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Abstract
Understanding porous media flow is inherently a multi-scale challenge, where at the core 
lies the aggregation of pore-level processes to a continuum, or Darcy-scale, description. 
This challenge is directly mirrored in image processing, where pore-scale grains and 
interfaces may be clearly visible in the image, yet continuous Darcy-scale parameters may 
be what are desirable to quantify. Classical image processing is poorly adapted to this 
setting, as most techniques do not explicitly utilize the fact that the image contains explicit 
physical processes. Here, we extend classical image processing concepts to what we define 
as “physical images” of porous materials and processes within them. This is realized 
through the development of a new open-source image analysis toolbox specifically adapted 
to time-series of images of porous materials.

Keywords Image processing · Porous media · Upscaling · Software

1 Introduction

Modern understanding of multi-phase flow and transport in porous media inherently 
involves discussing two fundamental scales simultaneously: On one hand, there is 
the relatively well-understood fluid dynamics within a complex (and in practice often 
unknown) pore space. On the other hand, there are the debatable effective equations at the 
so-called Darcy scale, which is understood to be a scale large enough that well-sorted grain 
packs (such as spheres) can be treated as a homogeneous continuous material.
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Using pore-scale physics to establish constitutive laws at the Darcy scale has been 
one of the most important and well-studied theoretical questions in the porous media 
community. Seminal papers in this regard go back to as far as Hubbert (Hubbert 
1940) (see also Neuman 1977; Whitaker 1969; Gray and O’Neill 1976). These 
theoretical developments have been supported by extensive physical and computational 
experimental work. From the experimental side, we emphasize techniques such as 
synchrotron tomography, micro-CT, MRI, and PET-CT scanning, and high-resolution 
photography. From the computational side, we emphasize direct numerical simulation 
of fluid dynamics, lattice Boltzmann simulations, and network models.

However, despite the significant experimental research (both physical and 
computational) devoted to pore-to-core scale understanding, there is little consensus 
on how to actually interpret pore-scale data at the Darcy scale. A common low-order 
approach is to filter the data using an “averaging window,” however, this is a very crude 
regularization, which tends to both retain noise from the underlying geometry, as well 
as introduce significant scale-dependent effects (Nordbotten et al. 2008, 2007). A more 
mathematical approach is via homogenization techniques (Hornung 1997); however, 
these approaches rely extensively on periodicity (or at a minimum coarse-scale 
smoothness), and are as a consequence less suited when sharp gradients are present 
(such as near saturation fronts). In this contribution, we extensively discuss image 
regularization methods as a new way to upscale data from the pore scale to the Darcy 
scale.

The field of image processing has evolved to include a broad range of tools for 
regularizing image data, applicable to both 2D and 3D images. These tools are reflected 
in the development of comprehensive software packages, such as the OpenCV library 
(Bradski 2000) and the scikit-image library (Walt et al. 2014). When open-source, these 
software packages serve both as a common development platform for image processing 
research, as well as a state-of-the-art repository of tools for the users needing image 
processing.

Unfortunately, most standard image processing tools are inherently single scale, do not 
explicitly account for physical dimensions, and do not have dedicated functionality related 
to the prevailing two-scale structures characterizing porous media. In this contribution, we 
announce the development of an open-source image processing toolbox explicitly tailored 
for handling two-scale images of porous media, by tailored use of OpenCV and scikit-
image and dedicated extensions. Acknowledging this specialization, the toolbox is named 
“DarSIA,” short for “Darcy-Scale Image Analysis.”

The DarSIA toolbox is designed to be able to handle single images, comparisons of 
pairs of images, and time-series of images, pertaining to dynamics within both 2D and 3D 
porous materials. Our main ambitions and contributions are:

• Realize images as “physical images,” explicitly equipped with spatial maps and 
physical interpretation of image data.

• Support reading of widespread input data formats for experimental and simulation data.
• Recognize the special nature of pore space and porosity in images of porous media.
• Provide pore-to-core upscaling capabilities.
• Provide multi-level image alignment functionality for direct pointwise comparison 

between images from different times and/or experiments.

An object-oriented Python package containing initial capabilities in this direction is 
being provided with the publication of this work (Both et  al. 2023a), as detailed in the 
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following sections. However, this is not a report on a final product, it is intended equally as 
an invitation to participation.1

The rest of the manuscript is structured as follows: In Sect. 2, we provide the theoretical 
framework and the main code components of DarSIA. In Sects.  3 and 4, we provide 
concrete applications of DarSIA to experimental data in two and three dimensions, 
respectively, where the latter addresses either an additional temporal or spatial dimension. 
Finally, we outline in Sect. 5 the continued vision for DarSIA.

2  The DarSIA Toolbox

Three key requirements guide the development of DarSIA, which thereby separates 
it from standard image processing toolboxes. First, our images are always considered 
representations of physical domains. Second, the physical objects are potentially 
multiscale, wherein the canonical example is the combination of the pore-scale and Darcy-
scale. Third, we are often interested in comparative analysis, either in the sense of a time 
series, or between repeated experiments. The three next subsections provide the tools to 
address each of these three goals.

2.1  Initializing Images of Physical Objects

Standard image formats provide a local coordinate system (usually pixels or voxels), and 
attach to this coordinate system an observable function (usually color, radioactive intensity, 
or similar). This is a representation of a reality, which in itself can be equipped with a coor-
dinate system in physical space (given, e.g., in SI units), and providing some physical sig-
nal (such as reflection of light, radioactivity, or similar). To make this connection, it is nec-
essary to provide transformations of both coordinates, as well as function values from the 
image to the physical system. This is illustrated in Fig. 1, and we formalize this as follows:

Fig. 1  Illustration of Definition 1. Here, Y  (to the left), is the image in pixel domain, with dimension 
(

my,mx

)

 , and X (the middle and the right) is the physical domain. The map � is a smooth bijection to move 
between the two domains. In the middle image the interpretation f  would simply be the identity, mapping 
color intensities to themselves, whereas in the rightmost image the interpretation function maps intensity 
values c in the image Y  to 1 (represented by white here) if c indicates a pore, and to 0 (represented by black 
here) otherwise

1 Active code development on https:// github. com/ pmgbe rgen/ DarSIA

https://github.com/pmgbergen/DarSIA
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Definition 1 By an n-dimensional physical image of an object in m ≥ n dimensions, we 
refer to the following construction:

(1) An image domain � ⊂ ℝ
n , represented by an intensity of p observables  

c(y) ∶ � → ℝ
p.

(2) A physical domain X ⊂ ℝ
m.

(3) A smooth bijective mapping � ∶ Y → X.
(4) A minimum of q ≥ 1 interpretations. The above construction allows us to directly refer 

to the physical image as f (�) ≡ f
(

c
(

�−1(�)
))

.

Notation In the remainder, the single components of vector-valued interpretations 
f  are indexed with indices j = 0,… , q − 1 , i.e., the first interpretation is f0. Moreover, 
while we in the abstract sense allow for arbitrary dimensions, in practice we expect that 
2 ≤ n ≤ m ≤ 4 , i.e., at a minimum 2D images, and at most 3D timelapse.

When the physical image is of a porous material, we will index the interpretations 
from 0, and always assume that the first interpretation f0(x) is the pore-space indicator 
function for pore-scale images, i.e., taking values 0 and 1 for the solid and pore space, 
respectively. For images with noise (which is the rule, rather than the exception) the 
pore-space indicator function can take values within the interval [0, 1] . 

Remark 1 The definition of a physical image has the colloquial interpretation that Y  is an 
image of a physical region X , and that every point y in the image Y  corresponds exactly to 
one point in the physical object X . We require an interpretation of the image quantities in 
ℝ

p in terms of physical quantities ℝq . For standard trichromatic pictures, then p = 3 and 
image quantities may be the red–green–blue channel intensity values, with the interpreta-
tion f0(x) being the pore-space indicator and the interpretation f1(x) being the presence of 
a monochromatic tracer within a porous structure (i.e., q = 2).

As can be seen from Definition 1, the concept of a physical image provides additional 
spatial structure relative to the standard notion of an image. This additional structure is 
typically not encoded in standard image file formats (although we highlight formats as 
DICOM which contain equivalent information), and the first key functionality of DarSIA 
is related to equipping image files with the structure needed to be treated as physical 
images.

We emphasize that the generality allowed by the definition of the mapping � is 
required whenever the coordinates in the image (pixels) are not simply a rescaling of 
physical coordinates. This can arise due to lens distortion, or other processes associated 
with the image acquisition. 

In conventional image analysis software, a two dimensional image is typically repre-
sented as an array of p-valued intensities, c ∈ ℝ

m
y
×m

x
×p , where each element of the array 

c is referred to as a pixel. In DarSIA, that array is complemented with information about 
the physical entities that the image represents. With that in mind, the initialization of a 
DarSIA image requires two ingredients: The image array, and information about the physi-
cal representation of the image. For two-dimensional images, it is sufficient to specify the 
dimensions along each axis, and origin o of the image (position of the 0-pixel in the chosen 
coordinate system), i.e., the height and width as well as the upper left corner in two dimen-
sions, to initialize a DarSIA image (more advanced initialization will be described later). 



DarSIA: An Open‑Source Python Toolbox for Two‑Scale Image…

1 3

Once an image is initialized, the metadata of the image is stored and can be saved 
together with the image array by using the built-in save method. If it is desirable to open an 
identical image at a later stage, the metadata and image array can be read directly at image 
initialization. A unified reading routine allows to import not only saved DarSIA images, 
but also various input types commonly used in porous media research, including photo-
graphs (png, jpg, tif, etc.), DICOM images, numpy arrays, simulation data readable by the 
library meshio (Schlömer 2022), e.g., vtk format. If the data comes equipped with spatio(-
temporal) metadata, it is natively imported.

Furthermore, at initialization, a coordinate system for the image is created. Conse-
quently, it includes a map � between the image Y  , which in the discrete setting is accessed 
via conventional matrix indexing, and the physical image X , which is represented in con-
ventional physical Cartesian coordinates. With the above initialization the map � consti-
tutes a multi-dimensional scaling. This enables the user to access regions of, and positions 
in, the image based on physical coordinates, similarly for time intervals for space–time 
images.

 

Using the functionality to extract subregions a patch-structure is implemented in Dar-
SIA. By specifying the number of patches that the image should be subdivided into, and 
how much overlap they should have, one can obtain an array of images, each one represent-
ing one patch. Each of these images can then be modified separately, before they, if desired, 
are glued back together (using a convex combination in overlapping regions) to give a new 
representation of the full physical image. 

Code 1  The Python package DarSIA is imported, and a physical image is initialized. Here, the physical 
image requires an array c_arr, information regarding the physical dimensions d (d being a list containing 
information about each spatial dimension, e.g., width, height, depth), and the pixel coordinates of the origin 
in the image array o 

Code 2  Unified reading routine identifying data type and converting the input data to an DarSIA Image 
object. Depending on the needs of the user and chosen data type, addition keyword arguments kwargs 
can be provided targeting coordinate system, characterization of data (multi-dimensional or time-lapse), or 
advanced preprocessing transformations

Code 3 Extraction of a rectangular subregion from the physical image via physical coordinates. Here, 
coordinates is an array containing the coordinates of two opposite corners of the rectangle/cuboid
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DarSIA allows for input array c to represent space–time data in multiple dimensions 

(in principle tensorial), e.g., standard trichromatic color formats. It is seamless to switch 
between trichromatic or restrict to monochromatic color spaces with built-in methods, 
i.e., choose a particular interpretation of the physical image, relevant for further analy-
sis. Other dimension reduction routines also exist including averaging along prescribed 
axis, reducing spatial dimensions applicable for data with spatial symmetry.

Advanced initialization. In practice, images often come with systematic defects and 
varying inconsistencies, with the latter in the context of time-series of images. A careful 
image analysis requires a unified setting for all images, and thus a range of corrections 
are provided by DarSIA, including corrections of systematic geometric distortions, fluc-
tuations in intensities, image alignment, as well as non-trivial pore-space deformations, 
briefly elaborated on in the following.

Geometric distortions often occur due to imperfect image acquisition. Typical issues 
include choosing a larger frame than the region of interest, a non-planar physical asset, 
non-centered positioning of the camera to the object, and automated corrections per-
formed by the camera or scanner. These create an undesired representation of the shape 
of the physical object in the image as illustrated in Fig.  1. DarSIA provides tools to 
accurately correct for such effects using cropping, perspective transforms, stretching, 
and bulge correction of the image. Available reference points are vital for the accuracy. 
To assist fitting reference points, there exist interactive assistant objects with graphical 
interfaces as well as functionality to add grids to DarSIA images, which represent the 
Cartesian coordinate system.

Code 4 Here, a patch object, with num_v ⋅ num_h patches, is created from the image, where num_v and 
num_h are the number of patches in the vertical and horizontal directions, respectively. Each individual 
patch is then a separate physical image and can be accessed following a matrix indexing convention. More-
over, every patch can be modified as seen fit. Here, some_modification is a placeholder for some image 
that is to replace patch [i][j]. Finally, the patches can be reassembled by applying the assemble 
method; overlaps are combined using a convex combination

Code 5 Two examples for basic signal transformations: Color space transformation of a given physical 
image, here exemplarily from a Red–Green–Blue color model to a Hue-Saturation-Value and grayscale 
color model. And the dimensional reduction through vertical averaging
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As an example, color and illumination fluctuations in photographic images can 
naturally occur, e.g., if the camera is not calibrated or the scenery is illuminated under 
varying conditions. Such fluctuations directly affect the registration of colors and their 
intensities, provided by c , which are important for further analysis. To account for this, 
DarSIA can map each input array c to a corrected array c̃ , where the map is defined to 
optimally (in terms of a suitable metric) transform a reference portion of the image to 
pre-determined reference colors, either related to defined standard colors or a reference 
image, i.e., c̃[k] − c̃ref [k] should be as small as possible. Here, k represent the indices of 
the reference portion of the image, and c̃ref  denotes a set of reference colors. To aid in 
this, functionality from the open-source library color-science (Masecal et  al. 2022) is 
utilized.

Finally, in view of a multi-image analysis, alignment of images to some reference 
image is essential. DarSIA provides two different functionalities to align images, 
varying in their cost and their accuracy. First, using a limited set of fixed points, 
alignment in form of an optimal translation aiming at matching these fixed points can 
be performed, within specific classes of transformations as affine or particular nonlinear 
ones. More involved, a more general deformation map can be determined, aligning the 
pore spaces of different images. This functionality constitutes an important analysis tool 
and will be explained in more detail in Sect. 2.4. 

In sum, all mentioned corrections can be applied at initialization of physical images, 
providing the possibility for fine-tuning aside of semi-automatic corrections, in 
reference to a baseline image.

 

Code 6  Addition of a Cartesian grid to the DarSIA image with distances v and h between vertical and 
horizontal grid lines, respectively

Code 7 DarSIA images can also be initialized with corrections applied, also with respect to a reference 
image. Here, data-source is the input data with supported data format, color_c is the color correction, 
with knowledge on some reference region in the domain, curv_c is a shape correction object containing 
all fine-tuning parameters for crop, bulge and stretch operations (containing this time all information on the 
geometry including width, height, origin, cf. Code 1), drift_c is a drift correction aligning the image 
with a reference image using a simple translation, and deform_c aligns the pore space with respect to 
a reference image, cf. Sect. 2.4.1. Here, the term secondary_image is central in the context of multi-
image comparisons, cf. Sect. 2.4
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Remark 2 (Object-oriented code design). The object-oriented design of DarSIA enables 
effective caching and book-keeping, allowing for both a slim interface and increased per-
formance for multi-image analyses.

2.2  Regularization of Physical Images and Scale Change

In the context of classical image processing, a regularized image c(y) refers to identify-
ing a compromise between a measure of fidelity to the original image c(y) , and a penali-
zation of noise.

This is achieved by balancing two metrics, where the metric we denote as D is a meas-
ure of the deviation between the images, while the metric we denote as N is measuring the 
noise of an image. We equip the noise metric with a regularization parameter �c , which is 
usually a linear weight providing the balance between the two metrics. In this framework, 
the regularized image is defined as (Chan and Shen 2005; Aubert and Kornprobst 2002; 
Burger et al. 2006)

While it is seldom emphasized in the image processing literature, to get resolution-
independent regularization, the regularization parameter �c must be scaled appropriately 
both in terms of pixels and color scale.

The regularization parameter becomes equipped with a physical meaning when 
applied to physical images. We proceed by restating the definition of a regularized 
physical image as

For the sake of the argument, let us for the moment consider the common choice of 
D and N, leading to the Rudin–Osher–Fatemi (ROF) regularization (Rudin et al. 1992), 
namely the square of the weighted L2 norm and W1,1 seminorm (also known as the total 
variation), respectively:

For these terms to be meaningfully added together, we note that the regularization 
parameter �f  must have units of [LF] , where F is the unit of f  while L is the unit associ-
ated with the spatial length scale of the coordinate system for X.

Thus, when regularizing physical images, the regularization parameter �f  is inde-
pendent of image resolution, but has the interpretation of defining a lower threshold of 
observation. Concretely, if f  represents concentration (unitless, and bounded between 0 
and 1), then �f  has units of length. Moreover, considering a physical image of a porous 
media, we can associate with the physical domain a length scale �pore , which we inter-
pret as a characteristic pore diameter. Now for 𝜇f ≪ �pore , the regularized image will 
retain the porous structure, and will only filter out oscillations at much finer frequen-
cies. The result is a pore-scale image. Conversely, for 𝜇f ≫ �pore , the regularized image 

(1)c(y) = arg inf
u

D(c, u) + N
(

u;�
c

)

(2)f (x) = arg inf
u

D(f , u) + N
(

u;�
f

)

(3)

D
�

f , u;�
f

�

=
1

2

‖f − u‖
2

2,�f

=
1

2 ∫ �
f
(f − u)

2

dV and N
�

u;�
f

�

= �∇u�
1,�f

= ∫ �

�

�

�
f
∇u

�

�

�

dV
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will now have filtered out information at the pore-scale, and only contain information at 
the Darcy scale. The result is a Darcy-scale image. 

Based on a single pore-scale image c(y) of a porous material, simple regularization 
therefore allows us to extract both a regularized pore-scale physical image which we 
denote g(x) = f

(

x;𝜔f = 1,𝜇f ≪ �
pore

)

 and a relatively smooth Darcy-scale physical 
image which we denote G(x) = f

(

x; 𝜔f = 1,𝜇f ≫ �pore

)

 . 
A ubiquitous feature of porous materials is that some variables may be only present 

in either the solid (e.g., mineral composition, material stress) or fluid phase (phase com-
position, saturation, fluid pressure). In some contexts (typically for conserved quanti-
ties), it is appropriate to regularize these variables directly from pore-scale to Darcy 
scale, in which case these quantities are already available as Darcy scale quantities in 
the image G . In particular, for all pore-scale physical images we note that the pore space 
is given by g0(x) , and an appropriate definition of the porosity is simply the regularized 
pore space G0(x).

On the other hand, other quantities are typically regularized relative to their own 
phase (such as phase composition or pressure). To fix ideas, let us consider an inter-
pretation g1(x) which is only meaningfully defined in the pore-space. In the solid, the 
interpretation is still defined (since we are looking at images with some color scale); 
however, the interpretation does not have physical meaning. As a result, the naïve 
Darcy-scale interpretation G1(x) is not physically relevant. To proceed, we must filter 
out the solid phase. The tools provided in the previous section can be combined to allow 
for this: Indeed, since the pore scale indicator function g0(x) takes values of 1 in the 
pore space and 0 in the solid, the product g1(x)g0(x) erases all information from the 
solid phase. This suggests regularizing the image using a spatially dependent weight 

Fig. 2  Illustration of the different regularizations discussed above. Here, the top image has been regular-
ized in three different ways: g(x) is the pore-scale regularization that has removed the noise that is present 
in f (x) , Gp(x) is the regularized pore-space image, and Gs(x) is the solid-space image. For this example, the 
unweighted Darcy-scale image G(x) does not have any physical meaning, and has been omitted from the 
figure
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proportional to void space, i.e., �f = g0(x) . With this choice, we obtain a regularized 
pore-space image Gp(x) = f

(

x; 𝜔 = g0,𝜇f ≫ �pore

)

 and similarly a regularized solid-
space image Gs(x) = f

(

x; 𝜔 = 1 − g0,𝜇f ≫ �pore

)

.

Remark 3 We emphasize that for any physical image f (x) of a porous material at the pore 
scale, we obtain after regularization (at least) four different representations of this same 
physical image: A regularized pore-scale image g(x) , and three Darcy-scale images G(x) , 
Gp(x) and Gs(x) , cf. Fig. 2. The latter three images refer to upscaling of the full material, 
the pore space, and the solid space, respectively. This is conceptually consistent with stand-
ard averaging theories for porous media (Hubbert 1940; Neuman 1977; Whitaker 1969; 
Gray and O’Neill 1976; Nordbotten et al. 2008;  Nordbotten et al. 2007).

The above discussion motivates the choice of using image regularization both as a 
noise removal methodology, as well as our framework for changing scales in images. In 
DarSIA, a total variation regularization technique with the aim of obtaining Darcy scale 
images is implemented.

 
Here, an important extension of standard regularization implementations is the possibil-

ity to allow for spatially dependent metrics as in Eq. (3). The spatially dependent (pixel-
wise defined) regularization parameter �f (x) is particularly useful when the aim of the 
regularization method is to obtain a Darcy scale image, as the regularization parameter �f  
must be of correct magnitude to remove pore-scale features from the image 𝜇f ≫ �pore. If 
the image has regions of clearly different grain sizes one uniform regularization parameter 
might not be feasible, as too large choices will lead to overly regularized images, and even 
Darcy scale features will become blurred.

To solve the modified total variation regularization problem, the split Bregman is imple-
mented in DarSIA, and the noise term may be decomposed to arrive at a formulation that is 
the anisotropic total variation denoising method (or left unchanged to result in an isotropic 
variant), see (Goldstein and Osher 2009), extended to spatially varying penalization.

Finally, we mention that there are several good implementations of total variation 
denoising for constant �f  and �f  available in open-source Python libraries, which are suita-
ble for obtaining G(x) . Scikit-image (Walt et al. 2014), in particular, contains several stand-
ard methods such as the split Bregman for isotropic and anisotropic regularization as well 
as Chambolle’s algorithm (Chambolle 2004), also available through the unified interface 

Code 8 TV denoising using the anisotropic split Bregman algorithm (Goldstein_Osher_2009) 
extended to heterogeneous parameters, with omega = �f  (spatially varying), mu = �f  (spatially varying) 
and solver_parameters being a method-specific parameters
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illustrated in Code 8. While these implementations are more efficient than the one in Dar-
SIA, they do not at the time of writing allow for spatially dependent regularization param-
eters, and therefore are not directly suitable for calculation of Gs(x) and Gp(x) . Also they 
are not applicable to images attached to three-dimensional space or including a temporal 
dimension—the mathematical definition of the regularization immediately translates to any 
addition dimension and such are also of high relevance, see Sect. 4.

2.3  Single‑Image Analysis Tools

As pointed out in Remark 3, from a single pore-scale image, we essentially consider 
four different regularizations of this image, which corresponds to our best representation 
of spatial data. The analysis of these images will frequently be strongly case dependent 
(as exemplified in Sect. 3), and moreover, standard tools are already available for ana-
lyzing spatial data. As such, tools for analyzing single regularized images are not a main 
emphasis of DarSIA: Nevertheless, interfaces to relevant tools provided by scikit-image 
(Walt et al. 2014) are available.

One useful category of tools for single images, being highlighted here, is the geo-
metric segmentation and image labeling, i.e., the identification and tagging of specific 
details in an image. For images with the structure of composites, as e.g., heterogeneous 
media consisting of facies, a common task is to dissect the image into the single homo-
geneous regions. If these are characterized by distinct intensity values, thresholding 
results in their detection. If, on the other hand, homogeneous regions are characterized 
by a range of values, shared by other regions, and merely jumps in the intensity val-
ues are present along interfaces of the homogeneous regions, a gradient-based approach 
instead can distinguish between the homogeneous regions (low gradient modulus) and 
the interfaces (high gradient modulus). Together with a watershed segmentation algo-
rithm (Beucher 1979), again the homogeneous regions can be identified. DarSIA pro-
vides several gradient-based approaches varying in the degree of the user-input reward-
ing more control, helpful for instance for images taken in non-uniform illumination 
conditions. 

2.4  Multi‑Image Comparative Analysis Tools

Most porous media research concerns dynamics, either in the sense of transport within a 
phase, displacement of a phase by another, or even the hydromechanical coupling between 
fluids and solids. Furthermore, both physical and computational experiments are frequently 
repeated with slight variations between configurations, which motivates comparisons 
between separate experiments. As such, multi-image comparative tools are of great inter-
est. For the sake of exposition, we will in this section consider comparative tools for two 
images, however, everything discussed naturally extends to any finite number of images.

Code 9 Gradient-based geometric segmentation and image labeling of an image, utilizing a watershed algo-
rithm. Fine-tuning of the performance is possible through several options and parameters; here not exempli-
fied
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2.4.1  Aligning Pore Spaces

Let gR(x) and gS(x) be two regularized pore-scale images of the same porous material, the 
former the “Reference” image and the latter one (or many) “Secondary” image(s). We will 
assume that the experimental design includes sufficient spatial reference points and that the 
coordinates of the images nearly align. However, in practice there will almost always be 
some disturbances in the geometry even for a rigid porous material, so that the pore spaces 
gR
0
 and gS

0
 need not be identical. The first analysis step will therefore often be to find a con-

tinuous mapping � ∶ X → X such that gR
0
(x) = gS

0
(�(x)) , and where we make the a priori 

assumption that � ≈ Id , the identity transformation. Such a mapping � is necessarily not 
unique (any localized deformation within the pore-space leaves gS

0
(�(x)) unaltered), and 

as such, we are interested in a mapping � which in some sense is regular (or has relatively 
“low energy” in view of a minimization problem). Our approach to constructing such a 
regular mapping is through a flexible divide-and-conquer algorithm. In view of a practical 
algorithm, affine and perspective maps play a particular role, as for such efficient imple-
mentations exist to warp images, e.g., provided by the OpenCV library (Bradski 2000) for 
two-dimensional images; using such, DarSIA provides the capability to warp images with 
globally continuous, patch-wise defined affine maps.

Divide-and-conquer strategy. The main idea is to decompose the pursuit for a global 
mapping � , defined on X , into finding local translations, defined on patches of the images, 
and then assembling them by interpolation. The approach allows for a straightforward 
multi-level extension. In the following, each component of the approach is explained in 
further detail.

Partitioning. First, the domain X is decomposed into patches pj = 1,… ,P , resulting 
correspondingly in subimages gR,j and gS,j of the reference and secondary image, cf. Fig. 3 
(using I = 1).

Local mappings. For each patch pj , the aim is to efficiently find a low-energy mapping 
�̃�j ∶ pj → ℝ

d in the space of perspective mappings with domain pj , here denoted by Ψj. 
Using a localizing metric Dj (to be discussed in some more detail further below), �̃�j is 
defined as minimizer

Fig. 3  Multilevel overlapping partitioning 
{

p
i,j

}

i,j
 of X (for I = 2 ) and corresponding subimages of the ref-

erence image gR used in the 2-level divide-and-conquer algorithm, here denoted by gR,i,j
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We note that no compatibility requirement across different patches is imposed. Yet, to 
ensure high fidelity, the mappings �̃�j are only trusted if they are in fact effectively just 
translations, resulting in situations in which patches do not get assigned a local mapping.

Globalization step. The local mappings �̃j, j = 1, ...,P , are combined to define a 
global auxiliary mapping, defined on the entire domain X , by employing radial basis 
function (RBF) interpolation. A significant advantage of RBF interpolation is its mesh-
free character not posing any strong requirement on the input. Thus, as input all high-
fidelity pairs of the center coordinates and effective translations of the patches are used, 
together with additional conditions based on expert-knowledge. This can for instance 
be homogeneous boundary conditions in normal direction, when the porous medium is 
known to be fixed in certain directions. The interpolation then provides a smooth auxiliary 
function �̃ ∶ X → ℝ

d , which also continuously fills-in on low-fidelity patches.
Piecewise affine interpolation and efficient application. By construction, the RBF inter-

polation �̃ satisfies gR
0
(x) ≈ gS

0

(

�̃(x)
)

 . Despite this being the theoretical aim, due to the 
generality of �̃ there exists no efficient off-the-shelf algorithm for their evaluation to large 
arrays, resulting in the warping of images. However, in view of the access to efficient algo-
rithms to warp images (Bradski 2000), we use a new mesh-based, globally continuous, 
piece-wise (on patches) affine interpolation of �̃ on a Cartesian grid provided by patches. 
Finally, � can be efficiently evaluated on each patch. Similarly, �−1 can be approximated 
and evaluated.

This just described alignment procedure is implemented in DarSIA.

 
Limitations and technical requirements. The divide-and-conquer approach uses efficient 

feature detection and matching based on the ORB algorithm (Rublee et al. 2011) combined 
with a RANSAC algorithm (Fischler and Bolles 1981) to search for perspective bijection 
�̃j between the features, while discarding outlying wrongfully matched feature pairs. This 
poses the requirement that the patched subimages gR,j and gS,j contain sufficient resolution 
and size and thereby a sufficient amount of distinct features. Another natural lower bound 
on the patch size is given by the two images themselves and their associated deviation � ; 
the subimages can only be compared if they contain the same features. There exist two pos-
sibilities to mitigate the need for a low-resolution search space for � . One is to use overlap-
ping patches. The other is an iterative multilevel extension of the above idea, in principle 
aiming at detecting even quite general large deformations.

�̃�j = arg inf
𝜓 �∈Ψj

Dj

(

gR,j(x), gS,j
(

𝜓 �(x)
))

Code 10 DarSIA implementation for aligning pore-spaces based on multi-level fashioned patch-wise com-
parison, described below (single-level variant accessible through same interface by replacing method)
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Multi-level extension Through successive updating of the secondary images, the above 
divide-and-conquer algorithm can be straightforwardly extended to an iterative multi-level 
algorithm.

For this, consider an I -multilevel partition of patches pi,j of X , i = 1… I , j = 1…Pi , 
cf. Fig. 3. While iterating through the levels i = 1… I , one keeps track of a currently best 
(auxiliary) global map �̃� i , starting with the natural initial guess �̃�0 = Id ; a corresponding 
piecewise affine interpolation � i shall be available for i = 0… I . Then at each level 
i = 1… I , an auxiliary global map �̃� is determined using the above divide-and-conquer 
algorithm, now based on the partition 

{

pi,j
}

j
 and the pore-scale images gR

0
 and gS

0

(

� i−1(x)
)

 . 
The overall i-level approximation �̃� i is then recursively defined as �̃� i = �̃�◦�̃� i−1 , where 
with a slight abuse of notion, the composition of the two functions denotes the action of 
mesh-free RBF interpolation of those the composition in all interpolation points. Thus, the 
i-level iteration can be summarized in compact form, as searching for �̃� i = �̃�◦�̃� i−1 such 
that (in some sense)

where the piecewise affine interpolation � i−1 corresponds to �̃� i−1 defined as the 
successive RBF interpolation all i-level low-energy mappings. Finally, we set �̃� = �̃� I , 
and obtain � as the piecewise affine interpolation. We note that due to the use of mesh-
free RBF interpolation to communicate information between the different levels, there is 
no compatibility condition on the hierarchy of the I-level partition pi,j. Yet, successively 
refined patches constitute a natural choice, in particular allowing to determine large 
deformations with high accuracy. 

Remark 4 (Aligning pore-spaces as analysis tool). For a deformable porous medium, the 
corrections �(x) will give a local displacement field of the material, which can be used for 
calculating, e.g., material strain. 

Remark 5 (Transforming static data). Data attached to the reference image, e.g., a geomet-
ric segmentation as described in Sect. 2.3, can be warped through �−1 and attached to the 
secondary image without additional computations.

Remark 6 (Aligning pore-spaces as correction). Finally, gS◦� maps onto the reference 
image gR . Considering the corresponding unregularized physical images f R and f S , define 
the corrected physical image f R,S(x) = f S(�(x)) to signify that the secondary image has 
been locally corrected to match the physical reference image. This correction step is 
in fact part of the advanced initialization of DarSIA images, cf. Code 7. After aligning 
pore-spaces, the physical images now allow for direct comparisons direct comparisons 
f S,R(x) − f R(x) . Such are central in the analysis of pore-space dynamics, as detailed in the 
next subsection.

2.4.2  Analysis of Darcy‑Scale Pore‑Space Dynamics

The study of pore-space dynamics lies at the heart of porous media research. Flow 
processes, in particular transport, have been visualized and analyzed for decades in 
the imaging community, with particular emphasis on the pore-scale. DarSIA follows a 
similar spirit enabling imaging for analyzing the same pore-space phenomena but with an 

(4)�̃� = arg inf
𝜓 �

D
(

gR(x), gS
(

𝜓 �
(

𝜓 i−1(x)
)))
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emphasis on the Darcy scale. The focus of DarSIA lies in particular on transport both of 
passive tracers in single-phase as well as multiphase flows, as well as material deformation, 
and the goal is to provide an analysis quality sufficient to be treated as a measurement 
technology. Darcy-scale quantities of interest are continuous quantities as concentrations 
and saturations as well as binary data as indicators for certain phases.

To enable imaging of transport phenomena a “visual marker” is needed on the physical 
side, which changes its characteristics according to dominant, ongoing physical processes: 
moving fronts, concentration gradients, etc. A poorly chosen marker, which gives a poor 
signal in the image, will necessarily increase the uncertainty of the image analysis as a 
quantitative tool. The choice of the marker depends on the one hand on the image taking 
device. As examples, for PET scanners radioactive tracers are used, while in general 
passive dyes are suitable for photographs. On the other hand, the marker must ensure a 
strong signal, with large contrast to the background medium, and be sensitive to the 
physics allowing an at least injective mapping between signal and quantities of interest. 
Such a mapping requires calibration between the experimental protocol and the image 
analysis for optimal results. The calibration includes the important user-input of choosing a 
suitable interpretation of the physical image—the choice of a suitable single color channel 
or effective (possibly implicit) parametrization of a trichromatic color space, e.g., defined 
through multivariate interpolation (Marquardt 2023), in the context of photographs for 
instance.

This said, let f R(x) and f S,R(x) , as in Remark 7, be two physical images of the same 
porous material with their pore-spaces aligned, wherein we presume that there is an (in 
some sense) good visual marker present. Furthermore, let f R

1
(x) and f S,R

1
(x) be a suitable 

interpretation to analyze the pore-space dynamics. The central idea is to filter out the back-
ground solid by considering the difference f S,R

1
(x) − f R

1
(x) . This relative quantity has sev-

eral properties we want to highlight:

• Given that the reference image coincides with an “inactive” state, e.g., an unsatu-
rated porous medium. Then f S,R

1
(x) − f R

1
(x) identifies the “active” pore-space, which 

is sufficient to use as pore-space indicator in the regularization of f S,R
1

 as described in 
Sect. 2.2, after suitable rescaling to make it unitless and of order 1.

• Separate features in the pore-space, e.g., gas bubbles, reflecting the marker just slightly 
differently, can be detected by analyzing the relative quantity f S,R

1
(x) − f R

1
(x) , in par-

ticular, also in cases in which the reference image does correspond to saturated condi-
tions. Thus, the relative quantities are the vehicle to quantify saturations through effec-
tive upscaling.

Difference between photographs and physical images To compare images and the 
specific example of photographs (as opposed to PET images), the signal intensity in the 
pore-space may in general be everywhere nonzero, as only the color black coincides with 
a vanishing signal. Instead, the signal depends on the choice of the visual marker subject 
to “inactive” conditions. Thus, differences of photographs are crucial, and may in practice 
enter already at the step of defining a physical image, cf. Def. 1, through the mapping of 
color to signal f (c) . As an example, contrasting two images under different fluid conditions 
(e.g., gas filled or water filled) can give access to pore-space indicators f0 , as the solid 
phase will be the part of the image that is unaltered between the two images. We emphasize 
that while the actual photograph (and thus image) may be highly dependent on the visual 
marker, the conversion of the signal to a physically relevant pore-space quantity, i.e., 
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the definition of a physical image, should be as independent of the choice of marker as 
possible.

Remark 7 We exemplify the simplest construction of a physical interpretation from differ-
ences between images by a simple thresholding, i.e., interpretations are given as physical 
images with binary data

where �I denotes the characteristic function of some interval I . Such thresholding may 
typically be applied to define the pore space indicator f0 . A more complex example is an 
affine conversion subject to lower and upper cut-off, for instance to define a continuous 
volumetric concentration like variable

Here, cS(x) and cR(x) denote secondary and reference photographs, and we emphasize 
the presence of �−1 to align pore-spaces. Many more conversion models are possible and 
depend highly on the used visual marker.

To assist in the definition of physical images requiring a reference image (e.g., a pho-
tograph), DarSIA provides functionality to define the two interpretations f1(x) and f2(x) , 
as defined above, their Darcy-scale pore-space variants, as well as calibration tools, incl. 
extensions for the case of heterogeneous media. 

2.4.3  Measuring Distances Between Images

Comparisons of physical configurations is paramount in both experimental as well as com-
putational research. Quantifying the difference between the outcome of various repetitions 
of experiments to judge on physical repeatability, or experimental and corresponding com-
putational data to evaluate and validate mathematical models lies in the nature of compara-
tive studies.

The choice of the metric is essential to make a quantitative comparison meaningful. The 
most common comparative metric is pointwise, such as, e.g., the L2 norm, also discussed 
for regularizing images. However, in the context of images which aim at describing a trans-
ported quantity, we view the Wasserstein distance (also known as the “Earth Mover’s Dis-
tance” (Rubner et  al. 2000)) as more appropriate. The Wasserstein distance is, however, 

f1 ∶ cS(x) ↦ �I

(

cS(x) − cR(�−1(x))
)

f2 ∶ c
S(x) ↦ min

(

max�⋅
(

c
S(x) − c

R
(

�−1(x)
)

+ �, 0
)

, 1
)

Code 11  DarSIA implementation for extracting binary data as Darcy-scale physical image through thresh-
olding based on some lower and upper threshold parameters. Dynamic thresholding models exist allow-
ing for, e.g., histogram based adaptation of the lower and upper thresholding parameters
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not commonly available as it requires the solution of an optimal transport problem, and 
DarSIA therefore includes a native implementation. Given two spatial distributions �1 and 
�2 with equal mass ∫ �1dV = ∫ �2dV  , the Wasserstein distance is defined as the distance 
(in the sense of the global integral of a displacement field) required to move �1 to �2 . In 
mathematical terms, it is described as the following minimization problem.

 

where v is the displacement. The Wasserstein distance has the natural units of distance 
times mass, and DarSIA provides functionality to compute the Wasserstein distance as 
follows.

 

min

{

∫ |v|dV ∶ ∇ ⋅ v = �1 − �2

}

Code 12 DarSIA implementation for extracting concentration-type data as Darcy-scale physical image 
using a succession of affine scaling and clipping. The conversion is calibrated based on a set of images 
which is supposed to coincide with a volumetric injection for some user-defined rate. The calibrated con-
verter finally determines the concentration corresponding to a secondary image

Code 13 DarSIA interface to compute the 1-Wasserstein distance between two scalar, aligned images with 
same integral over space. The resulting distance has to be interpreted in units inherited by the images, i.e., 
the product of length and data units of the images. Different algorithms, controlled by method, exist to 
tune performance
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2.5  Visualization Tools

Visualization often complements quantitative analysis, in particular in the case of image 
data. Therefore DarSIA also provides some functionality to visualize and post-process data 
determined in Sect.  2.4, next to standard two- and three-dimensional plotting of image 
snapshots. The use of many of the following tools will be demonstrated with examples in 
Sect. 3.

We highlight the visualization of the pore-space alignment map � , cf. Section  2.4.1, 
which displays displacement using a glyph plot. 

 
Furthermore, provided related binary data, determined as in Sect. 2.4.2, associated to 

multiple physical images, e.g., advancing in time or from different experimental runs. Vis-
ualization of a comparison of the binary data, detecting unique appearances and overlaps 
between an arbitrary number of segmented images, and thereby allowing for comparing 
different experiments. Moreover, functionality is included to compute the fractions of each 
color (and thereby also the different instances of overlap) that appears in the image. These 
can also be weighted arbitrarily. 

 

Finally, in the spirit of particle tracking, an unsupervised detection of the finger tips at 
propagating fronts can be performed, allowing for their tracking in space and time. For 
this, consecutively, finger tips at two distinct times are detected and associated with each 
other. Aside of the possibility to study finger lengths, onset time etc., the trajectories of fin-
ger tips in space–time can be visualized.

Code 14 Show glyph plot of the result of the deformation analysis, cf. Code 10

Code 15 Illustration of a set of binary data (n many) associated to multiple physical images. In addition, 
ratio of unique and overlapping segments is quantified, useful for instance to study physical variability

Code 16 Visualization of the trajectories of finger tips, traveling in space–time, determined from a series of 
labeled images
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3  Application to 2D Images of Porous Media

DarSIA is developed with the aim of being a general tool for analyzing experimental pore-
scale data, both in 2D and in 3D. Nevertheless, the impetus for the initial development 
comes from the high resolution photographic data available through the FluidFlower con-
cept and experimental program (Eikehaug et  al. 2023; Fernø et  al. 2023; Haugen et  al. 
2023). In this section, we therefore demonstrate in the following how DarSIA can be used 
to analyze two-dimensional images taken of porous media experiments conducted in the 
FluidFlower rigs. It should, however, be noted that the implementation of DarSIA aims 
at being general and other images, or experimental setups, can be treated in a similar way.

The FluidFlower concept is a suite of experimental rigs at meter scale, allowing for con-
structing three-dimensional porous media with relatively (in some sense negligible) shal-
low depth, and equipped with a glass front panel, allowing to view one of the major sides 
of the porous medium. Hence, an essentially two-dimensional porous medium is provided. 
Filled with unconsolidated sand, arranged in layers, consisting of homogeneous regions, 
relatively complex media can be constructed, including fault-structures, and sealing cap-
rock-like layers. Finally, various fluids can be injected as water, tracers, and  CO2. By using 
pH-sensitive dyes the fluid flow can be visually perceived. Images are acquired to monitor 
experiments. As such the FluidFlower rigs allow for investigating various research ques-
tions in the field of multi-phase, multi-component flows in unconsolidated porous media, 
while a tool as DarSIA allows for quantitative research. And, indeed, DarSIA in combina-
tion with the FluidFlower rigs has been successfully used in studying tracer flow (Keile-
gavlen et al. 2023) as well as  CO2 storage experiments (Fernø et al. 2023; Haugen et al. 
2023).

In the following, we present some of the workflows used to analyze the images of the 
aforementioned experiments, in particular those related to the International FluidFlower 
Benchmark study (Nordbotten et  al. 2022; Eikehaug et  al. 2023; Both et  al. 2023). Key 
points include concepts introduced in Sect.  2 as a correct initialization, detection of 
facies, aligning pore-spaces, and investigating the  CO2 distribution, exemplified for two 
configurations (5 and 24 h after injection start). We consider these workflows as natural 
when dealing with real data, and expect them to be applicable as a prototype also for other 
physical experiments. Indeed, the same approach has been utilized to extract continuous 
concentration data from photographs (Keilegavlen et  al. 2023), including a model 
calibration as detailed in Sect. 3.6.

In the benchmark, the largest rig within the FluidFlower family has been used, with a 
width of 2.8 m, a height of 1.5 m, and a varying depth of 18–28 mm. Contrasting the size 
of the experiment, the different sand types have characteristic grain sizes varying from 0.5 
to 2.5 mm.

While being locally flat, the asset is curved, which results in strong nonlinear projec-
tions onto the two-dimensional canvas when captured with a photo camera. With a high-
resolution camera (35.5 MP with relatively good signal-to-noise ratio), the grains of the 
coarsest sands are clearly resolved, although the finest sands are not. To enable controlled 
color and illumination corrections, a standardized ClassicColorChecker is attached to the 
rig, which DarSIA is able to utilize. Finally, the formation is saturated with water and a 
pH-indicator, allowing to visually distinguish between water,  CO2-saturated water and gas-
eous  CO2, cf. Fig. 4.
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3.1  Initializing physical images

The three-dimensional physical asset has been designed as a curved entity (Eikehaug et al. 
2023), yet locally it has a natural two-dimensional character. Thus, in terms of Sect. 2.1, a 
bijection � ∶ Y → X is required which is more complex than just a linear rescaling, since 
Y ⊂ ℝ

2 while X ⊂ ℝ
3 . Using polynomial bulge and stretch corrections in addition to apply-

ing a perspective transform to map the corners of the medium onto a rectangular domain 
with the right physical dimensions, the seemingly non-rectangular reservoir can be dis-
torted to an actual rectangle. Since this is not a trivial task, and the uncertainty for having 
sufficiently corrected the domain is relatively large without having reference points inside 
the domain, calibration photographs of the FluidFlower have been taken with a laser grid 

Fig. 4  Illustration of input to image analysis.  CO2 injection in FluidFlower benchmark geometry from 
International Benchmark study, displayed with emphasis on relevant properties for the image analysis: A: 
standardized color checker for controlled color correction; B: bright, fine grained sand captured with rela-
tive low-resolution—single grains with shining effect; C: darker, coarser sand captured with relative high-
resolution, similar to remaining coarser sands; D: pH-indicator reacting to presence of  CO2 and allowing for 
distinguishing between water, dissolved  CO2 and gaseous  CO2

Fig. 5  Left: Unprocessed image of FluidFlower with laser grid projected on top, distorted due to the curved 
shape of the FluidFlower; in addition, suboptimal illumination. Right: Distortion and color corrected image, 
with artificial grid on top to assist the fine-tuning and examine the correction result
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with uniform spacing of 10 cm ± 1 mm projected onto the surface. Together with the func-
tionality in DarSIA to plot images with grids on top, the correction map � can be deter-
mined with sufficient accuracy, thus allowing to define a Cartesian coordinate system and a 
corresponding, meaningful metric, see Fig. 5.

3.2  Detecting Facies

The FluidFlower geometry is designed to be a layered geometry built from six facies of 
internally homogeneous sands, where the different facies are characterized by their grain 
size distributions. These have in general slightly different colors and brightness and thus 
respond differently to the pH-sensitive dye when in contact with  CO2. Thus, having basic 
color arithmetic in mind, differences of interpretations in a multi-image analysis, as 
described in Sect. 2.4.2, will require separate analysis on each facies. Furthermore, due to 
non-uniform illumination, each homogeneous region has to be treated separately, instead of 
aiming at the same treatment for each facies.

A gradient-based geometric segmentation is used in DarSIA to detect some of the lay-
ers. Note, as discussed in the caption of Fig. 6, the differences between the different lay-
ers in the middle part of the image are visually not very distinct. Nevertheless, the image 
analysis produces a coherent result, correctly identifying the main structures.

Our human visual perception suggests that an accurate dissection of the medium should 
be possible. However, due to the minute heterogeneities between sand grains, together 
with the small differences between the grain size distributions between the different facies, 
accurate identification of sand structures is even not trivial for humans. As a retrospective 
comment, the identification of sand layers could be facilitated if the experiment utilized 
sands with greater visual contrast.

Fig. 6  Segmented and labeled FluidFlower benchmark geometry. Each labeled region is colored differently 
and interfaces are highlighted with white lines. Several layers in the mid strip of the geometry are not seg-
mented in full detail. Here, a merely weak intensity gradient together with the need to regularize the image 
to effectively perform the segmentation in the intensity puts challenges to the watershed algorithm. Zoom-
in demonstrates the slight inaccuracy of detected (lower) interfaces due to the use of regularization
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3.3  Aligning Pore Spaces

As the FluidFlower geometry is constructed from unconsolidated sands, once poured into 
the rig, the sand continues to settle when subjected to stresses from fluid flow. Such sand 
settling is undesired when wanting to study physical variability of multi-phase processes 
(Fernø et al. 2023), but on the other hand, is an interesting observation regarding the flow 
of a saturated granular media. Thus, it can be of interest to precisely quantify the spatial 
map of sand settling through time. The multi-level feature-detection-based deformation 
analysis, cf. Section 2.4.1, allows for such spatial quantifications, as shown in Fig. 7.

In order to find a deformation mapping which detects relative displacements as small 
as just a few pixels, the partitioning of the image has to be relatively fine. However, as 
explained in Sect. 2.4.1, finding local deformation mappings may be challenging if the 
resolution is not sufficient, in particular when using a fine partitioning. This effect can 
be observed in the analysis of the FluidFlower dataset. For the finest sand (the brightest 
in the images), single sand grains cannot in general be detected. Indeed, as an unin-
tended consequence of the care with which the sands were prepared, the result is that 
for small patches within the finest sands, sufficient identifiable features for calculating a 
local deformation map may not be available. This exemplifies a situation where a multi-
level deformation analysis is of great utility, as larger deformation patches will still con-
tain identifiable features (if not within the finest sand, then at least boundaries between 
sand layers), cf. Fig. 8.

3.4  Phase Segmentation

Given a time-lapsed series of fine-scale images of an entire experimental run, the extrac-
tion of Darcy-scale pore-space quantities has been of large interest in the benchmark. 
As detailed in Fernø et  al. 2023, the chosen pH-indicator has not allowed for extraction 

Fig. 7  Effective deformation required to align pore-spaces of the configurations of two different baseline 
images, corresponding to the injection start of the first two experimental runs of the FluidFlower bench-
mark. DarSIA is able to detect local displacements of the order of 1.7 mm (and smaller), which corresponds 
to approximately 6 pixels. The glyph plot is obtained through the visualization functionality displayed in 
Code 14
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of continuous concentration and saturation profiles. Yet, instead, image analysis and the 
introduction of binary phase indicators as physical images, cf. Section 2.4.2, is possible. 
Based on the color and intensity response of the pH-indicator when in contact with  CO2, 
cf. Fig. 4, the image can be segmented into regions identifying the three different phases: 
clean water, water with elevated  CO2-concentration, and  CO2 gas. 

The chosen procedure is the following. First, all  CO2 (both in aqueous and gaseous 
phase) is detected, separating it from the water. Second, regions with gaseous  CO2 are iden-
tified as part of the overall  CO2. Both approaches are based on thresholding, as described 
in Sect. 2.4.2, thus from the perspective of the analyst, require choices on a suitable mono-
chromatic signal and threshold parameters. For the latter, the knowledge on the heterogene-
ous structure of the medium, cf. Section 3.2, allows choosing tailored parameters for each 
detected layer. Here, we consider two ways of choosing the parameters: a semi-automatic 
dynamic and manually tuned thresholding.

3.4.1  Reference image

As discussed in Sect. 2.4.2, the trichromatic photographs have to be related to a reference 
image, in order to allow conversion to binary data. Here the reference image is chosen to 
be the geometry, solely saturated with water. Several such images have been taken prior 
to the  CO2 injection. Despite no physical variation, differences of these reference images 
are not close to 0, cf. Fig. 9. Due to illumination fluctuations in the lab, wrong “inactive” 
signals are detected when choosing one of the photographs as a single reference image. To 
mitigate this issue, essentially a pointwise maximum of all reference images is chosen to 
be the final reference image. This procedure in some sense serves as cleaning of the signal 
from systematic noise.

Fig. 8  Illustration (debugging feature of DarSIA’s deformation analysis tool) of success to find an effec-
tive translation connected associated each patch; a light patch indicates success, while a dark one indicates 
failure. Left: Success for coarse level analysis ( 32× 16 patches). Right: Success for the subsequent fine level 
analysis ( 200 × 100 patches). Note the systematic failure for the finest/brightest sand type with lowest rela-
tive resolution per grain size
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3.4.2  Choice of a Monochromatic Color Space

To dissect images and distinguish between water and  CO2 as well as gaseous  CO2, a 
suitable monochromatic interpretation of the image differences, cf. Sect.  2.4.2, needs 
to be chosen. Detecting any  CO2 is identical with detecting any changes with respect to 
the reference image. In trichromatic (RGB) image comparisons, the solid-space should 
produce zero values (black in terms of color space), while any nonzero contribution can be 
associated to activity, thus, some  CO2.

Using the CMYK (Cyan–Magenta–Yellow–Key) color space and specifically the Key-
channel (corresponding to black), allows for a suitable monochromatic interpretation and 
desired segmentation based on thresholding, cf. Fig. 10. In fact this choice appears to be 
agnostic to the various pH-indicators considered, which simplifies the selection when con-
sidering various pH-indicators with very different color spectra (Haugen et al. 2023). Simi-
larly, a dedicated monochromatic color space can be selected to detect gaseous  CO2.

In an optimal setting, a monochromatic representation of the image differences would not 
require any thresholding to identify the desired phase, but would be a (potentially nonlinear) 
transformation of the actual continuous concentration. However, due to limitations of the 
pH indicators (small activation ranges and precipitation), this is not possible for this dataset. 

3.4.3  Calibration of Threshold Parameters

After choosing a suitable monochromatic interpretation, suitable thresholding parameters 
have to be selected; DarSIA provides extensions of Code 11 and 12 to heterogeneous 
media, allowing for including the geometric segmentation from Sect.  3.2 as input. This 
is part of a calibration process. Ideally, for each sand type, a controlled sensitivity study 
should allow for identifying proper values, applicable for any constructed geometry. In the 
current context, images acquired as part of the experiments themselves were used for the 

Fig. 9  The pointwise maximum of 10 image differences (in the blue color channel later used in the segmen-
tation of  CO2 gas), comparing secondary “reference” and a “true” reference image. The scale is in fractions 
of unity. Thus, all are seemingly images of the same configuration, acquired over the course of a few min-
utes. Reflections from both the color checker and the reservoir suggest systematic illumination variations. 
Moreover, each sand type may reflect light differently. Overall, in this dataset, undesired variations in the 
images of up to 2–3% of the RGB scale can be expected
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calibration. The lack of controlled reference images lowers the level of automation pos-
sible, and requires a greater input of human expert knowledge and visual examination with 
associated fine-tuning. Using the latter calibration routine, which follows a standard train-
ing-validation-testing paradigm, there is no guarantee for robustness.

In order to aid such calibration processes, DarSIA also includes a range of dynamic, 
unsupervised histogram-based thresholding schemes, which are close to the well-known 
Otsu thresholding method (Otsu 1979), but are tailored to scenarios in which either no 
“foreground” or “background” exists which should be separated, cf. Fig. 11. The dynamic 
thresholding can be used in at least two ways. One can use the dynamic threshold param-
eters as initial guesses for further tuning. Or, if less accurate results are sufficient, for 
instance in a fast-prototyping environment (Haugen et al. 2023), the dynamic thresholding 
can be even blindly used in unsupervised fashion.

In Fig.  12, a comparison of the static and dynamic heterogeneous thresholding tech-
niques is presented. Here, the static one is calibrated to work robustly for the entire Flu-
idFlower benchmark dataset, whereas the dynamic one is adapting to each image. Overall, 
both algorithms capture the main aspects of the experimental data (note that the light color 
above the region identified as gaseous  CO2 is actually dissolved  CO2 in the sealing sand, 
an aspect that is correctly delineated by the segmentation). However, when looking at the 
details of the segmentation, the two algorithms have different strengths and weaknesses in 
various parts of the domain. We emphasize again that the ultimate result depends not only 
on the image analysis algorithms, but also on the chosen visual markers in the experiment.

Any dynamic geometric segmentation, including the above phase segmentation, pro-
vides possibilities for further analysis. Using visual means, the sparse nature of segmenta-
tions in terms of intensity allows for direct comparison of different configurations by sim-
ple overlapping on a single canvas, cf. Code 15 and Fig. 13.

3.5  Density‑Driven Convective Mixing

Binary data localizing fluid phases hold information on propagating fronts. In multi-com-
ponent flows, the development of density-driven fingers (signaling the onset of density-
driven convective mixing), which can also be understood as unstable perturbations of 
a diffusive front, is a topic of interest, in particular in the context of  CO2 storage (see, 
e.g., Riaz et  al. 2006; Pau et  al. 2010; Elenius et  al. 2012). DarSIA provides function-
ality to determine extremalities of boundaries of binary data. Thus, finger tips can be 

Fig. 10  The negative of the key-channel of the signal difference for the FluidFlower benchmark dataset. 
Left: At the end of the  CO2 injection (5 hr after injection start). Right: 24 hr after injection start. The  CO2 
plumes have distant signals from the water regions (almost 0). Also the gas regions seem to be character-
ized by a significant range of values. Yet, for the left image, one can also see, that similar intensity values 
are locally reached in aqueous regions
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effectively identified. Given time-lapsed images, the position can be furthermore tracked in 
space–time, and plotted, cf. Code 15.

The FluidFlower benchmark experiments also show such density driven fingering of dis-
solved  CO2 within the water phase. Fig. 14 illustrates the possibility of identifying finger tips, 
here restricted to a certain region of interest (box C), relevant for the International Benchmark 
study (Nordbotten et al. 2022), while the corresponding trajectories of the finger tips are illus-
trated in Fig. 15. Besides plotting, their space–time locations can be used further to analyze 

Fig. 11  Histogram analysis, inspecting a single detected homogeneous region, cf. Sect.  3.2, for finding a 
suitable threshold parameter for detecting gaseous  CO2. Comparison between standard Otsu thresholding 
and a more careful choice provided in DarSIA. Left: 5 hr after injection start. Two distinct intensity peaks 
can be identified, representing the background (low values) and foreground (high values). Some value in 
between seems in principle a good candidate for constant thresholding. Both Otsu and DarSIA provide rela-
tively similar values. Right: 24 hr after injection start, illustrating a typical situation in which a homogene-
ous region is subject to signal without clear intensity peaks. Otsu and DarSIA provide two different values, 
where DarSIA remains close the value predicted for 5 hr

Fig. 12  Phase segmentation for the  CO2 injection in the FluidFlower benchmark geometry. Gaseous  CO2 
and  CO2-saturated water are indicated by yellow and green contours, respectively. Top: Static thresholding. 
Bottom: Dynamic thresholding. Left: 5 hr after injection start. Right: 24 hr after injection start. Discussion 
in the text
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various properties such as the onset of unstable finger growth, characteristic wavelength and 
velocity.

3.6  Darcy‑Scale Tracer Concentration Maps

Using an analogous procedure as described in Sect. 3.4, DarSIA can be used to extract con-
tinuous data from 2D images of porous media. This is demonstrated in the following based 
on a tracer experiment in a medium-sized FluidFlower rig, cf. Fig. 16, with similar properties 
as the large rig, cf. Fig. 4. The experiment considered here (Keilegavlen et al. 2023), follows 
three stages: First, a monochromatic tracer is injected with constant injection rate into a homo-
geneous medium; second, the injection rate is increased by a factor of two; finally the injection 
is stopped, cf. Fig. 17.

In order to extract physically meaningful data from the corresponding photographs, 
the procedure described in Sect.  2.4.2 is followed. Using image comparisons with respect 
to a reference image, the pore-space can be isolated, allowing for examining the tracer 
concentration. To correlate a monochromatic signal intensity (here the grayscale) to actual 
tracer concentration, a linear conversion is chosen, requiring suitable scaling parameters. 
These can be calibrated based on a set of calibration images, resulting in actual concentration 
profiles, cf. Fig. 16. In Fig. 17, the calibration and its validation for the described experiment 
is illustrated, showing its satisfactorily performance.

4  Application to Higher‑Dimensional Data

While conventional image analysis is tailored to static two-dimensional images, the 
physical world is inherently both dynamic and three-dimensional. Therefore data 
acquisition of porous media experiments enables in principle 4D data, tracking both space 

Fig. 13  Visual comparison of all (five) experimental runs of the International FluidFlower Benchmark 
study, 5 h after injection start. Each distinct color (besides grayscale) identify unique location of  CO2 in 
the geometry, while the gray values depict overlapping regions. Dark gray addresses all runs, while light 
gray includes only a handful. Visual inspection confirms that the observed variability is physical, and not an 
artifact of the segmentation algorithms. For further discussion on the physical variability of the  CO2 experi-
ments conducted in the FluidFlower see (Fernø et al. 2023)
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Fig. 14  Finger tips 5 hr after injection start, in a region of interest (box C)

Fig. 15  Trajectories of fingers, traveling through box C. The thickness of the paths relates to the relative 
length (compared to the longest path), for visualization purposes only to highlight dominant trajectories. 
Note the zig-zagging which occurs due to circulation in the formation

Fig. 16  Tracer experiment in homogeneous medium, conducted in a medium-size FluidFlower rig. Left: 
Photograph of experiment with zoom-in on transition zone. Right: Converted pore-space interpretation of 
tracer concentration, obtained through analogous procedure as in Sect. 3.4, but for continuous data
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and time. A typical example is the use of MRI and PET scanners to visualize porous media 
flow (Brattekås et al. 2020). In this section, we highlight use cases in which classical image 
analysis tools extended to higher-dimensions as natively implemented in DarSIA enable 
data recovery as well as physically meaningful comparisons of different datasets.

4.1  Space–Time Regularization and Inpainting

As motivated by Sect.  2.2, DarSIA provides tools for regularization of images also in 
higher dimensions. Building on the examples from Sect. 3, we provide an example where 
regularization of the form presented in Eq. (1) is used for denoising in 3D, realized here 
as two spatial dimensions and time. To facilitate 3D denoising in this context a time-
series of 2D images is stacked to make a 3D array (4D array if the color space is not 
monochromatic). 

The primary application of space–time regularization is to eliminate noise which is 
present at only instances in time. This is highly relevant for images with low scanning 
resolution, such as MRI images. Here, the standard workflow is to integrate the signal over 
time-slabs (i.e., long exposure times), and then to regularize the time-integrated image. 
This has the disadvantage that time-averaging is a very crude temporal regularizer, which 
leads to low temporal resolution in the final image sequence, while not exploiting the 
time-regularity of the underlying data. Direct space–time regularization is an attractive 
alternative, which in principle may allow for retaining higher resolution in time and more 
efficient noise removal.

To illustrate the potential of space–time regularization, Fig. 18 (left) shows a time-series 
of images where a major noise source is present in one image of the sequence (a person is 
partially obscuring the camera at a time during an experiment). The presence of such a noise 
source in the image would be difficult to reconcile with standard workflows, as any time-
average of the image sequence would be corrupted by the noisy image. As a consequence, it 
might seem necessary to remove such an image from the further analysis of the experiment.

The corrupted image in the time series essentially constitutes a singularity in time, 
and as such we expect standard total variation denoising techniques, such as Eq.  (3), to 
be suitable. However, the noise parameter �f  needs to be carefully considered, as it is 
necessarily anisotropic between the spatial and temporal axis since it will have units of 
length in the spatial direction and units of time in the temporal direction (we emphasize 
that in the space–time setting currently considered, the ∇ operator in Eq. (3) contains the 

Fig. 17  Illustration of calibration routine, as indicated in Code 12. Calibration is based on matching the 
effective volumetric injection rate interpreted from 10 images with the known injection rate. The calibration 
is validated by comparison with images, corresponding to later times in the experiment, and known injected 
volume, satisfactorily matching all three stages of the experiment (injection with 500 ml/hr; 1000 ml/hr; 
injection stop)
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time-derivative in its last row). Thus, a constant isotropic parameter makes no physical 
sense, and we therefore consider an anisotropic noise parameter:

For this particular example, we have set �x = �y = 1.2 ⋅ 10−4m , while we have used 
�t = 30s.

Two regularization approaches can now be considered. Keeping in mind the motivation 
of MRI images, we first consider the “blind regularization,” and let �f  be a homogeneous 
parameter independent of (space and) time. The result is shown in Fig. 18 (middle), where 
we observe that the defect has been largely regularized away, although a slight shadow is 
still present. Secondly, we consider the “inpainting” case where we are aware that this image 
is corrupted in the relevant region, and define a heterogeneous weight �f (x, y, t) as 1 every-
where except on a small (space–time) region surrounding the person where it is chosen as 0;

The result is shown in Fig.  18 (right), and displays an image where the person is 
completely removed, and the information is replaced by nearby information in space–time.

4.2  Comparison of Regularized Sparse 3D PET Signals and Simulation Data

It is a common task to compare simulation data against corresponding laboratory experi-
ments. In the following we detail parts of the workflow used in work by the authors to com-
pare PET images and simulation data of three-dimensional fluid displacement experiments 
in fractured cuboid rock (Both et al. in preparation). Here we focus solely on the technicali-
ties of the image analysis, illustrated with one temporal snapshot. The nature of the experi-
ment is implied in Fig. 19. Important features to note are noise and partial signal sparsity 
in the experimental data as seen when comparing one slice against vertically averaged data.

�f =

⎛

⎜

⎜

⎝

�x 0 0

0 �y 0

0 0 �t

⎞

⎟

⎟

⎠

.

�f (x, y, t) = fp =

{

0, if person is present

1, otherwise

Fig. 18  Time series of experimental images from the FluidFlower. In a single photograph (left) a person 
blocked parts og the camera vision. To the right two different 3D regularization procedures have been per-
formed to remove the unwanted feature from the original image while most of the remaining information in 
the image is maintained. In the center the weighting �f  is chosen to be constant, whereas on the right  �f  is 
vanishing in a small region (in space–time) around the person in the image. Visually, the latter results in the 
better reconstruction
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Images of the simulation data are ideal in the sense that they can be viewed as having no 
noise or other loss of information. In addition, an accurate coordinate system is naturally 
attached. In contrast, data of laboratory experiments come with real-life imperfections, 
including noise, flawed alignment of the geometry etc., as indicated in Sect. 2.

Qualitative or quantitative comparisons requires first of all a common reference con-
figuration, as discussed in earlier sections. Hence, aligning images from different sources 
in the same coordinate system is a technical but highly important task. Thanks to available 
graphical assistants and the routines described above, finding required stretching, transla-
tions and rotations to align different images is made relatively simple, also in 3D. Given 
that the user can identify matching features in the geometries, DarSIA computes effec-
tive transformations and aligns images. Similar for extracting spatial subregions of inter-
est. Despite the presence of noise, such preprocessing steps already allow for qualitative, 
visual comparison as illustrated in Fig. 20 (left). After spatial and temporal alignment, data 
from different images needs to be interpreted in comparable quantities with the same units. 
For the current example, the simulation data is assumed to provide unit-free volumetric 
concentration data, defined in each location of the three-dimensional domain. The PET 
images, however, record a spatially sparse signal of radioactivity depending on the concen-
tration of radioactive tracer and its distribution in the geometry. While the data acquisition 
does contain bias in the radioactive signal, we nevertheless for the current presentation 
assume the signal can be related to volumetric concentration data, allowing to rescale and 
match the total reference mass. We perform this step for the noisy PET signal. In addi-
tion, using regularization enables simultaneous denoising and inpainting. By choosing the 
weight �f  according to our trust in the data, cf. Fig. 19, a spatially dense and smooth signal 
is constructed—we employ both isotropic total variation denoising, cf. Section 2.2, as well 
as H1-regularization, replacing the total variation with the H1-seminorm. Additional global 
rescaling finally provides the experimental analog of the computational concentration data 
in the right units. The resulting representation of the data is displayed in Fig. 20, allowing 
to visually compare the data against the simulation data.

As all images have the same mass, a quantitative comparison is possible using, e.g., the 
Wasserstein distance, cf. Sect. 4.2. The values of the Wasserstein distance in this example 

Fig. 19  Two-dimensional representations of 3D PET images acquired from fluid displacement experiments 
in a fractured medium. Here, a tracer is injected from bottom over the entire inlet, including the fracture 
with high signal. The signal resembles radioactivity and is related to the volumetric concentration of the 
injected tracer (here it is scaled to have coinciding mass compared to the computational data). Left: A verti-
cally averaged dimension reduction is performed, smoothing the data. Center: A single slice is displayed 
showing the noisy and partially sparse character of the PET signal. Right: The mask �f  used in the regu-
larization is displayed. It is essentially the cut-off signal, with large trust in particularly small value, thus, 
resulting in relatively large penalization. Such a mask effectively results in simultaneous denoising and 
inpainting
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are all in the same order, indicating that the deviation between the simulation and experi-
ment is comparable to the experimental noise. Furthermore, the computations of the Was-
serstein distance also provide the flux needed to transport one dataset into the other, which 
provides another angle on understanding matches and mismatches between different data-
sets. As illustrated in Fig. 21, in the case of the noisy data, the main mismatch between the 
experimental and computational data originates from a uniformly distributed noise in the 
signal. In the regularized cases, an excess signal intensity close to the inlet in fact domi-
nates the mismatch. It is still possible to identify a better match of the TV denoised data 
close to the front, as already indicated through visual comparison.

Overall, DarSIA as a toolbox provides functionality for a holistic workflow from reading 
and image alignment, data interpretations, and comparison metrics. These offer tools for 
qualitative and quantitative comparisons of different datasets.

5  Conclusions and Future Developments of DarSIA

Our vision is the use of DarSIA as quantitative diagnostic tool in porous media laborato-
ries—both experimental and computational. Physical images, with attached physical coor-
dinates and interpretations, allow for both software and experts to analyze images taken of 
static and dynamic pore-space processes. We identify that image regularization is not only a 
noise removal tool, but indeed provides a seamless framework for pore-scale to Darcy-scale 
upscaling and analysis. Together with careful choices of interpretations of physical images 
and sufficient calibration we show by application to the FluidFlower dataset as well as PET 
and respective simulation data that this allows for quantitative analyses of real-world data.

An important requirement for DarSIA to be applicable to laboratory data is a close 
interplay between experimental design and image analysis. We identify several factors that 
have to be treated with care. We emphasize in particular the necessity (and possibility) of 
aligning images based on well-defined reference points, as well as an appropriate choice 
of the visual marker for any dynamical process. These concepts are essential when direct 
pore-scale comparisons are desired. Concretely, if small deformations (or pore-scale pro-
cesses) shall be studied using the algorithms described in Sect. 2.4.1 (or 2.4.2), the error 
in aligning the coordinate systems of two images has to be significantly smaller than the 

Fig. 20  A side-by-side comparison of different interpretations of the PET signal against the symmetric 
simulation data for qualitative, visual comparison (half of the experimental data is removed despite slight 
asymmetries in the data). From left to right, numbered from 1 to 4: 1) A slice of the original, noisy PET 
signal; 2) A slice of the 3D-H1 regularized PET signal, still showing an unsmooth signal inside the plume, 
yet strongly diffuse at the boundary; 3) A slice of the 3D-TV regularized PET signal, showing a smooth 
upscaled signal with sharper front; 4) A vertically averaged 3D-TV regularized PET signal, smoothing out 
peaks and outliers. Qualitatively, the TV denoised signal shows smoothest behavior, yet displays an excess 
signal intensity at the inlet not represented in the computational model
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characteristic displacement (or characteristic pore diameter). Therefore, markers for image 
calibration have to be considered as part of the experimental design, aiming at determining 
conversion models and estimate all required tuning parameters.

Recognizing the impact of careful experimental design tailored for the needs of image 
analysis, we envision further development of the code basis of DarSIA. Future efforts 
will be put in a user-friendly interface not only allowing experts to analyze images, but 
to enable its use ready from the start of an experiment—in its design phase. For this, we 
envision diagnostic tools to assess usability of visual media. For instance, the selection of a 
color space could be viewed as a constrained optimization problem, when searching for the 
optimal hue-saturation combination.

On the side of the analyst, we see a need for extended user-friendliness in terms of allow-
ing for direct interaction with the post-processed results. An interactive graphical user 
interface allowing to select reference points entering the tuning of distortion corrections or 
regions of interest entering definitions of color corrections would make DarSIA significantly 
more accessible, as initiated through the introduction of specific graphical assistants. Hav-
ing quantitative research and physical variability in mind, an extension of the suite of suit-
able metrics for comparing different Darcy-scale variants of physical images, we are aiming 
for more sophisticated distances than using a basic L2-mindset for binary data. Concepts 
from optimal transport, as the Wasserstein distance, also used widely in other areas of image 
analysis, allow for meaningful comparisons of continuous data especially for transport-
dominated processes (see, e.g., (Flemisch et al. 2023)). Yet, the computations are resource 
intensive and applications to higher dimensions, and fine resolution as well as heterogene-
ous domains, will require further developments in terms of efficiency.

Complementing the above visions, further development of DarSIA also has to include 
general improvements of the computational performance of the algorithms. The current 
version of DarSIA makes already tailored use of effective and scalable patching of images 
based on slim data structures. However, when entering the third spatial dimension, and 
hopefully also the fourth (time-lapse 3D data), there are clear theoretical advantages to 
apply regularization directly in 4D. Numerical algorithms for 4D image regularization are 
in no way standard (for a recent discussion, see, e.g., (Brehmer et  al. 2019)), and their 
development has to be both robust and run time optimized to allow for reasonably high 
resolution in space and time. This challenge is underscored by the observation that even for 

Fig. 21  Illustration of the deformation maps arising when calculating the Wasserstein distances for the two-
dimensional slices of the untampered data (left), the 3D-H1-regularized data (center), and the 3D-TV-reg-
ularized data (right), compared against the corresponding computational data. In color, the local difference 
of the data is displayed, closely related to the L2 error. The arrows display the minimizer associated to the 
Wasserstein distance, transporting the experimental data to the computational data. Visually, the TV-regu-
larized data shows a qualitatively lower mismatch, as the upper part of the front is not transported, and there 
seems to less excess signal at the inlet, compared to the H1-regularized data. The quantitative Wasserstein 
distance are all close to each other, being, 1.05e-6 m, 1.64e-6 m, 1.44e-6 m, respectively
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the two-dimensional images discussed in Sect. 3, one can make a strong case for the need 
of tailored and fast Darcy-scale image analysis algorithms.

A final remark pertains to automation. The complexities of imaging and porous media 
research imply that human-supervised use of the DarSIA components will be necessary for 
most research applications. On the other hand, there is still a drive in several applications 
toward real-time and unsupervised analysis, of laboratory data, such as in the realm of 
digital twin technology (Keilegavlen et al. 2023). The desire for unsupervised applicability 
of image analysis further supports the argument for robustness, efficiency, and reliability of 
the underlying algorithms.

In closing, we reiterate our invitation from the introduction, and encourage interested 
parties to join the future developments of DarSIA.
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