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Abstract—In this paper, a new approach is introduced which
combines Eigenvalue Assignment, State Dependent Riccati Equa-
tion (SDRE) and Sliding Mode Control (SMC) methods for
nonlinear systems. In the classical SDRE based SMC (SDRE-
SMC) approach, a nonlinear system is frozen at each time instant
to obtain a linear-like structure model that is used to design
a sliding surface (SS) at each time instant. This mechanism
produces a state-dependent SS to hold the states on the SS.
The approach proposed here is built on this mechanism and
offers a new way to design a state-dependent SS for nonlinear
systems so that the pointwise eigenvalues of the closed-loop
system matrix of the control-free dynamics in the regular form
can be kept in a specified disk. This gives a great advantage to
shape the transient response characteristics. The performance of
the nonlinear controller approach proposed here is investigated
in simulations.

Keywords—nonlinear systems; eigenvalue assignment; sliding
mode control; sliding surface design.

I. INTRODUCTION

One of the fundamental concerns in linear control theory is

the locations of closed-loop system poles since their locations

affect the stability and the transient characteristics of plant.

Therefore, researchers have attempted to place closed-loop

system poles at specific locations or in a certain region formed

intentionally on the left half plane. In the literature, there are

two widely used methods, known as exact pole placement and

regional pole placement, to keep closed-loop system poles

on the left half plane. The exact pole placement method is

utilized when it is desired to place the closed-loop poles

exactly at desired locations. On the other hand, the regional

pole placement method provides control engineers with greater

design flexibility and simplicity since it locates the closed-loop

poles in a desired region [1].

Most important issue in the regional pole placement is

to select an appropriate region. A region can be described

in different forms such as circular, elliptical, vertical, strip,

parabolic or sector regions [1]–[3]. The circular region centred

on the negative real axis is often used in many studies [3]–

[6]. Another issue is to place the closed-loop poles in the

desired region. Furuta and Kim [2] applied Linear Quadratic

Regulator (LQR) method to locate poles in a prescribed

circular region, and examined the optimality and robustness

of their pole assignment approach. Linear Matrix Inequality

(LMI) method can be also utilized for the regional pole

placement. Ling [7] used LMI approach to control a MIMO

system. In another study [8], LMI approach was used to obtain

controller parameters of a power system, and a state feedback

controller was designed to keep the closed-loop poles in a

desired region. In discrete time cases, LMI approach has also

been developed to design a convex region for the regional pole

placement [9].

In some approaches, pole placement methods are combined

with the well-known linear control methods. Das et al. de-

signed a PID controller by using a pole placement method,

and verified the validity of their algorithm on a test setup

[10]. Chang et al. developed a sliding mode fuzzy control by

using the pole assignment approach [11].

One of the effective methods for some particular applica-

tions, which require a robust control, is the sliding mode con-

trol (SMC) method [12]. In the conventional SMC approach,

there are two control phases. The first phase is known as a

reaching phase where state trajectories are driven to a sliding

surface (SS). The second phase is the sliding phase in which

all states keep moving on the SS [13].

Sliding surfaces can be designed for linear and nonlinear

systems. Linear SS is usually able to produce the desired

control performance for linear systems. However, a linear SS

may not guarantee the stability for nonlinear systems [14].

Therefore, different approaches have been developed to ensure

the stability of nonlinear systems. Mobayen and Baleanu

[15] introduced a new adaptive nonlinear sliding surface as

a nonlinear gain function to change the damping ratio and

control performance of a nonlinear system. The effectiveness
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of their approach was evaluated in simulations. In another

approach [16], the partial feedback linearization was used for

slosh control, and was tested in simulations and real-time

experiments.

Optimal design of sliding surfaces has been frequently

studied in recent years. In the study [17], a practical discrete-

time sliding mode control method was obtained to minimize

state energy during the sliding phase. In another study [18],

a successive approximation method was used to design an

optimal sliding mode controller that enables a missile to track a

desired acceleration command. Sanjeewa and Parnichkun [19]

designed LQR based SMC for stabilizing a double inverted

pendulum.

In literature, another method frequently used in the design

of SS is known as the State Dependent Riccati Equation

(SDRE) method. Durmaz et al. [20] designed a SMC law

with adaptive SS for nonlinear systems. This SDRE-SMC was

applied to control a generic hypersonic aircraft. A modified

SDRE-SMC method is also available in the literature to

overcome the stability problem of SDRE-SMC [21] and was

tested experimentally. The results showed that the modified

algorithm produced smoother SS than the conventional SS.

In another study [22], the performance SDRE-SMC method

was experimentally verified on a 3-DOF Helicopter test bench

by comparing it with Linear Time Invariant (LTI) SMC

method. The comparative analysis revealed that SDRE-SMC

method can relatively produce shorter settling time. SDRE-

SMC method was also used to control nonlinear systems

having matched or mismatched uncertainties [23]. SDRE-

SMC was combined with the “unity vector approach” and

applied to control a rigid satellite system. Some researchers

have investigated different methods to solve SDRE for the

design SMC. In an approach [24], Taylor Series was used

to obtain the solution of SDRE. The number of terms in

Taylor’s Series was increased to obtain better approximation

and performance. In [25], the integral and algebraic sliding

surfaces were designed to guarantee the robustness of the

controller against the parametric uncertainty.

In this study, a modified SDRE-SMC is introduced by

using the regional pole placement (or eigenvalue assignment)

approach to design state-dependent SS for a class of nonlinear

systems. This method offers an alternative way to keep all

pointwise closed-loop eigenvalues of the nonlinear null space

dynamics, which is the control-free part of the nonlinear

regular form, in a specified circular region at each time interval

so that the desired transient response characteristics can be

ensured. To the best of the author’s knowledge, this study is

novel in keeping the pointwise eigenvalues of the nonlinear

null space dynamics in the pre-specified circular region on

the left half plane at each time interval in sliding surface

design of SMC. The effectiveness of the proposed algorithm

is evaluated in simulations with the different values of the

parameters determining a circular region, i.e. centre and radius

of the circle.

The paper is structured as follows: Section II introduces

briefly the traditional SDRE-SMC. Section III explains sliding

surface design with state dependent eigenvalue assignment in

SMC. Section IV presents a case study and simulations results.

Finally, Section V gives the conclusion.

II. STATE DEPENDENT SS DESIGN

Consider the following general representation of the non-

linear dynamics

ς̇ = A(ς)ς +B(ς)u, ς(0) = ς0 (1)

where A(ς) : Rn → R
n×n and B(ς) : Rn → R

n×m denote

the State Dependent Coefficient (SDC) matrices, respectively.

Here, u ∈ R
m is the control input and ς ∈ R

n denotes the

state vector. The regular form

ż1 = A11(z)z1 +A12(z)z2 (2)

ż2 = A21(z)z1 +A22(z)z2 +B2(z)u (3)

is generated by applying the transformation z = T (ς)ς where

z = [z1 z2]
⊤ is a new coordinate system and T (ς) is a

pointwise nonsingular matrix. Therefore, T−1(ς) exists for all

ς . Then SS can be determined the new coordinates. To design

sliding surface, the switching function can be chosen as

σ(z1, z2) = z2 + S(z)z1 (4)

where S(z) is the surface slope matrix. On the sliding surface,

σ(z1, z2) = 0, thereby z2 = −S(z)z1. Here, z2 acts as if it is

a full state feedback control input. This yields the following

reduced order system defined as

ż1 = (A11(z)−A12(z)S(z))z1 = Acl(z)z1 (5)

and S(z) can be computed so that Acl(z) is a pointwise Hur-

witz matrix by solving SDRE under the following assumption.

Assumption 1 (see [26]). {A11(z), A12(z)} is pointwise

controllable for all z if {A(x), B(x)} pair is pointwise con-

trollable for all x.

Finally, SDRE method produces a state dependent nonlinear

SS (4) for the nonlinear systems of interest as follows:

S(z) = R−1(z)A⊤

12(z)P (z)z1 (6)

where P (z) is the solution of SDRE

A⊤

11(z)P (z) + P (z)A11(z)− P (z)A12(z)×

R−1A⊤

12(z)P (z) +Q(z) = 0
(7)

to minimize a quadratic cost function

J =
1

2

∫ ∞

0

[

z⊤1 (t)Q(z)z1(t) + z⊤2 (t)R(z)z2(t)
]

dt (8)

subject to the null space dynamics (2). Here, Q(z) is a semi

positive definite matrix, i.e. Q(z) ≥ 0 and R(z) is a positive

definite matrix, i.e. R(z) > 0. Now, the control input u can

be derived by combining two control components in the form

u = ueq +usw where ueq is the equivalent control component

and usw is the switched control component. When σ̇(z1, z2) =



0, ż2 + S(z)ż1 = 0. Thus, the equivalent and switch control

components can be defined as

ueq = −B−1

2 {A21(z)z1 +A22(z)z2 + S(z)×

[A11(z)z1 +A12(z)z2] + S(z)z1}
(9)

usw = −kB−1

2 sgn(σ(z1, z2)) (10)

where k ∈ R
+. Higher value k produces faster reaching time

but higher chattering amplitude. The above procedure explains

how to design an optimal SS in a conventional manner based

on SDRE method. Now, a novel SS design incorporating an

eigenvalue assignment method for SMC is introduced. This

proposed approach is motivated from the theorem in [2] that

was derived to put closed-loop poles of linear systems in a

prescribed circular region. This study extends the previous

theorem for linear systems to nonlinear systems that can be

described as a state-dependent form in (1).

III. EIGENVALUE ASSIGNMENT FOR SMC

Definition 1. A disk D, as shown in Fig. 1, is a circular region

with a centre α on the real axis of the left half plane and a

radius r.

Fig. 1. Disk D on the left half plane

In nonlinear case, A11(z) and A12(z) with z satisfying

the null space dynamics (2) and the range space dynam-

ics (3) are evaluated at each instant of time tk to obtain

a linear-like structure including the constant A11(z) and

A12(z) matrices given by A11(z(tk)) = A11(zk) = A11k and

A12(z(tk)) = A12(zk) = A12k [27].

Lemma 1 (see [2]). Consider the matrix equation

αA∗

11k
Pk + αPkA11k −A∗

11k
PkA11k

− (α2 − r2)Pk = Qk

(11)

where Qk ≥ 0 and * denotes the conjugate of a matrix. Then,

the eigenvalues of the matrix A11(z) at tk, i.e. λ(A11k), are

located within the disk D if there exists a positive definite

solution Pk at tk.

Proof. Let vk and λk be the eigenvector and eigenvalue of

A11k , respectively. Then,

A11kvk = λkvk, v∗kA
∗

11k
= λ̄v∗ (12)

Multiplying v and v∗ with the both sides of (11) yields

v∗{αA∗

11k
Pk+αPkA11k −A∗

11k
PkA11k

− (α2 − r2)Pk}v = v∗Qkv
(13)

Substituting (12) into (13) results in

(−α(λ̄k+λk)+ λ̄kλk+(α2−r2))v∗kPkvk = −v∗kQkvk (14)

With λk = ηk + iωk, (14) becomes

(−2αηk + η2k + ω2
k + α2 − r2)v∗kPkvk = −v∗kQkvk (15)

Rearranging (15) results in

((ηk − α)2 + ω2
k − r2)v∗kPkvk = −v∗kQkvk (16)

With Qk > 0 and Pk > 0, the following inequality can be

written as

(ηk − α)2 + ω2
k − r2 < 0 (17)

This completes the proof that the eigenvalues of A11k stay

inside the disk D. This also means that the eigenvalues of

A11(z) stay inside the disk D.

Considering Lemma 1, the following theorem gives

the condition to guarantee that the closed loop matrix

(Acl(z) = A11(z)−A12(z)S(z)) has its eigenvalues in a de-

sired disk when the expression z2 = −S(z)z1 defining the

sliding motion is substituted into the null space dynamics of

the regular form (2).

Theorem 1. Consider the following matrix equation

−αAcl(z)
∗P (z)− αP (z)(Acl(z)) +Acl(z)

∗P (z)×

(Acl(z)) + (α2 − r2)P (z) = −Q(z)
(18)

where Q(z) ≥ 0 and Acl(z) = A11(z) − A12(z)S(z). For a

positive definite P (z), λ(Acl(z)) remain in the disk D.

To derive the state dependent law (z2 = −S(z)z1) required

in the SS design, the following theorem is now introduced.

Theorem 2. The following expression

z2 = −S(z)z1 (19)

where S(z) is described by

S(z) = (r2R+A12(z)
T
P (z)A12(z))

−1

AT
12(z)P (z)(A11(z)− αI)

(20)

locate all eigenvalues of Acl(z) inside a desired disk D. Here,

P (z) is a positive definite symmetric solution of the state

dependent Riccati equation

P (z) =
(A11(z)− αI)⊤

r
P (z)

(A11(z)− αI)

r

−
(A11(z)− αI)⊤

r
P (z)A12(z)(r

2R+A12(z)
⊤
×

P (z)A12(z))
−1A12(z)

⊤
P (z)

(A11(z)− αI)

r
+ H̄(z)

(21)

where R can be selected so that R > 0 and H̄(z) =
H⊤(z)H(z) where H(z) is a matrix such that the pair

(A11(z), H(z)) is observable.



Proof. Substituting (21) into (20) and rearranged equation (20)

yields

− α(A11(z)−A12(z)S(z))
⊤P (z)− α P (z)

(A11(z)−A12(z)S(z)) + (A11(z)−A12(z)S(z))
⊤

P (z)(A11(z)−A12(z)S(z)) + (α2 − r2)P (z)

= −r2(S(z)
⊤
RS(z) +H(z)⊤H(z))

(22)

where

S(z) = (r2R+A12(z)
⊤
PA12(z))

−1×

A12(z)
⊤
P (z)(A11(z)− αI)

(23)

and let Q(z) be defined as

Q(z) = r2(S(z)
⊤
RS(z) +H(z)⊤H(z))

Finally, λ(Acl(z)) can be kept in the disk D by using Lemma 1

and Theorem 1. This completes the proof.

Remark 1. The selection of the weighting matrices R and Q

in (7) has an effect of the locations of λ(Acl(z)). It is possible

to move λ(Acl(z)) inside the disk D by changing the weighting

matrices R and Q.

The main difference between the eigenvalue assign-

ment based SS and SDRE based SS is that S(z)
is determined so that the eigenvalues of the matrix

Acl(z) = A11(z)−A12(z)S(z) are located within the desired

disk using Theorem 2. Therefore, the slope matrix S(z) of the

sliding surface is needed to be changed by using (23).

IV. SIMULATION RESULTS

To investigate the performance of the modified SDRE-SMC

approach based on the eigenvalue assignment method, a simu-

lation study that compares it with the traditional SDRE based

SMC is conducted. In simulations, the following fictitious

system is employed as the plant
[

ẋ1

ẋ2

]

=

[

ς1 1
−5 + ς41 4 + ς32

] [

ς1
ς2

]

+

[

0
1

]

u

to be controlled. Since the fictitious plant model is already

in the regular form, it does not require a coordinate trans-

formation. This means that the mathematical model can be

determined in the state z by replacing [ς1 ς2] with [z1 z2].
The weighting matrices R and Q in (7) for the traditional

SDRE-SMC method and those in (18) for the new SMC

method incorporating the eigenvalue assignment are arbitrarily

selected to be Q = I2 and R = 1. The positive scalar k for

the switched control component usw is selected to be 0.5 and

the time interval is set to be 0.01s. All simulations are started

from ς(0) = [0.5 0.5]⊤. To assess the effects of the centre

and radius of the disk D on the control performance, these

parameters are varied within a range.

In the simulations, two different disks are considered. The

first disk is located at the centre α = −2 and has a radius of

r = 1.5. The second disk with the same radius as that of the

first disk is desired to be placed where it is relatively further

away from the imaginary axis on the left-half complex plane.

Therefore, the centre and radius of the second disk are selected

to be α = −3 and r = 1.5, respectively.

It is worth noting here that SDRE-SMC does not specifically

aim at locating eigenvalues in a specified disk region. This

means that the design parameter values of the first disk are

specified so that it can contain the eigenvalue locations of

the closed-loop system (Acl(z) = A11(z) − A12(z)S(z))
determined by SDRE-SMC. Therefore, the centre α = −2
and the radius of r = 1.5 are arbitrarily selected to achieve

this aim.

Fig. 2 and Fig. 3 present where the eigenvalues of Acl(z) are

placed inside the first disk by applying the SDRE-SMC and the

eigenvalue assignment based SMC (EA-SMC), respectively.

Comparing the two results, it can been seen that both methods

locate the closed-loop eigenvalues inside the desired disk

region.

Fig. 2. The eigenvalue locations of Acl(z) in SDRE-SMC

Fig. 4 illustrates the state trajectories of the fictitious plant

with two different controllers, i.e. the SDRE-SMC and the EA-

SMC. From Fig. 4, it is apparent that the transient response

characteristics of the plant model is improved by means of the

EA-SMC, resulting in lower maximum overshoot and shorter

settling time. This becomes possible since the pointwise

closed-loop eigenvalues can be placed further away from the

imaginary axis, which is clearly seen from Fig. 3. In order

to examine the effects of a change in disk parameters on the

system response characteristics and the eigenvalue locations,

the radius of the disk is kept constant and the centre is shifted

to left from the imaginary axis, as mentioned above. Therefore,

the second part of the simulation study is conducted with the

second disk whose centre is -3 and radius is 1.5.

The comparison of Fig. 4 and Fig. 5 reveals that the

time responses obtained by using the EA-SMC is changed.

In this case, the proposed SMC method enables the closed-

loop eigenvalues to be kept in the second disk. As the disk

is shifted to left, the transient characteristics of the system



Fig. 3. The eigenvalue locations of Acl(z) in the EA-SMC using α = −2
and r = 1.5

Fig. 4. Time response comparison of the EA-SMC with SDRE-SMC for the
first disk

response is also changed. The settling time becomes shorter

when the EA-SMC is applied to locate the eigenvalues inside

the second disk. In addition, the maximum overshoot in ς2
state is significantly decreased.

Fig. 6 shows the locations of the closed-loop eigenvalues

produced by the SDRE-SMC and the EA-SMC. It is clear that

the eigenvalue assignment based SDRE is capable of locating

the eigenvalues inside the desired disk. However, this is not a

case for the traditional SDRE-SMC.

Fig. 7 shows how the sliding surface is changed by the

proposed approach and SDRE-SMC. The sliding surface is

modified by the proposed approach if the eigenvalues are

desired to be kept in a desired region. As a result, the

considerable improvement in the settling time takes place.

V. CONCLUSIONS

This study aims to develop a new approach for designing a

sliding surface enabling all eigenvalues of the closed-system

Fig. 5. Time response comparison of the EA-SMC with SDRE-SMC for the
second disk

Fig. 6. The eigenvalue locations in the EA-SMC using α = −3 and r = 1.5

matrix to be located in a desired region for reduced order

nonlinear systems. The effectiveness of the proposed approach

is investigated in simulations. To examine how effective the

proposed SMC method, it is compared with the SDRE-SMC.

According to the results, the proposed method is capable of

locating the eigenvalues of the state-dependent closed-loop

matrix in a desired region, which is not possible for the

traditional based SDRE. Therefore, the proposed method offers

a great advantage over the traditional method if the transient

characteristics of the response is desired to be shaped. When

the disk centre is moved away from origin, the eigenvalue

locations can be moved away from the imaginary axis to

improve the transient response characteristics.
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