
University of Bergen
Department of Informatics

Online learning through

Reinforcement learning in a

high-fidelity physics simulator

Author: Erik Hystad

Supervisor: Rodica G. Mihai

November, 2022

Abstract

The research aim of this thesis is to explore model-based reinforcement learning in a high-

fidelity physics simulator. This exploration implies answering the following questions:

• Can the world model of the DreamerV2 agent model future states of the high-fidelity

physics simulator OpenLab?

• Can a reinforcement learning agent control the OpenLab drill string flow rate to

reach down hole pressure goals?

• Given a change in the environment after finished training, does the DreamerV2

agent benefit from continuous updates to its weight parameters, from a short-term

perspective?

To answer these questions a set of experiments was designed to use OpenLab as a

reinforcement learning environment together with the model-based reinforcement learn-

ing agent DreamerV2. From the results of these experiments it was observed that the

DreamerV2 agent was able to control and model selected parts of the OpenLab simulator.

However the DreamerV2 was not able to show improvement from continuous updates to

the weight parameters in a short-term perspective, in the analysed episodes. The results

in this thesis indicates also that model-based reinforcement learning has a potential of

solving more advanced problems in dynamic physics related environments, but the world

model might show a lack of adaptability when faced with changes in the environment.

Acknowledgements

I would thank the people who has supported me throughout this thesis. First thanks to

Rodica G. Mihai for great support and weekly guidance.

Fellow students who have provided a good humored working environment, especially

Bendik for help with discussion and feedback.

Finally thanks to my family for the continued support.

Erik Hystad

Monday 21st November, 2022

Contents

1 Introduction 1

2 Background materials 5

2.1 Machine learning . 5

2.1.1 What is machine learning? . 6

2.1.2 Supervised and unsupervised learning 7

2.1.3 Neural Networks . 8

2.1.4 Recurrent neural networks . 12

2.2 Reinforcement learning . 14

2.2.1 Introduction . 14

2.2.2 Agent-environment interaction . 15

2.2.3 Exploration and exploitation . 16

2.2.4 Rewards and Return . 16

2.2.5 Bellman equations . 17

2.2.6 Markov Decision Process . 17

2.2.7 On-policy and Off-policy . 18

2.2.8 Model-based learning . 19

2.2.9 Policy Gradients . 21

2.2.10 World Models . 23

2.3 Online and offline learning . 25

2.4 OpenLab . 29

3 Methodology and Experiment 31

3.1 DreamerV2 . 31

3.1.1 Computational analysis . 32

3.1.2 Components of DreamerV2 . 33

3.1.3 Training . 37

3.1.4 Results . 40

3.1.5 PyDreamer . 42

i

3.2 Data analysis . 43

3.2.1 Analysis of collected simulations 44

3.2.2 Analysis of isolated parameters 51

3.2.3 Insights from the analysis . 57

3.3 Experiment setup and training . 58

3.3.1 Problem . 58

3.3.2 Environment . 59

3.3.3 Training description . 62

3.3.4 Evaluation . 63

4 Results and Evaluations 65

4.1 Results obtained during training . 65

4.2 Evaluation . 70

4.2.1 Modelling results . 71

4.2.2 Control and online results . 74

4.3 Further research . 77

5 Conclusion 78

Glossary 80

Bibliography 82

ii

List of Figures

2.1 Illustration of machine learning compared to traditional programming . . 6

2.2 Linear regression as neurons . 8

2.3 Simple neural network with two hidden layers 9

2.4 ReLU activation function . 10

2.5 ELU activation function . 11

2.6 Simple recurrent neural network . 13

2.7 Agent-environment interaction . 15

2.8 Model-free learning and model-based learning 20

2.9 Learning from both experience and model 20

2.10 Vision, memory and controller example from world models paper[11] . . . 24

2.11 Example of online learning process . 26

2.12 Example of offline learning process . 27

2.13 OpenLab simulator GUI. 30

3.1 Gaussian and categorical distributions in latent space, image from Dream-

erV2 blog[15] . 33

3.2 Training the world model . 35

3.3 Training the DreamerV2 agent . 37

3.4 Training the Actor Critic with imgaination Markov Decision Process . . . 39

3.5 Figure a and b is the results reported from the ”Deep Reinforcement Learn-

ing at the Edge of the Statistical Precipice”[1] paper, and figure c is the per-

formance reported from ”Mastering Atari with Discrete World models”[14]. 41

3.6 Simulation(1) with random set points parameters. 44

3.7 Correlation matrix of simulation 3.6 . 45

3.8 Simulation(2) data with random values for the set point parameters, with

intervals between change. 46

3.9 Correlation matrix of simulation 3.8 . 47

3.10 Simulation(3) with random set points for flow rate, with intervals between

change . 48

iii

3.11 Correlation matrix of simulation 3.10 . 49

3.12 Simulation(2) with normalized values . 50

3.13 Linear regression of down hole pressure given bit depth 51

3.14 Simulation with only flow rate adjusted 52

3.15 Simulation with only flow rate adjusted, shortened 53

3.16 Simulation with only top of string velocity adjusted 54

3.17 Simulation with only top of string velocity adjusted, shortened 54

3.18 Simulation with only surface RPM adjusted 55

3.19 Simulation with only surface RPM adjusted, shortened 56

4.1 Example of episode 1 during training . 66

4.2 Episode example after around 35 episodes of training 67

4.3 Episode example after around 85 episodes of training 67

4.4 Episode example after around 275 episodes of training 68

4.5 Episode example after around 300 episodes of training 69

4.6 Loss during training . 69

4.7 Return during training . 70

4.8 Predicted future pressure given first 5 states and actions, short episode. . 72

4.9 Predicted future pressure given first 5 states and actions, long episode. . 72

4.10 Log loss of the state reconstruction . 73

4.11 Comparison of evaluation scenarios. 75

4.12 Episode from the end of evaluation with weight parameter updates. . . . 76

iv

List of Tables

3.1 Computation comparison of model-based reinforcement learning agents,

values from DreamerV2 paper [14]. 32

3.2 Minimum and maximum values for normalising future data 51

3.3 Initial set point values . 60

3.4 DreamerV2 configuration . 62

3.5 Hardware . 62

v

Listings

2.1 Pseudocode of episode rollout from world models paper[11] 24

3.1 Straight-through gradients[2], pseudocode from DreamerV2 paper[14] . . 36

3.2 Episode following OpenAI gym[3] template. 60

3.3 Pseudocode of OpenLab environment . 61

vi

Chapter 1

Introduction

Reinforcement learning is a category within artificial intelligence and machine learning

consisting of experience based learning to perform decision making. Recent progress of

reinforcement learning has mainly been done with environments based on games, like

chess and Atari. While there are exceptions, such as DeepMind’s ”Magnetic control

of tokamak plasmas through deep reinforcement learning”[6], the application of model-

based reinforcement learning in a high-fidelity physics simulator has not been explored

extensively. The aim of this thesis is to explore and evaluate the decision making and

Online learning capabilities of a model-based reinforcement learning agent in the high

fidelity physics simulator OpenLab[28](https://openlab.app/).

The background for the thesis will be introduced in this chapter, followed by an

introduction of the research problem and research aims. Next, the motivation of this

exploration of model-based reinforcement learning will be discussed. Furthermore the

limitations of the research and experiment is presented, before finally the structure of the

thesis is laid out.

Thesis background and related work

Model-based reinforcement learning utilises a model of the environment in addition to

the agent to improve sample efficiency. Model based reinforcement learning is often seen

as a more computationally efficient and sample efficient option, dependent on the level

of quality for the model of the environment.

1

Online learning can be described as learning from a continuous stream of data with

the goal of managing to adapt with the environment when necessary. The ability to

adapt with the environment is useful for a reinforcement learning agent to avoid acting

on outdated experience if the environment evolves.

In this thesis the model-based reinforcement learning agent DreamerV2[14] will be

used in conjunction with the well drilling simulator OpenLab. The DreamerV2 utilises

a world model[11] to perform decision making and to learn a model of the environment.

OpenLab is a well drilling simulator developed by NORCE[28], which will be utilised

in this thesis to investigate how capable the DreamerV2 is in this environment. Unlike

previous evaluations of the DreamerV2 agent, the OpenLab simulator is represented by

a vector of values rather than an image. This is a point of uncertainty and interest to see

if the categorical latent state representation of the DreamerV2’s world model manages

to represent the state with a vector based input rather than a high dimensional image

input.

Model-based reinforcement learning with the use of world modes was first proposed by

Ha et al[11], this concept introduced planning with latent state representations. Where

the reinforcement leaning agent utilises the compact representation from the world model

to make decisions in the environment. This was improved upon by Hafner et al[12] where

they included a combination of a deterministic latent state and stochastic latent state to

improve future state prediction and included model-predictive control[26] to plan the best

action by looking at future states at each time step. Then Hafner et al[13] introduced

the Dreamer agent which utilised Latent Imagination to train the behaviour of the agent,

this was performed by imagining latent trajectories with the use of a world model.

One of the most notable examples of utilising reinforcement learning in a high-fidelity

physics was performed by Degrave et al[6] to sculpt plasma into desired shapes. The

agent was trained in a simulator designed to simulate the dynamics of a Tokamak reactor

and validated using the real Tokamak reactor.

Research problem and motivation

Historically it has been difficult to learn a model for dynamic environments without

the model knowing the rules of the environment. However recently there have been

improvements in learned models that manage to learn the dynamics of the environment,

and then perform better than their model-free alternatives, for example DeepMind’s

MuZero[29], DreamerV2 [14] and IRIS[20].

2

The research problem of the thesis is defined as: To explore model-based reinforce-

ment learning in a dynamic high-fidelity physics simulator. We apply a model-based

reinforcement learning agent, the DreamerV2, to the high-fidelity OpenLab simulator.

This is performed to see how capable the agent is in this environment. Central ques-

tions in this thesis would be:

• Can the world model of the DreamerV2 agent model future states of the OpenLab

simulator given the actions preformed during the simulation?

• Can the DreamerV2 agent control the flow rate in the drill string in the OpenLab

simulator to reach down hole pressure with respect to given pressure goals?

• Given a change in the environment after finished training, does the DreamerV2

agent benefit from continuous updates from a short-term perspective?

The outcome of the thesis could contribute to the extent of knowledge within model-

based reinforcement learning in dynamic environments with a learned model and rein-

forcement learning in a physics and real world application related scenario. The use of a

reinforcement learning agent with a learned model in a physics based simulation, while

not extensively explored, has some interesting advantages. Both the resulting learned

model of the environment, but also the ability to train with less interaction with the

environment. This is especially an advantage if the simulator or environment can not be

significantly sped up.

Limitations

The choice of agent in the thesis was limited by the available computation and data, both

in regards to how much computation for the training of the agent and in regards to how

much computation that was available for drilling simulation using OpenLab. Furthermore

the action space of the agent was limited to only controlling the flow rate, instead of also

controlling other parameters such as top of string velocity and surface RPM to simplify

this initial exploration of OpenLab.

3

Thesis structure

This introduction chapter presented the thesis topic and research problem, also the model-

based reinforcement learning agent, DreamerV2, was introduced together with the high-

fidelity physics simulator OpenLab. Then finishing this chapter with outlining the thesis

limitations and motivation for research. Chapter 2 describes the background materials

and theory that the thesis is built upon, and the relevant concepts from machine learning,

reinforcement learning, online and offline learning is reviewed. Afterwards there will be a

short introduction of the drilling process and the OpenLab simulator. The Methodology

and Experiment chapter explains the DreamerV2 agent, its components and training, an

analysis of data from the OpenLab simulator, and finally the set up of the experiment to

explore the DreamerV2 in the OpenLab simulator. The Results and Evaluation chapter

presents the outcome from the experiment, discussing insights and suggesting further

research. In chapter 5 the conclusion drawn from the experiment results is presented.

4

Chapter 2

Background materials

The background materials for the thesis are introduced and discussed in this chapter. To

begin the introduction the overarching themes and concepts are presented. First, central

concepts from machine learning is introduced in chapter 2.1, where we are looking at

the building blocks from machine learning, that will be applied in chapter 3. Followed

by chapter 2.2 where reinforcement learning is introduced and briefly touch upon the

concept of world models and their strengths and weaknesses. Then online and offline

learning 2.3, their differences and strengths and weaknesses. Finally a short introduction

of the OpenLab simulator and its domain in chapter 2.4.

2.1 Machine learning

In the following chapter an introduction to the subject of machine learning as well as of

the main concepts that forms the basis of this thesis. To introduce machine learning, we

will explore the fundamental aspects of machine learning in the following chapter 2.1.1.

After the introduction we will familiarize the machine learning subcategories, supervised

and unsupervised learning in chapter 2.1.2. There will be an exploration into how a

neural network and a recurrent neural network is built, including how we plan to utilize

them in chapter 2.1.3 and 2.1.4.

5

2.1.1 What is machine learning?

Machine learning is a subcategory of Artificial Intelligence (AI) which is focusing on

algorithms that can learn tasks without being explicitly programmed to do said task. This

is done by learning from data where one usually trains on a data set to try to generalize

from it. Instead of explicitly programming rules that take input x in a program to get

result y, we train an algorithm by giving it a data set with input features and output

results, which it can then train on to learn to predict y.

Figure 2.1: Illustration of machine learning compared to traditional programming

This makes a powerful tool to create programs that can be difficult to explicitly write

the rules of, such as object detection. These algorithms or programs are often called

models in the field of machine learning, since reinforcement learning also uses the term

model for a part of reinforcement learning, models in machine learning context will be

referred to as machine learning models.

From figure 2.1 it can be seen that machine learning receives an input x and an output

y and returns a program to use. Compared to a traditional computer program where one

would explicitly define the rules to create a program that receives an input x and gives

us the answer y.

The definition ”A computer is said to learn from experience E with respect to some

class of tasks T and performance P , if its performance at tasks in T , as measured by P ,

improves with experience E.”[21](Mitchell, 1997). Illustrates an algorithm that learns.

The computer program learns from experience E, the data set, to solve a class of tasks

6

T , such as object detection or machine translation, and is measured with a performance

metric P , often accuracy. If P improves with experience E the computer program is said

to learn.

2.1.2 Supervised and unsupervised learning

It is common to divide Machine Learning into 3 different categories, supervised learning,

unsupervised learning and reinforcement learning. In the following chapter we will fo-

cus on supervised and unsupervised learning and acquaint ourselves with reinforcement

learning in chapter 2.2.

Supervised learning is essentially to train machine learning algorithms on labeled data.

An example of this is a data set with input x and the the wanted result labeled y. The

algorithm can be trained to learn how to approximate the function f(x) by calculating

the loss between the predicted ŷ and the labeled y. Finally we update the the algorithm

using some form of gradient descent multiplied by the loss. This simple approach of

calculating how wrong predictions are and then updating the algorithm with gradient

descent is straight forward to implement and has historically yielded good results.

The main drawback of this method is the expense to manually label data to be used.

For each sample in a data set there needs to be a clarified wanted result, which can

often be time consuming and expensive. An example of supervised learning is in object

classification such as the MNIST[7] data set where each image of a handwritten number

has a label of the number written, and is used to train machine learning models to learn

how to recognize handwritten numbers.

Unsupervised learning is to train a machine learning algorithm without labeled data.

Contrary to having the true y value to calculate the loss from, we need to find another

approach to accurately calculate the loss. The machine learning model is learning pat-

terns in the data to build a internal representation of the data. Clustering is a popular

unsupervised task where the goal is to divide the data into groups. Another task is mod-

els that learn latent variables such as autoencoders and variational autoencoders, this can

be used as a dense low dimensional representation of the information, similar to classical

statistics methods such as Principal Component Analysis (PCA).

Autoencoders aim at recreating the input as accurately as possible while it is reduced

in dimensionality by the encoder and then recreated by the decoder, resulting in an

efficient representation of the data in a lower dimensionality.

7

The variational autoencoder(VAE), works similarly to the autoencoder. Instead of

passing the latent variable directly to the decoder, the latent variable is utilized as the

prior to a given distribution. We sample from said distribution, and pass our sample to

our decoder to recreate the original input.

One of the main advantages of unsupervised learning is that the data is cheap. Since

no human expert is needed to go through the entire data set to label all the samples,

allowing for usage of a lot of collected data.

The DreamerV2 used in this thesis uses elements from the VAE in its world model,

and the the original world model paper [11] uses a VAE to to encode and decode its latent

state representation. While the DreamerV2 uses a vector of several categorical variables,

exactly how the world model in DreamerV2 works will explained in chapter 3.1.

2.1.3 Neural Networks

Artificial neural networks, often called neural networks, is a machine learning algorithm

that is central in deep learning and is what is used in the DreamerV2 agent. Neural

networks imitate real life neurons that signal to one another. The simplest neural network

is just one input and one output as in the figure 2.2 this is also the same as linear

regression. A neural network is often described having several layers, with the terminology

input layer, hidden layer and output layer. The input layer accepts the input data and

passes it to the first hidden layer, see example figure 2.3. The hidden layer(s) can be one

or more layers in the middle of the network extracting and creating features to represent

the input data in a meaningful way. The final layer is the output layer which takes the

output from the last hidden layer and transforms it to the wanted output, either it is a

single regression value or probabilities for a classification task.

b0

x1

ŷ1
b0,1
w1,1

Figure 2.2: Linear regression as neurons

x1 represents input, b the bias term, ans ŷ the output, and w the weight. This illustrates linear regression as a simple
neural network ŷ = x1 ∗ w1 + b

8

b0

x1

x2

x3

b1

h1,1

h1,2

h1,3

h1,4

b2

h2,1

h2,2

h2,3

h2,4

ŷ1

ŷ2

Figure 2.3: Simple neural network with two hidden layers

Here we have included two hidden layers to illustrate the structure of a artificial neural network with three input values
and two output values.

Linear layer and convolutional layer

A linear layer in a neural network, sometimes called a fully connected layer, is a layer

consisting of a simple matrix multiplication of the input from the previous layer and the

weights and the addition of a bias term. It can be expressed as:

h = xw + b (2.1)

Where x is the input vector, w is the weight vector and b is the bias term. This can also

be viewed as one multiple input and multiple output linear regression, or as a single layer

of neurons, see figure 2.3.

The main advantage of a linear layer is that it is very versatile since all inputs can

affect all outputs, therefore also called a fully connected layer. This also makes it more

computational inefficient since a lot of connections are redundant or not useful and the

network needs to learn to ignore these and they add unnecessary computation. This is

used in several part of the DreamerV2 model which is used in this thesis, the encoder

and decoder, and the actor critic to name a few.

On larger input like images it is then a convolutional network that is often used. Here

we will give a short introduction to convolutional networks, and we base this introduction

on chapter 9 in ”the deep learning book”[9]. Goodfellow describes convolution as ”Con-

volutional networks are simply neural networks that use convolution in place of general

matrix multiplication in at least one of their layers. ”[9]

The DreamerV2[14] which is used in this thesis uses convolutional networks in the

encoder and decoder, since it has been used with visual input. However in this thesis

9

we will use linear layers instead since the state representation is not visual. The main

strength of convolutional layers is sparse interactions parameter sharing and equivarian

representations.

Activation function

The activation function is a non-linear transformation that is applied to each unit between

two layers. This is is done to introduce non-linear transformations to the network to be

able to solve non-trivial problems, since without activation functions neural networks

would only be a set of linear transformations. One of the most common activation

functions is ReLU which is short for rectified linear activation unit, it is simply:

f(x) = max(0, x) (2.2)

One of ReLU’s main strengths compared to other commonly used activation functions

such as sigmoid and tanh is the derivative of ReLU does not decrease when x increases

which can be a factor to create vanishing gradients which can be a large problem in neural

networks.

Figure 2.4: ReLU activation function

In the DreamerV2 both the world model and the actor critic uses ELU[14], the expo-

nential linear unit. The formula for ELU is:

f(x) =x <= 0 : α(ex − 1),

x > 0 : x
(2.3)

10

Figure 2.5: ELU activation function

ELU with α = 1, where the function produces negative values down to −1.

The main difference of ELU compared to ReLU is ELU can produce negative results

down to a value of α, see figure 2.5.

Loss function

The loss function is how we evaluate how well a machine learning model is preforming,

where the goal is to minimize the error in the predictions from the machine learning

model. Two common loss functions are mean squared error and cross entropy, also called

log loss. Where mean squared error is a common loss function for regression, calculated

as:

mse =
1

n

n∑
i=1

(yi − ŷi)
2 (2.4)

Where n is the number of data points. Cross entropy is commonly used loss function for

classification of multiple classes, calculated as:

ce = −
n∑
i=1

yi log(ŷi) (2.5)

Where n is the number of classes that can be classified.

In our case we are doing reinforcement learning our goal is to maximize the sum of

rewards, see chapter 2.2.4. The world model in DreamerV2 minimizes the loss with a

custom loss function which is a combination of several well known loss functions such as

Kullback-Leibler loss and negative loss-likelihood, see chapter 3.1.3.

11

Backpropagation and Gradient Descent

The backpropagation algorithm[27] is used to calculate the gradients of the weights with

respect to the loss function, then it is simple to use gradient descent, or one of its

variants, to minimize the loss function. The chain rule of calculus is used to calculate

the derivatives. In case of several layers in a neural network, or another set of functions,

such as y = outputlayer(z1), z1 = hiddenlayer(z0), and z0 = intputlayer(x) then the

derivatives can be calculated by applying the chain rule as follows:

dy

dx
=

dy

dz1

dz1
dz0

dz0
dx

(2.6)

Using gradient descent the weights of the network can be updated, to be expressed

as:

w = w − α∇L(w) (2.7)

Where ∇L is the gradient of the loss with respect to the weights, α is the learning rate

which dictates how large steps in the direction of the gradient should the network take. A

lower learning rate will be more accurate, but also slower to train. Using gradient descent

to minimize the loss function can be interpreted as the gradient gives information on what

affected the output the most, if the result was advantageous, do more of what was just

done, if the result was negative do less of that.

In the DreamerV2 the Adam[18] optimization method is used, which is an extension

to stochastic gradient descent. The Adam update step is defined as:

θt = θt−1 − α ∗ mt√
vt + ϵ

(2.8)

The main difference between Adam and stochastic gradient descent is mt the exponential

moving average of the gradient and vt the element wise squared gradient. The hyper

parameters for Adam is the learning rate α, and the decay rate of mt which is controlled

with β1 and decay rate of vt which is β2.

2.1.4 Recurrent neural networks

The information in chapter 2.1.4 is primarily based on chapter 10 in the Deep Learning

book[9]. Recurrent neural networks are neural networks specialized for processing a

12

sequence of input values, such as words in a sentences or a time series. The calculation

of several steps in a sequence with a recurrent neural network can be expressed as:

ht = f(ht−1, xt; θ) (2.9)

Where ht is the hidden state for index t, xt is the input for index t, θ is the weights. To

visualize the concept, see figure 2.6, we can unroll the function to understand how the

predicted value of time step t is calculated from the hidden state from the previous time

step, and the input from the current time step. A recurrent neural network evaluates

the input from left to right to take into account the history of the previous states. This

is a benefit since the data from the OpenLab simulator is conditioned on the previous

time steps of the well trajectory which will enable a more accurate prediction of the

simulation. A demonstration of relation between current and past time steps is if the

down hole pressure is 3.5e7 Pa, it has different consequences if the pressure is rising or

if it is decreasing, i.e. if the pressure is decreasing it the probability that the pressure is

lower than 3.5e7 Pa in the next time step is higher than the probability that the pressure

is higher than 3.5e7 Pa. Recurrent neural networks can be bidirectional, being able to

evaluate input from left to right and right to left, but this ability is not applicable in our

setting, since previous time steps is not influenced by future time steps.

x1 x2 x3 x4

h1 h2 h3 h4

x̂2 x̂3 x̂4 x̂5

h0

Figure 2.6: Simple recurrent neural network

Example of unrolled many to many recurrent neural network. For each time step t the recurrent neural network produces
x̂t+1ht = f(ht−1, xt; θ), where xt is the input of the current time step, ht is the hidden state and x̂t+1 is the predicted

value for the next time step.

One of the inherent problems of a standard recurrent neural network is vanishing

gradients, originating from backpropagating through the network the same weights were

used to calculate the hidden states backwards. If the weights related to the hidden state

is a small value the repeated multiplication results in a vanishing gradient, or if the

weights have a large value an exploding gradient. One solution to the vanishing gradient

problem is the Gated Recurrent Unit(GRU), which is a version of a recurrent neural

13

network that applies a reset gate and update gate to decide how much of the new input

should be included in the new hidden state, inversely how much of the old hidden state

should be forgotten. In other words how important is the new hidden state compared to

the previous input for calculating future hidden states and output. DreamerV2 applies

a GRU for its world model, it works as a memory mechanism where the hidden state

represents the memory of the model.

2.2 Reinforcement learning

This chapter introduces the different concepts related to reinforcement learning. In the

introduction chapter 2.2.1 reinforcement learning as a concept is to be defined, afterwards

the agent-environment interaction is presented in chapter 2.2.2. A central challenge in

reinforcement learning is the balance between exploration and exploitation of the environ-

ment which is discussed in chapter 2.2.3. Further on in chapter 2.2.4 we discuss Rewards

and the sum of Rewards, Return, which is the value to be maximized in reinforcement

learning. The Bellman equation being one of the central elements of many reinforcement

learning algorithms is elaborated on in 2.2.5. The Bellman equation decomposes the

value function into two parts, the immediate reward in addition to the discounted future

rewards. It is central to all value based reinforcement learning algorithms, where the

policy makes choices based on the expected return, the value function, that is the imme-

diate reward plus discounted future rewards. Chapter 2.2.6 describes the mathematical

framework for decision making in reinforcement learning, the Markov Decision Process.

On-policy and off-policy is two categories which reinforcement learning algorithms can be

divided into, they have both strengths and weaknesses which we will look into in 2.2.7.

How models of the environment in model-based reinforcement learning work and how

these models can improve the reinforcement learning agent in chapter 2.2.8. The part of

the DreamerV2 agent responsible for decision making is an actor critic, this is a policy

gradient method which will be explained in chapter 2.2.9. Finally a look in to world

models as a central concept of the DreamerV2 agent in chapter 2.2.10.

2.2.1 Introduction

Reinforcement learning is a goal-directed learning approach, with the goal to maximize

a numerical reward signal. In this case the agent is not told what decisions to make, but

has to act in a way that maximize the reward. This knowledge is learned from the trial

14

and error experience. The agent is interacting with its environment to experience what

actions receives a positive feedback and what actions receives a negative feedback. The

delayed reward is a central concept in reinforcement learning where previous decisions

giving a negative reward at that specific moment in time might position the agent for a

larger positive reward later.

2.2.2 Agent-environment interaction

It is common to consider reinforcement learning to be the third subcategory of machine

learning with the other two categories being supervised and unsupervised learning. Where

the latter two categories are based on data with and without labels, reinforcement learning

is based on an agent-environment setting. In this case an agent chooses an Action to

interact with its environment, then this environment the rewards the agent accordingly.

The agent then traverses the environment to learn from the experience the it receives to

map situations, often called states, to actions. The notation for an individual State in

the set of all states S, is s, while the notation for actions it is a for a single action in

the set of all possible actions A. A policy is applied to choose action a from all possible

actions A, and a specific policy is often noted π and it represents the rules for how to

choose an action.

An illustration, a greedy policy chooses the best action it can at each time step, while

a random policy takes random actions for each time step. One commonly used policy

is the ϵ-greedy policy which chooses the best possible action with the probability of 1 -

ϵ and a random action otherwise. The reason to take a random action is to encourage

exploration.

Figure 2.7: Agent-environment interaction

15

2.2.3 Exploration and exploitation

One of the fundamental problems of reinforcement learning is the exploration and ex-

ploitation of the environment. This dilemma origins from the trade off between looking

for more solutions, by exploring, hence future return might be better or to keep exploiting

the current best solution, but at the cost of no improvement in the future.

In some occasions it is better to choose a lower exploration rate when the learning

time is long to try to find the best combinations and not influence your information

by bad, exploring, decisions. In case of a shorter learning period more exploration will

return an acceptable solution faster. To combine both exploration and exploitation by

applying a decreasing exploration rate during learning, the agent will then explore more

of the environment in earlier episodes and when the agent gets smarter the amount of

bad decisions from exploring declines. If the environment can change dynamically, and

the agent has already learned a good policy, this policy is no longer a good policy. While

having low exploration rate slow learning takes place, because the agent will do bad

decisions based on an outdated policy. The agent does not explore new decisions, thus

learning a good policy will take longer than with a higher exploration rate.

2.2.4 Rewards and Return

Reward is the notation for the positive and negative feedback given from the environment

to the agent. Noted r for a reward and Rt for a reward at time t, describing the immediate

feedback from the environment to the agent. As explained in the introduction chapter

2.2.1 in Reinforcement learning, the immediate reward is not of great interest, rather the

sum of rewards, defined as Return. An example of this fact could be an agent preforming

stock trading where earned money is the reward and it needs to spend money, negative

reward, to earn more money in the future, i.e. a larger total sum of rewards.

Another example of why return is more important than immediate reward could be

a game of chess where the agent decides to sacrifice a piece on purpose to earn a better

position, in such a way that the probability of victory is higher. The agent’s goal is thus

to maximize the sum of all the rewards in an episode, not just acquiring the immediate

reward. The expected sum of rewards from a given state, can be expressed by the term

defined as return. Return noted with G, and is defined as Gt = Rt+1 + γRt+2 + γ2Rt+3...

where t is the time step and γ is a discount factor for future rewards. The discount factor

γ is used to take into account uncertainty of the environment and in some reward models

the discount factor is making sure the return is not a infinite sum.

16

2.2.5 Bellman equations

The value function in reinforcement learning is used to evaluate how much return is the

agent expected to receive from the remaining episode given a state. Many reinforcement

learning algorithms build upon making decisions based using the value function. The

ϵ-greedy policy makes the decision of which action to take with the highest value from

the value function given the possible next states, v(st+1), with a probability of 1− ϵ, and

otherwise a random action to explore new trajectories. The value function is defined as:

v(s) = E(Gt|St = s) (2.10)

Where v(s) is the notation for the value function given state s and given the state s the

value function returns the expected return, Gt for the time step t.

In the introduction of the chapter 2.2, it is stated that the Bellman equation de-

composes the value function into two parts, the immediate reward plus the discounted

future rewards, as can expressed here in formula 2.11. The Bellman equation then

simplifies the future rewards by defining the value function as a recursive function

that makes the computation of the value function easier since return is defined as

Gt = Rt+1 + γRt+2 + γ2Rt+3... the Bellman equation can be extended to:

v(s) = E(Gt|St = s)

v(s) = E(Rt+1 + γRt+2 + γ2Rt+3...|St = s)

v(s) = E(Rt+1 + γGt+1|St = s)

v(s) = E(Rt+1 + γv(St+1)|St = s)

(2.11)

By this extension the value function for a state St can be calculated as the reward from

that transition in addition to the value function for the next state St+1.

The Bellman equation is a powerful tool by which the agent can evaluate how much

return to be expected from a given state. In this thesis the Bellman equation is applied

in the DreamerV2 agent to update the critic’s value function in the actor critic part of

the DreamerV2.

2.2.6 Markov Decision Process

Markov Decision Process(MDP) is a mathematical framework for modeling decision mak-

ing, which can be used to provide a formal description of an reinforcement learning envi-

ronment. A central element in reinforcement learning is describing a problem as a Markov

17

decision process. In the previous chapters there has been some use of the framework al-

ready with the description of return, reward, states and actions, and these concepts can

be expressed as functions for rewards and transitions.

• Ra(s
′, s) represents the reward from state s to new state s′ given action a.

• Pa(s
′, s) represents the transition probability from state s to new state s′ give action

a.

The Markov decision process is an extension of the well known Markov chain, where the

Markov chain describes the transition probabilities between states. The Markov decision

process also includes actions that affect these transition probabilities.

A central concept in Markov decision processes is the Markov property which is:

p(St+1|St) = p(St+1|St, St−1, St−2...S0) (2.12)

”The future is independent of the past given the present”[31]. The state s needs to

contain the information needed such that the future is independent of the past. As the

example mentioned in chapter 2.1.4 if a reinforcement learning algorithm is only given

the down hole pressure of the current time step, e.g. 3.5e7 Pa, the probability of the next

time step’s pressure is dependent on the past, because the probabilities of the next time

step would be different if the pressure was increasing or decreasing at this time step.

This leads into an important issue in our case, physics does not inherently satisfy the

Markov property. The authors of DreamerV2 claims that with the GRU utilised in the

world model the latent state that the Actor Critic evaluates should satisfy the Markov

Property[14].

2.2.7 On-policy and Off-policy

When the value function is learning the value of the behaviour policy, it is defined as

an on-policy method. Off-policy learning takes place when the value function is learning

a different policy from the behaviour policy. The value function learns the value of the

target policy and the behaviour policy is utilised to make decisions. One advantage for

using off-policy is learning an optimal policy while acting according to an non-optimal

policy. In many reinforcement learning problems, the agent can explore more extensively

while learning a solution that is optimal. When applying on-policy would either limit the

18

exploration while learning, or limit the exploitation of the return for the agent. Applying

a policy like ϵ-greedy this limitation could be mitigated with a decreasing ϵ value as

discussed in chapter 2.2.3, but with the shortcomings when dealing with a dynamically

changing environment as discussed in chapter 2.2.3. Off-policy would however, ensure

larger exploration throughout the learning since it could continue to sample all possible

actions while the target policy is not suffering from these decisions, since the behaviour

policy is deciding the actions and updating the value function with decisions from the

target policy. A well known example of an off-policy method is Q-learning where the

target policy is a greedy policy, always choosing the decision to exploit the highest value

of return. The behaviour policy, often ϵ-greedy, but it could also be a policy following

human decisions or random decisions. The value function thus learned with a greedy

policy and would have higher return values than a non greedy policy, but the agent is

acting with another policy to ensure exploration and finding new possible trajectories.

A weakness of off-policy learning methods are that they can be require more gradient

updates compared to on-policy methods. On-policy methods learns faster by narrowing

down the states it searches by not exploring to the same degree and focusing on better

return compared to off-policy algorithms may explore more states that does not yield

better return, depending on the behaviour policy. Off-policy algorithms can however be

more sample efficient by reusing data. Either data is collected by the agent or from an

outside source such as a human expert or another conventional controller. It can be

an advantage especially in environments that requires a lot of compute or longer time

between time steps, since the reuse of data reduces the amount of samples needed to

train the agent, even though the amount of gradient updates might be more than with

on-policy.

2.2.8 Model-based learning

Model-based algorithms rely on planning rather than primarily relying on learning from

experience. In reinforcement learning a model is an approximation of an Markov Deci-

sion Process, where the model approximates the state transitions Ra(s
′, s) and Pa(s

′, s)

to model the environment. The term planning in reinforcement learning is used for a

process that with the use of a model can either improve a policy or produce a policy

for interaction with the environment the model is based upon. Some examples of this is

dynamic programming and heuristic search.

19

Figure 2.8: Model-free learning and model-based learning

Inspired by DeepMind x UCL RL Lecture Series - Planning & models

The value function can be learned with experience both from the model and experience

directly from the environment. Experience in this context imply the interaction with the

environment and the consequences from it. This method is used very effectively in the

class of Dyna-Q algorithms, see figure 2.9. By using both experience from the model and

the environment less biases is experienced in the value function, avoiding biases from the

model.

Figure 2.9: Learning from both experience and model

Inspired by DeepMind x UCL RL Lecture Series - Planning & models

The main strengths of model-based learning is the efficient methods of learning a

model, usually traditional supervised or unsupervised machine learning, which does not

suffer from reinforcement learning’s problem of sparse signals and sample inefficiency.

Using the learned model to produce or improve a policy is cheaper than model-free

learning reduces the the amount of reward signals directly from the environment and can

20

https://www.youtube.com/watch?v=FKl8kM4finE&list=PLqYmG7hTraZDVH599EItlEWsUOsJbAodm&index=9
https://www.youtube.com/watch?v=FKl8kM4finE&list=PLqYmG7hTraZDVH599EItlEWsUOsJbAodm&index=9

learn more efficiently from the model. The main drawback of model-based reinforcement

learning is that there is now two sources of approximation, the value function and the

model. A previous obstacle in model-based reinforcement learning is that these methods

has not preformed well on environments where the rules were unknown to the model or

the environment was too complex to model easily[29]. In contrast environments such

as chess and go saw success with AlphaGo[32] and AlphaZero[33], both developed by

DeepMind, which used Monte Carlo Tree Search to plan ahead in combination with Q-

learning to out preform humans in both chess and go, but the model knew the rules of

the game. MuZero[29], also from DeepMind, managed to preform at a similar or better

level than previous reinforcement learning algorithms without knowing the rules of the

environment with a learned model.

The DreamerV2 used in this thesis has a world model trained from online and offline

data retrieved from the simulator, and the uses a latent space representation of the world

model to create internal simulations for training the Actor Critic for decision making,

similar to the model-based diagram 2.8.

2.2.9 Policy Gradients

Policy gradient methods the process revolves around mapping directly state to an action,

f(s) = a, instead of mapping state to a value as explained previously in this thesis, with

the value function v(s) = E(Gt|St = s). This mapping is done by learning a policy π

that is differentiable with respect to its parameters θ when producing a probability for

an action given the parameters and a state s. Policy gradient methods is expressed as:

π(a|s, θ) = Pr{At = a|St, θt = θ}[34] (2.13)

For the probability of action a taken at time t with state s at time t and parameter θ.

One advantage of policy gradients is that the optimal policy for a given environment

may be a stochastic policy with arbitrary probabilities. Such as environments where

the optimal policy is not deterministic, but stochastic. In this case most value function

based reinforcement learning method would never learn the optimal policy, whereas a

policy gradient method could learn an arbitrary probability. If the agent samples from a

distribution of the possible actions it can learn stochastic optimal policies. An example

of this could be bluffing in poker, where different states has different probabilities of how

good the different actions are, and doing a deterministic strategy would be easy for an

opponent to exploit.

21

Another advantage of policy gradient methods is that the rate of exploration is tied

to the probability distribution for the actions produced by the learned policy π. This ad-

vantage lets the agent explore when the possible actions is evaluated as equally good, and

when it learns that the best action is a given state it will decrease the exploration. Since

the agent is continuously updating the parameters, θ, and if the environment changes the

distribution will change and encourage more exploration again. This dynamic exploration

rate gives an elegant way of managing the exploration and exploitation problem where

the exploration will decrease when the agent finds trajectories with higher return, but

if the environment were to change and the previously good trajectories turned bad the

exploration rate would not be locked at a low rate such as with an ϵ− greedy policy with

a decreasing ϵ.

A final advantage of policy gradients is stronger convergence guarantees due to the

smooth changes of the policy’s probability distribution. A slight change in an ϵ− greedy

policy could lead to a complete shift in action probabilities since it is greedy with a

probability of 1 − ϵ, on the other hand a policy gradient gives smooth slight changes

therefore policy gradients have a stronger convergence guarantee[34](chapter 13.2).

The DreamerV2 utilises an actor critic to preform decision making. This is a policy

gradient method which uses an actor to produce a probability distribution for the action

given the state, and a critic which predicts the value of a given state. The actor and critic

is used in conjunction to train an agent. One update of the actor can be formulated as

such:

θt+1 = θt + α(Rt+1 + γv̂(St+1, w)− v̂(St, w))
∇π(At|St, θt)
π(At|St, θt)

(2.14)

Where v̂ is the approximate value function produced by the critic, and π is the parame-

terized policy produced by the actor. ∇π is the gradient of π with respect to the weight

parameters θ. α is the step size of the gradient ascent and At and St is the action and

state at time t. Two advantages of using a critic in conjunction with the actor are:

• Being able to solve continuous problems with only the next time step needed for

an update instead of an entire episode.

• Significantly reducing variance with the critic update, and thus speeding up

training.[34] Chapter 13.4

Actor critic is a policy gradient method that combines the best of approximating a policy

with the actor, using it’s advantages of learning stochastic policies and stronger conver-

gence guarantees due to the smooth changes of the policy’s probability distribution and

estimating the value function with the critic to significantly reduce both the variance and

training time.

22

2.2.10 World Models

The World Models as described in ”World Models”[11] takes inspiration from the human

mind to develop models for reinforcement learning where the human mind creates a

mental model based on abstractions to simplify the world we experience around us. ”The

image of the world around us, which we carry in our head, is just a model. Nobody in

his head imagines all the world, government or country. He has only selected concepts,

and relationships between them, and uses those to represent the real system.” (Forrester,

1971)[8] To mimic the human mind the David Ha and Jürgen Schmidhuber created an

agent that uses internal abstract representations for decision making.

The world model works differently from standard model-based reinforcement learning

whereby the state representation that the agent receives is not the state representation

from the environment, but a latent state representation from the world model. This

representation can be viewed as an abstraction of the input state combined with the

memory of previous states as it is the encoded state from the encoder, input, and the

hidden state, memory, from the recurrent neural network.

The agent model is composed of three parts: The Vision model, the Memory model

and the Controller model. The Vision model which is a variational autoencoder that

encodes the current observation from the environment to a latent vector z and after that

decodes it back to the same image. The Memory model is a Mixture Density Network

- Recurrent Neural Network and its role is to predict probability distributions of future

latent z vectors as P (zt+1|at, ht, zt). The Controller model is a single linear layer that

maps the latent state representation of the latent vector zt from the Vision model and

the hidden state ht from the Memory model to action at, see figure 2.10. The reason

for using a simple controller is the fact that the reward signal in reinforcement learning

can be sparse, and many agent may need large amounts of training, thus with a smaller

model this effort will be faster and require less resources. The goal is the to create a

representation of the environment in the latent state representation of sufficient quality,

enabling the simple single layer controller to be able to control the agent to a acceptable

degree.

23

Figure 2.10: Vision, memory and controller example from world models paper[11]

Picture directly from world models paper.

Listing 2.1: Pseudocode of episode rollout from world models paper[11]� �
1 def rollout (controller) :

2 """

3 env , rnn , vae are

4 global variables

5 """

6 obs = env . reset ()

7 h = rnn . initial_state ()

8 done = False

9 cumulative_reward = 0

10 while not done :

11 z = vae . encode (obs)

12 a = controller . action ([z , h])

13 obs , reward , done = env . step (a)

14 cumulative_reward += reward

15 h = rnn . forward ([a , z , h])

16 return cumulative_reward� �
The world model is trained by rolling out 10 000 episodes with random actions of the

CarRacing-v0[19] environment to initially train the world model. Since the controller is

limited in terms of number of parameters. Ha and Schmidhuber trained it by using a

evolutionary algorithm, CMA-ES, to optimize it according to the reward. The training

can then be viewed as these four sequential steps:

1. First collect 10 000 rollouts

2. Train Vision model to represent latent vector z

3. Train Memory model to predict zt + 1

4. Train Controller model to maximise return

24

The authors claim new state of the art results in this environment with this method.

One problem with this approach is that the agent might find a way to cheat the simu-

lation in the world model for an optimal strategy that does not translate into the real

environment.

World models offers two major strengths compared to more traditional reinforcement

learning. Faster training and higher quality results by utilising the better state represen-

tation with the latent state representation. In the ”World Models” paper they achieve

new state of the art results with just a simple single layer mapping in the CarRacing

environment. High efficiency is achieved by the more compact and information rich state

representation with the encoding and memory from the recurrent neural network. The

other advantage is using dreams to learn, in this paper the authors try to learn only inside

dreams of the agent. Where the world model simulates a dream environment and the

controller learns a policy inside this environment. This is how the DreamerV2 actor critic

is trained and has an advantage since the agent can train in parallel on the GPU. This is

faster than the interaction with the environment and decreases training time significantly.

The DreamerV2 agent utilizes a similar world model as described in this paper, but

trains its controller, an actor critic, entirely internally simulated in the world model.

This agent has instead of the Gaussian distribution often used in variational autoen-

coder, a world model where the recurrent neural network is a GRU and the latent state

representation is 32 categorical vectors.

Recently the University of Geneva released IRIS[20] a world model based reinforce-

ment learning agent that uses transformers[35] to model the environment to great extent.

With this model they managed state of the art performance beating MuZero[29] with

at the Atari 100k benchmark. Exhibiting that world models is sample efficient and

able to learn dynamic environments without prior knowledge of the rules. A use case

for this can be real life environments or simulated environment which can not be sped

up significantly to produce the needed hundreds of millions of time steps for training a

reinforcement learning agent.

2.3 Online and offline learning

In this chapter we aim to describe important characteristics of Online learning as well

as those of Offline learning by elaborating on their differences and how they are applied

25

in the field of machine learning. Further we will introduce the methods used later in

this thesis, such as a combination of offline and online data. Exploring the training of

the world model initially with offline data, and afterwards batching the data from the

environment to facilitate easier asynchronous training of the world model. Finally, we

will compare the use of online learning during deployment versus not learning during

deployment.

Online learning is learning from a continuous stream of data, at the moment the data

arrives, and in the case of online learning, the weight parameters is changing continuously

with the arrival of new data, where a shift in the distribution of data will lead to a shift

in the learned parameters or even the algorithm ”forgets” older information.

Figure 2.11: Example of online learning process

During offline learning precollected data is utilised to learn an algorithm, and it is

considered to be the most commonly used method of training in machine learning today.

26

Figure 2.12: Example of offline learning process

Both offline and online learning methods are applied in reinforcement learning while

online learning historically has been used the most frequently. The traditional way to

train an agent in reinforcement learning can be defined in three steps:

1. The agent interacts with the environment.

2. Receives a reward, and updates its value function.

3. Repeat until termination.

This process creates a continuous stream of data and updates to the agent. In this case

the improvement of the agent results in better episode trajectories, which facilitates faster

learning,

However, the use of offline learning has been explored in reinforcement learning, where

agents utilise pre-stored trajectories to update the parameters or learn a model of the

environment. There are a number of reasons to use either learning method, and one of

the strengths related to offline learning is computational efficiency. The ability to learn

without waiting for the arrival of new data, and executing training in batches significantly

improves the speed to learn an offline machine learning model compared to learning an

online machine learning model.

27

To develop a a simulation to interact with an agent can be both difficult and time

consuming and therefore expensive, since it will need large efforts in developing an accu-

rate simulation of the task that is to be learned. No need for simulation of the training

environment is an additional strength of offline learning in context of reinforcement learn-

ing. Errors or mistakes in the execution of the simulation can lead to learning the wrong

parameters thus causing faulty results when using the trained machine learning model,

or reinforcement learning agent, in a real world setting. When only training from a data

set collected from the real world, some of these issues are avoided, even though the data

might be misrepresenting the reality similarly to a simulation.

One solution to avoid such misrepresentations is to train a machine learning model

from real world interaction, where a machine learns from real world input and conse-

quences of the machine’s results and decisions directly. A considerable drawback of this

method is to develop a machine, at a large cost, and running the risk of damaging the

machine during operations and finally having additional repair costs. Developing a ma-

chine often ends up being more expensive and time-consuming, and therefore less feasible

than a simulation or a stored data set. A valuable feature of offline data is that it can be

reused both by the machine learning model to improve its performance, and also by other

machine learning models to enable a reduced cost of developing new machine learning

models.

The possibility to collect data of wanted behaviour, similar to human behaviour,

serves as a good starting point of both inexpensive data and acceptable quality results

to facilitate faster learning. Rather than the agent learning good behaviour by trial and

error.

The main argument for choosing online learning, even though it is more expensive,

harder to implement, more complex and computationally more inefficient, is the ability

to adapt and evolve with the environment that can help future proof a system. The

spam filter in an email system, can adapt without manual updates to counteract new

spam emails, and similarly a stock trading robot can adapt to new patterns in the stock

market.

By collecting data in batches and perform regular updates to the system, it is still

possible to benefit from an evolving system that adapts to changes, but still maintaining

a lot of the benefits of having a batched of data to learn from. When combining online

and offline learning some benefits from both methods of learning are obtained, without

all the detriments of both offline and online learning.

28

Finally, when comparing offline and online learning we find that they are not mutually

exclusive. It is possible to create a system that trains agent, or a machine learning

model, on pre-collected data and afterwards deploy it as an online system that learns

from streamed data as it arrives.

In reinforcement learning often the method is to train in an online fashion, but when

evaluating a reinforcement learning agent it is done without doing updates to the agent.

In this thesis the difference between updating the algorithm’s weight parameters and not

updating it to see its ability to adapt, including a comparison of online learning during

evaluation, and without updating the weight parameters during evaluation is explored.

2.4 OpenLab

The information about drilling in this chapter is mainly gathered from the Store Norske

Leksikon article on petroleum drilling[10]. Modern deep well drilling operations utilize

advanced techniques to improve operational efficiency, such as new drill bit variants to

improve the rate of penetration (ROP) and new logging techniques to maneuver the drill

string to the desired position. Data logging is applied to measure the properties of the

rock while drilling, a technique that is called Logging While Drilling (LWD).

To drill a deep well for CO2 or water injection purposes, or oil and natural gas

extraction a rotating drill bit is mounted on the top end of the drill string, and it consists

of a number of of steel pipes that is joined together. The drill string is rotated by the top

drive electric motor, located on the drilling rig. To reduce the drill bit’s friction against

the walls of the well and at the same time balance the down hole pressure, drilling mud

is injected into the bore hole.

This pressure balance is important to control in order to avoid that the down hole

pressure is too low and resulting in a ”drill kick” which is happening when formation

fluids leak out into the well, and in worst case scenario leading to a blowout. If the

down hole pressure is too high, the drill mud is pressed from the bore hole and into

the rock formation and is eventually lost. In the case of oil drilling this can destroy

the production capabilities of the reservoir. The down hole pressure is controlled by

continuously monitoring of the volume of the fluids that is in circulation. If there is a

high level in the mud tank on-board the drilling rig, this indicates that formation fluids

has come into the drilling mud. A low level in the mud tank indicates leakage of drilling

mud from the bore hole to the formations.

29

OpenLab[28] is a high fidelity physics based simulator for web enabled deep well

drilling simulation developed by Drilling & Well Modeling group at NORCE in collab-

oration with the University of Stavanger. The purpose is to provide a simulation en-

vironment within drilling and well technology for research, education and innovation.

OpenLab’s core technology is WeMod that is widely recognized as a thoroughly tested

well model as it has widely been used by both industry and by universities to simulate

drilling operation based on the well model they developed.

Figure 2.13: OpenLab simulator GUI.

Historically model-based reinforcement learning has struggled with dynamic environ-

ments where the rules of the environment were unknown to the model. In this thesis

a modern approach using the complex modeling capabilities of the DreamerV2 agent’s

world model to attempt to model the environment of OpenLab, where the DreamerV2

will be both evaluated on its modeling capabilities and its control capabilities.

30

Chapter 3

Methodology and Experiment

In this chapter the experiment and its setup is presented, beginning with a detailed de-

scription of the DreamerV2, which is the reinforcement learning agent used in the thesis.

To determine if there are correlations between different parameters and the adjustable set

points parameters in the OpenLab simulator, and most importantly the relation with the

down hole pressure, a data analysis of different simulated well trajectories is described.

Next, both the implementation of OpenLab as a reinforcement learning environment, and

the configuration of both OpenLab and the DreamerV2 agent is specified. Afterwards an

explanation of how the DreamerV2 agent was trained is given. Finally the design of the

evaluation of the world model’s ability to create a representative model of the environ-

ment, the DreamerV2 agent’s ability to control the flow rate in OpenLab, including an

online evaluation of continuous updates, to explore if online learning with the DeamerV2

can be an appropriate method to learn new dynamics in the case of new data of previously

unknown events.

3.1 DreamerV2

In this chapter The DreamerV2 agent proposed in ”Mastering Atari with Discrete World

models”[14] is introduced and discussed. A short analysis of the computation needed to

train the DreamerV2 agent compared to other modern agents. The different components

of the agent such as the world model and the actor critic as well as a description of how the

training of these components are preformed. Furthermore we are looking at some of the

results from the original DreamerV2 paper and what benchmarks the DreamerV2 agent

31

preformed well on together with a discussion of the reasons behind these results. Finally

an overview of PyDreamer[24], an implementation of the DreamerV2 in PyTorch[25]

developed by Jurgis Pasukonis with focus on the slight differences between DreamerV2

and PyDreamer.

DreamerV2 is an agent that utilises a world model to generalize past experience and

imagine new trajectories. It was developed by Hafner, Lillicrap, Norouzi and Ba[14].

The agent’s world model encodes a state representation to a discrete latent space. The

encoding of the state representation to a latent space enables simulation of 2500 latent

trajectories in parallel[14]. This efficiency is essential to achieve state of the art perfor-

mance on single GPU agents, and it is the first single GPU agent with world modelling

that achieves human-level performance [14] on the 200M Atari benchmark.

3.1.1 Computational analysis

The DreamerV2 model’s efficiency derives from its ability to simulate imagination Markov

Decision Process to train quickly. The original implementation of the DreamerV2[14]

used less than 10 days on a single nvidia V100 GPU, to train 200 million frames on

the Atari benchmark. The PyDreamer implementation achieved similar results on an

nvidia T4 in 10 days. This is because the DreamerV2’s ability to simulate up to 2500

trajectories in parallel, which enables the DreamerV2 to train quickly without needing

to compute the environment. This enables the DreamerV2 to train at a similar speed

as IQN, another single GPU state of the art model-free reinforcement learning agent. In

this thesis the ability to predict trajectories to train the actor critic is a major advantage,

because the OpenLab simulator only produces 5 time steps per second, resulting in a long

training time with a model-free agent. The actual parameter size of the implementation

is 22 million parameters which is about half of MuZero’s 40 million, however the simpler

model of DreamerV2, training in an imagined Markov Decision Process and not utilising

as complex planning as MuZero makes it possible to utilise a consumer grade GPU. For

comparison in the ”Mastering Atari with Discrete World models” paper the authors claim

that it will take 80 days to train MuZero on a single GPU for an Atari agent[14].

Algorithm Trainable Parameters Atari Frames Accelerator Days
DreamerV2 22M 200M 10
SimPLe 74M 4M 40
MuZero 40M 20B 80
MuZero Reanalyze 40M 200M 80

Table 3.1: Computation comparison of model-based reinforcement learning agents, values
from DreamerV2 paper [14].

32

3.1.2 Components of DreamerV2

World model

TheWorld model is composed of several different components that work together to create

a model of the environment. These components are the Recurrent model, Representation

model, Transition predictor, Image predictor, Reward predictor and Discount predictor.

In the following chapter each part of this definition 3.1 will be discussed to give insight

in how the DreamerV2 world model functions and how it differs from the original World

Models paper[11].

Recurrent model : ht = fϕ(ht−1, zt−1, at−1)

Representation model : zt ∼ qϕ(zt|ht, xt)

Transition predictor : ẑt ∼ pϕ(ẑt|ht)

Image predictor : x̂t ∼ pϕ(x̂t|ht, zt)

Reward predictor : r̂t ∼ pϕ(r̂t|ht, zt)

Discount predictor : γ̂t ∼ pϕ(γ̂t|ht, zt)

(3.1)

The Representation model and Image predictor is what would correspond to the

encoder decoder component from the variational autoencoder in the original World models

paper[11] as discussed in chapter 2.2.10. The Representation model, which can be viewed

as the encoder in a variational autoencoder, samples a representation zt from a probability

conditioned on the input state xt and the hidden state ht. The posterior state zt which

is used to make decisions with the actor critic. This latent state is comprised of a vector

with several categorical variables to give a state representation better than a Gaussian

distribution could as can be seen in figure 3.1.

Figure 3.1: Gaussian and categorical distributions in latent space, image from DreamerV2
blog[15]

DreamerV2 Blog

33

https://ai.googleblog.com/2021/02/mastering-atari-with-discrete-world.html

In the DreamerV2 paper the categorical latent variables outperformed traditional

Gaussian latent variables in 42 Atari games, tied in 5 and were worse in 8. The authors

propose four hypotheses that may be the cause of this improvement[14]:

• The categorical prior can better fit the aggregate posterior than a Gaussian prior

could match a mixture of Gaussion posteriors. Figure 3.1 for illustration from

Hafner’s blog about the DreamerV2[15].

• Since the categorical variables are sparse this could help with generalization of the

latent state space.[14]

• The use of straight-through gradients in combination with the categorical variables

might be easier, and avoid vanishing or exploding gradients. Since ”the straight-

through gradient estimator ignores a term that would otherwise scale the gradi-

ent.”(Hafner, Lillicrap, Norouzi, Ba)[14]

• The fourth hypothesis considers that the categorical variables might have better

inductive bias in the Atari games. This is not relevant in this thesis since it is

neither image input or the same mechanics as a video game.

The Image predictor, which can be viewed as the decoder in a variational autoencoder,

predicts the original input state from the hidden state ht and posterior state zt with the

mean of a diagonal Gaussian likelihood with unit variance as the output distribution.

This is a vital part of the loss function to learn high quality representations of the input

state xt. It can also be used to visualize the states from a imagined trajectory.

In the case of simulated well drilling the input state is not an image, but a vector

describing the current state values of both the drill system and the physical parameters

at the bottom of the well. In this case linear layers will be used instead of convolutions.

The Recurrent model calculates the hidden state ht from the previous hidden state

ht−1, action at−1 and posterior state zt−1. The hidden state representation ht is vital to

every other prediction of the world model as can be seen in the definition 3.1. The hidden

state is calculated from the previous hidden and latent state, and the action from that

time step at, this is done with the use of a Gated Recurrent Unit[4], which uses a reset

gate and update gate avoid the problem of vanishing and exploding gradients. The extra

calculation of the forget gate is defined in equation 3.2 in a general setting.

zt = σ(Wz xt + Uz h(t−1) + bz)

rt = σ(Wr xt + Ur h(t−1) + br)

ĥt = tanh(Wh xt + rt ∗ Uh h(t−1) + bz)

ht = zt ∗ h(t−1) + (1− zt) ∗ ĥt

(3.2)

34

Where r is the reset gate which allows the hidden state to drop any irrelevant information

and create a more compact hidden state[4]. The update gate z controls how much of the

previous hidden state ht−1 is included in the new hidden state ht[4]. The candidate hidden

state ĥt is dependent on the activation of the reset gate, which allows the possibility of

ignoring new irrelevant information. W and U is weight matrices and b is the bias term,

and finally ∗ is the element-wise product, σ is the sigmoid function and tanh is the

hyperbolic tangent function.

The transition predictor tries to predict zt only given the hidden state ht, and then

predicts the prior state ẑt, this is used to imagine trajectories without getting input for

each state, the use of these imagined trajectories for training the actor critic will be

elaborated on in 3.1.3.

The Reward and Discount predictor predicts the reward and discount from a given

hidden state and latent state. The reward prediction r̂t is sampled from the output of

the Reward predictor which is a univariate Gaussian distribution with unit variance. The

Discount predictor outputs a Bernoulli likelihood to sample the discount prediction for

each time step. The discount γ̂ used in the DreamerV2 is predicted the likelihood of an

episode ending when learning behaviours from model predictions.

Figure 3.2: Training the world model

Inspired by DreamerV2 illustrations[14]

The figure 3.2 is an illustration of how the world model is trained. Where given an

input xt, the world model uses the representation model to sample zt with the history

ht from the recurrent model and the input xt, illustrated with dark blue symbols for

the representation model, purple symbols for recurrent model and green symbols for the

35

posterior zt. Similarly the transition model predicts the prior ẑt given ht, also noted

in green. The recurrent model, in purple symbols, calculates ht−1 from the action at−1,

represented with red symbols and the previous hidden state ht−1. Finally the image

predictor and reward predictor is on the top row in light blue and yellow predicting the

input x̂t and reward r̂t. The discount predictor is not included in the illustration.

Actor Critic

As previously mentioned the DreamerV2 utilises an actor critic as the decision making

component in the agent. How an actor critic works in general was introduced in chapter

2.2.9. The next paragraphs details the actor critic utilised in the DreamerV2 agent.

The actor is a artificial neural network composed of linear layers with 1 million weight

parameters that gives a stochastic action at that aims to maximize future rewards, since

receiving its input from the world model’s recurrent neural network the input state is

Markovian[14]. Therefore both the actor and the critic does not need to condition previ-

ous states. The loss function of the actor utilises the Reinforce gradients [37], which has

high variance, leveraged with straight-through gradients [2].

Listing 3.1: Straight-through gradients[2], pseudocode from DreamerV2 paper[14]� �
1 # Draw sample for latent state , with no gradient because gradients are removed with

sampling

2 sample = one_hot (draw (logits))

3 # Store the wanted gradient

4 probabilities = softmax (logits)

5 # Add the wanted gradient to the sample , but remove the probabilities

6 sample = sample + probabilites - stop_grad (probabilites)� �
The critic is seeking to predict expected return, given a state, and it is evaluating the

value of being in this state by estimating the value functions, i.e. how much return is

expected in a given state s. The DreamerV2 critic uses TD(λ) to learn to predict the

expected return from a given state. The actor critic is then defined as:

Actor: ât ∼ pψ(ât|ẑt)

Critic: vE(ẑt) ≈ Epϕpψ

[∑
τ≥t

γ̂τ−t − r̂τ

]
(3.3)

36

3.1.3 Training

The training of the world model is executed on a data set of past experiences. This

data set contains the previous trajectories of the DreamerV2 and for each data point in

these trajectories there is the state observation xt, the action at, rewards rt and discount

factors γt. The discount factors are the fixed hyper parameter given in the configuration

of the model, and in this thesis γ = 0.995 is chosen, but if γt is the terminal step the

discount factor is equal to 0 to indicate the end of and episode. From these stored

trajectories it is created batches of 50 truncated trajectories with a length 50 time steps.

Each batch used for updating the world model has the dimensions of (50, 50, (x, a, r, γ)).

These truncated trajectories are uniformly randomly sampled with the start index in

the interval [0, episodelength − 50] to never exceed the episode length in the truncated

trajectory.

Figure 3.3: Training the DreamerV2 agent

L(ϕ) = Eqϕ(z1:T |a1:T ,x1:T)

[T∑
t=1

− ln pϕ(xt|ht, zt)− ln pϕ(rt|ht, zt)− ln pϕ(γt|ht, zt)

+ β KL[qϕ(zt|ht, xt)||pϕ(ẑt|ht)]
] (3.4)

The first three components of loss function of the world model is:

37

• The log loss of the image predictor −ln pϕ(xt|ht, zt) , in this thesis it is not an image,

but a vector observation.

• The reward log loss −ln pϕ(rt|ht, zt).
• The discount log loss −ln pϕ(γt|ht, zt).

The final part of the loss function is the KL balancing loss of z and ẑ. The Kullback-

Leibler divergence is a measurement of the difference between two probability distribu-

tions. More specifically in machine learning the KL divergence is used to calculate the

amount of information lost when using the prior distribution, ẑ, compared to the poste-

rior distribution, z. KL balancing is a variation utilised in the DreamerV2’s loss function

by applying a different learning rate to the approximate posterior distribution and prior

distribution. The reasoning for this different learning rate is to avoid regularizing the

approximate posterior to a poorly trained prior, and the learning rate for the prior is

then α = 0.8 and 1− α for the approximate posterior. This prioritizes the prior learning

instead of posterior entropy which leads to the prior better approximating the aggregate

posterior[14].

Since the transition predictor, see 3.1, can predict the next latent state representation

ẑt+1 given the hidden state ht+1, and the recurrent model calculates the hidden state

given the previous hidden state, latent state representation and action, ht, zt, at, then it

is possible to simulate an ”imagination Markov Decision Process” inside the world model

without the need for encoding new state representations or waiting for the environment

to update. The DreamerV2 is able to simulate 2500 latent trajectories on a single GPU

to facilitate faster training inside the world model compared to traditional training of

agent. The output of the transition predictor is a sequence of latent states at length

of the imagination horizon H = 15. Afterwards the reward predictor pϕ(r̂t|ẑt) predicts

the reward for each imagined time step, and the discount predictor pϕ(γ̂t|ẑt) predicts

a sequence of discounts, if the final time step is a terminal one. See figure 3.4 for an

illustration.

38

Figure 3.4: Training the Actor Critic with imgaination Markov Decision Process

Inspired by DreamerV2 illustrations[14]

At each time step of the imagination Markov Decision Process the critic is approxi-

mating the value of the expected return, that is used to update the actor with the loss

function of the actor critic.

The loss function of the critic is defined as:

L(E) .
= Epϕpψ

[H−1∑
t=1

1

2

(
vE(ẑt)− sg(V λ

t)

)2]
(3.5)

The loss function is optimized with the Adam optimizer[18], with respect to the critic

parameters E , where sg is the stop gradient function. V λ
t is the λ-target[34], the λ-target

is the weighted average of the n-step returns. In the ”Mastering Atari with Discrete

World Models”[14] the λ value is set to 0.95 to encourage long horizon targets. The λ

target can be defined as:

V λ
t

.
= r̂t + γ̂t

(1− λ)vE(ẑt+1) + λV λ
t+1, if t < H

vE(ẑH), if t = H
(3.6)

L(E) .
= Epϕpψ

[H−1∑
t=1

(−ρln pψ(ât|ẑt) sg(V λ
t − vE(ẑt)) − (1− ρ)V λ

t − ηH[a|ẑt])
]

(3.7)

The actor loss comprises of three main components. The Reinforce gradient[37]

(−ρln pψ(ât|ẑt) sg(V λ
t −vE(ẑt)), the straight-through gradients[2] backpropagated through

39

the dynamics of the sampled actions and state sequences, and finally the entropy

regularizer[22] ηH[a|ẑt].

The Reinforce gradient is weighted with the ρ hyperparameter against the dynamics

backpropagation straight through gradient 1 − ρ. In the episodic Atari tasks the Re-

inforce gradient preformed better and was weighted higher, while in continuous tasks

the dynamics backpropagation straight through gradient preformed better in the bench-

marks evaluated in the DreamerV2 paper[14]. The η hyperparameter weights the entropy

regularizer as proposed in the ”Asynchronous Methods for Deep Learning”[22] to help

actor critic methods to avoid favoring actions or action sequences, and therefore avoiding

local maxima. While actor critic method offers an elegant solution on how to balance

exploration and exploitation they can often over exploit good actions and get stuck in

local maxima. Therefore the entropy regularizer utilised to encourage exploration of the

environment.

3.1.4 Results

From the paper ”Mastering Atari with Discrete World models”[14] the Atari 200M bench-

marks resulted in the DreamerV2 claiming better performance than state of the art single

GPU agents like Rainbow[16], IQN[5] and SimPLe[17]. In the paper ”Deep Reinforcement

Learning at the Edge of the Statistical Precipice”[1] the authors propose new evaluation

methods for reinforcement learning benchmarks such as the Arcade Learning Environ-

ment. The motivation for this paper was to propose a more standardized evaluation of

new methods on established benchmarks to try to remove some of the statistical uncer-

tainty of having few training runs to evaluate since modern reinforcement learning agent

has become computationally expensive to train. In this paper m-IQN [36] preforms sim-

ilarly to the DreamerV2 agent, and these two agents preform better than other agents in

most tasks, where only single GPU agents were evaluated, confirming the performance

of the DreamerV2 agent. However the DreamerV2 agent has a higher variance in these

result compared to the other agents evaluated.

Strengths and weaknesses

The benchmarks which were evaluated in the DreamerV2 paper[14] the DreamerV2 scores

high results on visually complex tasks were there are a large amount of relevant infor-

mation in the pixels. An interesting example of this is the game James Bond, where

40

41

(a) Performance profile on Atari 200M benchmark.[1]

(b) Sample efficiency in Atari 200M
benchmark.[1]

(c) Relative performance of Dream-
erV2 on Atari 200M.[14]

Figure 3.5: Figure a and b is the results reported from the ”Deep Reinforcement Learning
at the Edge of the Statistical Precipice”[1] paper, and figure c is the performance reported
from ”Mastering Atari with Discrete World models”[14].

the DreamerV2 manages to exploit the game to a score over 10 times better than IQN,

slightly worse than the human world record, but over 130 times higher score than the

human gamer mark.

The DreamerV2 gets low results on Video Pinball, the authors, Hafner, Lillicrap,

Norouzi, Ba[14] , hypothesize it is because of all the visual noise in the game and the

important information, the ball, is only one pixel. So the World model struggles to create

a meaningful latent representation.

The most important strength of the DreamerV2 for this thesis project is the combi-

nation of high level performance, low required computation, and the advantages of the

world model. The world model training directory can be prefilled with offline data to

facilitate faster training of the world model, to enable the world model to learn a good

representation of the environment without waiting on data from the simulator. Another

advantage is the imagination Markov Decision Process which gives the ability to train

the actor critic independent of the speed of the environment, since it is trained by the

imagined trajectories as illustrated in figure 3.4. Since OpenLab is a time consuming

simulation, that we do not have the access to significantly speed up, and is being commu-

nicated over the internet, the DreamerV2’s world model’s training and sample efficiency

is a major advantage.

3.1.5 PyDreamer

PyDreamer[24] is an implementation of the DreamerV2 agent developed by Jurgis Pa-

sukonis and is utilised in this thesis. The main reasons for using the PyDreamer instead

of the original DreamerV2 was the use of PyTorch and the readability of the PyDreamer

project structure.

There are two main differences in the PyDreamer implementation compared to the

original DreamerV2, that is the PyDreamer has a Advantage Actor Critic (A2C) instead

of the standard actor critic and instead of TD-λ the critic calculates the Generalized

Advantage Estimation. The benchmark results of both implementation are comparable.

A2C is a variant of the Asynchronous Advantage Actor Critic (A3C) from the pa-

per ”Asynchronous methods for deep reinforcement learning”[22]. The critic in A2C

approximates the advantage formula instead of the value function, in the PyDreamer

implementation the critic approximates the generalized advantage estimation.

42

Generalized Advantage Estimation[30] is an alternative function for calculating the

value of a state. The advantage function for policy π given state st and action at, is

defined as:

Aπ(st, at) = Qπ(st, at)− V π(st) (3.8)

Where Q(s, a) is the action-value function and V (s, a) is the value function. The advan-

tage function calculates how much better it is to preform action at compared to the other

possible actions in this state. With policy gradients the result has a lower variance than

other value based functions because the gradient step should increase the most in the

direction of the better than average actions in a state.

The general advantage estimation formula is then an attempt to approximate the

actual advantage function with the lowest possible variance. The result from the Gen-

eralized Advantage Estimation paper is equation 3.9 where the γ discount is used as a

parameter to reduce variance and the λ is used as a decay rate similarly to the TD(λ).

This gives an estimation of the advantage function instead of the value function or ac-

tion value function, which compared to the other two functions the advantage function

introduces tolerable bias and lower variance.

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l

δVt = −V (st) + rt + γV (st+1)

(3.9)

The DreamerV2 agent was chosen for this thesis because of the good results on pre-

vious benchmarks, the possibility of training on a singe GPU and the interesting concept

of world models. To explore if world models are capable in a dynamic physics based

environment, such as the high-fidelity drilling simulator OpenLab.

3.2 Data analysis

In this section investigations are carried out on what parameters from the OpenLab

simulator that correlates with the down hole pressure, to identify what parameters is

affecting this pressure and how it can be expected to behave during a given simulation.

The information acquired from the analysis is used to evaluate how to design the reward

function of the environment and how to prepare the data for efficient training of the

agent.

43

3.2.1 Analysis of collected simulations

The different simulations used to prefill the training directory will be presented in this

chapter. The simulations will be visualized, the different minimum and maximum values

will be extracted to create a function to normalize future values. These precollected sim-

ulations with random set points for the adjustable OpenLab parameters will be referred

to as the precollected data set and the state of a single time step is then defined as the

parameters from the precollected data set excluding the flow rate parameter. The set

points are parameters that is possible to change in the OpenLab simulator, for this thesis

flow rate, top of string velocity and surface RPM are the set point values which were

looked into.

Figure 3.6: Simulation(1) with random set points parameters.

In the first precollected simulation shown in figure 3.6, the flow rate oscillate randomly

with large amplitudes, which can be interpreted to have a large correlation with the

pressure down hole, see figure 3.7. This observation indicates of how the flow rate clearly

impacts the down hole pressure, thus increases the probability of keeping the pressure

within a desired range. The reason for the random set point values are to encourage

44

different transitions for the world model to learn, as performed in previous training of

world models[14, 11].

Figure 3.7: Correlation matrix of simulation 3.6

In the correlation matrix 3.7 the attribute with the highest correlation with the pres-

sure is bit depth. This is an observation that is reoccurring in all simulations in this

thesis, and is caused by the fact that all the wells used in the precollected data set and

training simulation were inclined wells. In other well configurations this value might not

correlate in the same manner. Another high correlation in the same simulation is the

surface torque, but this correlation do not appear in every simulation, see figure 3.11,

which will be discussed in the paragraph about figure 3.10.

45

Figure 3.8: Simulation(2) data with random values for the set point parameters, with
intervals between change.

In the second simulation from the precollected data set, figure 3.8, the set point values

are again chosen at random, but with a longer period of time between each new value,

about 100 time steps between each change. In this simulation all correlations with the

down hole pressure are reduced significantly, with the exception of the bit depth. The

reason for this reduction in correlation could origin from different parameters canceling

each other out in such a way that they nullify the correlation with pressure. For example

a decrease in flow rate causes a decrease in down hole pressure and an increase in surface

torque resulting in increased down hole pressure, but the actual down hole pressure stays

the same.

46

Figure 3.9: Correlation matrix of simulation 3.8

The final precollected simulation, figure 3.10, is similar looking to the previous one,

figure 3.8, but this simulation 3.10 has more time steps, over a longer duration, and there-

fore goes to the depth of 2600m, compared to 2560m in the previous simulation. However

the correlation between the different parameters is different. The larger surface torque

and a higher Hook load of almost double the negative weight constitutes an important

difference from the previous precollected simulations, shown in figures 3.6 and 3.8. The

hook load is the total force pulling down on the hook[23]. The correlation matrix in

figure 3.11 is from the final precollected simulation results in surface torque having no

correlation with the down hole pressure. In this simulation only the flow rate and the

Rate of penetration(ROP) has any significant correlation, in addition to the bit depth as

mentioned in the previous paragraph.

47

Figure 3.10: Simulation(3) with random set points for flow rate, with intervals between
change

A possible reason for the low correlation between down hole pressure and adjustable

set points parameters might be even though a set point parameter can cause a change in

down hole pressure other parameters of situations can also affect the pressure. Looking

at a single simulation will not illustrate the actual correlations. Further in chapter 3.2.2

it will be looked upon when all but one adjustable set points parameters is kept constant,

and the down hole pressure values is always varying as the pressure is also influenced by

other factors. For example if the flow rate has a constant value, while other parameters

are affecting the pressure there would be low correlation between the flow rate and down

hole pressure. In the precollected simulation 3.10 the surface torque is varying, and in a

larger range than previously, yet it has close to no correlation, however this observation

contradicts the previous two observations and causing uncertainty of how strongly the

surface torque actually is correlated to the pressure.

48

Figure 3.11: Correlation matrix of simulation 3.10

In these previously shown simulations, visualised in figures 3.6 to 3.11, the flow rate

and rate of penetration retains at least some correlation with the down hole pressure.

This establishes the basis for the possible control of the down hole pressure given control

of the flow rate. There are other adjustable parameters in the OpenLab simulator which

are not present in the precollected data set, but some of these will be included in the

next analysis of short simulations where one of the adjustable parameters is adjusted, and

the other parameters are kept constant. Another reason for performing this additional

analysis is to remove some of the noise present in the precollected data set and only

evaluate the relationship between chosen parameters and the down hole pressure.

The precollected data set and future data would need to be normalized in the range

[0, 1] to represent the values with half-precision floating-point number. A further advan-

tage of this exercise is to avoid one feature from having a large effect on the result due

to a larger value by measurement unit. For example the down hole pressure input values

in the precollected data of ca 3.6e7 Pa and the rate of penetration (ROP) with values

around 0.015m/s. In the next paragraph it is shown the method for how the data was

normalized to achieve a range of values between 0 and 1 [0, 1], while taking into account

the uncertainty of future simulations with possible larger or smaller values.

49

Data preparation

Based on the minimum and maximum values for each value in the offline data set from

OpenLab a normalisation step for use in the environment was created. We added a 5%

margin to each end of the normalisation range to account for the possibility of encoun-

tering higher or lower values than what existed in the offline data set. The normalisation

formula can be expressed as seen in 3.10 for each value category c:

valuec = (valuec −minc ∗ 0.95)/(maxc ∗ 1.05−minc ∗ 0.95) (3.10)

The figure 3.12 is the normalized version of the same simulation as 3.8.

Figure 3.12: Simulation(2) with normalized values

The bit depth was the attribute with the highest correlation to the down hole pressure

through all simulations. Although not always the case, in this thesis there are only

inclined wells and therefore this correlation can be used to create a function for artificial

pressure goals for the agent to reach during training.

50

Min Max
Bit depth 2278.257m 2736.899m
ROP 0.0m/s 0.0291667m/s
Flow rate 0.0m3/s 0.0437500m3/s
Hook load -157039.280kg 116157.530kg
Surface torque 0.0mN 176471.646mN
Down hole pressure 31907764.0Pa 39623791.2Pa

Table 3.2: Minimum and maximum values for normalising future data

Initially a linear regression analysis to formulate expected pressure at a given depth

was carried out. With the regression seen in figure 3.13 the expected increase in down

hole pressure for each meter is 16200 Pa. With this information a function to create

artificial pressure goals that increase following the depth and actual down hole pressure

can be formulated, thus avoiding giving unreachable pressure goals to the agent.

Figure 3.13: Linear regression of down hole pressure given bit depth

3.2.2 Analysis of isolated parameters

In this chapter short simulations where only one of the adjustable set point parameters

from OpenLab is changed will be analysed, to see how it affects the down hole pressure.

The goal is to analyse how much flow rate, surface RPM and top of string velocity affects

the down hole pressure when all other parameters is kept constant. One time step is one

second in real time and in all the visualisations the different values are normalized.

The first simulation only the flow rate was adjusted in a simple pattern, where the

flow rate stayed at 0l/min for 25 time steps to let the simulation stabilise. While the

other set point parameters were set to:

51

• Top of string velocity: 0.7

• Surface RPM: 120 RPM

After the simulation stabilised the flow rate was changed to 2500l/min, then after around

100 time steps the flow rate was reduced back to 0l/min. This is illustrated in figure

3.14.

Figure 3.14: Simulation with only flow rate adjusted

In figure 3.15 the data starts at time step 20 to visualise the correlation between flow

rate and down hole pressure in the case after the drill has started and the pressure has

stabilised after initialisation. In this shortened view of the simulation the correlation is

almost almost 1.

52

Figure 3.15: Simulation with only flow rate adjusted, shortened

Starting at time step 20 to ignore initialisation of simulation.

In the simulation shown in the figures 3.14 and 3.15 the correlation from the anal-

ysis of the precollected data still exists. Since the noise of the other parameters were

largely removed the correlation is even larger, and with the shortened example having a

correlation of 0.97 we can conclude that the down hole pressure is highly affected by the

flow rate. However as can be seen in both the previous analysis and the full view of this

simulation 3.14 the pressure can also be affected by other variables.

From the next simulation the top of string velocity will be evaluated, and similarly to

the last simulation the other parameters will be kept constant, as described in 3.2.2 and

the top of string velocity will be updated manually. The flow rate in this simulation is

set to 2500l/min and the top of string velocity is 0m/s until the simulation is stable, and

then is updated to 0.7m/s. In figure 3.16 a similar pattern as in the figure 3.14 and 3.15

is seen where the top of string velocity is highly correlated with the down hole pressure.

53

Figure 3.16: Simulation with only top of string velocity adjusted

In figure 3.17 the visualisation starts at time step 50 and it is possible to see that

without the influence of the flow rate the top of string velocity is also correlated with the

down hole pressure with a factor of > 0.9.

Figure 3.17: Simulation with only top of string velocity adjusted, shortened

Starting at time step 50 to ignore initialisation of simulation.

The simulation focusing on the top of string velocity, figures 3.16 and 3.17 exhibits

similar results to the simulation focusing on flow rate. The top of string velocity can

54

then be used as a tool in designing the environment to make it more unpredictable for

the agent. It might be more difficult to design an environment with focus on top of

string velocity as an action, because top of string velocity is the amount of speed in m/s

that the drill string is pushed downwards. Controlling this set point value would lead to

spikes in pressure rather than a sustained value to keep within range of, but it could be

an element to add to the environment.

The final parameter to be viewed is the surface RPM and surface torque which in the

analysis of the precollected data had a high correlation with the down hole pressure in

the two first episodes shown, figures 3.7 and 3.9. However the third simulation 3.11 had

close to none correlation with the down hole pressure. In the analysis of this parameter

the goal is to evaluate the surface RPM correlation with the down hole pressure and how

much the surface RPM affects this pressure. Similar to the two previous simulations the

other two set points is kept constant, however the flow rate is set to 1500l/min. The

surface RPM is first raised to 120RPM then to 0RPM and to 200RPM , which can be

seen as the two high points in the orange graph.

Figure 3.18: Simulation with only surface RPM adjusted

In the precollected data set it was only logged the surface torque, but the surface

RPM is related to the surface torque, as the RPM is the rotational speed of the top

drive and surface torque is the torque required to rotate the entire drill string and drill

bit. In the correlation matrix 3.18 the surface RPM and surface torque is correlated.

However neither surface torque or surface RPM is heavily correlated with the bottom

55

hole pressure, as can be seen in the both the correlation matrix and line graph in figure

3.18.

Figure 3.19: Simulation with only surface RPM adjusted, shortened

Starting at time step 20 to ignore initialisation of simulation.

The simulation from time step 20 display a large correlation between surface RPM

and down hole pressure, figure 3.19. When all other values are stable the surface RPM

manages to increase and decrease the pressure, but as seen in the figure 3.18 not in a

substantial amount compared to the two other adjustable set points. For reference the

real value difference between the maximum and minimum pressure in figure 3.19 was

231332 Pa, which is insignificant compared to the values flow rate and top of string

velocity managed to influence the pressure.

In this analysis it has been observed that all three adjustable set points can affect

the down hole pressure, but in differing degree. The surface RPM while in isolation has

a high correlation with the down hole pressure does not affect the pressure in a large

numeric amount compared to the other two parameters. The flow rate and top of string

velocity can both affect the pressure in a significant amount, but the top of string velocity

has more difficult mechanics to take into account and therefore would be more difficult to

use to control the down hole pressure. An important note to make is that in this analysis

we have only observed these set points in isolation there could be combinations or special

case incident that were not found in this analysis that could have a large effect on the

down hole pressure due to the nature of a dynamic physics based simulation.

56

3.2.3 Insights from the analysis

Based on the information gathered in the analysis the flow rate was the set point param-

eter chosen to use as a controllable action in the experiment in this thesis. This was a

result of the flow rate having simple mechanics on how it is controlled and having a large

range of pressure it could affect compared to the other two alternatives.

When designing an efficient reward function for the pressure, it is noted that the

pressure operates in a range between 3.4e7 and 3.8e7 in the collected simulation, but

when only adjusting for flow rate it is a narrower range. Also looking at the regression

analysis of depth and pressure we can see that creating reward goals for pressure needs

to take into account how deep the bit is to create feasible goals. These reward goals will

only work for the configuration of OpenLab used in this thesis as they are built upon

assumptions based on the data from a single well configuration.

The pressure goal function is the defined as:

pressure goal =3.57e7 + (normal(0.45, 0.2) ∗ 2− 1)

∗ 1e6 + (bitDepth− 2500) ∗ 16200
(3.11)

The pressure goal can be divided into three parts, the base value 3.57e7, the random

adjustment (normal(0.45, 0.2) ∗ 2 − 1) ∗ 1e6 and accounting for the depth of the drill

bit (bitDepth − 2500) ∗ 16200. The value of 3.57e7 was chosen as a base value to work

around since it corresponds to median value at 2500m depth when only adjusting for

flow rate. The Gaussian distribution was chosen to reflect the maximum and minimum

values possible to reach when only adjusting for flow rate. Finally, for adjusting bit depth

calculation using the coefficient term in the regression analysis, see figure 3.13.

The rewards for each time step can then be formulated as:

reward =

1, if (pressure goal − 1e5) <

actual pressure < (pressure goal + 1e5)

−abs(pressure goal−actual pressure)
1e5

, otherwise

(3.12)

This rewards the agent when managing to keep within 1e5 Pa, but also punishes the

agent more the further away from the pressure goal it is. The reasoning for this reward

model was to have a simple model that rewards the agent for reaching a goal, but also

penalises the agent for moving further away from the goal. A disadvantage of this reward

57

model is if there exists situations where the DreamerV2 agent first needs to increase the

difference of the down hole pressure and pressure goal to be able to reach the pressure

goal afterwards. In this situation it might be more difficult for the agent to learn how

reach the wanted pressure goal.

3.3 Experiment setup and training

Chapter 3.3 will explain the definition, setup and execution of the experiment of com-

paring DeamerV2 agent’s output to the results from the OpenLab simulator. Chapter

3.3.1 details the problem statement and motivation for the experiment. While in chapter

3.3.2 the OpenLab simulator was configured, the OpenLab simulator as a reinforcement

learning environment setup and how the DreamerV2 was configured. Chapter 3.3.3 de-

tails of how the DreamerV2 agent was trained in the environment, and what goals and

results was expected from the training. Finally in this chapter there is an overview of

the criteria of how the Dreamer V2 agent will be evaluated in chapter 3.3.4.

3.3.1 Problem

This thesis’ aim is to provide answers to the following three key questions:

• Can the world model of the DreamerV2 agent model future states of the OpenLab

simulator given the actions preformed during the simulation?

• Can the DreamerV2 agent control the flow rate in the drill string in the OpenLab

simulator to reach the given goal for the down hole pressure?

• Given a specific change in the OpenLab environment after finished training, does the

DreamerV2 agent benefit from continuous updates from a short-term perspective?

We aim to explore the capabilities of reinforcement learning, specifically the Dream-

erV2 agent, in a complex dynamic environment to see if the world model of the DreamerV2

with sparse latent variables can simulate future episode trajectories. We also investigate

the possibility of controlling the flow rate in the drill string given the wanted pressure as

a target in the state representation. From a reinforcement learning viewpoint it is inter-

esting to see how well a model based reinforcement learning agent performs a dynamic

and accurate physics simulator like OpenLab. To observe if the categorical latent state

representation of the Dreamer V2 agent, manages to create representations of the vector

input from the OpenLab simulator, that provides both good decisions and adaptable

modeling capabilities is the last focus point of this thesis

58

3.3.2 Environment

OpenLab configuration

The OpenLab simulator has two steps of setup the configuration, and the simulation

setup. Two parameters indicate what type of rig the drilling is executed on, and what

type of well template to choose. A rig is the machine used to drill a well, in the OpenLab

configuration it is possible to choose between four different rigs:

• Generic offshore

• Generic onshore

• Mariner

• Ullrigg

In this thesis the generic offshore rig is used since this is the standard option. For the

second parameter there is the well template, where it is possible to choose horizontal,

inclined or vertical wells with different depths. We use the InclinedWell 2500m as the

well template.

For the simulation setup it is possible to configure the initial values of several param-

eters, and the values used in this thesis can be seen in table 3.3.

OpenLab as a reinforcement learning environment

To implement the OpenLab simulator as a reinforcement learning environment there

are two main functions that needs to be expressed. The transition function st+1 =

P (st, at), and the reward function rt+1 = R(st, at). These two functions are unified to

a single function step(st, at) to follow the OpenAI gym library[3] since the PyDreamer

implementation is built upon this template. The action space is defined as three possible

actions, increase in flow rate, decrease in flow rate, or no change in pressure. Each action

changes the wanted output of the flow rate with 100l/m since this is the amount of fluid

the OpenLab simulation is able to change per second. Following the OpenAI gym library

there are three main function that needs to be implemented to make the DreamerV2

agent work in conjunction with the OpenLab simulator: The step function, the reset

function, and the init function.

59

Listing 3.2: Episode following OpenAI gym[3] template.� �
1 """

2 The environment variable is a reinforcement learning environment

3 The state variable is initialized as the first state in the environment

4 """

5 environment = ReinforcementLearningEnv ()

6 state = environment . reset ()

7 done : bool = false

8 while not done :

9 action = agent . get_action (state)

10 new_state , reward , done = environment . step (action)

11 state = new_state

12 next_initial_state = environment . reset ()� �
The init function initializes the environment class instance, establishes a connection

with OpenLab, and chooses a configuration of the well. The reset function deletes the

previous simulation, and configures and initializes a new simulation. The step function

handles changing the set points of OpenLab based on the action from the agent, completes

a single step in OpenLab with new set points. The step function then retrieves the new

state from OpenLab and calculates the reward from the new pressure. Finally the step

function normalizes the new state and returns the normalized new state and reward.

For this experiment we chose to keep the adjustable set points that were not controlled

by the agent as constants similarly to the analysis of isolated parameters 3.2.2. The top

of string velocity and surface RPM were then initialised in the reset function at the start

of each new episode with the values:

Surface RPM 120RPM
Top of string velocity 0.7m/s

Table 3.3: Initial set point values

60

Listing 3.3: Pseudocode of OpenLab environment� �
1 class OpenLabEnvironment :

2

3 def __init__ (config_name : str , credentials : str , initial_bit_depth : int = 2498) :

4 """

5 Establish a connection with OpenLab

6 Choose configuration

7 """

8 self . session = openlab . connect (credentials , config_name)

9 self . simulation = None

10 self . initial_bit_depth = initial_bit_depth

11

12 def reset () :

13 """

14 Delete previous simulation

15 initialize and configure new simulation

16 """

17 if self . simulation is not None :

18 openlab . delete (self . simulation . id)

19 self . simulation = self . session . create_simulation (self . config_name , self .

initial_bit_depth)

20

21 # Set wanted initial set points

22 self . simulation . setpoints . surfaceRPM = . . .

23 self . simulation . setpoints . flowRateIn = . . .

24 self . simulation . setpoints . topOfStringVelocity = . . .

25 self . timestep = 1

26 self . simulation . step (self . timestep)

27 intial_state = self . simualation . get_results (self . timestep)

28 self . timestep = self . timestep + 1

29 return self . normalize (initial_state)

30

31 def step (action) :

32 """

33 Change set points based on action

34 Simulate one step with OpenLab

35 Retrieve new state from OpenLab

36 Calculate reward

37 Return new state and reward

38 """

39 self . change_setpoints (action)

40 self . simulation . step (self . timestep)

41 new_state = self . simualation . get_results (self . timestep)

42 self . timestep = self . timestep + 1

43 reward = self . reward_function (new_state)

44 return self . normalize (new_state) , reward� �
DreamerV2 configuration

The DreamerV2 parameters configuration can be viewed in table 3.4. It’s configuration

is similar to previous benchmarks, with changes only made to hardware limitations.

61

Hardware is defined in table 3.5.

Name Value Name Value
default: # Generator
n steps: 1 000 000 generator workers: 5
n env steps: 1 000 000 generator workers eval: 1
offline prefill dir: precollected data directory generator prefill steps: 100 000 100 000
log interval: 100 generator prefill policy: precollected random
logbatch interval: 1000 vectorenv:
save interval: 100 env id: OpenLabLive
eval interval: 20 000 action dim: 3
data workers: 5 vecobs size: 6
buffer size: 10 000 000 debug:
kl balance: 0.8 device: cpu cpu
kl weight: 1.0 log interval: 5
vecobs weight: 1.0 save interval: 10
reward weight: 1.0 eval interval: 20
terminal weight: 1.0 data workers: 1
adam lr: 3.0e-4 generator workers: 1
adam lr actor: 1.0e-4 generator prefill steps: 10 000
adam lr critic: 1.0e-4 batch length: 50
adam eps: 1.0e-5 batch size: 5
batch length: 50 imag horizon: 15
batch size: 50 amp: False
Actor Critic
gamma: 0.995
lambda gae: 0.95
entropy: 0.003

Table 3.4: DreamerV2 configuration

GPU Nvidia 3060 TI
CPU AMD Ryzen 5600X
RAM 32GB

Table 3.5: Hardware

3.3.3 Training description

The PyDreamer model was first trained for 1 000 000 environment steps in the online

OpenLab environment. Where the first 100 000 steps was the precollected simulations

analysed in chapter 3.2.1 which was loaded into the training data directory and the

remaining 900 000 steps were trained online with the OpenLab simulator. Five generator

workers were utilised to collect data during training. This was limited by the OpenLab

license where there could only be run 5 simulations simultaneously. The rest of the

parameters were set to the recommended training values from PyDreamer benchmarks.

62

Difficulties and solutions during training

There were some limitations that had to be added during training due to OpenLab server

instabilities. The first of these limitations were to the length of the drilling episodes,

where longer episodes had a greater tendency to crash. This led to implementing a step

length limit of 4500 steps to avoid crashing episodes. Under the license from OpenLab

there was the possibility of having episodes up to the length of 18 000 steps, but this

could not be utilised. Another challenge was if the simulation crashed, the last time steps

before the crash the values reported was outside the range of values accounted for in the

normalization step, which led the neural networks to crash, for example pressure up to

the value of 1.6e10 Pa. Therefore a safety measure was implemented to abort episodes

that reported over 4e7 Pa which was larger than any value observed in the precollected

data.

A final problem was seeding the random generators used in the environment since

they were run in parallel, the solution for this was seeding the different class instances of

the environment with the associated worker id of that thread.

Goal for training

The goal of the training is to see if the DreamerV2 is able to improve over 1e6 environment

time steps. It would be preferable if we could have done more training since in the

DreamerV2 paper[14] it takes closer to 1e7 time steps in most environments before it

starts to converge. However this would take several days of training and simulation both

for the DreamerV2 and the OpenLab simulator.

3.3.4 Evaluation

The first evaluation is to evaluate the performance of the DreamerV2 agent on how well

the world model manages to model the OpenLab environment, we will run a simulation

in OpenLab, and the repeat the same actions done within the world model. Here we can

then give an estimate on how well the model can predict the environment. One drawback

of this approach is that we are also evaluating the reconstruction of the latent state. The

latent space itself might be a more accurate representation, but we cannot easily interpret

it.

63

Next we evaluate how well the DreamerV2 agent manages to control the flow rate to

reach down hole pressure values matching given pressure goals that the agent aims to

achieve. In this evaluation the goal is to see if the DreamerV2 agent can control a part

of a drill system, the flow rate, to reach a given pressure goal. Here, the online learning

capabilities of the DreamerV2 agent will also be evaluated. If there is a change in the

environment will the DreamerV2 be able to adapt in a short time period?

64

Chapter 4

Results and Evaluations

In this chapter the results obtained during training of the DreamerV2 agent will be

presented and discussed as well as the results from the evaluation will be presented and

discussed in chapter 4.2. The final chapter 4.3 will detail recommendations for further

research combining OpenLab and reinforcement learning.

4.1 Results obtained during training

The results obtained during training of the DreamerV2 agent is analysed in this chapter,

to try to gain insights in trends in the quality of the output and especially focus on

where in the process the DreamerV2 agent starts to learn. First of all an episode from

the start of training will be presented, to visualise how the algorithm preforms with only

the precollected data set and gradient updates with the first 100 batches. Then we will

look at a selection episodes in the middle of training period where the DreamerV2 agent

starts to improve its performance. At last how the DreamerV2 performs at the end of

the training session.

The figures 4.1, 4.2, 4.3 and 4.4 is each illustrating one episode during training. The

top left graph showing the comparison between the wanted pressure goals given to the

agent, represented by the blue line, and the the down hole pressure achieved during the

simulation, represented by red line, these values are normalised with the formula detailed

in equation 3.10. The top right graph is a visualisation of the actions preformed by the

agent, that is increase action is +1, decrease action -1, and no change in flow rate action

65

represented by 0. Since these values are not representative of any real measurement

they are scaled to visualise the similarities between actions carried out by the agent and

pressure in the bottom graph.

After training 100 batches of 50 random sampled, 50 sequence length trajectories from

the offline precollected data set, the world model and actor critic has not yet learned

representations and strategies to a quality high enough to earn any good return. This

can both be observed in the visualisation of the down hole pressure compared to the

pressure goal in the first episode 4.1, and in the model loss in figure 4.6.

Figure 4.1: Example of episode 1 during training

The drop in down hole pressure around time step 500 and 2000 is a result of the top

of string needing to be replaced as a result of being around 1 meter above the drill floor

and then replaced with a new section of drill string[23]. This process cuts of circulation,

but the DreamerV2 agent neither knows the actual flow rate, and since the reward model

does not take this mechanism into account the agent often tries to compensate for this

pressure drop in future episodes by increasing the flow rate without being able to preform

any increase, since the circulation is cut off.

Already in episode 35, figure 4.2, it is possible to see the improvement of the agent.

While not able to maintain a stable pressure, the agent has stopped performing only one

action. In this episode the agent is clearly trying to reach the given pressure goal, but it

has a tendency to overcompensate and therefore increasing and decreasing the pressure

too much.

66

Figure 4.2: Episode example after around 35 episodes of training

In episode 85, figure 4.3, there are more stability in the down hole pressure during

the middle of the episode. However at the start and the end of the episode, there is an

instability when the agent is trying to control the flow rate to reach the given pressure

goals. In both cases this instability occurs when the agent is trying to decrease the

pressure and this ends in instability as can be observed around time step 200 and time

step 3100. When looking at the actions shown in the flow graph, figure 4.3, there is only

a slightly staggered decrease in flow rate and it is not obvious why this gives such large

oscillations in the down hole pressure. In the middle sections the pressure is decreased

with a continuous reduction without small stops for each increment and this does not

give the same instability in pressure values.

Figure 4.3: Episode example after around 85 episodes of training

Episode 275, figure 4.4, illustrates that the agent is capable to reach a given pressure

goal by controlling the flow rate. Compared to the previous example when decreasing the

67

pressure, this time it is done with a continuous reduction of the flow rate which could be

the reason for the unstable pressure in the last example. In episode 275 in time step 2000

the DreamerV2 agent tries to increase the pressure by increasing the flow rate to reach

the given pressure goal, even though the circulation is cut off as a result of changing the

drill string..

Figure 4.4: Episode example after around 275 episodes of training

In one of the last episodes of the training, figure 4.5, though this had a return of

−1809, this episode was chosen as an example to illustrate how the DreamerV2 agent

preforms in an episode with a large negative return. In this episode the agent manages

to reach and hold the given pressure goals fairly well, but around time step 1000 there

is a pressure goal with a too high value, that leads to negative rewards thus the agent

receives more negative rewards. In the later half of the episode the agent also does not

reach its pressure goals as well. The reason for this could be that the agent had more

training on the first 2000 time steps, while this episode lasted for more than 4000 time

steps. Most training episodes reached 2000 time steps, but fewer reached 4000 time steps,

since the length of an episode is chosen randomly at the start of the episode and in longer

episodes the simulator crashes more often. In the second half of the training episode the

DreamerV2 agent preforms acceptable, but the instability in down hole pressure appears

again when decreasing the flow rate in a staggered manner.

68

Figure 4.5: Episode example after around 300 episodes of training

From the graphs of the different loss functions during training, shown in figure 4.6, it

is possible to observe that when the model loss and KL balancing loss starts to stabilise,

and the world model is able to create both good representations and good imagined

trajectories, the actor loss improves. A further observation is that the critic loss does not

stabilise, that could be explained by as long as the actor is finding better solutions, the

previous approximation the critic had given for the advantage function is now outdated.

Thus when the actor improves of the critic becomes worse and needs to improve.

Figure 4.6: Loss during training

Figure 4.7 represents the interquartile mean(IQM) of the return for every 25 episodes

during training, where it can be seen that the DreamerV2 agent continues to improve

during the entire training session and does not converge towards the end, therefore the

69

DreamerV2 could benefit from more training. This is expected since in this experiment

the DreamerV2 only received 1 000 000 environment samples, compared to in the evalu-

ation the the original DreamerV2 paper the agent started to converge around 10 000 000

time steps[14].

Figure 4.7: Return during training

At the end of the training session the DreamerV2 agent has improved in being able to

control the flow rate to reach and hold a given pressure goal of the down hole pressure.

The agent has learned that in this configuration of OpenLab when decreasing the flow

rate it needs to be decreased continuously until reaching the wanted down hole pressure,

because decreasing the flow rate in a staggered manner will lead to large oscillations of

the down hole pressure. It is also indications of that the DreamerV2 agent preforms

worse in longer episodes, where it is less able to hold a stable pressure towards the end

of the episode. Observing the improvement of return during training it does not seem

to converge towards the end of the training session and therefore could benefit of more

training.

4.2 Evaluation

In this chapter the DreamerV2 agent’s capabilities in the OpenLab environment will be

evaluated, together with a discussion of the strengths and failings of the agent. Initially

the modeling capability’s of the DreamerV2’s world model will be evaluated. In this

evaluation the DreamerV2 was evaluated on the quality predictions it managed to make

70

about future states. Then the control ability of the DreamerV2 will be evaluated, where

the environment is changed slightly in form of the top of string velocity and surface RPM

are changed randomly. Where both the control abilities of the DreamerV2 in the case

of new data will be looked at, and the online abilities of how fast does the DreamerV2

adapt.

4.2.1 Modelling results

To evaluate the modelling capabilities of the DreamerV2’s world model we seek to answer

this question:

• Is the world model capable to reproduce some of the dynamics of the simulator

when executing the same actions?

To evaluate if the world model is capable to reproducing the dynamics from the

OpenLab simulator, its behaviour is observed if given the same actions as the OpenLab

simulator, does the internal dynamics of the world model react similarly?

Figure 4.8 is a visualisation of the predicted pressure compared to the actual pressure

received from the OpenLab simulator. This prediction was calculated by using the 5

first initial states, where each state lasts for 1 second, of a completed simulation. The

world model were then given the flow rate actions preformed during the simulation to

try to reproduce the simulation episode by use of the recurrent model and transition

model of the world model. Comparing the actual pressure reported from OpenLab and

the predicted pressure simulated internally in the world model it is possible to observe a

similar trajectory between the predicted pressure and actual pressure. The mean absolute

error(MAE) comparison was 320715.359 Pa.

71

Figure 4.8: Predicted future pressure given first 5 states and actions, short episode.

Figure 4.9 illustrates a similar pattern with a MAE of 295844.09Pa which is a signif-

icant amount. Some of this error is caused from the changing of the top of string which

happens at around time step 500, 2000 and 3500 which the world model simulation has

no information of, resulting in the world model simulation to simulate with a larger error.

Figure 4.9: Predicted future pressure given first 5 states and actions, long episode.

There are several reasons that could affect the precision of the simulation. The recon-

struction of the latent state representation could introduce errors. The lack of training

72

samples the DreamerV2 was trained on compared to previous evaluations implying the

latent space transitions could improve with more training. The architecture of the Dream-

erV2 agent might not be complex or large enough to better approximate the transitions

as calculated in OpenLab. The state representation the world model of the DreamerV2

receives might not contain enough information to better approximate future transitions.

Also the discrete categorical latent state might generalise too much with respect to similar

states, which might lead to less accurate representations.

Looking at the loss of the reconstruction of the input state in figure 4.10 it is more

likely that the inaccuracies in figure 4.8 and 4.9 is a result of the transition prediction

rather than the reconstruction of the latent representations, seeing how low the loss of

the state reconstruction is.

Figure 4.10: Log loss of the state reconstruction

To answer the question ”Is the world model capable to reproduce some of the dynamics

of the simulator when executing the same actions?”, the answer would be it is capable

of recreating similar dynamics, but in the examples which were addressed in this thesis

the world model is inaccurate when calculating the transitions. This might be a result

of lack of training, a world model not complex enough or a input state representation

without enough information. However if it is a result of the discrete categorical latent

state not representing the information precisely, it might be that the world model is able

to generalise to utilise similar previous states to make decisions in unseen states.

73

4.2.2 Control and online results

In this chapter it is evaluated how the DreamerV2 agent controls the flow rate in OpenLab

to reach and keep the down hole pressure at given pressure goals. A new element where

the top of string velocity and surface RPM values will be changed randomly during

simulation to create new and different states will also be introduced, and an evaluation

of how the DreamerV2 agent manages the control both with and without continuous

updates of the weight parameters of the agent. The evaluation is based upon the follow

three questions:

• Is the agent able to reach and maintain pressure goals given control of the flow

rate?

• Is the agent able to reach and maintain pressure goals given control of the flow rate

when presented with a change in the behaviour of the environment?

• Is the DreamerV2 agent able to improve its performance by updating its weight

parameters in a within a few episodes, when encountering a change in the behaviour

of the environment?

When carrying out updates to the weight parameters a good solution to save unfinished

recorded episodes to facilitate learning during the episode due to how the wrapper envi-

ronment in the PyDreamer implementation was implemented, was not found. This means

that in this evaluation the updates to the agent acting in the OpenLab environment will

only update its improvements to the policy at the start of each simulated episode.

In the first visualisation, figure 4.11, the three different evaluation scenarios are com-

pared. These evaluation scenarios are:

• Evaluation of the DreamerV2 agent trained with 1 000 000 environment steps,

tested in 10 episodes in the same environment as it was trained, without updating

its weight parameters.

• Evaluation of the DreamerV2 agent trained with 1 000 000 environment steps,

tested in 10 episodes in an environment where the top of string velocity and surface

RPM is uniformly random and changed at random with a probability of 0.005%,

without updating its weight parameters.

• Evaluation of the DreamerV2 agent trained with 1 000 000 environment steps,

tested in 20 episodes in an environment where the top of string velocity and surface

RPM is uniformly random and changed at random with a probability of 0.005%,

with updating its weight parameters.

74

The figure 4.11 compares how many of the evaluation episodes for each scenario reach a

given return score τ . This comparison make it possible to see that the randomly changing

top of string velocity and surface RPM do affect the ability of the DreamerV2 to control

the flow rate in order to reach wanted a down hole pressure value, is reduced. However,

the comparison between the other two scenarios are more relevant, random top of string

and surface RPM with and without updates to the weight parameters. Comparing these

two scenarios with figure 4.11 it is difficult to establish whether one is strictly better than

the other.

Figure 4.11: Comparison of evaluation scenarios.

Shaded area are 95% confidence bands based on percentile bootstrap with stratified sampling. Implemented using library
from ”Deep Reinforcement earning at the Edge of the Statistical Precipice”[1].

The interquartile mean is used to get a measure of the performance in terms of return

for the three evaluation scenarios, the IQM values for each scenario are:

1. Constant top of string velocity and surface RPM without updates: -566.20

2. Varying top of string velocity and surface RPM without updates: -944.51

3. Varying top of string velocity and surface RPM with updates: -1084.40

According to the interquartile mean continuous updates of the weight parameters of the

agent leads to slightly worse performance of −1084.40, compared to not updating the

weight parameters in a short-term perspective.

75

In figure 4.12 one of the last episodes with continuous updates is presented, where the

return of this episode was -873. As can be seen from time step 800 to time step 1000 the

agent does not manage to keep the pressure stable in this period, even though the top

of string velocity and surface RPM values only change around every 200 time step. The

figure is structured in the same manner as the figures in chapter 4.1 with a comparison

of the normalised actual down hole pressure and normalised pressure goal in the top left

of the figure. In the top right a visualisation of the action performed to the flow rate by

the agent, scaled in a range to more easily compare all three plots in the bottom graph

of the figure.

Figure 4.12: Episode from the end of evaluation with weight parameter updates.

It can be seen in the chapter 4.1 and in the figure 4.11 that the DreamerV2 agent

manages to reach and maintain the pressure goals in the OpenLab simulator environment

given control of the flow rate. The agent exhibits the ability to reach pressure goals both

with higher and lower pressure values than the current pressure in an effective manner,

for example if the agent decreases the pressure it has to be done in a continuous manner

to avoid large oscillations of the down hole pressure.

When encountering new unseen states the DreamerV2 agent preforms as expected

worse than the previous evaluation scenario. The agent is however, by the measure of

return performing more than 10 times better than it did at the start of the training

session. By this measure it is possible to determine that the DreamerV2 agent is then

able to generalise and preform to some degree even when the behaviour of the environment

change.

Based on the results of the evaluation of preforming online updates while presenting a

change in the behaviour of the environment, there was no improvement in the performance

76

of the agent. Rather there was a slight decline in performance compared to the case of

not performing updates to the weight parameters. A possible reason could be that while

the world model is learning new and better representations for a change in behaviour of

the environment, the actor critic also has to adapt to the new representations from the

world model. This adaption could lead to the actor critic needing longer training than

was given during this evaluation.

4.3 Further research

OpenLab represents an interesting environment for further reinforcement learning in a

high-fidelity physics simulator, as a step towards the use of reinforcement learning in a

real world scenario. More specifically OpenLab has several different well configurations of

interest. This is a possibility to explore reinforcement learning agents for a larger general

problem with the use of different well configurations.

To explore the capabilities of reinforcement learning agents in a even more accurate

environment with the usage of OpenLab’s transient torque-drag model. Which is more

advanced compared to the steady state torque and drag model utilised in this thesis.

Creating a more complex goal for the agent might be interesting to further explore

reinforcement learning in OpenLab.

Exploring more reinforcement learning agents in OpenLab would give further knowl-

edge on the capabilities and limitations of reinforcement learning in high-fidelity physics

simulators.

77

Chapter 5

Conclusion

In this thesis we explored model-based reinforcement learning in a high-fidelity physics

simulator. By exploring this combination of model-based reinforcement learning and a

high-fidelity physics simulator, the modelling capabilities of the DreamerV2’s world model

to model the OpenLab simulator environment was investigated.

The design of the experiment was made with the purpose of investigating the Dream-

erV2 agent’s ability to control the flow rate in the drill string to reach and maintain

given pressure goals and further the DreamerV2 agent’s ability to adapt to a change in

the environment.

In the Background materials chapter the basis for the thesis experiments was es-

tablished. The theoretical material regarding machine learning, reinforcement learning,

online and offline learning and the OpenLab simulator was presented. The concept of

world models used by reinforcement learning agents to learn an internal generalised model

of the environment was introduced. Furthermore a discussion of adding an evaluation

of the online learning capabilities to this thesis, to evaluate the agent’s adaptability to

changes in the behaviour of the environment was carried out.

The Methodology and Experiment chapter the main functionality of DreamerV2 agent

is described, its components and how the agent is trained. A study of how the different

OpenLab parameters and set point parameters were affecting each other was analysed,

and this insight was utilised to design the experiment where the goal is to explore the

DreamerV2’s ability to reach pressure goals for the down hole pressure.

With the outcome from the Results and Evaluation chapter it was found that the

world model of the DreamerV2 agent was capable of modelling the environment to a

78

certain degree. When only given a few initial states of information and the flow rate

actions performed in OpenLab, the world model was able to reproduce of the down hole

pressure that was comparable to the original simulator episode. This result demonstrates

that the 32 categorical variables of the latent state is capable of creating a satisfactory

representation of the OpenLab environment. As a result of this the recurrent model and

the transition predictor is able to predict future transitions. In this new framework with

a low dimensional vector as input contrarily to high dimensional tensor images, as used

in previous external evaluations[14][1].

In the Results and Evaluation chapter, 4.1 and 4.2.2, the DreamerV2 agent was ca-

pable of controlling the flow rate to reach the desired pressure goal. The agent’s control

capability improved during the training. One example of this improvement was observed

when it learned that a reduction in flow rate had to be carried out with a continuous

decrease to the desired flow rate value. This was due to the fact that halting the re-

duction caused large oscillations in the down hole pressure. The agent was also able to

generalise from the changes in behaviour of the environment when presented with new

unseen states, where it preserved some of its ability to control the flow rate to reach the

pressure goals.

During the experiment in chapter 4.2.2 with online updates to the DreamerV2 agent,

an improvement in the agent’s ability to adapt to a change in the behaviour of the

environment was not observed. The results of this experiment showed a slight decrease

in the agent’s performance compared to not carrying out updates to its parameters.

A possible explanation for a reduced improvement could be that the world model was

learning new representations as a result of the change in the states encountered. If these

representations from the world model changes significantly the actor critic then encounters

states and transitions that are not only new, but could also be differently represented.

It was observed during the experiment that the world model is capable of modelling

future states when given the actions performed from the OpenLab simulator within less

than 1% deviation from the OpenLab simulated down hole pressure value.

The DreamerV2 agent has shown capability of controlling the flow rate in the drill

string to reach the given goal of the down hole pressure in OpenLab.

When given a specific change in the environment we did not observe benefits from

continuous update of the weight parameters in a short-term perspective.

79

Glossary

Action How the agent interacts with the environment.

DreamerV2 Is a model-based reinforcement learning agent that utilises a world model

and a discrete latent state representation to achieve high results in previous

benchmarks[14, 1].

flow rate Amount of drill mud pumped into the bore hole.

Gated Recurrent Unit The Gated Recurrent Unit is a version of a recurrent neural

network that uses a forget gate to decide how much of the new input should be

included in the hidden state, or how important is the new state compared to the

previous states for future states.

Hook load The total force pulling down on the drill string hook.

Markov Decision Process A mathematical framework for modeling decision making,

discussed in 2.2.6.

Model-based reinforcement learning Model-based reinforcement learning is defined

as an agent utilising a model of the environment to preform planning to improve

or produce a policy. See chapter 2.2.8.

NORCE The Norwegian Research Centre(NORCE)(https://www.norceresearch.no/).

Offline learning Learning from accumulated batch data.

Online learning Learning from a stream of sequential data.

OpenLab OpenLab is the simulator that is produced by Norce Drilling Well Modeling

group. It is a physics based simulation of well drilling.

Rate of penetration Is the progression speed of the drill bit, measured in m/s.

Return Sum of rewards, the value which a reinforcement learning agent attempts to

maximize.

Reward The immediate feedback from the environment to the agent.

State Representation of the environment at a given moment.

surface RPM The rotational speed of the top drive.

top of string velocity The amount of speed in m/s that the drill string is pushed

80

downwards.

81

Bibliography

[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and

Marc G. Bellemare. Deep reinforcement learning at the edge of the statistical

precipice. 2021. doi: 10.48550/ARXIV.2108.13264.

URL: https://arxiv.org/abs/2108.13264.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating

gradients through stochastic neurons for conditional computation, 2013.

URL: https://arxiv.org/abs/1308.3432.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[4] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations

using rnn encoder-decoder for statistical machine translation, 2014.

URL: https://arxiv.org/abs/1406.1078.

[5] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile

networks for distributional reinforcement learning, 2018.

URL: https://arxiv.org/abs/1806.06923.

[6] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,

Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego

Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keel-

ing, Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean-Marc Moret, and Martin

Riedmiller. Magnetic control of tokamak plasmas through deep reinforcement learn-

ing. Nature, 602:414–419, 02 2022. doi: 10.1038/s41586-021-04301-9.

[7] Li Deng. The mnist database of handwritten digit images for machine learning

research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

82

https://arxiv.org/abs/2108.13264
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1806.06923

[8] Jay W. Forrester. Counterintuitive behavior of social systems. Technological Fore-

casting and Social Change, 3:1–22, 1971. ISSN 0040-1625. doi: https://doi.org/

10.1016/S0040-1625(71)80001-X.

URL: https://www.sciencedirect.com/science/article/pii/S004016257180001X.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[10] Nils Gundersen and Nils H. Lundberg. Petroleumsutvinning. 2021.

URL: https://snl.no/petroleumsutvinning.

[11] David Ha and Jürgen Schmidhuber. World models. CoRR, abs/1803.10122, 2018.

URL: http://arxiv.org/abs/1803.10122.

[12] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak

Lee, and James Davidson. Learning latent dynamics for planning from pixels, 2018.

URL: https://arxiv.org/abs/1811.04551.

[13] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to

control: Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603,

2019.

[14] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering

atari with discrete world models, 2020.

URL: https://arxiv.org/abs/2010.02193.

[15] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering

atari with discrete world models, 2021.

URL: https://ai.googleblog.com/2021/02/mastering-atari-with-discrete-world.html.

[16] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,

Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:

Combining improvements in deep reinforcement learning, 2017.

URL: https://arxiv.org/abs/1710.02298.

[17] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Camp-

bell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey

Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker, and Henryk Michalewski.

Model-based reinforcement learning for atari, 2019.

URL: https://arxiv.org/abs/1903.00374.

83

https://www.sciencedirect.com/science/article/pii/S004016257180001X
http://www.deeplearningbook.org
https://snl.no/petroleumsutvinning
http://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/2010.02193
https://ai.googleblog.com/2021/02/mastering-atari-with-discrete-world.html
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1903.00374

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,

2014.

URL: https://arxiv.org/abs/1412.6980.

[19] Oleg Klimov. Car racing.

URL: https://www.gymlibrary.dev/environments/box2d/car racing/.

[20] Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample efficient

world models. arXiv preprint arXiv:2209.00588, 2022.

[21] Tom M Mitchell. Machine learning, volume 1. McGraw-hill New York, 1997.

[22] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-

thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. 2016. doi: 10.48550/ARXIV.1602.01783.

URL: https://arxiv.org/abs/1602.01783.

[23] NORCE. Openlab user guide, 2022.

URL: https://openlab.app/user-guide/.

[24] Jurgis Pasukonis. Pydreamer, 2022.

URL: https://github.com/jurgisp/pydreamer/tree/525eb64c128515a9d169fb6f41b7093452df879f.

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. Pytorch: An imperative style, high-performance deep learning library. In

Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran

Associates, Inc., 2019.

URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

[26] A. Richards and J. How. Robust model predictive control with imperfect information.

In Proceedings of the 2005, American Control Conference, 2005., pages 268–273 vol.

1, 2005. doi: 10.1109/ACC.2005.1469944.

[27] D. Rumelhart, G. Hinton, and Williams R. Learning representations by back-

propagating errors. 1986. doi: https://doi.org/10.1038/323533a0.

URL: https://www.nature.com/articles/323533a0.

84

https://arxiv.org/abs/1412.6980
https://www.gymlibrary.dev/environments/box2d/car_racing/
https://arxiv.org/abs/1602.01783
https://openlab.app/user-guide/
https://github.com/jurgisp/pydreamer/tree/525eb64c128515a9d169fb6f41b7093452df879f
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.nature.com/articles/323533a0

[28] Nejm Saadallah, Jan Einar Gravdal, Robert Ewald, Sonja Moi, Adrian Ambrus,

Benoit Daireaux, Stian Sivertsen, Kristian Hellang, Roman Shor, Dan Sui, Ste-

fan Ioan Sandor, Marek Chojnacki, and Jacob Odgaard. Openlab: Design and

applications of a modern drilling digitalization infrastructure, 05 2019.

URL: https://doi.org/10.2118/195629-MS. D011S002R002.

[29] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Lau-

rent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore

Graepel, Timothy Lillicrap, and David Silver. Mastering atari, go, chess and shogi

by planning with a learned model. Nature, 588(7839):604–609, dec 2020. doi:

10.1038/s41586-020-03051-4.

URL: https://doi.org/10.1038%2Fs41586-020-03051-4.

[30] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

High-dimensional continuous control using generalized advantage estimation, 2015.

URL: https://arxiv.org/abs/1506.02438.

[31] David Silver. Rl course by david silver - lecture 2: Markov decision process, 2015.

URL: https://www.youtube.com/watch?v=lfHX2hHRMVQ.

[32] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,

Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore

Graepel, and Demis Hassabis. Mastering the game of Go with deep neural net-

works and tree search. Nature, 529(7587):484–489, jan 2016. ISSN 0028-0836. doi:

10.1038/nature16961.

[33] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi

by self-play with a general reinforcement learning algorithm, 2017.

URL: https://arxiv.org/abs/1712.01815.

[34] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018.

URL: http://incompleteideas.net/book/the-book-2nd.html.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

URL: https://arxiv.org/abs/1706.03762.

85

https://doi.org/10.2118/195629-MS
https://doi.org/10.1038%2Fs41586-020-03051-4
https://arxiv.org/abs/1506.02438
https://www.youtube.com/watch?v=lfHX2hHRMVQ
https://arxiv.org/abs/1712.01815
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1706.03762

[36] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement

learning, 2020.

URL: https://arxiv.org/abs/2007.14430.

[37] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Mach. Learn., 8(3–4):229–256, may 1992. ISSN 0885-6125.

doi: 10.1007/BF00992696.

URL: https://doi.org/10.1007/BF00992696.

86

https://arxiv.org/abs/2007.14430
https://doi.org/10.1007/BF00992696

	Introduction
	Background materials
	Machine learning
	What is machine learning?
	Supervised and unsupervised learning
	Neural Networks
	Recurrent neural networks

	Reinforcement learning
	Introduction
	Agent-environment interaction
	Exploration and exploitation
	Rewards and Return
	Bellman equations
	Markov Decision Process
	On-policy and Off-policy
	Model-based learning
	Policy Gradients
	World Models

	Online and offline learning
	OpenLab

	Methodology and Experiment
	DreamerV2
	Computational analysis
	Components of DreamerV2
	Training
	Results
	PyDreamer

	Data analysis
	Analysis of collected simulations
	Analysis of isolated parameters
	Insights from the analysis

	Experiment setup and training
	Problem
	Environment
	Training description
	Evaluation

	Results and Evaluations
	Results obtained during training
	Evaluation
	Modelling results
	Control and online results

	Further research

	Conclusion
	Glossary
	Bibliography

