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Vimentin takes a hike – Emerging roles of extracellular
vimentin in cancer and wound healing
Sepideh Parvanian1,2,3,a, Leila S. Coelho-Rato1,2,a,
Alison E. Patteson4 and John E. Eriksson1,2,5

Abstract
Vimentin is a cytoskeletal protein important for many cellular
processes, including proliferation, migration, invasion, stress
resistance, signaling, and many more. The vimentin-deficient
mouse has revealed many of these functions as it has
numerous severe phenotypes, many of which are found only
following a suitable challenge or stress. While these functions
are usually related to vimentin as a major intracellular protein,
vimentin is also emerging as an extracellular protein, exposed
at the cell surface in an oligomeric form or secreted to the
extracellular environment in soluble and vesicle-bound forms.
Thus, this review explores the roles of the extracellular pool of
vimentin (eVIM), identified in both normal and pathological
states. It focuses specifically on the recent advances regarding
the role of eVIM in wound healing and cancer. Finally, it dis-
cusses new technologies and future perspectives for the clin-
ical application of eVIM.
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Introduction
Vimentin belongs to the intermediate filament (IFs)
protein family, which is a large group of cytoskeletal
elements expressed in a context- and tissue-specific

fashion [1]. IFs are resilient proteins that are also
dynamically modified and exchanged, which allows the
cell to adapt quickly to environmental changes to
endure stressful conditions [2]. This way, although
widely studied for their structural properties, these
proteins are important for various signaling pathways
and cellular processes ranging from cell growth and
proliferation to migration and differentiation [3,4].
Although vimentin knockout (Vim!/!) mice were first
reported to develop without obvious phenotypes [5], it
is now well established that these mice have serious
defects and are severely comprised when challenged
with different types of stresses [6]. Moreover, a recent
report described the first human vimentin mutation, a
heterozygous missense mutation with a severe pheno-
type involving multiorgan failure [7,8]. Hence, it is clear
that vimentin is important for many processes that go
beyond structural support.

Vimentin is characteristic of mesenchymal cells, which
have enhanced migratory capabilities. In this context, it
is widely used as a marker of epithelial-to-mesenchymal
transition (EMT) [9,10], a process during which
epithelial cells gain mesenchymal properties and in-
crease vimentin expression [11]. This process favors cell
migration and is, therefore, a crucial step in wound
healing and cancer metastasis [9,12]. Importantly,
vimentin is critical for EMT in both wound healing and
cancer development [13], likely due to active engage-
ment with the cellular signaling machinery [14e16].

Although most studies focus on intracellular vimentin,
increasing evidence shows that vimentin can be
secreted to the extracellular environment to exert
functions such as receptor activation [17,18] and host-
cell-pathogen interaction [19,20]. Shorter and non-
filamentous forms of vimentin can be found on the
cell surface or secreted to the extracellular environment
either as a soluble form or as a vesicle-transported pro-
tein [21,22]. Overall, it is still unclear how these forms
are secreted to the extracellular space, but recent evi-
dence suggests the involvement of the unconventional
protein secretion pathway, specifically type III [23].
This pathway does not rely on signal sequences and uses
secretory organelles as a means to secret proteins and
other cargo [24]. Notably, vimentin is found in
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extracellular vesicles as well [25,26], which are believed
to be secreted via this same pathway. Similarly to
endogenous vimentin, eVIM is often associated with
inflammation, cell activation, senescence, apoptosis,
stress, and injury [18,25e29] (Table 1). Recent ad-
vances in the field point to a critical role of eVIM in
enhancing wound healing and inflammatory responses
[25e27]. However, eVIM can also have harmful effects
as it promotes tumor growth and improves host infection
by both viruses and bacteria [30e32]. Thus, this review
explores the role of eVIM in cancer and wound healing
and its potential future in vimentin-mediated therapies.

Release of eVIM and its post-translationally
modified forms
Extracellular release of vimentin is favored by inflam-
matory signaling that lead to post-translational modified
forms of vimentin, through phosphorylation or citrulli-
nation, that disassemble vimentin filaments before their
export out of the cell. This process proceeds by protein
kinase C (PKC) and by pro-and anti-inflammatory
cytokine signals. While anti-inflammatory cytokine
interleukin-10 (IL-10) inhibits PKC activity and
vimentin secretion, the pro-inflammatory cytokine
tumor necrosis factor a (TNF-a) enhances its secretion
[73,74]. Vimentin is expressed in a polarised manner on
the surface of activated macrophages and is subse-
quently released in a fragmented form [75]. Vimentin
secretion occurs by oxidized low-density lipoproteins
(oxLDL)/CD36 interaction [27,54]. Release of citrulli-
nated vimentin is observed during neutrophil and
macrophage activation [55,76], as well as chronic
inflammation. This can lead to autoimmune responses
to citrullinated vimentin in diseases, such as rheumatoid
arthritis, fibrosis, and tumor progression [77e79].
Interestingly, extracellular citrullinated vimentin has
been shown to stimulate fibroblast invasion and fibrotic
tissue remodeling, an effect not seen with vimentin in
its unmodified form alone [76]. Taken together, these
studies suggest that autoantibodies that react with
citrullinated vimentin could have anti-fibrosis and anti-
tumor effects, potentially leading to the development of
new vimentin-based therapies.

Extracellular vimentin and the extracellular
matrix
eVIM can interact with cells in three main ways
(Figure 1). The first and most commonly reported is as a
cell surface-bound protein. Cell surface vimentin has
many functions, including facilitating cellecell binding,
binding soluble factors, and as an attachment factor for
different pathogens [21]. Second, soluble eVIM may be
internalized by receptor cells, where it elicits specific
cellular responses [25,26]. A third way is through
modifying the cell interaction with the extracellular
matrix (ECM) [76,80,81]. The presence of eVIM alone
is enough to facilitate cell attachment, migration, and

motility by a mechanism involving GlcNAc-containing
structures [80]. The rod II domain of vimentin is
localized at the surface of the cells and binds to GlcNAc-
bearing polymers [82]. Unlike surfaces coated with
collagen or fibronectin, cells on vimentin-coated sur-
faces do not form large focal adhesions, stress fibers, or
perform cell proliferation, but can exert traction stresses
at the same order of magnitude [76]. Moreover, eVIM
could interact with fibrinogen to facilitate fibrin forma-
tion and abnormally high levels of eVIM may enhance
fibrin clot formation in patients with systemic inflam-
mation [81]. Together, this work suggests eVIM may
serve as a ligand for cell adhesion that stimulates cell
migration and cell contractility [76]. Still, many aspects
of eVIM and its influence on cell migration and cell-
ECM interactions remain to be understood [80,82].

Extracellular vimentin in cancer
Vimentin’s role in cancer progression has been the sub-
ject of several recent reviews [12,83], as cytoplasmic
vimentin expression is associated with increased tumor
aggressiveness and poor prognosis [12,83]. However, in
contrast to cytoplasmic vimentin, the role of eVIM in
cancer development is only starting to be understood. It
was previously reported that vimentin binds to IGF1R
(insulin-like growth factor 1 receptor) and promotes
axonal growth [18]. Moreover, treating MCF-7 cells with
human vimentin led to a significant increase in cell
proliferation and migration [29], showing that vimentin
could exert similar functions to IGF1 in cancer. eVIM
binds to the surface of colon cancer cells and leads to
beta-catenin accumulation in the nucleus, suggesting
the involvement of Wnt signaling [42]. Notably, treat-
ment with exogenous vimentin led to increased vimentin
expression and EMT-related genes, which enhanced
cancer cell migration [42]. Although it is unknown how
eVIM leads to Wnt signaling activation in cancer cells, it
is predicted that eVIM could directly bind to the Ryk
receptor. Nevertheless, the molecular mechanisms trig-
gered by eVIM remain largely unknown. Thus, vimentin-
driven outside-in signaling could emerge as a new field in
cancer research. As eVIM can inhibit the adaptive
immune system [84], it is interesting to speculate that
this feature is important for the immunosuppressive ca-
pacity of tumor microenvironments.

Vimentin has also been found in the serum of cancer
patients. Intriguingly, in a cohort of 152 patients,
vimentin was found to be overexpressed in hepatocellular
carcinoma tissue samples. Circulating vimentin was
detected in the serum by ELISA with high specificity
and sensitivity [68]. Another study using 48 pancreatic
cancer patient samples showed cell surface vimentin can
be used as a marker to identify circulating tumor cells
[32]. Proteomics approaches showed that vimentin is a
potential marker of colon cancer from serum samples
[85]. Similar results were obtained with gastrointestinal
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stromal tumors [39], neuroblastoma [39], and pediatric
sarcomas [86]. Although these do not elaborate on the
effects and mechanisms of action of eVIM, these studies
provide strong evidence that eVIM is important in cancer.
Interestingly, an antibody against cell-surface vimentin
increased the sensitivity to temozolomide, a chemo-
therapeutic agent used with glioma stem cells [87]. This
way, combining existing therapies with eVIM-targeting
compounds could yield promising results in cancer
therapy. Notably, in gastric cancer patients, circulating
tumor cells positive for cell-surface vimentin correlated
with a poor response to treatment and decreased survival
[88]. Moreover, this form of vimentin served as a marker
for stem-like hepatocellular carcinoma cells [89]. This is
important as these cells possessed EMT-like phenotypes,
and were, therefore, more aggressive. This way, eVIM
may contribute to, not only stem-like phenotypes but
also increased migratory and invasive capacities, which
are important for cancer progression. These aspects,
together with the previous observations on increased cell
proliferation via IGF1R signaling [18,29], highlight the
harmful effects of eVIM in cancer. Notably, eVIM con-
tributes to immune suppression [84] and acts as an
immune checkpoint molecule [23]. Despite having pro-
angiogenic properties similar to VEGF, eVIM also in-
hibits leukocyteeendothelial interactions. As a result,
targeting eVIM may also represent a promising anti-
angiogenic immunotherapy approach for cancer treat-
ment [23]. Together, these observations highlight eVIM
plays a role in multiple cancers (Figure 2) and suggest
that combining vimentin-binding molecules with exist-
ing therapies could improve patient survival.

Despite the diverse role of eVIM in cancer progression,
we note that eVIM is relevant for other diseases as well.
For example, vimentin is secreted upon hepatocellular
death and is implicated in non-alcoholic steatohepatitis
[69]. Furthermore, secreted vimentin is implicated in
coronary heart disease [73]. Importantly, antibodies
against vimentin are found in cardiac transplant patients
[71,90], patients with idiopathic pulmonary disease
[72], and systemic lupus erythematosus patients [70],
highlighting its role in autoimmunity. Moreover, cell-
surface vimentin serves as an antigen for apoptotic T-
cells [59] and presents on apoptotic neutrophils [59].
Together, these studies point to the role of eVIM in
autoimmunity. Thus, although outside the scope of this
review, these studies are important to keep in mind as it
is clear that the roles of eVIM in disease are not
restricted to cancer. Insights into the molecular mech-
anisms underlying these findings could also contribute
to improving our understanding of eVIM functions in
tumor progression, especially considering how these
diseases are associated with immune function.

Extracellular vimentin and wound healing
Wound healing is a dynamic and complex process that
involves sequential but overlapping phases including
hemostasis, inflammation, mesenchymal cell differenti-
ation, proliferation, and migration, angiogenesis, re-
epithelialization and synthesis, cross-linking, and
collagen fiber alignment [91]. A characteristic feature of
the Vim!/! mice is that they have severely compro-
mised wound healing and display a wide variety of
phenotypic abnormalities [6], that are linked to defects

Figure 1

eVIM can interact with cells in three ways: (1) as a cell surface-bound protein, (2) as a soluble extracellular protein that can be internalized by receptor
cells, and (3) through modification of the cell’s interaction with the extracellular matrix.

4 Cell Architecture (2023)
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in wound healing and tissue regeneration [13,51,92e94].
Thus, vimentin is one of the main IF proteins necessary
for wound healing. eVIM, in specific, plays significant
roles in this process and contributes to various diseases
related to impaired wound healing, including fibrosis,
atherosclerosis, lupus erythematosus, and pulmonary
sarcoidosis [18,29,51,56,70,72,95e97]. For example,
eVIM is considered a damage-associated molecular
pattern (DAMP) that can be up- and down-regulated
during pro- and anti-inflammatory conditions, respec-
tively [97]. eVIM can also block the secretion of pro-
inflammatory cytokines IL-6 and IL-12 by dendritic
cells and enhance the secretion of the anti-inflammatory
cytokine IL-10 (Figure 3), which suggests eVIM sup-
presses the proinflammatory adaptive immune response
[84]. Furthermore, eVIM mediates focal adhesion kinase
activation and NF- B signaling, promoting the release of
pro-inflammatory cytokines such as TNF-a and IL-6
(Figure 3) [74], which are important for the inflamma-
tory phase of wound healing. In this context, eVIM
secreted by activated macrophages contributes to
immune function by acting as a pro-inflammatory factor,
aiding in killing bacteria and promoting the generation of
oxidative metabolites [27]. This way, eVIM has a positive
effect on wound healing and participates in both innate
and adaptive immune functions.

A well-studied example of the role of eVIM in wound
healing relates to neural injuries. Upon spinal cord
injury, neuron-intrinsic mechanisms significantly pro-
mote axonal growth and synapse formation to restore
electrophysiological neuron activity [98,99]. Vimentin

expression and secretion from astrocytes acts as a
neurotrophic factor, enhancing axonal growth and
functional recovery. This eVIM interacts with insulin-
like growth factor 1 receptor, promoting axonal
growth [18,33]. Intriguingly, exosomal vimentin from
astrocytes may mediate attachment and uptake of
Clostridium botulinum C3 transferase after spinal cord
injury [34].

Upon injuries and during healing processes, eVIM
functions both as a receptor for different types of li-
gands, such as N-Acetylglucosamine (GlcNAc) and
CD44 [46,82], and as a ligand for various receptors such
as P-selectin [17] and, as mentioned above, IGF-1R
[18]. In addition, eVIM plays an important role in
angiogenesis in the central nervous system during injury,
as vimentin deficiency in vascular endothelial cells
prevents proper angiogenesis [100]. Following injury,
vimentin is released into the extracellular space and
attaches to the cell surface of mesenchymal leader cells
located at the wound edge to define their fate. Here,
vimentin plays a dual role in wound repair by directing
the collective closure of the injured epithelium wounds,
or by differentiating mesenchymal leader cells to
myofibroblasts that can induce fibrosis [51]. Notably,
recombinant vimentin treatment reduces acute lung
injury. This is achieved by reducing leukocyte adhesion
to the vascular endothelium and by blocking neutrophil
adhesion to P-selectin-coated surfaces [17]. This way,
eVIM dampens acute inflammatory responses during
wound healing. It is worth mentioning that eVIM also
participates in hemostasis. The Von Willebrand factor

Figure 2

Roles of the eVIM pool in cancer. Extracellular vimentin is a pool of vimentin found outside of cells. It includes cell surface, circulating, and vesicle-bound
vimentin (exosomal vimentin). eVIM presents itself as a considerably smaller variant compared to the full-length filaments found within cells. In cancer,
eVIM promotes tumor growth and metastasis by facilitating cancer cell migration and invasion. Additionally, it has been shown to stimulate angiogenesis,
the process of creating new blood vessels to nourish tumors. Moreover, eVIM interacts with other proteins within the extracellular matrix, such as
fibronectin and laminin, contributing to enhanced cancer cell adhesion and survival. eVIM can be also found not only in serum from patients with different
cancer subtypes but also at the cell surface in circulating cancer cells, serving as a marker for these conditions.
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(VWF) is a multimeric glycoprotein that contributes to
hemostasis and angiogenesis during wound healing by
promoting adhesion and aggregation of platelets and
slow release of growth factors to the wound site,
respectively [101]. eVIM interacts with VWF during
VWF string formation, binding to its A2 domain [56] and
promoting platelet adhesion [102]. On the other hand,
surface vimentin on activated platelets localizes and
stabilizes vitronectin and activates Plasminogen Acti-
vator Inhibitor 1 (PAI-1) complexes to inhibit epithelial
repair and promote fibrosis [57,103e105]. Finally, while
sustained senescence contributes to impaired wound
healing, transient senescence is necessary for wound
repair, promoting fibroblast activity and differentiation
during early wound healing stages and preventing
excessive fibrosis [106,107]. Notably, senescent primary
human fibroblasts express cell surface vimentin, which
suggests a role of eVIM in mediating senescence [58].
The engagement of eVIM in both beneficial and detri-
mental roles, contingent on the context and timing,
suggests its intricate participation in wound healing.
However, it remains unclear how disparate effects occur.
Further investigations into the underlying molecular
mechanisms and structural aspects of eVIM promise to
unveil new insights into its diverse effects.

Concluding remarks
Vimentin is a multifunctional IF protein with many key
roles in both structural and regulatory intracellular pro-
cesses, including cell signaling, cellular integrity,
organelle positioning and function, cell resistance to
stress, cancer development, and metastasis. In addition,
vimentin now emerges as an important extracellular
protein with many non-mechanical roles. eVIM appears
at the cell surface in an oligomeric form or can be
secreted by different cells in soluble and vesicle-bound
forms. eVIM is involved in biological functions in the
extracellular milieu, such as cell activation, inflamma-
tion, stress, senescence, and apoptosis. Similarly, to
intracellular vimentin, the functional diversity of eVIM
depends on its different inherent properties, including
structural plasticity and signal transduction roles regu-
lated by biochemical, mechanical, and spatiotemporal
cues. Cell-type-specific post-translational modifica-
tions, location, interactions, and vimentin expression
levels can affect its functions. Based on vimentin’s
pleiotropic characteristics and its functional diversity in
physiological and pathophysiological conditions, eVIM
could be considered a relevant molecular target in
theragnostic applications. Undoubtedly, further studies
are needed to determine the mechanical and structural

Figure 3

Different signaling pathways triggered or affected by extracellular vimentin. eVIM can trigger or affect various signaling pathways involved in cell migration,
epithelial–mesenchymal transition (EMT), inflammatory response, and immune regulation. eVIM can activate FAK (Focal Adhesion Kinase), a pivotal
regulator of cell adhesion, migration, and survival. FAK activation by eVIM can promote cell migration and invasion in cancer cells. Additionally, eVIM
interacts with IGF1R (Insulin-like Growth Factor 1 Receptor) to stimulate axonal growth and can be regarded as a novel ligand of IGF1R that facilitates
axonal growth in a manner analogous to IGF1. Moreover, eVIM activates Nuclear Factor Kappa B (NFKB), a transcription factor that governs the
expression of genes implicated in inflammation, immunity, and cell survival. Activation of NFKB by extracellular vimentin can induce the production of
mediators involved in inflammatory responses within resident cells. Furthermore, eVIM activates the WNT pathway—a signaling cascade governing cell
proliferation, differentiation, and migration.
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modifications required to generate vimentin that is
compatible with extracellular release. Further informa-
tion is urgently needed on the molecular and cellular
mechanisms underlying the biogenesis, trafficking, and
secretion of extracellular vimentin. Finally, it will be
interesting to determine which of the observed effects
are specifically generated by vimentin and to what
extent the effects are dependent on vimentin-
associated proteins. Several advanced novel technolo-
gies may facilitate this development. For example, gene-
editing methods to study the specific effects of indi-
vidual post-translation modification sites on vimentin’s
assembly state, employing advanced ‘omics’ technolo-
gies at a single cell level, and designing new molecules
for selective targeting of vimentin.
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