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Abstract

The world is facing an unprecedented challenge where the oldest segment of society

has now become the fasting growing segment of society. This is placing a large burden

on existing healthcare systems who are struggling to deal with the increase in the

elderly. Thus, the concept of Ambient Assisted Living to facilitate aging-in-place

has come to the forefront as a potential solution to ease the burden on healthcare

systems. A novel solution to this challenge using a single, wearable egocentric camera

is presented. This allows a unique first-person viewpoint of the environment to

be established which, through the use of fiducial markers, allows the occupant’s

location and current activity to be established. A study is presented assessing the

technical feasibility for accurate indoor localisation to be established through the use

of fiducial markers placed on key objects throughout the environment. This resulted

in an effective technique to determine the current location of an occupant within an

indoor environment. The tool developed within this study was then used throughout

the subsequent studies as a core component of this research.

A subsequent study then sought to determine if it was possible to determine if

an occupant/object interaction was a genuine interaction or a result of a cluttered

environment or via navigation of the environment. The Intelligent System for De-

tecting Inhabitant-object Interactions (ISDII) tool was developed to determine if an

interaction was genuine through the use of distance estimation to the object of in-

terest. This study also provided a comparison between the tool developed in the

previous study vs. an off the shelf algorithm. This study resulted in the improved

performance by reducing the number of False Positives that were detected within the

video stream improving precision.

A final study was carried out to not only determine the location of the occupant

but to estimate their current activity. Due to the use of a wearable camera a lot

of noise was introduced into the data via motion blur which resulted in missing or

incorrect marker detection. Dempster-Safer theory was implemented to deal with

uncertainty that was present in the data to determine the belief that an activity was

being carried out. This study demonstrated the ability to reliably detect the correct
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activity with an 84% success rate when tested on unreliable data.

The incorporation of these findings into the wider body of knowledge may aid in

the development of future systems with the goal of solving the challenge of aging-in-

place.
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Chapter 1: Introduction

This Chapter offers an introduction and overview of the motivation and challenges

behind this research, which investigates wearable vision-based systems for AAL.

This Chapter will follow on to outline the Thesis workflow and disseminations

which resulted from this work.

1.1 An Aging Population

One of the most important achievements between the 20th and 21st century has

been the remarkable increase in life expectancy throughout the world. This has,

however, resulted in the oldest group of society (aged 85 plus) becoming the most

rapidly expanding sector of the population [13]. The overall burden placed on

health care systems to address health problems associated with an aging society

is expected to increase as this sector of the population continues to expand [13].

One potential solution to ease this burden is postulated to be through the use

of a “smart environment”. A smart environment can be defined as being one

that is “able to acquire and apply knowledge about the environment and its inhab-

itants in order to improve their experience in that environment” [14]. It is, in the

purest sense, an example of ubiquitous and pervasive computing and represents

the concept of transparent “computing everywhere” [15]. It allows the support of

occupants who would normally require the assistance of carers, to be supported

within their own home through the incorporation of technology-based solutions

[16]. It has the potential to improve quality of life and may extend the period of

time a person remains living within their own home [17].

At the centre of the smart environment paradigm is wearable technology [18]

enabling data to be continuously collected from a user and their immediate en-

vironment. Wearable solutions are particularly useful to support intelligent ap-

plications within smart environments where contextual information is required to

provide relevant support. Contextual information includes the “user’s physical,

social, emotional or informational state” [19]. This information allows an appli-

1
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cation’s behaviour to be altered to the current situation, providing task relevant

information to the occupant. Beyond detecting context, there exists a number of

challenges related to managing the flow and storage of data that typically origi-

nate from heterogeneous sources. Typical wearable solution applications include

monitoring of vital signs, activity, social interactions, sleep patterns, along with

other health indicators [20]. These parameters offer the potential for tremendous

diagnostic values that were previously only possible within controlled clinical en-

vironments [21].

1.2 Role of Technology

Technology plays an important role supporting occupants within a smart envi-

ronment context, not only allowing information to be collected on the occupant’s

current status, health, and activity but also when it comes to providing support

for the occupant. This support could come in the form of simple reminders, for ex-

ample, reminding an occupant when they are required to take medication or it can

be used in a more holistic approach monitoring the occupant’s physical, mental,

and social health and making recommendations or esclating alerts to the occupant

or carers/family members. The gaining ubiquity of smart phones, along with other

off-the-shelf smart devices such as smart watches, has allowed this concept to flour-

ish with the increased normalisation that the greater adaption of smart devices

has brought over recent years which can be utilised to monitor occupants without

them feeling as “watched” due to these devices already being present within the

home. The presence and adaption of IoT devices allows for additional contextual

information to be gathered about the occupants and their daily routines which

can further allow support to be tailored to the occupant with the goal of providing

timely support. This Thesis will focus on the use of smart glasses to aid in the

monitoring of an occupant within an indoor environment via machine-vision meth-

ods. Focusing on the occupants indoor location along with their interaction with

objects to perform activity recognition, this is discussed in detail within Chapter 4

where experiments are carried out to determine the feasibility of the Glass solution

alongside a comparision to traditional methods.

1.3 Ethical Considerations

As mentioned in the previous section care has to be taken with regard to ethical and

privacy concerns when applying a solution which relies on constant monitoring,
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particulary when cameras are involved. A solution which relies on continuous

monitoring can result in the occupant feeling as though they are being “watched”

throughout the day. This can lead to the feeling of a loss of personal space/privacy

but also that of a feeling of a sense of dependancy on the technology itself [22, 23].

Additionally, there are concerns over continuous monitoring leading to a reduction

in the sense of dignity for the occupant, particularly if support is needed in areas

where privacy is much more of a concern, such as a bathroom or bedroom [22, 23].

While there are techniques to mitigate this issue, such only storing event data, it

is important to consider the impact this may have on the occupants willingness

to use the system. There is also a concern over any potential data breach which

may result in personal information being made available publically. This can be

mitigated through techniques such as the anonymisation of the data alongside

techniques such as edge processing to keep more of the processing/data within the

occupants network to minimise any potential data leak [22].

1.4 Wearable Technology

Wearable technology is rapidly becoming part of people’s daily lives with the

increasing popularity and uptake of devices such as smart watches and fitness

trackers [24]. Within the field of healthcare wearable devices have long been used

to monitor a condition and intervene if necessary [25]. The immediate detection

and collection of data allows a much more real-time and accurate collection of

data [26]. This allows wearable technologies to have a unique place for monitoring

older people within their home, allowing for accurate, real-time measurement of

their personal health and their activities [27]. This can be leveraged to aid in the

support of older people living independently at home [28], allowing the possibility

of remote monitoring through egocentric cameras on devices such as Google Glass

[29], as presented in Figure 1.1.

1.4.1 Smart Glasses

Smart glasses are considered to be the next breakthrough in wearables [30]. Due

to the popularity of smart devices a range of smart glasses are available such as,

the Vuzix Blade [31], Ray-Ban Stories [32], Bose Frames [33], Snap Spectacles

3 [34], and Amazon Echo Frames [35]. This research will investigate utilising

Google Glass as a sensor modality. Google Glass was initially released as the

“Explorer Edition” initially in 2013, with an “Enterprise Edition” later released
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in 2019. “Glass Enterprise Edition” is currently on it’s second iteration – “Glass

Enterprise Edition 2” [36].

(a) Top view of Google Glass. (b) Bottom view of Google Glass.

Figure 1.1: Google Glass Explorer Edition.

Google Glass takes the form of a pair of “smart glasses” allowing a more traditional

smart-phone to take the form factor of a pair of glasses. The wearer controls the

Glass device through natural language commands or through a touch-pad located

on the side of the device. Google Glass also contains a forward facing camera and

a transparent display located in front of the wearer’s right eye, as displayed on

Figure 1.2.
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Figure 1.2: Major components of Google Glass Explorer Edition.

A number of alternative smart glass solutions have also become more common

within the consumer market and it is expected to grow by 9.5% through 2028

[37]. This increase in uptake is due to additional features such as voice assistants

along with improved display resolution and battery life [37] moving away from a

pure AR/VR focus thus allowing businesses to see further value in the technology.

There have been a number of recent developments in terms of alternative forms

of smart glasses being made available. Alongside the glasses detailed previously

in this section there have also been some additional offerings, such as the Xiaomi

Glasses released in 2022 [38] and the EE Nreal Air AR smart glasses which were

also released in 2022 [39].

1.4.2 Limitations of Wearable Technology

There are a number of limitations which must be considered when attempting to

leverage wearable technology. One of the main limitations is that of battery life,

many wearable devices do not have the battery capacity to run continuously for

a 24 hour peroid [40] which can result in occupants being left without support

as well relying on the occupant to remember to charge the device. There can
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also be issues with accuracy and reliability, this can be caused due to factors such

as sensor placement and environmental conditions that could have an impact on

the reliability of the data collected [40]. Lastly, there is also the issue of privacy

and ethical concerns due to the constant monitoring that wearable devices offer.

This could lead to concerns about privacy along with questions on how the data

is stored and used.

1.5 Importance of Context

Traditionally technology has had a very rigid form of interaction with users, typi-

cally alerting the user with information as soon as that information becomes avail-

able or at a set time interval. The introduction of the concept of context-aware

computing allows technology to detect certain contextutal information. Informa-

tion such as time, date, current activity, and then adjusts its behaviour based on

your context [19]. If we take the example of an older adult living alone, a context-

aware system would be able to know your medication schedule and would then

remind you to take your medication at an appropriate time. While also taking in

to account your current activity to ensure it is not interrupting at a time where

you would be unlikely to take your medication, such as when hosting a visitor. The

goal of context-aware applications is to make technology more intutitive and allow

more timely and relevant assistance by taking into account the current context

with the goal of enhancing safety and improving support for the occupant.

Context has been defined in different ways. Brown et al. defined context as

“location, identities of the people around the user, the time of day, season, temper-

ature, etc.” [41]. Dey and Abowd defined context as the “user’s emotional state,

focus of attention, location and orientation, date and time, objects, and people in

the user’s environment” [19]. Although these definitions differ there are common

themes that include location, time and date, current activity, and people in the

user’s immediate environment. Context awareness can therefore be regarded as

the ability of the system to be “aware” of the user’s current details, such as their

location, the time of day, current social situation, and current activity. For ex-

ample, assuming the user has a context aware smartphone, and they are in their

bedroom and it is late at night it can be inferred that they are asleep and therefore

do not wish to be disturbed by notifications. Other examples include supporting

medication management where the system can remind users when their medication

is due, or if they have missed a dose an automatic alert can be escalted to care-

givers or family members. Additionally context aware services can offer additional
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advantages such as offering proactive support. If an occupant shows a decline in

physical activity levels the system can prompt them to engage in some light ex-

ercise, such as walking, to aid in maintaining mobility. The inclusion of context

awareness within an application offers the impression of a “smart” or “intelligent”

solution, one which can seemingly anticipate the user’s needs and deliver time crit-

ical information in an unobtrusive manner [42]. This type of solution is well placed

for assisting the occupant in their everyday lives, in particular, to provide bespoke

support to those with specific caring needs. Some types of contextual information

are more important than others, in particular the location, the identity, the time,

and the activity of the user [19]. Together these make up the where, who, when,

and what respectively of the contextual situation.

1.5.1 Indoor Localisation

Indoor localisation is an important aspect in context aware computing [43], as de-

termining the occupant’s location is key to the system inferring the user’s context.

The occupant’s location has been used as one of the major indicators to infer the

occupant’s activity as there are many areas of a building which are closely linked

to the occupant’s context [44]. For example, there may be core activities that take

place within the kitchen that do not take place elsewhere within a living environ-

ment, such as preparing food. The occupant’s location can also allow for adaptive

automation within a context aware system, such as when the occupant walks into

a room the lighting and heating can be adjusted to the occupant’s preference. The

occupant’s behaviour can also be monitored by learning patterns in their daily

routines and behaviour and can further aid in determining the occupant’s require-

ments. Additionally, the tracking of an occupant’s indoor location can allow for

additional health monitoring by analysing their activity levels and if their routines

are deviating from what is considered normal for the occupant.

1.5.2 Indoor Localisation Technologies

Research investigating the use of indoor localisation have used various technologies

to determine the occupant’s location [45, 46]. Some of the main approaches are the

use of dense sensor placement [43], the use of active tags [47], and machine-vision

techniques [48, 49]. There has been progress made within the field of location

tracking technology. Common examples of these technologies include Global Po-

sitioning System (GPS), Radio-Frequency IDentification (RFID), Smart Floors,

Bluetooth triangulation, and Wi-Fi fingerprinting. However, these technologies
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have limitations when applied to a scenario which requires accurate indoor local-

isation. GPS, while offering accurate localisation outdoors suffers when applied

to an indoor scenario due to problems in acquiring a satellite signal when the

device does not have clear access to the sky [50]. RFID offers a low cost, low

power method of performing indoor localisation [50], with the RFID tags being

attached to objects/persons of interest. Using RFID for the purpose of indoor lo-

calisation presents multiple challenges, such as ensuring sufficient coverage of the

environment and interference from other RF emitting devices (such as Wi-Fi access

points). While RFID can offer a lower cost solution to that of indoor localisation it

may not be suitable for tracking an older occupant living at home. This is due to

the occupant having to remember to carry an additional device that they are not

accustomed to wearing on a daily basis. Smart Floors offer an accurate method of

obtaining a occupant’s location within an indoor environment, offering accuracy

of 1cm over a 1m span [51]. While, however, a Smart Floor can offer high levels

of accuracy it is an expensive method to implement, both in terms of the cost of

the Smart Floor itself but also in terms of the installation costs, particularly if it

will need to be retro fitting to an existing environment, which may be common

within an aging-in-place situation. Smart floors are typically not suitable for an

aging-in-place context due to the aforementioned cost issues being more suitable

to tracking the movements of a number of people, such as in a commerical set-

ting. One common method of determining an occupant’s location is through the

use of signal triangularisation, this can be achieved through the use of Bluetooth

beacons [51]. Bluetooth Low-power Equipment (BLE) offers a low-cost, low-power

method of providing signal triangulation within an environment [52]. The use of

BLE for signal triangularisation has challenges, such as ensuring adequate cov-

erage of an environment as well as interference, along with the maintenance of

multiple beacons. Due to the need to maintain a number of receivers within the

environment, coupled with the occupant being required to carry a device that they

are not accustomed to carrying, can result in this method not being as suitable

for monitoring an older occupant at home. Fingerprinting is an existing method

to determine an occupant’s location within an indoor environment [53, 54, 55].

This also relies on the environment having adequate coverage in order to reliably

obtain the occupant’s location as they navigate throughout the environment. Fin-

gerprinting has some issues when being applied to an scenario of monitoring an

occupant living at home. Any changes to the environment will result in having

to rerun the fingerprinting process due to changes in signal strength from passing

through objects in the environment.
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1.5.3 Identity

The identity of the occupant is of key interest when it comes to determining the

context [56, 57]. Knowing the occupant’s identity allows further personalisation in

order to improve the relevance of the support that can be put in place to assist the

occupant within the environment. Examples of personalisation that can be used

to support decisions include the occupant’s medical history, their social group, as

well as information on their personal daily habits. Additionally the identification

of an occupant can allow personalised assistance to be offered, such as medication

schedules, activity, and dietary suggestions [58]. This information can offer an

insight into what is normal behavior and what is abnormal behavior for the occu-

pant [19, 59, 57]. Once the identity of the occupant has been established it can

offer a number of advantages in terms of the level of support that can be provided

to the occupant. Once an occupants identity has been confirmed the system can

tailor the environment to the occupants personal preferences. For example, if an

occupants’ typically prefers a warmer room the system can adjust the thermostat

to increase the temperature to the occupants’ preferred temperature. Addition-

ally, the environment can be further tailored to the occupant’s schedule, such as

raising lighting to wake the occupant at their preferred time along with providing

reminders for their daily schedule. The occupant’s individual lifestyle can also be

taken into consideration when providing support to an occupant. The occupants

dietary preferences can be taken into account, providing relevant recipes or local

restaurant recommendations. Additionally, the occupant’s fitness goals can be

taken into consideration, recommending active time depending on their activity

levels throughout the day or local gyms or relevant sport clubs.

However, there can be challenges in collecting relevant data for supporting

personal preferences and lifestyle factors. The occupant may feel the collection of

this information to be intruding on their privacy and may not be willing to share

this information or may not provide information that is fully accurate. Further

challenges are differentiating between permanent changes to the occupant’s routine

and occasional or ad hoc changes to the occupant’s routine which requires constant

data collection and analysis. Lastly, collecting lifestyle/personal information can

require gathering data from various sources such as wearable and environmental

sensors which can introduce challenges in accuracy and consistancy across devices.
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1.5.4 Time

Typically, occupants will have a certain routine that they follow which can be

leveraged to determine if behaviour is abnormal [60]. For example, occupants may

have a set morning routine where they carry out a typical list of activities such as

a personal hygeine routine, making/eating breakfast, and getting ready for work

[61]. A context aware system can use this typical routine to provide timely and

relevant assistance to the occupant. Such as gently raising the lighting within

the bedroom to wake the occupant, suggesting breakfast recipes, and reminding

the occupant of any meetings or appointments that they may have throughout

the day [62]. Additionally, a context aware system can leverage time to provide

reminders at an appropriate time, such as reminders to take medication or sug-

gesting a peroid of higher activity if their activity levels have been low throughout

the day [63]. Time can also be used to directly relate to what is normal and ab-

normal behaviour for the occupant. For example, if they are attempting to make a

meal, the time can determine if this is defined as normal behaviour (e.g. at 18:00)

compared to abnormal behaviour (e.g. 03:00). This information can be used to

determine if the occupant would then require further support in terms of inter-

vention [64].The consideration of time can allow context aware systems to make

timely predictions and reminders and can increase the accuracy and relevance of

context aware applications and the support they can offer.

1.5.5 Activity Recognition

Activity recognition is an important factor in determining the context of a situ-

ation, there are many activities/tasks an occupant can be assumed to be doing

if location, time, and identity are the only factors which are known. Therefore,

it can be difficult to know what support, if any, the occupant may need at that

time or indeed if the occupant is exhibiting normal or abnormal behaviour at that

moment. For example, it can be classed as normal that an occupant is in the bath-

room at any time of the day but with the additional information of the activity

that the occupant is carrying out we can further define if that is normal or abnor-

mal behaviour. For example, if the occupant is in the bathroom in the early hours

of the morning and it was determined that they are cleaning the bathroom, this

can be classed as abnormal behaviour. Furthermore, it may be defined as abnor-

mal or normal activity for the occupant to be in the kitchen in the early hours of

the morning (e.g., 02:00) depending on the activity that the occupant is carrying

out at the time. For example, it could be defined as normal that the occupant
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is in the kitchen at this time to get a glass of water yet defined as abnormal if

the occupant is in the kitchen at this time and the oven is turned on along with

sensors triggered for fridge/cupboards etc.

Activity recognition has evolved to be a critical issue in Ambient Assisted Liv-

ing (AAL) as activities can give greater contextual meaning to a situation [65] and

can help determine the level of independence of an occupant based on their ability

to complete Activities of Daily Living (ADL) [66]. The measure of an individual

to carry out their ADLs has been defined by the Katz Index of independence in

ADLs [66]. This index allows the assessment of an individual’s ability to carry

out their ADLs in order to assess the level of assistance that may be required.

Activity recognition utilises sensors placed within the environment to determine

the activity via sensorised objects within the environment. Typically, this takes

place through dense sensor placement (where low cost contact sensors are applied

to an environment to capture data on object interaction) within an environment

but more advanced techniques, such as machine-vision (using a video camera to

recognise objects or occupants within the video stream) and radar (were radio

waves are used to detect objects or occupants), are becoming more commonplace,

as demonstrated by [67], along with combinations of multiple techniques. The

constant monitoring of occupant’s activities allows a more accurate evaluation of

their current health status through the occupant’s ability to perform ADL inde-

pendently [66].

1.6 Machine-Vision

Machine-vision is a branch of computer science focused on the use of cameras and

image processing to attempt to replicate human vision processing [68]. According

to the Automated Imaging Association, machine-vision includes:

...industrial and non-industrial applications in which a combination

of hardware and software provide operational guidance to devices in

the execution of their functions based on the capture and processing of

images. [69]

This typically relies on digital image sensors to acquire images to allow analysis and

measurements to be carried out with the end goal of informing decision making.

Within the domain of AAL machine-vision can be utilised to monitor occupant’s

location and activities with the goal of supporting their independent living [70,

71, 72, 73]. A common method within machine-vision is that of leveraging feature
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points within an image [74]. These feature points will normally map to a real

location within a scene allowing the comparison of the known features points of

an object of interest with those feature points detected within the scene.

Traditionally utilising features within a machine-vision context consisted of

three major steps, 1) feature detection, 2) feature description, and 3) feature

matching [75].

Feature detection Detection is the process of detecting points of interest in an

image (also known as keypoints) which can be used to uniquely identify

the object of interest within the image, these features will mostly consist

of edges, points, corners, and blobs [74]. Suitable features will have a well

defined/localised position in the image, they should be stable under varying

brightness levels and offer a high degree of repeatability in terms of detection.

Feature description Description is the process of describing the area surround-

ing the feature point in such a way that it will provide robustness to changes

in brightness, scale, and rotation, typically resulting in a feature vector being

produced for the respective feature point [75].

Feature matching Matching involves determining correlations between the known

features and their descriptors of the object of interest against the features

and descriptors detected in the current image.

With the advancement of machine learning techniques many “off-the-shelf” ma-

chine learning libraries now exist which can be utilised without the need to develop

a unique algorithm for the application of machine-vision to AAL.

1.7 Research Challenges

There are multiple research challenges within the domain of AAL, this Thesis

investigates three key issues. Firstly, the issue of a system being applied to differing

environments. This traditionally requires re-training to the new environment in

order to support an occupant within their own home. Secondly, the challenge of

establishing the viability of determining the location of an occupant through an

egocentric camera. Lastly, the challenge of establishing the current activity that

the occupant is undertaking in order to provide relevant support.

Additionally, there is the issue of multiple occupancy [76, 77]. Within the

context of AAL only the occupant of the environment needs support, however,

False Positives (FP) can be generated which can cause irrelevant sensor events
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due to visitors interacting with sensors or faults in sensors. For example, FP’s can

be generated through care workers who may have regular check-ins with the patient

or through visiting friends or family members. Further issues encountered include

a lack of systems which can provide support in real-time or near real-time which is

of key importance when attempting to support occupants with their ADLs. This

lack of real-time support can be caused by a delay in sensor events being collected

or a delay in the processing time required to make a decision.

The need for these systems to perform well in differing environments is also a

challenge due to the requirement to be deployed within the occupant’s own home.

There can be no assumption made as to the layout of the environment or to the

existence of objects that are used for location/activity recognition. Traditionally,

this requires a re-training of the system to “learn” the new environment, this not

only takes up time for the training process but depending on the quality of the

training data that has been gathered the performance of the system will vary.

There is also the issue that if any objects are moved within the environment,

the system will then require training for the new room layout. The lack of a

need to train for a new environment also offers a further range of benefits, such

as ease of use as the system no longer has to be retrained. Which can take a

considerable amount of time due to the need to perform data collection on the new

environment and will allow for a faster deployment. Additionally, as the system

is “pre-trained” this will typically result in a more robust and reliable model [78]

which is of importance when considering the use case of supporting older adults

who would require accurate and timely support.

The proposed research aims to reduce these problems though the use of Google

Glass to provide a first-person (egocentric) wearable view, utilising processor off-

loading and fiducial markers. Fiducial markers take the form of an object which is

placed within the FoV (Field of View) of the camera to provide a unique identity

to that object/scene, an example of a fiducial marker applied to an object can be

seen in Figure 1.3.
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Figure 1.3: A fiducial marker applied to a telephone.

A second research challenge behind the work presented was establishing the fea-

sibility of determining the location of an occupant through a first-person wearable

camera. This challenge was further compounded due to the lack of first-person per-

spective datasets that were available. In order to overcome this challenge a method

was proposed using “key” objects within the user’s immediate environment which

would then be cross-referenced against a knowledge base to determine their indoor

location. One of the issues surrounding this method is the large variance that is

present in common household objects, such as differing manufacturers/models of

various appliances. In order to address this challenge a method was proposed using

fiducial markers placed on “key” objects to allow a common and consistent method

of identifying objects and thus localising the position of the occupant within the

environment.

The final research challenge in this piece of work is that of determining the

activity currently being carried out by the occupant. This is key for an AAL

situation as the goal is to assist those in need with their ADLs in order to allow

them to live in their own home independently for longer [79]. A key issue is when

to determine if an object detection is due to the occupant carrying out an activity

or if it is a FP due to random gaze activity or from the occupant navigating

through an environment. This challenge can result in inaccurate locations being

reported. In the case of determining the occupant’s activity this could result in the

wrong activity being determined which could result in confusion for the occupant

is support is offered for an incorrect activity.
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1.8 Research Aim

This research aims to investigate the use of machine-vision to support those at

home who may traditionally require assistance to carry out their ADLs through the

use of improved location accuracy and activity recognition via evidential reasoning.

To support this aim, a number of research quetions are posed.

1. Does the use of an egocentric wearable camera offer the ability to determine

the user’s indoor localisation along with additional context when detecting

activities in comparison to dense sensing approaches?

2. Does the use of fiducial markers within the environment allow the easy adap-

tion to new environments without a period of re-learning the environment?

3. Does the use of an object-distance estimation improve the rate of detection

of object interaction when compared to a non-estimation approach?

4. Does the application of evidential reasoning further improve the state of the

art through improving the accuracy of activity recognition?

1.9 Thesis Workflow

This Chapter offers an introduction and overview of the motivation and challenges

behind this research, which investigates wearable vision-based systems for AAL. A

core research challenge lies in the indoor localisation of an occupant along with the

associated activity that is being carried out within the environment. Addressing

these challenges using a single wearable vision-based sensor is explored, with results

and challenges of such a system explored. This thesis is presented within seven

Chapters. Figure 1.4. provide an illustration highlighting the relationship between

these.

Chapter 2: Technology Based Approaches to Facilitate Ambient As-

sisted Living

This Chapter presents a range of methods and technological developments within

the field of AAL, in particular, emphasis is placed on carrying out ADLs within

an occupant’s own home to help assist with Aging in Place.

Chapter 3: Generation of Egocentric Datasets for ADL Research

This Chapter critiques a study of work which involved generating a series of

datasets to be used in a series of further studies. This Chapter includes the design

of the activities and routines that will be used to generate the datasets, along
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with a description of the sensors that will be used to create the data as well as a

description of the environments. Details of the locations in which the dataset is

gathered is presented, Ulster University Pervasive Computing Research Group and

University of Jaén UJAmI SmartLab. A floor-plan layout of the respective labs is

also presented along with the respective sensor locations. A detailed breakdown

of the routines along with their component activities is also presented along with

a technical description of the hardware used in the respective sensing technologies

used within this thesis.

Chapter 4: Towards Indoor Localisation through Fiducial Marker

Detection on Real-Time Video Implementing a Wearable Camera

This Chapter presents a study of work carried out to assess the technical feasibil-

ity of utilising a single wearable camera to determine occupant location via the

detection of objects within the environment. A method of indoor localisation is

presented through the use of an egocentric view of the environment via a single

wearable camera – Google Glass. The Chapter establishes an experimental pro-

tocol to allow the feasibility of the proposed method to be assessed as a means

of indoor localisation. Dense sensor placement is also used to allow a comparison

of methods to be carried out to determine the success of the proposed method.

A series of routines were carried out and data recorded from both the proposed

system and the dense sensor placement. In order to verify if the method is appli-

cable to multiple environments the routines were also carried out at a second test

environment at the UJAmI SmartLab in the University of Jaén, Spain.

Chapter 5: Comparison of Fiducial Marker Detection and Optimis-

ing Marker and Object Detection Through Enhanced Filtering and Seg-

mentation

This Chapter presents a study of work carried out to compare the proposed method

of determining location via fiducial markers to an off the shelf method, ArUco, in

order to determine the performance of the proposed system. This Chapter also

presents a method to aid in determining if an occupant-object interaction is genuine

or is a FP generated through the occupant navigating throughout the environment

or through general gaze activity. The presented method is known as the Intelligent

System for Detecting Inhabitant-object Interactions (ISDII), this is based around

the observation that an occupant is generally within a known “interaction range”

with the object of interest. This also takes into account the differing forms of

interaction that different objects will require, a phone for instance will have a

much closer interaction range than a TV. A two-stage filter was also developed

for this stage in order to manage the uncertainly introduced due to missed marker
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detections within the video stream.

Chapter 6: Managing Uncertainty in Activity Recognition Utilising

Dempster-Shafer Theory

This Chapter presents a study of work carried out to investigate the use of DS

theory. This is to minimise the uncertainty introduced through missing sensor

values within a data stream when determining the activity currently being carried

out by an occupant within a smart environment. The Chapter also presents the

concept of DS theory and how it can be applied to an AAL context. This has been

applied to the vision-based dataset within the presented work to try and minimise

the effect that miss-classifications or missing sensor values have on determining

the activity of interest.

Chapter 7: Conclusion

This Chapter provides a summary of the overall work presented in this Thesis along

with how the overall research aims, objectives, and research questions have been

addressed by this work. The Chapter also discusses the contribution to knowledge

that has been made through this work as well as the limitations and directions for

future work. Figure 1.4 presents the flow of work within this thesis demonstrating

how each Chapter is linked.

Figure 1.4: Overview of thesis showing links between Chapters that are presented.

Results from Chapter 3 are used to enable the development of subsequent Chapters.

1.10 Summary of Contributions

This aim of this Thesis is to contribute to knowledge within the domain of AAL

aiming to achieve the following contributions:

1. The design and implementation of a real-time vision based indoor localisa-

tion system via an egocentric camera utilising fiducial markers.
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2. The design and implementation of a method to remove the need to train for

each environment.

3. Benchmarking ORB and Aruco in an AAL scenario along with the develop-

ment of IDSII.

4. Implementation of DS theory to that of an egocentric camera in order to

correctly identify ADLs within a real world smart environment.
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Chapter 2: Technology Based Approaches

to Facilitate Ambient Assisted

Living

2.1 Introduction

This Chapter reviews existing research surrounding technology to promote occu-

pants to live independently within their own homes for longer. This area of research

is commonly known as AAL. AAL promotes the potential to enable inhabitants

to remain within their own home for longer through the use of unobtrusive moni-

toring and support, allowing them to maintain an improved quality of life (QoL).

Thereby reducing the burden on formal care services and delaying the potential

requirement to be re-situated within full time care facilities [80].

AAL is typically realised through the use of sensor technology, which monitors

the occupant’s activities and to afford support with task initiation or completion,

if required. AAL technologies can be used to monitor and detect anomalous be-

haviour, for example those relating to health related issues, such as dehydration

and lack of food intake [70].

There are many methods in supporting ADL, however, they all share a common

underlying methodology and with common technology, along with challenges to

this area which require further research.

2.2 What is an Activity of Daily Living

Firstly, it must be defined what is an Activity of Daily Living (ADL) and what

activities constitutes ADLs. Along with an overview on how these activities are

supported from a traditional and technological perspective. ADL is a term used

to represent the set of common tasks that comprise of one’s own daily self-care re-

quirements [81]. The ADL concept was initially proposed by Dr. Sidney Katz and

his team at the Benjamin Rose Hospital in Cleveland and has since evolved into

20
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its present categorisation of activities [82]. ADL can be separated into two main

categories: Basic Activities of Daily Living (BADL) and Instrumental Activities

of Daily Living (IADL) [83]. To maintain BADL requires a basic competency of

self-care tasks such as bathing, dressing, eating, and toileting along with the care

for personal devices such as a hearing aid. IADL typically require more advanced

skills as they require use of higher functions such as social skills, use of electronic

devices, and the handling of money, for example. Activities catagorised as a BADL

include bathing, showering, toilet/personal hygiene, eating, and sleep. IADL ac-

tivities include care of others, emergency responses, child rearing, financial/health

management, meal preparation, and shopping. The set of activities as defined by

the American Occupation Therapy Association (AOTA) [1] for both BADL and

IADL are presented in Table 2.1.

Additionally, it is important to note that the ability to carry out individual

ADL may not degrade in a linear fashion, for example, activities such as bathing

and dressing become increasingly impaired as conditions such as Dementia pro-

gresses whereas activities such as toileting and feeding remain relatively intact

even as their condition deteriorates [84]. A possible explanation for this could be

due to different cognitive areas being associated with the performance on differing

ADL, rather than all ADL [84].

Table 2.1: ADL defined by the AOTA [1].

BADL IADL

Bathing/Showering Care of Others

Bowel and Bladder Management Emergency Responses

Toilet Hygiene Care of Pets

Dressing Child Rearing

Eating Communication Device Use

Feeding Community Mobility

Functional Mobility Financial Management

Personal Device Care Health Management and Maintenance

Personal Hygiene and Grooming Meal Preparation and Cleanup

Sexual Activity Safety Procedures

Sleep/Rest Shopping
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As a result, the inability to carry out these activities can result in a loss of

self-esteem and instill a deep sense of dependence to the person, along with a

possible disturbance in family roles as partners are frequently required to assume

the position of caregiver when the ability to carry out BADL/IADL is compromised

[83]. Supporting people in their ADL allows them to experience a higher QoL [85],

as ADL performance is directly correlated with QoL [84, 85], promotes a sense of

independence and reduces the burden placed on caregivers. Additionally, a loss

of independence in carrying out ADLs/IADLs has been shown to lead to a loss in

autonomy and can lead to a further dependance on formal or informal care [85].

This can also result in an increase in mortality rate and their associated healthcare

costs [85].

For the purpose of assessing an individual’s ability to perform ADLs a num-

ber of scales have been created. One such scale is the Katz Index [86], which

provides a basis for measuring, predicting, and comparing decline and recovery of

the person’s condition and the level of support that will be required in order for

them to successfully carry out ADL [66]. Additionally, the Bristol ADL scale was

developed in collaboration with caregivers to provide an assessment of people with

mild dementia living in the community [87]. A person’s care requirements differs

depending on the degree of cognitive decline with some people losing the ability

to follow instructions, or forgetting the sequence or next step of a task part way

through its completion. Their ability to maintain focus on a task may decline and

they often stop recognising common objects or forget how to interact with them.

However, technology offers increasing opportunities within the domain of AAL

to provide increased support for those who require assistance with ADLs [88]. This

is especially true in the earlier stages of cognitive decline when the person is still

able to carry out tasks with a degree of independence and only require reminders

or brief instructions on carrying out a task [89]. Traditionally these reminders

or instructions would have to be given by caregivers, either through one to one

contact or though the use of reminders left throughout the environment such as

post-it notes left on items or instructions left throughout the home. Table 2.2

presents a small comparative list of such support alongside technological means of

offering comparative support.

In summary, ADLs comprise essential self-care tasks and the inability for an

occupant to complete these tasks can lead to a reduction in the QoL for the

occupant due to a further reliance on carers or family members. Technology has

been shown as a potential solution to aid those who are struggling to undertake

their ADLs through offering reminders/instructions to aid in reducing the burden
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Table 2.2: Comparison of differing provisions of care for ADLs from a traditional

and technological perspective [2].

Traditional Care Technological Care

Person to keep a diary for ap-

pointments

Automated calendar reminder

to publish reminders/alerts to

an person’s smart-phone or

display

Important items to be kept in

the same place

Alarmed receiver attached to

important objects to aid in

locating

Put labels on doors/cupboards Wearable camera to recog-

nise and remind persons of

door/cupboard contents

Place important numbers by

the phone

Phone with pre-stored num-

bers represented by familiar

faces

Place note on back of door as

reminder to take keys

Door sensor to remind occu-

pant to take keys when door is

opened

Label family photographs Facial recognition to act as a

reminder

Pin a weekly timetable to the

wall

Automated calendar reminder

to smart-phone or display

Write reminders to lock door

at night, turn off gas, put rub-

bish out etc.

Automated systems in house

to take action at certain

times, such as turning off

cookers, locking doors, etc.
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placed on caregivers. Addressing the issue of ADL independence is crucial to

improve the lives of the occupant along with maintaining their independance and

reducing the burden on the healthcare system and carers.

2.3 Leveraging Smart Environments to Support

ADL

The solution of a smart environment has long been proposed as a means to ease the

burden of an aging population, originally proposed by Dr. Mark Weiser in 1991

as a way to integrate computers seemlessly into our lives [15]. The development

and implementation of smart environments are ongoing with contributions from

industry and academia [90, 91, 92, 93, 94, 95], this research will focus on smart

environments which affords occupants who would normally require the assistance

of carers to be supported within their own home [96, 97, 98, 99]. This is achieved

through the use of technology based solutions to allow the occupant to gain a

larger degree of independence. This has been brought further into acceptance by

the recent advent of consumer smart home appliances designed to be retro fitted

into existing homes. A smart environment has been defined as being one that is

“able to acquire and apply knowledge about the environment and its inhabitants in

order to improve their experience in that environment” [14]. In essence, a smart

environment consists of distributed technology throughout an environment and

encompasses room level equipment such as lighting sensors through to object spe-

cific sensors such as automated switches. This can also take the form of sensors

placed on objects within the environment, such as binary contact sensors, in order

to determine the status of the occupant. Additionally, technology such as sen-

sorised floors and/or cameras can also be installed within the environment to aid

in determining the occupant’s status, such as detecting falls. Chapter 3 discusses

smart environments in further detail and includes visualisation of various smart

environments. These technologies exist in order to gather information about an

environment, which is then used to automate that environment, such as adjusting

temperature via the heating system. This information can also be relayed back

the person [96].

However, it should be noted that there are some limitations utilising a smart

environment. The acquisition and maintenance costs of implementing a sensorised

environment can be considerable. A large network of embedded sensors is normally

required which results in a system that is costly to maintain, relatively obtrusive (as
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sensors are required on every interactable object), and sensitive to the performance

of the sensors. Section 4.3.1 discusses this limitation in further detail. Additionally,

there is a risk of the occupants becoming overly dependent on the technology

to perform their daily tasks [100]. This over dependance on the technology can

become an issue should the technology malfunction or if there is a failure in the

system.

Regardless of the type of technology implemented the overall goal of a smart

environment is to improve the QoL for those within the environment, in order to

offer greater levels of independence, and to reduce the need for or delay institu-

tionalisation. This is achieved through wearable and environmental sensors that

allowed the facilitation of preventive care along with the monitoring of chronic

conditions. It is, in the purest sense, an example of ubiquitous and pervasive com-

puting which represents the idea of “computing everywhere”, making computing

and communication effectively transparent to users [15].

2.4 Technology as an Enabler

Selecting an appropriate technology to assist in supporting ADLs can be challeng-

ing with a wide range of competing technologies available. Generally, the function

of these technologies can be broken down into four main applications [101]:

Ensure Safety

Fristly, ensuring the safety of the occupants is a key concern for assistive

technologies. These technologies ensure that the person is not put at risk

due to declining memory from conditions such as dementia, or general aging,

along with the general concern from persons and family members over an

occupant being left alone [102]. Some possible applications include systems

such as automated door locks that will activate at a certain time [103]. It is

also possible to have a camera installed that will only open the door when the

person has confirmed that they know who the visitor is, facial recognition

can also be used if the occupant has trouble remembering faces [104]. It

is also possible to detect if the occupant may need medical assistance using

technology to detect falls [105]. Where the system will detect if the occupant

has fallen and contact the relevant authorities, family, or carers [106].

Improve Communication

Secondly, communication is an important factor to consider when support-

ing occupants. Communication technology allows the occupant to keep in
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contact with friends and family to help avoid them feeling alone or isolated.

Simple changes can include the replacement of conventional telephones but-

tons with picture buttons – where a friend/relatives face is printed on the

button with their number stored to assist contact [2]. Facial recognition sys-

tems can also aid in this, using door or wearable cameras the occupant can

be reminded of who the visitor is along with any relevant information, such

as if this is a regular carer visit or if it’s a scheduled appointment.

Multi-Sensory Stimulation

Thirdly, assistive technology can aid in those with cognitive decline. These

technology aids aim to relieve depression and loneliness, promoting physical

well-being, along with improving relationships between people with dementia

and their carers [107, 108, 109]. Examples of these include the creation of an

individualised biographical reminiscence tool which provides videos, audio,

and photographs from the occupant’s past. With the aim to try and trigger

past memories from creating a familiar sense of belonging [97].

Memory Enhancers

Lastly, assistive technology can be used to aid in memory enhancement, par-

ticularly for those with conditions which can cause increased cognitive decline

[110]. Due to the high occurrence of memory related conditions amongst the

elderly segment of society declining memory is a common issue [13, 110]. In

order to help alleviate these issues a range of reminder technology has been

developed. These include electronic calenders where appointment reminders

are prompted to the occupant through a smart-phone or other display [111].

Additionally, to aid in locating important items they can have alarmed re-

ceivers attached to them to aid in locating. These can range to complex

systems where the occupant’s activity is recognised and assistance is then

offered if the occupant is determined to be struggling to complete an activity

[112].

However, it should be noted that people may react differently to differing assistive

technologies. While some people may prefer a complex system, for example, one

consisting of a system that monitors their medication intake and informs them

accordingly, others may prefer a simple timed medicine dispenser that issues tablets

at a set time each day [113]. There is also the problem that the condition of

dementia, in particular, can make people apprehensive to try out new technologies

with concerns over the complexity of such systems and their inability to use them,

or reluctance to admit that they require assistance with ADL [102].
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One potential solution to mitigate the differing responses to assistive technology

is to adopt a user-centred design approach. This approach involves engaging with

the target user group to better understand their requirements and their personal

preferences. This can allow personalisation of the system to better fit into the

users needs and lifestyle and allows the user to be involved in the decision making

process. A user-centred design approach also offers longer term feedback and co-

development from the user which allows the system to be further personalised and

additional feature development can take place with feedback from the target users.

2.5 The Role of Ambient Intelligence in Making

Environments “Smart”

One of the areas that offers a lot of opportunities within the domain of AAL is

Ambient Intelligence (AmI) [114]. AmI is where the environment supports the oc-

cupants through the use of ambient sensors in place of the traditional input/output

of a computer system [115, 116]. A wide range of technologies are needed to enable

AmI, generally comprising of a networked range of sensors along with computa-

tional facilities to interpret the sensor information and take action based on these

readings. AmI can be thought of as an amalgamation of three areas of computer

science, namely — ubiquitous/pervasive computing, sensor technology, and artifi-

cial intelligence [115, 116].

The goal of activity recognition within a smart environment is to detect gradual

changes in behaviour as well as atypical behaviour. Atypical behaviour could be

an early sign to a change in the status of the occupant’s condition or a failure in

sensor equipment. The following factors need to be considered [117, 118]:

� Individuals within the environment will have differing routines and behaviour

patterns. Therefore personalised classifiers for behaviour recognition are re-

quired in order to better learn what features describe an activity for an

individual due [118].

� Behaviour will differ on different days of the week, such as certain activities

being carried out on set days – these correlations can be learned to better

determine abnormal behaviour [118].

� Occupant’s routines will change over time and will display differences in the

activity they undertake, the time the activity is undertaken, and the day of
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the week the activity is undertaken. This will need to be taken into account

when developing AmI systems [119, 118].

When activities are carried out within a similar context, i.e. the same time, loca-

tion or carried out in a series we can then infer normal and abnormal behaviour

[120]. Machine learning models can be trained to recognise what is normal be-

haviour through analysing labelled data [121]. Labelled data is the process of

labelling each data point into predetermined categories, typically representing an

activity or object interaction within the domain of AmI. The labelled data can

then provide a ground truth to describe what is a normal instance of that activity.

With the goal of successfully detecting normal or abnormal instances of behaviour

from the occupant [122]. Additionally, time-series analysis can also be leveraged

to aid in identifying correlations between days of the week and activities that the

occupant carries out [123]. For example, through the occupant’s historical data it

may be discovered that the occupant routinly has visitors on Wednesday. Through

analyising these patterns the system can make activity recommendations based on

the day of the week, or conversly the system may not interrupt/disturb the oc-

cupant with low priority notifications. AmI facilitates the continuous monitoring

within the home environment which can aid in early detection of deteriorating

health problems or detect a worsening in chronic health conditions [124]. These

may not be easily detected within a clinical environment, such as unusual be-

haviour such as failing to take medication correctly when there is a visitor, or

failing to carrying out ADL in their daily routine.

2.5.1 Data Driven Approaches for Modelling ADL

The following section will focus on approaches taken within the domain of data

driven approaches for modelling ADLs with the goal of establishing an under-

standing of data driven approaches. Data driven approaches rely on collecting

large amounts of data to “learn” the occupant’s activities and habits [115] through

recognising identifiable features that make up the individual activities. Data min-

ing is applied to the collected data in order to determine and collect patterns.

Machine learning is a common technique used to reason on the data collected,

this includes both supervised, unsupervised, and semi-supervised methods. Su-

pervised methods require a set of labelled data on which to train on, for example,

this consists of sensor data of the person performing activities that can then be

learnt in order to recognise these patterns in real time on unknown data. Super-

vised and unsupervised learning form the basis of data driven approaches, where



29

supervised approaches are given examples of activities made up from sensor data,

and unsupervised methods where no example activity data is provided.

A wide range of algorithms that can be used to support supervised learn-

ing/activity recognition, these include Hidden Markov Models (HMM), Decision

Trees, Support Vector Machines (SVM), Deep Learning, and Ensemble approaches

which can combine a number of algorithms [65, 125, 126, 127]. An example of how

an HMM could be used within activity recognition research could be a scenario to

recognise walking, running, and sitting activities from an accelerometer. Firstly,

data will need to be collected which is representative of the three states to detect.

The features will then need to be extracted from the data to determine unique

data points that can be used to identify an individual activity, some example fea-

tures are mean values and standard deviation. The individual states to detect

then need to be defined, in this scenrio the three states are walking, running, and

sitting. This is done via training the model using a labelled dataset where data

representive of each state is used so the model can “learn” the unqiue features for

each state. As well as learning the transition properties which represent the transi-

tioning from one state to another. New, unlabelled data can then be inputted into

the HMM to compute what the most likely sequences of activities were undertaken

that explains the observed data. K-Nearest Neighbours (KNN) can also be used

for supervised learning (as well as unsupervised) which classifies activities through

comparing the features of a new activity with those of its K-Nearest Neighbours

within the dataset. The activity prediction is then based on the majority class

amongst it’s nearest neighbours [128, 129]. Naive Bayes is a probabilistic algo-

rithm which calculates the probability that the current activity being undertaken

corresponds to a known set of features for each activity [130]. It should be noted

that Naive Bayes assumes that all the features used in classification are indepen-

dent of each other which can be an unrealistic assumption as features in many

real world datasets can be correlated [131]. Multilayer Perceptron (MLP) [132] is

a neural network algorithm which consists of multiple layers of artifical neurons.

An MLP is capable of learning complex patterns within a dataset which can make

them suitable for tasks such as activity recognition [133]. Lastly, Random Forest

is a ML algorithm that can be utilised within supervised learning, it combines

multiple decision trees to make a prediction on what activity is being carried out

based on the dataset. [134].

Regardless of the algorithm chosen, there is a common set of steps involved

in the establishment of a representative model [65] that can accuratly capture the

essential information/data for what the model is required to represent. The first
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step is to acquire a training dataset which will be used to train the system as to

what sensor features make up an activity. This training set should be representa-

tive of the real world application that the system will be deployed within and will

include labelled annotations of what the person does and when. A test dataset

should also be gathered to validate the generalisation ability from the training

dataset (the capacity for the model to perform well on unseen data). Once the

algorithm has learnt the training dataset its performance will then be tested on the

test dataset. It is common to have to repeat these steps with differing partitioning

of the training and test dataset to refine the algorithms ability to detect activities

while avoiding the problem of over-fitting and improve generalisation [65, 135].

Algorithms for unsupervised learning include K-Means, mixture models, Bayes

networks, and KNN [65]. Unsupervised methods try to recognise and construct

activities from unlabelled data, like supervised methods the first stage is to acquire

a dataset but in this case unlabelled. The next stage is to aggregate and trans-

form the sensor data into features and then model them using density estimation

or clustering methods. The goal of this method is to separate the data into differ-

ing clusters, so while it may not be aware what activity represents each cluster it

can determine that cluster X is a different activity to cluster Y, with the goal of

identifying groups of similar data within a larger dataset. This technique is used

to identify patterns within the data that may not be known within the dataset.

Clustering is achieved via utilising a distance measurement within the data, such

as Hamming or Euclidean distance, in order to determine how similiar each re-

spective data point is. The data is then arranged into clusters depending on their

distance measurement in order to discover hidden patterns within the dataset.

Additionally, density estimation can be utilised for understanding the underlying

data distribution, which involves estimating the liklihood of data points with the

aim of determining how the data is distrubuted within the dataset. One major

challenge using a data driven approach, whether supervised or unsupervised, can

be the requirement to obtain a vast amount of data for training purposes. This

issue is further compounded if attempting to incorporate video and audio data

into the reasoning process [114].

Semi-supervised method are a hybrid approach which combines supervised and

unsupervised learning[136]. This method uses both labelled and unlabelled data,

this is normally used when the labelled data is not comprehensive enough to pro-

duce an accurate model or when accurately labelling the data would be too time

intensive to be feasible. A semi-supervised method uses a limited set of labelled

data to train itself as per a supervised method, resulting in a “partially” trained
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model. This partially trained model then labels the unlabelled data, known as

pseudo-labelled data. The labeled and pseudo-labelled datasets are then com-

bined allowing both the descriptive aspects of supervised learning to be combined

with the predictive aspects of unsupervised learning.

2.5.2 Knowledge Driven Approaches for Modelling ADL

Knowledge driven based systems rely on a series of rules that determines if an

activity is being carried out. Knowledge based systems are designed to utilise do-

main specific expertise to make decisions allowing them to make complex decisions

in order to solve problems. One advantage of knowledge driven system is that it

allows you to separate the activity detection from the supporting system thus al-

lowing rules to be reused within the domain with only minimal customisation to

the unique needs that the occupant may require [137, 138]. There are differing

methods of knowledge representation within smart environments, however, there

is currently no accepted standard within the domain.

Event-Condition-Action Systems

One form of knowledge driven systems is the Event-Condition-Action (ECA) which

is an architectural pattern for representing context awareness [139, 140]. This

method consists of three modules, an Event, Condition, and action modules — the

Event module is responsible for gathering contextual information such as sensor

data, the Condition module is responsible for the rules and the Action module is

responsible for executing the associated action with each rule [141, 140].

These rules take the form of:

On (event expression)

If (condition)

Do (action)

The reading of these rules are as follows: On detecting a certain event check If

a condition is true and if so then Do the specified action [141, 140]. The On is

defined as the rule trigger which is determined to be true if an event occurs that

matches the event expression defined in On. The If section of the rule defines a

conditional statement that has to be evaluated to true in order to trigger the final

statement of the rule which specifies what action needs to be taken [115]. A simple

example of this would be:
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On (bedSensor == TRUE)

If (TV == ON)

Do (TV = OFF)

This reads as On detection that someone is in bed and If the TV is still on,

then Do turn the TV off. An example of a traditional implementation of an ECA

system is through the use of HomeRuleML [142] which is an XML based schema

to represent rules within a smart environment. HomeRuleML specifies a list of

sensor IDs along with a conditional value which when true allows the system to

determine if the conditions of an activity/rule have been specified along with an

action statement for each rule.

Ontology Systems

Another form of knowledge driven AmI is through the use of an ontology based

system, which allows taxonomies and relationships between concepts to be defined

[143, 144]. Ontologies offer several advantages over traditional forms of knowledge

representation, a well-defined ontology allows knowledge sharing a re-use [145],

declarative semantics allow multiple policies to support context detection [146],

and ontologies also provide complex inference mechanisms [147, 148].

Limitations

However, it should be noted there are a number of limitations with implementing

and maintaining knowledge based systems. Firstly, acquiring and maintaining the

knowledge required for these systems can be a challenge due to the requirement

to have a domain-expert to provide the knowledge [149]. Gathering the required

knowledge can be a time consuming and costly process, particuraly as knowledge

will change over time which will require the sytem to be regularly updated with

new domain knowledge [150]. There is also the challenge of how to best represent

the domain knowledge in a format that is understandable to machines as well as

humans, particularly when ensuring transparancy in the decision being made by

the system.

2.5.3 Context Driven Approaches for Modelling ADL

When developing context-aware applications the users contextual situation is key

to supporting the occupant. Context-aware approaches rely on information such

as the date, time, occupant’s location, roles of people present, as well as known

objects [115]. As introduced in Chapter 1, Dey and Abowd define context as:
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“...any information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user

and application themselves...” [19]

Contextual Categories

Context can be used to represent two main categories within AAL — user-centric

context and environmental context [115].

User-Centric Context

User-centric context revolves around the occupant’s background, current be-

haviour, and emotional state [115]. Background factors such as a user’s

interests or medical conditions can have an effect on their current context

or the actions that will need to be taken. For example, should the person

be diabetic, support will be required to ensure that blood glucose levels are

checked at regular intervals and before meals. Current behaviour will factor

in variables such as the person’s current activity. If they are currently in-

volved in an activity viewed as high importance, such as a discussion with

their physician, then the person will not be notified/prompted with items

that are considered low importance. Lastly the person’s emotional state is

taken into account when determining user-centric context from multimodal

sensors and analysis of user features, such as voice or tremors, as you may

not want to further frustrate the person if they are in a poor emotional state.

Sokullu et al. [151] developed a system which offered reminders depending

on the serverity of the abnormal behaviour and the occupant’s context. An

example would be if the occupant had left the bathroom tap running, the

system determined that a “mild” reminder would be suffice when the occu-

pant was near the tap as it not categorised as an immediate danger to the

occupant.

Environmental Context

Environmental context revolves around the occupant’s physical, social, and

computational surroundings [56]. Physical factors include variables such as

the current time, the occupant’s physical location, and temperature. These

can have a large impact on the type of support that is required, as certain

activities will only take place within a certain time frame that is in a certain

location — such as cooking dinner which would normally be within the hours
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of 17:00 – 19:00 within the kitchen [59]. Social factors will involve variables

such as surrounding people, for example, if the occupant is currently being

visited by carers or family members they will most likely not wish to be

disturbed [113]. The final environmental factor is that of the person’s imme-

diate computational surroundings, this takes into consideration equipment

such as sensors or displays that are within close proximity. In order to avoid

problems such as sending notifications to displays which the person may not

be able to see or that are in a different room to the person’s current location

[115]. Cha et al. [63] developed a system which investigated the contextual

factors relevant to interruptibility when providing a reminder to an occu-

pant, taking into account the environmental context. They found that when

the occupant was co-located with other occupants who are all undertaking

the same activity then the interruptibility of the occupant is dependant on

their engagement with the activity and the urgency.

Dey and Abowd further define the categories for context aware applications [19]

as the following:

Presentation

Is the ability to display information that is relevant to the user, including con-

textual information, and not just a list of information that requires further

user interaction. Presentation involves how the relevant contextual informa-

tion is presented to the occupant to ensure it is understandable, timely, and

useful for the occupant. An example of this would be a mobile device that

allows the display of friends or family member’s location and an awareness of

their activity. For a context aware navigation system could display an indoor

floorplan with route information and turn by turn instructions based on the

occupant’s current location. It is an amalgamation of Schilit’s proximate

selection [152] and Pascoe’s notion of presenting context [153].

Execution

Involves adapting the environment with additional information by associat-

ing particular data with a particular context through the actions and de-

cisions taken by the system. This involved the systems’ ability to adapt

it’s behaviour in a dynamic fashion to respond to the occupants’ current

situation. An example of this would be alerting a person when a visitor is

within a certain distance of their home. A context-aware system the execu-

tion layer could send medication reminders or adjust the occupant’s activity

levels/exercise routines based on the occupant’s current health data or their
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current level of physical activity. Execution is based on Schilit’s context-

triggered actions, and Pascoe’s contextual adoption.

Tagging

Tagging is the process in which the system records the actions and times

that they were carried out. This involves associating (or labelling) contex-

tual information with the actions or objects that are relevant to the occu-

pant’s activity. This can then be used later to help determine the person’s

behavioural habits and also to help determine if chronic conditions are de-

teriorating. This information can also be used in a data mining approach in

order to recognise patterns, such as online shopping applications which tag

user preferences/purchases allowing the system to suggest other products in

the future which are based on the user’s preferences.

This definition of contextual information allows a system’s behaviour to be person-

alised to the users’ current situation through the use of the presentation, execution,

and tagging categories. The presentation category provides a mechanism in which

the users can percieve and understand the data and contextual information. The

execution category provides a mechanisim in which the system can make context-

aware actions, and tagging allows a mechanism to aid in the organisation of the

contextual information to assist in providing enhanced services and experiences.

In practice there are certain contextual variables that are more important than

others. Typically these include: location, identity, time, and the person’s current

activity. For example, location permits nearby objects, people, and activities to

be determined. Their identity then allows other background information to be

inferred, such as contact details, birth date, list of friends, and relationships to

other people within their environment. A computer system that has knowledge of

context is therefore able to sense, and react based on the person’s requirements

within an environment in order to improve their QoL.

2.6 Ethical and Security Issues

One aspect of AAL (using technologies to enable inhabitants to remain within their

own home for longer through the use of unobtrusive monitoring and support) that

is unavoidable is the ethical and security concerns of such intrusive technologies.

This is a deep and wide ranging issue and can only be covered briefly within the

scope of this chapter.
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2.6.1 Ethical Issues

The implementation of the technology discussed previously in this Chapter raises

several ethical issues pertaining to the privacy and dignity of the occupants. Their

safety outside of supervised care, along with the quality of care that can be pro-

vided. Other complex issues arise such as identification of who is responsible for

the occupant’s well-being as they are no longer solely being treated by medical

staff/carers. There is also the issue of who will be responsible for the maintenance

of such a system, will carers be called on to both manage the person and to main-

tain the system [154]. The issue of front facing cameras, such as that on smart

glasses, is also a pressing privacy concern. Previous attempts to maintain privacy

include image blurring in sensitve areas or data anonymisation [155]. Additionally,

advancements within edge computing has offered increased privacy through a shift

in processing and data storage from the cloud to the end-users or near-user edge

devices [156].

Privacy

One issue is that of the occupant’s privacy, due to the range of sensing

technology that is used within AAL, a range of data is continuously being

collected. There is a challenge in balancing the level of technology and data

that is collected to provide support while respecting the occupant’s right

to privacy. Egocentric cameras which provide a first-person view of the

environment can raise particular privacy concerns. Some possible mitigation

strategies could be to blur the images in sensitive areas or to only store event

data and not store the raw vision data.

Unsupervised Safety

The goal of AAL systems is to allow occupants to live independently at home

but there is a concern about the occupants safety when they are no longer

wtihin supervised care. Care and consideration needs to be taken to ensure

that occupants remain safe when not under supervised care, such as ensuring

that they remain able to contact emergency services.

Responsibility

Determining responsibility for an occupant’s wellbeing becomes more com-

plex with the adoption of AAL systems. This is due to responsibility being

no longer the sole domain of the medical staff caring for the occupant. The

responsibilities of those who are developing, installing, and maintaining these

system will need to be clarified within future work.
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2.6.2 Security Issues

One major concern within the domain of AAL is that of security, as a smart

environment will be storing personal information about an occupant, which may

include medical data, therefore security is an utmost priority [157]. While there is

legislation in place to provide guidelines [158] on the access and usage of medical

data, security is still considered a major issue. An overview of some of the major

threats is presented in [159].

Personal Information

While legislation does exist within certain geopolitical areas, such as GDPR

in Europe, safeguarding this data is crucial. Ensuring that there are secure

authentication steps are put in place to avoid unauthorised users from tam-

pering with the system or to prevent them from gaining access to private

data.

Encryption

Data that is transmitted between sensors, devices, or servers must be en-

crypted to mitigate against interception or data leaks. This can aid in pre-

serving the confidentiality and integrity of the occupant’s personal data.

Physical Security

While the importance of authorisation and encryption cannot be understated

it is important to also consider the physical security of the system. Unatho-

rised physical access can led to malicious actors tampering with the system

or gaining access to private data.

In summary, AAL systems face a range of ethical and security challenges which

comprises issues such as privacy and safety along with corresponding security chal-

lenges such as encryption. To ensure the future adoption and success of AAL sys-

tems a holistic approach will be necessary, addressing both privacy and security

in terms of technological and physical.

2.7 Emerging Trends in Sensor Types

Sensors used to support ADL range from discrete state sensors to those that con-

tinuously record data. There are a range of methods which can be used to support

ADLs within their own home. Table 2.3 presents a summary of commonly used

sensor types, as reported in [160, 3]. One such method is Dense sensor placement
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[161]. A dense sensor system consists of a large array of lost cost sensors (binary

contact sensors in this implementation) which are placed on every object that the

inhabitant may interact with. This allows their location to be determined based

on their object interaction. Contact/pressure sensors will record binary state data

to inform whether an object has been interacted with, such as a door or bed re-

spectively. Accelerometers and gyroscopes [162] are normally combined to assess

how active the occupant is, along with other measures such as gait analysis. There

is also a range of sensing technology used for indoor location. Indoor location can

be key to supporting ADLs due to certain activities having set locations where

they are performed – such as cooking and bathing. Some examples of these are

Bluetooth and Ultrasound beacons that allow a receiver and transmitters to de-

termine location [163]. This is achieved by measuring how long the signal takes to

reach the receiver. Machine-vision systems can also be used to determine location

by using techniques, such as background subtraction, to establish the person’s lo-

cation. Machine-vision also allows you to determine what activity the occupant is

carrying out [164].

An increasing consumer trend that is also witnessing adoption within the do-

main of smart environments is the use of wearable technology [4]. Wearable tech-

nology offers new opportunities to AAL by enabling data to be gleaned not only

from the environment but from the occupants of that environment [165]. Wearable

sensors range from consumer activity monitoring devices produced by companies,

such as Fitbit and Apple, which capture data relating to heart rate, sleep mon-

itoring, and activity tracking. Towards complex cutting edge technology that,

for example, embed sensors within fabric [166]. Beyond these, the emergence of

head-mounted wearable technology in the last decade offered a new paradigm in

wearable computing. These devices offer a first-person view of the environment, an

eye-level display, along with on-board processing and communication capabilities

[167, 168, 169, 31]. With real-time scene processing, such as object/facial/text

recognition, allows the creation of supporting technology for the purposes of AAL

[9]. One potential methodology which has shown potential is the use of fiducial

markers within an environment when coupled to a wearable camera [170]. This

method of indoor localisation involves a small set-up in which fiducial markers are

placed within known locations within the environment. Cameras are then worn

by the occupant and traditional image processing techniques are applied (such as

feature point recognition). To allow the detection of the feature points within the

FoV. There are then compared to the detected feature points to the known tem-

plate of the fiducial marker. The use of fiducial markers allows for fast detection,
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Table 2.3: Brief overview of commonly used sensors within AAL [3, 4, 5].

Sensor Type Common Use

PIR Person Localisa-

tion/Movement Detection

Ultrasound Person Localisation

Bluetooth Person Localisation/Object

Information

WiFi Person Localisation

Video Person Localisation/Object

Detection/Facial Recogni-

tion/Activity Recognition

RFID Contact/Tag Information

Pressure Chair/Bed/Contact

Contact Door/Cupboard/Opening/Closing

Accelerometers/Gyroscopes Activity Recogni-

tion/Movement Detec-

tion/Object Interaction

Audio Activity Recognition/Fall De-

tection

Radar Occupancy Sensing/Activity

Recognition/Fall Detection
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however, due to the nature of a wearable cameras can result in lost detections

due to motion blur [49]. Wearable technology when combined with machine-vision

techniques has been highlighted in previous works as offering potential technologi-

cal developments within the domain of localisation and activity recognition within

an AAL context [4, 136, 7, 49, 171].

2.7.1 Traditional Indoor Localistation Methods

This Section presents a summary of the current state-of-the-art of indoor locali-

sation methods which do not leverage machine-vision approaches. A number of

works are reviewed, which have a focus on applying contemporary technology to

support occupant localisation within the domain of AAL. The selection criteria

for the localisation methods reviewed were that the main focus had to be on the

localisation of the occupant within an indoor home environment.

Rahal et al. implemented a system using anonymous dense sensor placement

along with Bayesian filtering in order to determine occupant location [172]. The

system was tested using a scenario of an occupant’s daily routine. The routine was

performed by 14 subjects, one at a time. The system showed a mean localisation

accuracy of 0.85, as the authors note, however, the system is only capable of

supporting a single occupant [172] within a fixed environment.

Okeyo et al. developed a dense sensor-based solution incorporating a Multi-

Agent System (MAS) in order to provide services to occupants within smart homes

[173]. A MAS consists of a group of agents which are able to interact with one

another with the goal of achieving their design objectives. Sensors were placed on

specific objects that the user would interact with which would then record the time

and location associated with that sensor to build contextual information. While

the overall results were high (1.00, 0.88, 0.88 for Precision, Recall, and Accuracy,

respectively) it still suffers from the inherent problems that exist with dense sensor-

based methods, such as multiple occupancy and the need for sensor interaction.

Along with the problem of the cost of installation, both in terms of financial costs

but also the personal cost of having the system installed in an occupant’s home.

Due to the time taken to perform the installation and the invasion of privacy as

the equipment is installed in the occupant’s own home can also add an additional

burden onto the occupant and could act as a barrier to uptake.

Kanaris et al. [174] developed a system to provide indoor localisation through

the use of BLE (Bluetooth Low Energy) devices and IEEE 802.11 Relative Singnal

Strength Indicator (RSSI) fingerprinting. This was tested in an indoor environ-

ment of approximately 160m2, six D-Link 802.11 Access Points were used to com-
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prise the 802.11 wireless network while the BLE network consisted of four 802.15

Estimote devices. Each device was placed within a different room within the test

environment. The information provided by the BLE and 802.11 was fused via the

use of a novel i-KNN algorithm, resulting in significantly improved accuracy when

compared to using 802.11 fingerprinting alone, accuracy was reduced from 4.05m

to 2.33m.

Tariq et al. [175] developed a system to provide indoor localisation utilising

capacitive sensors along with investigating various ML approaches to determine

which algorithm offers the best performance in an indoor localisation scenario. To

test the system four capacitive sensors were placed on the wall in a 9m2 room,

the data was labeled with the occupant’s position in order to train the classifiers.

A range of ML algorithms were tested to determine which would offer the best

performance, with Random Forest offering the best results of accuracy, precision,

and recall all exceeding 93% with an average error rate of 0.05m.

Belmonte-Fernández et al. [5] created a system to provide indoor localisation

through the use of Wi-Fi fingerprinting coupled with a smart-watch to acquire the

AP signal strength. The system was tested in three separate indoor environments

ranging from 62m2 to 120m2. Four different datasets were gathered, two to train

the system (each containing 50 samples for each location) and the remaining two

(each containing 100 samples for each location) to validate the performance of the

system. Results shown an average accuracy of 71.07% across all scenarios for all

the experiments performed.

Antoniazzi et al. [176] created an indoor localisation system to locate occupants

via RFID, the occupant was required to carry an RFID tag on their person that

is detectable by readers throughout the environment. The readers transmit the

coordinates of the detected occupant, reporting an error rate ranging between

12.08% – 21.79%.

Jiménez et al [177] combined the use of a smart floor, binary sensors, and RSSI

received at a smartwatch from BLE beacons deployed within a smart environment,

the smart floor device was regarded as the ground truth in order to estimate the

location accuracy of the binary sensors combined with RSSI. The experiment took

place over ten days with each of these days segmented into three distinct periods

(morning, evening, and afternoon), the system accuracy over the ten day period

demonstrated that the system was accurate to within 1.5m in 80% of cases.

Maghdid et al. [178] created a tracking system utilising smartphones, incorpo-

rating the on-board Wi-Fi and sensor devices, such as gyroscopes and accelerom-

eters, to provide indoor localisation for occupants. Their approach used RSSI



42

between the smartphone as the receiver and wireless access points within the envi-

ronment combined with a Dead Reckoning (DR) measurement from the on-board

sensors. This fusion of sensor data made use of an extended Kalman Filter which

periodically compensted for the inaccuracies of the DR measurements via the use

of the RSSI data. Their results show a positioning error within 2.5m.

Bianchi et al. [179] created an indoor localisation system utilising RSSI fin-

gerprinting via a ZigBee wireless sensor network (IEEE 802.15.4), the occupant’s

location is also estimated from their interaction with devices within the envi-

ronment. Each occupant within the environment was required to wear a MuSA

(MUltiSensor Assistant) device which allows the occupant to be uniquely identi-

fied and provides their location through RSSI collected from ZigBee routers placed

throughout the environment. They found they were able to achieve an accuracy

of 98% within a home environment.

Kolakowski [180] developed a system utilising BLE combined with proximity

sensors to provide a higher level of accuracy when compared to a BLE system.

The system requires the occupant to wear a tag which continuously sends out BLE

packets which are measured by receivers within the environment which measures

the RSSI. The proximity sensors also perform independent location estimation.

The measurements from the BLE and proximity sensors are transmitted to the

system controller for the actual location to be determined by combining the BLE

and proximity measurements. The system achieved a trajectory error rate of 0.27m

with approximately 10% of the results having an error rate larger than 1m.

Sansano et al. [181] developed an indoor localisation system combining the

use of Inertial Motion Units (IMU) within a smartwatch combined with Wi-Fi

fingerprinting. Data was collected by four occupants within their personal homes

for a period of two months, the occupants were asked to manually label intervals

of time during which they were in a particular room performing ADLs with the

system showing an F1 score of 0.92.

Vesa et al. [182] developed an indoor localisation system which utilised a smart-

phone coupled with Bluetooth beacons, they employed a ensemble based solution

which combined a Multilayer Perceptron with Gradient Boosted Regression along

with K Nearest Neighbours. The system was tested in a smart environment of

75m2 which was made up of four main rooms, their solution achieved an average

localistaion error of 0.4m.

Kolakowski et al. [183] created an indoor localisation system which was com-

prised of BLE and UWB (UltraWideBand) nodes which were attached to the

occupant and to various localised objects of interest within the environment. An-
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chor nodes were then placed within the environment to measure the UWB packets

arrival time and measure the BLE signal strength to determine the location of a

particular tag (either the occupant or an object of interest). The system was tested

in an environment of approximately 79m2. Eight anchors were placed within the

environment being fixed to the walls or furniture close to the walls with at least

one anchor was placed within each of the seven rooms. A user was asked to walk

around the environment for ten minutes while wearing a tag as a lanyard. The

system was able to correctly locate the tag in 95% of cases.

Bilbao-Jayo et al. [184] developed a system for indoor localistion leveraging a

smartphone and smartwatch based on BLE technology. Bluetooth beacons were

placed within each room, with multiple beacons being placed in larger rooms, such

as the living room. The MAC address of each beacon was stored in a database along

with its associated location within the environment. The smartphone/smartwatch

devices were set to repeatedly scan for Bluetooth devices for ten seconds with a

15 second interval between scans. If a beacon was detected during the scanning

window the approximate location of the occupant was determined by measuring

the RSSI and TxPower values from the beacons. The system was tested in a home

environment consisting of four rooms (kitchen, bathroom, bedroom, and living

room) gathering a dataset which consisted of 267 location changes. The dataset

was split into an 80/20 ratio for training and testing, achieving an accuracy of

67%.

Ceron et al. [185] presented a system for indoor localistaiton through the use

of BLE beacons and an IMU which was located within the occupant’s shoe. The

system was evaluated within a pilot study consisting of 22 participants made up

of 11 adults and 11 young people. The IMU device was set up to collect the

occupant’s acceleration and angular velocity while the BLE beacons were used

to establish location via RSSI. The system reported a mean localisation error of

1.023m within the older cohort, and 0.986m within the younger cohort. The lack

of a significant difference between the two cohorts within the pilot study suggested

that the proposed method is effective across broad age ranges.

Parmar et al. [186] developed a system for indoor localisation through the

method of voice fingerprinting from a single microphone array. The Seed Re-

Speaker 6-mic circular array kit was utilised for data collection with the array

placed centrally within an environment. Data was collected at 15 different train-

ing and testing locations within two scenarios collecting an occupant’s voice from

each location. Deep learning was used to train a Inception-ResNet-v2 model which

resulted in localisation errors from the two scenarios of 1.56 and 1.48 metres.
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From the review literature a number of limitations were found. The most com-

mon limitation is that of the need to install equipment throughout the environment

[172, 173, 174, 175, 176, 177, 179, 180, 182, 183, 184, 186]. An additional limitation

is that of the requirement for the occupant to wear a dedicated device, such as a

tag or smartphone device [5, 176, 178, 179, 183, 181, 182, 183, 184, 185]. There are

also identified challenges with regard to multiple occupancy with some of the sys-

tems [172, 173], particularly the dense sensing approach, due to anonymity of the

data being collected by such a system. A final limitation found is that of required

active sensor interaction to determine the location of the occupant [172, 173, 179].

As a result, the proposed apporach must offer a method of minimising equipment

installation within the occupant’s environment to reduce costs and the intrusive-

ness of the approach. Additionally, the requirement for the occupant to wear a

device should be minimised in order to enhance a feeling of normality for the oc-

cupant. One potential solution to this limitation could be the use of smart glass

as approximatly 74% of the adult population are required to wear corrective lenses

[187]. An additional advantage would be the ability to identify which stream of

data is related to which occupant.

2.7.2 Vision Based Indoor Localisation

This Section presents a summary of the current state-of-the-art solutions that

facilitate indoor localisation utilising a machine-vision approach. A number of

works are reviewed, which have a focus on applying contemporary technology

using machine-vision techniques within the domain of AAL. The selection criteria

for the machine-vision papers reviewed were that the main focus had to be on

the localisation of the user within an indoor home environment via machine-vision

methods.

Leotta and Mecalla [188] developed PLaTHEA (People Localization and Track-

ing for HomE Automation). PLaTHEA is a machine-vision based system that

acquires a stereo video stream from two network attached cameras to provide sup-

port for AAL. Two cameras are placed in each room, working in stereo, in order

to ensure that as much of the room is covered and that occlusions are reduced.

Foreground extraction is then performed to determine if occupants are present in

the scene. PLaTHEA also performs identity recognition using facial recognition.

Facial recognition is performed using SIFT (Scale-Invariant Feature Transform)

features from each face pose, which are then stored within a kd-tree data struc-

ture. At run-time, a Haar classifier [189] is applied to detect faces in the scene;

when a face is detected SIFT features are extracted and compared to the saved
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features stored in the KD-tree for recognition [188]. There are, however, some po-

tential limitations to the PLaTHEA system. Due to the system relying on static

cameras it may not be possible to ensure that the entirety of the room is viewable

or that occlusions may not occur due to the opening of doors, large furniture, etc.

In addition, an issue that was identified by the authors, was when the system was

monitoring a room with a wall greater than 10 metres then it was not possible

to monitor without the use of costly acquisition hardware [188]. While the issue

of cost is being addressed, there is also the additional cost of having to install

multiple cameras within each room, that support is provided within. There is also

the issue of multiple occupancy, due to the use of foreground extraction to identify

occupants, while this is partially mitigated through the use of facial recognition,

it also requires that all the occupants are known and have SIFT features saved

within the system [188]. There is also the additional problem of the Haar classifier

being reliant on the occupant’s eyes being clearly viewed by the camera as this

method of face detection will usually fail if the eyes are occluded [190].

Zeb et al. [191] developed a system that supported blind users, holding a

web-cam, to navigating throughout a known environment. The web-cam continu-

ously captured video frames from the environment, which were then processed for

relevant markers. Whenever, a relevant marker was detected, the detection and

identification module compared it to the stored markers in a database, returning

a unique ID that associated the user’s position and direction. While this system

obtained a 98% success reate for detecting and identifying markers it required con-

stant interaction from the user in the form of having to manipulate a handheld

camera at all times, in order for the system to detect markers.

Rivera-Rubio et al. [192] developed a system that estimated the user’s location

through scene recognition. The experiment was carried out using an LG Google

Nexus 4 and Google Glass. A dataset was gathered of the locations by recording

a video of the occupant walking through the location ten times whilst wearing a

recording device (50% split between the Nexus 4 and Google Glass). This included

a combination of day/night acquisitions and occasional strong lighting from win-

dows. The system was tested using multiple descriptor methods (three custom

designed and three standard methods) following a standard bag-of-words, where

low level features (such as colour) are extracted and applied to a visual analogue of

a word, and kernel encoding pipeline, with HOG3D, a spatio-temporal descriptor,

matching used as a baseline [192]. Results show errors as low as 1.6 metres over a

50-metre distance were achieved, however, for the purposes of AAL a greater level

of refinement is required in order to distinguish where in a room the occupant is
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located and if possible what they are interacting with in order to provide relevant

support. There is also the additional challenge of having to train the system to

each environment that it is to be deployed within.

Zhang et al. [193] proposed a method of indoor location using still images

captured at intervals from a smart-phone worn on a lanyard. This system had

the goal of assisting those with impaired vision to navigate within an indoor en-

vironment. The system relies on collecting map data of a building, that describe

features/descriptors along with their 3D co-ordinates, floor plans, and other loca-

tion data. Images are then captured and sent at intervals from the smart-phone

to a server for processing. Images are then matched against the template map of

the building in order to determine location and offer directions should the user

require them. Whilst this system works well for its intended use there are limita-

tions when applied to an AAL situation. One problem, that the authors noted,

was that there were null spots, were there was not enough features to create a

map image, such as when the user makes a 90 turn, for example in a hallway or

entering a room [193]. One other possible issue for an AAL application is that

of intermittent image capture that may result in missing key information, such as

a room transition or an interaction with an appliance, which could be vital for

context.

Orrite et al. [194] developed a system entitled ‘Memory Lane’ with the goal of

providing a contextualised life-blog for those with special needs. It chronologically

tagged and ordered images and sounds perceived by the user to provide contextual

meaning. A dataset of images of the occupant’s environment was gathered and

SIFT with RANSAC were applied to obtain feature points. During each RANSAC

iteration a candidate fundamental matrix was calculated using the eight-point

algorithm [195], normalising the problem to improve robustness to noise. Their

system consisted of a wearable camera that systematically recorded still images as

the occupant moved throughout the environment which would then be matched

against the previously collected image dataset of the environment. A feature match

correspondence was used to establish the distance of the occupant from the object.

This involves generating a variable circle centred on the average position of the

detected features and comparing it to the average position in the next image. If

the radius increases, it can be determined that the occupant is moving closer to the

object. Some limitations of this solution are the need to gather the dataset of the

environment along with the inherent problems with intermittent image gathering.

Edwards et al. [196] created a fiducial marker system that concentrated on

accuracy over run-time performance and compared the system against the ArUco
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marker detection algorithm [197]. The system was unique as instead of using

corner or edge detection it used a radial sinusoid pattern which allows for a pre-

dictable appearance under perspective projection. The results indicated that, on

average, pose estimation was twice as accurate than fiducial markers that rely on

corner/edge detection, such as the ArUco system. This is achieved via a non-liner

optimisation routine which estimates the fiducial marker’s pose through minimis-

ing the difference between the predicted and actual appearance of the marker. The

main limitation of this system is that the markers can not be identified individu-

ally and so need to be paired with a traditional fiducial marker system to provide

an object/location identification.

Rituerto et al. [198] created a system that employed an Android phone, worn

on a lanyard, using the ArUco algorithm to provide location/direction assistance to

those with impaired vision. They created a digitised indoor map that stored infor-

mation such as walls, corridors, room location, location of important sings/fiducial

markers. The initial study was to determine the system feasibility of such a sys-

tem. While the system was successful in providing direction to the occupant’s

it required them to steady the camera in order to return acceptable images, this

would not be ideal in a real world situation due to the occupant’s interacting with

their environment in general daily activities.

Kapidis et al. [199] developed a system which utilised a wearable camera to

determine location from key objects within the scene. They used the ADL dataset

[164] which contains 20 videos of indoor activities with the Darknet framework

[200] used to detect objects within a scene. A comparison was offered between

CNN and LSTM based methods, with the CNN method resulting in an overall

accuracy of 76% and the LSTM method offering an accuracy of 80%.

Domingo et al. [201] developed a system which combined a static RGB cam-

era to determine the location of an occupant within an environment coupled with

Wi-Fi fingerprinting to identify the occupant’s identity once located via the RGB

camera. An experiment was carried out using four RGB cameras installed within

each room with the goal of locating 20 people moving freely throughout the envi-

ronment. The system successfully located occupants in 79% of cases. Some issues

were reported regarding occlusions and overlaps due to the static nature of the

RGB cameras.

Martin-Gorostiza et al. [202] developed a system which combined a static cam-

era with IR sensors with the goal of occupant localisation. The system consisted

of a set of five IR receivers with a single fixed camera mounted on the ceiling.

The system was able to locate the occupant with a precision of 1.5cm. Some of
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the reported issues include areas of the environment not being covered due to the

fixed location of the camera.

Li et al. [203] developed a system to aid older occupants in keeping track the

state of objects (e.g. oven “on” or “off”) and their past interactions with objects.

The system utilised a wearable camera which was worn around the occupant’s

neck and would continuously detect fiducial markers in the FoV which were placed

beside objects of interest. If a marker was detected then the camera would record

a short video clip starting from when the marker was first detected and ends three

seconds after the marker’s last detection. The occupant can then review these

video clips in order to ascertain the status of an object or to view their previous

interactions with the object.

Hu et al. [204] developed a system to aid those with visual impairments nav-

igate through an indoor environment through the use of fiducial markers. A

panoramic ceiling view positioning framework which was based on a panoramic

annular lens was used along with ArUco markers. The camera was head mounted

on a helmet with a 180°FoV which included the ceiling and part of the walls and

doors and did not include the ground within the FoV, with ArUco markers placed

on the walls to define start and end points.

Kunhoth et al. [205] examined the performance and usability of two machine-

vision based systems (CamNav and QRNav) along with a BLE system. CamNav

utilises a trained deep learning model to recognise locations while QRNav makes

use of QR codes as fiducial markers to determine the occupant’s location. The

systems were tested on ten blindfolded users who then had to navigate an indoor

environment. The machine vision systems resulted in 30% less errors than the

BLE system when providing users with real time assistance.

Quero et al. [206] developed a system to recognise daily objects within a smart

environment using a wearable camera (GoPro Hero 5) with the goal of aiding in

the collection large datasets. The occupant applies a bounding box to an object

of interest to identify and label a static object. Background subtraction is then

used to select the masked foreground object.

Buzzelli et al. [70] developed a system which involved the use of a single static

camera placed within an environment with the goal of monitoring the elderly at

home. The first stage in the system was to localise a person using a R-CNN

(Regions with CNN features), to select the largest detected subject within the

scene. DeepHAR (Deep Human Activity Recogntion) [207] was used to perform

activity recognition. It infers the action through the explicit representation of

the subject’s inferred skeleton. They found that while the method offered high
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accuracy it faced challenges to multiple occupancy, in particular, the visitation of

health care assistants.

Uygur et al. [208] developed a system to provide indoor localisation that uses

input from a 360°camera to localise a user on a 2D map. They found the system

was robust to partial blockage to the camera’s FoV and did not require highly

accurate maps. The sperical camera allows more data to be collected to attempt

to overcome the issue of rooms mostly consisting of blank walls which are typically

featureless. The features the system was designed to recognise were architecture

features such as windows and doors, however, some issues were found such as

doors being common within a large building and were not effective in reducing

uncertainty in larger experiments. Other problems such as windows being difficult

to detect due to their location within a wall and their close proximity to other

windows.

Košt’ál and Slabý [209] presented a system which used novel fiducial markers

to aid in localistation within spatial scenes. They tested their system using a total

of 18 markers with five videos being recorded outside and thirteen videos being

recorded inside an environment. The dataset containted 385 training images, with

110 validation images, and 55 test images. The ground truth bounding box on all

images where manually tagged by a human expert. They found that testing with

real world videos were crucial as it introduced motion blur that occur in natural

camera movement, the results demonstrated a precision of 0.981 and a recall value

of 0.927.

Li et al. [210] implemented a system which allows a user’s location to be

determined through a picture of the surrounding environment. An Android mobile

phone (Lenove Phab 2 Pro) was used along with a depth camera (Intel RealSense

D435) and the system was initially tested on the ICL-NUIM dataset which consists

of RGB-D images from two indoor scenes – a living room and an office scene. The

system was then tested in real world scenes within the BJTU lab space where a

total of 144 images are collected, the resulting algorithm achieved an accuracy of

93%.

Zhou et al. [211] presented a system which leveraged machine-vision tools

combined with a Convolutional Neural Network (CNN) to identify markers within

complex scenes. The system was tested on the Pascal VOC dataset which contains

approximately 30,000 images contained within 21 categories. Through testing it

was shown that the system had a strong resistance to complex internal environ-

ments/background along with providing a high accuracy, in terms of positioning,

and a fast processing speed.
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Tabuchi and Hirotomi [212] developed a system utilising fiducial markers to aid

those in cognitive decline to carry out the task of cooking. Fiducial markers were

attached to objects of interest within the kitchen, such as cutting board, sink,

stove, etc.. The system was tested as both a fiducial marker and a markerless

sytems were the object recognition was used to detect the objects of interest. The

results demonstrated that the system utilising fiducial markers operated approx-

imately nine times faster and achieved a higher F-measure than the markerless

system. An overall accuracy result of 70% was achieved by the system in a range

of environmental settings.

From the reviewed literature a number of limitations were found. The most

common limitation was that of training being required before the system can be

applied to an environment, or moved to a new environment [70, 192, 194, 199,

205, 206, 208, 209, 210, 211]. An additional limitation that was found was that

of occlusion within the video stream due to camera angles or objects blocking

the FoV [70, 188, 193, 201, 202, 204, 208]. Intermittant image capture was also

found to be a limitation, reducing the information that can be determined from

the environment and potentially missing interactions [193, 194, 202]. A number

of secondary limitations were also found, such as the issue of multiple occupancy

[70, 188], required interaction by the occupant [191, 206], and the requirement to

wear a device on a day to day basis increasing the burden on the user [198, 210,

204, 206]. The proposed approach must offer a method of removing the need to

train the system to individual environments, allowing the approach to be applied

to multiple environments without the need to retrain. Additionally the challenge

of occlusion and intermittent image capture will need to be addressed to ensure

that information, such as object interactions, are not missed.

2.7.3 Summary

From the various methods that have been reviewed it can be seen that a wear-

able camera offers many advantages over comparative systems, along with some

advantages that are unique to a wearable camera, such as an egocentric view of

the environment. This egocentric view helps reduce occlusions and also offers the

ability to view which objects the occupant is interacting with. Additional ad-

vantages include being less sensitive from signal interference from other devices

and minimal cost in terms of installation and long term maintenance [213]. Ta-

ble 2.4 provides an overview of the advantages and disadvantages of the various

localisation methods that have been reviewed in this section.
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2.7.4 Video Based Activity Recognition

This Section will present an overview of activity recognition solutions within the

domain of AAL which leverage machine-vision based approaches. A number of

works are reviewed, which have a focus on applying contemporary technology

using machine-vision techniques within the domain of AAL to perform activity

recognition. The selection criteria for the machine-vision papers reviewed were

that the main focus had to be on activity detection of the user within an indoor

home environment.

Giannakeris et al. [214] developed a system to perform activity recognition

from a wearable camera, the ADL dataset [164] was used to test and evaluate

their system. They used a Bag-of-Micro-Actions scheme using Gaussian Mixture

Models (GMM) clustering with Fisher vector encoding to detect the activities.

Their system achieved an accuracy of 57.14% on the ADL dataset.

Noor and Uddin [215] created a system to detect activities within an egocentric

view using SIFT to detect feature points. The model was trained using an Artificial

Neural Network (ANN), and leveraging Hidden Markov Models (HMM) to account

for the various sequences that make up an activity. The system was tested on two

datasets, the TUM Kitchen dataset [216] and the GTEA Gaze+ dataset [217]. The

TUM dataset consisted of first and third person videos from five cameras with ten

subjects, the GTEA dataset consists of a camera built into a pair of glasses with

data being collected from ten subjects. The results show an accuracy of 96% on

the TUM dataset, and an accuracy of 90% on the GTEA dataset.

Zuo et al. [218] developed a system to detect ADL within an egocentric view.

Their system used an egocentric video stream from a Tobii Pro Glasses 2 [219]

device which is then segmented into a set of video clips, each of which correspond

to a specific activity the occupant carried out. An initial training dataset was

gathered containing 50 interaction clips containing the following ADL: greeting,

passing a ball, paying, shaking hands, and talking. These video clips are then

classified as a particular ADL by applying a gaze-informed recognition approach.

The system showed an accuracy of 97.32%.

Yu et al. [220] created a system to detect ADL through the use of an egocentric

camera which supplies data via a photo stream and an IMU using an LSTM

network. The system was tested on two datasets, eButton dataset [221] and the

multimodal egocentric dataset established by Song et al. with Google Glass [222].

Their system achieved an average accuracy of 77% on the eButton dataset and on

the multimodal dataset an average accuracy of 80% was achieved.
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Diete and Stuckenschmidt [223] developed an egocentric multimodal based ap-

proach to activity recognition utilising smart-glasses and a chest mounted tablet.

A pre-trained Neural Network which used the overlap of the subjects hand and the

objects within the frame to determine object interaction was used. Two separate

ADL datasets were used to validate their approach. The first dataset was gathered

by the research team, the second was the CMU-MMAC dataset [224]. The system

acheived an F1 measure of 79.6% on their gathered dataset and an F1 measure of

59.4% on the CMU-MMAC dataset.

Yu et al. [225] developed a system using a Kinect v2 sensor to recognise a range

of 12 ADL such as, lie down, get up, comb hair, sweep the floor, etc. In order to

attempt to address the issue of occlusion the sensor was mounted on the ceiling

of the environment while being angled as to still offer a horizontal view plane.

A dataset was collected from an elderly occupant living independently in their

own home with activities being carried out naturally rather than in a prescribed

manner. Their system achieved an average accuracy of 91.64%.

Massardi et al. [226] developed a system which used an Intel RealSense D-435

RGB-D camera mounted on a robot in order to detect activities of an occupant.

They created a dataset of various ADL which included, making tea, making hot

chocolate, and making coffee. The datasets were split into four different categories

(category one, category two, category three, and category four), category one and

three were used for training the system with categories two and four were used for

testing. On average their system achieved an 80% accuracy.

Su et al. [227] developed a system which used a Deep Neural Network (DNN)

with the aim of recognising ADL for supporting occupants aging independently

at home. The list of activities that the system recognised was, standing, bending,

squatting, sitting, eating, raising one hand, raising two hands, sitting plus drinking,

standing plus drinking, falling. Data was collected containing all ten activities was

gathered and manually labeled, the system showed an average accuracy rate of

95.1%.

From the reviewed literature the main limitation found was that of a need for

the system to be trained for an environment, including a lengthy data collection

phase [214, 215, 218, 220, 223, 225, 226, 227]. Additional limitations that were

found included the issue of occlusion [225, 226] and the necessity to wear a device

[223, 226].
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2.7.5 Dealing with Uncertainty

This Section will present an overview of activity recognition solutions which im-

plement evidential reasoning to aid with handling uncertainty found within real

world data. Multiple techniques exist to deal with uncertainty found within data,

an overview of some common methods are discussed below:

Baye’s Theorem

Baye’s Theorem [228] is a logical approach to revise the probability of a hy-

potheses being true when new evidence is supplied. Initial probabililty values

within Bayes’ Theorem are supplied from historical probabilities within ex-

isting data. Probabilities are then updated as new data becomes available

allowing a method of revising existing predictions when given new or addi-

tional evidence [229]. Within the field of activity recognition Baye’s theorem

would use sensor data (such as vision, sound, or contact sensors) to estimate

the probability that an activity has been carried out. As new sensor data is

collected the probabilities of each activity being carried out is updated with

the goal of attempting to determine what activity the occupant is carrying

out in real-time.

Fuzzy Logic

Fuzzy logic can also be used to help with reasoning when uncertainty is

present in the data [230]. One implementation of fuzzy logic is the the fuzzy

Tsukamoto model, which is an alternative method of dealing with uncertainty

by describing the relationship between the input and output via fuzzy “if-

then” rules [231]. Fuzzy logic can be used to create a fuzzy inference system

that evaluates the occupant’s activity levels on a sliding scale rather than

discrete categories. For example, if the system detects increased movement

and social interactions then the system could determine that activity levels

are higher than usual rather than simply stating active or inactive.

Monte Carlo

The Monte Carlo method has also been proposed as a way of dealing with

uncertainty within data [232]. The Monte Carlo method is based on a math-

ematical model that determines the result based on random variables that

can affect the outcome. This method is suited to estimating an outcome from

the product of random variables, including sources of uncertainty [233]. In

activity recognition the Monte Carlo technique can be applied to determine

the most likely sequence of activities from sensor data. Typically the tran-
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sitions between different activities are modeled and can use the sensor data

to infer the most likely sequence of activities performed by the occupant.

Dempster-Shafer (DS) theory

DS theory has also been suggested to be a potential solution to dealing with

uncertainty in data [234]. DS theory is an evidence theory framework for

reasoning with uncertainty, the theory allows the combination of evidence

from different sources to determine a degree of belief on the outcome [235].

DS theory offers a number of advantages over alternative reasoning tech-

niques, such as the ability to combine various evidence types from various

sources [236]. Additionally, traditional theories typically assign a probability

to one possible event, however, in DS theory probabilities can be correlated

to multiple possible events as well as offering the ability to represent the un-

certainty of systems without further assumptions [233]. DS theory also offers

additional advantages when applied in a multi-class problem [237]. This is

due to DS theory applying a mass value to every possible class allowing the

most likely class to be easily determined by comparing the mass values and

selecting the class with the highest mass [237].

Due to these advantages DS theory is deemed to be the most suitable for this

research, such as its ability to combine and manage conflicting sources of evi-

dence. Additionally, DS theory allows for differing weights to be applied to dif-

ferent sources of evidence allowing for a larger weighting to be applied to markers

that are more reliable or have a larger bearing on the likelihood of the activity

being carried out. Lastly, DS theory is able to deal with situations were there may

not be data available, such as through corruption or sensor failure.

A number of works were reviewed which has a focus on applying DS theory

to the field of activity recognition. The selection criteria for the reviewed papers

were that the main focus was on the application of DS theory to support activity

recognition within a home environment.

Alcalá et al. [238] developed a system to monitor ADL behaviour through

smart meter data on two datasets, the Household Survey dataset and the UK

Domestic Appliance-Level Electricity dataset. DS theory was then implemented

with the goal of detecting abnormal human behaviour within the environment. It

was found that implementing DS theory was shown to be more sensitive to the

pattern deviations of abnormal behaviour and less susceptible to false positives, in

particular when there were long periods of inactivity. However, it was noted that

this method was most suitable to carry out coarse monitoring of older occupants
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with a noticeable reduction in false alarms when compared to other methods due

to DS theory’s ability to handle peroid of inactivity which was modelled as an

increasing uncertaintly.

Zhao and Li [239] implemented an abnormal activity recognition model based

on an ontology and DS theory. An ontology was developed which included a

number of basic activities (e.g. sit down, lie down, run, walk etc.), the location

and duration of the event was then utilised in order to determine if an activity was

normal or abnormal. For example, if an occupant was detected being within the

kitchen and their activity was detected as lying down it could be inferred that the

occupant may in some danger. DS theory was then used to handle the uncertainty

within the sensor data to provide a more accurate estimation of the activity the

occupant was carrying out.

Machot et al. [240] developed a system which uses DS theory within the domain

of active and assisted living to support occupants carrying out their ADLs. Their

implementation was tested upon the HBMS dataset of binary sensor data. The

HBMS dataset contains five activities – watching TV, shopping, checking blood

pressure, getting a drink, and preparing a meal. They achieved a 96.76% accuracy

when testing on a subset of 10-day observations from the HBMS dataset. However,

it was noted that the method had the disadvantage of requiring previously collected

knowledge about the occupants’ and the sensors.

Sfar and Bouzeghoub [241] presented a system for the detection of anomalous

behaviour occurring within a smart home environment utilising DS theory. Their

system was tested using the Hadaptic and opportunity dataset containing data

from three participants carrying out three routines. The system was found to

have an accuracy of 91% for the detection of abnormal behaviour when a suitable

time window size was set. It was noted that when the time window fell below 180

seconds that DS theory became less efficient and was most efficient when the time

window was proportional to the activities.

Venkatesh et al. [242] implemented a system for activity recognition within a

smart environment using ML methods combined with DS theory to improve the

overall recognition performance. Their approach was validated using a real world

dataset from the UCI ML repository. It was found that combining a Probabilistic

Neural Network (PNN) with DS theory was best in-class solution achieving 91.2%

reliability for the detection of activities compared to an 85% accuracy when the DS

component was not present. Bhowmilk and Mojumder [234] developed a system

to monitor home and health parameters, such as temperature, pulse rate, SpO2,

etc., with DS theory being utilised to aggregate data from multiple environmental
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sensor sources. The goal of the system was to estimate the threat level to occupants

within a smart environment with DS theory was used to monitor four parameters,

temperature, humidity, SpO2, and carbon monoxide. It was shown that DS theory

was capable of dealing with uncertainty in the data, in particularly missing data.

2.8 Challenges and Opportunities

Based on the review of the literature a number of challenges have been identified.

These include the need for extensive training/fingerprinting for each unique en-

vironment. Multiple occupancy and unreliability in the data (e.g. sensor failure,

interference, data corruption, false positives, etc.). This section will detail these

challenges and present how this thesis aims to mitigate these challenges.

2.8.1 Cold Start

One of the problems that face many systems within the domain of is that of

the “cold start” problem, where no data currently exists to train the system on

[243]. This is a particular issue within data and context driven systems, which,

will require a large amount of data surrounding the problem in order to learn

to recognise locations or activities. As this data normally needs to be gathered

before the system can be used in order to train the system to the environment.

One example of the type of data that is required to be gathered is that of training

data, where a large amount of labelled data is necessary. For example, should the

model want to recognise the activity of cooking then a large amount of data of

the occupant cooking will be required for training. Additionally, during the “cold

start” phase any quality issues within the dataset, such as noise or missing data,

can be more pronounced. In the cases of systems utilsiing RSSI, this phase will

have to be carried out in each new environment due to layout changes within the

environment, which will mean a new, unique set of “fingerprints” will need to be

learned.

Systems using machine-vision techniques for object/scene recognition will also

have to gather initial training data. While significant efforts have been made to

produce datasets for this purpose [244, 245, 246, 247, 248, 249, 250, 251, 252, 253,

254, 255, 256], additional data will have to be gathered within the environment the

system is to be deployed. This is due to differences between objects (e.g. different

manufacturers of products), or in the case of system using natural fiducial markers

within a scene, these will also need to be learned, as they will be unique to that



58

environment [70].

Data augmentation has also been proposed as a potential solution to gener-

ating a dataset. Data augmentation involves applying various transformations to

the existing dataset. This could include rotations, scaling, or adding noise in order

to create new training samples [257]. It can be useful when working with imbal-

anced or small datasets; however, it should be noted there are disadvantages of

data augmentation such as that the data quality could be affected due to the gen-

eration of unrealistic or irrelevant data. Additionally, as data augmentation can

only generate variations of the existing data this would result in limited diversity

within the dataset despite the increased dataset size [258]. As data augmentation

cannot create new, original data no new features/information, which was not in

the original dataset, would be generated.

This thesis investigates this problem using generic fiducial markers which can be

placed throughout the environment. Each marker will have the ID of a particular

object of interest which are common to the majority of environments. Examples

include: kettle, TV, fridge, microwave, etc. This will mitigate the need for a

training phase as the system will be pre-loaded with the suite of markers which

can be applied in their relevant locations in any environment without the need

to learn the new environment. Chapter Four explored the technical feasibility of

applying fiducial markers for localisation within a live egocentric video stream.

Chapter Five investigated and compared alternative approaches to fiducial marker

design along with the feasibility of applying the system to multiple environments.

2.8.2 Multiple Occupancy

Most current AAL solutions assume the presence of only a single occupant within

the environment [259, 172, 173, 175]. If there are multiple occupants that require

support with ADL then it can be difficult to identify and offer appropriate support

to the correct occupant.

Techniques that rely on RSSI have been a popular method to perform indoor

localisation [174, 5, 176, 177, 178, 179, 180, 181, 182, 183]. While RSSI, when

combined with a device such as a smartphone or smartwatch, can go some way to

alleviate the issue of multiple occupancy (as each occupant has a device which can

be assigned a unique ID). A common problem with multiple occupancy is when two

or more occupants interact with objects within the environment within a narrow

time window [260, 6]. If we consider an example where the oven door has been

opened along with a cupboard door opened. There is insufficient evidence from the

data to indicate which occupant has interacted with which object or even if this is
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indeed a case of multiple occupancy and both objects were coincidentally within

reach at that point in time. This can lead onto further problems when attempting

to learn behaviour as key components of this are when a specific occupant carries

out a specific activity along with how they undertake that activity. This allows

the detection of an occupant who is having particular trouble completing a specific

ADL or if they are not undertaking the activity whatsoever. Due to the conflicts

in sensor data, from having multiple occupants within the same environment, it

can be difficult to separate these events into occupant specific events.

Possible techniques to mitigate this issue include occupant worn ID tags, such

as RFID, that uniquely identify each occupant [261]. Video has also been used

to identify the occupants within the environment [262], however, both these solu-

tions introduce challenges of their own. Video from fixed cameras can suffer from

challenges such as occlusion where the occupant of interest may not be visible due

to objects blocking the camera’s FoV. Typically solutions relying on RSSI are not

able to provide a fine enough accuracy to reliably distinguish between multiple oc-

cupants who may be in close proximity to each other [263, 54]. This can be further

compounded as RSSI methods can be affected by signal interference, layout of the

environment, etc. [263, 54, 6]. These issues can be further compounded when the

occupant has visitors or carers that may call in on a regular basis, as the visitors

will not be recognised by the system but the occupants may still require support.

This thesis aims to mitigate the multiple occupancy challenge by the use of

a wearable egocentric camera which will provide a first-person view of occupants

within the environment. This will allow indoor localisation to be applied to each

occupant’s unique view point regardless of how many other occupants there may

be within the environment at that time. As each occupant will have a unique

video feed each marker detection will be associated to the an individual occupant

and thus support can be targetted towards that particular occupant. The use of

an egocentric view will also enable the occupant-object interactions to be collected

allowing activity recognition to be carried out along with the indoor localisation

of the occupant.

2.8.3 Unreliability

As AAL systems are reliant on collecting data from the environment, a common

problem these system will face, will be that of sensor unreliability [175, 181, 226].

Unreliability can take various forms, the simplest of which is that of sensor failure

where sensors may report FP, such as reporting a sensor event when none exists or

conversely failing to report a sensor event when one did take place. This is known
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as a False Negative (FN).

Unreliability can also be introduced through “noise”. This can take various

forms depending on the type of sensors used. In the case of RSSI based systems

this can be caused by signal interference, either through other devices utilising

the same frequencies or simply through signal degradation due to passing through

solid objects [7]. In the case of a system utilising vision sensor, noise can take

the form of extreme variation in brightness/colour in images, extreme levels of

motion blur which may render the frames unusable along with issues related to

wearable cameras, such as auto-focus [264]. Additionally, the use of intermittent

image capture can also introduce uncertainty into the data due to missed events.

Additional forms of sensor unreliability can include inaccurate environmental sen-

sors, this can be caused by sensor drift or through sensor malfunctions. This can

be mitigated through the regular calibration and maintenanice of environmental

sensors along with data fusion techniques from multiple sensors in an attempt to

improve accuracy.

A large number of the reviewed systems all reported issues with having to deal

with noise/missing data/incorrect sensor events [172, 176, 178, 180, 182, 194, 196,

202, 204, 70, 208, 218, 223, 225, 227, 177, 188]. Chapter Six details an approach

for taking account for unreliability within sensor data by utilising Dempster-Shafer

theory for reasoning with uncertainty in the data stream. Dempster-Shafer theory

is a framework used to handle uncertainty when there is missing/conflicting infor-

mation, it allows you to combine evidence from different sources to take account

of uncertainty within the data.

Chapter Four details the approach for performing indoor localisation on an

egocentric live video stream, utilising machine-vision techniques. This approach

leverages wearable technology, Google Glass, to facilitate a unique first-person view

of the occupant’s immediate environment. Machine-vision techniques are employed

to determine an occupant’s location via environmental object detection. This

method provides additional secondary benefits such as first person tracking within

the environment and lack of required sensor interaction to determine occupant

location.

Chapter Five also considers distance estimation in order to aid in filtering

out false interactions. A linear filtering method is applied along with a fuzzy

membership function to estimate the degree of occupant interaction, to assist in

removing FP generated by the occupant.
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2.9 Conclusion

This chapter has provided an literature review of the technologies and applications

involved within the domain of AAL. It has introduced the concept of ADL along

with the concept of a smart environment and how technology can be applied to

provide support in order to improve QoL for those that would normally require full

time care or institutionalisation. An overview of the technology used has also been

presented along with an overview of the major techniques that can be applied to

AmI, namely, data, knowledge, and context driven approaches. Current methods

of supporting ADL suffer from common problems such as the cost of retro fitting

an environment along with the intrusiveness such an installation will incur. Other

problems exist with current support of ADL such as the “cold start” problem where

a large amount of data needs to be collected for pattern recognition through data

mining. When the system is initially installed there is no data to be processed,

therefore support will not be available.

Key challenges that AAL faces have also been presented and discussed, such

as those of multiple occupancy, training, occlusion, and unreliability in the data.

Future challenges include the personalisation of support to each individual occu-

pant’s needs, each occupant’s condition will deteriorate at differing rates therefore

support will need to be tailored to the individual. These challenges will need to

be addressed in the future, if the vision of AAL is to be achieved in a real world

setting.



Chapter 3: Generation of Egocentric Datasets

for ADL Research

3.1 Introduction

Chapter 2 presented the current state-of-the-art in support of ADL within the

home. This Chapter details the approach taken to generate appropriate datasets

for use within this thesis and has been made available to the wider research area 1.

The Chapter includes the design of the activities being recorded and the routines,

along with an overview of the sensor technology that was used and the differing

environments that were used to gather a more suitable dataset.

This Chapter will discuss the generation of a dataset using multiple sensor

types within multiple environments, through both real world experiments and

through the use of a simulation tool to generate datasets. While many research

groups are sharing their activity datasets [265, 266, 267], due to the nature of

human activity a diversity in experiment set ups are required in order to attempt

to gather comprehensive datasets. This is also further compounded by the nature

of sensor technology constantly evolving, which, requires additional datasets to be

gathered to take account of the introduction of new technologies, as such no single

dataset exists which is considered adequate [70].

3.2 Routines to Simulate Activities of Daily Liv-

ing

As this research utilised smart glasses (Google Glass), a current dataset did not

exist containing first person video footage of a range of ADL being carried out

within a home that could be used. A brief review of common datasets are offered

in Table 3.1; only datasets which included ADL were included.

As can be seen none of the currently available datasets are suitable, some of

1https://github.com/cshewell747/VisionData

62
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Table 3.1: The number of activity classes, instances, and sensor type used in

publicly available ADL datasets.

Dataset Classes Instances Camera

IXMAS [250] 15 396 Fixed RGB

Hollywood 2 [252] 12 1,707 Film clips

ADL [164] 18 10 hours Chest mounted GoPro

MSR [253] 16 320 Fixed Kinect

N-UCLA [268] 10 1,475 Multiple fixed Kinects

UWA3D II [269] 30 1,075 Multiple fixed Kinects

Kinetics [247] 400 306,245 YouTube video clips

DALY [256] 10 3,600 YouTube video clips

Charades [248] 157 9,848 RGB mobile phone

NTU [249] 60 56,880 Fixed Kinect

which are targeted towards a specific scenario while others are generalized along

with large variations in data quality and consistency. None of these datasets

are suitable for simulating an elderly occupant performing ADL within an indoor

context. In order to overcome this limitation a dataset consisting of first-person

footage, along with additional sensor data to aid in comparing the effectiveness of

the machine-vision platform, was generated using the Google Glass platform.

A protocol was designed that was comprised of a range of activities to be

carried out which were representative of daily routines, the protocol was carried

out by a single researcher. With the goal of recognising the component locations

(e.g. drinking water consists of kitchen door, glass cupboard, and sink) within

each activity along with further investigation to determine if the activity could be

determined via the component locations. If for example prepare/drink water is

taken as an example activity, then the component locations would be the kitchen

door, the cup cupboard, the tap, and then finally the kitchen door again.

The routines were derived from commonly performed household activities which

consist of basic ADLs, such as ambulating and prepareing food [270]. The activities

that make up each of the three routines were selected in a psudo-random method,

ensuring that a range of activities which are representative of a real world routine.

In order to provide a variation in the simulated daily routines three routines
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were created. The first contained ten activities and the remaining two contained

eleven activities. The activities ranged from simple activities such as drinking

a glass of water to more complex activities, such as preparing hot food. The

activities considered are presented in Table 3.2, with the full routines presented

in Table 3.3. The routines were generated in an attempt to simulate a wide range

of activities one might encounter within their daily routine, comprising of “basic”

ADL, such as making a meal, to “insturmental” ADL, such as washing dishes and

telelphone communication [270]. A variation in the number of activities that were

carried out within each routine were also introduced to simulate people’s routines

varying on a day to day basis.

Due to issues traditionally faced when migrating a AAL support system from

one environment to a new environment multiple test locations were used in order

to test the robustness of the system. Issues can include the need to retrain the

system to the new environment, along with the intrusiveness of the install within

an occupant’s home along with the associated finanical cost. The test locations

were the smart lab within the Pervasive Computing Research Centre (PCRC)

lab at Ulster University [271] and the smart lab within the Ambient intelligence

lab at the University of Jaén [272]. These routines were performed under the

same lighting conditions in order to minimise any potential discrepancy between

identical activities in differing routines. The same routines were then carried out

with the UJAmI lab but under varying lighting conditions to judge the effect

lighting has on the effectiveness of the system.

In order to be able to confidently label the events and time stamps of the

machine vision and binary sensor location systems, the ground truth was obtained

from a time stamped video which provided a recording of the environment. The

occupant’s location reported from the location systems were then compared to the

ground truth from the video. Each routine was carried out by a single researcher

in a structured manner to ensure repeatability. Table 3.3 details the number of

activities within each routine.

It should be noted that there can be limitations when a single researcher is

performing all of the data collection. One such issue is that of limited objectiv-

ity which can result in a subjective bias being introduced during data collection,

this can be due to issues such as the individual intrepretation of the protocol.

Additional issues that can be faced is that of reduced data diversity as a single

researcher may collect data in a rigid manner which may result in less diversity in

the final dataset. For example, activating sensors in a strict order when carrying

out activities that would normally have a level of variation when carried out nat-
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Table 3.2: The full list of activities that were performed during the three routines.

Activity Number Activity

1 Prepare/drink water

2 Prepare/drink tea

3 Prepare/drink hot chocolate

4 Prepare/drink milk

5 Make/receive phone call

6 Prepare/eat cold meal

7 Prepare/eat hot meal

8 Watch TV

9 Wash dishes

urally, such as making a cup of tea. Lastly, having a single researcher collect all

the datasets can result in a smaller dataset simply due to time restrictions when

collecting the data.

3.3 Hardware Used for Data Collection

This Section will detail the hardware used to record the data, including the wear-

able sensor platform and lighting controls that were used when gathering the

datasets within the labs at both recording sites; PCRC and UJAmI.

3.3.1 Binary Contact Sensors – TyneTec

Binary Contact sensors [273], refer to Figure 3.1, were used to provide a bench-

mark method to assess the viability of the machine-vision method to determine

occupant location. Specifically, TyneTec binary contact sensors comprise a two-

part magnetic based sensor. One part is a magnet and the other part is the sensor

itself, the sensor is triggered when these two sections are separated. The sensor

activates when the magnet is taken within or without range of the sensor sending

a signal to the receiver which logs the event in a database. The data collected

from the binary contact sensors will be used to provide a gold standard to assess

the performance of the machine-vision system which is discussed in Chapter 4.
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Table 3.3: A breakdown of activities that took place in each routine, along with

the corresponding activity number.

Routine 1 (R1) Routine 2 (R2) Routine 3 (R3)

3 4 3

1 6 1

7 1 5

9 5 7

8 1 1

1 2 8

8 8 2

6 7 8

9 9 6

1 8 9

N/A 1 4

Figure 3.1: TyneTec ZXT434 Binary Contact Sensor.

The use of binary contact sensors offers a range of benefits over alternative tech-

nology solutions. One benefit is that of simplicity, binary contact sensors consist

of a simple on/off switch that can detect whether contact is present or has been

broken. This simplicity can make binary contact sensors a cost effective solution

which can be simple to install within an environment, requiring a low amount of

retrofitting to the environemnt. Binary contact sensors also offer high accuracy

for detecting the presence of an occupant via the activiation of a sensor, such as

when opening a door or cupboard. They also offer an advantage in terms of pri-

vacy as binary contact sensors do not transmit personal or identifiable data. Only
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transmitting that they have been activated along with a timestamp.

However, there also a range of limitations when utilising binary contact sensors.

Due to the nature of binary contact sensors they can only detect two states –

on and off. This limited level of granularity can make it a challenge to capture

finer details and requires the occupant to interact with a sensor to collect any

information. They are also limited when it comes to multiple occupancy as they

cannot identify between different occupants, simply reporting that the sensor has

been activiated. This can be a challenge when supporting older adults who may

require assistance from family members or caring staff.

3.3.2 Wearable Camera – Google Glass

This research employed the Google Glass Explorer Edition [29]. It provides a

first-person video camera, in addition to a full sensor suite of accelerometer and

gyroscope, GPS; Table 3.4 provides a full list of the available sensors within Google

Glass. User input can be gathered either through the touch interface or the natural

language commands.

Table 3.4: A breakdown of Google Glass specifications.

Component Specification

Operating System Andriod 4.4

Display Himax HX7309 LCoS 640x360

Camera 1280x720

Wi-Fi 802.11b/g

Bluetooth 4.0

Storage 16GB (12GB Available)

CPU OMAP 4430 SoC 1.2Ghz Dual Core (ARM v7)

RAM 1GB

Sensors 3 Axis Gyroscope/Accelerometer/Magnetometer

Audio Bone Conduction Transducer

Battery 570mAh 2.1V (7560 Joule)

The on-board processing capabilities of Google Glass consists of 682MB usable

RAM (1 GB total – 342 MB reserved), and a dual core TI OMAP 4430 1Gz
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processor. The CPU can be set to four frequencies – 300Mhz, 600Mhz, 800MHz,

and 1GHz. At high temperatures the Glass firmware limits the CPU to 600Mhz or

300MHz in order to cool down via power reduction [274]. The proposed method

outlined in this thesis can be applied to any first-person camera, whether this is

provided by an off-the-shelf solution such as Google Glass or a device as simple as

a webcam. In the presented work Google Glass was streaming live video at a rate

of 20 FPS at a resolution of 640x480.

The use of an off-the-shelf solution offers many advantages, firstly Google Glass

are designed to be lightweight and ergonomic along with accepting prescription

lenses. Due to the reliance on the occupant wearing the glasses at all times it is

important that the device is comfortable to wear and by accepting prescription

lenses it removes the need to rely on the occupant to remember to use the device

when required. Google Glass also offers a user friendly interface allowing com-

mands to be run via voice commands or touchpad controls which is an advantage

given the typically lower levels of technological literacy among the cohort. How-

ever, there are some limitations when using Google Glass within the scope of this

research. The main limitation of Google Glass, and that of other smart glasses,

is that of battery life, due to the need to continuously run the camera alongside

the small form factor of smart glasses results in a reduced battery life. Battery

life can be further extended with external battery packs, however, with the cur-

rent rate of advance in battery technology the battery life of future generations

of wearable devices will be less of a challenge. An additional limitation is that

of device cooling, which is achieved by reducing the clock speed of the CPU. At

high temperatures, the Glass firmware limits of the CPU to 600Mhz or 300Mhz to

cool down via power reduction which can result in reduced performance from the

device.

The data gathered from the Google Glass device was used to determine the

performance of the Glass device. This was done through comparing the accuracy

of the locations detected by the Glass device with the accuracy of a dense sensing

solution that was placed within the environment, which consisted of TyneTec

sensors placed on objects of interest as detailed in Chapter 4. The data was also

used to provide a comparision of the accuracy of other fiducial marker detection

algorithms as detailed in Chatper 5. Additionally, the data was used in a later

study to perform activity recognition within an environment to determine what

activity an occupant was carrying out and if the use of probability theory could

further improve the accuracy of the system as discussed in Chatper 6.
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3.3.3 Lighting Detection – Sun SPOT

Sun SPOT (Small Programmable Object Technology) sensors [275], refer to Figure

3.2, were developed by Oracle to allow the development of new applications and

devices. They consist of an embedded microprocessor running Java and offer a

range of technologies such as IEEE 802.15.4 communication, built-in Lithium Ion

battery, built-in ECC public key cryptography, and a range of built-in sensors.

The key Sun SPOT sensor in the scope of this thesis is that of ambient light

detection (wavelength measured in nanometers) to allow the assessment of how

ambient lighting effects the accuracy of machine-vision systems.

Figure 3.2: Oracle Sun SPOT UDM3011 sensor.

3.3.4 Lighting Control

In order to facilitate the control of the lighting within the labs, roof mounted

fluorescent lighting was used in combination with natural light control through

the use of window blinds. The fluorescent lighting in each room consisted of a

series of Philips TL5 HE 835 28-watt bulbs producing 86lm/W [276]. Table 3.5

details the lighting details within each room in the environment.

Table 3.5: Details of the lighting in the kitchen and living room section of the

PCRC smart environment.

Room Number of Bulbs Total Watts Total Lumens

Kitchen 3 84 Watts 7,224

Living Room 6 168 Watts 14,448

This allowed a consistent level of light to be controlled throughout the day while

the protocol was being carried out within the PCRC lab. The same method of

controlling the light using fluorescent lighting along with window blinds were used

with the UJAmI lab to allow differing levels of lighting to be set in order to assess
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how this affected the performance of the proposed system. In order to create a

“high” level of lighting (approx. 500 lux) for the experiment, all of the fluorescent

lights were turned on and the window blinds were left fully open. Experiments

were conducted at approximately the same time of day over multiple days in order

to help control the amount of ambient light due to the time of day. To simulate

a “medium” level of lighting (approx. 300 lux) the window blinds were closed

and the fluorescent lighting remained on, and to simulate “low” levels of lighting

(approx. 150 lux) both the window blinds were closed, and the fluorescent lighting

were turned off.

It should be noted that there are some potential limitations of the lighting

control. Due to the exact lighting level at each object of interest not being mea-

sured with only an approximate reading being taken it can be difficult to know if

the lighting over a particular object of interest was lower or higher than expected.

This could result in a higher or lower accuracy than expected. Additionally, the

reliance on natural light as a component can make it difficult to ensure consistancy

across all experiments. However, an advantage of this setup is that it allows a more

accurate replication of a real world environment which would consist of natural

lighting alongside ceiling lighting.

3.4 Deployment

Significant efforts [272, 271, 277, 278] have been focused upon establishing smart

environments which allow the development and testing of emerging technologies

along with the generation of datasets. These can be reduced to three main

categories[271]:

Lab Environments – These are mainly research based environments and are

typically located within research, academic, and industry locations.

Smart Environments – These are living environments which have been created

for the sole purpose of evaluation and demonstrating newly available tech-

nology.

Smart Living Environments – These are living environments which have been

designed to meet the real world living needs of people within their own home,

typically a long-term implementation.

Any institution that is involved with the development or testing of smart environ-

ment technologies would have established some form of lab environment in which
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to perform testing or development of their systems. Lab environments vary in

size and scope, from simply portioning off a section of a lab to the development

and installation of a fully dedicated smart space. There are a number of notable

examples of smart environments created for evaluation and demonstrating pur-

poses. These allow the development and evaluation of various forms of technology

in order to direct future research. There are notable research groups that have

created these dedicated smart environments, such as the MavHome project [279],

Gator-Tech [277], Aware Home [280], PCRC lab [271]. UJAmI Smart Lab [272],

and the H2AI – Human Health and Activity Laboratory [281].

The final categorisation is that of real world homes which will have occupants

living within them on a day-to-day basis, this may require an external care provider

depending on the level of care that the occupant requires and if this can be solely

met by the smart environment. These homes are equipped with various levels

of supporting technologies such as fall detection to fully autonomous homes that

operate doors and windows among others [282], such as those developed by the

University of Zurich [283].

Each of the categories offers a range of benefits for the development and test-

ing of new technologies. Lab environments offer controlled conditions to allow for

individual variables to be isolated and controlled to measure their effect on the out-

come. This also allows for reproducibility to allow for the modification of individual

variables and also to ensure that results are repeatable and that the technology

operates in a consistant manner. Smart environments allow for the simulation of a

real world setting to provide a more realistic context to test the technology within,

such as performing activities within a home. Smart environments also offer the

oppourtunity to observe how users interact with the technology in a controlled

environment along with allowing the testing of interoperability between devices or

technologies. Lastly, smart living environments offer the oppourtunity to perform

real world testing/validation with a target user group. Additionally, it allows for

data collection within a real world setting which can aid in further development

or for training/updating new models.

3.4.1 Ulster University Pervasive Computing Research Cen-

tre Lab

The Smart Environment lab at Ulster University was established in 2009 by the

PCRC, Figure 3.3 shows the layout of the PCRC lab along with the placement

of the various sensors that are available throughout the environment. The lab in
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Ulster offers binary contact sensors. The list below details the sensor type and

their location within the PCRC lab. A floor pan can be seen in Figure 3.3.

� Binary Contact Sensors - 11

– D01 – Kitchen door

– D02 – Cup/glass cupboard

– D03 – Tap

– D04 – Tea/Hot Chocolate cupboard

– D05 – Kettle

– D06 – Fridge

– D07 – Microwave

– D08 – Cutlery cupboard

– D09 – Living room door

– D10 – Plate cupboard

– D11 – Chair

– D12 – Sofa

– T02 – Phone

– TV0 – TV

Figure 3.3: PCRC smart environment floor plan with sensor locations.



73

3.4.2 University of Jaén Ambient Intelligence Lab

The Smart Environment lab at the University of Jaén was created in 2018 by

the Advanced Studies Centre in Information and Communication Technologies

and Engineering (CEATIC). Figure 3.5 shows the layout of the UJAmI Smart

Environment lab along with the placement of the various sensors that are available

throughout the environment. The UJAmI lab offers binary contact sensors, Passive

InfraRed (PIR), and Sun SPOT sensors. Images of the environment can been seen

in Figures 3.6a and 3.6b.

(a) Living room view of the Jaén smart lab.

(b) Kitchen view of the UJAmI smart lab.

Figure 3.4: Images of the living room and kitchen within the UJAmI lab.

The list below details the all the sensor types and their location within Figure

3.5:

� Binary Contact Sensors – 12

– D01 – Fridge

– D02 – Microwave
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– D03 – Wardrobe

– D04 – Dishwasher

– D05 – Plate cupboard

– D07 – Toilet

– D08 – Groceries cupboard

– D10 – Cup/glass cupboard

– K01 – Kettle

– TV0 – TV

– M01 – Front door

– T02 – Telephone

� PIR Sensors – 4

– SM2 – Bed

– SM4 – Bedroom door

– SM5 – Sofa

– WT0 – Tap

� Sun SPOT Sensors – 6

– SP1 – Above microwave

– SP2 – Above PC desk

– SP3 – Above living room cupboard

– SP5 – Above cooker

– SP6 – Above bed

– SP8 – Bathroom sink
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Figure 3.5: Sensor positions within the UJAmI lab, PIR orientation is shown by

a small arrow.

3.4.3 Simulated Dataset – IESim

Due to the inherent difficultly of gathering large datasets within a smart environ-

ment a simulated dataset was created in order to provide a suitable large dataset

which would allow the testing of technology and methods. Intelligent Environment

Simulator (IESim) was a tool developed within Ulster University for the simulation

of smart environments and sensor platforms [284]. IESim was designed to aid in

the rapid creation of a simulation of a smart environment which could be popu-

lated with sensors and objects. It provides an interactive visual approach to allow

its use by both technical and non-technical users to create novel environments in

order to perform initial testing. Each routine from Table 3.3 was simulated twice

within IESim simulating binary contact sensor data from a single occupant. Fig-

ure 3.6a and Figure 3.6b presents an example of an environment developed with

the use of IESim. This simulated environment is designed to simulate the PCRC

smart lab.
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(a) Smart kitchen within IESim.

(b) The smart kitchen in the PCRC lab.

Figure 3.6: Images of the living room and kitchen within the PCRC smart Lab.

When compared to the datasets collected by a researcher the simulated datasets

does not contain any missed sensor events and the sensor events are carried out in

a strict order. Due to these issues it was felt that the simulated dataset did not

represent the complexity of a real world scenario were variations may exist within

the data due to the order of sensor activations. Additionally, in a real world

scenario there may be missing or corrupt data, this can be due to many factors

such as hardware/battery failure or interference. This simulated dataset could

potentially be used within future work, one interesting avenue of investigation is

that of utilising the simulated dataset to augment the real world dataset to increase

the size of the dataset for training ML models.

3.5 Datasets Collected

A single participant generated the data in both the PCRC and UJAmI labs. Table

3.3 presents the three routines that were carried out at each lab along with the

corresponding activities (experiment protocol available in Appendix A.). The three

routines contained 175 sensor events in total, resulting in a total of 350 vision

events over both labs. A simulated dataset was also generated through IESim,

which produced a simulated TyneTec dataset of 651 sensor events. In total four

main datasets were gathered:

1. A simulated data that was generated via the use of IESim, to provide a large

dataset of synthetic contact sensor events.

2. A gathered dataset from the PCRC lab which provides a dataset comprised

of egocentric video data from a wearable camera under consistent lighting

conditions. This was coupled with binary contact sensor data to act as
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a ground truth, this was used to determine the technical feasibility of the

system.

3. A gathered dataset from the UJAmI lab which provides a dataset comprised

of egocentric video data from a wearable camera under consistent lighting

conditions. This was used to determine if it could be easily applied to mul-

tiple environments.

4. The gathered dataset from PCRC lab which provides a dataset of egocentric

recordings from a wearable camera under varying lighting conditions with

ArUco and custom fiducial markers to compare systems.

This provides a wide range of data on which to test the system allowing a method

of comparing the ease of set up and installation within differing environments.

Along with a wide range of data, complete with varying lighting conditions, on

which to tell the reliability of the system. Further breakdown of the datasets are

presented in Table 3.6.

Table 3.6: The full list of activities that were performed during the three routines.

Dataset ID Classes Instances Sensor

1 9 651 Simulated binary contact

2 9 175 Google Glass

2 9 175 TyneTec ZXT434 Binary Contact

3 9 175 Google Glass

4 3 38 Google Glass

3.6 Summary

This Chapter presented an overview of current, commonly available datasets for

ADL, and produced a novel dataset for indoor localisation and detecting ADL

which have been made publicly available 2. The datasets consisted of an occupant

carrying out ADL while wearing an egocentric camera, along with binary contact

data via TyneTec sensors. The datasets discussed within this Chapter offer ad-

vantages over other publically available datasets, such as those presented in Table

2https://github.com/cshewell747/VisionData
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3.1, mainly through the use of fiducial markers applied to an environment which

is viewed through a first person context. Additionally, the data recorded through

the use of a head mounted wearable camera which offers a unique perspective of

the environment along with helping to reduce issues such as occulusion. However,

it should be noted that there are limitations to the collected dataset. Firstly, the

small size of the dataset is a limitation when discussing training ML models which

can require large amounts of data and can result in overfitting. Additionally, the

use of custom fiducial markers restricts what algorithms can be used. As a large

number of fiducial marker detection algorithms rely on pre-designed markers and

typically cannot be modified to accept custom markers. [197]. Chapter 4 presents

use of these datasets to propose a novel form on indoor localisation utilising a

wearable camera and a mechanism to identify “key” objects within the environ-

ment.



Chapter 4: Indoor Localisation through

Fiducial Marker Detection on

Near Real-Time Wearable Video

4.1 Introduction

This Chapter presents a novel, in terms of technology used and method of localisa-

tion, solution to the challenge of occupant localisation within an environment. The

work reported in this chapter has been published in [264] and [285]. The proposed

method leverages smart glasses (Google Glass) and fiducial markers placed on key

objects within the environment to determine location. This is achieved via the live

streaming of a video feed from the front facing camera on the Glass device. The

video feed is then processed and any fiducial markers within the stream identified.

Each marker will have an associated I.D. which details the approximate location

of the occupant. The novelty of this system is the use of a near real-time video

stream to perform localisation through the use of fiducial markers placed on “key”

objects within the environment via a smart glass device.

The main objectives of this Chapter were to present a review of the current

state of the art of machine-vision based solutions that facilitate indoor localisation,

to establish an experimental protocol to assess the viability in applying an indoor

localisation system utilising a wearable camera, along with its feasibility to be

applied to multiple environments. The results were validated at multiple locations

(PCRC and UJAmI labs). Furthermore, a comparison of how the costs of the

presented system compares against the costs of alternative sensor platforms for

occupant localisation is presented as the finanical cost of such a system will be

key to widespread adoption. The hypothesis considered that the use of a single

wearable camera allows occupant tracking within an environment.

In order to assess the feasibility of the method, a protocol, as discussed in Sec-

tion 3.2 was established to compare the presented method against an established

method of indoor localisation; dense sensor placement [286]. A series of activities

79
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were performed within an environment and the location was recorded by both a

machine-vision localisation system and dense sensor placement. To verify that

the method was applicable to multiple environments (differing environmental lay-

outs, lighting conditions, ease of installation, etc.) the experiment was recreated

within two separate smart labs, the labs in the PCRC lab [287] and the UJAmI lab

[272]. This Chapter details the rationale, architecture, methodology, testing, and

evaluation of a system to facilitate indoor localisation through the use of a single

“always-on” egocentric camera, implemented using the Google Glass platform.

4.2 Methodology

This Section proposes a solution to facilitate indoor localisation through the use

of a single “always-on” egocentric camera, implemented using the Google Glass

platform. The occupant location is established through the implementation of

machine-vision techniques to identify reference objects located within the environ-

ment that are then cross-referenced against a knowledge base that contains the

reference object’s known location. The reference objects are identified by fiducial

markers placed upon them. Fiducial markers can be defined as artificial land-

marks, or reference points, that are added to an environment to aid in tracking,

alignment, and identification within the environment [288]. They can either be

placed upon a fixed point within the environment to enable a moving camera to

allow the location of the camera to be determined or they can be placed on moving

objects to allow the location relative to a fixed/moving camera to be determined

[289]. Within the context of this work, fiducial markers are defined as images or

scenes within the environment that support the alignment, identification, and/or

tracking of objects or locations [74]. The need for the occupant’s location is a

high priority for providing relevant assistance due to the nature of activities being

localised to a certain location within the environment; such as making dinner. The

presented approach leverages a wearable camera to offer an egocentric view of the

environment. This is coupled with fiducial markers placed on “key” objects which

offer contextual information as to the occupant’s location

In the research presented in this Chapter, the fiducial markers take the form

of multiple overlapping shapes applied to “key” objects within the environment,

refer to Figure 4.1a for an example of a fiducial marker. These markers were then

applied to “key” objects within the environment, as shown in Figure 4.1b. The

overlapping shapes were defined through an iterative approach and ad hoc testing

to determine the optimum complexity required. A single shape, such as a cross
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or triangle, did not provide enough unique features points to accurately differen-

tiate the markers from each other. Conversely, overly complex shapes resulted in

increased processing time required to identify the shape which resulted in mark-

ers being missed due to the speed the occupant would navigate throughout the

environment. As feature point algorithms, such as FAST, rely on corner detec-

tion methods [290] the shapes were created to maximize the number of corners

that could be detected via overlapping shapes which were slightly offset from each

other.

(a) Example of a fiducial marker. (b) An example of a fiducial marker applied

to an object.

Figure 4.1: An example of a fiducial marker and how they are applied to objects

of interest within the environment.

As shown in Figure 4.1b the markers can be applied to any object, in this case on

the telephone. If the telephone is detected, we can determine that the occupant

is within the living room and thus can provide the relevant support if/when it

is needed within their context. The method of using fiducial markers to identify

objects within the environment aims to aid in alleviating some of the traditional

problems associated with object detection [291]. One such challenge this method

alleviates is attempting to distinguish between multiple identical objects [288],

such as kitchen cupboards, as well as negating the requirement to recognise various

models of the same appliance that may differ in their appearance, however, offer

the same function. Further advantages this method offers is the ability to retrofit

it to any object within an environment therefore the need for a fully sensorised

environment is no longer required therefore greatly reducing the cost of applying

such a system to the occupant’s own home. However, there are some negative

issues encountered through implementing the proposed solution. Firstly, a unique

fiducial marker will need to be generated for each object of interest within the

environment. Secondly, effort was needed to ensure that the correct markers are

placed on the relevant objects of interest within the environment of interest. The
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markers can be placed by a non-expert user, however, it would be beneficial if they

are placed by a person who is familiar with the occupant’s routines in order to

ensure all the relevant objects have had a marker attached.

4.2.1 Streaming Data from a Wearable Camera

This research was conducted using the Google Glass device [167], which is equipped

with a first-person video camera at eye level, in addition to a full sensor suite such

as accelerometer, gyroscope, and GPS amongst others. Chapter 3 provides a fuller

overview of Google Glass and its technical specification.

4.2.2 Near Real-Time Streaming

In order to determine the location of the occupant the video feed will be streamed

from the Google Glass device showing an egocentric view of the environment.

Any fiduciual markers found in the video feed will be detected and the marker’s

associated location will be logged as the occupant’s current location.

In order to offer relevant, timely support the video feed from the Google Glass

was processed in real time. This functionality was not supported by Google Glass

by default. An app was developed for Google Glass that allowed a video stream to

be captured and then sent via Real Time Streaming Protocol (RTSP) to a cloud-

based server. The video feed was then freely accessible by multiple sources. In

order to process the video, the machine-vision server accesses the video stream via

RTMP (Real Time Messaging Protocol) and performs the video processing. This

approach did, however, introduce a brief latency (<4 seconds) due to Glass’ efforts

to lower its temperature during high load situations, such as streaming [9].

4.2.3 Server Offloading

As wearable devices are traditionally “resource poor” in comparison with contem-

porary server hardware [9] Google Glass was responsible for capturing the video

stream and delivery of reminders and notifications only. This was to avoid intro-

ducing a large delay within the processing time from detecting a marker within

the video stream and determining the location from the marker to establish the lo-

cation of the occupant. The image processing was offloaded to a server via RTSP

for processing, thus decreasing the time taken for object detection and for the

appropriate response to be given, along with increasing battery life on the Glass

platform. Ha et al. carried out a comparison of an assistive application (OCR:

Optical Character Recognition). They compared the performance and energy use
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of Glass performing the recognition task, both via on board processing and com-

paring this against offloading the processing to a server via a real-time stream from

Google Glass [9]; their results are shown in Table 4.1.

Table 4.1: Comparison of offloading vs. on-board processing for Google Glass.

Mean over five runs, standard deviation shown in parenthesis [9].

Metric On-Board (seconds) Offloading (seconds)

Per-Image Energy 12.84 (0.36) 1.14 (0.11)

Per-Image Speed 10.49 (0.23) 1.28 (0.12)

As can be seen from Table 4.1, there is almost an order of magnitude difference

in both speed and energy used in offloading compared to on-board processing.

Google Glass offers a 2.1V 570mAh (7560 Joule) battery, equating to an 11-minute

battery life when performing on-board processing and an 111 minute battery life

when offloading to a server, along with an decrease in the processing time required

to perform the recognition [9]. Battery life can be further extended with external

battery packs, however, with the current rate of advance in battery technology the

battery life of future generations of wearable devices will be less of a challenge.

The imagine recognition was carried out using the OpenCV library [292], which

is an open source library aimed at real-time macine-vision, using a desktop ma-

chine as the server. The technical specification of the server was as follows: Intel

Core2Quad (Q9950) 2.83GHz CPU, 8GB RAM. The video was transmitted at

640x480 at 20fps. Due to processing limitations of Google Glass a variable lag

(<3s) was introduced on the video stream. This was due to Google Glass’s ef-

forts to lower the operating temperature, which is achieved by reducing the clock

speed of the CPU. At high temperatures, the Glass firmware limits of the CPU to

600Mhz or 300Mhz to cool down via power reduction [274].

It should be noted that there can be limitations to offloading, in particular,

privacy and security. This is due to the data being streamed over a network from

the device to a server which can increase the likelihood of unauthorised access or

data breaches through malicious attacks. Additionally, the occupant could feel

uncomfortable knowing their data is being offloaded to a server outside of their

control. Particularly given the sensitive nature of a egocentric video stream within

the occupants own home. Certain steps can be taken to reduce the privacy issues,

such as in this research were the video feed is not stored, only the I.D. of the

detected marker along with a timestamp are stored. Additional considerations
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that must be taken into account is the potential costs involved with regards to the

scalability of an offloading approach should a third party server provider be used.

Especially if mulitiple occupants are being supported within the environment as

this would require mulitiple video streams to be offloaded and processed.

Within the implementation in this research a desktop server was used within

the occupant’s environment to reduce issues with data privacy and security. As the

data would not be leaving the occupants home network, alongside only recording

the detected marker name and timestamp. This approach was also low cost with

a low spec desktop PC being required, however, if multiple occupants were being

supported a higher specification desktop should be considered.

4.2.4 Comparison of Feature Detection Algorithms

To detect and identify the fiducial markers a feature detection algorithm was re-

quired. To determine the best fit for this purpose, a review of the literature

pointed towards Orientated FAST and Rotated BRIEF (ORB) as being the best

fit for this work [293, 294, 295]. A brief overview and comparison of the algorithms

is presented.

SIFT: Scale-Invariant Feature Transform (SIFT) was developed by Lowe [296]

as a method of extracting distinctive invariant features from images to provide

reliable image matching. The features extracted are invariant to both scale and

rotation, in addition to being robust to the effects of affine distortion, noise, and

lighting changes [296]. This method also allows for highly distinctive features to be

extracted so that a single feature can be correctly matched against a large database

of features from multiple images. Image matching is performed by matching in-

dividual features against a database of known features using a nearest-neighbour

algorithm along with a Hough transform to identify clusters belonging to a single

known object. Verification is then performed through least-squares solution for

consistent pose parameters [296].

SURF: Speeded Up Robust Features (SURF) was developed by Bay et al. [297]

as scale and rotation invariant feature point detector and descriptor which relies on

integral images for image convolutions. In order to detect interest points an integer

approximation of the determinant of a Hessian blob detector is calculated with

three integer operations utilising a precomputed integral image [297]. Analysis

has shown that it is three times faster than SIFT while performance is comparable

to SIFT. The main advantage of SURF is in handling images with blurring and

rotation; however, it falls down at handling viewpoint change and illumination

change [292].
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FAST: Features from Accelerated Segment Test (FAST) was created by Rosten

& Drummond [298] to be a low computational method of detecting features in real-

time video via the application of machine learning. FAST creates a decision tree

which can correctly classify all corners in the training set. To classify a corner a

pixel “P” is selected and a circle of 16 pixels is selected around it. Four pixels from

the circle are then examined (1 and 9 first, if these are too bright or dark then 5

and 13 are checked) if “P” is a corner then at least three of these pixels should be

brighter or darker than “P”. While it is several times faster than other existing

corner detectors it is not robust to high levels of noise and is highly dependent on

a threshold value.

ORB: Orientated FAST and Rotated BRIEF is an alternative to SURF and

SIFT which was proposed by Rublee et al. [293]. ORB uses FAST (Features from

Accelerated Segment Test) in pyramids in order to detect stable key-points and

selects the strongest features using FAST. FAST is an efficient method of finding

key-points in images. It is a particularly common solution in real-time systems that

match visual features, however, it must be augmented with pyramid schemes to

take scale into account, and in the case of ORB a Harris corner filter must be added

to reject edges [293]. ORB employs the Binary Robust Independent Elementary

Features (BRIEF) feature descriptor which employs simple binary tests between

pixels in a smoothed image patch and offers robustness towards lighting, blur, and

perspective distortion.

ORB implements the intensity centroid method of corner detection as defined

by Rosin [299]. ORB features are invariant to rotation and scale, resulting in

a very fast recogniser which is robust to viewpoint invariance [294], while being

faster than both SIFT and SURF based algorithms while maintaining accuracy

[295]. The intensity centroid assumes that a corner’s intensity is “o” set from its

centre, and that this vector can be used to impute an orientation. A previous study

by Gil et al. [300] has shown that a strength of ORB is its ability to accommodate

low brightness conditions, in part due to ORB implementing the Harris Corner

Detection algorithm which Pribyl et al. has shown to be robust in low lighting

conditions [74].

Tareen and Saleem [10] undertook a study to investigate the computational

cost for a range of feature point algorithms by demonstrating the computational

cost per feature point based on the mean values from a range of images within

multiple datasets as displayed in Table 4.2.

OpenCV [292] provide a hardware and operating system agnostic implemen-

tation of various feature point recognition algorithms thus removing hardware
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Table 4.2: Computational cost per feature point [10].

Algorithm Mean Feature Matching Time (µs)

SIFT 142.02

SURF 89.66

ORB 11.82

platform limitations. Being able to run on smartphones, Raspberry Pi, or more

powerful desktop devices.

Following review of the aforementioned approaches, ORB was selected as the

algorithm of choice. This was due to its lower computational overhead compared

with the alternative approaches while still offering a high level of accuracy. Its

robustness to lighting conditions also highlighted it suitableness to the application

of AAL where the occupant would need to be supported at all times of the day

with varying lighting conditions due to differing interior lighting and the natural

lighting changing throughout the day.

However, it should be noted that are some limitations when using feature point

algorithms for fiducial marker detection. Firstly, there is a reliance on sufficient

complexity being present within the marker design in order to reliably differentiate

the markers from the background. Additionally, scalability can also be an issue

due to the potential limit of the number of unique markers that can be generated

without increasing the number of mistaken detections (false positives). Marker

placement is also a limitation as factors such as lighting and occlusion can result

in reduced performance. Additionally in situations were there may be multiple

fiducial markers in close proximity feature point algorithms can struggle to differ-

entiate betwen markers. Occlusion can lead to missed detections or false positives

due to the markers being fully or partially occluded within the environment. While

this is a limitation of feature point recognition algorithms it can be possible to de-

tect partially occulded markers through the use of deep learning approaches. Noise

is also an important factor to consider and can be introduced through lighting,

network faults, sensor faults, or artificats introduced through compression. The

result of noise within the data can result in reduced performance within feature

matching and detection which can increase the rate of false negatives and false

positives. Image distortion is another factor that can potentially affect the per-

formance of a feature point detection algorithm. Distortion can be introduced

through the camera lens affecting the detection of the fiducial markers, Chapter 5

discusses how the camera was calibrated to take account of this distortion.
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4.2.5 K-Nearest Neighbour Matching

A KNN algorithm [301] was used to match the detected feature points of a marker

against the known marker templates to determine if a marker is present. A KNN

algorithm can be formally defined as finding the K closest (similar) features to

a query feature among N points in D-dimensional feature space [302]. In the

presented implementation, a simple, from a reasoning perspective, version of a

KNN is used, a Brute Force Matcher which takes a descriptor of one feature in the

first set which is then matched with all the other features in the second set using

a distance calculation with the closest match being returned.

Cheng et al. bench-marked multiple algorithms for the purposes of image

matching which shows how the Brute-Force matcher compares to other feature

matching algorithms [303]. A Brute-Force Matcher may be one of the worst per-

forming matchers [303] in terms of time taken to establish a match, though the

detection time as implemented in this research is less than one second, it was con-

cluded that it is the best performer in terms of accurately identifying the correct

matches [303].

The Brute-Force Matcher has been used in this research to compare feature

points for matching pairs. For each feature in the object, the Brute-Force Matcher

locates the closest feature between two pairs by trying every one. The similarity

between two pairs is represented by the Norm Hamming distance. This was more

efficient, in terms of computation speed, than alternatives as Norm Hamming

distance can be implemented using an XOR followed by a bit count which can be

carried out extremely fast on modern CPUs [304]. A minimum Hamming distance

is set to ensure that only good matches are selected. A match is considered good

when the distance is less than three times the minimum Hamming distance set.

An overview of the process of setting the minimum and maximum distance along

with the good match selection pseudo-code is presented in Algorithm 1.
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Algorithm 1 The process of setting the minimum and maximum distance along

with the process of selecting a good match.

mindist = 100

maxdist = 0

dist = ∅
matches[∅]
for matches do

if dist < min dist then

min dist = dist

end if

if dist > max dist then

max dist = dist

end if

end for

for matches do

if 3xmin dist < matches : distance then

goodMatches[matches]

end if

end for

However, it should be noted there are some limitations with utilising a KNN

algorithm. One such limitation is that of computational complexity due to the

need to calculate the distances between data points, this limitation increases in

cost as the dataset increases in size. This also limits the use of KNN to hardware

with sufficient memory storage for storing the entire dataset and thus it is limited

due to memory consumption in relation to the size of the dataset. KNN can also

be sensitive to noise within the dataset, for example, if there are any outliers

within the dataset this can have an effect on the result of the nearest neighour

calculations due to outliers potentially being treated as neighbours which may

distort the boundary. Noise within the data can also result in the noise being

mistaken for a neighbour resulting in misclassification. Additionally, the choice of

the value of K can have a significant impact on the results. A low value of K can

result in the model being adversly affected by individual data points, particularly

if the dataset contains outliers, which can result in the model being overfitted to

the dataset. A high value of K can result in the model becoming too general and

can potentially lead to the model underfitting the data. This is due to the high

K value casuing the algorithm to consider a larger number of neighbours and can



89

result in reduced accuracy.

4.2.6 Two Stage Filter

During initial testing a high number of False Positives (where a tagged object is

determined to be present when it is not) were occurring. These were found to be

caused by objects in the environment containing a partial match to the fiducial

markers. In order to dismiss the number of FP reported by the system a two-stage

filter was used. For the first stage, the homography was used as a model for correct

matches allowing a transformation to map the points in the template image to the

corresponding points in the frame. The number of inliers that contributed to the

homography were determined and compared against a threshold value (refer to

Algorithm 1). If the number of inliers matched or exceeded this value, then it is

passed onto the second stage.

The second stage employed a Vote Function where any further FP that have

passed through the first stage are removed. A batch of frames (three in this

implementation) were processed. The object most likely to be present in each

frame was determined and stored. Once the most likely object for each frame

has been determined a vote count is performed. Once this count passed a pre-

determined (defined by a human expert) threshold value the most likely object

was determined to be present. The pseudo-code for the second stage filter is

presented in Algorithm 2. Figure 6.1 illustrates how these multiple algorithms

were combined as a whole system.

Algorithm 2 Vote function combining multiple frames to determine if an object

is detected.

threshold = ε

objectID[∅]
for totalNumberOfObjects do

if detectedObject == objectID then

objectID[detectedObjectCount+ +]

end if

if objectID[detectedObjectCount] == threshold then

objectDetected

objectID[∅]
end if

end for

return ObjectDetected



90

It should be noted that there can be potential limitations with the threshold value

being set by a human expert. Firstly, a potential limitation is that is that of

subjectivity as different human experts could have differing opinions on what is

an appropriate threshold value. Additionally, a threshold value being set by a

human expert may cause a lack of generalistaion, due to the threshold value being

set based off a familiar dataset which may not generalise to further datasets. The

threshold being set by a human expert can also result in a bias being introduced

to the system due to the human expert’s bias towards a certain instance or class

within the data. Lastly, it can be a time consuming process to manually set a

threshold value which may not be scalable as the dataset increases in size along

with reducing the level of transparancy within the decision making process.
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Figure 4.2: Overview of the flow of data, showing the two stage filtering process.

4.2.7 Benchmarking

To assess the performance of the proposed work in this thesis a comparative tech-

nique was required as a benchmark. To address this requirement a dense sensor-
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based solution was used to provide a comparison with the machine-vision system.

The dense sensor system consisted of TyneTec binary contact sensors placed on

the ‘key’ objects that also had a fiducial marker attached to them. There was

a total of 14 TyneTec sensors, events were uploaded to a MySQL database for

retrieval. Further details of the objects the TyneTec sensors were attached to and

their location within the PCRC and UJAmI labs can be found in Chapter 3.

The data for both the dense sensor and machine-vision datasets were collected

by a single researcher simultainously. The TyneTec sensors and fiducial markers

were placed within the environment while the researcher performed the study

protocol while streaming from the Google Glass device. The machine-vision video

stream was then process in near real-time to detect any fiducial markers within the

stream and then stored the marker I.D. and timestamp. This allowed a comparision

to be made between the accuracy of the dense sensor based system in comparision

to the machine-vision based system by comparing the number of false negative and

false positive events.

4.2.8 Activities of Daily Living Study Protocol

As was introduced in Chapter Three, a range of nine unique activities were re-

peated within three differing routines (activities were duplicated in both PCRC

and UJAmI) that were representative of daily routines [66], with the goal of recog-

nising the component locations that make up each activity. If prepare/drink water

is taken as an example activity, then the component locations would be the kitchen

door, the cup cupboard, the tap, and then finally the kitchen door again. Three

routines, specified in Chapter 3, were carried out. The first containing ten ac-

tivities and the remaining two containing eleven activities (routine two and three

contained repeating activities). The first routine did not contain the phone call

activity to simulate phone calls being a typically unscheduled activity in the real

world. These ranged from simple activities such as drinking a glass of water to

more complex activities, such as preparing hot food. The activities are presented

in Table 4.3, with the full routines presented in Table 4.4.

These routines were performed under the same lighting conditions (brightly

lit with artificial lighting and partially closed window blinds) to minimise any

potential discrepancy between identical activities in differing routines. To promote

the accuracy of the machine-vision and binary sensor location systems, the ground

truth was obtained from a time stamped video. The occupant’s location reported

from the location systems were then compared to the ground truth from the video.

Both the vision and TyneTec data were gathered at the same time, as the researcher
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carried out the activities while wearing Google Glass. The objects were also fitted

with TyneTec sensors, allowing the data to be gathered within the one routine.

All components of the system were time synced with the MySQL server to ensure

that the events were synchronised. Lighting was controlled as discussed in Section

3.3.4.

Table 4.3: Full list of activities that were performed during the three routines, these

were chosen to represent a range of ADL that take place within a kitchen/living

room area.

Activity Number Activity

1 Prepare/drink water

2 Prepare/drink tea

3 Prepare/drink hot chocolate

4 Prepare/drink milk

5 Make/receive phone call

6 Prepare/eat cold meal

7 Prepare/eat hot meal

8 Watch TV

9 Wash dishes

In order to assess the viability in applying the proposed solution to multiple en-

vironments the aforementioned routines were carried out in a second location, the

UJAmI smart lab, University of Jaén. Ceiling lighting and window blinds were

used to control the lighting conditions. Additionally, activities remained the same

within each routine along with both the markers and wearable sensor, the only

variable being the environmental layout. Ground truth was gathered by the re-

searcher involved from manually annotated video data to ensure the accuracy of

the vision system. As it was the viability of the vision system that was of interest

only the vision results were compared between the results of the experiment in

PCRC and UJAmI.

The resulting true positives, false negatives, and false positives from both the

dense sensor and machine-vision systems were compared as a means to evaluate the

performance of the two systems. Additionally, the recall, precision, and F-measure

for both systems were calculated to provide an additional means to evaluate and
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Table 4.4: Breakdown of activities that took place in each routine.

Routine 1 (R1) Routine 2 (R2) Routine 3 (R3)

3 4 3

1 6 1

7 1 5

9 5 7

8 1 1

1 2 8

8 8 2

6 7 8

9 9 6

1 8 9

N/A 1 4

compare the performance of both systems.

4.3 Results

This Section describes the results of the machine-vision localisation system, along

with details of the results from the dense sensor system when compared with the

ground truth from the annotated video data. Due to the high number of true

negatives (TN) over twenty thousand, from the machine-vision system a skewed

dataset was produced. Due to this the performance was assessed by measuring

recall, precision, and F-Measure. These were focused on to avoid misinterpreting

the high number of TN giving an incorrect weighting to the results.

The results from the machine vision system at the PCRC lab are presented in

Tables 4.5 and 4.6, and the results from the UJAmI lab are presented in Tables

4.7 and 4.8. Tables 4.6 and 4.7 show a total of nine FP from the 350 total events

these were due to a mistake being made in recognising the fiducial markers and

detecting them as a different marker.

As shown in Table 4.9 there was a total of 32 FN (175 total events) within the

PCRC lab. The majority of these (16) were due to corruption within the video
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frame during transmission. The remaining FNs where due to varying reasons, such

as missing frames. There were a total of 59 FNs within the UJAmI lab (Table 4.10),

most of these (47) were due to the camera auto-focus failing to focus. This could

be seen as a weakness of the system as if the camera did not have enough time

to focus on the marker then they may be missed. The rest of the FNs were due

to varying reasons, such as missing frames due to network latency or corrupted

frames.

Table 4.5: Results of Recall, Precision, and F-Measure for the machine vision-

based system – PCRC.

Routine Total Events Recall Precision F-Measure

R1 58 0.74 0.98 0.84

R2 56 0.88 0.94 0.91

R3 61 0.84 0.96 0.89

Total 175 0.82 0.96 0.88

Table 4.6: Breakdown of machine vision sensor classification outcomes including

TP, FN, and FP – PCRC.

Routine Total Events #TP #FN #FP

R1 58 43 15 1

R2 56 49 7 3

R3 61 51 10 2

Total 175 143 32 6

Table 4.8 and 4.10 presents the machine-vision results from the UJAmI lab. As

shown in Tables 4.8 and 4.5 there is reduction of the average Recall and F-Measure

by 0.16 and 0.09 respectively with a rise in Precision of 0.01, suggesting that

it is viable to apply the system to multiple environments. Even though there

was a drop in performance in terms of F-Measure and Recall the system was

still able to accurately determine the occupant’s location. The results from the

binary contact sensors are presented in Tables 4.11 and 4.12. While the binary

contact sensors provided more accurate results this does not fully demonstrate
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Table 4.7: Breakdown of machine vision sensor classification outcomes including

TP, FN, and FP – UJAmI.

Routine Total Events #TP #FN #FP

R1 58 39 19 1

R2 56 38 18 1

R3 61 39 22 1

Total 175 116 59 3

Table 4.8: Results of Recall, Precision, and F-Measure for the machine vision

based system – UJAmI.

Routine Total Events Recall Precision F-Measure

R1 58 0.67 0.98 0.80

R2 56 0.68 0.97 0.80

R3 61 0.64 0.98 0.77

Total 175 0.66 0.97 0.79

the additional advantages the machine vision system provides over dense sensor

placement.

One of the key advantages that the vision methods offers which was uncovered

during the experiments is that interaction with an object is not required to de-

termine the occupant’s location within the environment. This can offer a timelier

location update compared to dense sensor placement. In the experiments, the

occupant’s location was reported before they had interacted with the object thus

offering a timelier update. This was due to the manner in which each system re-

ported an event, with the dense sensor placement an event can only be reported

as the occupant is interacting with the object of interest. With the vision-based

system the interaction could be reported before the occupant has physically in-

teracted with the object, being able to recognise the intention of interaction as

the occupant approached the object. Also, if the occupant became confused or

decided not to use the object their location would still be captured. This would

have otherwise been lost in a traditional sensor based smart environment. Another

potential advantage is that of multiple occupancy. As each occupant will use a
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Table 4.9: A breakdown of FN machine vision events – PCRC.

Cause #FN

Corrupt Frame 16

Other 8

Unknown 8

Total 32

Table 4.10: A breakdown of FN machine vision events – UJAmI.

Cause #FN

Unfocused 47

Unknown 12

Total 59

wearable device it would be possible to locate each occupant within the environ-

ment and to infer their activity from their own first-person view. Nevertheless,

this is working under the assumption that only the occupants of the environment

will require support, as any visitors will not have a wearable device. If any sensor

activity is detected without a corresponding machine-vision event, then it would

be assumed that the visitors have activated a sensor and thus that event should

be ignored. While it is possible for the machine-vision system to miss an event,

there would be opportunities for this event to be detected due to the constant

monitoring of the environment through a camera. As the vision system does not

require interaction even if the initial event is missed, follow up events may still be

captured. This additional information is lost in a traditional dense sensor envi-

ronment and once the occupant has finished interacting with the object there is

no longer any opportunities to detect a follow up event.

4.3.1 Application to Multiple Environments

This study also investigated the viability of translating this solution to other en-

vironments. Occupants generally should be supported within their own home

which needs to be taken into consideration when developing a solution to that of

AAL. The proposed system offers reduced financial costs in terms of initial equip-
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Table 4.11: Results of Recall, Precision, and F-Measure for the dense sensor based

system.

Routine Total Events Recall Precision F-Measure

R1 58 1.00 1.00 1.00

R2 56 0.93 1.00 0.96

R3 61 0.90 1.00 0.95

Total 175 0.94 1.00 0.97

Table 4.12: Breakdown of dense sensor classification outcomes including TP, FN,

and FP.

Routine Total Events #TP #FN #FP

R1 58 58 0 0

R2 56 52 4 0

R3 61 55 6 0

Total 175 165 10 0

ment purchase and maintenance, along with a reduction in the invasiveness for

the installation compared to traditional indoor localisation methods as discussed

in Chapter Two. Details on the costs of purchasing the relevant equipment and

installation can be found in Table 4.13 vs. the Google Glass Explorer edition cost

of approximatly £1,200 at the time of writing. The issue of multiple occupancy

is also addressed as this solution allows individual support to be given to each

occupant as they have a unique first-person view of the environment. This does,

however, assume that only the occupants require support and that any visitors to

the environment can be assumed to not require any assistance allowing support to

be given in the form of notifications/reminders to assist with completion of ADL.

This solution aims to improve context aware support through the localisation of

objects within a smart environment.

One aspect of AAL that must be taken into consideration is the acquisition and

maintenance costs of implementing a sensorised environment. A large network of

embedded sensors is normally required which results in a system that is costly to

maintain, relatively obtrusive (as sensors are required on every interactable object),
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Table 4.13: A breakdown of approximate costs with associated sensor platforms

[11].

System Cost Installation

Elk M1 £5,000 DIY

Lagotek £5,000 DIY

Control4 £50,000 DIY

Control4 £98,000 Professional

X10 £250 DIY

Creston £49,000 Professional

EIB Instabus £11,000 Professional

KNX £25,000 Professional

and sensitive to the performance of the sensors [98]. Table 4.13 presents the

estimated costs involved in implementing both dense sensor and fixed video camera

systems within a household. As can been observed from the Table 4.13 there is a

high financial cost involved in the purchase and installation of traditional methods

of indoor localisation. While a DIY installation goes a long way to reduce these

costs (Control4 price is reduced by approximately £57,000 from the professional

installation), it must be considered that the occupants that would benefit from

such as system may not be physically or mentally fit to carry out such an intensive

installation. An additional advantage towards the proposed system, and vision

systems in general, is that generic hardware can be used for multiple applications

to aid of AAL [98].

4.3.2 Multiple Environments

The results from the experiment in the UJAmI lab offer an insight into the viability

of applying the system to other environments. The results support the hypothesis

that a single wearable camera allows occupant tracking within an environment with

the goal of determining location, subsequently showing consistent results across

multiple environments. As the markers are placed on common objects that are

ubiquitous to every home environment, the markers used in the PCRC experiment

could be directly used when recreating the experiment in the UJAmI lab without

modification. This facilitated a simple and fast set up time (five minutes) compared
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to traditional methods such as dense sensor placement or the installation of static

cameras [188, 191]. Due to the small nature of the dataset, missed events have

a larger impact, resulting in a reduction in recall and F-Measure, however, the

precision was increased which is significant as it is important that the occupant’s

location is correctly identified to offer relevant support. Despite this the results

suggest that the method is viable across multiple environments. The creation of a

larger dataset is warranted to gain a more accurate picture of the performance.

4.4 Discussion

The contributions offered by this Chapter include addressing a problem previously

identified with that of wearable devices such as Google Glass. That is, that their

impact in ubiquitous computing and ambient intelligence systems has been partly

slowed by their lack of streaming [187]. This has been addressed in Section 4.2.1

by the development of live streaming functionality from a wearable device, Google

Glass in this case, which allows the video stream to be accessed by multiple sources

using a media server.

Near real-time vision based indoor localisation through an egocentric camera

utilising fiducial markers. This alleviates the issues identified within Chapter Two,

such as occlusion from fixed cameras where the occupant is not within the camera’s

field of view due to large objects occluding the occupant or “blank” areas of the

environment where the camera’s field of view does not cover. While there is a risk

of occlusion of the fiducial markers this is greatly reduced through the use of a

first-person camera which removes the issue of covering the entire room along with

large items, such as doors/fridges, occluding the object of interest.

An additional advantage the system offers is avoiding the need to be trained to

each environment that it is to be deployed within by using fiducial markers. This

allows the system to be quickly and easily deployed within new environments in

comparison to implementing traditional methods of indoor localisation.

Due to the system operating in near real-time it does not encounter the same

issues as intermittent image capture system. Where vital information could be lost

if the occupant interacts with an object or navigates throughout the environment.

In the previously discussed works the method of image capture relied on intermit-

tent captures, e.g. at set time intervals 30 frames were captured. This could cause

vital information to be lost as object interactions may have taken place within

the time period were the system was not capturing information. As the presented

system operates in near real-time every frame is being processed, therefore vital
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information will not be lost through intermittent image capture.

The proposed approach offers other secondary advantages when compared to

a traditional method of indoor localisation, such as dense sensor placement, that

are unique to this method. Such as the first person view and lack of required

interaction and multiple occupancy, where each occupant that requires support

need only to wear a device to obtain their unique first person viewpoint and the

information on what objects they are interacting with. Additionally privacy is

preserved as the video stream is not viewed by anyone with the detection events

being the only information which is stored on the server.

4.5 Conclusion

A method of indoor localisation is presented utilising a wearable camera to deter-

mine location based upon objects viewed within a scene. This was compared with

a traditional method of indoor localisation (dense sensor placement) employing

annotated video data as the ground truth. Thus, it supported the hypothesis that

the use of a single wearable camera allows occupant tracking within an environ-

ment with the goal of determining location. While the machine-vision results were

found to be less accurate than dense sensor placement, they demonstrated that the

proposed method is viable and offers other secondary advantages that are unique

to this method, such as the first-person view and lack of required interaction.

Further, the work presented demonstrated the viability of applying the solution

to differing environments. The performance of the system at the UJAmI lab were

comparable with the previous experiment carried out at the PCRC lab. With the

UJAmI experiment showing an average recall, precision, and F-measure of 0.66,

0.97, and 0.79, respectively in comparison to the PCRC experiment results of recall,

precision, and F-measure of 0.82, 0.96, and 0.88, respectively. The duplication of

the experiment in UJAmI demonstrated the viability of applying the solution to

multiple environments which has been shown to be a challenge within the domain

of AAL, as was discussed in Chapter Two. The lack of training, use of common

objects and hardware are attributed to this success. Additional advantages of this

approach is the ability to generalise to other users due to the lack of personalisation

required. This is due to the system requiring markers be placed on key objects

with no input being required from the user once the application is started. This

is of particular importance when it comes to older users who typically have lower

levels of confidence with regards to the use of technology.

There were, however, some limitations of using such as static approach to
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storing the object’s location within a knowledge base, such as objects being moved

or certain objects that may not have a static location, for example personal devices.

As the object’s location is assumed to be fixed within the environment and used as

“key” objects within each room. If the location of any of these objects is changed

without being updated within the database, the accuracy of the system will suffer.

This is further compounded with “personal” devices, such as a smart phone, as

they do not have fixed location and therefore cannot be relied upon to find a

location update for the occupant. However, these personal devices can still be

leveraged to gain an understanding as to the activity that the occupant may be

carrying out. Another limitation inherent with wearable camera solutions is that

they rely on an “always-wear” approach as the system is reliant on the occupant to

remember to put the Glass on in the morning. This is somewhat mitigated in that

74% of the adult population wear corrective lenses [305] and with the ability to

insert prescription lenses into Google Glass. It could replace their normal glasses

to try and avail of their daily routine of wearing glasses. Additional limitations

include the potential for false positives within the environment, these can be caused

by complex scences where there may be a number of fiducial markers within the

video stream. False positives can also be caused when the occupant is navigating

throughout the environment as fiducial markers could remain within the FoV even

when the occupant is not at that location. A further limitation is the potential for

false negatives which can be caused by corruption within the data stream or via

external factors such as lighting or occulsion. Chapter Six will involve determining

activity based on the objects located within the field of view, along with mitigiating

another limitation of the system were false positives could be generated from the

occupant navigating through the environment or through general gaze activity.
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Chapter 5: Optimising Marker and Ob-

ject Detection Through En-

hanced Filtering and Segmen-

tation

5.1 Introduction

Chapter 4 assessed the technical feasibility of leveraging a wearable camera to

provide an egocentric view of the immediate environment, coupled with fiducial

markers placed on “key” objects to allow the approximation of objects and oc-

cupant location within an environment. This chapter refines this approach by

assessing the ORB algorithm against another fiducial marker detection algorithm,

ArUco. As well as generating a method to filter out additional FPs that are caused

by the occupant’s navigation of the environment or through general gaze activ-

ity. During a collaboration with the University of Jaén the ArUco algorithm [197]

was proposed as a potential improvement over the ORB algorithm, presented in

Chapter 4. ArUco was chosen as a comparision algorithm for a number of reasons.

Firstly, it has been developed as a dedicated fiducial marker detection algorithm

and is an open-source and widely adapted within the computer vision commu-

nity. ArUco also supports a wide range of programming languages along with an

accssible API for the creation and detection of fiducial markers. ArUco is also

optimised for real-time marker detection which is key given the requirements of

supporting an occupant at home with their ADLs. In order to assess the algo-

rithms, recordings were captured of an occupant carrying out a set of ADL, using

Google Glass, introducing levels of varying motion blur and lighting conditions.

To promote a fair comparison, the two-stage filter system, described in Chapter 4,

was not applied and instead all video was processed on a frame by frame basis.

One challenge that was observed during testing of the system in Chapter 4 was

the detection of FPs when an occupant was navigating throughout an environment

104
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or FPs arising from the wearers general gaze activity as they interacted with objects

during the completion of activities. To address this issue, ISDII was developed.

This chapter details the rationale, methodology, testing, and evaluation of both

the ORB and ArUco algorithms alongside the ISDII system.

5.2 Methodology

This Section details the methodology adopted to develop the system. The design

of the fiducial markers that were used to identify the objects are presented along

with a detailed overview of the algorithms used in the evaluation of the system.

The system identifies “key” objects within an environment that allows the location

of the occupant to be inferred. For example, the detection of a kettle can allow it

to be inferred that the occupant is in the kitchen. The detection of “key” objects

within the video stream can also allow the current activity to be determined,

with the end goal of offering support to occupants’ carrying out their ADLs. Via

assisting the occupant in carrying out the activity or alerting carers to abnormal

activity levels. A description of the feature point identification method along with

the implemented matching process is also presented.

The initial approach compared the performance of two “off-the-shelf” algo-

rithms for performing fiducial marker recognition. Figure 5.1 illustrates the gen-

eral sequence of events and presents: (i) frames returned from the wearable vision

sensor; (ii) fiducial markers located within the returned frames; (iii) the degree of

occupant-object interaction as a quantifiable metric.

Figure 5.1: Sequence diagram of the wearable vision sensors in ADLs.
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Google Glass (Explorer) was employed to provide a first-person view of the occu-

pant’s environment. Google Glass facilitates the recording of high definition video

(1280x720) and accepts audio based commands from wearers of the device via nat-

ural spoken language commands. Pertinent information can also be presented to

the wearer via a small prism display that is located directly on the glass in front

of the eye.

Traditionally, the uptake of wearable computing devices has been partly slowed

by their lack of streaming [187]. In an effort to overcome this, a “Glass App” was

developed in our previous work [306], as presented in Chapter 4. A Glass app

that supports transmission of live video to a cloud-based server via RTSP. This

approach does, however, introduce a short latency between (<4 seconds) due to

Google Glass in-built mechanism to lower its hardware temperature during high

load situations, such as live-streaming. This results in a reduction of the clock

speed of the CPU, thereby reducing the processing rate [274].

Each fiducial marker has a custom identifier applied to it to represent the object

it is associated with. The markers were installed on objects of interest throughout

the environment with the marker positioned so it fell within the occupant’s FoV

when the object was interacted wtih. The objects of interest were situated in

a location to better represent a real living environment, whilst this resulted in

scenes were multiple fiducal markers were present in the video stream Chapter

6 discusses how this challenge was dealt with. The occupant’s location is then

estimated by means of a 3D reconstruction method that incorporates the known

size of the markers, along with the calibration parameters of the vision sensor.

Occupant location is of key importance when supporting ADL; in the presented

work distance is estimated to determine the degree of occupant-object interaction.

Two feature point algorithms were employed to detect the markers located in

the environment, using inputs from the vision sensor. What follows is a brief

description of the algorithm’s main features.

The first method employed the OpenCV implementation of the ORB algorithm

for both feature detection and description. This method was developed by Rublee

et al. [293], and implements FAST in pyramids to facilitate the detection and

selection of stable key-points. ORB implements the intensity centroid method of

corner detection as defined by Rosin [299].

A Brute Force algorithm (K-Nearest Neighbour) [303] was implemented as a

feature point matcher to determine if a marker is present in the frame. A formal

representation of a K-Nearest Neighbour algorithm locates the K nearest features

to a query feature N points in a D-dimensional space. Even though a Brute
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Force matcher is often found to be one of the worst performing algorithms, in

terms of time taken to resolve a match, it often provides high levels of accuracy

in identifying the correct matches. This finding was reported by Cheng et al.

[303], which benchmarked multiple techniques for the purposes of image matching.

Within this implementation for each feature in the marker, the matcher locates

the closest feature in the scene by systematically trying each feature point. The

similarity between feature points is represented by Norm Hamming distance. A

minimum distance was set to ensure good matches are selected: a match is deemed

to be good when the distance is less than three times the minimum distance set.

In order to reduce the number of FP found by the algorithm, a key-point

match threshold was used, where the number of inliers that contributed to the

homography was calculated and compared against a threshold value [264]. If the

number of inliers met or exceeded the threshold then a marker was deemed to be

present. A strength of the approach is that the markers can be freely designed.

Figure 5.2 offers an example of a custom made ORB marker created by overlapping

geometric shapes alongside a pre-made ArUco marker.

The ArUco algorithm is developed under Open Source license: the Berkeley

Software Distribution. It has been deployed in several research and enterprise

projects1,2. ArcUo was developed around the concept of fiducial markers [197].

The markers are automatically generated by ArUco by means of a marker dictio-

nary [307] and focus on extracting the binary code from the rectangles that make

up the fiducial marker as presented in Figure 5.2. The processing involves image

segmentation, based on local adaptive thresholding. In order to increase robust-

ness to varied lighting conditions contour extraction and filtering is applied, the

marker code is then extracted to obtain the internal binary code, and dictionary

based correction applied once the binary code is extracted.

1http://www.vision4uav.com/?q=node/386
2http://vision4uav.eu/?q=researchline/seeAndAvoid CE MFandRules
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Figure 5.2: A) Example of ORB fiducial marker. B) Example of ArUco fiducial

marker.

5.2.1 Intelligent System for Detecting Inhabitant-Objects

Interactions

During testing of the vision algorithms, as described in Chapter 4, it was discov-

ered that FP were being generated through general gaze activity. This was due to

the occupant looking around the environment when locating an object of interest.

Further FP were generated through the occupant’s navigation of the environment

as various objects came into their field of view as they moved through the envi-

ronment. An intelligent filter was developed with the aim to detect the degree of

interaction between the occupant and the object, based around the observation

that when the occupant is interacting with an object of interest they are assumed

to be in a close proximity with that object. This also aids in taking account of the

differing forms of interaction that certain objects require, namely passive or active

interaction. Those objects that require active interaction, such as a microwave,

will have a much closer distance threshold compared to those passive objects which

are interacted with from a larger distance; such as viewing TV. The filter is known

as the ISDII. ISDII uses a two-stage filter in order to manage the uncertainty

introduced through FP detections. It is able to determine if an occupant-object

interaction is a TP or if it was generated through navigation/gaze activity in real

time. It also takes into account the differing forms of interaction that objects may

have, for example making a phone call is an active interaction as the occupant has

to be in very close proximity to the phone in order to dial the phone number. This

is opposed to watching TV which is a passive activity as the occupant would be

viewing the TV from a much larger distance than takes place with normal activity

object interactions. The output from the marker detection algorithms serve as
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the input for the ISDII system. These consist of a unique ID associated with the

detected markers and the distance of the occupant to the marker. A three stage

process is employed:

1. The first stage is to collect and analyse the scenes where interaction occured

between the occupant and the object.

2. Thresholds are then determined by a technical expert, establishing the dis-

tance at which occupant-object interaction is known to be occurring.

3. Once the threshold distances have been established, ISDII is able to identify

interaction on a real-time basis.

In order for ISDII to recognise if occupant-object interactions are occurring,

a preliminary threshold value was estabilshed by a technical expert. An initial

process was carried out that consisted of recording scenes where an occupant in-

teracted with a series of objects throughout the environment and threshold dis-

tances were then set by a human expert, a sequence diagram detailing this step

is presented in Figure 5.3. This allows ISDII to calculate, in real time, the dis-

tance between the occupant and the object and determine whether an interaction

is taking place; the pseudo-code is presented in Algorithm 3.

Figure 5.3: Sequence diagram of studying scenes of user-object interactions.
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When estimating object interaction in real time scenes, uncertainty is introduced

due to missed marker detections in the video stream and measurement errors

introduced by the algorithms. In order to manage this uncertainty a two stage

filter was developed. The first stage was to remove the high frequency noise using

a low-pass filter.

Algorithm 3 Estimation of reference distance threshold to objects.

distances = ∅
detections = ∅
for marker ε detectedMarkers do

for interval ε interactionIntervals do

if marker.time ε interval then

distances[marker.object]+ = marker.distance

detections[marker.object] + +

end if

end for

end for

threshold = ∅
for object ε objects do

threshold[object] = distances[marker.object]/detection[marker.object]

end for

return threshold

The exponential smoothing [308, 309], is defined in equation 5.1:

s0 = d0, st = ω0dt + (1− ω0)st − 1, ω0ε[0, 1] (5.1)

Where d0 is the initial distance to a marker, t is the temporal index ε[0, N ] being

N the final size of the set of distances, st is the filtered output, dt the measured

data, the distance from the marker, and ω0 is the smoothing factor (initially set

to 0.2); this method has been widely used in control applications [310, 311].

The second filter was designed to mitigate two main causes of FP, removing

isolated detections where a marker is detected due to general gaze activity. This

is done in order to fit the window of interaction to the true occupant-object inter-

action, i.e. removing the preceding time where the occupant is approaching the

object and the proceeding time where the occupant is finished interacting with

the object. In order to achieve this, a fuzzy membership function was developed.

Fuzzy logic [312] has previously been successfully applied in sensor based signal
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processing applications [313]. In the context of fuzzy logic the semantics of the lin-

guistic terms are given by fuzzy sets; where the membership degree of the elements

x of the base set X in the fuzzy set A, µÃ : X → [0, 1] is defined. The smoothing

distance of the markers from the first stage was evaluated by the fuzzy membership

function which describes the linguistic term “there is interaction with”.

For each object, oi, a membership function µÕi
is defined which evaluates

the distance between the occupant and the object st into a degree of occupant-

object interaction between [0, 1]. The membership function is parameterised by the

threshold value of the object doi, and two weighted factors, ω1 and ω2, representing

the lower and upper cut-off threshold for interaction respectively, (as presented in

Figure 5.4).

Figure 5.4: Membership function to obtain the degree of interaction with an object.

ISDII provided a degree of interaction representing the occupant-object action

within the environment. It should be noted that an upper threshold can be applied

using α−cut between [0, 1] above which an interaction is determined to have taken

place. Pseudo-code for the second stage filter is presented in Algorithm 4 along

with a sequence diagram presented in Figure 5.5.
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Algorithm 4 Detecting Object Interaction.

degree = ∅
detection = ∅
for markerεdetectedMarkers do

distance[marker.object] = ω0 · marker.distance + (1 − ω0) ·
distance[marker.object]

degree[marker.object] = µÕi
(distance[marker.object], threshold[marker.object])

end for

for object ε objects do

if degree[object]<α then

detection[object] = true

end if

end for

return [degree, detection]

Figure 5.5: Sequence diagram of detecting object interaction in real-time scenes.

In summary, ISDII offers a solution of determining if an occupant is physically
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interacting with an object (e.g. opening a cupboard vs. if the marker was simply

detected as the occupant navigated throughout the environment. ISDII achieves

this through collecting the data stream of the occupant interacting with objects

within the environment to allow a threshold distance to be determined for each

object of interest. This threshold is the distance that the occupant is located in

relation to the object of interest within the video stream. If an occupant is within

this threshold it is determined they are interacting with the detected object.

This was achieved by collecting a number of recordings of an occupant inter-

acting with objects of interest throughout the environment. This allowed a human

expert to review the recordings and determine a threshold value based on the

distance reported within the video stream. The next stage was to implement a

low-pass filter to remove high-frequency noise, this allowed any unwanted artifacts

(grainy/fuzzy areas) within the image to be removed which results in the an im-

age that is clearer. A second filter was then developed to help reduce unwanted

FPs within the video stream which resulted from general gaze activity within the

environment. When an object is detected within the video stream the distance

of the occupant from the marker is evaluated. An upper and lower threshold was

set to determine at what point an object interaction has begun (lower threshold)

and at which point an object interaction can be certain to have taken place (up-

per threshold). A sliding scale between the two thresholds then determines the

confidence that an occupant-object interaction is being carried out, represented

by a 0 for a lack of confidence (lower threshold) and 1 for total confidence that an

interaction is being carried out (upper threshold).

5.2.2 Detection Algorithm

In this Section three scenarios are analysed of an occupant who wore Google glasses

within a smart lab environment3. A series of markers were applied to objects

within a smart lab and the researcher was instructed to enter the environment and

proceed to complete pre-defined activities, while wearing a pair of Google Glasses.

The three activities were: 1) making hot chocolate; 2) preparing a hot snack and;

3) washing dishes. A sequential breakdown of the objects interacted with during

the completion of each activity is presented in Table 5.1.

To facilitate the experiments, a total of 18 markers (9 unique), were placed

within the environment on the following objects: kitchen door, cupboard doors,

a microwave, a refrigerator, a tap, and a chair. Multiple lighting conditions were

3https://drive.google.com/file/d/0B rp8F6H7iwDNFVsUGpxQ1RqeDg/view?usp=sharing
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Table 5.1: Breakdown of each activity and its corresponding object interactions.

1) Hot Chocolate 2) Hot Snack 3) Washing Dishes

Kitchen door Kitchen door Kitchen door

Cup cupboard Fridge Tap

Fridge Plate cupboard Cup cupboard

Microwave Microwave Cutlery cupboard

Tea/hot chocolate cupboard Cutlery cupboard Tea/hot chocolate cupboard

Cutlery cupboard Microwave Plate cupboard

Microwave Chair Kitchen door

Tea/hot chocolate cupboard Kitchen door N/A

Kitchen door N/A N/A

simulated via the use of window blinds and artificial lighting to provide a realistic

context to the scenarios. Each scene was represented by the total number of frames,

the duration of the scene and the percentage of frames during which an object was

correctly identified (TP rate). An object was deemed correctly identified if the

system reported the expected marker I.D. within the correct frame. I.e. if the

fridge marker was expected the system was deemed to have correctly identified

the object. As the fridge I.D. was reported that the marker was present, and

the occupant within the distance thresholds as discussed the previous section.

The percentage of correctly identified frames out of the total number of frames

that an object was present was calculated to determine the detection ratio. The

results are presented within Table 5.2 which displays the activity number, the

total number of frames that comprised the video stream, the duration in seconds

that a marker was within the camera FoV, and the total number of frames where

a marker was present. It also presents the percentage of frames the respective

algorithm successfully detected a marker out of the number of frames where a

marker was present. The experiment was performed by a single participant who

was a researcher and not representative of the target population.
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Table 5.2: Breakdown of the duration and total number of video frames within

each activity, along with the video duration and the number of frames the object

was present. The detection ratio each algorithm achieved over the three activities

is also presented.

Parameters Detection Ratio

Activity Total Frames Duration (s) Object Frames ArUco (%) ORB (%)

1 2574 96 658 44.8 25.9

2 1567 52 624 44.8 22.7

3 1663 96 604 36.5 28.3

The order, duration, and interaction between the occupant and the objects var-

ied across the three case scenarios. In addition, different lighting conditions were

simulated during the scenarios to provide a realistic context to evaluate the algo-

rithms. The marked objects in the smart lab were located in different positions

in the room. Zenith lights provided varied lighting conditions when collecting the

scenes4. The videos were recorded at 24fps and stored in MPEG-4 Part 14 (mp4)

format conforming to Google Glass specifications.

There are a number of potential application areas this technology could have an

impact on. Improving the accuracy of fiducial marker algorithms can be of valuable

benefit to AR applications leading to more immersive experiences. There are also

many applications within manufacturing as improvements in fiducial marker detec-

tion can aid in automatically detecting defects within the manufacturing process.

This technology could also have an impact on assistive technologies with improved

fiducial marker recognition leading to further development in assistive technolo-

gies, along with the wider healthcare industry such as medical image registration.

The findings from the comparision of fiducial marker algorithms can have a num-

ber of potential contributions and as development of these algoritms continues to

grow they will increase in value as a tool across a number of industries.

5.3 Results

As shown in Tables 5.3, 5.4, and 5.5, both algorithms provide improved perfor-

mance in low blur and high brightness situations, with ArUco displaying a higher

4https://drive.google.com/file/d/0B rp8F6H7iwDNFVsUGpxQ1RqeDg/view?usp=sharing
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detection rate in general. The strength of ORB is its roubustness to various bright-

ness conditions, as can be seen in Tables 5.3, 5.4 and 5.5 which shows that ORB

has fewer instances were zero of the frames were detected compared to the ArUco

algorithm. This is, in part, due to ORB’s implementation of the Harris Corner

Detection algorithm, which has been shown to have strong performance in low

lighting conditions [74, 300]. An example of favourable and unfavourable condi-

tions regarding movement and brightness are presented in Figure 5.6, brightness

levels were categorised as follows, low – blinds closed and lights off, medium –

blinds open and lights off, high – blinds open and lights on. In addition, the

results from this evaluation provides the initial threshold distance references for

ISDII to be adjusted by an expert.

Tables 5.3, 5.4 and 5.5 detail the objects sequentially interacted with during

each scene, along with the average distance that each object was detected, the

number of frames and duration of frames that the occupant-object interaction

took place within. Tables 5.3 5.4 and 5.5 also specifies the lighting conditions

during the interaction with each object, along with the calculated distance from

the occupant’s view point to the marker. Details of the simulated conditions are

provided, specifying the amount of motion blur during the interaction and the

level of ambient lighting. The detection ratio of ORB and ArUco algorithms are

presented, displaying the proportion of frames where an object was detected within

the duration window.

Both trackers provide their best performance in low motion and high brightness

situations with ArUco being more accurate in general cases. The strength of ORB

is viewed as the ability to accommodate low brightness conditions. The auto-focus

of the wearable vision sensor proved to be critical for the marker tracker when the

user or motion blur pixelates the frames disables the marker detection. This is a

limitation of using Google Glass for these experiments, as a camera with a faster

auto-focus may improve the results. An example of favourable and unfavourable

situations of movement and brightness are shown in Figure 5.6.
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Figure 5.6: Frames from the wearable vision sensor showing first person view of

interactions with objects. A) Low brightness and high motion blur situation. B)

High brightness and low motion blur situation.

As discussed, an initial threshold value for objects was generated. These values

were then adjusted by an expert to determine at what distance an occupant is

determined to be interacting with an object. Table 5.6 details the average distance

of detection as determined by ISDII as well as the final threshold distance after

being modified by a human expert for each object.

The precision and recall have been evaluated from the ISDII output against the

time window determined by an expert. An interaction had been determined when

the interaction degree exceeds α−cut = 0.95. The evaluation has included the full

range of options for estimating the ω0ε[0, 1], ω1ε[0, 5], ω2ε[0, 5], ω1 < ω2 with a step

offset of 0.5. Table 5.7 presents the best precision results from the three scenes in

function of ω0, ω1, ω2 and Table 5.8 displaying the best results for recall. The Fβ

results are presented in Table 5.9.

The results are presented in Tables 5.7 and 5.8. While the precision results

obtained by ISDII to determine actual interactions are promising, it relies on the

accuracy of detections from the marker detection algorithm in order to return an

improved recall. The lack of detections resulted in a low recall which cannot be

improved through the filtering and estimation process presented. The Averaged

Ratio Detection (ARD) from the detection algorithm in each scene must have

matched the distance threshold value to be able to analyse the recall obtained

by ISDII. This improved the ratio of marker detection due to the exponential

smoothing filter. The averaged parameters have been set to allow a comparison

of ISDII interaction estimations to expert-defined interaction estimations. The

results in Figure 5.7, 5.8, and 5.9 presents the human expert defined degree of

interaction along with an overlay of the ISDII defined interaction.

Finally, the averaged parameters were set to tune ISDII comparing the human-

defined interactions with the estimation of ISDII in the three scenes.
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Table 5.6: Threshold distances to objects.

Object Average Distance (m) Final Threshold Distance (m)

Chair 0.350 0.350

Cupboard A 0.240 0.235

Cupboard B 0.260 0.250

Cupboard C 0.240 0.250

Cupboard D 0.230 0.235

Door 0.296 0.300

Microwave 0.355 0.355

Fridge 0.255 0.255

Tap 0.320 0.320

Table 5.7: Best precision from scenes in function of ω0;ω1;ω2

Scene Precision ω0;ω1;ω2

1 1.00 [0.95;0.00;0.05]

2 0.98 [0.95;0.00;0.80]

3 1.00 [0.95;0.00;0.60]

Adjusting the threshold of object interaction offered improved performance when

the detection algorithm provided an improved rate of detection, as the lack of

detections shown in some scenes results in a loss of occupant-object interactions

reported from ISDII. The final values of ω0;ω1;ω2 provided the best averaged

parameters in all scenes, and resulted in a low computational overhead method of

determining object interaction, as well as a method of isolating FP.

5.4 Discussion

The contributions offered by this chapter include the comparison of two popular

off-the-shelf algorithms for feature detection in an AAL scenario. It also presents

how lighting effects the performance of these two algorithms as well as that of

motion blur, these are two very important factors when assessing the effectiveness
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Table 5.8: Best recall from scenes in function of ω0;ω1;ω2

Scene Recall ARD Value*/ARDl ω0;ω1;ω2

1 0.45 0.43 1.05 [0.95;0.20;4.90]

2 0.45 0.47 0.95 [0.95;0.00;2.40]

3 0.37 0.34 1.09 [0.95;0.00;3.10]

Table 5.9: Best Fβ from scenes in function of ω0;ω1;ω2

Scene Fβ ω0;ω1;ω2

1 0.51 [0.95;0.20;2.20]

2 0.52 [0.95;0.00;2.45]

3 0.43 [0.95;0.00;1.65]

Average 0.49 [0.95;0.00;2.10]

of vision based aids and their feasibility in being applied to a real world situation.

ISDII is another contribution that this chapter has made. This itself has two

contributions within. Namely, the implementation of a two stage filter which allows

uncertainty in real time video based application to be reduced through exponential

smoothing to reduce high frequency noise, and the second stage which involves the

removal of isolated detections, such as those experienced through natural gaze

activity. This used fuzzy logic to estimate the level of interaction the occupant is

having with the object through distance estimation.

A final contribution from this chapter is the development of a system that does

not require any user interaction in order to ensure that the best image angle is

being captured. This challenge was previously identified and presented in Chapter

Two as a limitation of existing systems. Occlusions that may be created through

environmental objects, such as doors and large items of furniture, or occlusions

generated by the occupant themselves, such as hands/head/torso occluding objects

that they are interacting with [314]. This coupled with being a superior solution for

object interaction due to the added advantages a head-mounted camera provides.

Firstly, occlusions of the manipulated object tend to be lessened as the object

being interacted with is usually the centre of attention for the occupant [314].

As the object is the centre of the occupant’s attention the object is usually in

the centre of the image and in focus, providing a high quality image for processing
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[314]. Due to the high levels of noise that are typically present in egocentric videos

many FP are unavoidable [315]. It can be difficult to identify the correct object

as it is possible that multiple objects can be within the occupant’s field of view.

This is due to some areas of the environment being densely populated with relevant

objects, such as the kitchen. Firstly, the ease with which it can be deployed within

differing environments, the use of fiducial markers with an associated ID negates

the need for specific training to each environment. This is due to the markers

being associated with common static items that are commonly found within home

environments, with the ID of the object being tied to the marker rather than any

features of the object itself. Secondly, the use of a moving camera coupled with

static objects reduces the issues traditionally seen with a static camera solution

such as the limited field of view, which may require the installation of multiple

cameras within an environment.

5.5 Conclusion

The results show that the ArUco algorithm is generally more accurate, with the

ORB algorithm providing better performance in extreme light conditions. Based

on the information from marker trackers, this chapter proposed an ISDII, which

determines if the interaction is a TP by employing two filters: a low-pass filter

and a fuzzy filter. A study was conducted to determine the performance of ISDII,

showing an improved precision by reducing the number of detected FP. However,

it is highly sensitive to FN from the detection algorithm which can result in a

deteriorated recall result.

The proposed findings offers a non-intrusive method of detecting occupant ob-

ject interaction and localisation. The use of a single head-worn camera provides a

unique first person view of the environment and their activities, offering additional

opportunities within the domain. The use of a first person camera also alleviates

the need for the occupant to interact with the camera. As the camera is mounted

within glasses, the field of view of the camera is more optimised for the direc-

tion that the object of interest for the occupant is positioned. This solution also

minimises the cost in terms of hardware, implementation, and maintenance costs

associated with alternative solutions, for example, dense sensor placement or static

camera approaches. Given the target user group will be of an advanced age which

typically have a lower level of technological ability this offers a key advantage. The

user does not have to interact with the system or consider the position/placement

of the wearable camera reducing user error and improving the quality of the data
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collected.

One limitation is that the system relies on a static marker within the envi-

ronment, this is due to the system utilising the static markers to determine the

location of the occupant. The scenario of a moving marker coupled with a moving

camera would not allow the occupant’s location to be determined within the en-

vironment. Additionally, due to the increased movement within the video stream

due to the marker and camera moving independently the number of FP and FN

would increase due to the additional movement blur within the stream. It should

also be noted that a limitation is a lack of comparision against other algorithms

designed specifically for fiducial marker detection other than ArUco. This can limit

the generalisability of the findings and future work should include a further com-

parision against fiducial marker algorithms, such as Vuforia [316], AprilTags [317],

and ARTag [318]. Additional limitations include the custom designed markers po-

tentially not being as well optimised as the algorithmically design ArUco markers

which could lead to the results favouring the ArUco algorithm. The placement

of the markers within this study could introduce a bias due to multiple markers

being applied to each object there is potential for markers to not be placed in the

optimal location or they may suffer from issues such as occlusion or the camera

viewing at a more extreme viewing angle. Lastly, the presented method is sensi-

tive to the accuracy of the detection algorithm which can result in additional FNs

which in turn will result in a lower recall value which can result in relevant infor-

mation being missed. Chapter 6 investigates utilising Dempster-Shafer theory as

a method of mitigating the loss of relevant information when determining which

ADL an occupant is undertaking.

5.6 Associated Publications

Shewell, C, Medina-Quero, J, Espinilla, M, Nugent, C, Donnelly, M & Wang, HHY

2016, “Comparison of Fiducial Marker Detection and Object Interaction in Activ-

ities of Daily Living Utilising a Wearable Vision Sensor”, International Journal of

Communication Systems. https://doi.org/10.1002/dac.3223



Chapter 6: Activity Detection Incorpo-

rating Evidential Reasoning

6.1 Introduction

Activity recognition within Smart Environments is a key area of functionality as

the ability of an occupant to carry out ADLs is a important metric to determine

whether an occupant is able to continue living independently or if they need an

increased level of support in order to remain within their own home. The accuracy

of activity recognition within smart environments will always be subject to the

reliability and validity of the sensors themselves. This is in part due to errors within

the sensors which may report incorrect information or may miss sensor events

completely thus leaving blanks within the data stream. While there has been some

attempt among the research community to incorporate fuzzy logic within activity

recognition such as Neural Networks [222], Dynamic Bayesian Networks [319], and

Hidden Markov Models [279], Dempster-Shafer (DS) theory aims to handle the

uncertainty introduced through the sensor errors in the smart environment. DS

theory can provide improved results via increased reliability when compared to the

previously discussed methods through its reasoning mechanism [320, 321]

The previous Chapters focused on the detection and filtering of fiducial markers

in order to determine the occupant’s location within an environment by detecting

object interactions and the determination if these interactions were a TP through

the use of the ISDII filter. Chapter 4 detailed a method of determining the oc-

cupant’s location within an indoor environment through the use of a first person

wearable camera and fiducial markers that were placed on key objects of interest

within the environment. Chapter 5 built on this system in order to further fil-

ter out FPs that were detected either through mis-detecting a fiducial marker or

through the detection of additional fiducial markers due to the occupant navigating

throughout the environment or through general gaze activity. This was achieved

through further filtering of the video stream, along with the creation of the ISDII

system to detect the distance of the object from the occupant and whether that

128
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distance falls within pre-defined thresholds to determine if the occupant-object in-

teraction is a TP. This Chapter discusses the implementation of a DS methodology

which was previously developed by Hong et al. [12] to determine the probability of

an activity having been carried out based on the detection of the occupant-object

interactions as discussed in previous chapters. The hypothesis being considered is

that does the application of DS theory improve the ability to recognise the user’s

activity within an environment.

6.2 Methodology

In order to apply a probability of the activity an initial belief value for each of

the machine-vision detections needs to be established. From the results of the

previous studies presented in Chapter 4 a belief value of 0.82 was determined

for the machine-vision events (the detection algorithm successfully identified 143

instances out of a total of 175). This has been taken from the number of correctly

identified objects within the total number expected within the video stream. The

datasets that were presented in Chapter 3 have been used in order to demonstrate

how DS theory can be implemented in order to recognise ADLs.

In order to determine the probability of an activity being carried out, a separate

system was developed using Java which would accept the output from the machine-

vision system as described in previous chapters. The machine-vision outputs the

detected object as a String containing the object name and the time-stamp that

the detection occurred. This is then accepted as input arguments within the

DS component of the system. Figure 6.1 presents the flow of data through the

system from the initial object detection, through the multiple stage filtering and

the stages of assigning a probability belief to the activity. The seperation of the

video streaming component from the DS component allows for a modular system.

This allows the video to be streamed to multiple servers for processing should this

be required, it can also allow a live video stream to be sent to family members

should the need arise.
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Figure 6.1: Flow of data through the system, from the object detection through

to assigning probability to an activity belief.
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6.2.1 Dempster-Shafer Theory

DS theory was originated by Dempster and was later formalised by Shafer [322].

It is a numerical uncertainty reasoning mechanism. Within their framework a

problem is defined by a finite set of mutually exclusive hypotheses which form the

frame of discernment (Θ).

A simple example may be considered is that of a door sensor. This sensor can

be defined as either being opened, closed or static. Using this simple example then

activated, static becomes a complete set of the possible door states; known as the

frame of discernment for the door. It is then possible to numerically measure the

belief on a single hypothesis, or a subset of hypotheses, by using a mass function,

m, over the frame Θ, which satisfies the following conditions in equation 6.1 (where

φ is the empty set) and 6.2 (where A is a subset of Θ), respectively.

m(φ) = 0 (6.1)

∑
A⊆Θ

m(A) = 1 (6.2)

The mass function is used to represent the distribution of a unit of belief over

the frame, single elements, subsets or the whole set of the frame. When the

door is closed or opened, a numerical representation can be applied by the mass

function on the frame Θ = activated, static as m(activated) = 1,m(static) =

0,m(activated, static) = 0.

The occurrence of A is able to be inferred from the total mass of all the subsets

of A, this is known as the belief function (Bel), as shown in equation 6.3

Bel(A) =
∑
B⊆A

m(B) (6.3)

Bel(A) measures the degree of belief of information in support of A. Therefore, the

likelihoods of hypotheses can be compared in order to determine the most likely

hypothesis. DS Theory incorporates a range of probability values rather than a

single probability, this is done in order to be able to represent uncertainty in the

data. The Belief is the lower bounds of the probability with Plausibility being the

upper bound, with Belief representing the degree to which the evidence supports

A taking place and Plausibility representing the extent to which the evidence fails

to refute that A that is taking place. Equation 6.4 presents how the Plausibility

(Pls) is determined.
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Pls(A) =
∑
B⊇A

m(B) (6.4)

Dempster’s rule of combination provides a mechanism to compute the consensus

of multiple independent sources of information which may be able to provide infor-

mation about the same problem. N is the number of independent sources and mi

is the belief distribution given by the N th source. Dempster’s rule of combination

then allows a new belief distribution which represents the consensus of N belief

distributions as shown in equation 6.5.

m(C) =

∑
A∩B=C

m1(A)m2(B)

1−
∑

A∩B=∅
m1(A)m2(B)

=

∑
A∩B=C

m1(A)m2(B)

1−
∑

A∩B 6=∅
m1(A)m2(B)

(6.5)

6.2.2 Case Study

In order to demonstrate how DS Theory is applied the following scenario will be

stepped through. An occupant enters the kitchen via the kitchen door which is de-

tected via an egocentric camera, the system then detects that the plate cupboard,

fridge, and bread cupboard are interacted with. The chair is also interacted with,

however, the fiducial marker is not successfully detected resulting in a missed sen-

sor event. Events: kitchenDoor (TP), plateCupboard (TP), fridge (TP), chair

(FN), and breadCupboard (TP). (Note: for readability the “cupboard” suffix will

not be used within the worked example).
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Figure 6.2: Example of multi-valued context for “Making a Cold Meal”..

Table 6.1: Summary of graphical notation used in Figure 6.2. [12]

Notation Context

Sensor

Object which is associated with a sensor.

Object which has been derived from another object.

A composite object made up of multiple objects.

Activity

Step One: The discounted mass functions are calculated for each fiducial

marker. Previous studies detailed in Chapters 4 shown an overall success rate of

82% for the vision based system, resulting in a discount rate of 18%. The dis-

counted mass functions for each fiducial marker are presented below.
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Table 6.2: Vision sensor belief values.

Object Certainty Uncertainty

Kitchen Door 0.82 0.18

Glass/Cup Cupboard 0.82 0.18

Microwave 0.82 0.18

Tea/Hot Chocolate Cupboard 0.82 0.18

Cutlery Cupboard 0.82 0.18

Fridge 0.82 0.18

Kettle 0.82 0.18

Bread Cupboard 0.82 0.18

Plate Cupboard 0.82 0.18

Tap 0.82 0.18

Living Room Door 0.82 0.18

Chair 0.82 0.18

Sofa 0.82 0.18

Telephone 0.82 0.18

TV 0.82 0.18
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mr
skitchenDoor({skitchenDoor}) = 0.82,

mr
skitchenDoor({skitchenDoor,¬skitchenDoor}) = 0.18;

mr
smicrowave({¬smicrowave}) = 0.82,

mr
smicrowave({smicrowave,¬smicrowave}) = 0.18;

mr
scutlery({¬scutlery}) = 0.82,

mr
scutlery({scutlery,¬scutlery}) = 0.18;

mr
skettle({¬skettle}) = 0.82,

mr
skettle({skettle,¬skettle}) = 0.18;

mr
stea/hot({¬stea/hot}) = 0.82,

mr
stea/hot({stea/hot,¬stea/hot}) = 0.18;

mr
sfridge({sfridge}) = 0.82,

mr
sfridge({sfridge,¬sfridge}) = 0.18;

mr
stap({¬stap}) = 0.82,

mr
stap({stap,¬stap}) = 0.18;

mr
splates({splates}) = 0.82,

mr
splates({splates,¬splates}) = 0.18;

mr
sbread({sbread}) = 0.82,

mr
sbread({sbread,¬sbread}) = 0.18;

mr
slivingRoomDoor({¬slivingRoomDoor}) = 0.82,

mr
slivingRoomDoor({slivingRoomDoor,¬slivingRoomDoor}) = 0.18;

mr
schair({¬schair}) = 0.82,

mr
schair({schair,¬schair}) = 0.18;

mr
ssofa({¬ssofa}) = 0.82,

mr
ssofa({ssofa,¬ssofa}) = 0.18;

mr
stelephone({¬stelephone}) = 0.82,

mr
stelephone({stelephone,¬stelephone}) = 0.18;

mr
stelevision({¬stelevision}) = 0.82,

mr
stelevision({stelevision,¬stelevision}) = 0.18;

mr
sglass/cup({¬sglass/cup}) = 0.82,

mr
sglass/cup({sglass/cup,¬sglass/cup}) = 0.18;
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Step Two: The mass functions are translated from the fiducial markers to

the associated object. A detected fiducial marker indicates there has been an

interaction with the associated object context. A fiducial marker along with the

associated context maintains a compatible relationship that can be represented by

multi-valued mapping as presented in Table 6.3. The mass functions calculated in

Step One can then be translated to the associated object.

Table 6.3: Example of multi-valued mappings for “Making a Cold Meal”.

Relationship Multi-valued Mapping

sKitchenDoor

->kitchenDoor
{sKitchenDoor} ->{kitchenDoor};

{¬sKitchenDoor} ->{¬kitchenDoor};
{sKitchenDoor, ¬sKitchenDoor}
->{kitchenDoor, ¬kitchenDoor}.

kitchenDoor

->(kitchenDoor, bread,

plates, chair, food)

{kitchenDoor} ->{(kitchenDoor, bread,

plates, chair, food)};

{¬kitchenDoor} ->{¬(kitchenDoor, bread,

plates, chair, food)};
{kitchenDoor, ¬kitchenDoor}

->{(kitchenDoor, bread, plates, chair,

food), ¬(kitchenDoor, bread, plates, chair,

food)}.
(kitchenDoor, bread,

plates, chair, food)

->Prepare Cold Meal

{(kitchenDoor, bread, plates, chair, food)}
->{prepare cold meal};

{¬(kitchenDoor, bread, plates, chair, food)}
->{¬prepareColdMeal};

{(kitchenDoor, bread, plates, chair, food},
¬(kitchenDoor, bread, plates, chair, food)}
->{parpareColdMeal ¬prepareColdMeal}.
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mkitchenDoor({kitchenDoor}) = mr
skitchenDoor({skitchenDoor}) = 0.82,

mkitchenDoor({kitchenDoor,¬kitchenDoor}) =

mr
skitchenDoor({skitchenDoor,¬skitchenDoor}) = 0.18;

mr
microwave({¬microwave}) = mr

smicrowave({¬smicrowave}) = 0.82,

mr
microwave({microwave,¬microwave}) =

mr
smicrowave({smicrowave,¬smicrowave}) = 0.18;

mr
cutlery({¬cutlery}) = mr

scutlery({¬scutlery}) = 0.82,

mr
cutlery({cutlery,¬cutlery}) = mr

scutlery({scutlery,¬scutlery}) = 0.18;

mr
kettle({¬kettle}) = mr

skettle({¬skettle}) = 0.82,

mr
kettle({kettle,¬kettle}) = mr

skettle({skettle,¬skettle}) = 0.18;

mr
tea/hot({¬tea/hot}) = mr

stea/hot({¬stea/hot}) = 0.82,

mr
tea/hot({tea/hot,¬tea/hot}) = mr

stea/hot({stea/hot,¬stea/hot}) = 0.18;

mfridge({fridge}) = mr
sfridge({sfridge}) = 0.82,

mfridge({fridge,¬fridge}) = mr
sfridge({sfridge,¬sfridge}) = 0.18;

mr
tap({¬tap}) = mr

stap({¬stap}) = 0.82,

mr
tap({tap,¬tap}) = mr

stap({stap,¬stap}) = 0.18;

mplates({plates}) = mr
splates({splates}) = 0.82,

mplates({plates,¬plates}) = mr
splates({splates,¬splates}) = 0.18;

mbread({bread}) = mr
sbread({sbread}) = 0.82,

mbread({bread,¬bread}) =

mr
sbread({sbread,¬sbread}) = 0.18;

mr
livingRoomDoor({¬livingRoomDoor}) =

mr
slivingRoomDoor({¬slivingRoomDoor}) = 0.82,

mr
livingRoomDoor({livingRoomDoor,¬livingRoomDoor}) =

mr
slivingRoomDoor({slivingRoomDoor,¬slivingRoomDoor}) = 0.18;

mr
chair({¬chair}) = mr

schair({¬schair}) = 0.82,

mr
chair({chair,¬chair}) = mr

schair({schair,¬schair}) = 0.18;

mr
sofa({¬sofa}) = mr

ssofa({¬ssofa}) = 0.82,

mr
sofa({sofa,¬sofa}) = mr

ssofa({ssofa,¬ssofa}) = 0.18;

mr
telephone({¬telephone}) = mr

stelephone({¬stelephone}) = 0.82,

mr
telephone({telephone,¬telephone}) =

mr
stelephone({stelephone,¬stelephone}) = 0.18;



138

mr
television({¬television}) = mr

stelevision({¬stelevision}) = 0.82,

mr
television({television,¬television}) =

mr
stelevision({stelevision,¬stelevision}) = 0.18;

mr
glass/cup({¬glass/cup}) = mr

sglass/cup({¬sglass/cup}) = 0.82,

mr
glass/cup({glass/cup,¬glass/cup}) = mr

sglass/cup({sglass/cup,¬sglass/cup}) = 0.18;
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Step Three: Inferring from a sensed context node to a deduced context node.

In some cases contexts, such as “tea” and “hot chocolate”, are masked by their

context, such as “tea/hot” in this case. The state of the context “tea/hot” can be

detected by its associated fiducial marker. There is a heuristic relationship between

between “tea/hot” and ‘tea” and/or “hot chocolate” and can be represented by an

evidential mapping as presented in Table 6.4. The values presented in Table 6.4

were determined by examining the frequency with which each object was interacted

with over the three routines. The mass functions of the deduced contexts can be

calculated using the mass functions in Step Two and evidential mappings.

mhotChocolate({¬hotChocolate}) =

mtea/hot({¬tea/hot}) ∗m({¬tea/hot} → {¬hotChocolate})

0.82 ∗ 1 = 0.82,

mhotChocolate({hotChocolate,¬hotChocolate}) =

mtea/hot({tea/hot,¬tea/hot}) ∗m({tea/hot,¬tea/hot} →

{hotChocolate,¬hotChocolate})

0.18 ∗ 1 = 0.18;

mtea({¬tea}) =

mtea/hot({¬tea/hot}) ∗m({¬tea/hot} → {¬tea})

0.82 ∗ 1 = 0.82,

mtea({tea,¬tea}) =

mtea/hot({tea/hot,¬tea/hot}) ∗m({tea/hot,¬tea/hot} → {tea,¬tea})

0.18 ∗ 1 = 0.18.

mcup({¬cup}) =

mglass/cup({¬glass/cup}) ∗m({¬glass/cup} → {¬cup})

0.82 ∗ 1 = 0.82,

mcup({cup,¬cup}) =

mglass/cup({glass/cup,¬glass/cup}) ∗m({glass/cup,¬glass/cup} → {cup,¬cup})

0.18 ∗ 1 = 0.18.
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mglass({¬glass}) =

mglass/cup({¬glass/cup}) ∗m({¬glass/cup} → {¬glass})

0.82 ∗ 1 = 0.82;

mglass({glass,¬glass}) =

0.18 ∗ 1 = 0.18.

mmilk({milk}) =

mfridge({fridge}) ∗m({fridge} → {milk})

0.82 ∗ 0.67 = 0.549,

mmilk({milk,¬milk}) =

mfridge({fridge}) ∗m({fridge} → {milk,¬milk}) +mfridge({fridge,¬fridge})

∗m({fridge,¬fridge})→ {milk,¬milk})

0.82 ∗ 0.33 + 0.18 ∗ 1 = 0.451;

mfood({food}) =

mfridge({fridge}) ∗m({fridge} → {food})

0.82 ∗ 0.33 = 0.271,

mfood({food,¬food}) =

mfridge({fridge}) ∗m({fridge} → {food,¬food}+mfridge({fridge,¬fridge})

∗m({fridge,¬fridge} → {food,¬food})

0.82 ∗ 0.67 + 0.18 ∗ 1 = 0.729.
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Table 6.4: Evidential Mappings based on the historical frequency of occupant-

object interactions.

Object Evidential Mapping

Tea/Hot ->Hot Chocolate

{tea/hot} ->{({hotChocolate}, 0.5),

({hotChocolate, ¬hotChocolate}, 0.5)};
{¬tea/hot} ->{({¬hotChocolate}, 1.0};
{tea/hot, ¬tea/hot} ->{({hotChocolate,

¬hotChocolate}, 1.0)}.

Tea/Hot ->Tea

{tea/hot} ->{({tea}, 0.5), ({tea, ¬tea},
0.5)};

{¬tea/hot} ->{({¬tea}, 1.0};
{tea/hot, ¬tea/hot} ->{({tea, ¬tea}, 1.0)}.

Cup/Glass ->Cup

{cup/glass} ->{({cup}, 0.389), ({cup,

¬cup}, 0.611)};
{¬cup/glass} ->{({¬cup}, 1.0};

{cup/glass, ¬cup/glass} ->{({cup, ¬cup},
1.0)}.

Cup/Glass ->Glass

{cup/glass} ->{({glass}, 0.611), ({glass,

¬glass}, 0.389)};
{¬cup/glass} ->{({¬glass}, 1.0};
{cup/glass, ¬cup/glass} ->{({glass,

¬glass}, 1.0)}.

Fridge ->Food

{food/milk} ->{({food}, 0.33), ({food,

¬food}, 0.67)};
{¬food/milk} ->{({¬food}, 1.0};
{food/milk, ¬food/milk} ->{({food,

¬food}, 1.0)}.

Fridge ->Milk

{food/milk} ->{({milk}, 0.67), ({milk,

¬milk}, 0.33)};
{¬food/milk} ->{({¬milk}, 1.0};
{food/milk, ¬food/milk} ->{({milk,

¬milk}, 1.0}.
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Table 6.5: Belief values of deduced context nodes when sensed context node is

triggered.

Object Certainty Uncertainty

Hot Chocolate 0.41 0.59

Tea 0.41 0.59

Cup 0.319 0.681

Milk 0.549 0.451

Glass 0.501 0.499

Food 0.271 0.729

Table 6.6: Belief values of deduced context nodes when sensed context node is not

triggered.

Object Certainty Uncertainty

Hot Chocolate 0.82 0.18

Tea 0.82 0.18

Cup 0.82 0.18

Milk 0.82 0.18

Glass 0.82 0.18

Food 0.82 0.18

Step Four: Translating from the core context node to the composite con-

text node. The individual contexts are then grouped into a multi-valued map-

ping as presented in Figure 6.2 (notation is detailed in Table 6.1). “kitchenDoor,

food, plates, breadCupboard, chair” is the composite of “kitchenDoor”, “food”,

“plates”, “breadCupboard”, and “chair”. Table 6.3 presents the multi-valued map-

ping groups.

“Prepare Glass of Water” individual contexts: kitchen door, glass, and tap.

Table 6.7 presents the multi-valued mapping for “Prepare Glass of Water”.
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Table 6.7: Multi-valued mappings for “Prepare glass of water”.

(kitchenDoor, glass, tap)

->Prepare Glass of Water

{(kitchenDoor, glass, tap)} ->{prepare

glass of water};
{¬(kitchenDoor, glass, tap)}
->{¬prepareGlassOfWater};

{(kitchenDoor, glass, tap}, ¬(kitchenDoor,

glass, tap)} ->{prepareGlassOfWater

¬prepareGlassOfWater}.

m0kgt({kgt}) = mkitchenDoor({kitchenDoor}) = 0.82,

m0kgt({kgt,¬kgt}) = mkitchenDoor({kitchenDoor,¬kitchenDoor}) = 0.18;

m1kgt({¬kgt}) = mglass({¬glass}) = 0.82,

m1kgt({kgt,¬kgt}) = mglass({glass,¬glass}) = 0.18;

m2kgt({¬kgt}) = mtap({¬tap}) = 0.82,

m2kgt({kgt,¬kgt}) = mtap({tap,¬tap}) = 0.18.

“Prepare Cup of Tea” individual contexts: kitchen door, kettle, tea, and cup.

Table 6.8 presents the multi-valued mapping for “Prepare Cup of Tea”.

Table 6.8: Multi-valued mappings for “Prepare cup of tea”.

(kitchenDoor, kettle, tea,

cup) ->Prepare Cup of Tea

{(kitchenDoor, kettle, tea, cup)}
->{prepare cup of tea};

{¬(kitchenDoor, kettle, tea, cup)}
->{¬prepareCupOfTea};

{(kitchenDoor, kettle, tea, cup},
¬(kitchenDoor, kettle, tea, cup)}

->{prepareCupOfTea ¬prepareCupOfTea}.
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m0kctk({kctk}) = mkitchenDoor({kitchenDoor}) = 0.82,

m0kctk({kctk,¬kctk}) = mkitchenDoor({kitchenDoor,¬kitchenDoor}) =

0.18;

m1kctk({kctk}) = mkettle{(¬kettle}) = 0.82,

m1kctk({kctk}) = mkettle({kettle,¬kettle}) = 0.18.

m2kctck({¬kctk}) = mtea({¬tea}) = 0.82,

m2kctk({kctk,¬kctk}) = mtea({tea,¬tea}) = 0.18;

m3kctk({¬kctk}) = mcup({¬cup}) = 0.82

m3kctk({kctk,¬kctk}) = mcup({cup,¬cup}) = 0.18;

“Prepare Hot Chocolate” individual contexts: kitchen door, microwave, cutlery,

hot chocolate, cup, and milk. Table 6.9 presents the multi-valued mapping for

“Prepare Hot Chocolate”.

Table 6.9: Multi-valued mappings for “Prepare hot chocolate”.

(kitchenDoor, microwave,

cutlery, hot chocolate, cup,

milk) ->Prepare Hot

Chocolate

{(kitchenDoor, microwave, cutlery, hot

chocolate, cup, milk)} ->{prepare hot

chocolate};

{¬(kitchenDoor, microwave, cutlery, hot

chocolate, cup, milk)}
->{¬prepareHotChocolate};

{(kitchenDoor, microwave, cutlery, hot

chocolate, cup, milk}, ¬(kitchenDoor,

microwave, cutlery, hot chocolate, cup,

milk)} ->{prepareHotChocolate

¬prepareHotChocolate}.
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m0kmchcm({kmchcm}) = mkitchenDoor({kitchenDoor}) = 0.82,

m0kmchcm({kmchcm,¬kmchcm}) = mkitchenDoor({kitchenDoor,¬kitchenDoor})

= 0.18;

m1kmchcm({¬kmchcm}) = mmicrowave({¬microwave}) = 0.82,

m1kmchcm({kmchcm,¬kmchcm}) = mmicrowave({microwave,¬microwave}) = 0.18;

m2kmchcm({¬kmchcm}) = mcutlery({¬cutlery}) = 0.82,

m2kmchcm({kmchcm,¬kmchcm}) = mcutlery({cutlery,¬cutlery}) = 0.18;

m3kmchcm({¬kmchcm}) = mhotChocolate({¬hotChocolate}) = 0.82,

m3kmchcm({kmchcm,¬kmchcm}) = mhotChocolate({hotChocolate,¬hotChocoalte})

= 0.18;

m4kmchcm({¬kmchcm}) = mcup({¬cup}) = 0.82,

m4kmchcm({kmchcm,¬kmchcm}) = mcup({cup,¬cup}) = 0.18;

m5kmchcm({kmchcm}) = mmilk({milk}) = 0.549,

m5kmchcm({kmchcm,¬kmchcm}) = mmilk({milk,¬milk}) = 0.451.

“Prepare Glass of Milk” individual contexts: kitchen door, glass, milk. Table

6.10 presents the multi-valued mapping for “Prepare Glass of Milk”.

Table 6.10: Multi-valued mappings for “Prepare glass of milk”.

(kitchenDoor, glass, milk)

->Prepare Glass of Milk

{(kitchenDoor, glass, milk)} ->{prepare

glass of milk};
{¬(kitchenDoor, glass, milk)}

->{¬prepareGlassOfMilk};
{(kitchenDoor, glass, milk}, ¬(kitchenDoor,

glass, milk)} ->{prepareGlassOfMilk

¬prepareGlassOfMilk}.
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m0kgm({kgm}) = mkitchenDoor({kitchenDoor}) = 0.82,

m0kgm({kgm,¬kgm}) = mkitchenDoor({kitchenDoor,¬kitchenDoor}) = 0.18;

m1kgm({¬kgm}) = mglass({¬glass}) = 0.82,

m1kgm({kgm,¬kgm}) = mglass({glass,¬glass}) = 0.18;

m2kgm({kgm}) = mmilk({milk}) = 0.549,

m2kgm({kgm,¬kgm}) = mmilk({milk,¬milk}) = 0.451.

“Make/Receive Phone Call” individual contexts: living room door, telephone.

Table 6.11 presents the multi-valued mapping for “Make/Receive Phone Call”.

Table 6.11: Multi-valued mappings for “Make/Receive Phone Call”.

(livingRoomDoor,

telephone)

->Make/Receive Phone

Call

{(livingRoomDoor, telephone)}
->{make/recieve phone call};
{¬(livingRoomDoor, telephone)}
->{¬make/receive phone call};
{(livingRoomDoor, telephone},
¬(livingRoomDoor, telephone)}

->{make/ReceivePhoneCall

¬make/ReceivePhoneCall}.

m0lt({¬lt}) = mlivingRoomDoor({¬livingRoomDoor}) = 0.82,

m0lt({lt,¬let}) = mlivingRoomDoor({livingRoomDoor,¬livingRoomDoor}) = 0.18;

m1lt({¬lt}) = mtelephone({¬telephone}) = 0.82,

m1lt({lt,¬lt}) = mtelephone({telephone,¬telephone}) = 0.18.

“Prepare Cold Meal” individual contexts: kitchen door, food, plates, bread cup-

board, chair. Table 6.12 presents the multi-valued mapping for “Prepare Cold

Meal”.
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Table 6.12: Multi-valued mappings for “Prepare Cold Meal”.

(kitchenDoor, food, plates,

bread, chair) ->Prepare

Cold Meal

{(kitchenDoor, food, plates, bread, chair)}
->{prepare cold meal};

{¬(kitchenDoor, food, plates, bread, chair)}
->{¬prepareColdMeal};

{(kitchenDoor, food, plates, bread, chair},
¬(kitchenDoor, food, plates, bread, chair)}
->{prepareColdMeal ¬prepareColdMeal}.

m0kfpbc({kfpbc}) = mkitchenDoor({kitchenDoor}) = 0.82,

m0kfpbc({kfpbc,¬kfpbc}) = mkitchenDoor({kitchenDoor,¬kitchenDoor}) = 0.18;

m1kfpbc({kfpbc}) = mfood({food}) = 0.271,

m1kfpbc({kfpbc,¬kfpbc}) = mfood({food,¬food}) = 0.729;

m2kfpbc({kfpbc}) = mplates({plates}) = 0.82,

m2kfpbc({kfpbc,¬kfpbc}) = mplates({plates,¬plates}) = 0.18;

m3kfpbc({kfpbc}) = mbread({bread}) = 0.82,

m3kfpbc({kfpbc,¬kfpbc}) = mbread({bread,¬bread}) = 0.18;

m4kfpbc({¬kfpbc}) = mchair({¬chair}) = 0.82,

m4kfpbc({kfpbc,¬kfpbc}) = mchair({chair,¬chair}) = 0.18.

“Prepare Hot Meal” individual contexts: kitchen door, microwave, cutlery, food,

plates, chair. Table 6.13 presents the multi-valued mapping for “Prepare Hot

Meal”.
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Table 6.13: Multi-valued mappings for “Prepare Hot Meal”.

(kitchenDoor, microwave,

cutlery, food, plates, chair)

->Prepare Hot Meal

{(kitchenDoor, microwave, cutlery, food,

plates, chair)} ->{prepare hot meal};

{¬(kitchenDoor, microwave, cutlery, food,

plates, chair)} ->{¬prepareHotMeal};
{(kitchenDoor, microwave, cutlery, food,

plates, chair}, ¬(kitchenDoor, microwave,

cutlery, food, plates, chair)}
->{prepareHotMeal ¬prepareHotMeal}.

m0kmcfpc({kmcfpc}) = mkitchenDoor({kitchenDoor}) = 0.82,

m0kmcfpc({kmcfpc,¬kmcfpc}) = mkitchenDoor({kitchenDoor,¬kitchenDoor})

= 0.18;

m1kmcfpc({¬kmcfpc}) = mmicrowave({¬microwave}) = 0.82,

m1kmcfpc({kmcfpc,¬kmcfpc}) = mmicrowave({microwave,¬microwave}) = 0.18;

m2kmcfpc({¬kmcfpc}) = mcutlery({¬cutlery}) = 0.82,

m2kmcfpc({kmcfpc,¬kmcfpc}) = mcutlery({cutlery,¬cutlery}) = 0.18;

m3kmcfpc({kmcfpc}) = mfood({food}) = 0.271,

m3kmcfpc({kmcfpc,¬kmcfpc}) = mfood({food,¬food}) = 0.729;

m4kmcfpc({kmcfpc}) = mplates({plates}) = 0.82,

m4kmcfpc({kmcfpc,¬kmcfpc}) = mplates({plates,¬plates}) = 0.18;

m5kmcfpc({¬kmcfpc}) = mchair({¬chair}) = 0.82,

m5kmcfpc({kmcfpc,¬kmcfpc}) = mchair({chair,¬chair})− 0.18.

“Watch TV” individual contexts: living room door, sofa, TV. Table 6.14 presents

the multi-valued mapping for “Watch TV”.
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Table 6.14: Multi-valued mappings for “Watch TV”.

(livingRoomDoor, sofa, tv)

->Watch TV
{(livingRoomDoor, sofa, tv)} ->{watch tv};

{¬(livingRoomDoor, sofa, tv)}
->{¬watchTV}; {(livingRoomDoor, sofa,

tv}, ¬(livingRoomDoor, sofa, tv)}
->{watchTV ¬watchTV}.

m0lst({¬lst}) = mlivingRoomDoor({¬livingRoomDoor}) = 0.82,

m0lst({lst,¬lst}) = mlivingRoomDoor({livingRoomDoor,¬livingRoomDoor}) = 0.18;

m1lst({¬lst}) = msofa({¬sofa}) = 0.82,

m1lst({lst,¬lst}) = msofa({sofa,¬sofa}) = 0.18;

m2lst({¬lst}) = mtv({¬tv}) = 0.82,

m2lst({lst,¬lst}) = mtv({tv,¬tv}) = 0.18.

“Washing Dishes” individual contexts: kitchen door, cutlery, tap, plates, glass/cup

cupboard. Table 6.15 presents the multi-valued mapping for “Washing Dishes”.

Table 6.15: Multi-valued mappings for “Washing Dishes”.

(kitchenDoor, cutlery, tap,

plates, glass/cup)

->Washing Dishes

{(kitchenDoor, cutlery, tap, plates,

glass/cup)} ->{washing dishes};

{¬(kitchenDoor, cutlery, tap, plates,

glass/cup)} ->{¬washingDishes};
{(kitchenDoor, cutlery, tap, plates,

glass/cup}, ¬(kitchenDoor, cutlery, tap,

plates, glass/cup)} ->{washingDishes

¬washingDishes}.
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m0kctpg/c({kctpg/c}) = mkitchenDoor({kitchenDoor}) = 0.82,

m0kctpg/c({kctpg/c,¬kctpg/c}) = mkitchenDoor({kitchenDoor,¬kitchenDoor})

= 0.18;

m1kctpg/c({¬kctpg/c}) = mcutlery({¬cutlery}) = 0.82,

m1kctpg/c({kctpg/c,¬kctpg/c}) = mcutlery({cutlery,¬cutlery}) = 0.18;

m2kctpg/c({¬kctpg/c}) = mtap({¬tap}) = 0.82,

m2kctpg/c({kctpg/c,¬kctpg/c}) = mtap({tap,¬tap}) = 0.18;

m3kctpg/c({kctpg/c}) = mplates({plates}) = 0.82,

m3kctpg/c({kctpg/c,¬kctpg/c}) = mplates({plates,¬plates}) = 0.18;

m4kctpg/c({¬kctpg/c}) = mglass/cup({¬glass/cup}) = 0.82,

m4kctpg/c({kctpg/c,¬kctpg/c}) = mglass/cup({glass/cup,¬glass/cup}) = 0.18.

Step Five: Summing up a composite context node. For each multi-valued

mapping in Step Four the mass functions are summed via an equally weighted

sum operator so that the individual mass functions for “kitchenDoor”, “food”,

“plates”, “bread” and “chair” becomes “kitchenDoor, food, plates, bread, chair”.

Composite node: kitchen door, glass, and tap.

mkgt({kgt})

= 1/3(m0kgt +m1kgt +m2kgt)

= 1/3(0.82 + 0 + 0) = 0.273,

mkgt({¬kgt})

= 1/3(m0kgt +m1kgt +m2kgt)

= 1/3(0 + 0.82 + 0.82) = 0.547,

mkgt({kgt,¬kgt})

= 1/3(m0kgt +m1kgt +m2kgt)

= 1/3(0.18 + 0.18 + 0.18) = 0.18.
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Composite node: kitchen door, kettle, tea, and cup.

mkctk({kctk})

= 1/4(m0kctk +m1kctk +m2kctk +m3kctk)

= 1/4(0.82 + 0 + 0 + 0) = 0.205,

mkctk({¬kctk})

1/4(m0kctk +m1kctk +m2kctk +m3)kctk

1/4(0 + 0.82 + 0.82 + 0.82) = 0.615,

mkctk({kctk,¬kctk})

1/4(m0kctk +m1kctk +m2kctk +m3kctk)

1/4(0.18 + 0.18 + 0.18 + 0.18) = 0.18.

Composite node: kitchen door, microwave, cutlery, hot chocolate, cup, and milk.

mkmchcm({kmchcm})

= 1/6(m0kmchcm +m1kmchcm +m2kmchcm +m3kmchcm +m4kmchcm +m5kmchcm)

= 1/6(0.82 + 0 + 00 + 0 + 0.549) = 0.228,

mkmchcm({¬kmchcm})

= 1/6(m0kmchcm +m1kmchcm +m2kmchcm +m3kmchcm +m4kmchcm +m5kmchcm)

= 1/6(0 + 0.82 + 0.82 + 0.82 + 0.82 + 0) = 0.547,

mkmchcm({kmchcm,¬kmchcm})

1/6(m0kmchcm +m1kmchcm +m2kmchcm +m3kmchcm +m4kmchcm +m5kmchcm)

1/6(0.18 + 0.18 + 0.18 + 0.18 + 0.18 + 0.451) = 0.225.



152

Composite node: kitchen door, glass, and milk.

mkgm({lgm})

= 1/3(m0kgm +m1kgm +m2kgm)

= 1/3(0.82 + 0 + 0.549) = 0.456,

mkgm({¬kgm})

= 1/3(m0kgm +m1kgm +m2kgm)

= 1/3(0 + 0.82 + 0) = 0.273,

mkgm({kgm,¬kgm})

1/3(m0kgm +m1kgm +m2kgm)

1/3(0.18 + 0.18 + 0.451) = 0.270.

Composite node: living room door and telephone.

mlt({lt})

1/2(m0lt +m1lt)

1/2(0 + 0) = 0,

mit({it})

= 1/2(m0lt +m1lt)

= 1/2(0.82 + 0.82 = 0.82,

mlt({lt,¬lt})

= 1/2(m0lt +m1lt)

1/2(0.18 + 0.18) = 0.18.
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Composite node: kitchen door, food, plates, bread, and chair.

mkfpbc({kfpbc})

= 1/5(m0kfpbc +m1kfpbc +m2kfpbc +m3kfpbc +m4kfpbc)

= 1/5(0.82 + 0.271 + 0.82 + 0.82 + 0) = 0.546,

mkfpbc({¬kfpbc})

= 1/5(m0kfpbc +m1kfpbc +m2kfpbc +m3kfpbc +m4kfpbc)

= 1/5(0 + 0 + 0 + 0 + 0.82) = 0.164,

mkfpbc({kfpbc,¬kfpbc})

= 1/5(m0kfpbc +m1kfpbc +m2kfpbc +m3kfpbc +m4kfpbc

= 1/5(0.18 + 0.729 + 0.18 + 0.18 + 0.18) = 0.29.

Composite node: kitchen door, microwave, cutlery, food, plates, and chair.

mkmcfpc({kmcfpc})

= 1/6(m0kmcfpc +m1kmcfpc +m2kmcfpc +m3kmcfpc +m4kmcfpc +m5kmcfpc)

= 1/6(0.82 + 0 + 0 + 0.271 + 0.82 + 0) = 0.319,

mkmcfpc({¬kmcfpc})

= 1/6(m0kmcfpc +m1kmcfpc +m2kmcfpc +m2kmcfpc +m3kmcfpc +m4kmcfpc

+m5kmcfpc)

= 1/6(0 + 0.82 + 0.82 + 0 + 0 + 0.82) = 0.41,

mkmcfpc({kmcfpc,¬kmcfpc})

= 1/6(m0kmcfpc +m1kmcfpc +m2kmcfpc +m3kmcfpc +m4kmcfpc +m5kmcfpc)

= 1/6(0.18 + 0.18 + 0.18 + 0.729 + 0.18 + 0.18) = 0.271.
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Composite node: living room door, sofa, and TV.

mlst({lst})

= 1/3(m0lst +m1lst +m2lst)

1/3(0 + 0 + 0) = 0,

mlst({¬lst})

= 1/3(m0lst +m1lst +m2lst)

= 1/3(0.82 + 0.82 + 0.82) = 0.82,

mlst({lst,¬lst})

= 1/3(0.18 + 0.18 + 0.18) = 0.18.

Composite node: kitchen door, cutlery, tap, plates, and glass/cup.

mkctpg/c({kctpg/c})

1/5(m0kctpg/c +m1kctpg/c +m2kctpg/c +m3kctpg/c +m4kctpg/c)

= 1/5(0.82 + 0 + 0 + 0.82 + 0) = 0.328,

mkctpg/c({¬kctpg/c})

= 1/5(m0kctpg/c +m1kctpg/c +m2kctpg/c +m3kctpg/c +m4kctpg/c)

= 1/5(0 + 0.82 + 0.82 + 0 + 0.82) = 0.492,

mkctpg/c({kctpg/c,¬kctpg/c})

= 1/5(m0kctpg/c +m1kctpg/c +m2kctpg/c +m3kctpg/c +m4kctpg/c

= 1/5(0.18 + 0.18 + 0.18 + 0.18 + 0.18) = 0.18.

Step Six: Translating from a composite context node to an activity. Each mass

function from the multi-valued mappings, as shown in Table 6.7 – 6.15 can be
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translated to an activity, e.g. “kitchenDoor, food, plates, bread, chair” can there-

fore be mapped to “Prepare Cold Meal”.

Prepare Water: kitchen door, glass, and tap.

mprepareWater({prepareWater}) = mkgt({kgt}) = 0.273,

mprepareWater({¬prepareWater}) = mkgt){¬kgt}) = 0.547,

mprepareWater({prepareWater,¬prepareWater}) = mkgt({kgt,¬kgt}) = 0.18.

Prepare Tea: kitchen door, kettle, tea, and cup.

mprepareTea({prepareTea}) = mkctk({kctk}) = 0.205,

mprepareTea({¬prepareTea}) = mkctk({¬kctk}) = 0.615,

mprepareTea({prepareTea,¬prepareTea}) = mkctk({kctk,¬kctk}) = 0.18.

Prepare Hot Chocolate: kitchen door, microwave, cutlery, hot chocolate, cup,

and milk.

mprepareHotChocolate({prepareHotChocolate}) = mkmchcm({kmchcm}) = 0.228,

mprepareHotChocolate({¬prepareHotChocolate}) = mkmchcm({¬kmchcm}) = 0.547,

mprepareHotChocolate({prepareHotChocolate,¬prepareHotChocolate})

= mkmchcm({kmchcm,¬kmchcm}) = 0.225.

Drink Milk: kithcen door, glass, and milk.

mdrinkMilk({drinkMilk}) = mkgm({kgm}) = 0.456,

mdrinkMilk({¬drinkMilk}) = mkgm({¬kgm}) = 0.273,

mdrinkMilk({drinkMilk,¬drinkMilk}) = mkgm({kgm,¬kgm}) = 0.270.
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Phone call: living room door and telephone.

mphoneCall({phoneCall}) = mlt({lt}) = 0,

mphoneCall({¬phoneCall}) = mlt({¬lt}) = 0.82,

mphoneCall({phoneCall,¬phoneCall}) = mlt({lt,¬lt}) = 0.18.

Prepare cold meal: kitchen door, food, plates, bread, and chair.

mprepareColdMeal({prepareColdMeal}) = mkfpbc({kfpbc}) = 0.546,

mprepareColdMeal({¬prepareColdMeal}) = mkfpbc({¬kfpbc}) = 0.164,

mprepareColdMeal({prepareColdMeal,¬prepareColdMeal})

= mkfpbc({kfpbc,¬kfpbc}) = 0.29.

Prepare hot meal: kitchen door, microwave, cutlery, food, plates, and chair.

mprepareHotMeal({prepareHotMeal}) = mkmcfpc({kmcfpc}) = 0.319,

mprepareHotMeal({¬prepareHotMeal}) = mkmcfpc({¬kmcfpc}) = 0.41,

mprepareHotMeal({prepareHotMeal,¬prepareHotMeal})

= mkmcfpc({kmcfpc,¬kmcfpc}) = 0.271.

Watch TV: living room door, sofa, and TV.

mwatchTV ({watchTV }) = mlst({lst}) = 0,

mwatchTV ({¬watchTV }) = mlst({¬lst}) = 0.82,

mwatchTV ({watchTV,¬watchTV }) = mlst({lst,¬lst}) = 0.18.
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Wash dishes: kitchen door, cutlery, tap, plates, and glass/cup.

mwashDishes({washDishes}) = mkctpg/c({kctpg/c}) = 0.328,

mwashDishes({¬washDishes}) = mkctpg/c({¬kctpg/c}) = 0.492,

mwashDishes({washDishes,¬washDishes})

= mkctpg/c({kctpg/c,¬kctpg/c}) = 0.18.

Step Seven: Calculating belief and plausibility. The belief and plausibility

can be calculated from the mass functions on each activity e.g. “Prepare cold

meal”.

Prepare Water.

Bel({prepareWater}) = m({prepareWater}) = 0.273,

P ls({prepareWater})

= m({prepareWater}) +m({prepareWater,¬prepareWater})

= 0.273 + 0.18

= 0.453.

Prepare Tea.

Bel({prepareTea}) = m({prepareTea}) = 0.205,

P ls({prepareTea})

= m({prepareTea}) +m({prepareTea,¬prepareTea})

= 0.205 + 0.18

= 0.385.



158

Prepare Hot Chocolate.

Bel({prepareHotChocolate}) = m({prepareHotChocolate}) = 0.228,

P ls({prepareHotChocolate})

= m({prepareHotChocolate})+

m({prepareHotChocolate,¬prepareHotChocolate})

= 0.228 + 0.225

= 0.453.

Drink Milk.

Bel({drinkMilk}) = m({drinkMilk}) = 0.456,

P ls({drinkMilk})

= m({drinkMilk}) +m({drinkMilk,¬drinkMilk})

= 0.456 + 0.270

= 0.726.

Phone Call.

Bel({phoneCall}) = m({phoneCall}) = 0,

P ls({phoneCall})

= m({phoneCall}) +m({phoneCall,¬phoneCall; })

= 0 + 0.18

= 0.18.

Prepare Cold Meal.

Bel({prepareColdMeal}) = m({prepareColdMeal}) = 0.546,

P ls({prepareColdMeal})

= m({prepareColdMeal}) +m){prepareColdMeal,¬prepareColdMeal})

= 0.546 + 0.29

= 0.836.
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Prepare Hot Meal.

Bel({prepareHotMeal}) = m({prepareHotMeal}) = 0.319,

P ls({prepareHotMeal})

= m({prepareHotMeal}) +m({prepareHotMeal,¬prepareHotMeal})

= 0.319 + 0.271

= 0.59.

Watch TV.

Bel({watchTV }) = m({watchTV }) = 0,

P ls({watchTV })

= m({watchTV }) +m({watchTV,¬watchTV })

= 0 + 0.18

= 0.18.

Wash Dishes.

Bel({washDishes}) = m({washDishes}) = 0.328,

P ls({washDishes})

= m({washDishes}) +m({washDishes,¬washDishes})

= 0.328 + 0.18

= 0.508.

The belief and plausibility for each activity were then compared using the

maximisation operator.
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Bel(activity)

= max(Bel({prepareWater}), Bel({prepareTea}), Bel({prepareHotChocolate}),

Bel({drinkMilk}), Bel({phoneCall}), Bel({prepareColdMeal}),

Bel({prepareHotMeal}), Bel({watchTV }), Bel({washDishes}))

= max(0.273, 0.205, 0.228, 0.456, 0, 0.546, 0.319, 0, 0.328)

= 0.546

Pls(activity)

= max(Pls({prepareWater}), P ls({prepareTea}), P ls({prepareHotChocolate}),

P ls({drinkMilk}), P ls({phoneCall}), P ls({prepareColdMeal}),

P ls({prepareHotMeal}), P ls({watchTV }), P ls({washDishes}))

= max(0.453, 0.385, 0.453, 0.726, 0.18, 0.836, 0.59, 0.18, 0.508)

= 0.836.

We can then therefore be confident that “Prepare Cold Meal” has been carried

out due to the resulting belief and plausibility values being higher than that of

alternative activities. With “Prepare Cold Meal” having a Belief of 0.546 and a

Plausibility of 0.836 vs. the next most likely activity of “Drink Milk” with a Belief

of 0.456 and a Plausibility of 0.726.

6.2.3 Experimental Routine

The experiment routine used in this Chapter is based on the Ulster and Jaèn

datasets as discussed previously in Chapter Three. Each dataset consists of nine

ADLs chosen to represent a wide range of activities that an occupant would carry

out during their day to day routine. These are presented in Table 6.16. The Ulster

dataset consists of 32 activities, as shown in Table 6.17, which were recordings of

a live video stream to demonstrate how the system will perform in a real world

scenario in which artifacts may be present in the video stream along with other

potential issues, such as missing or corrupt video frames. The Jaèn dataset is

made up of three routines consisting of ten ADLs for a total of 30 activities spread

over three routines. These can be seen in Table 6.18. The system was then tested

to establish if it could correctly estimated the activity that was being carried out

through the use of DS Theory.
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Table 6.16: The list of available activities and their corresponding activity number.

Activity Number Activity

1 Prepare glass of water (PW)

2 Prepare cup of tea (PT)

3 Prepare hot chocolate (PHC)

4 Prepare glass of milk (PM)

5 Make/receive phone call (PC)

6 Prepare cold meal (PCM)

7 Prepare hot meal (PHM)

8 Watch TV (WTV)

9 Washing dishes (WD)

Table 6.17: The list of activities (represented by their associated activity number)

that make up each routine from the Ulster dataset.

Routine One Routine Two Routine Three

3 4 3

1 6 1

7 1 5

9 5 7

8 1 1

1 2 8

8 8 2

6 7 8

9 9 6

1 8 9

N/A 1 4
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Table 6.18: The list of activities (represented by their associated activity number)

that make up each routine from the Jaèn dataset.

Routine One Routine Two Routine Three

3 4 3

1 6 1

7 1 5

9 5 7

8 1 1

1 2 8

8 8 2

6 7 8

9 9 6

1 8 9

To provide a benchmark, a traditional machine learning approach was also im-

plemented on the dataset with each sensor acting as a feature within the model.

Three well known supervised machine learning classification algorithms were im-

plemented. In supervised classification, methods a set of training data is used to

train the model with a separate dataset used to test the model accuracy. The

dataset consisted of a total of 64 events consisting of 20 features. Due to the small

nature of the dataset the dataset was split with 80% being supplied as the training

set, and the remaining 20% being supplied as the unseen testing set. Cross valida-

tion was not used due to conerns of overfitting as K-fold cross validation has been

shown to be strongly biased when applied to small datasets [323]. Additionally,

due to the limited data, cross fold validation can potentially increase variance due

to the similarity between the training and testing data reducing it’s ability to gen-

eralise to further datasets. Cross fold validation can also result in minority classes

being used frequently for testing which can lead to skewed results in the models

performance. The three machine leaning algorithms used in this Chapter were:

Naive Bayes [324]: Naive Bayes is a probabilistic model which is based on the

Bayes theorem [325] and is well known for multi-class prediction. Naive Bayes is

based on probability models that have strong independence assumptions built in,

i.e. the classifier assumes that each input variable is independent.

Random Forest [326]: Random Forest classifiers combine the output of mul-

tiple decision trees, utilising both bagging and feature randomness to create an

uncorrelated forest of decision trees with the goal of reaching a final, single result.
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Multilayer Perceptron (MLP) [327]: An MLP is a class of artificial neural

network and an integral part of deep learning. MLP’s are made up of three layers

– an input layer which is responsible for receiving input from the dataset, one

or more hidden layer(s) which is responsible for applying weights to the inputs

and directing them though an activation function, and an output layer which is

responsible for outputting a value or vector of values.

6.3 Results

This Section describes the results from both the machine learning benchmark

results and the results from the DS component of the system. Table 6.20 displays

the overall results from the three machine learning algorithms when applied to

the collected dataset from both Ulster and Jaén labs in Chapter 3 as well as

the overall results from the DS theory application. The confusion matrices are

presented in Figure 6.3. Table 6.21 presents a further breakdown of the results

displaying the recall, precision, and F-measure for the classifiers and DS theory.

The recall score is a measure of how many instances that the system correctly

predicted. Precision is a measure of how many of the predicted instances are

correctly predicted. F-measure is the harmonic mean of recall and precision. The

results from the detection algorithm from Chapter 4 and 5 were represented by

binary data with a marker detection (TP and FP) represented by a one, non-

detection represented as a zero, and missing/corrupt data represented as unknown

“?”. The data was then ran through three ML classifiers to determine if they

could correctly identify the activity that was being undertaken by the occupant.

It should be noted that as the Ulster dataset was streamed live from the Google

Glass device it has a much higher rate of missed sensor events, this was mainly due

to the Glass device reducing its processing speed to help with cooling, as detailed

in Chapter Three – Section 3.3.2, which results in a higher rate of missed frames

and corruption in the video stream.

Tables 6.22 – 6.27 presents the breakdown of the belief and plausibility values

from DS theory along with the identified activity from each routine for the datasets

from both Ulster and Jaén. Each table presents the activity that the researcher was

carrying out as the “Expected Activity” with the determined activity from the DS

implemention presented as the “Identified Activity”. The belief and plausibility

in the identified activity is also presented.
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Table 6.20: Percentage of correctly and incorrectly classified results from the ma-

chine learning models and DS theory.

Method Correctly Classified Incorrectly Classified

Naive Bayes 66.7% 33.3%

RandomForest 75.0% 25.0%

Multilayer Perceptron 66.7% 33.3%

DS Theory 84.0% 16.0%

(a) Naive Bayes

(b) Random Forest

(c) Multiplayer Perceptron

Figure 6.3: Confusion matrices for the three ML classifiers.
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Table 6.21: Recall, Precision, and F-measure scores for the three classifiers and

DS theory.

Method Recall Precision F-Measure

Naive Bayes 0.667 0.875 0.757

RandomForest 0.750 0.875 0.808

Multilayer Perceptron 0.667 0.808 0.731

DS Theory 1.000 0.840 0.920

Table 6.22: DS results from the Routine One from the Ulster dataset.

Expected Activity Identified Activity Belief Plausibility

Drink Water Drink Water 0.714 1.000

Drink Water Drink Water 0.714 1.000

Drink Water Drink Water 0.714 1.000

Prepare Hot Chocolate Drink Milk 0.440 0.727

Cold Meal Cold Meal 0.546 0.836

Hot Meal Hot Meal 0.273 0.453

Watch TV Watch TV 0.820 1.000

Watch TV Watch TV 0.820 1.000

Wash Dishes Wash Dishes 0.328 0.508

Wash Dishes Drink Milk 0.440 0.727

Table 6.23: DS results from the Routine Two from the Ulster dataset.

Expected Activity Identified Activity Belief Plausibility

Drink Water Drink Water 0.440 0.727

Drink Water Drink Water 0.714 1.000

Drink Water Drink Water 0.714 1.000

Prepare Tea Prepare Tea 0.490 0.795

Drink Milk Drink Milk 0.623 1.000

Phone Call Phone Call 0.820 1.000

Cold Meal Cold Meal 0.328 0.508

Hot Meal Hot Meal 0.410 0.590

Watch TV Watch TV 0.820 1.000

Watch TV Watch TV 0.820 1.000

Wash Dishes Wash Dishes 0.820 1.000
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Table 6.24: DS results from the Routine Three from the Ulster dataset.

Expected Activity Identified Activity Belief Plausibility

Drink Water Drink Water 0.714 1.000

Drink Water Drink Water 0.714 1.000

Prepare Tea Prepare Tea 0.490 0.795

Prepare Hot Chocolate Prepare Hot Chocolate 0.478 0.727

Drink Milk Drink Milk 0.623 1.000

Phone Call Phone Call 0.820 1.000

Cold Meal Cold Meal 0.546 0.836

Hot Meal Hot Meal 0.547 0.727

Watch TV Watch TV 0.820 0.727

Watch TV Watch TV 0.820 1.000

Wash Dishes Drink Water 0.714 1.000

Table 6.25: DS results from the Routine One from the Jaén dataset.

Expected Activity Identified Activity Belief Plausibility

Prepare Hot Chocolate Drink Milk 0.623 1.000

Drink Water Drink Water 0.714 1.000

Hot Meal Hot Meal 0.546 0.836

Wash Dishes Wash Dishes 0.714 1.000

Drink Water Drink Water 0.714 1.000

Watch TV Watch TV 0.820 1.000

Cold Meal Cold Meal 0.546 0.836

Wash Dishes Drink Water 0.714 1.000

Drink Water Drink Water 0.714 1.000

Watch TV Watch TV 0.820 1.000
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Table 6.26: DS results from the Routine Two from the Jaén dataset.

Expected Activity Identified Activity Belief Plausibility

Drink Milk Drink Milk 0.623 1.000

Cold Meal Cold Meal 0.546 0.836

Drink Water Drink Water 0.714 1.000

Phone Call Phone Call 0.820 1.000

Drink Water Drink Water 0.714 1.000

Prepare Tea Prepare Tea 0.592 1.000

Watch TV Watch TV 0.820 1.000

Hot Meal Drink Milk 0.456 0.727

Wash Dishes Drink Water 0.714 1.000

Watch TV Watch TV 0.820 1.000

Drink Water Drink Water 0.714 1.000

Table 6.27: DS results from the Routine Three from the Jaén dataset.

Expected Activity Identified Activity Belief Plausibility

Prepare Hot Chocolate Drink Milk 0.623 1.000

Drink Water Drink Water 0.714 1.000

Phone Call Phone Call 0.820 1.000

Hot Meal Cold Meal 0.546 0.836

Drink Water Drink Water 0.714 1.000

Watch TV Watch TV 0.820 1.000

Prepare Tea Prepare Tea 0.592 1.000

Watch TV Watch TV 0.820 1.000

Cold Meal Drink Milk 0.456 0.727

Drink Water Drink Water 0.714 1.000

Drink Milk Drink Milk 0.623 1.000

6.4 Discussion

As presented in Table 6.21, the DS implementation demonstrates an improved

recall and F-Measure score over the traditional ML methods. An improved recall

score demonstrates that the system misclassifies fewer activites than the ML ap-

proaches. This is of importance within the domain of AAL as the misclassification

of an activity as an activity being misclassified as an alternative activity could
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cause confusion to the occupant along with a lack of timely and relevant support.

The difference in performance is due to there being missing/corrupt data within

the dataset. Due to DS theory being able to deal with uncertainty has resulted

in the detection of activities that were misclassified by the ML algorithms. This

is particularly evident with more complex tasks due to the higher likelihood of

missing or corrupt sensor data. An example of this would be the activity “pre-

pareHotMeal” which was misclassified by all three ML algorithms in the majority

of cases.

However, the ML methods show an improved precision over the DS system.

However, it should be noted that it is not possible to state if this is significantly

significant or not. To determine statistical significance a statistical hypothesis

test would need to be ran. Due to the comparison being comprised by multiple

groups (DS theory and multiple ML algorithms) an Analysis of Variance (ANOVA)

test would be suitable. In practical terms, the lower precision of the DS system

can be beneficial when compared to the higher precision from the ML methods.

This is due to a high precision potentially causing false alarms. If a system is

overly precise it may trigger support or interventions for activities which may be

classed as normal but that was not accurately identified by the system. This

improved precision was due to an increased number of activities being recognised

incorrectly as FPs due to the DS system being sensitive to certain activities having

a low number of differentiating sensor profiles. An example of this would be the

activities “Phone Call” and “Watch TV”, with “Phone Call” consisting of the

living room door and telephone sensors with “Watch TV” relying on the living

room door and TV sensors. As a result if key sensor events are not detected they

can have a large effect on the resulting belief and plausibility values. This can

result in a reduced performance if an occupant’s daily routine is made up with a

number of activities with a low number of object interactions, due to not having

enough evidence to accuratly differentiate between activities. A potential solution

to mitigiate this challenge could be to introduce an additional sensor modality for

low interaction activities to aid in differentiating the activities. For example, a

contact sensor could be added to the phone and the TV remote to offer additional

evidence of the activity being carried out.

One distinct advantage the DS system offers over an ML approach is that of

a lack of training required when new activities are added or when the system is

applied to a new environment. Should a new object/senor be added to the system

it would only require the name of the object and the belief/disbelief values for

the associated sensor. This offers a powerful advantage when coupled with the
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machine-vision aspect of the system which also does not require training, only

requiring a template of the new fiducial marker along with an associated label.

An additional advantage is the ability to apply the DS system to multiple en-

vironments without requiring retraining to the environment as demonstrated by

implementing the system to both the Ulster and Jaén lab environments with no

additional modification to the system required.

The contribution offered by this Chapter is an implementation of DS theory to

that of an egocentric camera in order to correctly identify activities of daily living

within a real world smart environment. This aids in alleviating the problem of

unreliable sensor evidence [328, 329], particularly within a machine-vision system

where a high number of variables, such as light, viewing angle, etc., can effect the

accuracy of an object recognition system [254]. This is corroborated by the results

shown within this Chapter which shows a high level of accuracy maintained when

performing activity recognition even when a number of sensor events are missed,

though it should be noted that some missing values will have a greater effect on

the results than others. This is due to some sensor events being key in accurately

identifying the activity, such as Drink Water and Drink Milk which share sensor

events with only one sensor event being unique in each case. Drink Water relies

on the kitchen door, glass/cup cupboard, and tap sensor and Drink Milk relies on

the kitchen door, glass/cup cupboard, and fridge. This small differentiation can

result in the activity either not being detected or miss-classified as another similar

activity.

There are a number of practical applications that this research can be applied

to in the real world through offering a more robust method for object recognition.

Thus offering a solution to the previously identified challenges of unreliable sen-

sor evidence [328, 329]. Particularly in the real world where missed sensor events

can be caused by issues such as faulty sensors which can effect the accuracy and

reliability of activity recognition. Additionally, this study has highlighted the im-

portance of certain sensor events being crucial for identifiying particular activities

which can aid in informing the design and implementation of future AAL systems.

6.5 Conclusion

This Chapter presented a method of applying DS theory to a machine-vision based

system in order to calculate a probabilistic belief of an ADL being carried out.

A worked example has also been presented to demonstrate the concept and the

system also showed how unreliable sensor evidence can be overcome to still provide
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an accurate estimation of the activity being carried out. The system was tested

on a real world dataset which consisted of 64 activities over six routines from two

separate smart-lab environments. The presented method displayed the ability to

reliably detect the correct activity in a majority of cases with an overall percentage

of correctly identified activities of approximately 84%. The proposed approach

offers the advantage of detecting ADLs even with missing sensor values and offers

increased reliability and safety with the domain of ambient assisted living and

further moving towards a vision of ‘aging in place’.

Furthermore, new activities can be added to the system without the need for

existing data on the activities. This is due to the activities being made up of a

composite of unique objects, this allowing a new activity to be added by including

the composite objects in the activity template.



Chapter 7: Conclusion

7.1 Introduction

This Chapter will provide a reflection on the work presented within this thesis.

This includes a discussion on the contributions to knowledge. The objectives

detailed in Chapter 1 will be revisited to assess if the research carried out within

this thesis has met these objectives. This will be presented along with discussion

on the areas of future investigation as well as concluding remarks. This research

aimed to investigate the use of machine-vision based approaches to support those

at home who traditionally may require assistance to carry out their activities of

daily living through the use of improved location accuracy and activity recognition

via evidential reasoning. In order to achieve this aim a technical solution was

developed leveraging an egocentric camera to detect fiducial markers that have

been placed on key objects throughout the environment. To aid in improving the

accuracy of marker detection a distance estimation tool was researched to estimate

if an object interaction was genuine and was not caused through navigation of the

environment. DS theory was then implemented to further increase the accuracy

of detecting the occupant’s activity when taking into account uncertainty within

the data.

The research objectives which were identified in Chapter 1 are presented below,

along with a discussion on how these objectives were met throughout this thesis.

7.2 Discussion of Objectives

As discussed in Chapter One, there has been a remarkable increase in life ex-

pectancy throughout the world [13]. This increase in the older section of society

has resulted in an increase on the demand placed on the healthcare due to the large

percentage of adults who require long-term support for independent living. In or-

der to aid in alleviating this burden being placed on healthcare, researchers have

investigated the use of smart home and wearable technology to develop approaches

171
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that will allow individuals to live within their own home for longer.

The aim of this thesis was to investigate the use of machine-vision based ap-

proaches to support those at home who may traditionally require assistance to

carry out their ADLs through the use of improved location accuracy and activity

recognition via evidential reasoning. This aim was supported by four key re-

search questions/objectives. The reminder of this section will discuss these ques-

tions/objectives and how these were met throughout this thesis and the contribu-

tion to knowledge they represent.

Chapter Two presented a detailed discussion on the opportunities for contribu-

tion within the areas of supporting ADLs within a wearable computing and smart

environment context. Along with providing a detailed overview of ADLs along

with techniques to leverage smart environments to support ADLs and how to use

technology as an enabler.

7.2.1 Research Question One

Does the use of an egocentric wearable camera offer the ability to determine the

user’s indoor localisation along with additional context when detecting activities

in comparison to dense sensing approaches?

Chapter Two, Section 2.7.1 presented a discussion on the limitations of dense sens-

ing apporaches for determine the user’s indoor location. The main challenges that

were found, the requirement for equipment to be installed throughout the environ-

ment [172, 173, 174, 175, 176, 177, 179, 180, 182, 183, 184, 186], the requirement

to wear a dedicated device [5, 176, 178, 179, 183, 181, 182, 183, 184, 185, 198,

210, 204, 206, 223, 226], issues regarding multiple occupancy [172, 173], and the

necessity for the occupant to interact with a sensor in order to determine location

[172, 173, 179].

In Chapter Four the design and development of a solution to facilitate indoor

localisation through the use of a single “always-on” egocentric camera via real time

streaming was presented. This included the development of novel fiducial marker

designs which could be applied to “key” objects within an environment. A review

of feature point recognition algorithms also takes place. The main contribution

of this Chapter was the implementation of a two-stage filtering process to reduce

the number of FP detected within the video stream. The first filter calculated

the number of feature points within the homography and compared these to pre-

determined threshold values to determine if a detection was likely to be a TP. The

second stage of the filtering was a vote function, were frames were processed in
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batches and the object most likely to be present within these frames is determined

and then stored within the system. The objects detected within each of these

batches was then determined to be a TP if the number of votes exceeded a threshold

value. The proposed system was tested within multiple smart environments in

order to determine its feasibility to be applied to multiple environments. It was

tested in both Ulster University, UK and the University of Jaèn, Spain. The

results from this Chapter show that the presented system is a feasible method of

determining the location of an occupant within an environment with the results

from the lab at Ulster University showing a Recall, Precision, and F-Measure of

0.82, 0.96, and 0.88 respectively. The results from the lab at the University of Jaèn

were also promising showing a Recall, Precision, and F-Measure of 0.66, 0.67, and

0.79 respectively.

This research question has been answered through this work both by the results

from the tests within multiple environments but also by the secondary advantages

this system offers. This demonstrated the ability of the system to be easily applied

to multiple environment without the need for extensive equipment installation.

While the occupant is still required to wear a device within this research this is

somewhat mitigated by the percentage of the adult population that are required

to wear corrective lenses [187]. As Google Glass can be fitted with prescription

lenses the occupant does not have to wear an additional device, only substitue their

current glasses for Google Glass. Occlusion, traditionally a problem of machine-

vision systems [70, 188, 193, 201, 202, 204, 208, 225, 226], has been avoided through

this method due to the camera being mounted on the user which provided a first-

person view point, removing the issue of occlusions. An additional advantage the

proposed system offers is that of continuous image capture to reduce the number

of missed object interactions and missing data which was found to be a limitation

of existing systems [193, 194, 202]. Finally, the issue of multiple occupancy is

also negated. As the system only has to support the occupant that is wearing a

device it does not need to be concerned with any additional occupants within the

environment. The wearable device is streaming an egocentric view point of the

occupant ensuring that any object that enters the FoV will be an object that the

occupant is likely to be interacting with.

7.2.2 Research Question Two

Does the use of fiducial markers within the environment allow the easy adaption

to new environments without a period of re-learning the environment?
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Chapter Two, Section 2.7.2 presented a discussion on the limitations of vision

based indoor localisation. A number of limitations were found, such as the need

to be retrained for each environment that the system is to be deployed within [70,

192, 194, 199, 205, 206, 208, 209, 210, 211, 214, 215, 218, 220, 223, 225, 226, 227].

Chapter Four presented the novel fiducial markers that were applied to objects

of interest within the environment. The markers were then applied to the smart lab

environment at Ulster to perform a range of ADLs with the goal of recognising the

constitute objects/locations that the occupant was interacting with. The system

did not require any learning of the environment, each fiducial marker has a unique

label associated with the marker (typically the object name) which is supplied at

system start up. The system calculates the relevant feature points for each marker

and these are stored within the system. The feature points are then compared in

real-time to what is being captured by the egocentric camera using a brute-force

matcher, if a suspected match is found it is passed further down the system to the

filtering process detailed in Chapter 4. Chapter 5 detailed how the system could

be adapted to a new environment without the need for a period of re-learning, due

to the fiducial markers and their associated ID being all that was required for the

system. This allowed for an easy adaption to the new environment, particularly

through the use of a wearable camera as this also removes the need for equipment

to be set up within the environment, such as in a dense sensing solution, along

with the lack of a re-learning to the new environment.

The application of the proposed system to multiple environments without a

period of re-learning demonstrates how this research question has been answered,

along with secondary advantages that this solution offers. One of which is the abil-

ity to customise markers to the environment to aid in reducing any further distress

or confusion for the occupants. The method of using fiducial markers to detect

objects also negates the need for the system to be trained for new environments,

due to the markers having an ID which associated it with the ‘key’ objects, should

the user replace a ‘key’ object the system no longer needs to be retrained to learn

this new object as the same marker can be applied to the new object.

7.2.3 Research Question Three

Does the use of an object-distance estimation improve the rate of detection of

object interaction when compared to a non-estimation approach?

An additional limitation that became apparent throughout the course of this re-

search was the need to reduce FP caused by navigation throughout the environ-
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ment or in object rich environments. An example of this could the kitchen which

could have a number of objects of interest within close proximity of each other,

e.g., kettle, microwave, and cupboards.

In Chapter Five the design and development of a solution to determine if an

occupant/object interaction a True or False Positive was presented. The system

was defined as the Intelligent System for Detecting Inhabitant-Object Interaction

(ISDII). ISDII determined if an occupant/object interaction was genuine through

measuring the distance that the occupant is interacting with the object and cross-

referencing that against known threshold interaction distances for each object to

assess if the interaction was a TP or a FP generated through general gaze activ-

ity or through navigating the environment. The presented solution offers a non-

intrusive method of determining when an occupant/object interaction is genuine

and not a FP. Leveraging a single wearable camera and was shown to reduce FP

instances as discussed in Chapter Five. This also offers an additional advantage,

such as the lack of required interaction from the occupant to record interactions

as being TP/FP and that the camera is always optimised for the direction that

the object of interest for the user is positioned.

7.2.4 Research Question Four

Does the application of evidential reasoning further improve the state of the art

through improving the accuracy of activity recognition?

Chapter Two, Section 2.7.5 presented a discussion on the challenge of dealing

with uncertainty within the data [238, 239, 240, 241, 242, 234]. In Chapter Six

an implementation of DS theory was presented with the goal of determining the

probability of an activity being carried out within a video stream. The goal of this

Chapter was to determine if DS theory could be used to improve the accuracy of

activity recognition when utilising an egocentric camera. An implementation of DS

theory was applied to the datasets previously collected within the Ulster and Jaén

labs to estimate the activity being carried out within the video stream. A range of

ML algorithms were also tested on the datasets in order to provide a benchmark

score to contextualise the results from the DS system. The DS system showed

improved result in terms of number of activities correctly classified (84%) when

compared to traditional ML approaches (75% for best ML approach tested) along

with an improvement in recall and F-measure when compared to ML approaches

– 1.00 and 0.92 respecfully for the DS system, and 0.750 and 0.778 respectfully for

the best performing ML approach tested.
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These results indicate that the application of evidential reasoning can further

improve the accuracy of activity recognition when compared to traditional ML

approaches. This is of particular importance within the context of machine-vision

applications as there are a wide range of factors that can affect the detection

performance, such as lighting or occlusions. The use of DS theory allows for a

level of certainty to be attained for the likelihood of an activity being carried

out with missed sensor events, thus allowing for a further level of accuracy to be

attained than would otherwise be possible once uncertainty is introduced to the

dataset.

7.2.5 Summary of Knowledge Contributions

The research carried out within this thesis has contributed to knowledge in a num-

ber of key areas. These contributions are detailed below:

The design and implementation of a real-time vision based indoor

localisation system via an egocentric camera utilising fiducial markers.

(Objective one)

One of the contributions offered by this work include addressing a problem

previously identified with that of wearable devices such as Google Glass. That

is, that their impact in ubiquitous computing and ambient intelligence systems

has been partly slowed by their lack of streaming [187]. This has been addressed

in Chapter 4 by the development of live streaming functionality from a wearable

device, Google Glass in this case, which allows the video stream to be accessed

by multiple sources using a media server. Due to the time sensitive nature of

supporting occupants within their own home, a real-time system will allow a more

timely and effective intervention when compared to a system which capture images

on an intermittent basis or has a large time delay between the image being captured

and processing being completed.

The use of an egocentric camera along with fiducial markers also aids in allevi-

ating an issue identified in Chapter 2 such as occlusion from fixed cameras where

the occupant is not within the camera’s field of view due to large objects occluding

the occupant or “blank” areas of the environment where the camera’s field of view

does not cover. While there is a risk of occlusion of the fiducial markers this is

greatly reduced through the use of a first-person camera which removes the issue

of covering the entire room along with large items, such as doors/fridges. This

also aids in reducing occlusions generated by the occupant themselves, such as

hands/head/torso occluding objects that they are interacting with. Occlusions of
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the manipulated object tend to be lessened as the object being interacted with is

usually the centre of attention for the occupant [314]. As the object is the centre

of the occupant’s attention the object is usually in the centre of the image and

in focus, providing a high quality image for processing [314]. Secondly, the use of

a moving camera coupled with static objects reduces the issues traditionally seen

with a static camera solution such as the limited field of view, which may require

the installation of multiple cameras within an environment.

Due to the system operating in real-time it does not encounter the same issues

as intermittent image capture system. Where vital information could be lost if the

occupant interacts with an object or navigates throughout the environment. In

the previously discussed works in Chapter 2 the method of image capture relied

on intermittent captures, e.g. at set time intervals 30 frames were captured. This

could cause vital information to be lost as object interactions may have taken place

within the time period were the system was not capturing information. As the

presented system operates in real-time every frame is being processed, therefore

vital information will not be lost through intermittent image capture.

The proposed approach offers other secondary advantages that are unique to

this method, such as the first person view and lack of required interaction and

multiple occupancy, where each occupant that requires support need only to wear

a device to obtain their unique first person viewpoint and the information on the

objects they were interacting with.

The design and implementation of a method to remove the need to

train for each environment. (Objective two)

The main contribution offered within objective two is the ease with which the

system can be deployed within differing environments. The use of fiducial markers

with an associated ID negates the need for specific training to each environment.

This is due to the markers being associated with common static items that are

commonly found within home environments, with the ID of the object being tied

to the marker rather than any features of the object itself. This allows the sys-

tem to be quickly and easily deployed within new environments in comparison to

implementing traditional methods of indoor localisation. Due to the static items

that the markers are applied to being common throughout the majority of homes

(e.g. fridge, kettle, etc.) results in a further minimisation of the initial installa-

tion/initialisation requirements. This is due to the majority of markers sharing

their ID with common household items, with only slight customisation required to

any unique appliances or needs that the occupant may require. This also allows
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for ease of future customisation within the environment, should the occupant add

additional appliances or require reduced/increased levels of support this can easily

be accommodated through the addition or removal of fiducial markers.

Benchmarking ORB and Aruco in an AAL scenario along with the

development of IDSII. (Objective three)

The contributions offered within objective three include the comparison of two

popular off-the-shelf algorithms for feature detection in an AAL scenario. It also

presents how lighting effects the performance of these two algorithms as well as

that of motion blur, these are two very important factors when assessing the

effectiveness of vision based aids and their feasibility in being applied to a real

world situation.

ISDII is another contribution that this objective has made. This itself has two

contributions within. Namely, the development of a two stage filter which allows

uncertainty in real-time video based application to be reduced through exponential

smoothing to reduce high frequency noise, and the second stage which involves the

removal of isolated detections, such as those experienced through natural gaze

activity. This used fuzzy logic to estimate the level of interaction the occupant

is having with the object through distance estimation. Due to the high levels of

noise that are typically present in egocentric videos it can be difficult to identify the

correct object as it is possible that multiple objects can be within the occupant’s

FoV. This is due to some areas of the environment being densely populated with

relevant objects, such as the kitchen.

A final contribution from this objective was the development of a system that

does not require user interaction in order to ensure that the best image angle is

being captured. This challenge was previously identified and presented in Chapter

Two as a limitation of existing systems.

Implementation of DS theory to that of an egocentric camera in

order to correctly identify ADLs within a real world smart environment.

(Objective four)

Chapter 6 presented a methodology for applying DS theory to an egocentric

camera with the goal of identifying ADLs. A comparison was also offered to

traditional ML methods to establish that the use of DS theory can improve the

detection of ADLs within a smart environment.

The contribution offered by this objective is an implementation of DS theory

to that of an egocentric camera in order to correctly identify ADLs within a real
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world smart environment. This aids in alleviating the problem of unreliable sen-

sor evidence, particularly within a machine-vision system were a high number of

variables, such as light, viewing angle, etc., can affect the accuracy of an object

recognition system. The advantage of detecting ADLs, even with missing sensor

values, offers increased reliability and safety with the domain of ambient assisted

living and further moving towards a vision of “aging in place”. Furthermore new

activities can be added to the system without the need for existing data on the

activities present due to the activities being composed of a composite of unique

objects, this allowing a new activity to be added by merely including the composite

objects in the activity template.

7.3 Limitations

Over the course of this thesis a number of limitations have been encountered, these

include:

7.3.1 Marker Design

The novel design of the fiducial markers within this thesis does offer the benefit of

being able to customise the marker not just to the environment, but also to the

unique needs of the occupant. However, it became apparent that there may be

issues in regards to scalability, this is due in part to a certain level of complexity

being required in order to identify a marker within a scene. While this was not

an issue during this research if the system was to be scaled out to multiple envi-

ronments it could result in markers requiring to have overly complex designs in

order to easily distinguish them for similarly designed markers due to the ORB

algorithm being based on the Harris corner recognition algorithm which extracts

corners to infer the features of an image. An additional limitation is that of the

requirement for the marker to be placed correctly on the corresponding object

to facilitate the accurate detection of the marker. This is somewhat mitigated

through the markers requiring to be placed in the centre of the occupant’s FoV,

however, there is still room for human error when placing the markers. Alongside

the potential interpretation of the centre of the occupant’s FoV, particularly if

being set up by a carer or family member.
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7.3.2 Dataset Size and Users

A key limitation of this research has been the dataset size used throughout. This

was due to multiple factors. A key factor was the use of novel fiducial markers

as no existing egocentric dataset were available, therefore a fresh dataset had to

be collected throughout this research. Additionally collecting egocentric data of

ADLs is a time consuming process which when coupled with hardware limitations

discussed in Section 7.3.3 further hinders the collection of a large dataset. The

small nature of the dataset had the most impact on Chapter 6 in which ML ap-

proaches were applied to the collected datasets in order to determine the activity

being carried out which resulted in a test/train split for validation to avoid any

bias in the results or overfitting to the data. Further collection of a larger dataset

would allow for additional testing to establish if the results can be further gen-

eralised. This would also allow the opportunity to test the system in additional

environments thus allowing the hypothesis of the “use of fiducial markers facili-

tates the ease of adaption to new environments”, while allowing testing against a

further range of environmental conditions. A further limitation within the datasets

gathered in the lack of data generated by target users. The datasets generated

in Chapter Three were generated by a researcher which was not a member of the

target cohort of older users which should be a key focus of future work. While

data augmentation was considered it was felt that the limitations of such a solution

would outweigh the benefits. There was a concern that the data quality could be

affected due to the generation of unrealistic or irrelevant data. Additionally, as

data augmentation can only generate variations of the existing data would result

in limited diversity within the dataset despite the increased dataset size. As data

augmentation cannot create new, original data no new features/information which

was not in the original dataset would be generated. This was of particular interest

within Chapter Six where defects/inconsistencies in the data were of interest to

explore how DS theory could manage missing/inconsistent data.

7.3.3 Hardware Limitations

During the course of this research key hardware limitations became apparent.

Firstly, the act of streaming live video over a continuous time period led to issues

with heat management on the Google Glass device. In order to compensate for the

increased heat the Google Glass device reduced the clock speed of the CPU. The

first step Google Glass takes is to reduce the CPU speed from 1Ghz to 600Mhz.

Should this not be successful at mitigating the increased temperatures Google
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Glass can then further reduce the CPU speed from 600Mhz to 300Mhz. However,

it should be noted that the device did not become too hot to be a danger or

uncomfortable for the user to remain wearing/using, though this did have the

consequence of introducing a slight variable lag into the video stream when the

clock speed was reduced to 300Mhz of approximately three seconds or less. A

secondary limitation that was discovered was that of battery capacity due to the

energy intensive requirements of both recording a constant video stream while

simultaneously streaming to a server.

7.3.4 Time Frame

One final limitation to this research is the period of time it has taken to bring this

Thesis to completion, in particular the domain of Computer Science has a very

high rate of progress with regards to the tools and technologies that are available.

With regards to the machine-vision aspect of this research techniques such as

Convolutional Neural Networks (CNN) [330] and more recently the development of

Vision Transformers (ViT) [331] offer intriguing aspects into the future of machine-

vision applications. However, the domain of AAL still has significant research

challenges with smart environments still not widely available, it is hoped this

research will aid in informing this future research.

7.4 Future Work

With the opportunity for reflection on the work conducted, and its outcomes,

throughout this thesis a number of areas of future work have been identified.

7.4.1 Further Data Collection and Deployment

As discussed in Chapter 6 both ML and DS theory were applied to the collected

datasets from the Ulster and Jaén smart environments, however, these datasets

were relatively small within the context of data science containing a total of 64

events. Further data collection would allow for further generalisation of the ML

models along with offering further opportunity to evaluate how effectively DS

theory can be applied to activity recognition within the domain of AAL. Collection

of further datasets would also permit the opportunity to further assess the ease of

adaption to new environments of varying complexity. The collection of additional

data would also allow the system to be implemented in a free-living environment

outside of a laboratory setting, this would allow data to be collected by end users
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in their home environment and would allow further evaluation on the effectiveness

of the ISDII component to detect genuine occupant/object interactions. A key

component of further data collection should be the inclusion of users from the

target cohort of the older segement of society. This will allow the collection of

data from a real world scenario using target users that will offer valuable insights

into the usability and acceptability of the system by the target cohort. This would

also permit further testing on the ability of DS theory to deal with uncertainty

within the data alongside allowing for end-user feedback on the system and any

recommendations to aid in the widespread adoption of such technology.

7.4.2 Activity Support

This thesis has explored methods of detecting the occupants’ location within an

environment through the use of a wearable camera and the detection of fiducial

markers via machine-vision techniques and if this system could be adapted to any

environment without the need for training. This was followed by an investigation

into the development of the ISDII system in order to determine if an object in-

teraction was genuine or caused by navigation throughout the environment or due

to a high concentration of objects of interest within the FoV. Finally a study was

carried out to determine if DS theory could be implemented to correctly identify

ADLs being carried out from an egocentric viewpoint within a smart environment

taking into account uncertainty introduced to the data.

Further work in this area could involve feeding information back to the occu-

pants to assist the occupant in their daily routines. In particular context-aware

reminders could provide a valuable service to older users, or those who may have

early stages of cognitive decline along with aiding the occupant in completing their

current task or prompting them to begin a task, such as making a meal. As Google

Glass contains an integrated bone conduction speaker along with a 640x360 dis-

play this opens up a range of possible reminders which can be delivered to the

occupant. This is of particular interest if they are suffering from cognitive decline,

such as early onset dementia, as it allows the reminders to be delivered in a format

that would offer the least stress to the occupant. These reminders could take the

format of video/audio recording of family members who are known to the occupant

to make them feel more at ease with assistive technology.
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7.4.3 Digital Twins

One interesting avenue of investigation is that of leveraging a digital twin to aid

in supporting occupants within their own home. A digtial twin could allow for a

accurate representation of the environment including the position of the fiducial

markers along with the position of objects within the environment. This digi-

tal recreation of the environment can facilitate the testing of new activity models.

Alongside investigating issues such as multiple occupancy in an evironment that al-

lows the mitigation of risks when compared to testing in a real world environment.

Additionally, this can be used to generate further training data that simulates a

real world environment in a range of contextual situations.

The use of a digital twin would also allow for additional performance eval-

uations to take place through introducing specific challenges to a scenario. For

example, the lighting conditions could be varied, occlusions could be introduced,

along with varying the location of the marker placement to assess how the system

performance is affected. This would also allow the calibration of the system in real

time by comparing the simulated environment with the real world environment.

The system would then be able to adjust it’s parameters to match the current real

world conditions by adjusting camera settings. Such as increasing exposure to aid

in low light environments. This can allow performance metrics to be established to

aid improving the accuracy of indoor localisation and activity recognition within

assistive technologies.

7.4.4 Summary

In conclusion, future work for this research would involve the integration of the

areas that have been identified within this section – further data collection, activity

support, and digital twins. Further data collection would allow a more diverse

dataset to be gathered, both in terms of varying environmental conditions and

activities carried out. Further data would also allow an investigation into utilising

vision transformers as a means of improving the detection accuracy of the system.

The integration of a digital twin would allow for additional testing and allow for

mulitple interations of the model to be tested under varying conditions. The

inclusion of a digital twin would also allow the real time synchronisation between

the digital twin and the real world device, this would allow modifications to be

made in real time to aid in improving performance through the adjustment of

system settings. Finally, the built in screen to smart glasses could be leveraged

to aid giving further support to the occupant to aid them in completing tasks via
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visual and audio prompts.

7.5 Conclusion

This Thesis explored an investigation into whether machine-vision baed approaches

could be leveraged to support indoor localisation within the domain of AAL. This

Thesis then went on to investigate could the application of evidential reasoning via

DS theory could improve the detection of an occupant’s activity within a smart

environment. Study One carried out within this research was an investigation to

determine if an egocentric camera could be utilised to determine an occupant’s

location based on the objects within their FoV as detailed within Chapter Four.

Study Two sought to determine if it was possible to develop a tool which would

allow occupant/object interactions to be determined to be genuine or accidental.

To this end the ISDII tool was developed which used distance estimation to make

a determination if the object was likely to be a genuine interaction based off expert

defined distances that objects were typically interacted upon with the end goal of

reducing the number of FPs detected within the video stream. Study Three aimed

to detect the activity that the occupant was carrying out, along with implementing

DS theory in order to aid with dealing with uncertainty within the data which is

normally present in a real world scenario due to technical faults or user error.

Throughout the research conducted within this Thesis a number of contribu-

tions to knowledge have been identified. These have been a direct result of the

overall research aim of this Thesis, namely to “investigate the use of machine-

vision based approaches to support those at home who may traditionally require

assistance to carry out their activities of daily living through the use of improved

location accuracy and activity recognition via evidential reasoning”. Contributions

from this Thesis have been discussed in Chapters 4, 5, and 6 and have been out-

lined in Section 7.2.5. The studies detailed in Chapters 4, 5, and 6 have allowed

the research objectives of this Thesis to be achieved, Section 7.2 discusses these

research objects in more detail and how they were achieved through the course of

this research.

This Thesis has also highlighted some limitations within this research which

have been discussed in Section 7.3 of this Chapter. The limitations included the

novel marker design, which while offering customisability to suit an environment

or the occupant’s needs can result in scalability issues depending on the size of

environment/number of objects that are required to be supported by the system.

The dataset size was also a limitation within this research, particularly when
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implementing the ML component within Chapter Six. Further expansion of the

dataset would also allow for additional testing in differing environments to further

demonstrate the system’s ability to be applied to new environments with no need

for training. Additionally hardware limitations were also discovered, with Google

Glass requiring to under-clock the processor in order to reduce heat output of

the device. However, with the latest generation of devices such as Google Glass

Enterprise [168] and Vuzix Blade [31] these hardware limitations will be reduced

through the progress made within the IoT domain since the inception of Google

Glass Explorer.

It is hoped that this Thesis will aid in the development of future applications

within the domain of AAL to support aging-in-place and to further contribute to

the vision of Mark Weiser of ubiquitous computing offering on-demand support

seemlessly within our lives.
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Rodŕıguez, A. Luna-López, and E. Denova-Gutiérrez, “Association



194

between physical activity and physical and functional performance in non-

institutionalized Mexican older adults: a cohort study,” BMC Geriatrics,

vol. 22, no. 1, pp. 1–11, 2022.

[84] C. M. Giebel, C. Sutcliffe, M. Stolt, S. Karlsson, A. Renom-Guiteras,

M. Soto, H. Verbeek, A. Zabalegui, and D. Challis, “Deterioration of basic

activities of daily living and their impact on quality of life across different

cognitive stages of dementia: a European study,” International Psychogeri-

atrics, vol. 26, no. 08, pp. 1283–1293, 2014.

[85] S. Beltz, S. Gloystein, T. Litschko, S. Laag, and N. van den Berg, “Multi-

variate analysis of independent determinants of ADL/IADL and quality of

life in the elderly,” BMC Geriatrics, vol. 22, no. 1, pp. 1–16, 2022.

[86] B. J. Gurland and M. S. Maurer, “Life and Works of Sidney Katz, MD:

A Life Marked by Fundamental Discovery,” Journal of American Medical

Directors Association, vol. 13, no. 9, pp. 764–765, 2012.

[87] R. S. Bucks and J. Haworth, “Bristol Activities of Daily Living Scale: a crit-

ical evaluation,” Expert Review of Neurotherapeutics, vol. 2, no. 5, pp. 669–

676, 2002.

[88] L. Liu, C. Daum, N. Neubauer, A. Miguel-Cruz, and A. Rios-Rincon, “Tech-

nology to Facilitate Independence in Self Care -ADL and IADL,” in Au-

tonomy and Independence. Synthesis Lectures on Technology and Health,

Springer, 2022.

[89] J. Berrett, A. de Kruiff, S. Pedell, and A. Reilly, “Augmented assistive tech-

nology: the importance of tailoring technology solutions for people living

with dementia at home,” International Journal of Human Computer Stud-

ies, vol. 165, no. March 2021, p. 102852, 2022.

[90] M. Assim and A. Al-Omary, “Design and Implementation of Smart Home

using WSN and IoT Technologies,” in 2020 International Conference on

Innovation and Intelligence for Informatics, Computing and Technologies,

3ICT 2020, pp. 5–10, 2020.

[91] A. Banafa, “Edge Computing Paradigm,” Quantum Computing and Other

Transformative Technologies, pp. 81–85, 2023.



195

[92] I. Machorro-Cano, G. Alor-Hernández, M. A. Paredes-Valverde,
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[177] A. R. Jiménez, F. Seco, P. Peltola, and M. Espinilla, “Location of Persons

Using Binary Sensors and BLE Beacons for Ambient Assitive Living,” in

IPIN 2018 - 9th International Conference on Indoor Positioning and Indoor

Navigation, no. September, pp. 24–27, IEEE, 2018.

[178] S. A. Maghdid, H. S. Maghdid, and S. Rahman, “Tracking Indoor Elderly-

People Using Onboard Smartphones Wi-Fi Device and Inertial Sensors,” in



204

1st International Conference on Advanced Research in Engineering Sciences,

ARES 2018, IEEE, 2018.

[179] V. Bianchi, P. Ciampolini, and I. De Munari, “RSSI-Based Indoor Local-

ization and Identification for ZigBee Wireless Sensor Networks in Smart

Homes,” IEEE Transactions on Instrumentation and Measurement, vol. 68,

no. 2, pp. 566–575, 2019.

[180] M. Kolakowski, “Improving accuracy and reliability of Bluetooth Low-

Energy-based localization systems using proximity sensors,” Applied Sci-

ences (Switzerland), vol. 9, no. 19, 2019.

[181] E. S. Sansano, O. Belmonte-Fernandez, R. Montoliu, A. Gasco-Compte,

A. C. Miedes, and P. B. Iturralde, “Improving positioning accuracy in am-

bient assisted living environments. a multi-sensor approach,” in Proceedings

- 2019 15th International Conference on Intelligent Environments, IE 2019,

pp. 22–29, 2019.

[182] A. V. Vesa, S. Vlad, R. Rus, M. Antal, C. Pop, I. Anghel, T. Cioara, and

I. Salomie, “Human Activity Recognition using Smartphone Sensors and

Beacon-based Indoor Localization for Ambient Assisted Living Systems,”

in Proceedings - 2020 IEEE 16th International Conference on Intelligent

Computer Communication and Processing, ICCP 2020, pp. 205–212, 2020.

[183] J. Kolakowski, V. Djaja-Josko, M. Kolakowski, and J. Cichocki, “Lo-

calization system supporting people with cognitive impairment and their

caregivers,” International Journal of Electronics and Telecommunications,

vol. 66, no. 1, pp. 125–131, 2020.

[184] A. Bilbao-Jayo, A. Almeida, I. Sergi, T. Montanaro, L. Fasano, M. Emaldi,

and L. Patrono, “Behavior modeling for a beacon-based indoor location sys-

tem,” Sensors, vol. 21, no. 14, pp. 1–15, 2021.
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