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Abstract—Future Advanced Air Mobility (AAM) is a concept
that envisions to transform the current air transportation system
into a more agile, flexible, and accessible system. Yet, the
considered transformation and integrated system is not easy to
achieve since it involves providing a high level of safety as well
as efficiency. For that purpose, in this paper, we explored the
fragility and antifragility concepts to analyze the AAM traffic
network and provide an understanding of a system where it can
benefit even under adverse conditions such as contingency events.
For the analysis, first, a complex AAM traffic network is built via
various AAM vehicles and possible vertiport locations that are
analyzed for the Northern California area. After that, the AAM
network is modeled via queue theory to simulate the considered
flight plans, obtain the actual departure and arrival times under
different conditions, and observe the delay propagation. Then,
metrics from network theory based on targeted node and edge
removals are studied to analyze the fragility of the AAM network
and used for antifragility analysis. The methodology is used to
analyze different disruptive cases over an AAM network such
that disruptions at vertiports and over origin-destination pairs.
Finally, an analysis of making the considered traffic antifragile
through flight cancellations and its trade-off based on flight
cancellation costs is provided.

Index Terms—AAM, fragility, antifragility, network modeling,
network analysis

I. INTRODUCTION

Future Advanced Air Mobility (AAM) is an emerging con-

cept for air transportation which is expected to revolutionize

the current air transportation system by providing air taxi and

cargo operations to urban, sub-urban, and rural areas. Besides

extending air transport operations to places that are not served

before, the considered transformation will bring accessibility,

flexibility, and resiliency to the current system. Yet, there

are still various aspects to consider such as infrastructure,

technology, safety, efficiency, scalability, and so forth, for

integrating AAM into everyday life. Various industry leaders

discuss how the future of air transportation should be by

considering those aspects and came up with various concepts

of operations to create a roadmap for realizing the AAM

system [1]–[5].

The expected complexity of the traffic with AAM is another

issue since it is expected to be very high once the concept

is mature enough. For fully achieving and showcasing the

aforementioned aspects, the traffic environment has to be built

for both accommodating complexity and providing harmony

in operations. Apart from that, the traffic network has to be

built and managed in a way that it gets less affected by

disruptions/contingencies or not affected at all for the sake

of safety and efficiency. Therefore, developing a reliable and

effective air traffic network and management system for AAM

is important and for building such a system, a proper analysis

has to be conducted focusing on the weaknesses and potential

of the traffic network.

Networks are the building blocks for ensuring systems

that can withstand to failures at some extent [6]. There are

many research efforts towards analyzing the networks with

numerous metrics such that robustness and resiliency. In terms

of robustness, most of the studies are defining that metric

through the size of the largest connected component (LCC)

of a network. Network robustness is analyzed with the LCC

size over various optimized networks through different types

of link attacks where the number of network nodes and

edges remains the same in [7]. In [8], a methodology that

provides robustness to any type of network is elaborated. In

this method, the robustness term is based on the LCC size of

the network after targeted attacks and network efficiency is

taken into account via the shortest path between nodes. There

are some other approaches for quantifying the robustness of

a network which are used especially in the air transportation

domain. For example, in [9], extensive robustness analysis is

conducted via targeted node (airport) attack strategies based

on various network metrics and comparisons on the US and

EU air traffic networks are given. Also, numerous robustness

metrics and attacking strategies are compared and analyzed

especially based on passenger’s perspective via a worldwide

airport network in [10]. From a resiliency perspective in air

transportation, epidemic models are studied to model the delay

propagation dynamics in [11] and the control strategy for

providing a more resilient system through epidemic modeling

is covered in [12].

Last but not least, fragility and antifragility concepts are

defined and detailed in [13], [14], which will be the main

focus of this paper. In [15], the fragility concept and tail risks

are quantified and applied to bank stress testing and public

debt cases in finance. The mathematical breakdown for the
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considered ideas is provided in [16]. These concepts are very

important and useful to create synergies for building beyond

resilient systems such that the system starts taking advantage

of disruptive events at some point. Thus, antifragile systems

can be extremely beneficial to build reliable and sustainable

systems, especially in engineering problems [17].

In this study, we examine the ways to implement the

fragility/antifragility concept from economics into the air

transportation domain, especially for AAM and analyze the

initially developed AAM traffic network via those metrics.

For simulating the daily flight plans a queue network model is

built and for analyzing the fragility/antifragility of the AAM

network, some metrics from network theory are benefited.

Finally, the network is analyzed for different cases such as

disruption at a node or on an edge through those metrics and a

method to make the considered network antifragile is explored.

II. FRAGILITY AND ANTIFRAGILITY OF A NETWORK

The fragility concept refers to the negative sensitivity of a

system where the system suffers due to variability in the con-

sidered environment after a particular threshold. Antifragility,

on the other hand, is a term for representing the positive

sensitivity of a system where the system benefits from the

variability [13], [16]. These concepts, especially antifragility,

were introduced and used in economics to better analyze the

sensitivity of a system under a disruption. Therefore, these

concepts can be formally defined as below where the exposed

payoff to an event is given with positive values.

Fragility can be represented with a convex payoff function

which shows a negative sensitivity to rare events/disruptions.

That negative sensitivity may even result in a complete failure

in the considered system.

Antifragility shows a concave behaviour in terms of its

impact where a positive sensitivity is observed after a rare

event/disruption. Positive sensitivity refers to a gain in the

considered system even under extreme conditions.

In financial markets, the price of an option gets more

affected with less likely to happen disruptions that have a

higher impact, in other words, ”Black Swan” type of events,

compared to the cumulative effect of small disruptions occur-

ring with high frequency [15]. Assuming that the frequency

of those disruptive events can be modeled with a distribution,

the tail parts matter the most rather than the mean part for

analyzing the sensitivity of a system.

Those ideas resemble with the delay propagation dynam-

ics in air transportation systems. Therefore, fragility and

antifragility concepts can be utilized for analyzing the air

traffic networks or even developing one which allows to

have a reliable traffic system that may gain from disruptive

events. That can play a crucial role especially to build a safe

and efficient AAM environment which may require such an

approach due to the expected complexity in the future.

III. TRAFFIC NETWORK MODELING AND ANALYSIS

In this section, the data that is generated for building a

proper AAM traffic network by considering various types

of AAM vehicles, is detailed. Moreover, we elaborated on

the simulation environment which is built for simulating the

generated flight plans and replicating the actual flight data.

A. Data Preparation

We created an AAM traffic network on a daily basis using

a direct routing option meaning direct trajectories from the

departure point to the arrival point. For generating detailed

traffic and considering many aspects of the AAM, the traffic

network creation is based on various parameters such as possi-

ble vertiport locations, demands, and capacities; vehicle types

and their operational specifications; possible origin-destination

(O/D) pairs, their frequencies, and possible departure times.
The vertiport network is built over the Northern California

area following the research efforts in [18] which analyzes the

historical transportation patterns to obtain the possible UTM

demand trend. Therefore, 75 different vertiport locations are

considered for Northern California.
For the AAM vehicles that are operating within the traffic

network, three different types of passenger carrying vehicles

are considered as Wisk Cora 5, Ehang 216, and Lilium Eagle.

The specifications of those vehicles and used parameters are

given in Table I [19]. For setting the feasible O/D pairs, the

maximum range and flight time limitations for the vehicles are

taken into account as a constraint.

TABLE I
VEHICLE SPECIFICATIONS FOR THE AAM TRAFFIC

Vehicle Type Wisk Cora 5 Ehang 216 Lilium Eagle
Configuration Lift & Cruise Multicopter Vectored Thrust
Cruise (km/h) 177.03 99.78 299.34
Range (km) 99.78 35.41 299.34

Flight Time (min) 19 21 60
Opr. Altitude (m) 900 300 900

DOC/h ($) 439 638 341

Furthermore, current traffic data of commercial aviation is

used to decide on the O/D pair frequencies and departure

times within the AAM traffic network. The reason behind this

approach is to create a logical basis for modeling the traffic

flow between vertiports which represent the system nodes and

obtaining the daily demand profiles at vertiports. When the

departure times are set, complete trajectories are generated

through vertical take-off and climb, cruise at operational

altitude, and vertical landing phases for each individual flight.
An AAM traffic with 19795 flights over 75 vertiports is

generated to analyze the fragility and antifragility of an AAM

traffic network. Figure 1 represents the obtained daily traffic

over Northern California for the analysis where the node size

gives information on the vertiport demand and edge thickness

refers to the number of daily flights for the considered O/D

pair.

B. Queue Network Model

For modeling the AAM traffic network, there are several

studies focusing on queuing network models to represent air



Fig. 1. Generated AAM traffic in Northern California.

traffic networks and analyze the delay propagation process

[20]–[23]. Therefore, the AAM traffic network is built through

the queue theory for simulating the generated flight plans and

obtaining the actual departing and arriving times of the flights.

A queuing model is comprised of servers and customers

and estimates the waiting times of customers to get service.

Therefore, a queuing network model is built to simulate

the flight plans that are generated and observe the actual

departure and arrival times and delays. In the considered

model, vertiports and AAM vehicles represent servers and

customers, respectively.

The key parameters for such a model are service and inter-

arrival times. Service time refers to the service duration at

a vertiport which has a unique value for each vertiport and

can include uncertainty. For this model, service times are

defined as proportional to the demand expectation at each

vertiport and the uncertainties in service times are modeled

based on the deviation at corresponding airports scaled to

the relevant vertiports. After obtaining the shape and scale

parameters accordingly, the service time at each vertiport is

modeled through Gamma distribution Γ(k, θ). The vertiports

are managed via a first-come first-served policy. On the other

hand, inter-arrival times are generated considering the flight

duration between O/D pairs with a random uncertainty added.

The travel duration between vertiports is not based on a spe-

cific distribution, thus they are named as general distribution

which refers to any type of distribution. Finally, the queue

network model built for an AAM traffic can be represented

as G(t)/Γ(t)/1 where inter-arrival time is modeled with a

generalized distribution G(t), the service time is modeled with

a Gamma distribution Γ(t), and each resource has a single

server.

The developed queuing network model consists of three

main processes: the departure vertiport queue, the transition

between departure and arrival vertiports, and the arrival ver-

tiport queue. In this model, all the scheduled flights of an

AAM vehicle are simulated one by one. Flights are simulated

concurrently within the system. For each flight, the departure

queue, transition, and arrival queue processes are repeated

which are detailed as below.

The first part represents the queuing process during depar-

ture. In the departure vertiport queue, first, a candidate depar-

ture time is selected by considering the scheduled departure

time (SDT ), previous arrival time (PAT ) and turnaround time

(TAT ) of the simulated vehicle. Thus, the candidate departure

time (CDT ) is calculated as follows.

CDT = max(SDT, PAT + TAT ) (1)

Basically, if the arrival time from the previous flight of

the vehicle is greater than the proposed departure time of the

current flight, then the previous arrival time is set as the new

candidate departure time. Otherwise, if the previous flight is

completed before the currently scheduled departure time, then

the vehicle has to wait for its next flight until the scheduled

departure time. When the departure time comes, the considered

AAM vehicle requests service from the departure vertiport to

take-off. If there is not any queue at the departure vertiport,

the AAM vehicle waits for the amount of service time and

after the completion of the service, the AAM vehicle departs.

The second part refers to the transition; in other words,

flight duration between departure and arrival vertiports. Once

the AAM vehicle departs, it continues to its destination

vertiport with an uncertainty included travel duration. Thus,

the travel duration for each flight differs due to uncertainties

and different O/D pairs.

The last part comprises the queue process for arrivals at the

destination vertiport. An AAM vehicle that is completing its

flight duration, lines up for the arrival vertiport queue. The

flight requests service when the arrival vertiport is available

and waits for the particular service time which is specific to

each vertiport. The AAM vehicle completes its flight once the

service is done.

The developed algorithm for the explained data-driven queu-

ing network model above is as shown in Algorithm 1.

Algorithm 1 Algorithm for Queuing Network Model

1: Get vertiport (resource) info.

2: Simulate AAM flights concurrently

3: for each flight of an AAM vehicle do

4: if flight is not the first flight then

5: CDT = max(SDT, PAT + TAT )
6: end if

7: if current time < CDT then

8: wait until CDT
9: end if

10: request, wait for service, release (dep. vertiport)

11: wait for travel duration

12: request, wait for service, release (arr. vertiport)

13: end for



In the algorithm, flight information for all flights, travel

duration uncertainties and service time distributions of each

vertiport are given as inputs. After the simulation, real depar-

ture and arrival times of the flights, therefore the delays are

obtained as outputs.

C. Fragility / Antifragility Analysis

For the fragility and antifragility analysis, two approaches

are followed. First, different network attacking strategies are

considered to see which elements of the network are the main

contributors to determining the fragile point of the built AAM

traffic. Then, the simple heuristic measure that is defined in

[14], [15] for tail risks is used to understand if our AAM

network has a tendency to be fragile or antifragile.

For the following definitions, consider a weighted directed

graph that is defined as G = (V,E,W ) where V is a set

of nodes (vertiports) V = {v1, ..., vN}, E is a set of edges

(flights) E ⊆ V × V , and W is the weight matrix for the

edges of the graph. Each element in W is also corresponding

to the adjacency matrix A of the considered graph where

avi,vj
= 1 if wvi,vj

> 0 and avi,vj
= 0 if wvi,vj

= 0. In

the considered directed graph, there are 75 nodes which are

connected through 2246 edges. If the graph is considered as an

undirected graph, then the number of edges reduces to 1379.

1) Robustness analysis for capturing the fragile behaviour:

Robustness can simply be defined as an ability of a system

to maintain its desired state. An extremely disruptive event on

a robust system may lead to a complete failure which brings

fragility. Since the robustness and fragility concepts have a

correlation, metrics related to robustness can be utilized for

analyzing the fragility of a network. Therefore, the consid-

ered AAM traffic network’s robustness is measured through

targeted attack strategies on both nodes and edges to analyze

the fragility of the network.

Network robustness after targeted node removals is quanti-

fied as in [24].

Rn =
1

N

N∑

i=1

S(i) (2)

where S(i) is the size of the LCC of the system after

removing i number of nodes from the network which has N
number of total nodes.

For the targeted node attacks on a weighted directed graph

such as an air traffic network, degree centrality, strength cen-

trality, and betweenness centrality based attacking strategies

are considered.

Degree centrality is a metric that measures the total number

of connections of a node. The total degree of each node is

quantified by considering the summation of the in-degree and

out-degree of a node which represents the number of incoming

and outgoing connections to/from a node, respectively.

dvi
=

∑

vx∈V

avx,vi
+

∑

vx∈V

avi,vx
(3)

Strength centrality is a metric that takes the total weights

connected to a node into account rather than the total number

of connections which is the main difference with the degree

centrality. The total strength of a node is calculated by

summing up all the weights of all the edges connected to

that node considering both the in-strength and out-strength of

a node.

svi
=

∑

vx∈V

wvx,vi
+

∑

vx∈V

wvi,vx
(4)

Betweenness centrality is defined as the level of impact that

a node has over the network connection. Each node receives

a score considering the number of shortest paths they are

involved in between the considered node pairs.

bvi
=

∑

vx,vy∈V

σ(vx, vy|vi)

σ(vx, vy)
(5)

where σ(vx, vy|vi) is the total number of shortest paths

between the nodes vx and vy passing through the node vi
and σ(vx, vy) is the total number of shortest paths between

vx and vy .

The robustness of the graph is measured through the LCC

size of the network. Figure 2 shows the LCC size change

in the AAM traffic network after going through vertiport

removals which are obtained considering degree, strength, and

betweenness centrality measures. The prepared AAM network

is strongly connected and built based on having at least one

connection between nodes if the constraints permit. Therefore,

significant failure in the robustness of the network is observed

at later stages of the node removal process.

Fig. 2. LCC size of the considered AAM traffic network after each targeted
node removal obtained via different network metrics.

Network robustness after targeted edge removals is quanti-

fied as in [25].

Re =
1

M

M∑

j=1

S(j) (6)

where S(j) is the LCC size of the system after removing j
number of edges from the network which has M number of

total edges.



For generating an attacking strategy on the edges of the

considered graph and analyzing the robustness of the network

afterwards, the edge betweenness centrality metric is focused.

Edge betweenness centrality represents the level of impact

that an edge has over the network connection. Each edge

receives a score based on the number of shortest paths that

go through that edge.

bevi,vj =
∑

vx,vy∈V

σ(vx, vy|evi,vj
)

σ(vx, vy)
(7)

where evi,vj
is an edge between the nodes vi and vj within

the graph, σ(vx, vy|evi,vj
) is the total number of shortest paths

between the nodes vx and vy , passing through the edge evi,vj
,

and σ(vx, vy) is the total number of shortest paths between vx
and vy .

Similar to the node removal analysis, the network’s LCC

size is utilized for the edge removal analysis. LCC size change

in the traffic network after O/D pair removals which are

obtained considering edge betweenness centrality metric is

depicted in Figure 3.

Fig. 3. LCC size of the considered AAM traffic network after each targeted
edge removal obtained via different network metrics.

2) Simple heuristic for analyzing the antifragility concept:

The simple heuristic is a measure to detect the convexity

effects, especially on tail risks. Therefore it can be useful

for the fragility/antifragility analysis of a system. The method

involves a second-order testing and benefits from Jensen’s

inequality for observing the convexities/concavities in tail

parts, rather than direct outputs of the considered model.

Jensen’s inequality is given as below.

E[g(X)] ≥ g(E[X]) (8)

where it represents the relationship between the expectation

of a convex function g and the function of the expectation of

a random variable X .

The main idea for the simple heuristic is to enhance the

outputs obtained through stress testing, by focusing on the

small variations in potential losses especially for the rare

events. This approach provides an understanding on if the

system is doing better or worse rather than providing an exact

output for the considered situation. The simple heuristic can

mathematically be defined as follows.

H =
f(a− δ) + f(a+ δ)

2
− f(a) (9)

where f is the payoff function for the system and δ is the

small disturbance on the variable a which is the considered

state.

For a payoff function where the larger values represent more

adverse cases, H = 0 means that the payoff function is linear

and the output is robust. If the heuristic becomes larger than

zero H > 0, that case refers to a fragility in the output.

Such a system gets more fragile with increasing variability

in uncertainty meaning that the system loss will be larger

with disruptive events. Lastly, H < 0 means that the output

is antifragile and the system has a tendency to gain under

disruptive conditions.

IV. CASE STUDIES AND RESULTS

In this section, the implementation of the considered metrics

from a fragility/antifragility perspective is elaborated and

an analysis on the generated AAM traffic network through

different case studies is provided. Case studies cover a capacity

reduction case at vertiports based on targeted node removal

strategies and a disruption case on an O/D pair considering

the edge removal method. Lastly, a method to improve the

network in terms of antifragility is discussed and analyzed.

A. Capacity Reduction at Vertiports

This case covers the analysis over vertiports that suffer

from an adverse condition which leads to a disruption and

uncertainty in capacity usage. In our queuing network model,

this situation affects the service time parameter. Thus, both

local and global effects of such a disruption are analyzed and

their impact to network fragility/antifragility are discussed.

For the analysis, the capacity usage of a vertiport is

gradually reduced and the network-wide outcomes of the

contingency situation are observed through the developed

queue network model. The vertiport for each situation is

selected considering the degree centrality, strength centrality,

and betweenness centrality based node removal strategies.

Figure 4 shows the fragility/antifragility analysis of the

AAM traffic network after targeted node attacks and the

corresponding delay propagation over the network after perfor-

mance reduction/improvement situations. Based on the degree

and strength centrality measures, vertiport NC72; based on

the betweenness centrality measure, vertiport NC17 is focused

on having a performance reduction due to an adverse event.

Some service time improvement cases are also tested. As it

is observed in local and network impact figures, there is a

positive payoff function where the total delay at considered

vertiports and over the network is increasing.

For testing whether the system is antifragile or not, the

small perturbation δ is selected as a 1% change in the service

time and analyzed both at the selected vertiports and traffic

network at 50% capacity reduction situation. Once the simple



Fig. 4. Fragility and delay analysis of the AAM traffic network based on
vertiport disruptions.

heuristic is implemented for the considered network, H scores

are observed as in Table II to decide if the network is fragile or

antifragile. For the global cases, especially after around 40%

capacity degradation, network delay has a linear behaviour.

Therefore, the simple heuristic scores are very close to zero

which refers to having a robust system after that point. Yet,

they are still positive thus they stay on the fragile side.

TABLE II
FRAGILITY/ANTIFRAGILITY ANALYSIS FOR VERTIPORT CASES

Local/Global Metric Heuristic Fragile/Antifragile
Local (NC17) bvi 0.0075 Fragile (H > 0)

Global bvi 0.0016 Fragile (H > 0)
Local (NC72) dvi , svi 0.0145 Fragile (H > 0)

Global dvi , svi 0.0003 Fragile (H > 0)

B. Disruption on O/D Pairs

Effects of a contingency event over an O/D pair are ana-

lyzed. An increase in the uncertainty of the flight duration and

resulting delay are covered with this scenario. This situation

corresponds to a disruption in the inter-arrival time parameter

of the queuing network model. Similar to the previous case,

the impact of such disruption is quantified and discussed via

fragility/antifragility concepts.

Travel duration on the selected O/D pair is decreased step

by step to analyze both the local and network impact of the

disruption. The O/D pair selection is done based on the edge

betweenness centrality metric.

Analysis on if the AAM traffic network is fragile or antifrag-

ile after a targeted edge attack and the corresponding delay

propagation over the network after an increment/decrement in

the flight duration are given in Figure 5. Considering the edge

betweenness centrality measure, the edge between the nodes

NC60 and NC72 is selected as the considered O/D pair for

analyzing the travel duration variation case. It is observed that

the variation on an O/D pair over the whole traffic network is

not impactful, yet it can be effective under multiple O/D pair

disruptions. Since the impact is not very significant, especially

at busy vertiports such as NC72 and the complete traffic

network, delay-event relationship is not obvious. But for the

relevant vertiports that are less busy such as NC60, O/D pair

variation creates an observable impact.

Fig. 5. Fragility and delay analysis of the AAM traffic network based on an
O/D pair disruption.

For the global cases, especially after around 40% capacity

degradation, network delay has a linear behaviour. Therefore,

the simple heuristic scores are very close to zero which refers

to having a robust system after that point. Yet, they are still

positive thus they stay on the fragile side.

For the antifragility analysis, the small perturbation δ is

chosen as a 1% change in the flight duration around the 30%

increase in the inter-arrival time case. Heuristic scores H are

obtained as in Table III. Around the selected point, delay

behaviour at NC60 and the traffic network shows linearity.

Therefore, NC60 and the traffic network show robustness for

such an individual O/D pair disruption. On the other hand,

NC72 seems fragile with a slight difference around the 30%

disruption in flight duration between NC60 and NC72.

TABLE III
FRAGILITY/ANTIFRAGILITY ANALYSIS FOR O/D PAIR CASES

Local/Global Metric Heuristic Fragile/Antifragile
Local (NC60) bevi,vj

≃ 0 Robust (H = 0)

Local (NC72) bevi,vj
0.00002 Fragile (H > 0)

Global bevi,vj
0 Robust (H = 0)

C. Antifragility Improvement on the AAM Network

In this part, an approach to make the existing AAM traffic

network antifragile, is studied. Considered approach deals

with canceling flights based on their delay levels. Simply, the



flights that are expected to have more than 15-minute delays

are canceled and the behaviour of the network is observed.

This method is analyzed through one of the vertiport capacity

disruption cases. The vertiport is selected based on the degree

centrality metric. Thus, the service time disruption case at

vertiport NC72 is focused on for the simulations.
Figure 6 depicts the local and network-wide results before

and after the improvement on the antifragility. After the

improvement, delay levels at higher disruptions are less than

the ones have lower disruptions. This refers to the built AAM

traffic network becoming antifragile where it benefits from the

adverse conditions.

Fig. 6. Fragility and delay analysis of the AAM traffic before and after the
improving action via a delay-based flight cancellation policy.

Simple heuristic scores are also taken into account to assess

whether our AAM network became antifragile or not. Table IV

shows the antifragility analysis after the flight cancellation

action. It is observed that the network becomes antifragile at

both local and global levels.

TABLE IV
FRAGILITY/ANTIFRAGILITY ANALYSIS AFTER THE IMPROVING ACTION

Local/Global Heuristic (15-min) Fragile/Antifragile (15-min)
Local (NC72) -0.00026 Antifragile (H < 0)

Global -0.00022 Antifragile (H < 0)

Since flight cancellations are used as an improving action,

it is important to consider the cost of that approach as well.

For the simple cost analysis, direct operating costs of the

AAM vehicles are used as in [19]. It is assumed that the

passengers are meeting the operating costs to receive such

a service. The total cost of flight cancellations for each

considered disruption is shown in Figure 7. Even though flight

cancellations work well for obtaining an antifragile network,

it may cause a big cost for daily operations. In other words,

it provides an antifragility for the traffic in terms of delay

but creates a fragility for the network in terms of costs. For

example, the total cost of cancelling flights that suffer from

15-minute or more delay (2973 flights) is around $300.000

under 60% service time disruption at NC72. Instead of having

the same procedure for the flight cancellation policy over the

network, the policy can vary for each vertiport based on their

operational limits and procedures. This approach may also help

to optimize the expected total costs.

Fig. 7. Cost analysis for the improving action.

V. CONCLUSION

In this study, we covered the antifragility concept which is

mainly utilized for financial markets and adapted that concept

for the air transportation systems, especially for the future

AAM system. For that purpose, an AAM traffic network is

built considering different types of AAM vehicles and possible

vertiport locations over Northern California. For simulations,

the queue network model is considered and ways to analyze

antifragility in AAM are explored. Finally, an analysis over

an AAM traffic network is provided for both vertiport and

O/D pair related variations and an approach for improving the

antifragility of the considered AAM traffic is given which is a

flight cancellation policy based on a maximum delay threshold.

Lastly, a cost analysis of that policy is provided considering

the direct operating costs of each AAM vehicle.

As a future work, to build an antifragile AAM network

for the future, we will explore new strategies that will reduce

the cost of having such a system. Those new strategies may

involve not only flight cancellation policies but also using

vertiport locations in a different manner to contribute to the

traffic network or considering additional infrastructures for the

system. Also, we will focus on the development of antifragile

networks from scratch, especially for building a safe, reliable,

and sustainable AAM traffic network.
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