
Abstract
This dissertation presents several novel robust tracking control schemes of rotorcraft un-

manned aerial vehicles under realistic atmospheric turbulence.

To achieve fast converging and stable performance of the rotorcraft control scheme,

a new Hölder-continuous differentiator, similar to the super-twisting algorithm used in

the second-order sliding model control scheme, is proposed with guaranteed fast finite-

time stability. Unlike the super-twisting algorithm, which uses a sliding-mode structure

to achieve finite-time stability, the proposed differentiator maintains its fast finite-time

stability with Hölder continuity, theoretically eliminating the harmful chattering phe-

nomenon in practical control applications. Perturbation and noise robustness analyses

are conducted for the proposed differentiator.

The dissertation formulates the rotorcraft tracking control and disturbance estimation

problems separately. The rotorcraft aerial vehicle is modeled as a rigid body with con-

trol inputs that actuate all degrees of freedom of rotational motion and only one degree

of freedom of translational motion. The motion of the aircraft is globally represented on

TSE(3), which is the tangent bundle of the special Euclidean group SE(3). The transla-

tional and attitude control schemes track the desired position and attitude on SE(3). The

disturbance estimation problem is formulated as an extended state observer on TSE(3).

Next, two rotorcraft control schemes on SE(3) with disturbance rejection mechanisms

are presented. The proposed disturbance rejection control systems comprise two parts:

an extended state observer for disturbance estimation and a tracking control scheme con-

taining the disturbance rejection term to track the trajectory. The first disturbance rejec-

tion control scheme comprises an exponentially stable extended state observer and an

asymptotically stable tracking control scheme.



The second system comprises a fast finite-time stable extended state observer and a

fast finite-time stable tracking control scheme. The fast finite-time stable extended state

observer uses the Hölder-continuous differentiator to estimate the resultant external dis-

turbance force and disturbance torque acting on the vehicle. It ensures stable conver-

gence of disturbance estimation errors in finite time when the disturbances are constant.

Software-in-the-loop simulation is carried out for the active disturbance rejection control

scheme with an open-source autopilot and a physics-based simulation tool. The sim-

ulation utilizes simulated wind gusts, propeller aerodynamics, actuator limitation, and

measurement noise to validate the disturbance rejection control systems in a simulated

environment with high fidelity.

Two sets of flight experiments are conducted to investigate the autonomous rotorcraft

flight control performance under turbulent income flows. A wind tunnel composed of

fan arrays is involved in both experiments to provide different turbulent incoming flows

by adjusting the duty of individual fans. The first set of experiments conducts income

flow measurements for wind tunnel calibration. For the turbulent flows generated by

different fan configurations, their steady velocity field and unsteady turbulence charac-

teristics are measured by a pressure scanner and hot-wire anemometer. The second set

of experiments involves flight tests of a rotorcraft within the turbulent environment mea-

sured and calibrated in the first experiment set. The proposed extended state observer is

implemented onto a rotorcraft by customizing an open-source autopilot software. With

this implementation, the flight control performance of the proposed disturbance rejection

control schemes is presented and compared with the autopilot without customization.

The experimental results show that the proposed disturbance rejection control scheme

enhanced by the disturbance estimation scheme.
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Chapter 1

Introduction

Small-scale rotorcraft unmanned aerial vehicles (UAVs) have become increasingly popu-

lar in a various applications, such as security and monitoring, infrastructure inspection,

agriculture, wildland management, package delivery, and remote sensing. However,

these UAVs are frequently exposed to dynamic uncertainties and disturbances caused

by turbulence induced by airflow around structures or regions. For example, during the

flight of a UAV over a wildfire, the vehicle experiences unsteady and turbulent airflow,

variable air temperature, and air density, which harm its flight performance. Therefore, it

is crucial to ensure robust flight control performance in such challenging environments,

with guaranteed stability margins even in the presence of dynamic disturbances and un-

certainties. To this end, this dissertation describes robust tracking control schemes for a

rotorcraft UAV under disturbances and uncertainties.

Recent research articles on rotorcraft the UAV tracking control schemes use differ-

ent methods to tackle the adverse effects from disturbances and uncertainties during the

flight. (Torrente et al., 2021) use Gaussian processes to complement the nominal dynam-

ics of the multi-rotor in a model predictive control (MPC) pipeline. (Hanover et al., 2021)
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use an explicit scheme to discretize the dynamics for the nonlinear MPC solved by opti-

mization. (Faessler, Franchi, and Scaramuzza, 2017) model the multi-rotor aerodynamic

drag as a term depending on the attitude R and airspeed v and then utilize it in the track-

ing control schemes with properties on differential flatness. (Bangura and Mahony, 2017;

Bangura et al., 2017) use the propeller aerodynamics as a direct feedforward term on the

desired thrust to re-regulate the thrust command of the rotors. (Craig, Yeo, and Paley,

2020) implement a set of pitot tubes onto the multi-rotor aircraft to directly sense the

aircraft’s airspeed. With the knowledge of propeller aerodynamic characteristics, the air-

speed is then utilized to obtain the disturbance forces and torques as feedforward terms

to enhance control performance. (Bisheban and Lee, 2018, 2020) use artificial neural net-

works (ANN) to obtain disturbance forces and torques with the kinematics information of

the aircraft and then use the baseline control scheme based on the work by (Lee, Leok, and

McClamroch, 2010) in their tracking control scheme design. Among the fore-mentioned

research articles, they either need high computation efforts (Bisheban and Lee, 2018, 2020;

Hanover et al., 2021; Torrente et al., 2021), or have precise modeling on the aerodynamic

characteristics of the rotorcraft propellers (Bangura and Mahony, 2017; Craig, Yeo, and

Paley, 2020) to obtain satisfactory control performance against disturbances.

A promising control technique to maintain the control performance against distur-

bances and uncertainties is the active disturbance rejection control (ADRC), which can be

traced back in (Hartlieb, 1956). In an ADRC scheme, one first obtains an estimation of

the unknown disturbance from disturbance estimation and then utilizes it in the control

design to reject such disturbance. ADRC and extended states observer (ESO) are for-

mally introduced together by (Huang et al., 2001), which use ESO to obtain disturbance

estimation and rejection. Other than ESO, disturbance observer (DO) (Chen, 2003), and
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unknown input observer (UIO) (Basile and Marro, 1969) can also give disturbance esti-

mation in a disturbance rejection control scheme.

ADRC schemes are widely used for rotorcraft UAV control. In the research articles

by (Shao et al., 2018a,b), the disturbance estimation from asymptotically stable (AS) ESOs

are employed to enhance surface trajectory tracking control scheme for a multi-rotor UAV

in the presence of parametric uncertainties and external disturbances. (Liu et al., 2022)

propose fixed-time stable (FxTS) disturbance observers and fault-tolerance mechanisms

and utilize them in their translation and attitude control scheme. (Mechali et al., 2021)

present FxTS ESOs for the same purpose. (Wang et al., 2019) implement incremental non-

linear dynamics inversion (INDI) control combing with sliding-mode observer (SMO) for

disturbance estimation and rejection. (Jia et al., 2022a) employ the disturbance model

obtained by (Faessler, Franchi, and Scaramuzza, 2017), and then estimate the drag co-

efficient as a parameter. This disturbance model is also employed by (Moeini, Lynch,

and Zhao, 2021b). (Cui et al., 2021) use an adaptive super-twisting ESO for the distur-

bance estimation. (Bhale, Kumar, and Sanyal, 2022) give the disturbance estimation with

the discrete-time FTS disturbance observer (Sanyal, 2022). Among the fore-mentioned

research articles, experimental results are presented by (Mechali et al., 2021), (Jia et al.,

2022a), and (Wang et al., 2019).

For the fore-mentioned ESO/DO designs used for rotorcraft tracking control, there

are several methods to ensure their stability. The linear ESO by (Shao et al., 2018a,b) is

asymptotically stable. (Mechali et al., 2021) use the geometric homogeneity (Levant, 2003;

Rosier, 1992) to obtain FxTS ESO. A similar method is proposed in ESO design by (Guo

and Zhao, 2011). The Lyapunov functions/candidates used in the ESO stability analysis

by (Mechali et al., 2021) and (Guo and Zhao, 2011) are initially from (Rosier, 1992) and
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are presented implicitly. (Jia et al., 2022a,b), (Moeini, Lynch, and Zhao, 2021b) and (Liu

et al., 2022) use variants of the DO proposed in (Chen, 2003). Another method is to use

the super-twisting algorithm (STA) (Moreno and Osorio, 2012) to obtain ESO design. (Xia

et al., 2010) use this method in ESO design for spacecraft attitude control, and (Cui et

al., 2021) design an adaptive super-twisting ESO using a similar method in a multi-rotor

ADRC scheme.

In much of the prior literature for rotorcraft UAV attitude control with ESO/DOs for

disturbance torque estimation and rejection in rotational dynamics, the attitude kinemat-

ics of the ESOs/DOs are either based on local linearization or represented using local

coordinates (like Euler angles) or quaternions. Local coordinate representations can have

singularity issues (e.g., gimbal lock with Euler angles), while quaternion representations

may cause instability due to unwinding (Bhat and Bernstein, 2000a; Chaturvedi, Sanyal,

and McClamroch, 2011). In situations where the UAVs have to carry out aggressive ma-

neuvers, as in rapid collision avoidance for example, disturbance estimation and rejection

from such schemes may not be reliable or accurate enough for precise control of the UAV.

To implement and validate the ESO/DO-based control scheme design for rotorcrafts,

the external disturbance from atmospheric turbulence is usually difficult to generate in a

lab environment. To generate repeatable gusts to imitate atmospheric turbulence, a com-

mon method is placing a box fan set with constant flow speed in the test section. This

method is utilized by (Bangura and Mahony, 2017; Bisheban and Lee, 2018, 2020; Jeon

et al., 2020; Jia et al., 2022a,b; Moeini, Lynch, and Zhao, 2021a; Wang et al., 2019). It is an

efficient and valid setup. However, the windy area generated by a single box fan is too

small for the flight of a real-sized multi-rotor to let it be exposed to constant excitation

from turbulent incoming flows since the disturbance from turbulent incoming flows has
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the strength to push the UAV away from the windy area. Moreover, with only one box fan

as the wind source, the characteristics of the generated turbulent flows in the test section

cannot be adjusted because of the limited input choice, which is the duty of the box fan.

The experiment setup by (Craig, Yeo, and Paley, 2020) largely overcomes this problem.

In (Craig, Yeo, and Paley, 2020), the wind is from a gust generation system consisting of

eight Dyson fans behind remotely operated blinds. This gust generation system enlarges

the windy test area compared with the gust/turbulence generated by a single box fan

and enriches the input choice of the wind. For the same purpose, fan array wind tun-

nel (FAWT) is an optimal solution to generate such turbulent flows. The FAWT comprises

arrays of individual fans that initialize velocity distributions discretely-individually or in-

concert to produce appropriate mean and fluctuating velocities through an ample open-

air test envelope that enables full-scale conventional statically-mounted aerodynamic-

characterizations up through free-flight autonomous vehicle testing (Dougherty, 2022).

The characteristics of the incoming flow from FAWT, especially the turbulence character-

istics, are detailed by (Dougherty, 2022). Moreover, in prior research by (Olejnik et al.,

2022a,b; O’Connell et al., 2022; Veismann et al., 2021; Wang et al., 2022), flight experi-

ments of different kinds of autonomous aerial vehicles are conducted in the turbulent

flows generated.

This dissertation presents two ADRC schemes enhanced by ESOs on SE(3) for rotor-

craft UAVs under complex and challenging aerodynamic environments. The ESOs on

SE(3) estimate the disturbance forces and torques during the flight of a rotorcraft UAV in

both translation and rotation. The ADRC schemes on SE(3) then incorporate the distur-

bance estimation from the ESOs and the feedback from tracking control schemes to drive
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the UAV to the desired trajectory. The first scheme is asymptotically stable active dis-

turbance rejection control (AS-ADRC) scheme, with exponentially stable ESO (ES-ESO)

for disturbance estimation and Asymptotically Stable (AS) tracking control, based on

(Sanyal, Nordkvist, and Chyba, 2010). The second ADRC scheme is FFTS active dis-

turbance rejection control (FFTS-ADRC), with fast finite-time stable ESO (FFTS-ESO) for

disturbances estimation and FFTS tracking control scheme, based on the research article

by (Viswanathan, Sanyal, and Samiei, 2018). The FFTS-ESO design is based on a novel

Hölder-continuous fast finite-time stable differentiator (HC-FFTSD). We carried out sev-

eral sets of numerical simulations to show the validity of the proposed ESO and ADRC

designs. To evaluate the flight control performance of the proposed ADRC schemes, we

implement the proposed ADRC schemes onto a real multi-rotor UAV for flight tests. In

the flight test, we hover the UAV in front of the turbulent flows generated by a set of

FAWT. We obtain the statistical and spectral information from pressure tube and hot-wire

measurements on the turbulent incoming flows. We observe the translational and rota-

tional motion of the UAV to evaluate its flight control performance using a motion capture

system.

We highlight some unique contributions of this dissertation.

• The two proposed ESOs are the major contributions of this dissertation. In the pro-

posed ESOs, which are the cores of the proposed ADRC schemes, the pose of the

rotorcraft is represented directly on the Lie group of rigid body transformations,

the special Euclidean group SE(3). Unlike the ESO and DO designs reported by

(Mechali et al., 2021), (Shao et al., 2018b), and (Cui et al., 2021), which use Euler an-

gles or quaternions for attitude representation or do not include attitude kinematics,

like (Bhale, Kumar, and Sanyal, 2022) in disturbance torque estimation, the pose of
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the aircraft in this dissertation is represented on SE(3) to avoid kinematic singu-

larities. We do not use local coordinates (like Euler angles) or (dual) quaternions

for pose representation so that we avoid singularities due to local coordinate rep-

resentations or quaternion unwinding, as reported by (Bhat and Bernstein, 2000a;

Chaturvedi, Sanyal, and McClamroch, 2011). To the best of the author’s knowledge,

there is no existing publication on aircraft ADRC using ESO with pose representa-

tion on SE(3).

• In the FFTS-ADRC scheme, the FFTS-ESO design is based on HC-FFTSD. The com-

monly used geometric homogeneity method by (Guo and Zhao, 2011; Levant, 2003),

cannot provide a straightforward (or explicit) Lyapunov function to prove the finite-

time stability of the scheme. The (implicit) form of their Lyapunov functions is by

(Rosier, 1992). This implicit Lyapunov function complicates the robustness anal-

ysis under measurement noise and time-varying disturbances when that analysis

is essential for an ESO designed for disturbance estimation in ADRC schemes. We

propose HC-FFTSD as an approach inspired by the Super-Twisting Algorithm (STA)

(Moreno and Osorio, 2012; Vidal, Nunes, and Hsu, 2016) of Sliding-Mode Control

(SMC). This approach gives a straightforward design of a strict Lyapunov function,

which is explicit, and therefore avoids the weakness mentioned above.

• Based on HC-FFTSD, the proposed FFTS-ESO schemes are both FFTS and Hölder-

continuous, unlike the common STA and other FTS schemes that use discontinuous

methods like terminal sliding-mode. Therefore, the proposed FFTS-ESO avoids the

potentially harmful chattering phenomenon (Sanyal and Bohn, 2015), while main-

taining FTS convergence.
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• With explicit Lyapunov function in the stability analysis, we present the proof of ro-

bustness of the proposed FFTS-ESO under time-varying disturbing forces, torques,

and measurement noise. To the best of the authors’ knowledge, there is no prior

research on the noise robustness of ESO using Lyapunov analysis.

• We use the FAWT to generate turbulent incoming flows and run the rotorcraft UAV

flight test with the proposed ADRC within the flows. Compared with the flight

experiment conducted by (O’Connell et al., 2022), we initialize different velocity

distributions of the FAWT by changing the duty of individual fans. After that, we

obtain the turbulent flows with different mean velocities and turbulence character-

istics. The rotorcraft and its various flight control schemes, including the proposed

ADRC scheme, are exposed to these turbulent flows so that we can comprehensively

evaluate their performances under the disturbances from turbulent flows.

The remainder of this dissertation is structured as follows. Chapter 2 gives a detailed

description of the Hölder-continuous differentiator. We present two HCD designs which

are FTS and FFTS, respectively. The stability analysis of the proposed HC-FFTSD, is pre-

sented with its perturbation analysis and measurement noise robustness analysis. Chap-

ter 3 formulates the tracking control problem, the ESO problem on SE(3) , and gives the

corresponding mathematical preliminaries. The tracking control scheme is based on the

HCD described in Chapter 2. In Chapter 4 and Chapter 5, two ADRC schemes on SE(3)

are presented. Chapter 4 presents the AS-ADRC scheme, which comprises ES-ESO and

AS tracking control scheme on SE(3). Chapter 5 presents FFTS-ESO and FFTS-ADRC.

The FFTS-ESO is based on the HC-FFTSD described in Chapter 2. The FFTS-ESO is com-

pared with the DO and ESO from other publications on their disturbance estimation per-

formance. Chapter 6 presents the simulated flight control performance of the proposed
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ADRC schemes from software-in-the-loop (SITL) simulation with a physics engine and an

open-source autopilot. Chapter 7 and 8 present experimental result. Chapter 7 presents

the turbulence measurement from the FAWT in different working conditions. Chapter 8

describes the multi-rotor flight experiment under the turbulent incoming flows generated

by the FAWT described in Chapter 7. Finally, Chapter 9 concludes the dissertation and

outlines potential future directions.
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Chapter 2

Hölder-Continuous Differentiator (HCD)

This chapter presents the HCD, which is among the major contributions of this disserta-

tion. In Section 2.1, we reference and present some preliminaries for the stability proof

and the robustness analysis of the proposed HCD. We present Hölder-continuous finite

time stable differentiator (HC-FTSD) in Section 2.2 and Hölder- continuous fast finite time

stable differentiator (HC-FFTSD) in Section 2.3, respectively. In Section 2.3, we analyze the

stability and robustness of the proposed HC-FFTSD to support the development of ESO

presented in Chapter 5. Theorem 2.3.1 gives the proposed HC-FFTSD with its stability

properties. Corollary 2.3.1 describes the convergence performance of the differentiator

under external disturbances. Corollary 2.3.2 describes the convergence performance of

the differentiator under measurement noise. We present a brief summary for this chapter

in Section 2.4. In the analysis that follows, e1 ∈ Rn stands for the measurement estimation

error and e2 ∈ Rn stands for the disturbance estimation error in the ESO error dynam-

ics, respectively. In this chapter and the remainder of this dissertation, we denote the

minimum and maximum eigenvalues of a matrix by λmin(·) and λmax(·), respectively.

10



2.1 Preliminaries on stability

Consider the system of differential equations

ẋ(t) = f (x(t)), f (0) = 0, x(0) = x0, (2.1)

where f : D → Rn is continuous on an open neighbourhood D ⊂ Rn of the origin.

Lemma 2.1.1 (Finite-time stable). (Bhat and Bernstein, 2000b) Let V(x(t)) be a continuous

and differentiable function that is positive definite and satisfies the following inequality:

V̇ ≤ −λVα, (2.2)

with x(t) ∈ D\{0}, λ > 0, α ∈]0, 1[. Then the origin is finite-time stable (FTS), i.e., ∀x0 ∈ D,

x(t) converges to the origin in finite-time. The settling-time satisfies,

T ≤ V1−α(x(0))
λ(1− α)

(2.3)

Lemma 2.1.2 (Fast finite-time stable). (Yu et al., 2005) Consider the system (2.1) and let there

exist a continuous and differentiable function V(x(t)), which is positive definite. With V(x),

fulfilling the following inequality,

V̇ ≤ −λ1V − λ2Vα, (2.4)
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with x(t) ∈ D\{0}, λ1, λ2 > 0, α ∈]0, 1[. Then the origin is fast finite-time stable (FFTS). The

settling time T satisfies

T ≤ 1
λ1(1− α)

ln
λ1V1−α(x(0)) + λ2

λ2
. (2.5)

Lemma 2.1.3 (Practical finite-time stable). (Zhu, Xia, and Fu, 2011), (Yu, Shi, and Zhao,

2018) Consider the system (2.1) and let there exist a continuous function V(x), which is positive

definite. With V(x(t)), fulfilling the following inequality,

V̇ ≤ −λ1V − λ2Vα + η, (2.6)

with x(t) ∈ D\{0}, λ > 0, α ∈]0, 1[. Then the origin is practical finite-time stable (PFTS),

which means that the solution of (2.1) converges to the following set in finite time

{
x
∣∣∣∣V(x) ≤ min

{
η

(1− θ0)λ1
,
(

η

(1− θ0)λ2

) 1
α

}}
, (2.7)

where 0 < θ0 < 1. The settling time is bounded as

T ≤ max
{

t0 +
1

θ0λ1(1− α)
ln

θ0λ1V1−α(x(0)) + λ2

λ2
,

t0 +
1

λ1(1− α)
ln

λ1V1−α(x(0)) + θ0λ2

θ0λ2

}
.

(2.8)

Lemma 2.1.4. (Hardy et al., 1952)Let x and y be non-negative real numbers and let p ∈]1, 2[.

Then

x
1
p + y

1
p ≥ (x + y)

1
p . (2.9)
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Moreover, the above inequality is a strict inequality if both x and y are non-zero.

Definition 2.1.1. Define H : R3 × R → Sym(3), the space of symmetric 3 × 3 matrices, as

follows:

H(x, k) = I − 2k
xTx

xxT. (2.10)

Lemma 2.1.5. Define µ ∈ Rn/{0}, α ∈]0, 1
2 [. ConsiderD : Rn \ {0,−µ} and ϕ(x) : D → R+

ϕ(x) = YTY =
[
∥x∥−2αx− ∥x + µ∥−2α(x + µ)

]T[
∥x∥−2αx− ∥x + µ∥−2α(x + µ)

]
(2.11)

The global maximum of ϕ(x) is at x = −µ/2.

2.2 Hölder-continuous finite-time stable differentiator (HC-

FTSD)

Theorem 2.2.1 (HC-FTSD). Define e1, e2 ∈ Rn as the state variables. Consider the following

differentiator design:

ė1 = −k1ϕ1(e1) + e2,

ė2 = −k2ϕ2(e1),
(2.12)

where p ∈]1, 2[, and k1, k2 > 0. Define ϕ1(·) : Rn → Rn and ϕ2(·) : Rn → Rn by:

ϕ1(e1) = (eT
1 e1)

1−p
3p−2 e1,

ϕ2(e1) =
p

3p− 2
(eT

1 e1)
2(1−p)
3p−2 e1.

(2.13)
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Define A∗ ∈ R2×2 by:

A∗ =

 −k1 1

−k2 0

 , (2.14)

where k1 and k2 make A∗ a Hurwitz matrix. (2.12) ensures that the state (eT
1 , eT

2 ) converges to

the origin in an FTS manner.

Proof. The proof of Theorem 2.3.1 is based on Theorem 1 by (Vidal, Nunes, and Hsu,

2016), and Theorem 1 by (Moreno and Osorio, 2012). Two properties of ϕ1 and ϕ2 are

provided as follows.

Property 1 (P1): The Jacobian of ϕ1(e1), denoted ϕ′1(e1), is given as follows:

ϕ′1(e1) =
dϕ1(e1)

de1
= (eT

1 e1)
1−p
3p−2

[
I − 2(p− 1)

3p− 2
e1eT

1

eT
1 e1

]
, (2.15)

so that the following identity holds:

ϕ2(e1) = ϕ′1(e1)ϕ1(e1) (2.16)

Property 2 (P2): ϕ′1 is a positive definite matrix, which means ∀w ∈ R2n, e1 ∈ Rn,

λmin{ϕ′1(e1)}||w||2 ≤ wTϕ′1(e1)w ≤ λmax{ϕ′1(e1)}||w||2. (2.17)
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The maximum and minimum eigenvalues of ϕ′1(e1) employed in (2.17) are given by:

λmax{ϕ′1(e1)} = (eT
1 e1)

1−p
3p−2 , (2.18)

λmin{ϕ′1(e1)} = (eT
1 e1)

1−p
3p−2

p
3p− 2

. (2.19)

From Theorem 5.5 by (Chen, 1984), we know that for a Hurwitz matrix A∗ as defined by

(2.14), ∀Q∗ ∈ R2×2 where Q∗ ≻ 0, the Lyapunov equation

(A∗)TP∗ + P∗A∗ = −Q∗, (2.20)

has a unique solution P∗ ≻ 0. We express the positive definite matrices P∗ and Q∗ in

components as follows:

P∗ =

 p11 p12

p12 p22

 , Q∗ =

 q11 q12

q12 q22

 . (2.21)

AsP∗ is the solution to (2.20), we augmentA∗, P∗ andQ∗ toA,P ,Q ∈ R2n×2n as follows:

A =

 −k1 I I

−k2 I 0

 ,P =

 p11 I p12 I

p12 I p22 I

 ,Q =

 q11 I q12 I

q12 I q22 I

 . (2.22)

The augmented matrices A,P ,Q defined above also satisfy the Lyapunov equation as

given below:

ATP + PA = −Q. (2.23)
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Further, the eigenvalues of P and P∗ are related such that λmin{P∗} = λmin{P}, and

λmax{P∗} = λmax{P}. Similar relations hold for Q and Q∗. Therefore, as P is the solu-

tion to (2.23), we consider the following Lyapunov candidate:

V(e1, e2) = ζTPζ, (2.24)

where ζ ∈ R2n is defined as ζ := [ϕT
1 (e1), eT

2 ]
T and P is the augmented P∗, which is

the unique solution of (2.20) for a given Q∗ ≻ 0. The upper and lower bounds of the

Lyapunov candidate V in (2.24) are given by:

λmin {P} ∥ζ∥2 ≤ V(e1, e2) ≤ λmax {P} ∥ζ∥2. (2.25)

From (2.25), we obtain the following two inequalities:

λmin {P} (eT
1 e1)

p
3p−2 ≤ λmin {P} ∥ζ∥2 ≤ V(e1, e2), (2.26)

k2
3λmin {P} eT

1 e1 ≤ λmin {P} ∥ζ∥2 ≤ V(e1, e2). (2.27)

V(e1, e2) is differentiable everywhere except the subspace S = {(e1, e2) ∈ R2n|e1 = 0}.

From (2.12) and Property (P1), we obtain the time derivative of ζ as follows:

ζ̇ =

ϕ′1(e1)ė1

ė2

 =

ϕ′1(e1)(−k1ϕ1(e1) + e2)

−k2ϕ′1(e1)ϕ1(e1)


= D(e1)Aζ,

(2.28)
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where,

D(e1) = diag[ϕ′1(e1), ϕ′1(e1)] ∈ R2n×2n,

λmin {D(e1)} = λmin
{

ϕ′1(e1)
}

.
(2.29)

Given the expression of ζ̇ in (2.28), we obtain the time derivative of V(e1, e2) as follows:

V̇ = ζ̇TPζ + ζTP ζ̇

= ζT((D(e1)A)TP + PD(e1)A)ζ

= −ζTQ(e1)ζ.

(2.30)

where Q(e1) is given by:

Q(e1) = (D(e1)A)TP + PD(e1)A =

Q11(e1) Q12(e1)

Q12(e1) Q22(e1)

 ,

Q11(e1) = 2(k1p11 + k2p12)ϕ
′
1(e1),

Q12(e1) = (k1p12 + k2p22 − p11)ϕ
′
1(e1),

Q22(e1) = −2p12ϕ′1(e1).

(2.31)

From (2.31) and (2.23), we obtain Q = QD(e1). Thereafter, if Q and D(e1) as defined in

(2.23) and (2.29), respectively, are positive definite, then we obtain the following inequal-

ity on their eigenvalues

λmin {QD(e1)} ≥ λmin {Q} λmin {D(e1)} > 0. (2.32)
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After substituting (2.32) into (2.30) and applying Property 2, we obtain

V̇ = −ζT(QD(e1))ζ

≤ −λmin {QD(e1)} ζTζ

≤ −λmin {D(e1)} λmin {Q} ζTζ.

(2.33)

As λmin {D(e1)} = λmin {ϕ′1(e1)}, substituting (2.19) and (2.26) into (2.33), we obtain

V̇ ≤ −(eT
1 e1)

1−p
3p−2

p
3p− 2

λmin {Q} ζTζ

≤ −λmin {Q}
λmax {P}

(
V

λmin {P}

) 1−p
p p

3p− 2
V

≤ −γV
1
p ,

(2.34)

where γ is a positive constant defined by:

γ =
λmin {Q} λmin {P}

p−1
p

λmax {P}
p

3p− 2
=

λmin {Q∗} λmin {P∗}
p−1

p

λmax {P∗}
p

3p− 2
. (2.35)

Therefore, based on the inequality (2.34) and Lemma 2.1.1, we conclude that the origin of

the error dynamics (2.12) is finite-time stable at the origin (e1 = 0, e2 = 0).
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2.3 Hölder-continuous fast finite-time stable differentiator

(HC-FFTSD)

Theorem 2.3.1 (HC-FFTSD). Consider the following differentiator design:

ė1 = −k1ϕ1(e1) + e2,

ė2 = −k2ϕ2(e1),
(2.36)

where p ∈]1, 2[ and k1, k2, k3 > 0. Define ϕ1(·) : Rn → Rn and ϕ2(·) : Rn → Rn by:

ϕ1(e1) = k3e1 + (eT
1 e1)

1−p
3p−2 e1,

ϕ2(e1) = k2
3e1 +

2k3(2p− 1)
3p− 2

(eT
1 e1)

1−p
3p−2 e1 +

p
3p− 2

(eT
1 e1)

2(1−p)
3p−2 e1.

(2.37)

Define A∗ ∈ R2×2 by:

A∗ =

 −k1 1

−k2 0

 , (2.38)

where k1 and k2 make A∗ a Hurwitz matrix. (2.36) ensures the state (eT
1 , eT

2 ) converges to

the origin in an FFTS manner.

Proof. The proof of Theorem 2.3.1 is similar to Theorem 2.2.1. We provide two properties

on ϕ1 and ϕ2 in (2.37) as follows:

Property 1 (P1): The Jacobian of ϕ1(e1), denoted ϕ′1(e1), is given as follows:

ϕ′1(e1) =
dϕ1(e1)

de1
= k3 I + (eT

1 e1)
1−p

3p−2

[
I − 2(p− 1)

3p− 2
e1eT

1

eT
1 e1

]
, (2.39)
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so that the following identity holds:

ϕ2(e1) = ϕ′1(e1)ϕ1(e1). (2.40)

Property 2 (P2): ϕ′1 is a positive definite matrix, which means ∀w ∈ R2n, e1 ∈ Rn,

0 < λmin{ϕ′1(e1)}||w||2 ≤ wTϕ′1(e1)w ≤ λmax{ϕ′1(e1)}||w||2. (2.41)

The maximum and minimum eigenvalues of ϕ′1(e1) employed in (2.41) are as given below:

λmax{ϕ′1(e1)} = k3 + (eT
1 e1)

1−p
3p−2 , (2.42)

λmin{ϕ′1(e1)} = k3 + (eT
1 e1)

1−p
3p−2

p
3p− 2

. (2.43)

According to Theorem 5.5 in (Chen, 1984), for A∗ in (2.38) as a Hurwitz matrix, ∀Q∗ ∈

R2×2, where Q∗ ≻ 0, the Lyapunov equation,

(A∗)TP∗ + P∗A∗ = −Q∗, (2.44)

has the unique solution P∗ ≻ 0. In (2.44), the positive definite matrices P∗ and Q∗ are

in the same form as (2.21) in the proof of Theorem 2.2.1. Afterwards, with the P∗ as

the solution in (2.44), we augment A∗, P∗ and Q∗ to A,P ,Q ∈ R2n×2n, like (2.23). The

augmented matrices A,P ,Q defined above also satisfy a Lyapunov equation as given

below:

ATP + PA = −Q. (2.45)
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Further, the eigenvalues of P and P∗, are related such that λmin{P∗} = λmin{P}, and

λmax{P∗} = λmax{P}. Similar relations hold for Q and Q∗. Thus, with P as the solution

to (2.45), we consider the following Lyapunov candidate:

V(e1, e2) = ζTPζ, (2.46)

where ζ ∈ R2n is defined as ζ := [ϕT
1 (e1), eT

2 ]
T and P is the augmented P∗, which is

the unique solution of (2.45) for a given Q∗ ≻ 0. The upper and lower bounds of the

Lyapunov candidate V in (2.46) are as given below:

λmin {P} ζTζ ≤ V(e1, e2) ≤ λmax {P} ζTζ. (2.47)

By applying (2.47), we obtain the following two inequalities:

λmin {P} (eT
1 e1)

p
3p−2 ≤ λmin {P} [ϕT

1 (e1)ϕ1(e1) + eT
2 e2] ≤ V(e1, e2)

V(e1, e2) ≤ λmax {P} [ϕT
1 (e1)ϕ1(e1) + eT

2 e2],
(2.48)

k2
3λmin {P} eT

1 e1 ≤ λmin {P} [ϕT
1 (e1)ϕ1(e1) + eT

2 e2] ≤ V(e1, e2). (2.49)
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V(e1, e2) is differentiable everywhere except the subspace S = {(e1, e2) ∈ R2n|e1 = 0}.

By applying (2.36) and Property (P1), we obtain the time derivative of ζ as follows:

ζ̇ =

ϕ′1(e1)ė1

ė2

 =

ϕ′1(e1)(−k1ϕ1(e1) + e2)

−k2ϕ′1(e1)ϕ1(e1)


= D(e1)Aζ,

(2.50)

where,

D(e1) ∈ R2n,D(e1) = diag[ϕ′1(e1), ϕ′1(e1)],

λmin {D(e1)} = λmin
{

ϕ′1(e1)
}

.
(2.51)

With the expression of ζ̇ in (2.50), we obtain the time derivative of V(e1, e2) given by:

V̇ = −ζTQ(e1)ζ, (2.52)

where Q(e1) is in the same form of (2.31) in the proof of Theorem 2.2.1.

Afterwards, we obtain Q = QD(e1). With Q, D(e1) ≻ 0, as defined by (2.45) and

(2.51), following inequality on their eigenvalues holds,

λmin {QD(e1)} ≥ λmin {Q} λmin {D(e1)} > 0. (2.53)

By applying Property 2, substituting (2.53) into (2.52), we obtain

V̇ = −ζT(QD(e1))ζ

≤ −λmin {D(e1)} λmin {Q} ζTζ

(2.54)
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By applying λmin {D(e1)} = λmin {ϕ′1(e1)}, substituting (2.43) and (2.48) into (2.54), we

obtain

V̇ ≤ −
[

k3 + (eT
1 e1)

1−p
3p−2

p
3p− 2

]
λmin {Q} ζTζ

≤ −λmin {Q}
λmax {P}

[
k3 +

( V
λmin {P}

) 1−p
p p

3p− 2

]
V

≤ −γ1V − γ2V
1
p ,

(2.55)

where γ1 and γ2 are positive constants given by:

γ1 = k3
λmin {Q}
λmax {P}

= k3
λmin {Q∗}
λmax {P∗}

;

γ2 =
λmin {Q} λmin {P}

p−1
p

λmax {P}
p

3p− 2
=

λmin {Q∗} λmin {P∗}
p−1

p

λmax {P∗}
p

3p− 2
.

(2.56)

Therefore, based on the inequality (2.55), Lemma 2.1.1 and Lemma 2.1.2, we conclude that

the origin of the error dynamics (2.36) is FFTS.

Corollary 2.3.1 (Disturbance/Perturbation robustness). Consider the proposed HC-FFTSD

(2.36) in Theorem 2.3.1 under perturbation, Define δ = (δT
1 , δT

2 )
T, δ1, δ2 ∈ Rn, and δ is bounded

as ||δ|| ≤ δ. Thereafter, the differentiator under perturbation is given by:

ė1 = −k1ϕ1(e1) + e2 + δ1,

ė2 = −k2ϕ2(e1) + δ2.
(2.57)

When γ1 in (2.56) satisfies γ1 ≥ λmax {P}/λmin {P}, (2.57) is PFTS.
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Proof. The proof of this corollary is based on the Lyapunov analysis in the proof of The-

orem 2.3.1. With the Lyapunov candidate defined by (2.46) and expression of the differ-

entiator under perturbation given by (2.57), we obtain the time derivative of (2.46) based

on (2.55)

V̇ ≤ −γ1V − γ2V
1
p + 2λmax {P} δ||ζ||, (2.58)

By applying Cauchy-Schwarz inequality and substituting (2.47) to (2.58), we obtain

V̇ ≤ −γ1V − γ2V
1
p + λmax {P} ||ζ||2 + λmax {P} δ

2

≤ −
(

γ1 −
λmax {P}
λmin {P}

)
V − γ2V

1
p + λmax {P} δ

2
.

(2.59)

Therefore, from the inequality (2.59), we conclude that the origin of the error dynamics

(2.57) is PFTS.

Corollary 2.3.2 (Noise robustness). Consider the proposed HC-FFTSD (2.36) in Theorem 2.3.1

under measurement noise µ, so that ϕ1(e1) and ϕ2(e1) in (2.37) are replaced by ϕ1(e1 + µ) and

ϕ2(e1 + µ) in the differentiator, as follows:

ė1 = −k1ϕ1(e1 + µ) + e2

ė2 = −k2ϕ2(e1 + µ),
(2.60)

where µ is bounded as ∥µ∥ ≤ µ. When γ1 in (2.56) satisfies γ1 ≥ λmax {P}/λmin {P}, (2.60)

is PFTS.
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Proof. The proof of this corollary is based on the Lyapunov analysis in the proof of The-

orem 2.3.1 and Corollary 2.3.1. We re-write (2.60) as follows:

ė1 = −k1ϕ1(e1) + e2 + k1ϕ∗1(e1, µ), ϕ∗1(e1, µ) = −ϕ1(e1 + µ) + ϕ1(e1),

ė2 = −k2ϕ2(e1) + k2ϕ∗2(e1, µ), ϕ∗2(e1, µ) = −ϕ2(e1 + µ) + ϕ2(e1).
(2.61)

By applying (2.37), we obtain,

ϕ∗1(e1, µ) = −ϕ1(e1 + µ) + ϕ1(e1)

= −k3µ−
[
(e1 + µ)T(e1 + µ)

] 1−p
3p−2

(e1 + µ) + (eT
1 e1)

1−p
3p−2 e1

ϕ∗2(e1, µ) = −ϕ2(e1 + µ) + ϕ2(e1)

= −k2
3µ− 2k3(2p− 1)

3p− 2

[
(e1 + µ)T(e1 + µ)

] 1−p
3p−2

(e1 + µ) +
2k3(2p− 1)

3p− 2
(eT

1 e1)
1−p

3p−2 e1

− p
3p− 2

[
(e1 + µ)T(e1 + µ)

] 2(1−p)
3p−2

(e1 + µ) +
p

3p− 2
(eT

1 e1)
2(1−p)
3p−2 e1.

Therefore, according to Lemma 2.1.5, the upper bounds of ∥ϕ∗1(e1, µ)∥ and ∥ϕ∗2(e1, µ)∥ are

given by:

∥ϕ∗1(e1, µ)∥ ≤ k3µ + 2
2(p−1)
3p−2 (µ)

1− 2(p−1)
3p−2

∥ϕ∗2(e1, µ)∥ ≤ k2
3µ +

2k3(2p− 1)
3p− 2

2
2(p−1)
3p−2 (µ)

1− 2(p−1)
3p−2 +

p
3p− 2

2
4(p−1)
3p−2 (µ)

1− 4(p−1)
3p−2

Thus, with the upper bounded ∥ϕ∗1(e1, µ)∥ and ∥ϕ∗1(e1, µ)∥, by applying Corallary 2.3.1,

we conclude that the origin of the error dynamics (2.61) is PFTS.
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2.4 Summary

In this chapter, we present two HCD schemes with finite-time stability and fast finite-time

stability, as HC-FTSD and HC-FFTSD, respectively. The FFTS-ESO presented in Chapter

5 is based on the HCD proposed in this chapter. The stability analysis of HCD is inspired

by the strict Lyapunov function for the super-twisting algorithm by (Moreno and Osorio,

2012; Vidal, Nunes, and Hsu, 2016). We present the Lyapunov analyses of HC-FFTSD

under perturbation and measurement noise, respectively.
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Chapter 3

Problem Formulation

We formulate the extended state observer (ESO) and the disturbance rejection control

problem on SE(3) with the corresponding mathematical preliminaries in this chapter. Sec-

tion 3.1 describes the coordinate frame definition for the motion of the unmanned aerial

vehicle (UAV) in this dissertation. Section 3.2 describes the system kinematics and dy-

namics. The preliminary on Morse function is covered in Section 3.3. We formulate the

disturbance estimation problem within the ESO design, and define the ESO estimation

error on SE(3) and its tangent space in Section 3.4. We pose the tracking control problem

of the rotorcraft with the definition of tracking control error and the accordingly obtained

tracking error kinematics and dynamics equation in Section 3.5. Afterwards, we formu-

late two active disturbance rejection control (ADRC) architectures on SE(3) in Section 3.5.

We finalize this Chapter by a summary in Section 3.6.

3.1 Coordinate frame definition

We model a maneuverable autonomous rotorcraft UAV as a rigid body. We assume the

geometric center of the UAV and the center of gravity are almost coincident. The config-

uration space is the special Euclidean group, which is the semi-direct product SE(3) =

27



R3 ⋊ SO(3). We compactly represent the pose of the rigid body by

(b, R) ∈ SE(3) (3.1)

, where b ∈ R3 denotes the position vector in inertial coordinate frame E and R ∈ SO(3)

denotes the rotation matrix from body-fixed coordinate frame B to frame E . We define

e1 = [1, 0, 0]T, e2 = [0, 1, 0]T, and e3 = [0, 0, 1]T. In Figure 3.1, we present the iner-

tial frame and a body-fixed frame, which are spanned by unit vectors {e1, e2, e3} and

{b1, b2, b3} in north-east-down (NED) directions, respectively.

FIGURE 3.1: The UAV and coordinate frames

In Figure 3.1, we observe that the the actuations f1 to f4 are perpendicular to the b1− b2

plane of B. The control inputs actuate all degrees of freedom of rotational motion but only

one degree of freedom of translational motion.
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3.2 System kinematics and dynamics

With the pose of the UAV defined in Section 3.1, the kinematic equations for the UAV are

then given by:

ḃ = v, Ṙ = RΩ×, (3.2)

where v ∈ R3 denotes the translational velocity in frame E , and Ω ∈ R3 denotes the

angular velocity in body-fixed frame B. (·)× : R3 → so(3) ⊂ R3×3 is the skew-symmetric

cross-product operator defined by:

x× =


x1

x2

x3


×

=


0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (3.3)

The overall system kinematics and dynamics of a rotorcraft with a body-fixed plane

of rotors are given by:

ḃ = v

mv̇ = mge3 − f Re3 + φD,

Ṙ = RΩ×,

JΩ̇ = JΩ×Ω + τ + τD,

(3.4)

where f ∈ R is the scalar thrust force, and τ ∈ R3 is the control torque created by the

rotors. g denotes the acceleration due to gravity, and m ∈ R+, J = JT ∈ R3×3 denote the

mass and inertia matrix of the UAV, respectively. φD denotes the force disturbances in
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frame E . τD denotes the torque disturbances in frame B. These disturbances are mainly

due to unsteady aerodynamics.

The measurements of a typical multi-rotor UAV are from the real-time kinematic global

navigation satellite system (RTK-GNSS), and inertial navigation system (INS). The INS

gives the attitude and angular velocity measurements, denoted as Rm and Ωm, respec-

tively. The RTK-GNSS gives the position and translational velocity measurements, de-

noted as bm and vm, respectively. With the presence of measurement uncertainties, these

measurements are modeled as:

bm = b + νb, vm = v + νv, Rm = Rexp(ν×R ), Ωm = Ω + νΩ, (3.5)

where νb, νv, νR, νΩ ∈ R3 are uncertain terms of position, velocity, attitude, and angular

velocity measurements. In the numerical simulations covered in Chapters 4 and 5, a

realistic RTK-GNSS/INS model is provided with quantified measurement uncertainties.

3.3 Morse function on SO(3)

As described in Section 3.1, the attitude of the UAV is represented on the configuration

space SO(3), which is non-trivial. Unlike the mechanical system represented by general-

ized coordinates in Rn, SO(3) is a non-contractible manifold. With the presence of multi-

ple equilibria existing for continuous autonomous systems evolving on non-contractible

manifolds, the tracking control schemes need to ensure that only the desired attitude is

tracked (Bohn and Sanyal, 2016). Similarly, the ESO need to ensure that only the real atti-

tude of the UAV is estimated. To this end, we introduce the Morse function as part of the
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Lyapunov function in the stability analysis of rotational ESO and attitude tracking control

scheme.

Lemma 3.3.1. (Bohn and Sanyal, 2016), (Bullo and Lewis, 2019) Consider attitude kinematics

Ṙ = RΩ×, R ∈ SO(3), Ω× ∈ so(3). (3.6)

Let K = diag(K1, K2, K3), where K1 > K2 > K3 ≥ 1. Define

sK(R) =
3

∑
i=1

Ki(RTei)× ei, (3.7)

such that d
dt ⟨K, I − R⟩ = ΩTsK(R). Here ⟨A, B⟩ = tr(ATB), which makes ⟨K, I − R⟩ a Morse

function defined on SO(3). Let S ⊂ SO(3) be a closed subset containing the identity in its

interior, defined by

S =
{

R ∈ SO(3) : Rii ≥ 0 and RijRji ≤ 0, ∀i, j ∈ {1, 2, 3}, i ̸= j
}

. (3.8)

Then for ∀R ∈ S , we have

sK(R)TsK(R) ≥ ⟨K, I − R⟩. (3.9)

Definition 3.3.1. Define the time derivative of sK(R) as w(R, Ω), given by:

w(R, Ω) =
d
dt

sK(R) =
3

∑
i=1

Kiei × (Ω× RTei), (3.10)

where sK(R) is defined by (3.7), R and Ω are defined by (3.6).
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Remark 3.3.1 (Almost global domain of attraction). (Sanyal, Nordkvist, and Chyba, 2010),

(Sanyal and Chaturvedi, 2008) We know that the subset of SO(3) where sK(R) = 0, R ∈

SO(3), which is also the set of critical points for ⟨I − R, K⟩, is

C ≜ {I, diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1)} ⊂ SO(3). (3.11)

In addition, the global minimum of Morse-Function is R = I.

3.4 ESO estimations and errors

The ESO design on SE(3) is split into translational ESO (TESO) design on vector space R3

and rotational ESO (RESO) design on SO(3).

Let (b̂, v̂, φ̂D) ∈ R3 × R3 × R3 denote the estimated translational position, velocity,

and disturbance forces as the states of TESO. We define the estimation errors of TESO by:

eb = bm − b̂, ev = vm − v̂, eφ = φD − φ̂D, (3.12)

which are the estimation errors of translational position, velocity, and total disturbance

force, respectively. The input-output diagram of the TESO is presented in Figure 3.2.
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FIGURE 3.2: The block diagram of TESO

Let (R̂, Ω̂, τ̂D) ∈ SO(3)×R3×R3 denote the estimated attitude, angular velocity, and

disturbance torque as the states of RESO. We define the attitude estimation error by:

ER = R̂TRm, (3.13)

on SO(3). We define the angular velocity and torque disturbance estimation errors by:

eΩ = Ωm − ET
R Ω̂, eτ = τD − τ̂D, (3.14)

which are expressed on the vector space R3. The input-output diagram of the rotational

ESO is presented in Figure 3.3.
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FIGURE 3.3: The block diagram of RESO

A properly designed ESO on SE(3)is expected to stabilize the error state eb, ev, eφ,

ER, eΩ, eτ at the origin eb = 0, ev = 0, eφ = 0, ER = I, eΩ = 0, eτ = 0, when there

are no measurement uncertainties, such that νb, νv, νR, νΩ = 0. Moreover, when the

measurement uncertainties are non-negligible, the ESO is expected to drive the error state

to a small neighbourhood around the origin.

3.5 Tracking error kinematics and dynamics

Let gd(t) ∈ SE(3) denote the desired pose generated by a guidance scheme (Sanyal, Nord-

kvist, and Chyba, 2010). Let vd denote the desired translational velocity in the inertial

frame E , and Ωd denote the body’s reference angular velocity in the body frame B. Then,

the tracking error is given by

(b̃, Q) ∈ SE(3), (3.15)

where Q = (Rd)TR is the attitude tracking error in the frame B, and b = b − bd is the

position tracking error in the frame E . The translational velocity tracking error is given
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by:

ṽ = v− vd. (3.16)

The angular velocity tracking error is given by:

ω = Ω−QTΩd. (3.17)

Thus, in the inertial frame E , the translational tracking error kinematics and dynamics

can be summarized as

˙̃b = ṽ,

m ˙̃v = mge3 − f Re3 + φD −mv̇d,
(3.18)

in the body-fixed frame B, the rotational tracking error kinematics and dynamics can be

summarized as

Q̇ = Qω×,

Jω̇ = τ + τD + J(ω×QTΩd −QTΩ̇d) + (JΩ)×Ω.
(3.19)

Since the translational error dynamics is expressed in the inertial frame, the rotational

error dynamics is decoupled from the translational error dynamics such that the transla-

tion control force, f , is obtained in the inertial frame followed by the appropriate attitude

control, τ, in body frame to track the desired trajectory, bd.

With the tracking error and corresponding dynamics of the UAV, we formulate two
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ADRC architectures, named as measured and estimated feedback architecture, respec-

tively. These two control architectures are adopted in the rest part of the dissertation.

In the measured feedback architecture, the motion feedback is from the direct measure-

ments bm, vm, Rm, Ωm. With direct measurements, we denote the feedback tracking error

in measured feedback architecture as b̃m, ṽm, Qm, ωm, defined by,

b̃m = bm − bd, ṽm = vm − vd, Qm = (Rd)TRm, ωm = Ωm − (Qm)TΩd. (3.20)

They are corresponding with b̃, ṽ, Q, ω defined by (3.15), (3.16), and (3.17), respectively.

The ESO provides φ̂D and τ̂D for disturbance rejection. The control diagram of the mea-

sured feedback architecture is presented in Figure 3.4.

Similarly, in the estimated feedback architecture, the ESO provides b̂, v̂, R̂, Ω̂, φ̂D, τ̂D

for both state feedback and disturbance rejection. We denote the feedback tracking error

in estimated feedback architecture as b̃e, ṽe, Qe, ωe, defined by

b̃e = b̂− bd, ṽe = v̂− vd, Qe = (Rd)TR̂, ωe = Ω̂− (Qe)TΩd. (3.21)

The control diagram of the estimated feedback architecture is presented in Figure 3.5.

Theoretically, since the ESO can estimate the state and the disturbance simultaneously

with stability assurance, we assume that the estimated state is closer to the ground truth

state than the measured one. This assumption implies that estimated feedback architec-

ture have better control performance than the measured feedback one in identical condi-

tions. The discussion on this comparison is posed in the numerical simulations covered in

Chapters 4 and 5. We assume perfect measurement or estimation in the control designs to
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establish a fair comparison. In the control designs and stability proofs covered in Propo-

sitions 4.2.2, 4.2.1, 5.2.2, 5.2.1, and Theorems 5.2.1, 5.2.2, the tracking control laws and the

corresponding error dynamics are expressed by the ground truth motion states expressed

by (3.4) and ground truth tracking errors expressed by (3.15), (3.16), (3.17), so that these

control designs can be expressed with both architectures by replacing the ground truth

motion states and tracking errors with the estimated or measured ones.

FIGURE 3.4: The block diagram of ADRC scheme with measured feedback

FIGURE 3.5: The block diagram of ADRC scheme with estimated feedback
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3.6 Summary

This chapter formulates the ESO and ADRC problems on SE(3), and covers the corre-

sponding mathematical preliminaries. With the formulated ESO and tracking control

errors, we present two ADRC architectures on SE(3) in Figures 3.4 and 3.5. The architec-

tures covered in this chapter are adopted in the rest part of the dissertation.
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Chapter 4

Asymptotically Stable Active Disturbance

Rejection Control (AS-ADRC)

Based on the tracking control and extended state observer (ESO) problems addressed in

Chapter 3, this chapter describes the AS-ADRC scheme in detail. We organize the chapter

as follows. Section 4.1 describes the exponentially stable extended states observer (ES-

ESO) design on SE(3) with its stability analysis in detail. Section 4.2 obtains the asymp-

totically stable position and attitude tracking control law for stable tracking control with

disturbance rejection from the estimated disturbances by ES-ESO described in Section

4.1. Two sets of numerical simulation results are presented in this chapter. In Section

4.4, the first set of results present the disturbance estimation performance of the proposed

ES-ESO. In Section 4.5, we present the second set of numerical simulations to investi-

gate the flight control performance of the proposed AS-ADRC scheme. In the simulation,

the desired flight trajectory of the aircraft is designed to let the unmanned aerial vehicle

(UAV) flight control scheme experience the singularity point of the pose representation.

Lie group variational integrator (LGVI) discretizes the simulations in Section 4.4 and 4.5.

We conclude this chapter in Section 4.6 by summarizing the results and highlighting di-

rections for forthcoming research.
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4.1 Exponentially stable extended states observer (ES-ESO)

4.1.1 ES-ESO: Translational motion

Proposition 4.1.1 (ES-ESO: Translational motion). Define the positive scalar gains kt1 and kt2,

which make the matrix At ∈ R2×2 defined by:

At =

−kt1 1

−kt2 0

 , (4.1)

a Hurwitz matrix. Define the positive scalar gain κt > 1/2. Consider the following ESO design:

˙̂b = v̂

m ˙̂v = mge3 − f Rme3 + mkt1ψt + mκtev + φ̂D

˙̂φD = mkT2ψt,

(4.2)

where ψt is defined by:

ψt = ev + κteb. (4.3)

Theorem 4.1.1. With the observer errors defined by (3.12), the translational kinematics and dy-

namics given by (3.4), and the translational ESO given by (4.2), the error dynamics of the ESO is
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given by:

ėb = ev,

mėv = −mkt1ψt −mκtev + eφ,

ėφ = −mkt2ψt + φ̇D.

(4.4)

The error dynamics (4.4) is exponentially stable at the origin (eb = 0, ev = 0, eφ = 0), when the

resultant disturbance force is constant (φ̇D = 0) and the measurement uncertainties are negligible

(νb = 0, νv = 0).

Proof. Substituting the time derivative of (4.3) in (4.4), we obtain

ėb = ev

ψ̇t = −kt1ψt + m−1eφ

m−1ėφ = −kt2ψt.

(4.5)

Next, for At as defined in (4.1), ∀Qt ∈ R2×2 where Qt ≻ 0, the Lyapunov equation,

AT
t Pt + PtAt = −Qt, (4.6)

has a unique solution Pt. Thereafter, define the Lyapunov function Vt:

Vt = Vt0 + µteT
b eb, where Vt0 = ζT

t Ptζt, (4.7)
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and ζt is defined as:

ζt = [ψT
t , m−1eT

φ ]
T.

We define µt as a positive scalar, where µt is constrained by:

0 < µt <
λmin {Qt} λmin {Pt}

λmax {Pt}
. (4.8)

By substituting (4.5), we further obtain the time derivative of Vt as:

V̇t = ζ̇T
t Ptζt + ζT

t Ptζ̇t + 2µteT
b ev

= −ζT
t Qtζt + 2µteT

b (ψt − κteb)

≤ −ζT
t Qtζt − (2κt − 1)µteT

b eb + µtψ
T
t ψt

≤ −
(

λmin {Qt}
λmax {Pt}

− µt

λmin {Pt}

)
Vt0 − (2κt − 1)µteT

b eb

≤ −γtVt,

(4.9)

where γt is a positive constant defined by:

γt = min
{

λmin {Qt}
λmax {Pt}

− µt

λmin {Pt}
, 2κt − 1

}
.

Based on the inequality (4.9), we conclude that the ESO error dynamics (4.4) is exponen-

tially stable at the origin. This concludes the proof of Theorem 4.1.1.
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4.1.2 ES-ESO: Rotational motion

Proposition 4.1.2 (ES-ESO: Rotational motion). Define eR = sk(ER), where sK(·) is defined

in Lemma 3.3.1. Define ew = w(ER, eΩ) by applying (3.10). Define the positive scalar gains ka1

and ka2, which make the matrix Aa ∈ R2×2 defined as:

Aa =

−ka1 1

−ka2 0

 , (4.10)

a Hurwitz matrix. Define the positive scalar gain κa > 1/2. Consider the following ESO design,

˙̂R = R̂Ω̂×

˙̂Ω = ER J−1 [JΩ×Ω + τ] + ER J−1 [ka1 Jψa + κa Jew + τ̂D] + ERe×ΩET
R Ω̂,

˙̂τD = Jka2ψa,

(4.11)

where ψa is defined by:

ψa = eΩ + κaeR. (4.12)

Theorem 4.1.2. With the observer errors for the rotational ESO defined by (3.13), (3.14), the

rotational kinematics and dynamics given by (3.4), and the ESO for rotational motion given in

Proposition 4.1.2, the error dynamics of the ESO is given by:

ĖR = ERe×Ω,

JėΩ = −ka1 Jψa − κa Jew + eτ,

ėτ = −ka2 JψA + τ̇D.

(4.13)
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When the resultant disturbance torque is constant (τ̇D = 0) and the measurement uncertainties

are negligible (νR = 0, νΩ = 0), the error dynamics (4.13) is almost global exponentially stable

to the origin (ER = I, eΩ = 0, eτ = 0), except for some critical points of initial conditions.

Proof. From (4.13), by substituting the time derivative of (4.12), we obtain

ĖR = ERe×Ω

ψ̇a = −ka1ψa + J−1eτ

J−1ėτ = −ka2ψa.

(4.14)

Next, for Aa as defined in (4.10), ∀Qa ∈ R2×2 where Qa ≻ 0, the Lyapunov equation:

AT
a Pa + PaAa = −Qa, (4.15)

has a unique solution Pa. Thereafter, define the Lyapunov function Va:

Va = Va0 + µa⟨K, I − ER⟩, where Va0 = ζT
a Paζa, (4.16)

and ζa is defined as:

ζa = [ψT
a , J−1eT

τ ]
T.

We define µa as a positive scalar, where µa is constrained by:

0 < µa <
2λmin {Qa} λmin {Pa}

λmax {Pa}
. (4.17)
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With (4.14), we obtain the time derivative of VA as follows,

V̇a = ζ̇T
a Paζa + ζT

a Paζ̇a + µaeT
ReΩ

= −ζT
a Qaζa + µaeT

R(ψa − κaeR)

≤ −ζT
a Qaζa −

(
κa −

1
2

)
µaeT

ReR +
1
2

µaψT
a ψa

(4.18)

By applying the inequality (3.9) in Lemma 3.3.1, from (4.18), we obtain

V̇a ≤ −
(

λmin {Qa}
λmax {Pa}

− µa

2λmin {Pa}

)
Va0 −

(
κa −

1
2

)
µa⟨K, I − ER⟩

≤ −γaVa,
(4.19)

where γa is a positive constant, given by:

γa = min
{

λmin {Qa}
λmax {Pa}

− µa

2λmin {Pa}
, κa −

1
2

}
. (4.20)

Based on the inequality (4.19), we conclude that the ESO error dynamics (4.13) is almost-

global exponentially stable at the origin. This concludes the proof of Theorem 4.1.2.

Remark 4.1.1. We assume φ̇D, τ̇D are not negligible, such that φ̇D, τ̇D ̸= 0. According to

Definition 4.8 and Theorem 4.18 in (Khalil, 2002), when the ESO gains defined by Propo-

sitions 4.1.1, 4.1.2 make the solutions of Lyapunov equations (4.6), (4.15) satisfy:

λmin {Qt}
λmax {Pt}

− µt

λmin {Pt}
>

λmax {Pt}
λmin {Pt}

,

λmin {Qa}
λmax {Pa}

− µa

2λmin {Pa}
>

λmax {Pa}
λmin {Pa}

,
(4.21)
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the estimation errors of the proposed ES-ESO are almost globally uniformly ultimately

bounded. We omit the proof for brevity.

4.2 AS-ADRC

The position and attitude tracking control schemes by (Sanyal, Nordkvist, and Chyba,

2010) are reproduced here. The AS-ADRC scheme comprises the ES-ESO design in Sec-

tion 4.1 and the tracking control scheme by (Sanyal, Nordkvist, and Chyba, 2010) to obtain

better flight control performance under disturbance forces and torques. We present the

position and attitude tracking control law here in Proposition 4.2.1 and Proposition 4.2.2.

Proposition 4.2.1 (Position tracking control). (Sanyal, Nordkvist, and Chyba, 2010) Con-

sider the translational tracking control law

f Re3 = mge3 + Pb̃ + Lṽ−mv̇d + φ̂D, (4.22)

where φ̂D is obtained from the translational ESO given in Proposition 4.1.1. With the control law

(4.22), when the disturbance estimation error of the ESO is negligible, such that ∥eφ∥ = 0, the

translational error dynamics given by (3.18) is asymptotically stable.

Proposition 4.2.2 (Attitude tracking control). (Sanyal, Nordkvist, and Chyba, 2010) Con-

sider the attitude tracking control law

τ = −kPsK(Q)− kDω− τ̂D + J(QTΩ̇d −ω×QTΩd)− JΩ×QTΩd, (4.23)

where sK(·) is defined by Lemma 3.3.1, and τ̂D is obtained from rotational ESO given in Propo-

sition 4.1.2. With the control law (4.23), when the disturbance estimation error of the ESO is
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negligible, such that ∥eτ∥ = 0, the attitude error dynamics (3.19) is stabilized to be asymptoti-

cally stable.

The desired attitude Rd and desired angular velocity Ωd in Proposition 4.2.2 is gener-

ated from the desired force f Re3 from Proposition 4.2.1 by applying the Hopf fibration

method by (Watterson and Kumar, 2019). The almost global stability proofs of the Propo-

sition 4.2.1 and 4.2.2 are close to the Lyapunov analysis by (Sanyal, Nordkvist, and Chyba,

2010) and are omitted here for brevity.

4.3 AS-ADRC: Implementation with realistic feedback

In control practice, the perfect feedback assumption is no longer reliable. The feedback

either comes from the measurement from UAV or the estimation from ESO. In this section,

we adopt the feedback architectures described in Section 3.5. Based on the tracking laws

given by Propositions 4.2.2 and 4.2.1, we present the implementable AS-ADRC schemes

in measured feedback and estimated feedback.

Measured feedback AS-ADRC:

The tracking control law for measured feedback architecture is given by:

f Rme3 = mge3 + Pb̃m + Lṽm −mv̇d + φ̂D,

τ = −kPsK(Qm)− kDωm − τ̂D

+ J
[
(Qm)TΩ̇d − (ωm)×(Qm)TΩd

]
− J(Ωm)× (Qm)TΩd.

(4.24)

Estimated feedback AS-ADRC:
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Similarly, the tracking control law for estimated feedback architecture is given by:

f Rhe3 = mge3 + Pb̃e + Lṽe −mv̇d + φ̂D,

τ = −kPsK(Qe)− kDωe − τ̂D

+ J
[
(Qe)TΩ̇d − (ωe)×(Qe)TΩd

]
− JΩ̂× (Qe)TΩd.

(4.25)

The validity of the proposed implementable AS-ADRC schemes will be discussed in the

simulations, covered in the Section 4.5.

4.4 Numerical simulation: ES-ESO

In this section, we present a set of numerical simulation results to validate the ES-ESO.

The inertia information (Pounds, Mahony, and Corke, 2010) of the simulated UAV is

given by:

J = diag([0.0820, 0.0845, 0.1377]) kg ·m2, m = 4.34 kg. (4.26)

Since the target of the simulation is to validate and compare the disturbance estima-

tion performance of ES-ESO, the realistic propeller dynamics, time-delay and actuator

saturation are not included in the model in the simulation reported in this section. The

tracking control scheme driving the UAV to track the desired trajectories is the asymptot-

ically stable tracking control scheme reported in Section 4.2 without disturbance rejection

terms, such that τ̂D, φ̂D = 0. The control law given by 4.24 with measured feedback

architecture and perfect measurement is implemented in the simulation. The LGVI (Lee,

McClamroch, and Leok, 2005; Nordkvist and Sanyal, 2010) discretizes the simulation with
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FIGURE 4.1: Estimation error from ES-ESO in the simulated flight with

’circular’ trajectory and constant disturbance
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FIGURE 4.2: Estimation error from ES-ESO in the simulated flight with

’circular’ trajectory and dynamic disturbance
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FIGURE 4.3: Estimation error from ES-ESO in the simulated flight with

’barrel roll’ trajectory and constant disturbance

51



0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

(A) ∥eb∥

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(B) acos
(

1
2 (tr(ER)− 1)

)

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

(C) ∥ev∥

0 2 4 6 8 10

0

1

2

3

4

5

(D) ∥eΩ∥

0 2 4 6 8 10

0

2

4

6

8

10

(E) ∥eφ∥

0 2 4 6 8 10

0

0.5

1

1.5

2

(F) ∥eτ∥
FIGURE 4.4: Estimation error from ES-ESO in the simulated flight with

’barrel roll’ trajectory and dynamic disturbance
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sampling time ∆t = 0.01s. The time length of the simulation is T = 10s. On the input

of the ES-ESO (bm, vm, Rm, Ωm), we model the measurements from the MTi-680G, a real-

time kinematic global navigation satellite system with inertial navigation system (RTK

GNSS/INS) produced by Movella. LLC. The measurement uncertainties are as listed in

Table 4.1 in the form of normal distribution.

bm bm = b + νb νb ∼ N (0, 0.00392)
vm vm = v + νv νv ∼ N (0, 0.052)
Rm Rm = Rexp(ν×R ) νR ∼ N (0, 0.00352)
Ωm Ωm = Ω + νΩ νΩ ∼ N (0, 0.012)

TABLE 4.1: Measurement noise level in normal distribution for the
comparisons between LESO, FxTSDO, and FFTS-ESO

The gains of the proposed ES-ESO are tuned and selected as κt = 2, kt1 = 15, kt2 =

45 κa = 1.5; ka1 = 15; ka2 = 54. The gains of the tracking control implementation are

given by kP = 8, kD = 12 and P = 20I, L = 40I. Two desired trajectories with different

maneuver intensities are presented here as follows. The ’circular’ trajectory is expressed

by:

bd(t) = [2 sin(0.5πt), −2cos(0.5πt), −3]T m. (4.27)

The ’barrel roll’ trajectory is expressed by:

bd(t) = [5 sin(0.5πt), −2t, −5cos(0.5πt)]T m. (4.28)

The ’barrel roll’ trajectory is with higher maneuver intensity. The norm of centripetal

acceleration of the ’barrel roll’ trajectory is more than one g, implying that the simulated

UAV has to pitch up and flip over to track the desired trajectory. This trajectory forces the
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UAV experiencing the singularity point for the pose representation, so that we validate

the disturbance estimation performance under this extreme condition.

In the simulations with ’circular’ trajectory, the initial conditions of the UAV motion

and ESO are given by:

R(0) = I, Ω(0) = [0, 0, 0]T rad/s,

b(0) = [0, 0, −3]T m, v(0) = [2π, 0, 0]T m/s,

R̂(0) = expmso3([0.001, 0.01, 0.001]×), Ω̂(0) = [0.1, 0.2, 0.1]T rad/s,

b̂(0) = [0.1, 0.2, −2.9]T m, v̂(0) = [2π + 0.3, 0, 0.2]T m/s,

τ̂D(0) = [1, 1, 1]T N ·m, φ̂D(0) = [10, 10, 10]T N.

(4.29)

In the simulations with ’barrel roll’ trajectory, the initial conditions of the UAV motion

and ESO are given by:

R(0) = I, Ω(0) = [0, 0, 0]T rad/s,

b(0) = [0, 0, −3]T m, v(0) = [2.5π, 0, 0]T m/s,

R̂(0) = expmso3([0.001, 0.01, 0.001]×), Ω̂(0) = [0.1, 0.2, 0.1]T rad/s,

b̂(0) = [0.1, 0.2, −2.9]T m, v̂(0) = [2.5π + 0.3, 0, 0.2]T m/s,

τ̂D(0) = [1, 1, 1]T N ·m, φ̂D(0) = [10, 10, 10]T N.

(4.30)

The numerical simulations are conducted separately in the environment with constant

and dynamic disturbances. The constant disturbance force and torque are given by:

φD = [10, 5, 5]T N, τD = [0.8, 0.3, −0.5]T N ·m. (4.31)
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The dynamic disturbance forces and torques are given by:

φD =


10 + 6sin(0.5πt) + 0.5sin(πt)

5 + 3sin(0.5πt) + 0.2sin(πt)

5

N,

τD =


0.8 + 0.5sin(0.5πt) + 0.1sin(πt)

0.3 + 0.2sin(0.5πt) + 0.05sin(πt)

−0.5 + 0.1sin(0.5πt)

N ·m.

(4.32)

We define sat(·, ·) : R3×R+ → R3 to create an artificial saturation mechanism, given by:

sat(τ, τ) =


τ, ∥τ∥ ≤ τ,

τ
∥τ∥τ, ∥τ∥ > τ.

(4.33)

This mechanism is adopted in the rest part of this chapter and in the numerical simu-

lations covered in Chapter 5. By applying (4.33), we limit the magnitude of the torque

actuation to be τ̄ = 10 N·m in this section.

Figures 4.1-4.4 present the simulation results. The state estimation errors (eb, ev, ER, eΩ)

and disturbance estimation errors (eφ, eτ) are covered in the results. Figure 4.1 presents

the estimation errors from the simulated flight tracking the ’circular’ trajectory given by

(4.27) when exposed to the constant disturbance given by (4.31). Figure 4.1 shows that all

of the estimation errors converge to a small neighborhood near the origin. However, in

Figure 4.2, when the UAV tracking the identical trajectory is exposed to dynamic distur-

bance given by (4.32), we observe that all estimation errors experience higher fluctuation

than the results in Figure 4.1. The perturbation from the dynamic disturbance causes the
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fluctuation in Figure 4.2. Figure 4.3 presents the results from the flight tracking the ’barrel

roll’ trajectory given by (4.28) when exposed to the constant disturbance. Although the

proposed tracking control scheme and ES-ESO using Lie group pose representation are

singularity-free, the UAV still has to experience severe attitude maneuvers at the top of

the ’barrel roll’ trajectory, demanding high torque actuation. Since the numerical simula-

tion is conducted by discretizing continuous equations with fixed time-step, severe torque

actuation brings extra perturbation to the numerical schemes, and then causes the high

fluctuation of the estimation errors from rotational ESO in Figure 4.3. We can relieve the

impact of severe actuation by adjusting the saturation magnitude τ in (4.33), the length

of time-step δt, or applying the ESO with faster convergence speed. Figure 4.4 presents

the estimation errors of the simulated flight tracking the ’barrel roll’ trajectory when ex-

posed to the dynamic disturbance. The estimation errors in Figure 4.4 have the highest

fluctuation since the simulated flight experiences both challenging desired trajectory and

dynamic disturbance.

To summarize, although the proposed ESO shows satisfying performance when the

simulated UAV tracks the ’circular’ trajectory under constant disturbance, the results

from the other three simulations with more challenging flight conditions are question-

able. We involve the ES-ESO in the feedback loop of AS-ADRC in the following section

to evaluate its performance.

4.5 Numerical simulation: AS-ADRC

In this section, we present two sets of numerical simulation results on AS-ADRC. We

command the simulated UAV to track the ’barrel roll’ trajectory given by (4.28). In the
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simulations presented in this section, the settings are identical to the ones given in Section

4.1, unless otherwise specified. The torque saturation in (4.33) is bounded by τ = 50 N·m.

The first set of simulations presents the performance comparison between estimated feed-

back architecture and measured feedback architecture. The second set uses the estimated

feedback architecture and establishes the comparison between the tracking control with-

out disturbance rejection, with only translational rejection, with only rotational rejection,

and with both rejections.

4.5.1 Estimated feedback versus measured feedback

In this subsection, we present the comparison between estimated and measured feedback

architectures on their tracking control performances. The control laws for estimated and

measured feedback architecture are given by (4.25) and (4.24), respectively. Constant dis-

turbance (4.31) perturbs the flights in the simulations. We activate both translational and

rotational disturbance rejections to evaluate their performances comprehensively.

Figure 4.5 presents the tracking control performances of the two architectures. The po-

sition tracking error is defined as the norm of b̃. The attitude tracking error is defined by

the principal angle, given by acos
(

1
2(tr(Q)− 1)

)
. Despite the questionable performance

of ES-ESO presented in Section 4.1 in ’barrel roll’ trajectory, we can observe that estimated

AS-ADRC outperforms the measured one in Figure 4.5.

4.5.2 Partial rejection versus whole rejection

In this subsection, we present the simulation results with different configurations of dis-

turbance rejection with estimated feedback architecture given by 3.21. The desired trajec-

tory, the gains of tracking control scheme, and the gains of ES-ESO of AS-ADRC are all
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FIGURE 4.5: Position and attitude tracking errors of AS-ADRC: estimated

feedback versus measured feedback
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identical to the ones presented in Section 4.1. In the simulation within this section, we

have disturbance rejection terms in the control schemes.

Four simulation results, which are the simulations without disturbance rejection, with

only translational rejection, with only rotational rejection, and with both rejection, are

included in this subsection. The results are shown in Figures 4.6 and 4.7.

From Figure 4.6, we observe that all of the trajectories of the simulated flights con-

verge to a neighborhood near the desired trajectory. Figure 4.7 compares the position and

attitude tracking error during the simulated flights. From Figure 4.7, we can clearly ob-

serve the position tracking errors of ’both’ and ’translational rejection’ are much smaller

than the other two. However, the attitude tracking errors of the four disturbance rejection

configurations cannot differ from each other significantly in Figure 4.7.

To investigate the rotational disturbance rejection configuration, we enlarge the con-

stant disturbance torque, given by:

τD = [5, 0.3, −0.5]T N ·m, (4.34)

and conduct the simulations again. Figure 4.8 presents the tracking control errors from

the results.

Figure 4.8 indicates that the control scheme with both translational and rotational dis-

turbance rejections has the best control performance. When the disturbance torque is

considerably high, the rotational disturbance rejection can improve the attitude tracking

performance. Moreover, to ensure satisfactory position tracking control performance for

a UAV experiencing disturbance forces and torques, disturbance torque rejection in the

attitude tracking control scheme is necessary.
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(C) Rotational (D) Whole
FIGURE 4.6: The tracked trajectories of AS-ADRC: partial rejection versus

whole rejection
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FIGURE 4.7: Position and attitude tracking errors of AS-ADRC: partial

rejection versus whole rejection
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FIGURE 4.8: Position and attitude tracking errors of AS-ADRC with

amplified disturbance torque: partial rejection versus whole rejection
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4.6 Summary

In this chapter, the AS-ADRC scheme with the ES-ESO module on SE(3) is presented for

the rotorcraft UAV doing rapid maneuvers in the presence of aerodynamic uncertainties.

The proposed ES-ESO scheme is able to give an accurate estimation of the external force

and torque disturbances acting on the UAV. We provide the stability proof using Lya-

punov analysis. Afterwards, we propose the AS-ADRC scheme which incorporates the

disturbance estimation from ES-ESO and the AS tracking scheme on SE(3), by (Sanyal,

Nordkvist, and Chyba, 2010). The proposed scheme is numerically implemented by LGVI

for a simulated rotorcraft UAV. Two sets of numerical simulation results are presented to

validate the developed ES-ESO and AS-ADRC scheme, respectively. Numerical results

validate the proposed ES-ESO and AS-ADRC, and show their robustness.
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Chapter 5

Fast Finite-Time Stable Active Disturbance

Rejection Control (FFTS-ADRC)

As the major contribution of this dissertation, this chapter describes the FFTS-ADRC

scheme in detail. The tracking control and extended state observer (ESO) problems on

SE(3) are formulated in Chapter 3. Section 5.1 describes the detailed fast finite-time sta-

ble extended state observer (FFTS-ESO) design based on the Hölder-continuous fast finite

time stable differentiator (HC-FFTSD) reported in Chapter 2. Section 5.2 obtains the FFTS

position and attitude tracking control laws for stable tracking control with the feedback

on the estimated disturbances obtained from FFTS-ESO described in Section 5.1. Two sets

of numerical simulation results are presented in this Chapter. In Section 5.4, the first set

of results compares the proposed FFTS-ESO and other disturbance observer (DO)/ESO

schemes in prior publications on their disturbance estimation performance in different

scenarios. In Section 5.6, we present the second set of numerical simulations to investi-

gate the flight control performance of the proposed FFTS-ADRC. The desired flight tra-

jectory of the aircraft is designed to let the aircraft flight control scheme experience the

singularity point of the pose representation. Lie group variational integrator (LGVI) (Lee,

McClamroch, and Leok, 2005; Sanyal and Chaturvedi, 2008) discretizes the simulations
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in Section 5.6 . We conclude this chapter in Section 5.7 by summarizing the results.

5.1 Fast finite-time stable extended state observer (FFTS-

ESO)

5.1.1 FFTS-ESO: Translational motion

Proposition 5.1.1 (FFTS-ESO: Translational motion). Define the positive scalar gains kt1 and

kt2, which make the matrix At ∈ R2×2 defined as:

At =

−kt1 1

−kt2 0

 , (5.1)

a Hurwitz matrix. The ESO designed for the translational motion is given by:

˙̂b = v̂,

m ˙̂v = mge3 − f Rme3 + mkt1ϕ1(ψt) + mκt

[
(eT

b eb)
1−p

p H
(

eb,
p− 1

p

)
ev + ev

]
+ φ̂D,

˙̂φD = mkt2ϕ2(ψt),

(5.2)

where ψt is defined as

ψt = ev + κt

[
eb + (eT

b eb)
1−p

p eb

]
, κt > 1/2, (5.3)

and ϕ1(·) is as defined by the expression in (2.13). In addition, the constant kt3 is defined and it

occurs in the terms ϕ1(ψt) and ϕ2(ψt), where it takes the place of k3 in (2.13).
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Theorem 5.1.1. Given the observer errors for the translational ESO defined by (3.12), the trans-

lational kinematics and dynamics given by (3.4), and the ESO for translational motion given in

Proposition 5.1.1, the error dynamics of the ESO is given by:

ėb = ev,

mėv = −mkt1ϕ1(ψt)−mκt

[
(eT

b eb)
1−p

p H
(

eb,
p− 1

p

)
ev + ev

]
+ eφ,

ėφ = −mkt2ϕ2(ψt) + φ̇D.

(5.4)

The error dynamics (5.4) is FFTS at the origin ((eb, ev, eφ) = (0, 0, 0)), when the resultant distur-

bance force is constant (φ̇D = 0) and the measurement uncertainties are negligible (νb = 0, νv =

0).

Proof. Simplify (5.4) as:

ψ̇t = −kt1ϕ1(ψt) + m−1eφ,

m−1ėφ = −kt2ϕ2(ψt) + m−1 φ̇D.
(5.5)

Next, for At as defined in (5.1), ∀Qt ∈ R2×2 where Qt ≻ 0, the Lyapunov equation,

AT
t Pt + PtAt = −Qt, (5.6)

has a unique solution Pt. Thereafter, define the Lyapunov function:

Vt = Vt0 + µteT
b eb, where Vt0 = ζT

t Ptζt (5.7)
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and ζt is defined as:

ζt = [ϕT
1 (ψt), m−1eT

φ ]
T. (5.8)

Constrain the positive scalar µt in (5.7) as:

0 < µt < k3
t3

λmin {Pt} λmin {Qt}
λmax {Pt}

. (5.9)

From Theorem 2.3.1, (5.5) and (2.27), we find that the time-derivative of Vt satisfies:

V̇t ≤ −γt1Vt0 − γt2V
1
p

t0 + 2µteT
b ev, (5.10)

where γt1 and γt2 are defined by:

γt1 = kt3
λmin {Qt}
λmax {Pt}

, γt2 =
λmin {Qt} λmin {Pt}

p−1
p p

λmax {Pt} (3p− 2)
. (5.11)

Substituting (5.3) into (5.10), we obtain:

V̇t ≤ −γt1Vt0 − γt2V
1
p

t0 + 2µteT
b

[
ψt − κteb − κt(eT

b eb)
1−p

p eb

]
≤ −γt1Vt0 − γt2V

1
p

t0 + 2µteT
b ψt − 2µtκteT

b eb − 2µtκt(eT
b eb)

1
p

≤ −γt1Vt0 − γt2V
1
p

t0 − 2µtκteT
b eb − 2µtκt(eT

b eb)
1
p + µtψ

T
t ψt + µteT

b eb

≤ −
(

γt1 −
µt

k2
t3λmin {Pt}

)
Vt0 − γt2V

1
p

t0

− (2κt − 1)µteT
b eb − 2κtµ

p−1
p

t µ
1
p
t (e

T
b eb)

1
p .

(5.12)

67



Therefore, we further obtain:

V̇t < −Γt1Vt − Γt2V
1
p

t , (5.13)

where

Γt1 = min

{
kt3

λmin {Qt}
λmax {Pt}

− µt

k2
t3λmin {Pt}

, 2κt − 1

}
,

Γt2 = min

λmin {Qt} λmin {Pt}
p−1

p p
λmax {Pt} (3p− 2)

, 2κtµ
p−1

p
t

 .

(5.14)

Based on (5.13), we conclude that when the resultant disturbance force is constant and

the ESO gains satisfy the constraints in Proposition 5.1.1, the error dynamics of the ESO

(5.4) is FFTS. This concludes the proof of Theorem 5.1.1.

5.1.2 FFTS-ESO: Rotational motion

Proposition 5.1.2 (FFTS-ESO: Rotational motion). Define eR = sK(ER), where sK(·) is as

defined by Lemma 3.3.1. Define ew = w(ER, eΩ) by applying (3.10). Define the positive scalar

gains ka1 and ka2, which make the matrix Aa ∈ R2×2 defined as:

Aa =

−ka1 1

−ka2 0

 , (5.15)
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a Hurwitz matrix. The ESO designed for the rotational motion is given by:

˙̂R = R̂Ω̂×,

˙̂Ω = ER J−1 [J(Ωm)×Ωm + τ̂D + τ]

+ ER J−1
[

ka1 Jϕ1(ψa) + κa J(eT
ReR)

1−p
p H

(
eR,

p− 1
p

)
ew + κa Jew

]
+ ERe×ΩET

R Ω̂,

˙̂τD = Jka2ϕ2(ψa),

(5.16)

where ψa is defined as follows:

ψa = eΩ + κa

[
eR + (eT

ReR)
1−p

p eR

]
, κa >

1
2

. (5.17)

In addition, the constant ka3 is defined and it occurs in the terms ϕ1(ψa) and ϕ2(ψa), where it

takes the place of k3 in (2.37).

Theorem 5.1.2. With the observer errors for the rotational ESO defined by (3.13), (3.14), the

rotational kinematics and dynamics given by (3.4), and the ESO for rotational motion given in

Proposition 5.1.2, the error dynamics of the ESO is given by:

ĖR = ERe×Ω,

JėΩ = −ka1 Jϕ1(ψa)− κa J
[
(eT

ReR)
1−p

p H
(

eR,
p− 1

p

)
ew + ew

]
+ eτ,

ėτ = −ka2 Jϕ2(ψa) + τ̇D.

(5.18)

The error dynamics (5.18) is almost globally FFTS at the origin ((ER, eΩ, eτ) = (I, 0, 0)), when

the resultant disturbance torque is constant (τ̇D = 0) and the measurement uncertainties are

negligible (νR = 0, νΩ = 0).
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Proof. Simplify (5.18) as:

ψ̇a = −ka1ϕ1(ψa) + J−1eτ,

J−1ėτ = −ka2ϕ2(ψa) + J−1τ̇D.
(5.19)

Next, for Aa as defined in (5.15), ∀Qa ∈ R2×2 where Qa ≻ 0, the Lyapunov equation:

AT
a Pa + PaAa = −Qa, (5.20)

has a unique solution Pa. Thereafter, define the Morse-Lyapunov function:

Va = Va0 + µa⟨K, I − ER⟩, where Va0 = ζT
a Paζa, (5.21)

µa is a positive scalar, and ζa is defined as:

ζa = [ϕT
1 (ψa), J−1eT

τ ]
T.

We constrain the positive scalar µa in (5.21) as:

0 < µa < 2k3
a3

λmin {Pa} λmin {Qa}
λmax {Pa}

. (5.22)

From Theorem 2.3.1, (5.19) and (2.27), we find that the time-derivative of Va satisfies:

V̇a ≤ −γa1Va0 − γa2V
1
p

a0 + µaeT
ReΩ, (5.23)
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where γa1 and γa2 are defined by:

γa1 = ka3
λmin {Qa}
λmax {Pa}

, γa2 =
λmin {Qa} λmin {Pa}

p−1
p p

λmax {Pa} (3p− 2)
. (5.24)

Substituting (5.17) into (5.23), we obtain:

V̇a ≤ −γa1Va0 − γa2V
1
p

a0 + µaeT
R

[
ψa − κaeR − κa(eT

ReR)
1−p

p eR

]
≤ −γa1Va0 − γa2V

1
p

a0 +
1
2

µa

(
eT

ReR + ψT
a ψa

)
− κaµa

[
eT

ReR + (eT
ReR)

1
p
]

≤ −
(

γa1 −
µa

2k2
a3λmin {Pa}

)
Va0 − γa2V

1
p

a0

−
(

κa −
1
2

)
µaeT

ReR − κaµa(eT
ReR)

1
p .

(5.25)

By applying Lemma 3.3.1 on (5.23), we obtain:

V̇a ≤ −
(

γa1 −
µa

2k2
a3λmin {Pa}

)
Va0 − γa2V

1
p

a0

−
(

κa −
1
2

)
µa⟨K, I − ER⟩ − κaµ

p−1
p

a µ
1
p
a ⟨K, I − ER⟩

1
p .

(5.26)

After some algebra, we further obtain:

V̇a ≤ −Γa1Va − Γa2V
1
p

a , (5.27)
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where:

Γa1 = min

{
ka3

λmin {Qa}
λmax {Pa}

− µa

2k2
a3λmin {Pa}

, κa −
1
2

}
,

Γa2 = min

λmin {Qa} λmin {Pa}
p−1

p p
λmax {Pa} (3p− 2)

, κaµ
p−1

p
a

 .

(5.28)

Considering the expression given by (5.27), the set where V̇a = 0 is:

V̇−1
a (0) = {(ER, eΩ, eτ) : sK(ER) = 0, and ζa = 0}

= {(ER, eΩ, eτ) : ER ∈ C, eΩ = 0, and eτ = 0} ,
(5.29)

where C is as defined by (3.11), which gives the set of the critical points of the Morse

function used as part of the Morse-Lyapunov function in (5.21). Using Theorem 8.4 from

(Khalil, 2002), we conclude that (ER, eΩ, eτ) converge to the set:

S =
{
(ER, eΩ, eτ) ∈ SO(3)×R3 ×R3 : ER ∈ C, eΩ = 0, and eτ = 0

}
, (5.30)

in finite time. Based on (5.27), and Lemma 2.1.2, we conclude that when the observer

gains satisfy the constraints in Proposition 5.1.2, the error dynamics (5.18) converges to

the set S in finite time.

In S, the only stable equilibrium is (I, 0, 0), while the other three are unstable. The

resulting closed-loop system with the estimation errors gives rise to a Hölder-continuous

feedback with exponent less than one (1/2 < 1/p < 1), while in the limiting case

of p = 1, the feedback system is Lipschitz-continuous. Proceeding with a topological

equivalence-based analysis similar to the one by (Bohn and Sanyal, 2016), we conclude
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that the equilibrium and the corresponding regions of attraction of the rotational ESO

with p ∈]1, 2[ are identical to those of the corresponding Lipschitz-continuous asymptot-

ically stable ESO with p = 1, and the region of attraction is almost global.

To summarize, we conclude that the error dynamics (5.18) is almost globally FFTS

(AG-FFTS) at the origin ((ER, eΩ, eτ) = (I, 0, 0)) when the resultant disturbance torque is

constant (τ̇D = 0) and the observer gains are constrained according to Proposition 5.1.2.

This concludes the proof of Theorem 5.1.2.

5.1.3 Discussion

Remark 5.1.1 (Almost global attraction of attitude ESO). (Hamrah and Sanyal, 2022) With

Remark 3.3.1, we know that the Morse function ⟨I− ER, K⟩, ER ∈ SO(3) has the following

critical point set, which makes eR = sK(ER) = 0, such that,

C ≜ {I, diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1)} ⊂ SO(3).

Thus, in Theorem 5.1.2, among the four critical points in this set, the equilibrium (ER, eΩ, eτ) =

(I, 0, 0) is attractive to its neighborhood as it corresponds to the global minimum point

of the Morse-Lyapunov function Va in (5.20). C/I are unstable equilibrium points. All

trajectories that do not initiate on the stable manifolds of the other three equilibrium con-

verge to the stable equilibrium (I, 0, 0) A state trajectory on a stable manifold of any of

these unstable equilibrium points, such as (diag(1,−1,−1), 0, 0), cannot approach the

state outside of a closed neighborhood containing the equilibrium. Denote the union of

these stable manifolds of the unstable equilibrium as M ⊂ SO(3)×R3×R3 and the com-

plement of M is dense and open in SO(3) ×R3 ×R3. All initial conditions that are in
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SO(3)×R3×R3/M converge to the stable equilibrium (I, 0, 0), which makes its domain

of attraction almost global.

Remark 5.1.2 (Disturbance robustness). Similar to Remark 4.1.1, consider Corollary 2.3.1

and its constraints on differentiator gains. When the disturbance forces and torques are

dynamic, then ∥φ̇D∥, ∥τ̇D∥ > 0. Further, if the constraints on gains in Corollary 2.3.1 are

satisfied, the estimation error of the proposed FFTS-ESO is PFTS.

Remark 5.1.3 (Noise robustness). Consider Corollary 2.3.2 and its constraints on differ-

entiator gains. When the ESO measurements have noise and the constraints on gains in

Corollary 2.3.2 are fulfilled, the estimation error dynamics of the proposed ESO will be

PFTS. Moreover, according to Lemma 2.1.3 and Corollary 2.3.2, the η in (2.6) of Lemma

2.1.3 is a function on the level of noise in information on R, Ω, b and v and is monotoni-

cally increasing with the level of noise.

Remark 5.1.4 (Comparative analysis of noise robustness: FFTS-ESO versus the DO by

(Liu et al., 2022) ). We investigate the disturbance (forces or torques) observers proposed

by (Liu et al., 2022) in their Theorems 1 and 2, known as FxTSDO. The input of FxTSDO

relies on the motion signals, X2, Y2, which represent translational and angular velocities,

and Ẋ2, Ẏ2, which represent translational and angular accelerations, respectively. How-

ever, the high-level noise associated with the translational acceleration obtained from an

accelerometer restricts its direct use in a flight control scheme. Additionally, direct mea-

surement of angular acceleration is usually not feasible. Furthermore, if Ẋ2 and Ẏ2 are

obtained from the finite difference of X2 and Y2, they will have higher noise levels than

X2 and Y2, leading to inferior disturbance estimation performance. In contrast to FxTSDO,

the proposed FFTS-ESO incorporates position and attitude signals, which are zero-order

74



derivatives of motions with lower noise levels. Consequently, FFTS-ESO outperforms

FxTSDO in terms of disturbance estimation performance, despite the theoretical fixed-

time stability of FxTSDO. We show this through our numerical simulations in Section

5.4.

5.2 FFTS-ADRC

Proposition 5.2.1 (Position tracking control). (Viswanathan, Sanyal, and Samiei, 2018)

Consider the translational tracking control law, given by

φ = f Re3 = mge3 + kTDLT

[
ψT + (ψT

T ψT)
1−p

p ψT

]
+ kTPLT b̃

+ mκT

[
ṽ + (b̃Tb̃)

1−p
p H

(
b̃,

p− 1
p

)
ṽ
]
−mv̇d + φ̂D,

(5.31)

where ψT is defined by:

ψT = ṽ + κT

[
b̃ + (b̃Tb̃)

1−p
p b̃
]
. (5.32)

In (5.31), φ̂D is obtained from the translational ESO in Proposition 5.1.1. In addition to the ESO

gains, we define positive scalar gains κT, kTD, kTP, and a diagonal matrix LT ∈ R3×3, given by

LT = diag(LT1, LT2, LT3), LT1, LT2, LT3 > 0.
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Theorem 5.2.1. Consider the tracking error dynamics of the proposed ADRC in Proposition 5.2.1,

as follows:

˙̃b = ṽ

m ˙̃v = eφ − kTDLT

[
ψT + (ψT

T ψT)
1−p

p ψT

]
− kTPLT b̃

−mκT

[
ṽ + (b̃Tb̃)

1−p
p H

(
b̃,

p− 1
p

)
ṽ
]

,

(5.33)

where eφ is the disturbance force rejection error, whose value is identical to the disturbance force

estimation error defined by (3.12). The tracking error dynamics is FFTS at the origin (b̃ = 0, ṽ =

0), when eφ is a zero vector (eφ = 0).

Proof. We simplify the tracking error dynamics (5.33) as:

˙̃b = ṽ

mψ̇T = eφ − kTDLT

[
ψT + (ψT

T ψT)
1−p

p ψT

]
− kTPLT b̃.

(5.34)

We consider the following Lyapunov function,

VT =
1
2

mψT
T ψT +

1
2

kTPb̃Tb̃, (5.35)
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Afterwards, we obtain the time-derivative of (5.35),

V̇T = mψT
T ψ̇T + kTPb̃T ˙̃b

≤ −kTDψT
T LTψT − kTD(ψ

T
T ψT)

1−p
p ψT

T LTψT − kTPψT
T b̃ + kTPb̃Tṽ

≤ −kTDλmin{LT}ψT
T ψT − kTDλmin{LT}(ψT

T ψT)
1
p

− kTPψT
T b̃ + kTPb̃T

[
ψT − κT(b̃ + (b̃Tb̃)

1
p−1b̃)

]
≤ −kTDλmin{LT}ψT

T ψT − kTDλmin{LT}(ψT
T ψT)

1
p

− κTkTP(b̃Tb̃)− κTkTP(b̃Tb̃)
1
p

≤ −2kTDλmin{LT}m−1
(

1
2

mψT
T ψT

)
− 2

1
p kTDλmin{LT}m−

1
p

(
1
2

mψT
T ψT

) 1
p

− 2κT

(
1
2

kTPb̃Tb̃
)
− κTk

p−1
p

TP 2
1
p

(
1
2

kTPb̃Tb̃
) 1

p
.

(5.36)

Thus, the following inequality is obtained to give the stability proof based on (5.36), such

that,

V̇T ≤ −ΓT1VT − ΓT2V
1
p

T , (5.37)

where ΓT1 and ΓT2 are given by:

ΓT1 = min
{

2kTDλmin{LT}
m

, 2κT

}
, ΓT2 = min

{
2

1
p kTDλmin{LT}

m
1
p

, κTk
p−1

p
TP 2

1
p

}
. (5.38)

Thus, based on the inequality (5.37), we conclude (5.33) to be FFTS at the origin (eb =

0, ev = 0).
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Proposition 5.2.2 (Attitude tracking control). (Viswanathan, Sanyal, and Samiei, 2018)

Consider the attitude tracking control law

τ = −kADLA

[
ψA + (ψT

AψA)
1−p

p ψA

]
−kAPsK(Q)− kAIψAI

− J(QTΩ̇d −ω×QTΩd)− JΩ×Ω− τ̂D

− κA J
[

w(Q, ω) + (sK(Q)TsK(Q))
1−p

p H
(

sK(Q),
p− 1

p

)
w(Q, ω)

]
,

ψ̇AI= −LAψAI − LA(ψ
T
AIψAI)

1
p−1

ψAI + ψA,

(5.39)

where ψAI is defined as an integral term initialized with ψAI(0) = 0. ψA is defined by:

ψA = ω + κA

[
sK(Q) + (sK(Q)TsK(Q))

1−p
p sK(Q)

]
. (5.40)

In (5.40) sK(Q) is from Lemma 3.3.1. w(Q, ω) is defined by (3.10), and τ̂D is obtained from

rotation ESO in Proposition 5.1.2, κA and kAP are positive scalar gains and LA ∈ R3×3 is a gain

as a positive definite matrix. LA = diag(LA1, LA2, LA3), where LA1, LA2, LA3 > 0.

The desired attitude Rd and desired angular velocity Ωd in Proposition 5.2.2 is gener-

ated from the desired force f Re3 from Proposition 5.2.1 by applying the Hopf fibration

method by (Watterson and Kumar, 2019).
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Theorem 5.2.2. Consider the tracking error dynamics of the proposed ADRC in Proposition 5.2.2,

as follows:

Q̇ = Qω×

Jω̇ = eτ − kADLA

[
ψA + (ψT

AψA)
1−p

p ψA

]
−kAPsK(Q)− kAIψAI

− κA

[
w(Q, ω) + (sK(Q)TsK(Q))

1−p
p H

(
sK(Q),

p− 1
p

)
w(Q, ω)

]
ψ̇AI= −LAψAI − LA(ψ

T
AIψAI)

1−p
p ψAI + ψA, ψAI(0) = 0.

(5.41)

where eτ is the disturbance torque rejection error, whose value is identical to the disturbance torque

estimation error defined in (3.14). The tracking error dynamics is almost-global FFTS at the origin

(Q = I, ω = 0, ψAI = 0), when eτ is a zero vector (eτ = 0).

Proof. We rewrite (5.41) in the following expression:

Q̇ = Qω×

Jψ̇A = eτ − kADLA

[
ψA + (ψT

AψA)
1−p

p ψA

]
− kAPsK(Q)− kAIψAI

ψ̇AI = −LAψAI − LA(ψ
T
AIψAI)

1−p
p ψAI + ψA.

(5.42)

Consider the following Morse-Lyapunov function:

VA =
1
2

ψT
A JψA + kAP⟨K, I −Q⟩+ 1

2
kAIψ

T
AIψAI (5.43)
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We then obtain the time derivative of VA:

V̇A = ψT
A Jψ̇A + kAPsK(Q)Tω + kAIψ

T
AIψ̇AI

≤ −kADψT
ALA

[
ψA + (ψT

AψA)
1−p

p ψA

]
− kAPψT

AsK(Q)− kAIψ
T
AψAI

− kAPκAsK(Q)T
[
sK(Q) + (sK(Q)TsK(Q))

1−p
p sK(Q)

]
+ kAPψT

AsK(Q)

− kAIψ
T
AI LAψAI − kAI(ψ

T
AIψAI)

1−p
p ψT

AI LAψAI + kAIψ
T
AIψA

≤ −kADλmin{LA}ψT
AψA − kADλmin{LA}

(
ψT

AψA

) 1
p

− kAPκAsK(Q)TsK(Q)− kAPκA

(
sK(Q)TsK(Q)

) 1
p

− kAIλmin{LA}ψT
AIψAI − kAIλmin{LA}(ψT

AIψAI)
1
p

≤ −κAkAP⟨K, I −Q⟩ − κAk
p−1

p
AP (kAP⟨K, I −Q⟩)

1
p

− 2kADλmin{LA}
λmax{J}

(1
2

ψT
A JψA

)
− 2

1
p kADλmin{LA}

λmax{J}
1
p

(1
2

ψT
A JψA

) 1
p

− 2λmin{LA}
(1

2
kAIψ

T
AIψAI

)
− 2

1
p k

p−1
p

AP λmin{LA}
(1

2
kAIψ

T
AIψAI

) 1
p

(5.44)

Thus, we obtain the following inequality:

V̇A ≤ −ΓA1VA − ΓA2V
1
p

A , (5.45)

where ΓA1 and ΓA2 are defined by:

ΓA1 = min
{

2kADλmin{LA}λmax{J}−1, κA, 2λmin{LA}
}

,

ΓA2 = min
{

2
1
p kADλmin{LA}λmax{J}−

1
p , κAk

p−1
p

AP , 2
1
p k

p−1
p

AP λmin{LA}
}

.
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Thus, when eτ = 0, we conclude that (5.41) is almost-global FFTS at the origin (Q =

I, ω = 0, ψAI = 0) .

Remark 5.2.1. With Theorem 5.1.1 and 5.1.2, we conclude that with a properly tuned

FFTS-ESO, when the disturbances are time-constant, the disturbance estimation errors eφ

and eτ converges to the origin (eφ = 0, eτ = 0) with fast finite-time stability. Thus, in

Theorem 5.2.1 and 5.2.2, we apply separation principle and assume eφ = 0 and eτ = 0.

Remark 5.2.2. We still assume the time-constant disturbances. If we do not assume eφ

and eτ as zero vectors, to carry out the Lyapunov analysis of tracking error dynamics, we

have to merge the Lyapunov analysis in Theorem 5.1.1 and 5.1.2 to Theorem 5.2.1 and

5.2.2. Despite more complexity, we still can find a proper way to carry out the Lyapunov

analysis to show the fast finite-time stability of the overall tracking error dynamics. The

only difference is more constraint on the control gains and ESO gains. We omit the proof

for brevity.

Remark 5.2.3. We assume that ∥eφ∥ and ∥eτ∥ are not zero vectors, but with upper bounded

norm. With properly tuned control gains, we can find a proper way to carry out the Lya-

punov analysis to show that the overall tracking error dynamics is PFTS. We omit the

proof for brevity.

5.3 FFTS-ADRC: Implementation with realistic feedback

In control practice, the perfect feedback assumption is no longer reliable. The feedback

either comes from the measurement from UAV or the estimation from ESO. In this section,

we adopt the feedback architectures described in Section 3.5. Based on the tracking laws
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given by Propositions 5.2.2 and 5.2.1, we present the implementable FFTS-ADRC schemes

in measured feedback architecture and estimated feedback architecture.

Measured feedback FFTS-ADRC:

The position tracking control law for measured feedback architecture is given by:

φ = f Rme3 = mge3 + kTDLT

(
ψm

T + ∥ψm
T ∥

2(1−p)
p ψm

T

)
+ kTPLT b̃m

+ mκT

[
ṽm + ∥b̃m∥

2(1−p)
p H

(
b̃m,

p− 1
p

)
ṽm
]
−mv̇d + φ̂D,

(5.46)

where ψm
T is defined by:

ψm
T = ṽm + κT

[
b̃m + ∥b̃m∥

2(1−p)
p b̃m

]
. (5.47)

The attitude tracking control law for measured feedback architecture is given by:

τ = −kADLA

(
ψm

A + ∥ψm
A∥

2(1−p)
p ψm

A

)
−kAPsK(Qm)− kAIψ

m
AI

− J
[
(Qm)TΩ̇d − (ωm)×(Qm)TΩd

]
− J(Ωm)×Ωm − τ̂D

− κA J
[

w(Qm, ωm) + ∥sK(Qm)∥
2(1−p)

p H
(

sK(Qm),
p− 1

p

)
w(Qm, ωm)

]
,

ψ̇m
AI= −LAψm

AI − LA∥ψm
AI∥

2(1−p)
p ψm

AI + ψm
A ,

(5.48)

where ψm
AI is defined as an integral term initialized with ψm

AI(0) = 0. ψm
A is defined as:

ψm
A = ωm + κA

[
sK(Qm) + ∥sK(Qm)∥

2(1−p)
p sK(Qm)

]
. (5.49)

Estimated feedback FFTS-ADRC:
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The position tracking control law for estimated feedback architecture is given by:

φ = f R̂e3 = mge3 + kTDLT

(
ψe

T + ∥ψe
T∥

2(1−p)
p ψe

T

)
+ kTPLT b̃e

+ mκT

[
ṽe + ∥b̃e∥

2(1−p)
p H

(
b̃e,

p− 1
p

)
ṽe
]
−mv̇d + φ̂D,

(5.50)

where ψe
T is defined by:

ψe
T = ṽe + κT

[
b̃e + ∥b̃e∥

2(1−p)
p b̃e

]
. (5.51)

The attitude tracking control law for estimated feedback architecture is given by:

τ = −kADLA

(
ψe

A + ∥ψe
A∥

2(1−p)
p ψe

A

)
−kAPsK(Qe)− kAIψ

e
AI

− J
[
(Qe)TΩ̇d − (ωe)×(Qe)TΩd

]
− JΩ̂× Ω̂− τ̂D

− κA J
[

w(Qe, ωe) + ∥sK(Qe)∥
2(1−p)

p H
(

sK(Qe),
p− 1

p

)
w(Qe, ωe)

]
,

ψ̇e
AI= −LAψe

AI − LA∥ψe
AI∥

2(1−p)
p ψe

AI + ψe
A,

(5.52)

where ψe
AI is defined as an integral term initialized with ψe

AI(0) = 0. ψe
A is defined as:

ψe
A = ωe + κA

[
sK(Qe) + ∥sK(Qe)∥

2(1−p)
p sK(Qe)

]
. (5.53)
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5.4 Numerical simulation: FFTS-ESO versus state-of-the-

art DO & ESO

In this section, we compare the proposed FFTS-ESO with existing disturbance estimation

schemes, which are LESO by (Shao et al., 2018b) and FxTSDO by (Liu et al., 2022), on their

disturbance estimation performance in four different simulated flight scenarios, with and

without the presence of measurement noises. The four flight scenarios correspond to four

desired trajectories. The inertia and mass of the simulated rotorcraft UAV are given by

(4.26). The tracking control scheme to drive the UAV to track the desired trajectories is

reported in Section 5.2 without disturbance rejection terms, such that τ̂D in (5.39) and φ̂D

in (5.31) are fixed by τ̂D = 0 and φ̂D = 0. We use MATLAB/Simulink with its ODE2

(Heun method) solver to conduct this set of simulations. The time step size is h = 0.001s

and the simulated duration is T = 30s.

Hovering bd(t) = [0, 0, −3]T (m)
Slow Swing bd(t) = [10 sin(0.1πt), 0, −3]T (m)
Fast Swing bd(t) = [5 sin(0.5πt), 0, −3]T (m)
High Pitch bd(t) = [10 sin(0.5πt), 10 cos(0.5πt), −3]T (m)

TABLE 5.1: Flight trajectory to be tracked for the comparison between
FFTS-ESO, LESO and FxTSDO

In the simulated flight, the initial conditions of the UAV of all four scenarios are as,

R(0) = I, Ω(0) = [0, 0, 0]T rad/s,

b(0) = [0.01, 0, 0]T m, v(0) = [5π, 0, 0]T m/s.
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The four flight scenarios are four desired trajectories listed in Table 5.1. ’Hovering’ is

the simplest flight scenario that the aircraft is ordered to stay at a fixed position during

the simulation. ’High pitch’ is the most complex flight scenario that the aircraft is ordered

to pitch up and track a circular trajectory. Since the norm of centripetal acceleration in

’high pitch’ scenario is more than a g, the aircraft has to flip over to track the desired

trajectory. This desired trajectory with high centripetal acceleration forces the aircraft

experiencing the singularity point of its pose representation. The measurement noises are

as listed in Table 4.1 in the form of normal distribution. In this set of numerical simulation,

the trajectory is tracked by the tracking control system placed in Section 5.2 without the

disturbance rejection term φ̂D and τ̂D. The disturbance force and torque in all of the four

scenarios in this set of simulation are identical and they are step functions presented as

follows:

φD(t) =


[5, 10, 0]T N t < 10 s

[9, 15, 5]T N t ≥ 10 s
,

τD(t) =


[−0.1, 0.1, 0.1]T N ·m t < 20 s

[0, 0, 0.2]T N ·m t ≥ 20 s

(5.54)

The parameters for FFTS-ESO in these simulations are p = 1.2, kt1 = 3, kt2 = 2, kt3 =

6, κt = 0.8, ka1 = 3, ka2 = 2, ka3 = 4, κa = 0.6. The parameters for the tracking control

scheme in the simulations of this section are as p = 1.2, kTP = 5, kTD = 16, LP = I, κT = 2,

kAP = 12, kAD = 6, kAI = 2, κA = 2, LA = I. The gains for FxTSDO and LESO are as

described by (Liu et al., 2022) and (Shao et al., 2018b). The initial conditions of FxTSDO,

LESO and FFTSESO, are identical to the pose, motion and disturbance of the UAV in the
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initial time frame of the simulation.

We present the simulation results into four sets of figures. Figures 5.1 and 5.2 present

the disturbance force and torque estimation errors, respectively, which are from FxTSDO,

LESO and FFTSESO in the flight scenario described in Table 5.1 with noise-free mea-

surement. Figures 5.3 and 5.4 present the disturbance estimation errors from the fore-

mentioned schemes in the identical flight trajectory with the presence of identical mea-

surement noise described in Table 4.1.

Figure 5.1 shows the disturbance force estimation errors from the three schemes with

noise-free measurements. Although the disturbance force estimation error from FxTSDO

shows significant initial transient, the results from Figure 5.1 indicates that with noise-free

measurement, the disturbance force estimations from these three schemes converge to

the origin in all four flight scenarios. The transients at t = 15 s are from the step-function

disturbance force φD, whose step time is t = 15 s. Figure 5.2 shows the disturbance torque

estimation errors from the three schemes with noise-free measurement. In Figure 5.2, we

observe that when t = 10 s, high transients appears in the disturbance torque estimation

error from FxTSDO.

Despite the initial transients, the disturbance torque estimation errors from all three

schemes converge to the origin in ’hovering’ and ’slow swing’ scenarios. However, in ’fast

swing’ and ’high pitch’ scenarios, the disturbance torque estimation errors from LESO

and FxTSDO diverge. As is stated in Chapter 1, since the LESO uses Euler-angle to rep-

resent attitude for disturbance torque estimation, it experiences a singularity in attitude

representation when the UAV tracks the ’fast swing’ and ’high pitch’ trajectories. Thus,

in these two scenarios, the singularity in the attitude representation destabilizes the dis-

turbance torque estimation error of LESO.
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FIGURE 5.1: Disturbance force estimation errors of the multi-rotor UAV
from FxTSDO, LESO, and the proposed FFTS-ESO, in different tracking

control scenarios without measurement noise.
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FIGURE 5.2: Disturbance torque estimation errors of the multi-rotor UAV
from FxTSDO, LESO, and the proposed FFTS-ESO, in different tracking

control scenario without measurement noise.
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FIGURE 5.3: Disturbance force estimation error of the multi-rotor UAV from
FxTSDO, LESO, and the proposed FFTS-ESO, in different tracking control

scenario with measurement noise.
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FIGURE 5.4: Disturbance torque estimation error of the multi-rotor UAV
from FxTSDO, LESO, and the proposed FFTS-ESO, in different tracking

control scenario with measurement noise.
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Figures 5.3 and 5.4 present the disturbance force and disturbance torque estimation

errors respectively, from the three schemes with identical noisy measurements as given in

Table 4.1. As is stated in Remark 5.1.4, we observe that with measurement noise, FxTSDO

is not capable of providing any meaningful disturbance estimation. In ’fast swing’ and

’high pitch’ scenarios, the disturbance torque estimation errors from LESO diverge from

the origin.

To summarize, Figures 5.1, 5.2, 5.3, and 5.4 show that the FFTS-ESO has satisfactory

disturbance estimation performance and outperforms the LESO and FxTSDO when the

UAV experiences large pose changes and has noisy measurements.

5.5 Numerical simulation: ES-ESO versus FFTS-ESO

In this section, we present a set of numerical simulation results to validate the FFTS-ESO,

and to compare with ES-ESO. In the simulations presented in this section, the settings

are identical to the ones given in Section 4.4 for ES-ESO simulations, unless otherwise

specified. The simulation results of ES-ESO posed in Section 4.4 are adopted here for a fair

comparison. The gains of the proposed FFTS-ESO are tuned and selected as κt = 2, kt1 =

15, kt2 = 45 κa = 1.5; ka1 = 15; ka2 = 54. The gains of the exponential ESO errors eb, ev,

sK(ER), eΩ are identical for both ESOs in this section, so that we can observe the effect of

fraction-order ESO errors in FFTS-ESO by comparing their estimation performances.

Figures 5.5-5.8 present the simulation results. The state estimation errors eb, ev, ER,

eΩ and disturbance estimation errors eφ, eτ are covered in the results. From the results,

we observe that the FFTS-ESO outperforms ES-ESO in the comparisons of ER, eΩ, eτ, eb

in every simulation. In the comparisons of ev, eφ, the results from FFTS-ESO have more
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FIGURE 5.5: ES-ESO vs FFTS-ESO: Estimation error in the simulated flight

with ’circular’ trajectory and constant disturbances
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FIGURE 5.6: ES-ESO vs FFTS-ESO: Estimation error in the simulated flight

with ’circular’ trajectory and dynamic disturbances
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FIGURE 5.7: ES-ESO VS FFTS-ESO: Estimation error in the simulated flight

with ’barrel roll’ trajectory and constant disturbances
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FIGURE 5.8: ES-ESO VS FFTS-ESO: Estimation error in the simulated flight

with ’barrel roll’ trajectory and dynamic disturbances
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fluctuations than ES-ESO in Figures 5.5-5.7, showing that the measurement noises νb, νv

perturb FFTS-ESO more than ES-ESO. However, in Figure 5.8, which shows the results

from the flight tracking ’barrel roll’ trajectory under dynamic disturbance, we still ob-

serve that the FFTS-ESO outperforms ES-ESO in ∥eφ∥. The results posed in this section

imply that the robustness against dynamic disturbances and the robustness against mea-

surement noises are possible to be contradictory for an ESO.

To summarize, despite ev and eφ with higher fluctuations, FFTS-ESO shows better

estimation performance than ES-ESO when the UAV experiences dynamic disturbances

and complex maneuvers.

5.6 Numerical simulation: FFTS-ADRC

In this section, we present two sets of numerical simulation results on FFTS-ADRC. In

the simulations presented in this section, the settings are identical to the ones given in

Sections 4.2, unless otherwise specified. We command the simulated UAV to track the

’barrel roll’ trajectory given by (4.28). The dynamic disturbance (4.32) perturb the simu-

lated flight in this section The torque saturation in (4.33) is bounded by τ = 100 N·m. The

first set of simulations presents the performance comparison between estimated feedback

architecture and measured feedback architecture. The second set uses the estimated feed-

back architecture and establishes the comparison between the tracking control without

disturbance rejection, with only translational rejection, with only rotational rejection, and

with both rejections.
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The ESO and control gains of the implemented FFTS-ADRC are selected as follows:

kt1 = 5; kt2 = 5; kt3 = 3; κt = 2; kTD = 4; LT = I; kTP = 2; κT = 2,

ka1 = 5; ka2 = 6; ka3 = 3; κa = 1.5; kAD = 3; LA = 0.5I; kAP = 3; kAI = 0; κA = 2; p = 1.2.

5.6.1 Estimated feedback versus measured feedback

In this subsection, we present the comparison between estimated and measured feedback

architectures on their tracking control performances. The control laws for measured and

estimated feedback architectures are given by (5.46), (5.48), and (5.50), (5.52), respectively.

Dynamic disturbance given by (4.32) perturbs the flights in the simulations. We activate

both translational and rotational disturbance rejections to evaluate their performances

comprehensively.

Figure 5.9 presents the tracking control performances of the two architectures. The po-

sition tracking error is defined as the norm of b̃. The attitude tracking error is defined by

the principal angle, given by acos
(

1
2(tr(Q)− 1)

)
. We can clearly observe that estimated

FFTS-ADRC outperforms the measured one in Figure 5.9.

Different from the comparisons between estimated feedback and measured feedback

of AS-ADRC covered in Section 4.2, which is highly repeatable, the results shown in this

comparison is not, due to the finite-time converging characteristics of the proposed FFTS-

ADRC.
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FIGURE 5.9: Estimated feedback versus measured feedback: position and

attitude tracking errors of FFTS-ADRC
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5.6.2 Partial rejection versus whole rejection

In this subsection, we present the simulation results with different configurations of dis-

turbance rejection with estimated feedback architecture given by 3.21. Four simulation

results, which are from the simulation without disturbance rejection, with only trans-

lational disturbance rejection, with only rotational disturbance rejection, and with both

translational and rotational disturbance rejection, are included in this section to validate

the control performance of the proposed FFTS-ADRC scheme. The results are presented

in Figure 5.10 and Figure 5.11.

From Figure 5.10, we observe that all of the trajectories of the simulated flights con-

verge to a neighborhood near the desired trajectory. Figure 5.11 compares the position

and attitude tracking error during the simulated flights. From Figure 5.11, we can clearly

observe the position tracking errors of ’both’ and ’translational rejection’ are much smaller

than the other two. However, similar to the results posed in Section 4.5, the attitude track-

ing errors of the four disturbance rejection configurations cannot differ from each other

significantly in Figure 5.11.

To investigate the rotational disturbance rejection configuration, we enlarge the con-

stant disturbance torque, given by (4.34), and conduct the simulations again. Figure 5.12

presents the tracking control errors from the results.

Figure 5.12 shows the results on the attitude and position tracking error. The attitude

tracking error is parameterized by the principal rotation angle of the attitude error matrix

Q. The position tracking error is defined as the norm of b̃. Figure 5.12 indicates that the

simulated flight with both translational and rotational disturbance rejection has the best

control performance.
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(A) No rejection (B) Translational

(C) Rotational (D) Both
FIGURE 5.10: The tracked trajectories of FFTS-ADRC: partial rejection

versus whole rejection
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FIGURE 5.11: Position and attitude tracking errors of FFTS-ADRC: partial

rejection versus whole rejection
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FIGURE 5.12: Position and attitude tracking errors of FFTS-ADRC with
amplified disturbance torque: partial rejection versus whole rejection
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5.7 Summary

In this chapter, a tracking control scheme using an ESO for state feedback and distur-

bance rejection is designed on SE(3) for the rotorcraft UAV that have a body-fixed thrust

direction and three-axis attitude control. The resulting ADRC scheme can enable these

UAVs to perform aggressive maneuvers in the presence of aerodynamic uncertainties.

The UAV system is modeled as an under-actuated system on the tangent bundle of the

six-dimensional Lie group of rigid body motions, SE(3).

The proposed FFTS-ESO scheme is developed based on the HC-FFTSD reported in

Chapter 2 to obtain fast finite-time stability with higher tunability of the settling time

compared to the FTS schemes.

A tracking control scheme on SE(3), which utilizes the estimated disturbances from

the designed ESO, is then incorporated to achieve FFTS tracking errors under constant

disturbances. The Lyapunov stability analysis presented in this paper for both ESO and

tracking control scheme proves the fast finite-time stability and robustness of the overall

FFTS-ADRC on SE(3) using the proposed FFTS-ESO. We carry out the perturbation and

measurement noise robustness analyses of the proposed FFTS-ESO based on the similar

analyses for HC-FFTSD reported in Chapter 2.

The numerical results present the stable performance of the FFTS-ESO scheme in es-

timating external force and torque disturbances acting on the UAV in different scenarios.

The behavior of the FFTS-ESO is compared with two state-of-the-art observers for dis-

turbance estimation. Using a realistic set of data for several simulated flight scenarios of

a rotorcraft UAV, numerical simulations show that the FFTS-ESO, unlike the LESO and

FxTSDO, is always stable and its convergence is robust to measurement noise and pose

singularities.
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The proposed FFTS-ADRC scheme is numerically implemented by LGVI for a rotor-

craft UAV model and the numerical simulations are carried out to validate the developed

FFTS-ESO and FFTS-ADRC schemes. The numerical results also present the stable per-

formance of the FFTS-ADRC when the motion of the UAV experiences the singularity

point of its pose representation. The results of software-in-the-loop simulation and in-

door flight experiments of the proposed FFTS-ADRC are reported in Chapters 6 and 8,

respectively, to further validate the proposed FFTS-ESO and FFTS-ADRC scheme for the

UAV.
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Chapter 6

Rotorcraft Control Performance under Uncertain

Incoming Flow: Software-In-The-Loop (SITL)

Simulation Study

This chapter presents simulation results on the rotorcraft tracking control performance

under uncertain incoming flow. The fast-finite time stable active disturbance rejection

control (FFTS-ADRC) scheme proposed in Chapter 5 is implemented onto an open-source

autopilot PX4 through its customization with measured feedback architecture. The Gazebo

simulator provides a realistic simulation environment with simulated measurement noise,

actuator dynamics, and uncertain incoming flows. With the FFTS-ADRC scheme imple-

mented onto PX4, we conduct the software-in-the-loop (SITL) simulation in Gazebo to

validate the flight control performance of the proposed FFTS-ADRC scheme. The simu-

lation setup is detailed in Section 6.1. Section 6.2 covers the results. Finally, Section 6.3

provides concluding remarks of this chapter.
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6.1 Simulation setup

Simulators allow PX4 flight code to control a computer modeled vehicle in a simulated

"world". We can interact with the vehicle just as we might with a real vehicle, using

QGroundControl, an offboard API, or a radio controller/gamepad. Gazebo is a powerful

3D simulation environment for autonomous robots that is particularly suitable for testing

object-avoidance and computer vision. Gazebo can also be used with hardware-in-the-

loop (HITL) and for multi-vehicle simulation. The detailed procedures to conduct an

SITL simulation is available at (PX4-Dev, 2023a).

PX4 using the Simulator MAVLink API. This API defines a set of MAVLink messages

that supply sensor data from the simulated world to PX4 and return motor and actuator

values from the flight code that will be applied to the simulated vehicle. Figure 6.1 shows

the message flow between the PX4 flight stack and the simulator.

FIGURE 6.1: Data flow diagram for SITL simulation

The PX4 Gazebo plugin suite by (PX4-Dev, 2023b) is utilized to give detailed modeling

of the sensors, rotors and environment. The Suite is developed based on the simulator by

(Furrer et al., 2016). The propeller aerodynamic model of the Suite is based the article
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by (Sydney, Smyth, and Paley, 2013). In the simulation, a simulated 3DR IRIS UAV is

involved to carry out the flight mission.

The FFTS-ADRC is implemented by customizing the modules of PX4. The customiza-

tion is based on PX4 stable version V1.13.2, which is published Fall 2022. The transla-

tional control scheme and the TESO are implemented onto the position control module

(mc_pos_control) to replace the PID controller in the original software stack. The rota-

tional control scheme and the RESO are implemented onto the angular rate control mod-

ule (mc_rate_control) to replace the PID controller in the original software stack. The

proportional control scheme in attitude control module (mc_att_control) is kept in the

customized software stack to generate the desired angular velocity Ωd.

With the simulated IRIS UAV in Gazebo with PX4, we conduct the SITL simulations

for three control schemes in identical condition for comparison. The three control schemes

are FFTS-ADRC, FFTS Tracking, which is the tracking control scheme reported in Chapter

5 without disturbance rejection, and the default PX4 without customization. The control

implementation with measured-feadback architecture given by (5.46)-(5.48) is adopted in

the SITL simulations. The FFTS Tracking and FFTS-ADRC scheme share the identical

control parameters in their implementations. The only difference is the appearance of

disturbance rejection.

The control parameters in the FFTS-ADRC are listed as follows:

kt1 = 12; kt2 = 6; kt3 = 2; κt = 0.5;

LT = diag([1.0, 1.0, 2.0]); kTP = 1.0; kTD = 9.0; κT = 2.0,

ka1 = 16; ka2 = 6; ka3 = 1.2; κa = 0.8;

LA = diag([1.0, 1.0, 2.0]); kAP = 5; kAI = 1; kAD = 7; κA = 2; p = 1.2.

107



The inertia information of the simulated IRIS UAV is listed as follows:

J = diag([0.0291, 0.0291, 0.0552]) kg ·m2, m = 1.5 kg.

The customized PX4 with FFTS-ADRC is available at the following repository by (Wang,

2023).

During the simulation, the UAV is ordered to hover within the simulated wind field

with fluctuating wind velocity ui, which is defined by the sum of time-averaged compo-

nent Ui and the fluctuating component u′. We obtain the following expression

ui = Ui + u′i,

which will be re-stated in Chapter 7. The fluctuating component is defined by its variance

during the simulation, such that (u′i)
2. To clarify, this simulated wind field by Gazebo

is not a serious result from computational fluid dynamics (CFD). The simulated wind

field can only generate the wind field with uncertainty in the statistical form. We expose

the UAV within such wind field to investigate the response of the entire UAV system

experiencing the disturbance from the time-varying wind field with uncertainty. In the

simulation covered in this section, Ui = 7 m/s, u′i
2 = 1m2/s2

The time for hovering is 3 minutes. In the 3-minute simulation, we randomly extract

the results from a 1-minute period in order to evaluate the control performance. The

results are investigated in the following section.
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6.2 Results

We present the SITL simulation results in this section. Figure 6.2 shows the simulation

interface and environment.

FIGURE 6.2: Simulated flight in Yosemite with Gazebo

Figures 6.3 and 6.4 show the time profiles for attitude and position tracking errors,

respectively. The time profiles of the attitude tracking error for each tracking control

scheme are plotted and compared in Figure 6.3. The attitude tracking error is parameter-

ized by the principal rotation angle Φ = acos
(

1
2(tr(Q)− 1)

)
. We calculate and itemize

the time-averaged value of Φ as follows:

• Default PX4: 0.0371 rad,

• FFTS-Tracking: 0.0503 rad,

• FFTS-ADRC: 0.0862 rad.
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Figure 6.4 presents the position tracking errors. We calculate and itemize the time-

averaged value of ∥b̃∥ as follows:

• Default PX4: 0.3370 m,

• FFTS-Tracking: 0.3053 m,

• FFTS-ADRC: 0.2134 m.
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FIGURE 6.3: Comparison of the attitude tracking errors in SITL simulations
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FIGURE 6.4: Comparison of the position tracking error in SITL simulations
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In the result, FFTS-ADRC has the worst attitude tracking control performance but the

best position tracking control performance. The results might contradict the common

sense in the first glance. We provide an explanation here for reference. The FFTS-ADRC

has the worst attitude tracking performance because the translational control module of

the FFTS-ADRC excite the desired attitude and angular velocity more fiercely than the

other two schemes. Thus, despite the worst attitude tracking performance under distur-

bance, FFTS-ADRC has the best position tracking control performance. We attach the

hovering flight trajectories from the simulation results of the three control schemes in

Figures 6.5-6.7.

FIGURE 6.5: Flight trajectory of default PX4
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FIGURE 6.6: Flight trajectory of FFTS tracking

FIGURE 6.7: Flight trajectory of FFTS-ADRC
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6.3 Summary

We present the result of the SITL simulation with the Gazebo simulator and open-source

autopilot PX4. The autopilot PX4 is customized to implement the FFTS-ADRC scheme,

presented in Chapter 5. The simulated UAV is ordered to hover within a dynamic wind

field with uncertainty. We conduct the SITL simulations for three control schemes in

identical conditions for comparison. The results validate the proposed FFTS-ADRC and

show satisfying position tracking control performance.
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Chapter 7

Experiment 1: Turbulence Characteristics of Fan

Array Wind Tunnel (FAWT)

As is covered in Chapter 1, in this dissertation, we try to improve the flight control relia-

bility of the rotorcraft UAV within the atmospheric turbulence using disturbance rejection

control schemes. Technically, we have to fly the UAV in an outdoor environment to ex-

pose the UAV to the atmospheric turbulence. However, the characteristics of atmospheric

turbulence are hardly accessible and highly unrepeatable if we fly the UAV outdoors.

To obtain the flight control performance within a controllable and measurable turbu-

lent environment, (Bangura and Mahony, 2017; Bisheban and Lee, 2018, 2020; Jeon et al.,

2020; Jia et al., 2022a,b; Moeini, Lynch, and Zhao, 2021a; Wang et al., 2019) conduct their

flight experiments in indoor environments with box fans. As an improvement of the fore-

mentioned setups, the FAWT provides us with highly controllable, measurable, and, most

importantly, repeatable turbulent incoming flows with a wide test section area in an in-

door environment to imitate the outdoor atmospheric turbulence. In this dissertation, we

utilize an FAWT to generate such turbulent incoming flows for flight tests.

This chapter presents the turbulence measurements from the FAWT in different work-

ing conditions. The flight control experiments covered in Chapter 8 are conducted within
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the flows analyzed in this chapter. With the collected characteristics of the turbulent in-

coming flows, we are able to find the impact of turbulence on the flight control perfor-

mance of a rotorcraft UAV within the imitated atmospheric turbulence.

The reminder of this chapter is organized as follows. Section 7.1 describes the FAWT

setup and the experimental space briefly. Section 7.2 covers the measurement setup for

pressure-tube and hot-wire measurements. Section 7.3 covers the analytical tools used in

this chapter. The results of experiments are reported in Section 7.4 and 7.5. We conclude

this chapter in Section 7.7.

7.1 Experimental setup: FAWT

The FAWT is a multi-source wind tunnel capable of generating a host of spatiotemporally-

varying flow fields through software interfacing, offering a versatile, configurable alter-

native to traditional wind tunnel design and testing. By utilizing an array of DC-powered

off-the-shelf fans (in place of one singular drive section), greater flow control capability

and decreased mixing lengths are achieved. The open-loop design of FAWT provides a

substantially large accessible test section area for the flight test (Dougherty, 2022).

We conduct the experiments in the Autonomous Unmanned Systems Lab (AUSL) in

the Center of Excellence (CoE), Syracuse University. The FAWT is from the Switzerland-

based company WindShape. Corp..
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FIGURE 7.1: The FAWT in Center of Excellence (CoE), Syracuse University

FIGURE 7.2: The coordinate system for measurement
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The setup for coordinate system is identical to the one by (Dougherty, 2022). As is

shown in Figure 7.2, we describe the coordinate system measurement space for the FAWT

in CoE as follows.

• x direction, streamwise direction

• y direction, spanwise direction

• z direction, vertical up direction

• O, geometric center of fan-array matrix

The most basic building block of a fan array wind tunnel is the source fan unit, typically

described by its outer dimension, d. The height of the fan-array is noted h. The width of

the fan-array is noted as L. For the conducted experiment with the FAWT at CoE, d = 0.08

m, L = 1.44 m and h = 0.72 m.

7.2 Experimental setup: measurement system

7.2.1 Pressure measurement

The pressure measurement is conducted at the motion platform made of 8020 aluminum

frames, which are presented in Figure 7.3. We use a set of pressure tubes to collect the

dynamic pressure of the incoming flows. These pressure tubes are connected to the pres-

sure scanner to collect the pressure data in real time. The type of pressure scanner is

DSA 3217 by Scanivalve LTD . This type of pressure scanner has 16 piezoelectric pressure

sensors, which can resolve frequency domain measurements. The pressure measurement

is acquired at 625Hz from the pressure scanner. Each collection acquires 37500 points of
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time-series data. The pressure data is output in engineering units via Ethernet cable using

TCP/IP protocol. A desktop computer is connected with the scanner to collect the data.

To give the calibration for the space of flight to be utilized in Chapter 8, we set the

measurement space of the dynamic pressure as 1m < x < 2m, 0m < y < 0.7m, z = 0m.

The pressure tubes are moved around the measurement space on the motion platform to

collect the data in different locations.

We acquire the local, real time atmospheric pressure through weather forecast online.

Additionally, we acquire the indoor temperature and moisture through a thermometer

placed within the lab. With the fore-mentioned information, we obtain the wet air den-

sity in the lab, and afterwards, obtain the wind velocities from the acquired dynamic

pressures by Bernoulli equation. This pressure measurement system is also used in the

hot-wire calibration which is covered in the following sub-section.
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(A)

(B)

FIGURE 7.3: The spatial motion platform for pressure measurement
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FIGURE 7.4: DSA3217 Pressure scanner system
Source:Scanivalve LTD.

7.2.2 Hot-wire measurement

With the capability to resolve the velocity change faster than 40kHz, hot-wire anemome-

ter is widely used in various types of incompressible and compressible turbulent flow

measurements. The hot-wire system used in this research is tungsten-wire type probe

powered by constant temperature anemometer (CTA) of type AN 1003 from A.A Lab,

shown in Figure 7.6. The wiring between the probe and the CTA is done carefully with

insulation. The cut-off frequency for the low pass filter in CTA is set to be 3.3kHz. To

collect the voltage from CTA, The CTA is connected to the data acquisition system of type

NI 9234 from National Instrument, as shown in Figure 7.7. The data acquisition system

collect the voltage data from CTA at 10 kHz and send the data to Labview program for
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storage. The hot-wire probe is attached to the transverse system together with the pres-

sure tube system, as shown in Figure 7.5. The hot-wire probe and the pressure tube are

fixed at x = 1.2 m, z = 0 m, y ≈ 0 m. The y coordinate difference between the hot-wire

probe and pressure tube is smaller than 0.05 m. The pressure measurement is acquired at

625Hz from the pressure scanner described previously.

FIGURE 7.5: The spatial motion platform for Hot-wire measurement

With the measurement platform, we carry out the following calibration procedure for

hot-wire measurement.

The FAWT is commanded to run in the uniform flow mode, such that every single fan

of the FAWT runs at identical duty to create a uniform flow with minimum shear around

the center-line (z = 0 m, y = 0 m) for calibration. This uniform flow ensures the almost

identical flow velocities at the pressure tube and hot-wire probe placed in the front of
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FAWT. The pressure and hot-wire voltage are acquired in eight working conditions of the

FAWT, from 20 % to 90 %, with 10 % difference. The uniform flow generated in these

eight working conditions covers the maximum and minimum wind velocities in the test-

section during the experiment. The hot-wire voltage in the still air is also recorded for

calibration. We take the data record for 10 s for both pressure measurement and hot-wire

measurement simultaneously. The acquired pressure data is considered as the dynamic

pressure of the incoming flow. Afterwards, by applying Bernoulli equation, we calculate

the time-averaged wind velocity according to the acquired pressure data. With the time-

averaged wind speed and the hot-wire voltage as a time-series, we apply the calibration

procedure by (George, Woodward, and Hussein, 1989), who find that the wind velocity is

a 4th order polynomial of the hot-wire voltage, such that,

u = C0 + C1E + C2E2 + C3E3 + C4E4, (7.1)

where u is the wind velocity in m/s, C0 ∼ C4 are coefficients for the polynomial, and

E is the hot-wire voltage in V. With u and E at different working conditions, we apply

orthogonal projection to obtain C0 ∼ C4, which are the result of calibration. To ensure

the measurement accuracy, this calibration procedure is conducted whenever we need to

carry out turbulence measurement from hot-wire anemometer.
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FIGURE 7.6: AN1003 hot-wire anemometer system
Source:AA Lab LTD.

FIGURE 7.7: NI9234 Data acquisition system
Source:National Instrument LTD.

7.3 Analysis techniques

To proceed the wind velocities obtained by hot-wire anemometer, we apply the following

analysis techniques from the turbulence textbooks by (Pope, 2000; Tennekes and Lumley,
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1972) and signal-processing textbooks by (Percival, Walden, et al., 1993; Stoica, Moses,

et al., 2005).

Mean, Variance and Standard Deviation

The sample mean is defined and calculated as:

x =
1
N

N

∑
i=1

x(i),

where N is the volume of samples and x(i) is the ith sample in the series. The unbiased

sample variance is defined and calculated as

s2 =
1
N

N

∑
i=1

(x(i)− x)2,

The unbiased standard deviation is defined and calculated as

s =

√√√√ 1
N

N

∑
i=1

(x(i)− x)2,

Power Spectral Density (PSD)

We reference the definitions and statements by (Stoica, Moses, et al., 2005). Under some

additional regularity conditions, the sequence x(t) possesses a discrete–time Fourier trans-

form (DTFT) defined as

X(ω) =
∞

∑
t=−∞

x(t)e−iωt. (7.2)
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We define the energy spectral density of a signal as,

S(ω) = ∥X(ω)∥2. (7.3)

Most of the signals encountered in applications are such that their variation in the future

cannot be known exactly. It is only possible to make probabilistic statements about that

variation. The mathematical device to describe such a signal is that of a random sequence

which consists of an ensemble of possible realizations, each of which has some associated

probability of occurrence. A random signal usually has finite average power and, there-

fore, can be characterized by an average power spectral density. For simplicity reasons,

in what follows we will use the name power spectral density (PSD) for that quantity.

To numerically obtain the PSD, we employ the following definition on the PSD Exx(ω),

as

Exx(ω) = lim
N→∞

E

{
1
N
∥

N

∑
t=1

x(t)e−iωt∥2

}
, (7.4)

which is from the following publications by (Pope, 2000; Stoica, Moses, et al., 2005; Ten-

nekes and Lumley, 1972).

The Bartlett Power Spectral Estimation (BPSE)

We reference the definitions and statements by (Percival, Walden, et al., 1993). Bartlett’s

method is to reduce the variance of the PSD by averaging. We divide the N point series

into K nonoverlapping data segments, where each segment has length M. This results

the in the K data segments. We average the PSD for the K segments to obtain the Bartlett
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power spectrum estimate, such that,

Exx(ω) =
1
K

K

∑
i=1

Ei
xx(ω), (7.5)

Reynolds Stress

The velocity record of a turbulent flow includes both mean and fluctuating components.

This holds true for other terms such as pressure and stress. The Reynolds decomposition

of the velocities can be expressed as

ui = Ui + u′i,

where capitol symbols denote the mean value and a prime is used for fluctuations. u′iu
′
i

denotes the Reynolds stress. This term indicates the contribution of turbulent fluctuations

to the mean stress tensor.

Turbulence Intensity

We define the turbulence intensity (TI) by:

TI =
u′iu
′
i

1
2

Ui
.

7.4 Results: pressure measurement

We carry out the pressure measurement with the setup pre-described in Section 7.2. We

let the FAWT works at the uniform mode, which means every fan works at identical

duty to create a homogeneous wind field within the test section. Figure 7.8 and 7.9 show

the velocity map of the test section when every fan of the FAWT runs at 50% and 80%
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duty, respectively. By comparing Figure 7.8 and Figure 7.9, it is obvious that when the

FIGURE 7.8: Velocity map of the test section when every fan work at 50%

FAWT works at uniform mode, higher duty means higher averaged velocity in the area.

Moreover, higher duty implies higher spatial velocity gradients near the edge of the test

section.

7.5 Results: hot-wire measurement

We carry out the hot-wire measurement with the setup described by Section 7.2, at x = 1.2

m, y = 0 m, and z = 0 m. This coordinate is at the upstream of the hovering position of the

conducted flight experiment to be presented in Chapter 8. We carry out the anemometer

measurement for several different kinds of flowfields. Among these flowfields, uniform

flow is previously described in Section 7.2 when the calibration process is described. In

the uniform flow mode, we command the fans to run at 30%-70% of the maximum output.
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FIGURE 7.9: Velocity map of the test section when every fan work at 80%

To generate the flowfields with different turbulence characteristics, we drive a group

of fans to some specific duty and keep the others at rest to initiate free-shear flow as the

energy source of turbulent incoming flows with different length scales. Except for the

uniform flow mode, We conduct the hot-wire measurement for six different modes of

flowfields, including ’small wave’ flows, ’large wave’ flows, ’peak’ flows, ’small block’

flows, ’large block’ flows, and ’huge block’ flows.

To control each individual fans of the FAWT, We use the web application interface

provided by WindShape. Corp. The inputs to generate the fore-mentioned flowfields are

presented in Figures 7.10-7.15. To explain, in Figures 7.10-7.15, the dark blue block stand

for the fans on-duty, while the light blue block stand for the fans at rest. For the fans

on-duty, we command the fans to run at 40%-80% of the maximum output.

For each run, we turn on the FAWT for 2 minutes to stabilize the flow to a statisti-

cally steady state. Afterwards, we take 10 minutes to collect the time-series of voltage
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with 6 million points, and transform them into the wind velocity using the fourth or-

der polynomial given by (7.1). We apply the PSD and the BPSE methods given by (7.4)

and (7.5), respectively, to obtain smooth PSD map for each collected velocity time-series.

When using the BPSE, for each time-series of wind velocity with 6 million points, we di-

vide them into 60 segments (K = 60), where each segment length is a hundred thousand

(M = 100000). We list the statistical results of these flow fields in Tables 7.1-7.7 , including

time-averaged velocities, Reynolds stresses, Taylor-scale Reynolds number, and TI. The

spectral estimation results of these flowfields are presented in Figures B.1-B.7 attached in

Appendix B.

Duty Ui (m/s) u′iu
′
i (m/s)2 Reλ TI

30% 5.472 0.061 98 0.0451

40% 6.876 0.082 102 0.0417

50% 8.213 0.0116 100 0.0415

60% 9.590 0.0168 127 0.0427

70% 10.920 0.0237 148 0.0446

TABLE 7.1: Summary of the statistical characteristics of the uniform flows
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FIGURE 7.10: Input interface to generate ’small wave’ flow

Duty Ui (m/s) u′iu
′
i (m/s)2 Reλ TI

40% 5.573 0.197 179 0.0797

50% 6.680 0.249 184 0.0747

60% 7.700 0.319 191 0.0734

70% 8.722 0.424 207 0.0747

80% 9.730 0.554 235 0.0765

TABLE 7.2: Summary of the statistical characteristics of the ’small wave’
flows
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FIGURE 7.11: Input interface to generate ’large wave’ flow

Duty Ui (m/s) u′iu
′
i (m/s)2 Reλ TI

40% 5.073 0.551 293 0.1463

50% 6.317 0.807 326 0.1422

60% 7.619 1.180 390 0.1425

70% 8.783 1.549 440 0.1417

80% 9.913 1.974 502 0.1417

TABLE 7.3: Summary of the statistical characteristics of the ’small wave’
flows
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FIGURE 7.12: Input interface to generate ’peak’ flow

Duty Ui (m/s) u′iu
′
i (m/s)2 Reλ TI

40% 6.801 0.1141 116 0.0497

50% 8.244 0.1849 121 0.0522

60% 9.656 0.2900 174 0.0558

70% 11.230 0.4160 209 0.0574

80% 12.890 0.5690 248 0.0585

TABLE 7.4: Summary of the statistical characteristics of the ’peak’ flows
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FIGURE 7.13: Input interface to generate ’small block’ flow

Duty Ui (m/s) u′iu
′
i (m/s)2 Reλ TI

40% 4.788 0.0726 92 0.0563

50% 5.930 0.1163 110 0.0575

60% 7.110 0.1700 127 0.0580

70% 8.274 0.2230 125 0.0571

80% 9.425 0.2804 157 0.0562

TABLE 7.5: Summary of the statistical characteristics of the ’small block’
flows
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FIGURE 7.14: Input interface to generate ’large block’ flow

Duty Ui (m/s) u′iu
′
i (m/s)2 Reλ TI

40% 4.859 0.2179 158 0.0961

50% 5.998 0.3484 191 0.0984

60% 7.223 0.5110 225 0.0990

70% 8.479 0.6845 259 0.0976

80% 9.669 0.8668 297 0.0963

TABLE 7.6: Summary of the statistical characteristics of the ’large block’
flows
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FIGURE 7.15: Input interface to generate ’huge block’ flow

Duty Ui (m/s) u′iu
′
i (m/s)2 Reλ TI

40% 5.079 0.2581 189 0.1000

50% 6.048 0.3956 215 0.1040

60% 7.095 0.5927 251 0.1085

70% 8.120 0.8202 284 0.1115

80% 9.171 1.1054 329 0.1146

TABLE 7.7: Summary of the statistical characteristics of the ’huge block’
flows

7.6 Comparison and discussion

We reference the turbulence textbook by (Pope, 2000). With the Kolmogorov hypotheses

we are interested in the energy-spectrum function is of the form as follows

E11( f ) = Cϵ
2
3 f−p, (7.6)
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which is the famous Kolmogorov−5/3 spectrum. This behavior can be roughly observed

in Figures B.1-B.7. We observe that for ’small wave’ and ’large wave’ flows, the low

frequency components have higher amplitudes than uniform flows and ’peak’ flows. We

observe that the dominant frequency of uniform flows and ’peak’ flows increase with the

duties of fans. Since the measurement point is at the center-line of the downstream cross-

section, ’peak’ flows do not show similar behavior in their turbulence intensities when

compared with ’small wave’ and ’large wave’ flows.

7.7 Summary

In this chapter, we conduct the measurement experiment for the FAWT using different

methods. The spatial velocity maps are obtained through pressure measurement. The

spectrum of the wind velocity is obtained in front of the FAWT. This chapter provides

some characteristics of the turbulent incoming flows generated in the FAWT. In Chapter

8, the UAV flight experiments are conducted with the exposure of the turbulent flows

investigated in this chapter.
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Chapter 8

Experiment 2: Rotorcraft Flight Experiment with

Turbulent Flows from Fan Array Wind Tunnel

(FAWT)

In this chapter, the proposed fast finite-time stable extended state observer (FFTS-ESO)

covered in Chapter 5 is validated through flight experiments. Its hardware and software

are custom-designed and developed based on the open-source autopilot PX4 by (Meier,

Honegger, and Pollefeys, 2015). To demonstrate the capability of estimating and rejecting

the disturbances, flight experiments are conducted under wind disturbances generated

by the FAWT which is described by Chapter 7 in details. We first describe the hardware

and software configurations of the unmanned aerial vehicle (UAV) and the setup of the

experiment. Afterwards, we present our experimental results including the characteris-

tics of the wind disturbances and the control performance of the UAV when exposed to

disturbances generated by the FAWT.
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8.1 Experimental setup

The quad-rotor UAV developed at the Autonomous Unmanned Systems laboratory (AUSL)

for experiment is shown in Figure 8.3. The UAV is equipped with a CUAV Nora autopilot

shown in Figure 8.2. The CUAV Nora is an autopilot intended primarily for manufac-

turers of commercial systems. It is based on the Pixhawk-project FMUv7 and runs open-

source autopilot software PX4 on the real-time operating system NuttX. We use the same

motion capture system as in the experimental research by (Hamrah, 2022).

8.2 Software configuration

The flight control software is developed from the open-source autopilot software PX4

v1.13.2. According to (Meier, Honegger, and Pollefeys, 2015), the system architecture

of PX4 is centered around a publish-subscribe object request broker on top of a POSIX

application programming interface. This programming interface has different modules

for data logging, communication, estimation, and control. The FFTS-ESO is implemented

onto the module mc_pos_control and mc_rate_control for translational and rotational

motions, respectively. The feedback of disturbance estimates from the ESO is applied to

the control law as an additional term, so that the original control architecture is modified

with this feedforward disturbance rejection term. We introduce Boolean parameters to

switch the disturbance rejection conveniently.

In the experiment, the rest of the autopilot (PX4 v1.13.2) is kept unchanged, to have

a fair comparison of the flight control performance between the original PX4 autopilot,

and the one with disturbance rejection from FFTS-ESO. The flight control parameters of
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the autopilot are as described in the multi-rotor frame S500 in the code repository of PX4-

Autopilot. A Robot Operating System (ROS) interface program is developed for the com-

panion computer that transmits commands and pose to the vehicle. The flight data are

saved in the memory card inside the FCU in the form of .ulg file for post-processing.

We use the MAVLINK telecommunication protocol for communication between the FCU,

companion computer, and ground control station.

The FFTS-ESO parameters are selected as: p = 1.2, kt1 = 6, kt2 = 3, kt3 = 1, κt = 0.6,

ka1 = 8, ka2 = 4, ka3 = 2, κa = 0.6. The empirically known mass and inertia of the vehicle

as given to the FFTS-ESO are: m = 1 kg and J = diag([0.03, 0.03, 0.06]) kg ·m2. We link

the source code of the customized PX4 with FFTS-ESO on Github.1

8.3 Experiment procedure

The flight experiment setup is shown in Figure 8.1. We define the FAWT coordinate frame

as shown in Figure 7.1, with x as the stream-wise direction, y as the span-wise direction,

and z as the vertically up direction. The origin is at the geometric center of the fan array.

1Github link: https://github.com/nswang1994/GeometricPX4/tree/Geometric-FFTS-ESO
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FIGURE 8.1: Multi-rotor UAV for flight test

As shown in Figure 8.1, the vehicle is commanded to hover in the front of the FAWT,

at x = 1.5m, y = 0m, z = 0m in the FAWT frame. This hovering position is at the center

point of the test section, so that we can maximally avoid the boundary layer around the

section border, where higher turbulence intensity and flow uncertainty occur. The time

for hovering flight is set to 210 s. During this period, we turn on the FAWT for 150 s to

disturb the vehicle with turbulent flows with statistically constant characteristics. The

pose of the vehicle during flight is recorded in the log file for evaluation.
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FIGURE 8.2: Autopilot
hardware: Nora, from

CUAV. LLC

FIGURE 8.3: Multi-rotor
UAV for flight test

8.4 Experimental results: PX4+FFTS-ESO

Figure 8.4 shows the experimental results of the hovering flight with uniform flows from

the FAWT. Figure 8.4 shows that both position and attitude tracking errors have high

transient at around 20s and 180s when the disturbances from FAWT kick in and fade

off, respectively. For the attitude tracking error of the control scheme with disturbance

rejection, we observe extra transient at around 0s-10s, when the disturbance rejection

kick-in. we observe that when the FAWT operates at 40%-60% of its maximum duty,

the position tracking error of the control scheme with disturbance rejection outperforms

the one without rejection. When the FAWT operates at 30% of its maximum duty, the

difference between the two control schemes is not evident. However, in terms of the time-

averaged position tracking errors in Table 8.1, we can still observe that the scheme with

disturbance rejection outperforms the one without rejection when the FAWT operates at

30%-60% of its maximum duty. When the FAWT operates at 70% of its maximum duty, the

control scheme without disturbance rejection mechanism fails to hover constantly, while
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the one with rejection succeeds.

We also conduct the flight experiments with different fan-array initiations to generate

different turbulent flows to impact the hovering UAV. The experimental results are posed

in Tables 8.2-8.4 and Figures C.1-C.3. We can observe that the scheme with disturbance

rejection outperforms the one without rejection when they are exposed to the identical

turbulent flows.

8.5 Summary

This chapter describes the flight experiment setup for validating the ADRC schemes. We

present the results of the disturbance rejection control with different wind gusts from the

FAWT. The experimental results show that the control scheme with a disturbance rejection

mechanism from the feedback of the FFTS-ESO outperforms the original control scheme

in almost any condition.
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FIGURE 8.4: Uniform flow tracking error
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Position tracking error (m) Attitude tracking error (rad)

PX4 Stack PX4+FFTS-ESO PX4 Stack PX4+FFTS-ESO

30% 0.0251 0.0236 0.0125 0.0116

40% 0.0468 0.0211 0.0140 0.0141

50% 0.0589 0.0254 0.0166 0.0132

60% 0.0792 0.0400 0.0164 0.0134

70% Failed! 0.0557 Failed! 0.0139

TABLE 8.1: Uniform flow time-averaged tracking error

Position tracking error (m) Attitude tracking error (rad)

PX4 Stack PX4+FFTS-ESO PX4 Stack PX4+FFTS-ESO

30% 0.0351 0.0204 0.0163 0.0117

40% 0.0448 0.0234 0.0172 0.0123

50% 0.0602 0.0204 0.0187 0.0139

60% NA 0.0270 NA 0.0159

TABLE 8.2: ’Small wave’ flow time-averaged tracking error
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Position tracking error (m) Attitude tracking error (rad)

PX4 Stack PX4+FFTS-ESO PX4 Stack PX4+FFTS-ESO

30% 0.0347 0.0234 0.0177 0.0111

40% 0.0432 0.0244 0.0177 0.0140

50% 0.0648 0.0275 0.0228 0.0170

60% NA 0.0303 NA 0.0198

TABLE 8.3: ’Large wave’ flow time-averaged tracking error

Position tracking error (m) Attitude tracking error (rad)

PX4 Stack PX4+FFTS-ESO PX4 Stack PX4+FFTS-ESO

30% 0.0378 0.0250 0.0211 0.0113

40% 0.0505 0.0257 0.0185 0.0135

50% 0.0758 0.0298 0.0267 0.0178

60% NA 0.0303 NA 0.0198

TABLE 8.4: ’Huge wave’ flow time-averaged tracking error

Position tracking error (m) Attitude tracking error (rad)

PX4 Stack PX4+FFTS-ESO PX4 Stack PX4+FFTS-ESO

30% 0.0371 0.0276 0.0136 0.0102

40% 0.0542 0.0242 0.0175 0.0123

50% 0.0824 0.0352 0.0231 0.0177

60% NA 0.0329 NA 0.0171

TABLE 8.5: ’Peak’ flow time-averaged tracking error
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Chapter 9

Conclusion and Future Work

We conclude this dissertation by providing a summary of each chapters here, followed

by a discussion on related future work.

9.1 Conclusion

This dissertation discusses the tracking control problem of rotorcraft UAVs under com-

plex atmospheric environments.

Chapter 2 details the Hölder-continuous differentiator. The FFTS-ESO presented in

Chapter 5 are based on the proposed HCD. We present two HCD designs with FTS and

FFTS, as HC-FTSD and HC-FFTSD, respectively. The stability analysis of HCDs are in-

spired by the strict Lyapunov function for the super-twisting algorithm by (Moreno and

Osorio, 2012; Vidal, Nunes, and Hsu, 2016). In the robustness analysis, we present the

Lyapunov analysis of HC-FFTSD under perturbation and measurement noise respec-

tively. We show that the properly tuned HC-FFTSD is still PFTS.

Chapter 3 formulates the tracking control problem, the ESO problem on SE(3). The

corresponding mathematical preliminaries are also covered in this Chapter.
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Chapter 4 presents the AS-ADRC scheme, with the ES-ESO for disturbance estimation

and AS tracking control, which is based on the research article by (Sanyal, Nordkvist,

and Chyba, 2010). Numerical simulation confirms the stable performance of the overall

AS-ADRC scheme.

Chapter 5 presents the FFTS-ADRC scheme. The FFTS-ADRC scheme is with the

FFTS-ESO for disturbances estimation and FFTS tracking control scheme, which is based

on the research article by (Viswanathan, Sanyal, and Samiei, 2018). The FFTS-ESO is

based on the HC-FFTSD described in Chapter 2. Based on the robustness analyses con-

ducted in Chapter 2, we conduct the robustness analysis for the FFTS-ESO under time-

varying disturbances and measurement noise. In the numerical simulation section, the

proposed FFTS-ESO is compared with the FxTSDO by (Liu et al., 2022) and LESO by

(Shao et al., 2018b) on their disturbance estimation performance. The FFTS-ESO shows

advantages in its disturbance estimation performance over the other two in the simulated

environment, especially when the UAV experiences measurement noise and high maneu-

vers. The numerical simulation section also validates the stable tracking performance of

the proposed geometric ADRC schemes under external disturbances.

Chapter 6 presents the simulated flight control performance of the proposed ADRC

schemes from Software-In-The-Loop (SITL) simulation with a physics engine and open-

source autopilot. The physics engine provides a simulation environment with a simulated

wind field with uncertainty and measurement noise so that the proposed ADRC schemes

are validated in a simulated environment with high fidelity. The proposed FFTS-ADRC

shows satisfying position tracking control performance in the simulation result.

Chapter 7 and Chapter 8 describe the experimental results. Chapter 7 presents the

turbulence measurement from the FAWT in different working conditions. Hot-wire and
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pressure measurements are included in Chapter 7. Chapter 8 describes the multi-rotor

flight experiment under the turbulence generated by the FAWT described in Chapter 7.

The results reported in Chapter 7 and Chapter 8 validate the proposed ADRC schemes

experimentally.

9.2 Ideas for future work

The following are ideas to extend the research presented in this dissertation:

• Compared with rotorcraft UAVs, fixed-wing UAVs are easier to be disturbed by at-

mospheric turbulence like wind shear and micro-burst during take-off and landing.

An ADRC scheme for a fixed wing aircraft improves its flight safety and reliability.

• According to (Verling et al., 2016), in a direct comparison between rotorcraft UAV

and fixed-wing (considering similar sizes), the main advantage of rotorcraft against

fixed–wing systems are their superior maneuverability and especially their abil-

ity to take off and land vertically, which eliminates the need for a runway or flat

grounds and allows full operational autonomy. On the other hand, fixed–wing sys-

tems are more power–efficient and have much longer endurance and higher oper-

ational range. Tail-sitter vertical take-off and landing (VTOL) UAV synthesizes the

positive aspects of both fixed-wing and rotorcraft UAVs. However, this kind of UAV

experiences the singularity point in pose representation every time it take-off and

land. Thus, an ADRC scheme on SE(3) improves flight safety and reliability for

tail-sitter VTOL UAVs during take-off and landing.

• According to (Moreno et al., 2021; Teng et al., 2022), the uncertainty in the con-

trol input matrix affects the control performance in both model-based control and
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model-free control schemes. ESO and ADRC scheme with adaptive mechanisms to

tackle these uncertainties are valuable research directions.

• In a realistic implementation of ESO and ADRC scheme for a rigid body, especially

for aerospace implementation, the center of mass is not always coincident with the

geometric center. Thus, ESO and ADRC scheme on SE(3) with spatial offset of the

center of mass are necessary for aerospace implementation.

• According to the prior research by (Zhang, Xue, and Fang, 2021; Zhang et al., 2020),

ESO is not only just a tool for the ADRC scheme but also a powerful tool for sensor-

bias estimation , which is another valuable research direction.

• Due to the disturbances, the linear model is fragile for fluid flow in the transition

stage when the Reynolds number approaches the critical value. To this end, the

ESO and ADRC schemes with fast convergence performance for a large-dimension

system are valuable research directions for the transition control problem in a fluid

flow system.

149



Appendix A

Proof of Lemma 2.1.5

A.1 Proof 1

Proof. We represent x as linear combination of µ and ν,

x = c1µ + c2ν, (A.1)

where ν is a vector perpendicular to µ, such that µTν = 0. We define two non-zero

scalars, c1, c2. With (A.1), we express Y in Lemma 2.1.5 in coordinates (c1, c2):

Y =
c1µ + c2ν(

c2
1∥µ∥2 + c2

2∥ν∥2
)α −

(1 + c1)µ + c2ν[
(1 + c1)2∥µ∥2 + c2

2∥ν∥2
]α . (A.2)
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Afterward, we obtain its partial derivatives with respect to these coordinates:

∂Y
∂c1

=
µ(

c2
1∥µ∥2 + c2

2∥ν∥2
)α −

2αc1∥µ∥2(c1µ + c2ν)(
c2

1∥µ∥2 + c2
2∥ν∥2

)α+1

− µ[
(1 + c1)2∥µ∥2 + c2

2∥ν∥2
]α +

2α(1 + c1)∥µ∥2 [(1 + c1)µ + c2ν][
(1 + c1)2∥µ∥2 + c2

2∥ν∥2
]α+1 ,

∂Y
∂c2

=
ν(

c2
1∥µ∥2 + c2

2∥ν∥2
)α −

2αc2∥ν∥2(c1µ + c2ν)(
c2

1∥µ∥2 + c2
2∥ν∥2

)α+1

− ν[
(1 + c1)2∥µ∥2 + c2

2∥ν∥2
]α +

2αc2∥ν∥2 [(1 + c1)µ + c2ν][
(1 + c1)2∥µ∥2 + c2

2∥ν∥2
]α+1 .

(A.3)

Thereafter, with the fact that the local maxima of YTY fulfills, we obtain

∂

∂c1
(YTY) =

∂

∂c2
(YTY) = 0,

which is equivalent to the following statement:

µT ∂Y
∂c1

= νT ∂Y
∂c2

= 0, (A.4)

νT ∂Y
∂c1

= 0, (A.5)

µT ∂Y
∂c2

= 0. (A.6)
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Substituting (A.3) into (A.4), we obtain,

νT ∂Y
∂c1

= µT ∂Y
∂c2

= 0,

− 2αc1c2∥µ∥2∥ν∥2(
c2

1∥µ∥2 + c2
2∥ν∥2

)α+1 +
2α(1 + c1)c2∥µ∥2∥ν∥2[

(1 + c1)2∥µ∥2 + c2
2∥ν∥2

]α+1 = 0

−→ c1

[
(1 + c1)

2∥µ∥2 + c2
2∥ν∥2

]α+1
= (1 + c1)

[
c2

1∥µ∥2 + c2
2∥ν∥2

]α+1
(A.7)

or c2 = 0. (A.8)

Substituting (A.3) into (A.5), we obtain,

µT ∂Y
∂c1

= 0,

−→
(1− 2α∥µ∥2c2

1)∥µ∥2(
c2

1∥µ∥2 + c2
2∥ν∥2

)α+1 +

[
1− 2α(1 + c1)

2∥µ∥2] ∥µ∥2[
(1 + c1)2∥µ∥2 + c2

2∥ν∥2
]α+1 = 0

←→(1 + c1)
2 = c2

1

←→c1 = −1
2

.

(A.9)

Substituting (A.3) into (A.6), we obtain,

νT ∂Y
∂c2

= 0,

−→ (1− 2α∥ν∥2c2
2)∥ν∥2(

c2
1∥µ∥2 + c2

2∥ν∥2
)α+1 +

(1− 2α∥ν∥2c2
2)∥ν∥2[

(1 + c1)2∥µ∥2 + c2
2∥ν∥2

]α+1 = 0

←→(1 + c1)
2 = c2

1

←→c1 = −1
2

.

(A.10)

We see that (A.7) does not give a real solution for α ∈]0, 1/2[. Thus, we conclude that the

only solution to (A.4), (A.5), (A.6) is given by c1 = −1/2, c2 = 0. Thus, the only critical
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value of YTY is obtained when x = −µ/2. Finally, we conclude that the global maximum

of YTY is at x = −µ/2. We omit the analysis on the Hessian matrix of YTY as a function

of (c1, c2).

A.2 Proof 2

A.2.1 Preliminaries

Lemma A.2.1 (Weyl’s Theorem). (Horn and Johnson, 2012) M, R, N ∈Hn×n, M = R + N.

Their eigenvalues are as,

λ1{M} ≥ λ2{M} ≥ ... ≥ λn{M}

λ1{R} ≥ λ2{R} ≥ ... ≥ λn{R}

λ1{N} ≥ λ2{N} ≥ ... ≥ λn{N}

The following inequality holds

λ1{R}+ λi{N} ≥ λi{M} ≥ λ1{R}+ λn{N}, i = 1, 2, ...n

similarly,

λ1{N}+ λi{R} ≥ λi{M} ≥ λ1{N}+ λn{R}. i = 1, 2, ...n.

Lemma A.2.2. Assume x ∈ Rn and y ∈ Rn, where x and y are orthogonal, such that xTy = 0.

The dyadic matrix xyT and yxT are nilpotent matrices. Moreover, xyT + yxT is nilpotent and

symmetric.
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Lemma A.2.3. Assume x ∈ Rn and y ∈ Rn, where x and y are orthogonal, such that xTy = 0.

For an arbitrary symmetric real matrix A ∈ Rn×n, its eigenvalues are same as the eigenvalues of

A + c(xyT + yxT), c ∈ R.

Lemma A.2.4. Assume x ∈ Rn. The eigenvalues of xxT is ranked as λn ≤ λn−1 ≤ ..λ1, where

λi = 0, 0 ≤ i ≤ n− 1 and λ1 = xTx.

Lemma A.2.5. Assume x ∈ Rn and y ∈ Rn, n > 2 where x and y are orthonormal, such that

xTy = 0 and ∥x∥ = 1, ∥y∥ = 1. ∀a, b ∈ R, on the eigenvalues of the matrix axxT + byyT, there

exist one eigenvalue a and one eigenvalue b. Moreover, if ab ≤ 0, the eigenvalues other than a and

b are all 0.

Lemma A.2.6. Define µ ∈ Rn \ {0}, x ∈ Rn \ {0,−µ}, α ∈]0, 1/2[ and A ∈ Rn×n, given by:

A =
[
∥x∥−2αH(x, α)− ∥x + µ∥−2αH(x + µ, α)

]
, x ∈ Rn \ {0,−µ}. (A.11)

A is a full-rank matrix except for x = −µ/2.

Proof. We define the following symmetric matrices, h, hµ,∈ Rn×n, which are given by:

h = 2α∥x∥−2α−2xxT,

hµ = 2α∥x + µ∥−2α−2(x + µ)(x + µ)T,

so that we re-write A in the following expression:

A = (∥x∥−2α − ∥x + µ∥−2α)I − (h− hµ) (A.12)
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On the eigenvalues of h and −hµ, we obtain

λ1{h} = 2α∥x∥−2α, λ2{h} = 0, ... λn{h} = 0

λ1{−hµ} = 0, λ2{−hµ} = 0, ... λn{−hµ} = −2α∥x + µ∥−2α.

Afterwards, we discuss the eigenvalues of h− hµ. On the eigenvalues of h + (−hµ). We

employ Lemma A.2.1 and obtain following inequality,

λn{h}+ λi{−hµ} ≤ λi{h− hµ} ≤ λi{−hµ}+ λ1{h}, 1 ≤ i ≤ n− 1.

−→0 ≤ λi{h− hµ} ≤ 2α∥x∥−2α, 1 ≤ i ≤ n− 1.

λn{−hµ}+ λi{h} ≤ λi{h− hµ} ≤ λi{h}+ λ1{−hµ}, 2 ≤ i ≤ n.

−→− 2α∥x + µ∥−2α ≤ λi{h− hµ} ≤ 0, 2 ≤ i ≤ n,

which means λi{h − hµ} = 0, 2 ≤ i ≤ n − 1, λ1{h − hµ} > 0 and λn{h − hµ} < 0 .

Considering the expression of A in (A.12), there are three possible situations for A to be

singular matrix and we itemize them as follows:

• (∥x∥−2α − ∥x + µ∥−2α)− 0 = 0,

• (∥x∥−2α − ∥x + µ∥−2α)− λ1{h− hµ} = 0,

• (∥x∥−2α − ∥x + µ∥−2α)− λn{h− hµ} = 0.

When ∥x∥−2α − ∥x + µ∥−2α = 0 holds, x = −µ/2 is the only solution to the equation and

it makes A a singular matrix. When ∥x∥−2α − ∥x + µ∥−2α ̸= 0, A is a singular matrix if

and only if ∥x∥−2α − ∥x + µ∥−2α − λmin{h− hµ} = 0 or ∥x∥−2α − ∥x + µ∥−2α − λmax{h−

hµ} = 0. We investigate into these two situations in the following part of the proof. We
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rewrite x in the following expression:

x = c1µˆ + c2µ⊥, (A.13)

where c1, c2 ∈ R, µˆ and µ⊥ are unit vectors along and perpendicular to µ, respectively.

Thus, we rewrite x + µ in the following expression:

x + µ = (c1 + ∥µ∥)µˆ + c2µ⊥. (A.14)

We substitute (A.13) and (A.14) into the expression of h− hµ and obtain,

h− hµ =
2αc2

1µˆ(µˆ)T

(c2
1 + c2

2)
α+1

+
2αc2

2µ⊥(µ⊥)T

(c2
1 + c2

2)
α+1

+
2αc1c2µˆ(µ⊥)T

(c2
1 + c2

2)
α+1

+
2αc1c2µ⊥(µˆ)T

(c2
1 + c2

2)
α+1

− 2α(c1 + ∥µ∥)2µˆ(µˆ)T[
(c1 + ∥µ∥)2 + c2

2
]α+1 −

2αc2
2µ⊥(µ⊥)T[

(c1 + ∥µ∥)2 + c2
2
]α+1

− 2α(c1 + ∥µ∥)c2µˆ(µ⊥)T[
(c1 + ∥µ∥)2 + c2

2
]α+1 −

2α(c1 + ∥µ∥)c2µ⊥(µˆ)T[
(c1 + ∥µ∥)2 + c2

2
]α+1 .

(A.15)

We employ Lemma A.2.3 and introduce h∗ ∈ Rn×n, which has the same eigenvalues with

h− hµ. We define h∗ as follows:

h∗ =
2αc2

1µˆ(µˆ)T

(c2
1 + c2

2)
α+1
− 2α(c1 + ∥µ∥)2µˆ(µˆ)T[

(c1 + ∥µ∥)2 + c2
2
]α+1

+
2αc2

2µ⊥(µ⊥)T

(c2
1 + c2

2)
α+1

− 2αc2
2µ⊥(µ⊥)T[

(c1 + ∥µ∥)2 + c2
2
]α+1 .

(A.16)
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From the expression of h∗ in (A.16), we employ Lemma A.2.5 and obtain the non-zero

eigenvalues of h− hµ as λh1 and λh2 , such that,

λh1 =
2αc2

1
(c2

1 + c2
2)

α+1
− 2α(c1 + ∥µ∥)2[

(c1 + ∥µ∥)2 + c2
2
]α+1 ,

λh2 =
2αc2

2
(c2

1 + c2
2)

α+1
− 2αc2

2[
(c1 + ∥µ∥)2 + c2

2
]α+1 .

(A.17)

Firstly, we assume ∥x∥−α−∥x+ µ∥−2α− λh1 = 0 has solution and try to find the solution.

To this end, we rewrite the equation,

(c2
1 + c2

2)
−α −

2αc2
1

(c2
1 + c2

2)
α+1

=
[
(c1 + ∥µ∥)2 + c2

2

]−α
− 2α(c1 + ∥µ∥)2[

(c1 + ∥µ∥)2 + c2
2
]α+1 . (A.18)

With (A.18), we introduce the function f : R+ → R, given by:

f (e) =
[
(c1 + e)2 + c2

2

]−α
− 2α(c1 + e)2[

(c1 + e)2 + c2
2
]α+1 .

Afterwards, with f (∥µ∥), we write (A.18) into the form of algebraic equation as, f (0) =

f (∥µ∥). According to Rolle’s theorem, if f (0) = f (∥µ∥) has a real solution, there exists

the combination of e, c1 and c2, which make f ′(e) = 0, where 0 < e < ∥µ∥ . We obtain

f ′(e)

f ′(e) = −6α(c1 + e)
[
(c1e)2 + c2

2

]−α−1
− 4α(c1 + e)3(−α− 1)

[
(c1 + e)2 + c2

2

]−α−2
.

(A.19)
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We fix f ′(e) = 0, such that,

0 = (1− 2α)(c1 + e)2 + 3c2
2. (A.20)

From (A.20), we identify that only when c2 = 0, (A.18) has real solution. We substitute

c2 = 0 into (A.18) and fix ∥µ∥ in (A.18). Afterwards, we find c1 = −∥µ∥/2, c2 = 0

is the only solution to (A.18), indicating x = −µ/2 is the only solution to the equation

∥x∥−α − ∥x + µ∥−2α − λh1 = 0, which makes (A.11) a singular matrix. Secondly, we

assume ∥x∥−2α − ∥x + µ∥−2α − λh2 = 0 and try to find its solution. We firstly identify the

following statement,

∥x∥−2α − ∥x + µ∥−2α > 0

→(c2
1 + c2

2)
−α −

[
(c1 + ∥µ∥)2 + c2

2

]−α
> 0↔ c2

1 < (c1 + ∥µ∥)2.

Similarly, there is

∥x∥−2α − ∥x + µ∥−2α < 0

→(c2
1 + c2

2)
−α −

[
(c1 + ∥µ∥)2 + c2

2

]−α
< 0↔ c2

1 > (c1 + ∥µ∥)2.

With the above two statements, we rewrite ∥x∥−2α − ∥x + µ∥−2α − λh2 = 0 as,

(c2
1 + c2

2)
−α −

[
(c1 + ∥µ∥)2 + c2

2

]−α
− 2αc2

2
c2

1 + c2
2
(c2

1 + c2
2)
−α

+
2αc2

2
(c1 + ∥µ∥)2 + c2

2

[
(c1 + ∥µ∥)2 + c2

2

]−α
= 0.

(A.21)
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On (A.21), when ∥x∥−2α − ∥x + µ∥−2α > 0, which means c2
1 < (c1 + ∥µ∥)2, we obtain,

1 >
2αc2

2
c2

1 + c2
2
>

2αc2
2

(c1 + ∥µ∥)2 + c2
2
> 0.

Similarly, when ∥x∥−2α − ∥x + µ∥−2α < 0, which means c2
1 > (c1 + ∥µ∥)2, we obtain,

1 >
2αc2

2
(c1 + ∥µ∥)2 + c2

2
>

2αc2
2

c2
1 + c2

2
> 0.

Thus, (A.21) holds if and only if ∥x∥−α − ∥x + µ∥−2α = 0, which means x = −µ/2. To

conclude, if and only if when x = −µ/2, A in (A.11) is a singular matrix.

A.2.2 Proof of Lemma 2.1.5

Finally, we present the proof of Lemma 2.1.5.

Proof (Lemma 2.1.5). We obtain the Jacobian of ϕ(x) and set it to zero, which gives us the

critical point of ϕ(x). We obtain the Jacobian of ϕ(x) as

dϕ

dx
= 2

[
∥x∥−2αx− ∥x + µ∥−2α(x + µ)

]T[
∥x∥−2αH(x, α)− ∥x + µ∥−2αH(x + µ, α)

]
.

(A.22)

We define A ∈ Rn×n, such that,

A(x) =
[
∥x∥−2αH(x, α)− ∥x + µ∥−2αH(x + µ, α)

]
. (A.23)
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Thereafter, we have the following equation

(dϕ

dx

)T
= 2A(x)Y(x) = 0. (A.24)

We find that x = −µ/2 is a solution to (A.24). Now we prove x = −µ/2 is the unique

solution to (A.24) so that x = −µ/2 is not only local extrema but also global extrema

for ϕ(x). We first assume there exists a solution other than x = −µ/2 for (A.24). With

α ∈]0, 1/2[, ∀x ∈ D \ {−µ/2}, we find that A(x) is a full-rank matrix. Therefore, ∀x ∈

D \ {−µ/2}, the only solution to A(x)Y(x) = 0, is Y(x) = 0. If such x exists, it fulfills the

following equation,

x
∥x∥2α

=
x + µ

∥x + µ∥2α
. (A.25)

This means that x and x + µ are linearly dependent, i.e.

∃c ∈ R \ {0}, x + µ = cx.→ x =
µ

c− 1
. (A.26)

Substituting (A.26) into (A.25), we obtain

x
∥x∥2α

=
cx

c2α∥x∥2α
↔ c1−2α = 1 (A.27)

For the solution of (A.27), we got two solutions. If α = 1/2, ∀c ∈ R, (A.27) holds. If

α ̸= 1/2, c = 1→ µ = 0. With α ∈]0, 1/2[ and µ ∈ Rn \ {0} assumed in Lemma 2.1.5, we

comes to the contradiction. Thus Y(x) is a non-zero vector. Thus, x = −µ/2 makes ϕ(x)
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for global maximum, which is

max{ϕ(x)} = ϕ
(
− µ

2

)
=
(

22α∥µ∥1−2α
)2

.

We omit the analysis on the Hessian of ϕ for brevity.
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Appendix B

Results on Turbulence Spectral Estimation
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FIGURE B.1: Summary of PSD estimation for uniform flow
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FIGURE B.2: Summary of PSD estimation for ’small wave’ flows
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FIGURE B.3: Summary of PSD estimation for ’large wave’ flows
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FIGURE B.4: Summary of PSD estimation for ’peak’ flows
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FIGURE B.5: Summary of PSD estimation for ’small block’ flows
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FIGURE B.6: Summary of PSD estimation for ’large block’ flows
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Appendix C

Results on Flight Experiments with Fan-Array

Wind Tunnel (FAWT)
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FIGURE C.1: ’Small wave’ flow tracking error
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FIGURE C.2: ’Large wave’ flow tracking error
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FIGURE C.3: ’Huge wave’ flow tracking error
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FIGURE C.4: ’Peak’ flow tracking error
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