Number of nodes 3,464 3,393
Number of elements 6,924 6,782
Number of edges of interest 3,999 3,908
Minimum normalised edge length 0.0833 0.7461
Average normalised edge length 0.9423 1.0820

the NEFEM mesh. This can be easily corrected by applying mesh improving techniques such as edge flip
and mesh smoothing.
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Figure 31: Histograms of edges of interest in FEM and NEFEM meshes for the full aircraft model.

Figure 32: CAD geometry of a flange model.

Table 7: Geometric data of the flange model.

Number of NURBS Surfaces 29
Number of NURBS Curves 70
Minimum curve length 1.57
Maximum curve length 138.13

5.4. Flange

The next example considers a mechanical component with multiple geometric features. This example
aims to demonstrate the ability to handle a model with multiple trimmed surfaces by curving NEFEM edges
as described in Section 3.3.4.

The CAD model, shown in Figure 32, depicts a flange, with a large centre hole and a skirt, containing
six satellite holes for fastener installation. A U–shaped channel, at the mid–height of the body, creates
three sliver surfaces in the shape of a ring or a cylinder. The round fillet, at the outer edge of the top
surface, also introduces a curved sliver surface. The geometric data is detailed in Table 7. The geometric
characteristics of the model results in the creation of a large number of small elements, with large aspect
ratio, when using a standard FEM mesh generator, as presented in Figure 33(a). In this example, the
minimum edge length in the initial FEM mesh is 19% of the desired element size. A view of the NEFEM
mesh is shown in Figure 33(b). Again, a reduction in the number of nodes and elements is obtained, as
detailed in Table 8, and, more significantly, the minimum edge length is more than double that for the
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(a) FEM mesh (b) NEFEM mesh

Figure 33: Meshes of the flange model.

Table 8: Surface mesh statistics for the flange model.

Surface mesh p = 1 FEM NEFEM

Number of nodes 2,139 1,724
Number of elements 4,302 3,472
Number of edges of interest 3,635 2,823
Minimum normalised edge length 0.1913 0.7083
Average normalised edge length 0.7988 1.0971

(a) Local view near the U–shaped channel (b) Local view near a satellite hole

Figure 34: Detailed views of the NEFEM mesh for the flange model. The highlighted edge in (b) is curved to ensure validity.

original mesh. Two detailed views of the NEFEM mesh are presented in Figure 34. The view, near the
U–channel, shows elements that cross multiple intersections. The view, near one of the satellite holes,
illustrates that the technique introduced in Section 3.3.4 is used to avoid the intersection of edges with
trimming curves. The highlighted edge in Figure 34(b) between nodes xa and xb is intentionally curved so
that it would not intersect with the other edge on the circular hole near xb. Figure 35 shows the histograms
for the two meshes, with he NEFEM mesh clearly improving the compliance of the mesh size and increasing
the minimum element size.

5.5. The Eiffel Tower

The final example involves a model of the Eiffel Tower and demonstrates the ability to handle large
and complex geometric models. The CAD model, illustrated in Figure 36, contains 12,034 NURBS surfaces
and 3,139 NURBS curves. Numerous features, including common geometric issues reported in [29] such as
sliver surfaces, narrow regions, sharp angles, short edges and fillets are included in this complex model. The
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Figure 35: Histograms of edges of interest in FEM and NEFEM meshes for the flange model.

Table 9: Geometric data of the Eiffel Tower model.

Number of NURBS Surfaces 3,139
Number of NURBS Curves 12,034
Minimum curve length 0.23
Maximum curve length 452.61

Table 10: Surface mesh statistics for the Eiffel Tower 1/8 model.

Surface mesh p = 1 FEM NEFEM

Number of nodes 17,519 12,164
Number of elements 33,776 23,112
Number of edge of interest 16,006 12,475
Minimum normalised edge length 0.0229 0.5118
Average normalised edge length 0.7816 1.0311

characteristic dimensions of the model are listed in Table 9. It can be seen that,in this model, the maximum
curve length is 452.61, which is almost 2,000 times larger than the minimum curve length of 0.23. This
challenging ratio results in a large number of non–compliant elements in the initial FEM mesh.

Taking advantage of the symmetry of the geometry, a one–eighth model is considered for the mesh
generation. In this sub–model, the number of NURBS surfaces and curves have been reduced to 460 and
1,828, respectively. The large size of the model means that the global view cannot clearly illustrate the
mesh, at an affordable resolution. Instead, the detailed views at the featured locations labelled from A to
D in Figure 36(a) are presented in Figure 37 to 40, respectively. Figure 37 demonstrates that the curved
surfaces at the tower base do not limit the NEFEM element size, as they do in the FEM mesh. Figure 38
shows that the sliver fillet surfaces are traversed by NEFEM elements, ensuring a better compliance with
the user–defined spacing function. The sharp angle at the tangent point between the cylindrical surface and
the bottom plane, as shown in Figure 39, induces the creation of small elements with large aspect ratio in
the FEM mesh. This is avoided in the NEFEM mesh. Figure 40 shows the FEM and NEFEM meshes at
location D, where multiple geometric features are present. The statistics of both the FEM and NEFEM
meshes are listed in Table 10. Along with the reduction in the number of elements and nodes, taking into
account the edges of interest, the NEFEM mesh has a minimum edge length which is about 23 times larger
than the minimum edge length of the original FEM mesh. The histograms, shown in Figure 41, demonstrate
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(a) Semi–transparent surfaces and opaque
curves

(b) Coloured surfaces

Figure 36: CAD model for the Eiffel Tower. Featured locations are labelled to show mesh details.

the improved element size in the NEFEM mesh. In addition, the percentage of edges with non–compliant
length is significantly decreased in the NEFEM mesh, where only about 20% edges achieve half of the desired
edge length. Again, a few edges of interest in the NEFEM mesh fall out of the desired spacing range, and
this can be improved by further processing such as smoothing the mesh.

6. Concluding remarks

This work presents a novel surface mesh generation technique tailored to NEFEM. The generated meshes
contain elements that span across multiple surfaces and demonstrate much better compliance with the user–
defined spacing, even in the presence of very small geometric features. The resulting meshes completely
avoid the need for de–featuring complex geometric models that contain multi–scale geometric features and,
at the same time, preserve the exact representation of the original CAD model. These features are unique
to the present technique and enable the geometry to be persistent throughout the whole simulation process.

A new geometric definition of curved edges and curved surface elements is introduced, extending the
definitions employed in the original NEFEM approach. With the requirements for a NEFEM surface mesh
identified, a novel approach is developed. This relies on an extension of operations, commonly found in mesh
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(a) FEM mesh (b) NEFEM mesh

Figure 37: Meshes for the Eiffel Tower with zoomed in views at featured location A.

(a) FEM mesh (b) NEFEM mesh

Figure 38: Meshes for the Eiffel Tower with zoomed in views at featured location B.

generators, such as edge collapse and edge split. The extension is required to ensure that edges can traverse
multiple physical p–curves, and the concept of GS–points is introduced. A simple check for the validity of
the surface meshes is introduced and a simple fix that consists of curving internal edges is performed, when
problematic elements appear due to the presence of trimmed NURBS surfaces in the CAD model. Although
this work does not specifically address mesh quality measures, two basic operations are devised to redefine
badly shaped elements.

The generation of high–order nodal distributions on NEFEM surface elements is also addressed. More
precisely, novel strategies are devised to define an arbitrary high–order nodal distribution in elements that
span across multiple surfaces. It is worth noting, that contrary to mesh generators suitable for isoparametric
finite elements, the exact NURBS description is considered for any order of approximation.
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(a) FEM mesh (b) NEFEM mesh

Figure 39: Meshes for the Eiffel Tower with zoomed in views at featured location C.

(a) FEM mesh (b) NEFEM mesh

Figure 40: Meshes for the Eiffel Tower with zoomed in views at featured location D.

A set of numerical examples has been presented to demonstrate the potential of the surface mesh genera-
tor. The examples include geometries relevant in different engineering applications and show the possibility
of creating elements spanning multiple surfaces, even when the normal changes abruptly between the sur-
faces. This is in contrast to existing approaches based on the virtual topology paradigm. In all the examples,
the resulting NEFEM meshes contain a slightly lower number of nodes and elements, but, most importantly,
the minimum element size is significantly increased with respect to the original FEM meshes. This is ex-
pected to provide significant advantages for the NEFEM solver, as it will alleviate the severe restriction in
the time step size that the small elements in the FEM mesh impose when attempting to guarantee numerical
stability in an explicit time marching algorithm.

The surface mesh generator can be directly used within a NURBS–enhanced boundary element frame-
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Figure 41: Histograms of edges of interest in FEM and NEFEM meshes for the Eiffel Tower model.

work, but it also serves as the main building block for the development of a NEFEM volume mesh generator,
which is the object of current research.
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