
Developing a Digital Twin for Testing Multi-Agent
Systems in Advanced Air Mobility: A Case Study

of Cranfield University and Airport
Christopher Conrad, Quentin Delezenne, Anurag Mukherjee, Ali Asgher Mhowwala,

Mohammad Ahmed, Junjie Zhao, Yan Xu, Antonios Tsourdos
Centre for Autonomous and Cyberphysical Systems

School of Aerospace, Transport and Manufacturing (SATM), Cranfield University
Cranfield, UK

Email: {christopher.conrad, quentin.delezenne.464, anurag.mukherjee.436, aliasgher.mhowwala.253,
mohammad.ahmed.954, junjie.zhao, yanxu, a.tsourdos}@cranfield.ac.uk

Abstract—Emerging unmanned aircraft system (UAS) and ad-
vanced air mobility (AAM) ecosystems rely on the development,
certification and deployment of new and potentially intelligent
technologies and algorithms. To promote a more efficient devel-
opment life cycle, this work presents a digital twin architecture
and environment to support the rapid prototyping and testing of
multi-agent solutions for UAS and AAM applications. It leverages
the capabilities of Microsoft AirSim and Cesium as plugins within
the Unreal Engine 3D visualisation tool, and consolidates the
digital environment with a flexible and scalable Python-based
architecture. Moreover, the architecture supports hardware-in-
the-loop (HIL) and mixed-reality features for enhanced testing
capabilities. The system is comprehensively documented and
demonstrated through a series of use cases, deployed within a
custom digital environment, comprising both indoor and outdoor
areas at Cranfield University and Airport. These include collab-
orative surveillance, UTM flight authorisation and UTM confor-
mance monitoring experiments, that showcase the modularity,
scalability and functionality of the proposed architecture. All 3D
models and experimental observations are critically evaluated
and shown to exhibit promising results. This thereby represents
a critical step forward in the development of a robust digital
twin for UAS and AAM applications.

Index Terms—Advanced air mobility, AirSim, digital twin,
mixed-reality, multi-agent, UAS

I. INTRODUCTION

A. Context

Global demographic and economic growth is expected to
increase conventional air traffic by an average of 6% per year,
with the International Civil Aviation Organisation (ICAO)
anticipating passenger traffic and freight volume to double
by 2035 [1]. Additionally, the advanced air mobility (AAM)
and unmanned aircraft systems (UAS) markets are forecast to
experience large compound annual growth rates (CAGRs) over
the next decade [2]. The introduction of a large quantity of
new heterogeneous vehicles in an already saturated airspace,
however, cannot be reliably handled by the existing air traffic
management (ATM) infrastructure. Consequently, considerable
research is underway to develop new and innovative solutions
for UAS traffic management (UTM).

Testing and certifying new technologies for a conservative
and safety-critical aviation industry remains a time-consuming
and costly task. Various procedures have been proposed to
facilitate this development process, including the specific
operations risk assessment (SORA) methodology [3]. This
emphasizes the importance of collecting evidence to support
safety claims within a risk assessment report. Nonetheless,
securing the permissions needed for in-field tests of new tech-
nologies and algorithms remains a daunting task. Moreover,
physical tests are often restricted to strictly controlled airspace
volumes that are not conducive to the complex environments
in which the systems will be deployed, limiting the accuracy
and reliability of the associated results.

Digital twin (DT) environments offer a unique solution
to expedite product development, by supporting preliminary
system evaluation in virtual or semi-virtual test environments.
These have been widely employed in several industries [4],
but have yet to be adopted for UAS and AAM applications. A
market gap thereby exists for a DT that facilitates the devel-
opment and testing of multi-agent frameworks and algorithms
for UAS and AAM operations. Cranfield University aims to
address this gap through the development and deployment of
a robust DT platform for UAS and AAM applications with
enhanced mixed-reality capabilities. This represents the main
deliverable of the synthetic test environment work package
within project HADO (High-intensity Autonomous Drone
Operations), which aims to develop, evaluate, standardise,
and operationally deploy fully automated UASs at London
Heathrow Airport.

This work further develops the framework and methodolo-
gies proposed in [5] into a functional DT prototype, vali-
dated through several use cases within indoor and outdoor
environments at Cranfield University and Airport. It leverages
the capabilities of Microsoft AirSim as a plugin within the
Unreal Engine 3D visualisation tool, and consolidates a digital
environment with a custom Python-based architecture that
facilitates the deployment and testing of both procedural and
intelligent multi-agent algorithms.

h.binning
Text Box
In: IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC) 2023, 1-5 October 2023, Barcelona, SpainDOI: 10.1109/DASC58513.2023.10311333

h.binning
Text Box
© 2023 IEEE. This is the Author Accepted Manuscript issued with: Creative Commons Attribution License (CC:BY 4.0). The final published version (version of record) is available online at DOI:10.1109/DASC58513.2023.10311333. Please refer to any applicable publisher terms of use.

B. Simulation Platforms and Digital Twins

Several simulation platforms have been developed for UAS
operations. Notably, Microsoft released Project AirSim in
2023 for high-fidelity large-scale testing of autonomous so-
lutions [6]. This platform, however, is decoupled from the
software needed to create custom digital worlds, integrate
custom vehicle models and deploy or test custom algorithms.
Additionally, it does not readily support mixed-reality ca-
pabilities. Moreover, Quantum 3D [7] and MIT [8] have
developed UAS pilot simulators to train UAS stakeholders
across a range of mission profiles. Nonetheless, these software
packages are not suitable for deploying and testing large-scale
multi-agent simulations. This leaves a gap for an integrated,
well-documented and easy-to-use platform that supports the
integration of custom worlds, vehicle models and algorithms
with a high degree of flexibility and scalability.

DTs have been employed to better reflect physical entities
and environments. Notably, a DT introduces automatic bi-
directional data flow between the physical world and its virtual
representation, as illustrated in Fig. 1 [9]. Such platforms
have been used in numerous industries with varying levels
of maturity, as discussed in [5]. No comprehensive DT archi-
tecture, however, has yet been developed to test multi-agent
UAS and AAM operations in a high-fidelity digital world, with
automatic bidirectional data flow to its physical counterpart.

C. System Requirements

A robust DT platform benefits several stakeholders within
the AAM and UAS industries. To satisfy the needs of these
stakeholders, a comprehensive list of system requirements was
derived for a DT prototype, summarised in Fig. 2 and listed
in Table I. These were initially validated by a consortium of
industrial and academic partners [10].

Fig. 1. Generic DT architecture.

Fig. 2. Summary of key stakeholder requirements.

D. Contributions

This work designs, implements, tests and evaluates a DT
architecture for testing procedural and intelligent multi-agent
UAS and AAM operations. It delivers a DT prototype, built
on Unreal/AirSim and adapted for UAS/AAM applications,
that supports independent multi-agent simulations in a flexible,
customisable, scalable and reliable environment with static and
dynamic entities and enhanced hardware-in-the-loop (HIL) and
mixed-reality features.

The main contributions of this work are as follows:

• a unified, modular and scalable DT architecture for UAS
and AAM operations is proposed, prototyped and evalu-
ated, with enhanced HIL and mixed-reality capabilities;

• a custom Python-based code architecture is developed to
complement the DT, supporting a secure object-oriented
framework and the inclusion of user-customisable scripts
in a highly modular plug-and-play fashion;

• detailed methodologies for 3D indoor and outdoor digital
world creation and custom algorithm deployment within
the DT are comprehensively detailed and demonstrated,
in line with the foundational work presented in [5]; and

• several demonstrative use cases are deployed to highlight
the ability of the DT to support the development and
testing of multi-agent systems and UTM ecosystems.

Notably, this paper builds on the work carried out in [5]
and paves the way for the demonstrations and simulations
conducted in [11].

E. Paper Structure

The remaining part of this paper is organised as follows:
Section II outlines the proposed architecture for the DT
prototype; Section III discusses the development of a digital
world with digitally simulated elements; and Sections IV and
V detail the use cases used to demonstrate the capabilities
of the implemented prototype. In each case, existing work is
reviewed, the utilised design methodologies are highlighted,
and all obtained results are critically evaluated. Finally, Section
VI summarises the conclusions and contributions of this work,
together with areas meriting further research.

TABLE I
PROPOSED REQUIREMENTS FOR THE DT SYSTEM PRESENTED IN THIS PAPER.

Category Requirements

Modularity, scalability
and flexibility

• Vehicle models, 3D environments and simulated algorithms should be loosely coupled, such that they may be independently
developed, tested and integrated into the system, if they adhere to a defined protocol and/or interface.

• Static and dynamic objects may be independently developed, tested and included within the 3D environment at specified
locations and, where applicable, with specified dynamic behaviour, if they adhere to a defined protocol and/or interface.

• The properties and behaviour of objects and 4D regions within the environment should be readily defined and modified.
• Sensors may be independently developed, tested and included within the 3D environment or vehicle models, and their

relationship with the simulation environment may be customised.
• The DT should be easily used with more complex algorithms, larger maps, a larger number of simulated vehicles and/or a

wider variety of different static/dynamic objects, assuming the underlying processing and memory requirements are met.
• The environment should be easy to simulate at different times of day, lighting conditions, temperatures, pressures and other

physical conditions.

Consistency and
reliability

• In the absence of stochastic processes, the simulation should return consistent and integral results under identical conditions.
• The environment should return statistical test data over multiple simulations, that can be readily used to support research

findings or demonstrate the reliability of an algorithm in safety-critical situations.
• The environment should be suitable to train intelligent algorithms in preparation for real-world deployment.
• Exceptions during run-time should return the appropriate errors, without displaying erroneous (seemingly correct) results.

Security, upgradability
and maintainability

• Data links between internal software modules should be secure and clearly defined.
• Access rights may be readily customised for different software modules and variables.
• Interfaces with external software and/or hardware should adhere to data integrity and cybersecurity standards, or support

the inclusion of such features in future system updates.
• The software should be easily modified and upgraded by future developers, and follow standard design and coding practices.
• The entire system should be well documented, including any known bugs and fixes.
• The code must be easily maintained as future bugs and issues arise when the product is used.

Ease of use and
learnability

• The product manual should clearly describe all necessary steps to install and use the DT environment, highlighting all
system dependencies and version requirements.

• A specific coding or technical background should not be needed to use the system, excluding the knowledge and skills
required to develop custom algorithms, environments and models when required.

• A user-friendly interface should make system modifications, module interfacing and product usage as intuitive as possible.
• Both a graphical and command-line interface should be included to cater for different user requirements.

Software-in-the-loop
(SIL), HIL and mixed-
reality capabilities

• A simulated model may be connected to its physical counterpart for real-time data interchange.
• The DT platform should support SIL and HIL testing for a wide variety of different applications and devices.
• Mixed-reality simulations may be realised within the DT across the entire mixed-reality spectrum.
• Physical tests in remote or controlled environments may be enhanced using virtual obstacles, entities and environments

without significantly increasing the associated safety risk.

II. DIGITAL TWIN ARCHITECTURE

A. Software Development Environment

Unreal Engine is used to realise the digital environment
within the developed prototype, owing to its compatibility
with AirSim. This is a widely used game engine and 3D
visualisation tool, designed to offer a highly flexible and robust
platform for building and deploying video games across mul-
tiple platforms [12]. The cross-platform development software
offers a wide range of features, including a robust visual
scripting system, a powerful level editor, advanced particle
and lighting systems, and an extensive set of tools for creating
realistic physics simulations.

The functionality of Unreal is enhanced through Cesium,
a versatile geospatial platform that provides high-quality
geospatial visualisation capabilities [13]. Notably, the Cesium
Ion API allows developers to integrate different 3D content,
including photogrammetry, building information modelling
(BIM) data, and other 3D data objects.

Microsoft AirSim is further used as a plugin within Unreal
to introduce digital UAS and sensor elements within the digital
environment. It is an open-source, cross-platform simulation
platform that readily incorporates a variety of sensor and
vehicle models, supporting the quick deployment of UAS
simulations [14]. This is complemented by a high degree
of support for custom digital models, custom weather con-
ditions, and a physics engine that accurately simulates the
real world. The software also supports HIL simulations, by
allowing users to connect physical flight controllers to the
simulated environment. These features make AirSim ideal for
the DT under consideration, offering a realistic and flexible
simulation tool to model emerging AAM vehicles and op-
erations. Nonetheless, modelling complex aerodynamics and
other physical phenomena remains a challenging task, and
AirSim still struggles to accurately simulate all the nuances
of real-world systems. Consequently, the platform may suffer
from simulation bias, whereby modelling inaccuracies lead to
over-optimistic or over-pessimistic evaluations.

B. Architecture Overview

A unified and modular architecture is proposed to realise
the DT system, while managing the interactions between all
underlying software applications. A high-level overview of
this architecture is illustrated in Fig. 3. This comprises three
main parts, namely the real-world elements and functions, the
simulated environment realised through Unreal, Cesium and
AirSim, and the user-defined scripts, settings and files.

The first part of this architecture involves a flight simulation
realised within a custom 3D environment. The underlying
static environment can be readily created through Unreal
Engine and integrated with the DT. Additionally, the simulated
weather can be configured within the AirSim settings file
and dynamically varied throughout the simulation, using the
default AirSim interface or application programming interfaces
(APIs). Notably, live weather data can be used to update the
dynamic weather conditions in real time.

Dynamic objects and entities can be simulated within the
static environment. When not part of the agents being sim-
ulated, such entities can be implemented using C++ code
within Unreal. These elements are thereby decoupled from
AirSim, enforcing a more robust simulation architecture. Road
traffic and people, for instance, can be introduced within the
environment for enhanced realism, but do not need to be
accurately controlled and monitored throughout the simulation.
Similarly, dynamic entities like commercial, business, and gen-
eral aviation aircraft can be integrated within the environment,
allowing the UAS and AAM operations to be tested in non-
segregated airspace, while eliminating the need to continually
control such traffic throughout a simulation.

Multi-agent simulations can be subsequently realised within
the DT through the functionality offered by AirSim, to inde-
pendently simulate and control multiple UASs. These vehicles
can be generated on startup by appropriately configuring the
AirSim settings file, or dynamically spawned using the respec-
tive APIs. The latter, however, does not currently support the
inclusion of a custom set of sensors on board the spawned
vehicle. Within the proposed architecture, the set of simulated
UASs are realised as a database of Python objects. Each
vehicle is an instance of a UAV class, which can be controlled
through its appropriate attributes. This enforces a consistent
user experience and reduces the risk of coding errors, by
eliminating the need for users to become familiar or interact
with AirSim and other external APIs.

The simulated agents can be controlled through a set
of Python scripts running in an independent thread. These
are managed by a user-customisable main file termed the
ScriptCore. This object-oriented approach enables a user to
dynamically switch between different classes with the same
class and function names, but different function definitions.

This architecture thereby offers a highly modular system,
whereby user-defined scripts can be introduced in a plug-
and-play fashion. Additionally, all architectural elements are
loosely coupled, allowing for the independent development
and integration of 3D worlds, digital entities, digital models
and simulation scripts. The interactions between these ele-
ments are streamlined and abstracted from the user for better
compatibility and ease-of-use. Additionally, the Tello drone
discussed in [5] and its associated API are considered as
representative physical entities of this DT.

Fig. 3. High-level overview of the proposed architecture.

C. Code Structure

Within the simulation thread, a user can readily introduce
custom scripts to realise a wide variety of different simulation
scenarios. Notably, these scripts can be written in any pro-
gramming language, provided that the respective file can be
called and executed in Python, and can appropriately interact
with the database of UAV objects.

In line with the proposed architecture, the developed code
is illustrated in Fig. 4 and involves a database of UAV
and Sensor Python objects, instantiated when launching a
simulation thread. Each UAV object is assigned a set of fixed
attributes on instantiation, including its name, initial pose, list
of on-board sensors and whether it represents a virtual or
physical UAS. Similarly, each Sensor object is assigned a fixed
name, type and pose. Additionally, each object comprises a
set of attributes that reflect the current vehicle state or sensor
reading. These are dynamically updated throughout program
execution to reflect the most recent data obtained from the
physical or virtual environments. Each UAV object further
contains a set of dynamically assigned attributes that reflect
the next action each vehicle must take during the subsequent
simulation time-step. This object-oriented architecture allows
user-customisable scripts to be decoupled from interactions
with external software environments and UAS platforms. This
enhances the security of the DT and facilitates the use of
the overall system, by eliminating the need to understand
and interpret a variety of different interface protocols and
programming libraries.

For demonstration purposes, Tello drones are used to realise
the mixed-reality demonstrations discussed in [5]. The ability
to interact with these UASs is thereby integrated within the
developed prototype. In particular, interactions with external
interfaces are handled through a set of custom scripts, namely:

• AirSim Input: used to extract the vehicle state and sensor
data of all virtual entities at each simulation timestep, and
update the attributes within the respective Python objects.

Fig. 4. Structural overview of the developed code.

• AirSim Output: used to send commands to virtual UASs,
according to the attributes of each respective Python
object.

• Tello Input: used to extract the vehicle state and sensor
data of all real Tello drones at each simulation timestep,
and update the attributes within the respective Python
objects.

• Tello Output: used to send commands to physical Tello
drones, according to the attributes of each respective
Python object.

To further highlight the modularity and flexibility of the
proposed code structure, a set of three user-customisable
scripts are developed, namely:

• Script Core: used to manage the flow of each simulation,
by instantiating all Sensor and UAV objects; loading
the appropriate UAS trajectories; instantiating the appro-
priate Flight Manager and Collision Avoider instances;
and sequentially calling the appropriate input, output,
Flight Manager and Collision Avoider functions at each
simulation time-step.

• Flight Manager: used to signal whether each UAS has
started or completed its assigned trajectory, and update
the nextWaypoint attribute of each vehicle as the sim-
ulation progresses. For simplicity, UAS trajectories are
defined within a JavaScript Object Notation (JSON) file
as a sequence of waypoints, each identified by a 3D
North, East, Down (NED) coordinate, the speed at which
the UAS should travel to the waypoint, and the time of
departure from each waypoint.

• Collision Avoider: used to determine the next action each
UAS must take, according to the vehicle state, sensory
data and mission requirements.

D. Simulation Flow

The flow of a typical simulation is illustrated in Fig. 5,
whereby data from the physical and virtual worlds is gathered,
processed, and used to determine the actions taken in the next
simulation timestep in a closed-loop fashion. This assumes
that the user has already generated the appropriate simulation
settings, launched the simulation engine, and started the exe-
cution of the simulation scripts.

The dynamic equations embedded within Unreal and Air-
Sim first compute the next pose of each simulated object,
according to the previous state of the vehicle, the transmitted
command and the state of its surrounding environment. Such
poses allow the scene to be appropriately rendered and provide
all necessary data to the digital sensors modelled in AirSim.
The simulation scripts can subsequently collect data from the
physical and virtual environments and appropriately transmit
commands to the physical and virtual vehicles. During each
loop, the scripts can also access a log file and append infor-
mation to it. Finally, in the absence of HIL tests or custom
flight controllers, the default AirSim flight controller executes
the transmitted high-level commands. A joystick can instead
be utilised to manually control the main UAS.

Fig. 5. Overview of a typical simulation flow using the developed DT.

III. DIGITAL WORLD VS. PHYSICAL WORLD

A. Context

3D environments are central to the digital half of a DT, and
reflect the world within which digital elements and vehicles are
deployed. These are often built by superimposing a sequence
of layers with increasing levels of complexity and functionality
to realise complex outdoor environments, as discussed in [5].
Owing to the small size of many UASs, such vehicles have also
been widely employed in indoor environments for inspection,
surveillance or search and rescue missions. Moreover, indoor
spaces typically offer a safer and more controlled test environ-
ment. Consequently, a robust DT should support the modelling
of both outdoor and indoor digital environments and elements.

A review of outdoor environments within existing simula-
tion platforms [15]–[17] suggests that outdoor digital worlds
should respect the laws of physics while incorporating a high-
degree of textural realism to support vision-based applications.
Moreover, real-time environmental data can be incorporated
for enhanced simulation capabilities. Additionally, the envi-
ronment should be easily customisable and scalable for larger
system deployments, whereby multiple digital elements can
be independently realised and simulated. A review of indoor
digital environments [18], [19] further suggests that fidelity
and accuracy become more critical in indoor digital worlds,
where UASs must typically execute tighter manoeuvres to
avoid obstacles and respect spatial room constraints.

B. Design Methodologies

Several approaches can be taken to model a 3D digital
environment, depending on the resources and data available,
as presented in [5]. Apart from the co-simulation capabilities
discussed in [11], each proposed design technique is investi-
gated throughout this prototype, and used to implement digital
environments of several locations at Cranfield University and
Cranfield Airport.

The methodology proposed and used to model the outdoor
environment of Cranfield University is illustrated in Fig. 6.
The simplest approach to create such a digital world involves
taking advantage of the 3D data within Google Earth, which
boasts very high-fidelity models of many geographical loca-
tions. This data can be extracted, imported into Blender as
a 3D mesh for fine-tuning, and exported to Unreal Engine.
No such 3D data, however, is currently available for the area
surrounding Cranfield University and Airport. Similarly, no
existing 3D model of the area has yet been developed.

In the absence of 3D models or data, the digital environment
must be manually created within a development engine like
Unreal, possibly using plugins like Open Street Maps (OSM)
and Cesium to access existing databases of information. Ini-
tially, community-developed assets can be used to integrate
standard features of an outdoor environment. When a specific
asset is unavailable, 3D modelling software can be used to
modify similar readily available assets and better represent
the true physical entity. If no similar asset is available, the
entity must be manually modelled in software such as Blender,
possibly using photogrammetric or measurement data for
better accuracy.

Laser or photogrammetric-based modelling becomes more
feasible in enclosed indoor spaces. Notably, a hybrid approach
is proposed and used to model an indoor lab within Cranfield
University, according to the methodology depicted in Fig. 7.
This suggests that an appropriate LiDAR scanner and pho-
togrammetric camera must first be selected according to the
system requirements, and used to collect the necessary data
points. For this prototype, standard applications were used
with an iPhone14/iPadPRO LiDAR camera to demonstrate
such a process. The data must be subsequently processed and
manipulated within a 3D modelling software such as Blender
to clean the underlying mesh, possibly using custom textures
for greater realism. Finally, the mesh and textures can be
imported into Unreal Engine and integrated within the DT.

Fig. 6. Methodology used to create the outdoor digital environment.

Fig. 7. Methodology used to create the indoor digital environment.

C. Implementation Outcome

The outdoor environment modelled using Unreal, Cesium
and OSM is shown in Fig. 8, and suggests that a preliminary
outdoor digital replica of Cranfield University and Airport
was successfully created. Notably, several assets and features,
such as lampposts, fences, trees, windows and aircraft were
successfully introduced within the environment and a plane
was successfully programmed to periodically take-off and land
at Cranfield Airport. This suggests significant developments
from the initial digital world developed in [5].

Similarly, the modelled lab and neighbouring corridor are
shown in Fig. 9. A high-fidelity indoor environment was
successfully created using LiDAR scanning and photogram-
metry techniques, including all key elements within the two
indoor spaces. High-fidelity replicas of an indoor flight arena
at Cranfield University and a Custom UAS mesh were also
developed using 3D modelling techniques and utilised for
initial mixed-reality demonstrations. These, however, were
presented in [5] and are not reproduced in this paper.

Fig. 8. Modelled features and assets within the outdoor environment.

Fig. 9. Modelled indoor environment.

D. Evaluation and Discussion

The accuracy of the digital worlds was quantitatively eval-
uated by considering the root mean square error (RMSE) and
mean absolute error (MAE) between distance measurements
in the physical and virtual worlds. Within the outdoor envi-
ronment, mobile GPS measurements were used to determine
the true location between several key locations at Cranfield
University. These were compared to corresponding distances
in the digital world, yielding the results shown in Fig. 10. This
suggests an RMSE of 63m and an MAE of 76m, likely owing
to the use of OSM and satellite imagery to position buildings
within the environment, having a high associated inaccuracy in
sparsely populated environments like Cranfield. This error is
significantly improved in [11], when updating the outdoor map
using high-fidelity models based on a high-accuracy computer
aided design (CAD) model of Cranfield University.

Similarly, the accuracy of the indoor model was evaluated
by comparing measurements within the digital world to those
taken using a laser distance meter in the physical environ-
ment, yielding the results shown in Fig. 10. This suggests an
RMSE of 0.22m and an MAE of 0.114m, confirming that a
precise digital indoor environment was successfully created.
Nonetheless, a qualitative analysis suggests that further work
is required to improve textural realism and achieve a photo-
realistic representation of the indoor space.

Fig. 10. Distance measurements obtained from the digital model against
the true measurement observations for outdoor (left) and indoor (right)
environments.

IV. MULTI-AGENT CASE STUDY

A. Setup

Multi-agent systems (MASs) are a class of distributed sys-
tems composed of multiple agents that interact with each other
to achieve a common goal. This offers numerous advantages
over single-agent systems, including increased scalability, ro-
bustness, and flexibility. Notably, in AAM and UAS opera-
tions, MASs allow vehicles to adapt to changing environmental
conditions or system requirements, while accomplishing tasks
that would be impossible for a single vehicle to perform
alone. Such multi-agent frameworks would benefit from the
capabilities of a robust DT for the deployment and testing of
their underlying algorithms.

In general, MASs can be procedural or intelligent. Pro-
cedural approaches are often the simpler, and will likely be
used during the initial stages of AAM roll-out. These promote
co-operative coordination and information sharing amongst
agents, to cohesively work towards a common goal. Con-
versely, intelligent algorithms are often required for complex
and densely populated environments.

B. Experimentation

The ability to readily deploy multi-agent algorithms within
the developed DT is demonstrated through a collabora-
tive surveillance use case. A number of virtual drones are
instructed to autonomously fly along pre-defined trajecto-
ries, with each drone periodically capturing images using
a downward-facing camera. Captured images are stitched
together in real-time to give a larger panoramic view of
the region being surveyed. For simplicity, the trajectories are
assumed to ensure that any two images being stitched together
have the same orientation and an overlapping image segment.

Computer vision algorithms are used to stitch newly cap-
tured images to the current panoramic view in real time,
according to the methodology outlined in Fig. 11. Common
points amongst successive images are located, and used to
calculate the homography matrix that relates the two images.
This is then used to warp and blend the images, through
readily available functions from open-access Python libraries.
The stitched aerial images of an area are thereby produced
and can be used for a range of surveillance or mapping tasks.

Fig. 11. Methodology used for image stitching during collaborative surveil-
lance.

A significant limitation of this implementation is that the
ability to stitch images depends on the frequency at which
images are taken, and the need for common features between
successive images. In fact, the algorithm is likely to fail
in regions with few distinctive features. Nonetheless, this
approach was deemed sufficient for a preliminary proof of
concept demonstration, and fine-tuning the image stitching
algorithm falls beyond the scope of this work.

C. Results and Discussion

Raw images taken by the UASs were successfully com-
bined into a single stitched image in real-time with minimal
distortion, as shown in Fig. 12. Despite only implementing
a basic stitching algorithm, this suggests that more complex
techniques can be readily implemented for higher resolution
and more reliable results. Notably, the drones can be in-
structed to fly at higher altitudes for greater coverage, and
a more high-fidelity environment could be used to facilitate
the identification of distinct features in successive images. In
fact, the algorithm occasionally failed within a low-fidelity
environment, owing to insufficient distinct features across mul-
tiple images. Moreover, the camera feeds can be augmented
with positioning data to better handle non-overlapping images.
In general, however, this proves that procedural multi-agent
algorithms can be readily integrated within the DT.

Similarly, trained intelligent multi-agent algorithms can be
easily deployed in a similar fashion. Notably, AI-based sys-
tems can also be trained within the developed prototype during
the initial stages of development. Additionally, the ability to
introduce mixed-reality features within such demonstrations
was demonstrated in [5].

Fig. 12. Combination of raw images into a single stitched image.

V. UTM CASE STUDY

A. Setup

Several UTM architectures have been proposed to address
the emerging needs of AAM. Nonetheless, no globally har-
monised solution has yet been identified. DTs thereby offer an
ideal platform to experiment with and develop emerging and
conceptual traffic management systems. Most UTM services
require a fully deployed system within non-segregated airspace
to appropriately consider inter-UAS communication links and
interactions with ATM systems. Such testing, however, cannot
be reliably achieved in the early stages of development, even
when supported by a DT platform. Nonetheless, simpler ser-
vices can be readily deployed in segregated environments, and
easily tested during the initial stages of UTM development.
Notably, flight plan authorisation and conformance monitoring
represent two core services that can be easily deployed.

B. Experimentation

Elements of a UTM framework can be readily introduced
within the proposed architecture, owing to the high degree of
modularity and flexibility within the underlying code structure.
Notably, flight plans can be sequentially requested from the
user to detect and display any potential conflicts. For simplic-
ity, only two flight plans are considered in this demonstration.
If a conflict is detected, the user is asked to re-input the
second flight plan until the two are found to be strategically
deconflicted. At each simulation timestep, the state of each
UAS is subsequently analysed to determine whether or not it
has violated its allocated operational volume. If the constraints
have been violated, appropriate action may be taken to signal
lack of conformance or take any necessary corrective actions.

Two different methods are identified to generate operational
flight volumes and identify conflicts, namely:

• A vectorial approach: This involves defining operational
volumes using the waypoint coordinates of each trajec-
tory. Each segment of its operational volume is created as
a rectangle, defined using the coordinates of its vertices.
The four edge equations of each rectangle can be used
to determine whether or not a specified coordinate falls
within the enclosed segment. This method, however, is
hard to implement and computationally expensive, owing
to the large number of required vectorial checks.

• A grid-based approach: This involves a 2D map that
contains all the submitted flight plans, such that image
processing techniques can be used to detect any conflicts.
The operational volumes are generated as a sequence of
circles along the path, yielding an overall rounded rectan-
gular shape. Binary operations are subsequently used to
generate the union of all operational volumes, such that
any strategic conflicts can be detected by analysing the
resulting image, as illustrated in Fig. 13. During flight,
the position of a UAS can be translated to a position on
the respective map, and pixel-based techniques can be
readily used to determine whether the vehicle falls inside
or outside its assigned operational volume.

The grid-based method is used throughout this work, owing
to the shorter development time and greater algorithm effi-
ciency. Since an image discretises the underlying map into
pixels, however, this method introduces a precision bias linked
to the scale of the map in pixels per meter. Throughout this
project, this scale is defined as 10 pixels per meter.

C. Results and Discussion

On launching a simulation, the user was successfully in-
structed to select trajectories for two UASs. If both trajectories
were strategically deconflicted, the flight plans were authorised
and the simulation could commence. If not, the conflicting
paths were displayed as in Fig. 14, and the user was repeatedly
asked to re-input the second trajectory until it did not conflict
with the first authorised flight plan. This reflects a basic
first-come-first-served prioritisation scheme, where the second
flight plan must account for the restrictions imposed by the
operational volume assigned to the first flight plan.

Fig. 13. Grid-based approach for strategic conflict detection.

Fig. 14. Display showing a strategic conflict (left) and real-time display with
a conforming UAS in the top operational volume and a non-conforming UAS
in the bottom operational volume (right).

After successfully assigning two deconflicted flight plans to
the simulated UASs, each vehicle was instructed to traverse
its respective operational volume. A radar-like display was
simultaneously displayed, showing the trajectories, operational
volumes and real-time positions of the UASs. If a UAS exited
its assigned volume, the corresponding radar plot turned red
to signal lack of conformance, as highlighted in Fig. 14.

These demonstrations effectively showcase the ability of
the developed prototype to simulate both pre-flight and in-
flight UTM services. Moreover, more sophisticated algorithms
can be implemented to demonstrate a more complete and
realistic UTM framework. Notably the services can be readily
extended to any number of UASs and flight plans, and more
complex prioritisation schemes can be implemented. Time-
based deconfliction can also be introduced, whereby flight
plans can intersect if the UAS flights are scheduled to not
enter the conflicting region simultaneously. This is particularly
important to support the business case of emerging UAS
operations like air taxis and on-demand deliveries, where
operations cannot be scheduled in advance.

VI. CONCLUSIONS AND FURTHER WORK

This paper built on the work outlined in [5] to develop a
flexible, modular and scalable DT architecture with enhanced
SIL, HIL and mixed-reality capabilities, through a case study
of Cranfield University and Airport. A custom Python-based
code architecture was designed and implemented to comple-
ment the developed DT, supporting a secure object-oriented
framework and the inclusion of user-customisable scripts in
a highly modular plug-and-play fashion. Digital replicas of
indoor and outdoor environments within Cranfield University
and Airport were successfully created using Unreal, OSM
and Cesium, integrated with the digital elements offered by
AirSim, and consolidated into a unified Python-based DT
architecture. The developed digital worlds were comprehen-
sively evaluated and shown to exhibit good dimensional and
textural accuracy. Moreover, several demonstrative use cases
were deployed on the DT prototype, highlighting the ability of
the DT to support the development and testing of multi-agent
systems and UTM ecosystems.

Future work will aim to fine-tune the prototype and refine
the implemented digital worlds to better reflect reality, possibly
utilising photogrammetric data to enhance the accuracy of
digital environments. Similarly, further tests will be conducted
to demonstrate the co-simulation and HIL capabilities of
the prototype. Additionally, more advanced multi-agent and
mixed-reality simulations will be deployed and tested within
the DT. Some of this work is conducted in [11].

VII. ACKNOWLEDGMENT

This research is funded by the UKRI Future Flight Chal-
lenge Phase 3 project HADO, grant number 10024815. For
the purpose of open access, the author has applied a Cre-
ative Commons Attribution (CC BY) license to any Author
Accepted Manuscript version arising.

REFERENCES

[1] CoflightCouldServices, “A significant growth in Air Traffic by 2035,”
Tech. Rep., 2020.

[2] MarketsandMarkets, “UAV Market by Point of Sale, Systems, Platform
(Civil Commercial, and Defense Government), Function, End Use, Ap-
plication, Type (Fixed Wing, Rotary Wing, Hybrid), Mode of Operation,
Mtow, Range Region - Global Forecast to 2027,” Tech. Rep., 2021.

[3] EASA, “Specific Operations Risk Assessment,” Tech. Rep., 2019.
[4] C. Dilmegani, “15 Digital Twin Applications/ Use Cases by Industry

in 2023,” AI Multiple, Tech. Rep., 2023. [Online]. Available:
https://research.aimultiple.com/digital-twin-applications/

[5] J. Zhao, C. Conrad, Q. Delezenne, Y. Xu, and A. Tsourdos, “A Digital
Twin Mixed-reality System for Testing Future Advanced Air Mobility
Concepts: A Prototype,” in The 23rd Integrated Communications, Nav-
igation and Surveillance Conference, 2023.

[6] Microsoft, “Project AirSim for aerial autonomy,” Tech. Rep., 2022.
[Online]. Available: https://www.microsoft.com/en-us/ai/autonomous-
systems-project-airsim?activetab=pivot1:primaryr3

[7] Quantum3D, “UAV Simulator: fixed wing Simulators,” Tech. Rep.,
2022. [Online]. Available: https://quantum3d.com/uav-simulator/

[8] S. Kaputsos, “UAV Pilot Simulator,” MIT, Tech. Rep., 2022. [Online].
Available: https://www.media.mit.edu/projects/cloud-uav-sim/overview/

[9] C. Boje, A. Guerriero, S. Kubicki, and Y. Rezgui, “Towards a semantic
Construction Digital Twin: Directions for future research,” Automation
in Construction, vol. 114, pp. 103–179, 2020.

[10] C. Conrad, Q. Delezenne, A. Mukherjee, A. Mhowwala, and M. Ahmed,
“Developing a Digital Twin System to Test Intelligent Solutions for
AAM Operations,” Master’s thesis, Cranfield University, 2023.

[11] J. Zhao, C. Conrad, R. Fremond, A. Mukherjee, Q. Delezenne, Y. Su,
Y. Xu, and A. Tsourdos, “Co-simulation Digital Twin Framework for
Testing Future Advanced Air Mobility Concepts: A Study with BlueSky
and AirSim,” in 2023 IEEE/AIAA 42nd Digital Avionics Systems Con-
ference (DASC), 2023, unpublished.

[12] EpicGames, “Unreal Engine: The world’s most open and advanced real-
time 3D creation tool,” Tech. Rep., 2023.

[13] Cesium, “The Platform for 3D Geospatial,” Tech. Rep., 2023.
[14] Microsoft, “Airsim,” Tech. Rep., 2021. [Online]. Available:

https://microsoft.github.io/AirSim/
[15] CoppeliaRobotics, “Coppelia Sim from the creators of V-REP,” Tech.

Rep., 2023. [Online]. Available: https://www.coppeliarobotics.com/
[16] A. Mairaj, A. I. Baba, and A. Y. Javaid, “Application Specific Drone

Simulators: Recent Advances and Challenges,” Simul. Model. Pract.
Theory, vol. 94, pp. 100–117, 2019.

[17] E. Capello, G. Guglieri, and F. Quagliotti, “UAVs and Simulation: an
Experience on MAVs,” Aircraft Engineering and Aerospace Technology,
vol. 81, pp. 38–50, 2009.

[18] Y.-W. Lin and C. J. Spanos, “Developing a Digital Twin for Indoor
Environments: A Case Study,” Master’s thesis, University of California
at Berkeley, 2021.

[19] Y. Zou, F. Ye, A. Li, M. Munir, M. Munir, and E. Hjelseth, “A
Digital Twin Prototype for Smart Parking Management,” in European
Conference On Product And Process Modelling (ECPPM) 2022, 2022.

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2023-11-10

Developing a digital twin for testing

multi-agent systems in advanced air

mobility: a case study of Cranfield

University and airport

Conrad, Christopher

IEEE

Conrad C, Delezenne Q, Mukherjee A, et al., (2023) Developing a digital twin for testing

multi-agent systems in advanced air mobility: a case study of Cranfield University and airport.

In: IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC) 2023, 1-5 October 2023,

Barcelona, Spain

https://doi.org/10.1109/DASC58513.2023.10311333

Downloaded from Cranfield Library Services E-Repository

