
1. Introduction
The topic of this paper is porous media simulation models where the fluid flux is related to pressure through 
a nonlinear diffusion law. We will refer to constitutive laws that have permeability as a dynamic function of 
other variables as state-dependent permeability relations. They are important in several porous media appli-
cations, including well-established models such as Richards' equation in hydrology (Richards,  1931) and the 
cubic relation between fracture aperture and permeability (Boussinesq, 1868). Other constitutive relations of rele-
vance to this work are power laws and the Kozeny-Carman relation between porosity and permeability (Hommel 
et al., 2018), and bulk permeability as a function of the effective pressure (Shapiro, 2015). These examples illus-
trate that constitutive permeability relations appear in both single-physics models that are essentially of nonlinear 
diffusion type and complex multiphysics problems where the permeability in modeled as functionally dependent 
on several primary variables.

In numerical simulations, the cost of linearization, and of solving the resulting linear problem, will typically 
dominate the overall cost of simulation, thus the solution strategy for nonlinear terms is critical for simulation 
efficiency. Common approaches for solving nonlinear systems can be divided into three classes: The simplest 
approach is the straightforward application of Newton's method, which achieves second order convergence rate 
in the asymptotic limit, but is only locally convergent (Deuflhard, 2005). Methods in the second class attempt 
to achieve global convergence by combining Newton's method with schemes such as line searches (Dennis & 
Schnabel, 1996), trust region approaches (Jenny et al., 2009; Møyner, 2017; Wang & Tchelepi, 2013), fixed-point 
methods (Radu et  al.,  2015), and acceleration methods (Anderson,  1965; Jiang & Tchelepi,  2019; Walker & 
Ni, 2011). Some of these techniques can be applied at the start of a nonlinear solve when the approximated solu-
tion is presumed to be outside the Newton convergence region, but then apply Newton's method to achieve second 
order convergence for the last iterations, see for example, List and Radu (2016) and Both et al. (2019). Finally, in 
multiphysics problems, the problem may be split into smaller blocks that each represent one or several physical 
processes, and Newton's method applied successively to each of these blocks (Jenny et al., 2006; Li et al., 2021).

Independent of which of the above strategies is applied, it is highly desirable that the linearization scheme 
is implemented so that second order accuracy can be achieved asymptotically. This depends on the Jacobian 
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containing sufficiently accurate (ideally exact) representations of the multivariate derivatives of the residual 
equations. Depending on the design of the simulation software, correctly implementing the derivatives involves 
tedious work, and including new nonlinearities, for instance in the form of permeability relations, can be a 
tremendous technical challenge. While these technicalities can be partly relieved by employing automatic differ-
entiation to construct the derivatives, as is increasingly being done in simulation software (Krogstad et al., 2015; 
Rasmussen et al., 2021; Zhou et al., 2011), a simpler alternative is to ignore or approximate derivatives in the 
linearization scheme. The resulting scheme can be considered a quasi-Newton approach, in the sense that the 
Jacobian matrix is not the true derivative of the residual equations. Relying on such approximated Jacobian 
matrices can significantly simplify implementation, thus adaptation, of new physical models, but as with any 
quasi-Newton  method, second order convergence can in general not be achieved (Nocedal & Wright,  1999). 
A critical question in employing Newton's method in multiphysics simulations, in particular when consider-
ing non-standard effects such as nonlinear permeability relations, is therefore whether the derivatives can be 
computed with sufficient accuracy to preserve second order convergence, and whether the speedup gained is 
worth the additional implementation effort.

Since linearization is commonly applied to the discretized system, the question of how to calculate or approxi-
mate derivatives is closely linked to the discretization methods in use. Specifically, for state-dependent perme-
ability relations, the discretization of diffusion terms must be differentiated with respect to the relevant primary 
variables. This can readily be done for methods based on variational formulations, including primal and mixed 
finite elements. However, in finite volume methods, which are commonly applied for complex applications, the 
permeability enters the discretization in non-trivial ways, and exact derivatives can be obtained only in some 
cases. Specifically, it is relatively straightforward to differentiate the two-point flux approximation (TPFA) (Aziz 
& Settari, 1979) with respect to permeability. While robust, this scheme is well known to suffer from inconsist-
encies and grid orientation effects, see for example, Zhou et al. (2011). More advanced finite volume methods, 
in this paper exemplified by the so-called multi-point flux approximation (MPFA) methods (Aavatsmark, 2002; 
Edwards & Rodgers, 1998), amend these shortcomings. However, the more complex discretization stencils in 
such methods are not readily differentiated, raising the question of whether fast Newton convergence can be 
achieved when the discretizations are applied to (multiphysics) problems with state-dependent permeability rela-
tions. As an alternative, some versions of nonlinear finite volume methods, for example, Su et al. (2018), can 
be applied within Newton's method. However, few applications of nonlinear methods to multiphysics problems 
have been reported, see however Schneider et al. (2018), Yu et al. (2019), Svyatskiy and Lipnikov (2017), and we 
are  not aware of any application of nonlinear finite volume methods to problems with state-dependent permea-
bility. A different approach to construct approximated Jacobian matrices, presented in Yue and Yuan (2011) and 
Lipnikov et al. (2016), is based on linearizing the continuous problem prior to spatial discretization. By using 
different discretization methods for this linearized problem, compared to those applied to the nonlinear residual 
equation, the Jacobian matrix can be approximated in ways that may improve the nonlinear convergence.

In the present work, we study multiphysics problems involving state-dependent permeability. We restrict ourselves 
to fully coupled solution strategies based on implicit temporal discretization and finite volume approximations 
of spatial derivatives. We thus disregard approaches based on decoupling or tailoring of the nonlinear solver, 
however, the techniques we introduce can also be applied to such approaches. We consider both TPFA and MPFA 
methods. For the more complex MPFA scheme it is not practical to calculate exact derivatives, and we therefore 
show how to approximate the derivatives by a TPFA approach. Our suggested method is easy to implement and 
can readily be applied to multiphysics problems. We illustrate this by presenting simulations of four problems of 
high application relevance: A nonlinear diffusive flow problem, a reactive transport problem where permeability 
is altered by chemical dissolution, poromechanical simulations where the permeability changes due to porosity 
changes, and hydro-mechanical simulations for fractured porous media, with the fracture permeability changing 
due to fracture deformation. In all cases, we show that our formulation is superior to the standard treatment 
of permeability updates, leading to much reduced simulation time. All simulations are run using PorePy, an 
open-source simulation toolbox for multiphysics problems in fractured porous media (Keilegavlen et al., 2021), 
see Section 6.

The rest of the paper is structured as follows: Section 2 presents the model equations for fluid flow and the three 
multiphysics example models. In Section 3, we describe the finite volume flux discretizations and our proposed 
method for including permeability updates. Section 4 contains results for validation and application simulations, 
while we offer a summary and conclusions in Section 5.
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2. Example Model Problems
In this section we introduce four model problems that motivate our study of solvers that deal with state-dependent 
permeability. These are a nonlinear stationary diffusion problem and three multiphysics problems which each 
illustrate different mechanisms leading to dynamic and nonlinear permeability, which in turn impact the entire 
nonlinear system of equations. We use the four problems to validate and illustrate our discretization scheme in 
Section 4.

For all applications, we model the fluid flux q using nonlinear version of Darcy's law:

𝑞𝑞 = −𝕂𝕂(𝜉𝜉)∇𝑝𝑝𝑝 (1)

with p representing the potential. Throughout this work we will use the fluid pressure as the potential, and 
we will assume a constant fluid viscosity of 1. The permeability 𝐴𝐴 𝕂𝕂 depends on the system state, represented 
here by a generic variable ξ. For single physics nonlinear diffusion ξ = p, while for the multiphysics problems 
considered in the following sections more advanced dependencies will be introduced. In the case ξ  =  p, a 
state-dependent diffusion problem can be obtained by combining Equation  1 with a conservation equation, 
which reads:

𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝜕𝜕𝜌𝜌) = 𝑓𝑓𝑓 (2)

Here, ϕ is a porosity, t the time variable and f a fluid source term. The fluid density is

𝜌𝜌 = 𝜌𝜌0𝑒𝑒
𝑐𝑐(𝑝𝑝−𝑝𝑝0), (3)

with c and ρ0 denoting compressibility and reference density, respectively. For simplicity, we shall sometimes 
consider an incompressible fluid, that is, c = 0. Setting c = 0 in Equation 2 gives a nonlinear stationary diffusion 
model.

2.1. Reactive Transport

As our first multiphysics application we consider reactive transport with mineral dissolution. We represent this by 
a kinetic reaction system of two components, denoted A and B, represented by the pore volume fractions cA and 
cB, where A is aqueous and B is a mineral. Conservation of the two components is modeled as

𝜕𝜕𝜕𝜕𝜕𝜕𝐴𝐴𝜌𝜌𝐴𝐴

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝑞𝑞𝜕𝜕𝐴𝐴𝜌𝜌𝐴𝐴) = 𝑟𝑟 (4)

𝜕𝜕𝜕𝜕𝐵𝐵𝜌𝜌𝐵𝐵

𝜕𝜕𝜕𝜕
= −𝑟𝑟 (5)

Here, the reaction term is 𝐴𝐴 𝐴𝐴 = 𝐴𝐴0(𝑐𝑐𝐴𝐴∕𝐾𝐾𝐴𝐴 − 1) with r0 denoting a constant reference reaction rate, the Darcy veloc-
ity q is computed using Equation 1 and KA denotes the concentration at which component A is in equilibrium. 
The component densities are represented by ρA and ρB, and are taken as constant in this work. For simplicity, 
we assume the fluid density function is independent of cA so that water conservation is described by Equation 2.

The porosity will change with the concentration of the mineral B, that is,

𝜙𝜙 = 𝜙𝜙0(1 − 𝑐𝑐𝐵𝐵), (6)

where ϕ0 is the reference porosity at cB = 0. The permeability will also be altered by the reactions, commonly 
modeled by the power law

𝕂𝕂 = 𝕂𝕂0

(

𝜙𝜙

𝜙𝜙0

)𝜂𝜂

, (7)

with 𝐴𝐴 𝕂𝕂0 denoting the permeability at the reference porosity and the exponent η an application dependent fitting 
parameter (Hommel et al., 2018). The presence of q in Equation 4 and the permeability's porosity dependence 
result in a two-way coupled problem.
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2.2. Poroelasticity

A common model for coupled flow and mechanical deformation in a porous medium is described by the equa-
tions which read (Coussy, 2004)

∇ ⋅ (ℂ𝜖𝜖 − 𝐼𝐼𝐼𝐼𝐼𝐼) = 𝑓𝑓𝑠𝑠 (8)

𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− ∇ ⋅ (𝜕𝜕𝕂𝕂∇𝑝𝑝) = 𝑓𝑓𝑓𝑓 (9)

Here, ϵ = (∇u + (∇u) T)/2 is the symmetric strain tensor, u is the displacement vector, and the Darcy velocity q 
is explicitly represented in the equations for illustrative purposes. Furthermore, 𝐴𝐴 ℂ represents the stiffness matrix, 
I the identity tensor, α is the Biot coefficient, fm is body forces, and fs denotes fluid source terms. The porosity 
depends on both fluid pressure and the displacement (Coussy, 2004)

𝜙𝜙 = 𝜙𝜙0 + (1 − 𝛼𝛼)
𝛼𝛼 − 𝜙𝜙0

𝐾𝐾𝑠𝑠

(𝑝𝑝 − 𝑝𝑝0) + 𝛼𝛼∇ ⋅ (𝑢𝑢 − 𝑢𝑢0), (10)

with Ks denoting the bulk modulus and where ϕ0, p0, and u0 represent porosity, pressure, and displacement in 
a reference state. The permeability will change together with the porosity, modeled herein by setting η = 3 in 
Equation 7, resulting in the Kozeny-Carman relation. The Biot coefficient α thus acts as a control on the direct 
contribution from the mechanical deformation to the (nonlinear) permeability change.

2.3. Fractured Poroelastic Medium With Dynamic Fracture Aperture

As a final example application, we consider the extension of poroelasticity to fractured media. Several models 
exist for deformation of fractured media, we consider a simple version which nevertheless illustrates the impor-
tance of dynamic permeability effects in the fracture, through the dependency of fracture aperture.

We consider a domain with a single fracture, which is modeled as a lower-dimensional inclusion embedded in the 
simulation domain; extensions to networks of intersecting fractures is straightforward, see for instance Stefansson 
et al. (2021). Flow and deformation of the host medium are again modeled as a poroelastic system, that is, by 
Equations 8–10. Fluid flow in the fracture and between fracture and matrix are modeled by Darcy-type laws on 
the form (Martin et al., 2005; Nordbotten et al., 2019)

�
‖

= −�
‖

∇
‖

�� , �±⟂ = �⟂
(

�±⟂ − ��
)

, (11)

In these equations, subscripts 𝐴𝐴 ‖ and ⊥ represent the tangential and normal direction to the fracture, respectively, 
while superscript ± indicates the two sides of the fracture; we refer to Nordbotten et al. (2019) for more details. 
The fracture permeability is related to the fracture aperture a through the so-called cubic law,

�∥ =
�3

12
I. (12)

Mass conservation for the host medium is modeled by Equation 2, while in the fracture, the equation reads

𝜕𝜕(𝜌𝜌𝜌𝜌)

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝜌𝜌𝜌𝜌

‖
) − 𝜌𝜌

(

𝜌𝜌+
⟂
+ 𝜌𝜌−

⟂

)

= 𝑓𝑓 (13)

where the last term of the left-hand side describes inflow into the fracture from the host domain.

The aperture can change due to mechanical deformation of the fracture. A wide range of models have been 
proposed to incorporate such effects under various circumstances, see for example, Barton et  al.  (1985) and 
Willis-Richards et al. (1996). As a simple but illustrative example, consider the effective traction T on the fracture 
wall,

𝑇𝑇 = 𝑛𝑛 ⋅ (ℂ𝜖𝜖 − 𝐼𝐼𝐼𝐼𝑚𝑚) − 𝐼𝐼𝑓𝑓𝐼𝐼 ⋅ 𝑛𝑛𝑛 (14)

When the normal component of the effective traction is tensile, the fracture walls are pushed apart, leading to an 
increasing aperture
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� = [�]� + �0 [�] = �+ − �−, (15)

where u ± is the displacement on the opposing fracture walls, subscript n denotes the normal component and a0 is a 
residual hydraulic aperture. Changes in the aperture are coupled through the fracture permeability to the pressure 
equation in the fracture, with coupling of the fracture pressure back to the effective normal traction as shown by 
the last term of Equation 14. For more information on modeling of the relation between displacement and fracture 
aperture, see Stefansson et al. (2021).

In the normal direction to the fracture, its deformation is restricted by

[�]� ≥ 0 [�]��� = 0 �� ≤ 0, (16)

where Tn denotes the normal component of the effective traction. Denoting the friction coefficient by F, we model 
the tangential (τ) deformation using a Coulomb type friction law, see for example Hüeber and Wohlmuth (2005):

‖𝑇𝑇𝜏𝜏‖ ≤ −𝐹𝐹𝑇𝑇𝑛𝑛 (17)

‖𝑇𝑇𝜏𝜏‖ < −𝐹𝐹𝑇𝑇𝑛𝑛 ⇒ [�̇�𝑢]𝜏𝜏 = 0 (18)

‖𝑇𝑇𝜏𝜏‖ = −𝐹𝐹𝑇𝑇𝑛𝑛 ⇒ ∃𝜁𝜁 ∈ ℝ
+ ∶ [�̇�𝑢]𝜏𝜏 = 𝜁𝜁𝑇𝑇𝜏𝜏 . (19)

These equations are supplemented by a condition of force balance on the fracture walls, that is,

𝑇𝑇 + + 𝑇𝑇 − = 0 (20)

where again superscripts are used to denote quantities on the two opposing sides of the fracture.

3. Discretization
In this section, we briefly introduce two finite volume methods for diffusive terms. Then, we show how to extend 
them for state-dependent permeability.

3.1. Finite Volume Methods

Consider a grid and let Γj denote a generic face in the grid. A cell-centered finite volume discretization approxi-
mates the flux through Γj as

𝑞𝑞𝑗𝑗 =
∑

𝑖𝑖∈𝑗𝑗

𝑡𝑡𝑗𝑗𝑗𝑖𝑖𝑝𝑝𝑖𝑖𝑗 (21)

where 𝐴𝐴 𝑗𝑗 represents a set of cells in the vicinity of face j, pi is the pressure in cell i and the coefficients tj,i are 
called transmissibilities. The choice of a specific discretization method fixes 𝐴𝐴 𝑗𝑗 and determines how the trans-
missibilities are computed. As an example, in TPFA, 𝐴𝐴 𝑗𝑗 contains the two immediate neighbors of face j, denoted 
L and R, and

𝑡𝑡𝑗𝑗𝑗𝑗𝑗 =
𝛼𝛼𝑗𝑗𝛼𝛼𝑅𝑅

𝛼𝛼𝑗𝑗 + 𝛼𝛼𝑅𝑅
𝑗 𝛼𝛼𝑖𝑖 = |Γ𝑗𝑗|

𝑛𝑛𝑗𝑗 ⋅ 𝕂𝕂𝑖𝑖

𝑑𝑑𝑗𝑗𝑗𝑖𝑖 ⋅ 𝑑𝑑𝑗𝑗𝑗𝑖𝑖

⋅ 𝑑𝑑𝑗𝑗𝑗𝑖𝑖𝑗 𝑡𝑡𝑗𝑗𝑗𝑅𝑅 = −𝑡𝑡𝑗𝑗𝑗𝑗𝑗. (22)

Here, i ∈ L, R, nj is the normal vector of Γj pointing from cell L to R and dj,L is the distance between the centers 
of cell L and Γj etc. We have defined a positive flux going from cell L to R and α{L,R} are known as the half 
transmissibilities.

In MPFA methods 𝐴𝐴 𝑗𝑗 is larger, for the standard MPFA-O method (specifically the MPFA O(0)-method, see 
Aavatsmark (2002)) it consists of all cells sharing at least one vertex with Γj. This makes the construction of the 
transmissibilities more involved, specifically the construction requires the inversion of a local matrix as detailed 
in for example, Aavatsmark (2002) and Edwards and Rodgers (1998), and it is therefore not practical to express 
the transmissibilities explicitly as functions of the permeability.

Equipped with a flux discretization on the form (Equation 21) for all faces in a grid, the integral form of the flux 
divergence in Equation 2, stated for a cell ωk with boundary ∂ωk and outer normal vector n, reads

 19447973, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034686 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [04/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

STEFANSSON AND KEILEGAVLEN

10.1029/2023WR034686

6 of 14

∫
𝜕𝜕𝜕𝜕𝑘𝑘

𝑞𝑞 ⋅ 𝑛𝑛 𝑛𝑛𝑛𝑛 ≈
∑

𝑗𝑗∈𝑘𝑘

𝑞𝑞𝑗𝑗 =
∑

𝑗𝑗∈𝑘𝑘

∑

𝑖𝑖∈𝑗𝑗

𝑡𝑡𝑗𝑗𝑗𝑖𝑖𝑝𝑝𝑖𝑖𝑗 (23)

with 𝐴𝐴 𝑘𝑘 denoting the set of faces of ωk.

3.2. Discrete State-Dependent Permeability

The discretization defined by Equation 21 is routinely applied both to stand-alone diffusion problems and multi-
physics problems that include diffusion as part of larger problems, both linear and nonlinear. In cases where the 
permeability depends on the state variable ξ, we have

𝑡𝑡 = 𝑡𝑡(𝕂𝕂(𝜉𝜉)). (24)

For clarity of presentation, we let 𝐴𝐴 𝕂𝕂 be a scalar so that differentiation is well defined. The below reasoning can be 
extended to anisotropic and full permeability tensors by differentiating with respect to individual tensor compo-
nents, which is straightforward but tedious. When applying Newton's method to nonlinear problems that include 
Equation 21, we need the differential, which reads

𝑑𝑑𝑑𝑑𝑗𝑗 =
∑

𝑖𝑖∈𝑗𝑗

(

𝑡𝑡𝑗𝑗𝑗𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖 +
𝜕𝜕𝑡𝑡𝑗𝑗𝑗𝑖𝑖

𝜕𝜕𝕂𝕂𝑖𝑖

𝜕𝜕𝕂𝕂𝑖𝑖

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕

)

. (25)

While the first term is standard, the second term represents the dependency of the transmissibilities on the cell-
wise permeability 𝐴𝐴 𝕂𝕂𝑖𝑖 , which in turn is a function of ξ. For most finite volume discretizations, a direct relation 
between transmissibility and permeability is not available, thus computing 𝐴𝐴

𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗𝑗

𝜕𝜕𝕂𝕂
 is not a practical option. The 

simpler option is therefore to ignore the second term in Newton linearization schemes and rather use an approx-
imated Jacobian. As discussed in the introduction and demonstrated in Section 4, this approximation can reduce 
the performance of the nonlinear solver, substantially increasing the computational cost of simulations.

From Equation 22, we see that for TPFA, the term 𝐴𝐴
𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗𝑗

𝜕𝜕𝕂𝕂
 can be expressed in closed form using the chain rule. A 

simple calculation shows that

𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗𝑗

𝜕𝜕𝕂𝕂𝑗𝑗

=
𝛼𝛼2

𝑅𝑅

(𝛼𝛼𝑅𝑅 + 𝛼𝛼𝑗𝑗)
2

𝜕𝜕𝛼𝛼𝑗𝑗

𝜕𝜕𝕂𝕂𝑗𝑗

𝑗 (26)

where 𝐴𝐴 𝕂𝕂𝐿𝐿 is the permeability in cell L. The expression for 𝐴𝐴
𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗𝑗

𝜕𝜕𝕂𝕂𝑗𝑗

 is similar. In addition, the application-specific 
factor 𝐴𝐴

𝜕𝜕𝕂𝕂𝑖𝑖

𝜕𝜕𝜕𝜕
 must be included. The expression(26) can be calculated analytically, thus enabling the TPFA-based 

approximation of the differentiated transmissibility.

If the diffusion term is discretized with TPFA and the second term of Equation 25 is included, the resulting 
Jacobian matrix is exact. For other schemes (represented herein by the MPFA method), including a TPFA-based 
representation of the second term of Equation 25 will only give an approximation of the true derivative of the 
discretized flux. Nevertheless, the approximated scheme will contain information of how diffusion changes with 
permeability. Thus, compared to the standard approach of ignoring the effect of permeability changes on the 
Newton search direction, there is reason to hope that the new approach will result in overall lower computational 
cost, also for other finite volume methods than TPFA.

3.3. Discretization of Remaining Terms

For the simulations presented in Section 4, the reminder of the terms in the governing equations are discretized 
by well-established methods; for completeness, we give a brief summary of the approaches below. The primary 
variable of the discrete fluxes discussed above is cell-center pressure in the porous matrix. In the case involving 
fractures, we also have cell pressures in the lower-dimensional grid representing the fracture and fracture-matrix 
interface fluxes representing 𝐴𝐴 𝐴𝐴±

⟂
 of Equation 11. The fracture application also requires discrete fracture tractions 

and interface displacements, as well as matrix displacements which are also used in mono-dimensional poroe-
lasticity. For more information, we refer to Stefansson et  al.  (2021). In the reactive transport application, CA 
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and CB are also represented by cell-center values. The governing equations are all solved fully coupled using a 
Newton-Raphson method, with suitable adjustment in the case of contact mechanics as outlined below.

All volume terms are discretized in the standard finite volume manner, that is, treated as cell-wise constant 
and integrated over the cell yielding a cell volume factor. The advective terms are discretized using first-order 
upstream weighting. The upstream direction is computed from the fluid fluxes at the previous nonlinear iteration, 
while the flux magnitudes are treated fully implicitly. We discretize the poroelastic system with the finite volume 
multi-point stress approximation scheme (Keilegavlen & Nordbotten, 2017; Nordbotten, 2016), which can be 
considered a vector extension of the MPFA scheme.

The fracture contact mechanics relations of Equations 16 and 17 are reformulated as two complementary functions 
depending on cell-wise fracture contact traction and fracture wall displacements (Hüeber & Wohlmuth, 2005):

𝐶𝐶𝑛𝑛 = −𝑇𝑇𝑛𝑛 −
1

𝐹𝐹
max(0, 𝑏𝑏𝑓𝑓 ) (27)

and

𝐶𝐶𝜏𝜏 = max(‖𝑇𝑇𝜏𝜏 + 𝑐𝑐[�̇�𝑢]𝜏𝜏‖ (−𝑇𝑇𝜏𝜏 ) + max(0, 𝑏𝑏𝑓𝑓 (𝑇𝑇𝜏𝜏 + 𝑐𝑐[�̇�𝑢]𝜏𝜏 )). (28)

Here 𝐴𝐴 𝐴𝐴𝑓𝑓 = −𝐹𝐹 (𝑇𝑇𝑛𝑛 + 𝑐𝑐[𝑢𝑢]𝑛𝑛) is the friction bound, 𝐴𝐴 𝐴𝐴𝐴 indicates the increment of u between successive time steps and 
c denotes a numerical constant. The constraints are imposed by setting C = 0 and including the two sets of equa-
tions in the global equation system, solved using a semi-smooth Newton-Raphson algorithm (Berge et al., 2020; 
Hüeber & Wohlmuth, 2005) assembled using PorePy's automatic differentiation capability.

Compared to standard discretization methods which ignore the coupling terms due to state-dependent permeabil-
ities, our linearization adds a diffusion-type coupling term in off-diagonal blocks of the Jacobian matrix which 
potentially leads to a larger matrix bandwidth. In this work, the linear systems are solved with a direct banded 
solver and we have not noted detoriation of the linear solver performance due to the additional block. This may 
change for larger problems than those considered herein, where preconditioned iterative solvers will have to 
be applied. Depending on the problem at hand, the extra diffusion term may lead to slower convergence of the 
iterative solver unless the term is properly accounted for in the preconditioner, which can be a challenging and 
problem-dependent task. While this may reduce the computational savings expected from our approach, we have 
not investigated this matter.

4. Results
In this section, we compare the proposed method to that of standard finite volume schemes in terms of the conver-
gence properties of the nonlinear system. The results are grouped into two parts: In Section 4.1 the behavior with 
respect to different grid types and properties is considered. In this comparison we consider the model problem for 
fluid flow, and include the two-point and multi-point method with and without transmissibility differentiation, 
yielding four combinations which we will refer to as TPD, MPD, TP and MP, respectively. We reiterate that TPD 
and MPD both apply a TPFA-based approximation of the second term in Equation 25, the methods only differ in 
how the transmissibilities in the first term is computed. In Section 4.2 we investigate the behavior with respect 
to the multiphysics problems presented in Sections 2.1–2.3. As the focus here is on multiphysics couplings, we 
consider only Cartesian grids in this section.

All simulations use the open-source software framework PorePy (Keilegavlen et al., 2021), and the simulations 
can be reproduced in a Docker container that can be found at Stefansson and Keilegavlen (2023).

4.1. Fluid Flow

First, we perform tests for a range of spatial meshes, thus demonstrating robustness with respect to factors which 
may impair convergence. Throughout this section, we consider a fluid mass balance problem defined by Equa-
tions 1 and 2. We consider an incompressible fluid, thus the first term in Equation 2 is dropped, and let the perme-
ability depend on the potential only, that is, ξ = p. Specifically, we consider the function

𝕂𝕂(𝑝𝑝) =
√

𝑝𝑝 + 10−2, (29)
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with the constant 10 −2 avoiding negative values due to numerical rounding errors. We consider the manufactured 
solution p = x(1 − x)y(1 − y) and apply the resulting source function and homogeneous Dirichlet conditions at 
the boundary of a unit square domain.

In the first comparison, we use Cartesian meshes with 10, 100, and 500 cells in each dimension and employ the 
TP and TPD discretizations. We do not include the MP versions, since they reduce to their TP equivalents on 
Cartesian meshes for isotropic permeability, see Aavatsmark (2002). The plots of residual errors in Figure 1a 
consistently show linear convergence of the reference method and quadratic convergence of the new method. 
Throughout this section, we use the cell-wise discrete l 2 norm normalized by the square root of the length of the 
residual vector. Similarly, we compute permeability errors as the l 2 norm of the difference between cell-wise 
permeability at each iteration and the permeability values in the converged state normalized using the square root 
of the number of cells. This error is also plotted in Figure 1b, demonstrating correlation between the reduction 
rate of, respectively, the nonlinear residuals and permeability errors.

Next, we apply all four methods to a randomly perturbed structured mesh and an unstructured simplicial mesh, 
see Figures 2a and 2b. The discrepancy between TPFA and MPFA means the MPD combination degrades from 
a full Newton scheme to a Quasi-Newton scheme as discussed in Section 3.2. Thus, quadratic convergence in 
Newton's method cannot be expected for the latter combination. This is reflected in the difference between results 
for MPD and TPD in Figure 1c. Nevertheless, MPD achieves significant improvement over the lagged perme-
ability update in MP. Furthermore, for the TPD combination, quadratic convergence is retained. We note that 
compromising consistency using TPFA as the base discretization may in certain cases be expedient for its ease of 
implementation and simulation speed.

Third, we show results for anisotropically distorted meshes considering only MPFA schemes. Fixing the number 
of cells to 50 in the x direction, we impose grid anisotropy by using 200 and 1,000 cells in the y direction before 

Figure 1. (top left) Convergence rates for different cell sizes, (bottom left) different mesh types, and (bottom right) 
discretization schemes and varying degree of mesh anisotropy. For the mesh refinement study, the permeability error is also 
shown (top right). We use solid lines for TP and MP and dashed lines for TPD and MPD. The bottom left plot contains results 
for tetrahedral and pertubed Cartesian meshes, the former of which are identified with triangular markers.
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randomly perturbing the nodes (see Figure 2c). The perturbation distance is drawn uniformly from [−dx/4, dx/4] 
and [−dy/4, dy/4], with dx and dy denoting average cell lengths in the two spatial dimensions. Since perme-
ability anisotropy and grid aspect ratio have an indistinguishable effect in TPFA and MPFA methods, see for 
example, Aavatsmark (2002), this is equivalent to solving a problem with anisotropic permeability. As evident 
from Figure 1d, convergence deteriorates somewhat with increasing anisotropy, as can be expected since the 
TPFA-style approximation of the derivatives deviates increasingly from the true MPFA derivatives. Still, signifi-
cant improvement from the reference method is achieved even for the most extreme anisotropy ratio.

4.2. Multiphysics Applications

We now present three examples of multiphysics applications involving state-dependent permeability. Compared 
to nonlinear diffusion, the multiphysics models contain additional nonlinearities to the permeability relation, 
implying that the observed convergence rates are affected by other parts of the solution scheme in addition 
to the handling of the nonlinear flux. While the models have a wide range of highly relevant applications, the 
parameters, which are listed in Table 1, are exemplary and do not correspond to particular applications. Having 
demonstrated robustness with respect to mesh size in the previous section, we apply relatively coarse meshes 
throughout this section. All grids are Cartesian, meaning that the MPFA and TPFA schemes are equivalent, and 
we show only results for TP and TPD.

We assign homogeneous Dirichlet boundary conditions for all primary variables, and a source or sink at the 
domain center acts as the driving force. Initial conditions are zero where not otherwise stated. We use an implicit 

Figure 2. (left) Close-up of a simplex mesh, (center) perturbed meshes with no anisotropy, and (right) the anisotropy ratio 
50/1,000.

Parameter Section 4.2.1 Section 4.2.2 Section 4.2.3

Reference porosity ϕ0 5 × 10 −2

Reference density ρ0 1 kg m −3

𝐴𝐴 𝕂𝕂0 1 × 10 −4 m 2 1 × 10 −5 m 2

ρA = ρB 1 kg m −3 – –

Compressibility c 0 Pa −1 1 × 10 −3 Pa −1 1 × 10 −3 Pa −1

Reaction rate r0 4 × 10 −1 s −1 – –

Equilibrium constant KA 2 × 10 −1 – –

Simulation time and time step 1 s 1 × 10 5 s 1 × 10 5 s

Biot coefficient α – 0.25 to 1 0.2

Lamé parameters μ and λ – 1 × 10 3 Pa and 1 × 10 3 Pa

Gap g – – 1 × 10 −2 m

Friction coefficient F – – 10 0

Residual aperture a0 – – 1 × 10 −1 m

Numerical constant 𝐴𝐴 𝐴𝐴𝐴 – – 10 0

Fluid source −1 × 10 3 kg s −1 10 kg s −1 10 to 40 kg s −1

Table 1 
Parameters Used for the Application Simulations in Section 4.2
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Euler discretization, consider a single time step and solve the resulting system of equations monolithically. The 
time step sizes for the simulations are given in Table 1.

4.2.1. Reactive Transport

Our first application example considers reactive transport as described in Section 2.1. The simulation domain is a 
unit cube discretized with a Cartesian grid consisting of 15 3 = 3,375 3d cells. We assign a sink term in the cell at 
the center of the domain, resulting in flow from the boundary to the center. The initial state is in equilibrium, with 
CA = 0.2, CB = 0.2 and p = 0 Pa matching the Dirichlet boundary pressure. The boundary solute concentration 
equals 0.4 (twice the initial concentration) causing precipitation. The precipitation in turn reduces porosity and 
thereby permeability according to Equations 6 and 7. The changes to concentration, volume fraction, porosity and 
permeability are illustrated in Figure 3.

We consider a series of simulations varying the exponent η of the porosity-permeability relationship in Equa-
tion 7, with the higher values corresponding to a stronger nonlinearity. The range of values explored are identified 
as relevant for precipitation and dissolution processes, see Bernabé et al. (2003). We provide solution plots in 
Figure 3. These show that the dynamics are mainly localized close to the domain boundary, as may be expected 
in a problem dominated by advection.

Figure 3 also contains convergence rates demonstrating considerable improvement and asymptotically quadratic 
behavior for the TPD scheme. In the case η = 0, the permeability is constant, and the two schemes are equivalent, 
as evident from the coinciding residual plots. For nonzero values of the exponent η the residual produced by TPD 
are consistently lower than that of the non-differentiated scheme. The TP residuals deviate considerably in later 
iterations and the residual reduction is only linear. For the highest value η = 8, convergence is lost altogether.

Figure 3. (top) Solution plots for η = 5 and (bottom) convergence rates for the reactive transport simulation. We show solute 
concentration (CA) and precipitate volume fraction (CB) to the left and permeability (𝐴𝐴 𝕂𝕂 ) and porosity changes (ϕ) to the right. 
The simulation domain has been sliced to expose the solution in the interior and different quantities are shown for each half of 
the slice using separate color maps.
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4.2.2. Poroelasticity

In poroelasticity, porosity changes caused by pressure and deformation translate into permeability changes, as 
described in Section 2.2. We again consider the unit cube, with the same spatial grid as in Section 4.2.1 and with 
a source in the middle of the domain. Fluid injection elevates the pressure and thereby induces displacement in 
the vicinity of the injection point as shown at the top left in Figure 4 The displacement in turn influences the 
permeability through Equations 7 and 10. The effect is illustrated in Figure 5. In our simulation series, we vary 
the Biot coefficient α in the interval [0.25, 1].

Convergence rates for the Newton schemes are summarized in Figure 4, showing how the linear model conver-
gence rate decreases with increasing α. The TPD version converges quadratically for all cases and is sensitive to 
α only in the pre-quadratic regime. In contrast, while competitive in the first iterations, the TP residuals deviate 
considerably in later iterations and the residual reduction is only linear. We interpret this as the permeability error 
dominating the residual only at the latter stage. We also note that while TP converges only linearly, the rate is 
sufficient to achieve convergence in approx. 15 iterations.

4.2.3. Deforming High-Permeable Fracture

Finally, we expand the poroelastic simulation presented above by including a through-going horizontal fracture. 
The fracture introduces additional nonlinearities through the cubic law dependency of permeability on fracture 
opening defined in Equation 12, as well as through the fracture contact mechanics relations of Equation 17.

The source location is at (0.5, 0.5, 0.5) as above, now corresponding to the center of the fracture. The fracture 
grid's 225 cells conform to faces in the matrix grid, which consists of 3,360 3d cells. As in the poroelastic simula-
tion, fluid injection leads to elevated pressures, and thus alterations of the displacement and permeability fields. 
The elevated pressure in the fracture leads to significant increases in the fracture aperture.

Figure 4. (top) Solution plots for α = 0.6 and (bottom) convergence rates for the poroelasticity simulation. We show 
displacement magnitude (‖u‖) and pressure (p) to the left and permeability (𝐴𝐴 𝕂𝕂 ) on a logarithmic scale and porosity (ϕ) to the 
right.
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To control the size of the nonlinear update, we consider a series of simulations with four different injection rates. 
The residual convergence are shown at the bottom of Figure 5. The range is chosen such that the fracture cells 
remain almost in contact ([u]n = 0) for the lowest value and approximately half of the fracture cells are open ([u]
n > 0) for the highest one. This corresponds to a transition from an almost constant fracture permeability to a 
highly variable one.

For the higher source rates, TP convergence rates are decidedly reduced compared to Section 4.2.2 due to the 
presence of the additional nonlinearities related to the fracture. The differentiated model converges rapidly and 
quadratically, albeit with some initial iterations with residuals similar to the non-differentiated one. We attribute 
this to the residual at the initial stage being dominated by nonlinearities other than the permeability. In particular, 
the contact mechanics cannot in general be expected to converge quadratically.

5. Summary and Conclusions
This paper studies the solution of the nonlinear equation system arising in simulations where state-dependent 
diffusion tensors are discretized by finite volume methods. In contrast to the common approach of ignoring 
dynamic permeability effects during linearization, we propose a linearization that includes the effect of permea-
bility updates. The added term is derived based on the TPFA and thereby easy to implement. Our approach can 
be applied independent of which finite volume method is used to discretize the diffusion problem: If the original 
method is also a two-point flux, our method renders an exact linearization. For other discretizations, herein 
exemplified by a MPFA, the linearization is not exact, but its enhanced approximation quality can improve the 
Newton convergence.

Figure 5. (top) Solution plots for the second highest source rate and (bottom) convergence rates for the deforming fracture 
simulation. We show matrix displacement magnitude (‖u‖) and fracture aperture (a) to the left and permeability in matrix 

𝐴𝐴 (𝕂𝕂𝑚𝑚) and fracture 𝐴𝐴
(

𝕂𝕂𝑓𝑓

)

 to the right. Convergence plot labels correspond to the four source rates in kg s −1.
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As our illustrative examples, we consider multiphysics problems in which the permeability depends (nonlinearly) 
on the primary variables. Our simulations illustrate slow convergence if the permeability update is neglected 
when solving the nonlinear problems. We achieve major improvements when the update is included both for the 
pure two-point scheme and for the combined scheme. This first demonstrates that state-dependent permeability 
is a major source of nonlinearity in important multiphysics applications. Second, it shows the effectiveness of the 
suggested approach and its potential for speeding up multiphysics simulations. Taken together, this shows that the 
new approach can be a useful addition to application-oriented simulations of multiphysics problems.

Data Availability Statement
The data and source code for the results presented herein is available, and the results can be reproduced, using 
a Docker container available at https://dx.doi.org/10.5281/zenodo.7624095 (Stefansson & Keilegavlen, 2023).
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