
ABSTRACT

The availability of large datasets and computational resources has driven significant progress in

Artificial Intelligence (AI) and, especially, Machine Learning (ML). These advances have rendered

AI systems instrumental for many decision making and policy operations involving individuals:

they include assistance in legal decisions, lending, and hiring, as well determinations of resources

and benefits, all of which have profound social and economic impacts. While data-driven systems

have been successful in an increasing number of tasks, the use of rich datasets, combined with the

adoption of black-box algorithms, has sparked concerns about how these systems operate. How

much information these systems leak about the individuals whose data is used as input and how

they handle biases and fairness issues are two of these critical concerns. While some people argue

that privacy and fairness are in alignment, the majority instead believe these are two contrasting

metrics.

This thesis firstly studies the interaction between privacy and fairness in machine learning

and decision problems. It focuses on the scenario when fairness and privacy are at odds and

investigates different factors that can explain for such behaviors. It then proposes effective and

efficient mitigation solutions to improve fairness under privacy constraints. In the second part,

it analyzes the connection between fairness and other machine learning concepts such as model

compression and adversarial robustness. Finally, it introduces a novel privacy concept and an

initial implementation to protect such proposed users privacy at inference time.



THE INTERPLAY BETWEEN PRIVACY AND FAIRNESS IN

LEARNING AND DECISION MAKING PROBLEMS

By

Cuong Tran
B.E., Hanoi University of Science and Technology, 2012

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer & Information Science & Engineering

Syracuse University
June 2023



Copyright © Cuong Tran, 2023

All Rights Reserved



ACKNOWLEDGMENTS

“Give me six hours to chop down a tree and I will spend the first four sharpening the axe.”

attributed to Abraham Lincoln

I would like to take this opportunity to express my sincere gratitude to several individ-

uals who have been instrumental in the successful completion of my PhD thesis. Firstly,

I would like to thank my advisor, Prof. Ferdinando Fioretto, for his unwavering sup-

port, valuable guidance, and insightful feedback throughout my research journey. His

expertise and encouragement have been invaluable in shaping my academic career.

I am also deeply grateful to my parents, Loc Le and Toan Tran, and my brother, Khanh

Tran, for their unconditional love, constant encouragement, and unwavering support.

Their sacrifices and unwavering support have been instrumental in helping me achieve

my academic goals. I could not have done this without their unwavering support and

encouragement.

I would also like to express my heartfelt appreciation to the members of our lab includ-

ing James Kotary, My Dinh and Vincenzo Francessco for their camaraderie, friendship,

and intellectual support. Their invaluable feedback, constructive criticism, and insight-

ful discussions have been invaluable in shaping my ideas and helping me to refine my

research methodology.

Once again, I am grateful to everyone who has contributed to my academic success,

and I will cherish their support and encouragement throughout my life

iv



TABLE OF CONTENTS

Acknowledgments iv

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Dissertation organization and chapter summaries . . . . . . . . . . . . . . . . . . 3

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Disparate Impacts of Privacy into Decision Tasks 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Preliminaries: differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Problem setting and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Motivating problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Fair allotments and decision rules . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Fair Allotments: characterization . . . . . . . . . . . . . . . . . . . . . . 13

2.5.2 Fair decision rules: characterization . . . . . . . . . . . . . . . . . . . . . 14

2.6 The nature of bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 The problem structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.2 Predicates composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.3 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Mitigating solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



2.7.1 The output perturbation approach . . . . . . . . . . . . . . . . . . . . . . 19

2.7.2 Linearization by redundant releases . . . . . . . . . . . . . . . . . . . . . 19

2.7.3 Modified post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.4 Fairness payment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9.1 Missing proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9.2 The nature of bias (Ext) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9.3 Mitigating solutions (Ext) . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9.4 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Disparate Impacts of Privacy into Learning Tasks 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Problem settings and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Warm up: output perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Gradient perturbation: DP-SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Why gradient clipping causes unfairness? . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Why noise addition causes unfairness? . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Mitigation solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Limitations and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.11.1 Missing proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.11.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.11.3 Additional experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.11.4 More on “Warm up: output perturbation” . . . . . . . . . . . . . . . . . . 79

vi



3.11.5 More on “Why gradient clipping causes unfairness?” . . . . . . . . . . . . 81

3.11.6 More on “Why noise addition causes unfairness?” . . . . . . . . . . . . . 84

3.11.7 More on mitigation solutions . . . . . . . . . . . . . . . . . . . . . . . . 84

3.11.8 Additional examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.11.9 More on gradient and Hessian loss of neural networks . . . . . . . . . . . 88

4 On the Fairness Impacts of Private Ensembles Models 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Preliminaries: differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Problem settings and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 PATE fairness analysis: roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Algorithm’s parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Student’s data properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Mitigation solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9 Discussion, limitations, and conclusions . . . . . . . . . . . . . . . . . . . . . . . 108

4.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.10.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.10.2 Missing proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.10.3 Privacy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.10.4 Experimental analysis (Ext) . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.10.5 Setting and datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.10.6 Upper bound of the expected model deviation . . . . . . . . . . . . . . . . 118

4.10.7 The impact of regularization parameter . . . . . . . . . . . . . . . . . . . 119

4.10.8 The impact of teachers ensemble size k . . . . . . . . . . . . . . . . . . . 119

4.10.9 The impact of the data input norm . . . . . . . . . . . . . . . . . . . . . . 121

4.10.10 Connection between input norm and smoothness parameter βa . . . . . . . 122

4.10.11 Connection between input norm and gradient norm . . . . . . . . . . . . . 122

vii



4.10.12 Effectiveness of mitigation solution . . . . . . . . . . . . . . . . . . . . . 125

5 Pruning has a Disparate Impact on Model Accuracy 128

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Problem settings and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 Fairness analysis in pruning: Roadmap . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Why disparity in groups’ gradients causes unfairness? . . . . . . . . . . . . . . . . 135

5.5 Why disparity in groups’ Hessians causes unfairness? . . . . . . . . . . . . . . . . 138

5.6 Mitigation solution and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6.1 Mitigation solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6.2 Assessment of the mitigation solution . . . . . . . . . . . . . . . . . . . . 143

5.7 Discussion and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.8.1 Missing proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.8.2 Dataset and experimental settings . . . . . . . . . . . . . . . . . . . . . . 151

5.8.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.8.4 Architectures, hyper-parameters, and settings . . . . . . . . . . . . . . . . 151

5.8.5 Impact of pruning on fairness . . . . . . . . . . . . . . . . . . . . . . . . 152

5.8.6 Correlation of gradient/hessian norm and average distance to the decision

boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.8.7 Impact of group sizes to gradient norm . . . . . . . . . . . . . . . . . . . 154

6 Fairness Increases Adversarial Vulnerability 156

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 Difference with previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 Problem settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4.1 Fairness and fair learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

viii



6.4.2 Robustness and robust learning . . . . . . . . . . . . . . . . . . . . . . . . 160

6.5 Real-world implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.6 Why fairness weakens robustness? . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.7 Beyond the linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.8 A mitigating solution with bounded losses . . . . . . . . . . . . . . . . . . . . . . 174

6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.10 Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.10.1 Missing proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.10.2 Datasets and settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.10.3 Additional experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Personalized Privacy Auditing and Optimization at Test Time 201

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.3 Settings and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.4 Core feature sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.5 Personalized feature release (PFR) . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.5.1 Computing the scoring function F . . . . . . . . . . . . . . . . . . . . . . 209

7.5.2 Testing a core feature set . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.6 PFR for linear classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.6.1 Efficiently estimating Pr(f̃θ(XU , XR = xR)) . . . . . . . . . . . . . . . . 212

7.6.2 Testing pure core feature sets . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.6.3 PFR-linear algorithm and evaluation . . . . . . . . . . . . . . . . . . . . . 214

7.7 PFR for non-linear classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.7.1 Efficiently estimating Pr(f̃θ(XU , XR = xR)) . . . . . . . . . . . . . . . . 217

7.7.2 Testing pure core feature sets . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.7.3 PFR-nonlinear algorithm and evaluation . . . . . . . . . . . . . . . . . . . 218

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

ix



7.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.9.1 Missing proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.9.2 Algorithms pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.9.3 Extension from binary to multiclass classification . . . . . . . . . . . . . . 224

7.9.4 Estimating P (fθ(XU , XR = xR)) . . . . . . . . . . . . . . . . . . . . . . 224

7.9.5 Experiments details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7.9.6 Additional experiments on linear binary classifiers . . . . . . . . . . . . . 227

7.9.7 Additional experiments on non-linear binary classifiers . . . . . . . . . . . 228

7.9.8 Evaluation of PFR on multi-class classifiers . . . . . . . . . . . . . . . . . 228

8 Conclusion 230

References 232

x



LIST OF TABLES

5.1 Full (Equation 5.7) vs relaxed (Equation 5.8) versions of the proposed mitigation

solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Accuracy and fairness violations for the UTKFaces dataset with ethnicity as class

labels and age as protected attributes and prune amounts of 30%, 50%, 70%, and

90%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1 Hyperparameters settings for each datset. . . . . . . . . . . . . . . . . . . . . . . 188

xi



LIST OF FIGURES

1.1 Left: Disparities arising in DP sentiment analysis tasks (image from [12]). Right:

Disparity arising in fund allocations to school districts (image from [125]). . . . . . 2

2.1 Diagram of the private allocation problem. . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Disproportionate Title 1 Funds Allocation in NY. . . . . . . . . . . . . . . . . . . 11

2.3 Disproportionate Minority Language Voting Benefits. . . . . . . . . . . . . . . . . 12

2.4 Unfairness effect in ratios (left), thresholding (middle) and predicates disjunction

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Linearization by redundant release: Fairness and error comparison. . . . . . . . . 20

2.6 Modified post-processing: Unfairness reduction. . . . . . . . . . . . . . . . . . . . 21

2.7 Modified post-processing on problem P F . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Cost of privacy on problem P F . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Decision errors for four different groups of data under P = P 1 ∧ P 2 (left) and

P = P 1 ∨ P 2 (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.10 fairness α under private grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Correlation between excessive risk and Hessian Traces at varying of the privacy loss ϵ. . . 54

xii



3.2 Diagram of the factors affecting the excessive risk Ra for a group a ∈ A of individuals.

Components affecting Ra in output perturbation involve exclusively the green boxes while

those affecting Ra in DP-SGD involve both green and blue boxes. The main direct factors

(e.g., those appearing in Eq. (4)) affecting the excessive risk clipping R
clip
a and noise Rnoise

a

components are highlighted within colored boxes. These direct factors are also regulated

by latent factors, shown in white boxes, with dotted lines illustrating dependencies. . . . . 58

3.3 Impact of gradient clipping on gradient norms for different clipping bounds on Bank

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Correlation between inputs and gradients norms. . . . . . . . . . . . . . . . . . . . . . 60

3.5 Correlation between trace of Hessian with closeness to boundary (dark color) and input

norm (light color). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Correlation between input norms and excessive risk; DP-SGD with C = 0.1 and

σ = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Mitigating solution: Excessive risk gap at varying of the privacy loss ϵ on the Bank

dataset for different values of γ1 and γ2. Majority (minority) group is shown in

dark (light) colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Correlation between excessive risk gap and Hessian Traces at varying of the pri-

vacy loss ϵ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.9 Excessive risk for each group without group normalization (top) and with group

normalization (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.10 Impact of gradient clipping with different clipping bound values C to the excessive

risk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.11 Values of Rclip
a and ψa during private training for a neural network classifier. . . . 84

3.12 Impact of the relative group data size towards unfairness under DP-SGD (with

C = 0.1, σ = 5.0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xiii



3.13 Correlation between the trace of the Hessian of the loss function for a data sample

X with its distance to the decision boundary (dark colors) and input norm (light

colors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.14 Mitigating solution: Excessive risk at varying of the privacy loss ϵ for different γ1,

γ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Illustration of PATE and aspects contributing to fairness. . . . . . . . . . . . . . . 93

4.2 Factors impacting PATE fairness. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Credit card dataset with σ = 50, k = 150 (top) and λ = 100 (bottom). Expected

model deviation (left), excess risk (middle), and model accuracy (right) as a func-

tion of the regularization term (top) and ensemble size (bottom). . . . . . . . . . . 101

4.4 Credit-card: Average flipping probability p↔x for samples x ∈ D̄ as a function of the

ensemble size k (left) and the relation between gradient and input norms (right). . . . . . 102

4.5 Credit: Relation between input norms and model deviation (top) and Spearman correlation

between input and excess risk (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Credit: Spearman correlation between closeness to boundary s(x) and flipping probability

p↔x (top) and relation between input norms and excess risk (bottom). . . . . . . . . . . . 105

4.7 Training privately PATE with hard and soft labels: Model deviation at varying of

the privacy loss (left) on Credit dataset and excess risk at varying of the privacy

loss for Credit (middle) and UTKFace (right) datasets. . . . . . . . . . . . . . . . 105

4.8 Upper bound of the expected model deviation on 4 datasets with λ = 20, k = 20. . 119

4.9 Upper bound of the expected model deviation on 4 datasets with λ = 100, k = 200. 119

4.10 Expected model deviation (left), empirical risk (middle), and model accuracy (right)

as a function of the regularization. The experiments are performed with the fol-

lowing settings: k = 150, σ = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.11 Average flipping probability p↔x for samples x ∈ D̄ as a function of the ensemble

size k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xiv



4.12 Expected model deviation (left), empirical risk (middle), and model accuracy (right)

as a function of the ensemble size. The experiments are performed with the fol-

lowing settings: λ = 100, σ = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.13 Relation between input norm and model deviation. . . . . . . . . . . . . . . . . . 122

4.14 Correlation between the excessive risk and input norm on 5 datasets. The experi-

ments are performed with the following settings: λ = 100, σ = 50, k = 150. . . . . 123

4.15 Relation Between Gradient Norm and Input Norm on all datasets. . . . . . . . . . 123

4.16 Comparison between training privately PATE with hard labels and soft labels in

term of fairness (top subfigures) and utility(bottom subfigures) on (a) Bank, (b)

Credit card, (c) Income (d) Parkinsons, (e) UTKFace dataset. Here for each dataset,

the number of teachers k = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.17 Comparison between training privately PATE with hard labels and soft labels in

term of fairness (top subfigures) and utility(bottom subfigures) on (a) Bank, (b)

Credit card, (c) Income, and (d) Parkinsons Here for each dataset, the number of

teachers k = 150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1 Accuracy of each demographic group in the UTK-Face dataset using Resnet18

[56], at the increasing of the pruning rate. . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Group size vs. gradient norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Accuracy vs. gradient norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Accuracy, gradient norm, and group Hessian max eigenvalues of each ethnicity

group, before and after increasing pruning ratios for UTK-Face dataset. The per-

centage of data samples across groups White, Black, Asian, Indian, and Others is

∼ 0.42, 0.19, 0.15, 0.15, 0.07, respectively. . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Group Hessians, distance to decision boundary, and accuracy. . . . . . . . . . . . . . . 139

5.6 Group Hessians and gradient norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.7 Effects of fairness constraints in balancing not only group accuracy (left) but also

gradient norms (middle) and group average distance to the decision boundary (right).142

xv



5.8 Accuracy and Fairness violations attained by all models on ResNet50, UTK-Face

dataset with ethnicity (5 classes) as group attribute (and labels) [left] and age (9

classes) [right]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.9 Accuracy and Fairness violations attained by all models on VGG-19, CIFAR-10

dataset (left) and SVHN (right) with 10 class labels also used as group attribute. . . 144

5.10 Accuracy of each demographic group in the UTK-Face dataset with ethnicity (5

classes) as group attribute using VGG19 over increasing pruning rates. . . . . . . . 153

5.11 Accuracy of each demographic group in the UTK-Face dataset with gender (2

classes) as group attribute using VGG19 over increasing pruning rates. . . . . . . . 153

5.12 Gradient/Hessian norm and average distance to the decision boundary of each de-

mographic group in the UTK-Face dataset with gender (2 classes) as group at-

tribute using VGG19 with no pruning. . . . . . . . . . . . . . . . . . . . . . . . . 154

5.13 Gradient/Hessian norm and average distance to the decision boundary of each de-

mographic group in the UTK-Face dataset with ethnicity (5 classes) as group at-

tribute using VGG19 with no pruning. . . . . . . . . . . . . . . . . . . . . . . . . 154

5.14 Impact of group sizes to the gradient norm per group in UTK-Face datase where

groups are Male and Female. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.15 Impact of group sizes to the gradient norm per group in UTK-Face dataset where

groups are nine age bins. The group with dotted thick line is a majority group in

each chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1 An example of robustness loss in the UTKFace dataset. A regular (reg) and a

fair models are trained to predict age group from faces and exposed to adversarial

examples generated under an RFGSM [122] attack. The predictions of the regu-

lar model do not change under adversarial examples (regardless of their original

correctness), while the fair models decision change in the presence of adversarial

noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xvi



6.2 Illustration of optimal natural θ∗, fair θf , and robust θr classifiers for K = 5 (left)

and K = 10 (right) with µ− = −1 and µ+ = 1. . . . . . . . . . . . . . . . . . . . 163

6.3 Comparison between group’s natural accuracy (left) and its average distance to the

decision boundary (right) between unfair and fair models (UTK-Face dataset). . . 168

6.4 Natural errors, fairness violations, and average distance to the decision bound-

ary for the UTK-Face ethnicity (top) and age bins (middle) and CIFAR (bottom)

datasets when varying the fairness parameter λ on a CNN model. . . . . . . . . . 169

6.5 Top: Natural errors (left) and fairness violations (right) on the UTKFace ethnicity

task at varying of the fairness parameters λ. The middle plots compares the ro-

bustness of fair (λ > 0) vs. natural (λ = 0) classifiers to different RFGSM attack

levels. Bottom: Mitigating solution using the bounded Ramp loss. . . . . . . . . . 170

6.6 Natural error (left) and fairness violation (right) at varying of the margin perturba-

tion ϵ∗ and fairness parameters λ. . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.7 Robust errors for different attack levels ϵ of a robust and fair classifier at varying

of the margin perturbation ϵ∗ and fairness parameters λ. . . . . . . . . . . . . . . 171

6.8 Classifiers using different losses (top) and the associated natural and robust errors

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.9 Natural errors (left), fairness violations (middle), and average distance to the deci-

sion boundary (right) for different datasets when varying the fairness parameter λ

of penalty-based methods on ResNet-50 networks . . . . . . . . . . . . . . . . . 190

6.10 Natural errors (left), fairness violations (middle), and average distance to the deci-

sion boundary (right) for different datasets when varying the fairness parameter λ

of penalty-based methods on VGG 13 networks . . . . . . . . . . . . . . . . . . 190

6.11 Natural errors, fairness violations, and average distance to the decision boundary

for the UTK-Face ethnicity (top), UTK-Face age bins (bottom) datasets when vary-

ing the fairness parameter q of group-loss focused methods on VGG-13 networks.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xvii



6.12 Natural errors (left), boundary error under different RFGSM attacks (middle), and

fairness violation (right) of group-focused methods on ResNet-50 networks . . . . 195

6.13 Illustration of different loss functions . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.14 Top: Natural errors (left) and fairness violations (right) on the CIFAR-10 ethnic-

ity task at varying of the fairness parameters λ. The middle plots compares the

robustness of fair (λ > 0) vs. natural (λ = 0) classifiers to different RFGSM at-

tack levels. Bottom: Mitigating solution using the bounded Ramp loss. The base

classifiers are VGG-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.15 Top: Natural errors (left) and fairness violations (right) on the UTKFace age bins

task at varying of the fairness parameters λ. The middle plots compares the ro-

bustness of fair (λ > 0) vs. natural (λ = 0) classifiers to different RFGSM attack

levels. Bottom: Mitigating solution using the bounded Ramp loss. The base clas-

sifiers are VGG-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.16 Top: Natural errors (left) and fairness violations (right) on the UTKFace ethnicity

task at varying of the fairness parameters λ. The middle plots compares the robust-

ness of fair (λ > 0) vs. natural (λ = 0) classifiers to different l2 PGD attack levels.

Bottom: Mitigating solution using the bounded Ramp loss. The base classifier are

VGG-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.17 Top: Natural errors (left) and fairness violations (right) on the UTKFace age bins

task at varying of the fairness parameters λ. The middle plots compares the robust-

ness of fair (λ > 0) vs. natural (λ = 0) classifiers to different l2 PGD attack levels.

Bottom: Mitigating solution using the bounded Ramp loss. The base classifiers

are VGG-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xviii



6.18 Top: Natural errors (left) and fairness violations (right) on the UTKFace ethnic-

ity task at varying of the fairness parameters λ. The middle plots compares the

robustness of fair (λ > 0) vs. natural (λ = 0) classifiers to different l∞ RFGSM

attack levels. Bottom: Mitigating solution using the bounded Ramp loss. The base

classifier are Res Net 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.19 Top: Natural errors (left) and fairness violations (right) on the FMNIST task at

varying of the fairness parameters λ. The middle plots compares the robustness of

fair (λ > 0) vs. natural (λ = 0) classifiers to different l∞ RFGSM attack levels.

Bottom: Mitigating solution using the bounded Ramp loss. The base classifier are

Res Net 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.20 Top: Natural errors (left) and fairness violations (right) on the CIFAR 10 task at

varying of the fairness parameters λ. The middle plots compares the robustness

of fair (λ > 0) vs. natural (λ = 0) classifiers to different l2 PGD attack levels.

Bottom: Mitigating solution using the bounded Ramp loss. The base classifiers

are ResNet 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.21 Top: Natural errors (left) and fairness violations (right) on the FMNIST task at

varying of the fairness parameters λ. The middle plots compares the robustness

of fair (λ > 0) vs. natural (λ = 0) classifiers to different l2 PGD attack levels.

Bottom: Mitigating solution using the bounded Ramp loss. The base classifiers

are ResNet 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.1 Left: Motivating example. Middle: Feature spaces illustrate the need for users

to reveal their sensitive values based on their public values. Right: Frequency

associated with the size of the minimum pure core feature set in the Credit card

dataset under a logistic regression classifier. . . . . . . . . . . . . . . . . . . . . . 205

7.2 Histogram of core feature set size for PFR under different δ on Bank dataset when

|S| = 7 and the underlying classifier is Logistic Regression . . . . . . . . . . . . . 213

xix



7.3 Accuracy and redundant information leakage for different choices of number of

sensitive features |S| on Insurance (left) and Credit (right) datasets using a Logistic

Regression classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.4 Accuracy and redundant information leakage for different choices of number of

sensitive features |S| on Insurance (left) and Credit (right) datasets using a nonlin-

ear (neural network) classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.5 Accuracy and information leakage for different choices of number of private fea-

tures m under Logistic Regression classifiers . . . . . . . . . . . . . . . . . . . . 227

7.6 Accuracy and information leakage for different choices of number of sensitive

features |S| under non-linear classifiers . . . . . . . . . . . . . . . . . . . . . . . 227

7.7 Accuracy and information leakage for different choices of number of sensitive

features |S| under multinomial Logistic Regression . . . . . . . . . . . . . . . . . 229

7.8 Accuracy and information leakage for different choices of number of sensitive

features |S| under non-linear classifiers . . . . . . . . . . . . . . . . . . . . . . . 229

xx



1

CHAPTER 1

INTRODUCTION

With the growing of data collected in many channels, more and more data driven applications has

been investigated and deployed successfully in many aspects of human lives. Noticeably machine

learning models are using to replace human efforts in many domains such as health care, banking,

finance or transportation. Given their success however there are two ethical consequences of these

models which are getting more and more attention. First, the intelligent models are trained on a

dataset and if the data is bias the model can be discriminative towards certain groups of people. For

example, it was recently showed that most commercial facial recognition softwares are much more

accurate on White faces than Black faces. Furthermore, some credit scoring models are showed to

accept loan applications from men than women. The unfairness consequence of learning models

is the first important problem that we should resolve. Second, since the models are trained on

personal data which can contain sensitive information, these models can reveal certain confidential

information of users.

As a solution for privacy, Differential Privacy (DP) [37] has become the paradigm of choice for

protecting data privacy and its deployments are also growing at a fast rate. These include several

data products related with the 2020 release of the US. Census Bureau [5], and by Google [10],

Facebook [57], and Apple [120]. DP is appealing as it bounds the risks of disclosing sensitive

information for individuals participating in a computation. However, the process adopted by a
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School district size

Privacy budget

As the privacy increases the accuracy 
disparity of the learning task increases

Districts receiving up to 
$42,000 less than warranted

Fig. 1.1: Left: Disparities arising in DP sentiment analysis tasks (image from [12]). Right:
Disparity arising in fund allocations to school districts (image from [125]).

DP algorithm to ensure the privacy guarantees involves calibrated perturbations, which inevitably

introduce errors to the outputs of the task at hand. More importantly, it has been shown that

these errors may affect different groups of individuals differently. An example of these effects are

reported in Figure 1.1 (left), which illustrates that a DP learning model affects the accuracy of the

minority group (African-American) more than it does the majority group in a sentiment analysis

of Tweets [12]. Similar observations were reported in decision tasks (Figure 1.1, right) in which

privacy-preserving census data is used to allocate funds to school districts [45]. The illustration

shows that, under a privacy-preserving allocation scheme, some school districts may systematically

receive considerably less money than what would be warranted otherwise.

These effects can have significant societal and economic impacts on the involved individuals:

classification errors may penalize some groups over others in important determinations, including

criminal assessment, landing, and hiring, or can result in disparities regarding the allocation of crit-

ical funds, benefits, and therapeutics. These fairness issues in DP settings are receiving increasing

attention, but a complete understanding of why they arise is still limited. This thesis is firstly de-

voted to analyze various factors that can attribute for the contrasting property between fairness and

privacy. We analyze such conflicting behavior for decision and machine learning problems. We
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develop effective mitigation solution to reduce such negative impact of privacy towards fairness

on each case. Furthermore, in the second part of the thesis we study the dichotomy between fair-

ness and other machine learning concepts such as model compression and adversarial robustness.

In particular, we show that widely used model compression network pruning can introduce un-

fair outcomes w.r.t group accuracy. Likewise, fair models are more vulnerable against the attacks

than the regular unfair counterparts. Finally, the thesis proposes a novel privacy preserving frame-

work to protect privacy at the inference time. This is of critical importance since most of privacy

preserving frameworks in literature only concentrates on protecting privacy for training data.

1.1 Dissertation organization and chapter summaries

The remainder of the thesis is organized as follows. In Chapter 2 we study the release of differen-

tially private data sets and analyzes their impact on some critical resource allocation tasks under a

fairness perspective. In Chapter 3, we provide a thorough theoretical justification on the causes of

the disparate impacts arising in the problem of differentially private empirical risk minimization

(ERM). In Chapter 4, we analyze whether the use of Private Aggregation of Teacher Assemble

(PATE) can result in unfairness, and demonstrates that it can lead to accuracy disparities among

groups of individuals. In Chapter 5, we shows that pruning may create or exacerbate disparate im-

pacts. Furthermore, in this chapter we shed light on the factors to cause such disparities, suggesting

differences in gradient norms and distance to decision boundary across groups to be responsible for

this critical issue. Next, in Chapter 6 we show the existence of a dichotomy between fairness and

robustness, and analyzes when striving for fairness decreases the model robustness to adversarial

samples. Subsequently, in Chapter 7 we asks whether it is necessary to require all input features

for a model to return accurate predictions at test time and shows that, under a personalized set-

ting, each individual may need to release only a small subset of these features without impacting

the final decisions. Finally, we conclude the thesis in Chapter 8 by highlighting important future

research directions.
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1.2 Publications

Parts of the thesis has appeared in the following publications:

Conferences:

• Cuong Tran, Ferdinando Fioretto, Pascal Van Hentenryck, and Zhiyan Yao. Decision mak-

ing with differential privacy under the fairness lens. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI), 2021 ( in Chapter 2).

• Cuong Tran, My H. Dinh, and Ferdinando Fioretto. Differentially private deep learning

under the fairness lens. In Advances in Neural Information Processing Systems (NeurIPS),

2021 ( in Chapter 3).
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In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2023
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with Constraints. Proceedings of the European Conference on Machine Learning (ECML),

2020.

• Anudit Nagar, Cuong Tran, Ferdinando and Fioretto. A Privacy-Preserving and Account-

able Multi-agent Learning Framework. Proceedings of the International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), 2021.
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CHAPTER 2

DISPARATE IMPACTS OF PRIVACY INTO

DECISION TASKS

Agencies, such as the U.S. Census Bureau, release data sets and statistics about groups of indi-

viduals that are used as input to a number of critical decision processes. To conform with privacy

and confidentiality requirements, these agencies are often required to release privacy-preserving

versions of the data. This chapter studies the release of differentially private data sets and analyzes

their impact on some critical resource allocation tasks under a fairness perspective. The chapter

shows that, when the decisions take as input differentially private data, the noise added to achieve

privacy disproportionately impacts some groups over others. The chapter analyzes the reasons for

these disproportionate impacts and proposes guidelines to mitigate these effects. The proposed

approaches are evaluated on critical decision problems that use differentially private census data.

2.1 Introduction

Agencies, such as the U.S. Census Bureau, release data sets and statistics about groups of individ-

uals that are then used as inputs to a number critical decision processes. For example, the census

data is used to decide whether a jurisdiction must provide language assistance during elections,
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Title I fund allocation in education [71] and to establish national level COVID-19 vaccination

distribution plans for states and jurisdictions [116]. The resulting decisions can have significant

societal, economic, and medical impacts for participating individuals.

In many cases, the released data contain sensitive information and their privacy is strictly regu-

lated. For example, in the U.S., the census data is regulated under Title 13 [2], which requires that

no individual be identified from any data release by the Census Bureau. In Europe, data release are

regulated according to the General Data Protection Regulation [48], which addresses the control

and transfer of personal data.

Statistical agencies thus release privacy-preserving data and statistics that conform to privacy

and confidentiality requirements. In the U.S., a small number of decisions, such as congressional

apportionment, are taken using unprotected true values, but the vast majority of decisions rely

on privacy-preserving data. Of particular interest are resource allocation decisions relying on the

U.S. Census Bureau data, since the bureau will release several privacy-preserving data products

using the framework of Differential Privacy [5] for their 2020 release. Recently, [71] empirically

showed that differential privacy may have a disparate impact on several resource allocation prob-

lems. The noise introduced by the privacy mechanism may result in decisions that impact various

groups differently.

This chapter builds on these observations and provides a step towards a deeper understanding

of the fairness issues arising when differentially private data is used as input to several resource al-

location problems. One of its main results is to prove that several allotment problems and decision

rules with significant societal impact (e.g., the allocation of educational funds, the decision to pro-

vide minority language assistance on election ballots, or the distribution of COVID-19 vaccines)

exhibit inherent unfairness when applied to a differentially private release of the census data. To

counteract this negative results, the chapter examines the conditions under which decision making

is fair when using differential privacy, and techniques to bound unfairness. The chapter also pro-

vides a number of mitigation approaches to alleviate biases introduced by differential privacy on

such decision making problems. More specifically, the chapter makes the following contributions:
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1. It formally defines notions of fairness and bounded fairness for decision making subject to

privacy requirements.

2. It characterizes decision making problems that are fair or admits bounded fairness. In addi-

tion, it investigates the composition of decision rules and how they impact bounded fairness.

3. It proves that several decision problems with high societal impact induce inherent biases

when using a differentially private input.

4. It examines the roots of the induced unfairness by analyzing the structure of the decision

making problems.

5. It proposes several guidelines to mitigate the negative fairness effects of the decision prob-

lems studied.

To the best of the authors’ knowledge, this is the first study that attempt at characterizing the

relation between differential privacy and fairness in decision problems. All proofs are reported in

the Section 2.9.

2.2 Preliminaries: differential privacy

Differential Privacy [37] (DP) is a rigorous privacy notion that characterizes the amount of infor-

mation of an individual’s data being disclosed in a computation.

Definition 2.1. A randomized algorithm M : X → R with domain X and range R satisfies ϵ-

differential privacy if for any output O ⊆ R and data sets x,x′ ∈ X differing by at most one entry

(written x ∼ x′)

Pr[M(x) ∈ O] ≤ exp(ϵ) Pr[M(x′) ∈ O]. (2.1)

Parameter ϵ > 0 is the privacy loss, with values close to 0 denoting strong privacy. Intuitively,

DP states that any event occur with similar probability regardless of the participation of any indi-

vidual data to the data set. DP satisfies several properties including immunity to post-processing,
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which states that the privacy loss of DP outputs is not affected by arbitrary data-independent post-

processing [38].

A function f from a data set x ∈ X to a result set R ⊆ Rn can be made differentially private

by injecting random noise onto its output. The amount of noise relies on the notion of global

sensitivity ∆f = maxx∼x′ ∥f(x)− f(x′)∥1. The Laplace mechanism [37] that outputs f(x) + η,

where η ∈ Rn is drawn from the i.i.d. Laplace distribution with 0 mean and scale ∆f/ϵ over n

dimensions, achieves ϵ-DP.

2.3 Problem setting and goals

The chapter considers a dataset x ∈ X ⊆ Rk of n entities, whose elements xi = (xi1, . . . , x1k)

describe k measurable quantities of entity i ∈ [n], such as the number of individuals living in a

geographical region i and their English proficiency. The chapter considers two classes of problems:

• An allotment problem P : X × [n]→ R is a function that distributes a finite set of resources

to some problem entity. P may represent, for instance, the amount of money allotted to a

school district.

• A decision rule P : X × [n] → {0, 1} determines whether some entity qualifies for some

benefits. For instance, P may represent if election ballots should be described in a minority

language for an electoral district.

The chapter assumes that P has bounded range, and uses the shorthand Pi(x) to denote P (x, i) for

entity i. The focus of the chapter is to study the effects of a DP data-release mechanismM to the

outcomes of problem P . MechanismM is applied to the dataset x to produce a privacy-preserving

counterpart x̃ and the resulting private outcome Pi(x̃) is used to make some allocation decisions.

Figure 2.1 provides an illustrative diagram.

Because random noise is added to the original dataset x, the output Pi(x̃) incurs some error.

The focus of this chapter is to characterize and quantify the disparate impact of this error among
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Fig. 2.1: Diagram of the private allocation problem.

the problem entities. In particular, the chapter focuses on measuring the bias of problem Pi

Bi
P (M,x) = Ex̃∼M(x) [Pi(x̃)]− Pi(x), (2.2)

which characterizes the distance between the expected privacy-preserving allocation and the one

based on the ground truth. The chapter considers the absolute bias |Bi
P |, in place of the bias Bi

P ,

when P is a decision rule. The distinction will become clear in the next sections.

The results in the chapter assume that M, used to release counts, is the Laplace mechanism

with an appropriate finite sensitivity ∆. However, the results are general and apply to any data-

release DP mechanism that add unbiased noise.

2.4 Motivating problems

This section introduces two Census-motivated problem classes that grant benefits or privileges to

groups of people.

Allotment problems The Title I of the Elementary and Secondary Education Act of 1965 [117]

distributes about $6.5 billion through basic grants. The federal allotment is divided among quali-

fying school districts in proportion to the count xi of children aged 5 to 17 who live in necessitous
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families in district i. The allocation is formalized by

P F
i (x)

def
=

(
xi · ai∑

i∈[n] xi · ai

)
,

where x = (xi)i∈[n] is the vector of all districts counts and ai is a weight factor reflecting students

expenditures.

Figure 2.2 illustrates the expected disparity errors arising when using private data as input to

problem P F , for various privacy losses ϵ. These errors are expressed in terms of bias (left y-

axis) and USD misallocation (right y-axis) across the different New York school districts, ordered

by their size. The allotments for small districts are typically overestimated while those for large

districts are underestimated. Translated in economic factors, some school districts may receive up

to 42,000 dollars less than warranted.

Decision Rules Minority language voting right benefits are granted to qualifying voting juris-

dictions. The problem is formalized as

PM
i (x)

def
=

(
xspi
xsi

>0.05∨xspi >104
)
∧x

spe
i

xspi
>0.0131.

For a jurisdiction i, xsi , x
sp
i , and xspei denote, respectively, the number of people in i speaking the

minority language of interest, those that have also a limited English proficiency, and those that,
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in addition, have less than a 5th grade education. Jurisdiction i must provide language assistance

(including voter registration and ballots) iff PM
i (x) is True.

Figure 2.3 illustrates the decision error (y-axis), corresponding to the absolute bias |Bi
PM (M,x)|,

for sorted xsi , considering only true positives1 for the Hispanic language. The figure shows that

there are significant disparities in decision errors and that these errors strongly correlate to their

distance to the thresholds. A similar issue was also observed in [71].

2.5 Fair allotments and decision rules

This section analyzes the fairness impact in allotment problems and decision rules. The adopted

fairness concept captures the desire of equalizing the allocation errors among entities, which is of

paramount importance given the critical societal and economic impact of the motivating applica-

tions.

Definition 2.2. A data-release mechanism M is said fair w.r.t. a problem P if, for all datasets

x ∈ X ,

Bi
P (M,x) = Bj

P (M,x) ∀i, j ∈ [n].

That is, P does not induce disproportionate errors when taking as input a DP dataset generated by

1This is because misclassification, in this case, implies potentially disenfranchising a group of individuals.
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M. The chapter also introduces a notion to quantify and bound the mechanism unfairness.

Definition 2.3. A mechanismM is said α-fair w.r.t. problem P if, for all datasets x ∈ X and all

i ∈ [n],

ξiB(P,M,x) = max
j∈[n]

∣∣Bi
P (M,x)−Bj

P (M,x)
∣∣ ≤ α,

where ξiB is referred to as the disparity error of entity i.

Parameter α is called the fairness bound and captures the fairness violation, with values close to 0

denoting strong fairness. A fair mechanism is also 0-fair.

Note that computing the fairness bound α analytically may not be feasible for some problem

classes, since it may involve computing the expectation of complex functions P . Therefore, in the

analytical assessments, the chapter recurs to a sampling approach to compute the empirical expec-

tation Ê[Pi(x̃)] =
1
m

∑
j∈[m] Pi(x̃

j) in place of the true expectation in Equation (2.2). Therein, m

is a sufficiently large sample size and x̃j is the j-th outcome of the application of mechanismM

on data set x.

2.5.1 Fair Allotments: characterization

The first result characterizes a sufficient condition for the allotment problems to achieve finite

fairness violations. The presentation uses HPi to denote the Hessian of problem Pi, and Tr(·) to

denote the trace of a matrix. In this context, the Hessian entries are functions receiving a dataset

as input. The presentation thus uses (HPi)j,l(x) and Tr(HPi)(x) to denote the application of the

second partial derivatives of Pi and of the Hessian trace function on dataset x.

Theorem 2.1. Let P be an allotment problem which is at least twice differentiable. A data-release

mechanism M is α-fair w.r.t. P for some α < ∞ if there exist some constant values cijl (i ∈

[n], j, l ∈ [k]) such that, for all datasets x ∈ X ,

(HPi)j,l(x) = cij,l (i ∈ [n] j, l ∈ [k]).
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Corollary 2.1. If P is a linear function, thenM is fair w.r.t. P .

Corollary 2.2. M is fair w.r.t. P if there exists a constant c such that, for all dataset x,

Tr(HPi)(x) = c (i ∈ [n]).

2.5.2 Fair decision rules: characterization

The next results bound the fairness violations of a class of indicator functions, called thresholding

functions, and discusses the loss of fairness caused by the composition of boolean predicates, two

recurrent features in decision rules. The fairness definition adopted uses the concept of absolute

bias, in place of bias in Definition 2.3. Indeed, the absolute bias |Bi
P | corresponds to the classifi-

cation error for (binary) decision rules of Pi, i.e., Pr[Pi(x̃) ̸= Pi(x)]. The results also assumeM

to be a non-trivial mechanism, i.e., |Bi
P (M,x)| < 0.5 ∀i ∈ [n]. Note that this is a non-restrictive

condition, since the focus of data-release mechanisms is to preserve the quality of the original in-

puts, and the mechanisms considered in this chapter (and in the DP-literature, in general) all satisfy

this assumption.

Theorem 2.2. Consider a decision rule Pi(x)=1{xi≥ ℓ} for some real value ℓ. Then, mechanism

M is 0.5-fair w.r.t. Pi.

This is a worst-case result and the mechanism may enjoy a better bound for specific datasets and

decision rules. It is however significant since thresholding functions are ubiquitous in decision

making over census data.

The next results focus on the composition of Boolean predicates under logical operators. The

results are given under the assumption that mechanismM adds independent noise to the inputs of

the predicates P1 and P2 to be composed, which is often the case. This assumption for P1 and P2

is denoted by P 1P 2. Future work will aim at generalizing this results to broader assumptions.

Theorem 2.3. Consider predicates P1 and P2 such that P 1P 2 and assume that mechanismM that

is αk-fair for predicate P k (k ∈ {1, 2}). ThenM is α-fair for predicates P 1 ∨ P 2 and P 1 ∧ P 2
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with

α=
(
α1+B

1+α2+B
2−(α1+B

1)(α2+B
2)−B1B2

)
,

whereB
k

andBk are the maximum and minimum absolute biases forM w.r.t. P k (for k = {1, 2}).

The result above bounds the fairness violation derived by the composition of Boolean predicates

under logical operators.

Theorem 2.4. Consider predicates P1 and P2 such that P 1P 2 and assume that mechanismM that

is αk-fair for predicate P k (k∈{1, 2}). ThenM is α-fair for P 1 ⊕ P 2 with

α=
(
α1(1− 2B2) + α2(1− 2B1)− 2α1α2

)
,

where Bk is the minimum absolute bias forM w.r.t. P k (k={1, 2}).

The following is a direct consequence of Theorem 2.9.

Corollary 2.3. Assume that mechanismM is fair w.r.t. problems P 1 and P 2. ThenM is also fair

w.r.t. P 1 ⊕ P 2.

While XOR operator ⊕ is not adopted in the case studies considered in this chapter, it captures a

surprising, positive compositional fairness result.

2.6 The nature of bias

The previous section characterized conditions bounding fairness violations. In contrast, this section

analyzes the reasons for disparity errors arising in the motivating problems.

2.6.1 The problem structure

The first result is an important corollary of Theorem 2.6. It studies which restrictions on the

structure of problem P are needed to satisfy fairness. Once again, P is assumed to be at least twice

differentiable.
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Corollary 2.4. Consider an allocation problem P . MechanismM is not fair w.r.t. P if there exist

two entries i, j ∈ [n] such that Tr(HPi)(x) ̸= Tr(HPj)(x) for some dataset x.

The above implies that fairness cannot be achieved if P is a non-convex function, as is the case for

all the allocation problems considered in this chapter. A fundamental consequence of this result is

the recognition that adding Laplacian noise to the inputs of the motivating example will necessarily

introduce fairness issues. For instance, consider P F and notice that the trace of its Hessian

Tr(HP F
i ) = 2ai



xi
∑

j∈[n] a
2
j − ai

(∑
j∈[n] xjaj

)

(∑
j∈[n] xjaj

)3


 ,

is not constant with respect to its inputs. Thus, any two entries i, j whose xi ̸= xj imply Tr(HP F
i ) ̸=

Tr(HP F
j ). As illustrated in Figure 2.2, Problem P F can introduce significant disparity errors. For

ϵ = 0.001, 0.01, and 0.1 the estimated fairness bounds are 0.003, 3× 10−5, and 1.2× 10−6 respec-

tively, which amount to an average misallocation of $43,281, $4,328, and $865.6 respectively. The

estimated fairness bounds were obtained by performing a linear search over all n school districts

and selecting the maximal Tr(HP F
i ).

Ratio Functions The next result considers ratio functions of the form Pi(⟨x, y⟩) = x/y with

x, y∈R and x≤y, which occur in the Minority language voting right benefits problem PM
i . In the

followingM is the Laplace mechanism.

Corollary 2.5. MechanismM is not fair w.r.t. Pi(⟨x, y⟩) = x/y and inputs x, y.

Figure 2.4 (left) provides an illustration linked to problem PM . It shows the original values xsp/xs

(blue circles) and the expected values of the privacy-preserving counterparts (red crosses) of three
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counties; from left to right: Loving county, TX, where xsp/xs= 4/80=0.05, Terrell county, TX, where

xsp/xs = 30/600 = 0.05, and Union county, NM, where xsp/xs = 160/3305 = 0.0484. The length of the

gray vertical line represents the absolute bias and the dotted line marks a threshold value (0.05)

associated with the formula PM
i . While the three counties have (almost) identical ratios values,

they induce significant differences in absolute bias. This is due to the difference in scale of the

numerator (and denominator), with smaller numerators inducing higher bias.

Thresholding Functions As discussed in Theorem 2.7, discontinuities caused by indicator

functions, including thresholding, may induce unfairness. This is showcased in Figure 2.4 (center)

which describes the same setting depicted in Figure 2.4 (left) but with the red line indicating

the variance of the noisy ratios. Notice the significant differences in error variances, with Loving

county exhibiting the largest variance. This aspect is also shown in Figure 2.3 where the counties

with ratios lying near the threshold value have higher decisions errors than those whose ratios lies

far from it.

2.6.2 Predicates composition

The next result highlights the negative impact coming from the composition of Boolean predicates.

The following important result is corollary of Theorem 2.8 and provides a lower bound on the

fairness bound.

Corollary 2.6. Let mechanismM be αk-fair w.r.t. to problem P k (k ∈ {1, 2}). ThenM is α-fair

w.r.t. problems P = P 1 ∨ P 2 and P = P 1 ∧ P 2, with α > max(α1, α2).

Figure 2.4 (right) illustrates Corollary 2.12. It once again uses the minority language problem

PM . In the figure, each dot represents the absolute bias |Bi
PM (M,x)| associated with a selected

county. Red and blue circles illustrate the absolute bias introduced by mechanismM for problem

P 1(xsp)=1{xsp≥ 104} and P 2(xsp, xspe)=1{xspe

xsp > 0.0131} respectively. The selected counties

have all similar and small absolute bias on the two predicates P 1 and P 2. However, when they
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are combined using logical connector ∨, the resulting absolute bias increases substantially, as

illustrated by the associated green circles.

The Section 2.9 (Section 2.1) also analyzes an interesting difference in errors based on the

Truth values of the composing predicates P 1 and P 2, and shows that the highest error is achieved

when they both are True for ∧ and when they both are False for ∨ connectors. This may have

strong implications in classification tasks.

2.6.3 Post-processing

The final analysis of bias relates to the effect of post-processing the output of the differentially

private data release. In particular, the section focuses on ensuring non-negativity of the released

data. The discussion focuses on problem P F but the results are, once again, general. The Section

2.9 also include a discussion for other post-processing functions.

The section first presents a negative result: the application of a post-processing operator PP≥ℓ(z) def
=

max(ℓ, z) to ensure that the result is at least ℓ induces a positive bias which, in turn, can exacerbate

the disparity error of the allotment problem.

Theorem 2.5. Let x̃ = x + (λ), with scale λ > 0, and x̂ = PP≥ℓ(x̃), with ℓ < x, be its post-

processed value. Then,

E[x̂] = x+
λ

2
exp(

ℓ− x
λ

).

Lemma 2.10 indicates the presence of positive bias of post-processed Laplace random variable

when ensuring non-negativity, and that such bias is Bi(M,x) = E[x̂i]− xi = exp( ℓ−xi

λ
) ≤ λ/2 for

ℓ ≤ xi. As shown in Figure 2.2 the effect of this bias has a negative impact on the final disparity

of the allotment problem, where smaller entities have the largest bias (in the Figure ℓ = 0).

Discussion The results highlighted in this section are both surprising and significant. They

show that the motivating allotment problems and decision rules induce inherent unfairness when

given as input differentially private data. This is remarkable since the resulting decisions have
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significant societal, economic, and political impact on the involved individuals: federal funds,

vaccines, and therapeutics may be unfairly allocated, minority language voters may be disenfran-

chised, and congressional apportionment may not be fairly reflected. The next section identifies a

set of guidelines to mitigate these negative effects.

2.7 Mitigating solutions

2.7.1 The output perturbation approach

This section proposes three guidelines that may be adopted to mitigate the unfairness effects pre-

sented in the chapter, with focus on the motivating allotments problems and decision rules.

A simple approach to mitigate the fairness issues discussed is to recur to output perturbation

to randomize the outputs of problem Pi, rather than its inputs, using an unbiased mechanism.

Injecting noise directly after the computation of the outputs Pi(x), ensures that the result will be

unbiased. However, this approach has two shortcomings. First, it is not applicable to the context

studied in this chapter, where a data agency desires to release a privacy-preserving data set x̃ that

may be used for various decision problems. Second, computing the sensitivity of the problem

Pi may be hard, it may require to use a conservative estimate, or may even be impossible, if the

problem has unbounded range. A conservative sensitivity implies the introduction of significant

loss in accuracy, which may render the decisions unusable in practice.

2.7.2 Linearization by redundant releases

A different approach considers modifying on the decision problem Pi itself. Many decision rules

and allotment problems are designed in an ad-hoc manner to satisfy some property on the original

data, e.g., about the percentage of population required to have a certain level of education. Moti-

vated by Corollaries 4.2 and 2.8, this section proposes guidelines to modify the original problem

Pi with the goal of reducing the unfairness effects introduced by differential privacy.
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Fig. 2.5: Linearization by redundant release: Fairness and error comparison.

The idea is to use a linearized version P̄i of problem Pi. While many linearizion techniques

exists [102], and are often problem specific, the section focuses on a linear proxy P̄ F
i to problem

P F
i that can be obtained by enforcing a redundant data release. While the discussion focuses on

problem P F
i , the guideline is general and applies to any allotment problem with similar structure.

Let Z =
∑

i aixi. Problem P F
i (x)= aixi/Z is linear w.r.t. the inputs xi but non-linear w.r.t. Z.

However, releasing Z, in addition to releasing the privacy-preserving values x̃, would render Z a

constant rather than a problem input to P F . To do so, Z can either be released publicly, at cost of

a (typically small) privacy leakage or by perturbing it with fixed noise. The resulting linear proxy

allocation problem P̄ F
i is thus linear in the inputs x.

Figure 2.5 illustrates this approach in practice. The left plot shows the fairness bound α and

the right plot shows the empirical mean absolute error 1
m

∑m
k=1 |Pi(x

k)− Pi(x̃
m)|, obtained using

m = 104 repetitions, when the DP data x̃ is applied to (1) the original problem P , (2) its linear

proxy P̄ , and (3) when output perturbation (denoted Mout) is adopted. The number on top of

each bar reports the fairness bounds, and emphasize that the proposed remedy solutions achieve

perfect-fairness. Notice that the proposed linear proxy solution can reduce the fairness violation

dramatically while retaining similar errors.

While the output perturbation method reduces the disparity error, it also incurs significant errors

that make the approach rarely usable in practice. The Section 2.9 (section 3.1) also discuss a

solution based on a piecewise linear proxy function for the more complex decision rule PM .

It is important to note that the experiments above use a data release mechanismM that applies
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no post-processing. A discussion about the mitigating solutions for the bias effects caused by

post-processing is presented next.

2.7.3 Modified post-processing

This section introduces a simple, yet effective, solution to mitigate the negative fairness impact of

the non-negative post-processing. The proposed solution operates in 3 steps: It first (1) performs a

non-negative post-processing of the privacy-preserving input x̃ to obtain value x̄=PP≥ℓ(x̃). Next,

(2) it computes x̄T = x̄− T
x̄+1−ℓ . Its goal is to correct the error introduced by the post-processing

operator, which is especially large for quantities near the boundary ℓ. Here T is a temperature

parameter that controls the strengths of the correction. This step reduces the value x̄ by quantity

T
x̄+1−ℓ . The effect of this operation is to reduce the expected value E[x̄] by larger (smaller) amounts

as x get closer (farther) to the boundary value ℓ. Finally, (3) it ensures that the final estimate is

indeed lower bounded by ℓ, by computing x̂ = max(x̄T , ℓ).

The benefits of this approach are illustrated in Figure 2.6, which show the absolute bias |Bi
PF |

for the Title 1 fund allocation problem that is induced by the original mechanismM with standard

post-processing PP≥0 and by the proposed modified post-processing for different temperature val-

ues T . The figure illustrates the role of the temperature T in the disparity errors. Small values T

may have small impacts in reducing the disparity errors, while large T values can introduce errors,
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Fig. 2.7: Modified post-processing on problem P F .

thus may exacerbate unfairness. The optimal choice for T can be found by solving the following:

T ∗ = argmin
T

(
max
x≥ℓ
|E[x̂T ]− x| −min

x≥ℓ
|E[x̂T ]− x|

)
, (2.3)

where x̂T is a random variable obtained by the proposed 3 step solution, with temperature T . The

expected value of x̂ can be approximated via sampling. Note that naively finding the optimal T

may require access to the true data. Solving the problem above in a privacy-preserving way is

beyond the scope of the chapter and the subject of future work.

The reductions in the fairness bound α for problem P F are reported in Figure 2.7 (left), while

Figure 2.7 (right) shows that this method has no perceptible impact on the mean absolute error.

Once again, these errors are computed via sampling and use 104 samples.

2.7.4 Fairness payment

Finally, this section focuses on allotment problems, like P F , that distribute a budget B among

n entities, and where the allotment for entity i represents the fraction of budget B it expects.

Differential privacy typically implements a postprocessing step to renormalize the fractions so that

they sum to 1. This normalization, together with nonnegativity constraints, introduces a bias and

hence more unfairness. One way to alleviate this problem is to increase the total budget B, and

avoiding the normalization. This section quantifies the cost of doing so: it defines the cost of

privacy, which is the increase in budget B+ required to achieve this goal.

Definition 2.4 (Cost of Privacy). Given problem P , that distributes budget B among n entities,
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data release mechanismM, and dataset x, the cost of privacy is:

B+ =
∑

i∈I− |Bi
P (M,x)| ×B

with I− = {i : Bi
P (M,x) < 0}.

Figure 2.8 illustrates the cost of privacy, in USD, required to render each county in the state of New

York not negatively penalized by the effects of differential privacy. The figure shows, in decreasing

order, the different costs associated with a mechanism P F (PP≥0(x)) that applies a post-processing

step, one P F (x) that does not apply post-processing, and one that uses a linear proxy problem

P̄ F (x).

2.8 Conclusions

This chapter analyzed the disparity arising in decisions granting benefits or privileges to groups of

people when these decisions are made adopting differentially private statistics about these groups.

It first characterized the conditions for which allotment problems achieve finite fairness vi-

olations and bound the fairness violations induced by important components of decision rules,

including reasoning about the composition of Boolean predicates under logical operators. Then,

the chapter analyzed the reasons for disparity errors arising in the motivating problems and rec-

ognized the problem structure, the predicate composition, and the mechanism post-processing, as

paramount to the bias and unfairness contribution. Finally, it suggested guidelines to act on the
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decision problems or on the mechanism (i.e., via modified post-processing steps) to mitigate the

unfairness issues. The analysis provided in this chapter may provide useful guidelines for policy-

makers and data agencies for testing the fairness and bias impacts of privacy-preserving decision

making.

2.9 Appendix

This appendix is organized as follows. Section 2.9.1 provides all the missing proofs of the the-

oretical results that were presented in the chapter. Section 2.9.2 extends Section 2.6 in the main

chapter to discuss additional post-processing steps that may introduce bias. Section 2.9.3 extends

Section 2.7 of the main chapter and discusses an interesting piece-wise linear proxy solution and

applies it to the Minority language voting right benefits decision rule PM .

Section 2.9.4 discusses the experimental setting adopted by the chapter in the reported results.

Finally, section 2.9.5 discusses existing research in the scope of differential privacy and fairness.

While our contribution is unique, in that it characterizes the fairness is-sues arising in decision

making problems that take as input differential private data, section 2.9.5 covers the work that has

looked at the tradeoff between differential privacy and some notion of group fairness in machine

learning.

2.9.1 Missing proofs

Theorem 2.6. Let P be an allotment problem which is at least twice differentiable. A data-release

mechanism M is α-fair w.r.t. P for some α < ∞ if there exist some constant values cijl (i ∈

[n], j, l ∈ [k]) such that, for all datasets x ∈ X ,

(HPi)j,l(x) = cij,l (i ∈ [n] j, l ∈ [k])
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Proof. For a given entity i we would like the disparity error to be bounded by a finite value α:

ξiB(P,M,x) ≤ α

⇔ |Bi
P (M,x)−Bj

P (M,x)| ≤ α ∀i, j ∈ [n]

⇔ |Pi(x)− E[Pi(x̃)]− Pj(x)− E[Pj(x̃)]| ∀i, j ∈ [n]. (2.4)

Since, by assumption, Pi is at least twice differentiable, with constant second derivatives, a Taylor

expansion implies that:

Pi(x̃) = Pi(x+ η) = Pi(x) + ηT∇Pi(x) +
1

2
ηTHPi(x) (2.5)

where η = (∆/ϵ) and H is the Hessian of function Pi.

From the above, taking the expectation on both size, E[Pi(x)] can be rewritten as

E[Pi(x̃)]

= E[Pi(x)] + E[ηT∇Pi(x)] + E[
1

2
ηTHPi(x)η] (2.6)

= Pi(x) + E[ηT∇Pi(x)] + E[
1

2
ηTHPi(x)η] (2.7)

= Pi(x) + E[ηT ]E[∇Pi(x)] + E[
1

2
ηTHPi(x)η] (2.8)

= Pi(x) + 0 + E[
1

2
ηTHPi(x)η] (2.9)

= Pi(x) + E[
1

2

∑

jk∈[n]

ηj(HPi)jk(x)ηk] (2.10)

= Pi(x) +
1

2
E[
∑

j∈[n]

η2j (HPi)jj(x)] (2.11)

= Pi(x) +
1

2
E[
∑

j∈[n]

η2j ]E[
∑

j∈[n]

(HPi)jj(x)] (2.12)

= Pi(x) +
∆2

ϵ2
E[
∑

j∈[n]

(HPi)jj(x)] (2.13)

= Pi(x) +
∆2

ϵ2
· Tr(HPi)(x) (2.14)
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where (2.6) follows by linearity of expectation, (2.7) by Pi(x) not being random, (2.8) by indepen-

dence of ηT and ∇Pi(x), (2.9) since E[ηT ] = 0T , by definition of the Laplace mechanism, (2.11)

since ηT is a vector of independent noise, and thus E[ηjηk] = 0 for all j ̸= k, (2.12) by linearity

of expectation, (2.13) since E[η2j ] = ∆2/ϵ2, and where Tr in (2.14) denotes the trace of the Hessian

matrix.

From (2.14) and (2.5), Equation (2.4) can be rewritten as:

∣∣Pi(x)− Pi(x) +
∆2

ϵ2
Tr(HPi)(x)

− Pj(x)− Pj(x) +
∆2

ϵ2
Tr(HPj)(x)

∣∣

=
∣∣∆

2

ϵ2
Tr(HPi)(x)−

∆2

ϵ2
Tr(HPj)(x)

∣∣

=
∆2

ϵ2
∣∣Tr(HPi)(x)− Tr(HPj)(x)

∣∣. (2.15)

Since, by assumption, there exists constants ck such that ∀x ∈ X , Tr(HPk)(x) =
∑

j,l c
k
j,l = ck

for k ∈ [n], it follows, that, from Equation (2.15),

∆2

ϵ2
|ci − cj| <

∆2

ϵ2
(
max
i∈[n]

ci −min
i∈[n]

ci
)
<∞, (2.16)

which concludes the proof.

Corollary 2.7. If P be a linear function, thenM is fair w.r.t. P .

Proof. The result follows by noticing that the second derivative of linear function is 0 for any input.

Thus, for any i ∈ [n], and x ∈ X ,

Tr(HPi)(x) = 0.

Therefore, from (2.15), for every i ∈ [n],

ξiB(P,M,x) = max
j∈[n]
|Tr(HPi(x)− Tr(HPj(x))| = 0,

which proves the claim.
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A more general result is the following.

Corollary 2.8. M is fair w.r.t. P if there exists a constant c such that, for all dataset x,

Tr(HPi)(x) = c (i ∈ [n]).

The proof is similar in spirit to proof of Corollary 4.2, noting that, in the above, the constant c

is equal among all Traces of the Hessian of problems Pi (i ∈ [n]).

Corollary 1 and Corollary 2 are completely fine

Theorem 2.7. Consider a decision rule Pi(x)=1{xi≥ ℓ} for some real value ℓ. Then, mechanism

M is 0.5-fair w.r.t. Pi.

Proof. From Definition 3 of the main text that uses the absolute bias |Bi
P |, and since the absolute

bias is always non-negative, it follows that, for every i ∈ [n]:

ξiB(P,M,x) = max
j∈[n]

∣∣|Bi
P | − |Bj

P |
∣∣ (2.17)

≤ max
j∈[n]
|Bj

P | −min
j∈[n]
|Bj

P | (2.18)

≤ max
j∈[n]
|Bj

P |. (2.19)

Thus, by definition, mechanismM is maxj∈[n] |BP
j |-fair w.r.t. problem P . The following shows

that the maximum absolute bias maxj∈[n] |BP
j | ≤ 0.5. Let i be the entry with the largest absolute

bias. W.l.o.g. consider the case in which Pi(x) = True (the other case is symmetric). It follows

that,

|Bi
P (M,x)| = |Pi(x)− Ex̃i∼M(x)[Pi(x̃)]|

= |1− Pr(x̃i ≥ ℓ)|

= |1− Pr(η ≥ ℓ− xi)|,
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where η ∼ Lap(0, ∆
ϵ
). Notice that,

Pr(η ≥ ℓ− xi) ≥ Pr(η ≥ 0) = 0.5

since ℓ − xi ≤ 0, by case assumption (i.e., Pi(x) = True implies that xi ≥ ℓ) and by that the

mechanism considered adds 0-mean symmetric noise. Thus, |Bi
P (M,x)| ≤ 0.5, and since, i is the

entity contributing maximum absolute bias among all other entities in [n], it follows that

max
j∈[n]
|Bj

P (M,x)| ≤ 0.5

and thus, for every i ∈ [n], ξiB(P,M,x) ≤ 0.5, and, therefore,M is 0.5-fair.

Next, the chapter proves Theorems 3 and 4. Recall that, these results hold under the assump-

tion that mechanism M adds independent noise to the inputs of the predicates P1 and P2 to be

composed, which is often the case.

The chapter first discusses the following property and lemmas.

Property 2.1. The following three bivariate functions:

• f(a, b) = ab

• f(a, b) = a+ b− ab

• f(a, b) = a+ b− 2ab

with support [0, 0.5] and range R all are monotonically increasing functions on its domain a, b ∈

(0, 0.5)

The property above can be shown by noticing that for all functions and support considered,

their derivatives w.r.t. their inputs are positive.

Lemma 2.1. Consider predicates P 1
i and P 2

i and let P = P 1
i ∧ P 2

i , then, for any dataset x ∈ X ,



29

label=() P 1
i (x) = 0 ∧ P 2

i (x) = 0 ⇒

Pr(Pi(x̃) ̸= Pi(x)) = |Bi
P 1
i
||Bi

P 2
i
|

lbbel=() P 1
i (x) = 0 ∧ P 2

i (x) = 1⇒

Pr(Pi(x̃) ̸= Pi(x)) = |Bi
P 1
i
|(1− |Bi

P 2
i
|)

lcbel=() P 1
i (x) = 1 ∧ P 2

i (x) = 0⇒

Pr(Pi(x̃) ̸= Pi(x)) = (1− |Bi
P 1
i
|)|Bi

P 2
i
|

ldbel=() P 1
i (x) = 1 ∧ P 2

i (x) = 1⇒

Pr(Pi(x̃) ̸= Pi(x)) = |Bi
P 1|+ |Bi

P 2| − |Bi
P 1||Bi

P 2|

where x̃ =M(x) is the privacy-preserving dataset.

Proof. The proof proceeds by cases. Case (i): P 1
i (x) = 0 ∧ P 2

i (x) = 0, therefore Pi(x) =

P 1
i (x) ∧ P 2

i (x) = 0 ∧ 0 = 0. Hence:

Pr(Pi(x̃) ̸= Pi(x)) = Pr
[
(P 1

i (x̃) ∧ P 2
i (x̃)) ̸= 0

]

= Pr
[
(P 1

i (x̃) ∧ P 2
i (x̃)) = 1

]

= Pr
[
(P 1

i (x̃) = 1) ∧ (P 2
i (x̃) = 1))

]

= Pr(P 1
i (x̃) = 1)) · Pr(P 2

i (x̃) = 1))

= Pr(P 1
i (x̃) ̸= P 1

i (x))) · Pr(P 2
i (x̃) ̸= P 2

i (x))

= |Bi
P 1||Bi

P 2|

(2.20)

Where the fourth equality is due to P 1
i P

2
i .
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Case (ii): P 1
i (x) = 0 ∧ P 2

i (x) = 1, therefore Pi(x) = P 1
i (x) ∧ P 2

i (x) = 0 ∧ 1 = 0. Hence:

Pr(Pi(x̃) ̸= Pi(x)) = Pr
[
(P 1

i (x̃) ∧ P 2
i (x̃)) ̸= 0

]

= Pr
[
(P 1

i (x̃) ∧ P 2
i (x̃)) = 1

]

= Pr
[
(P 1

i (x̃) = 1) ∧ (P 2
i (x̃) = 1))

]

= Pr(P 1
i (x̃) = 1)) · Pr(P 2

i (x̃) = 1))

= Pr(P 1
i (x̃) ̸= P 1

i (x))) · Pr(P 2
i (x̃) = P 2

i (x))

= Pr(P 1
i (x̃) ̸= P 1

i (x))) ·
(
1− Pr(P 2

i (x̃) ̸= P 2
i (x))

)

= |Bi
P 1|(1− |Bi

P 2|)

(2.21)

Where the fourth equality is due to P 1
i P

2
i .

Case (iii): P 1
i (x) = 1 ∧ P 2

i (x) = 0, therefore Pi(x)) = P 1
i (x) ∧ P 2

i (x) = 1 ∧ 0 = 0. Hence:

Pr(Pi(x̃) ̸= Pi(x)) = Pr
[
(P 1

i (x̃) ∧ P 2
i (x̃)) ̸= 0

]

= Pr
[
(P 1

i (x̃) ∧ P 2
i (x̃)) = 1

]

= Pr
[
(P 1

i (x̃) = 1) ∧ (P 2
i (x̃) = 1))

]

= Pr(P 1
i (x̃) = 1)) · Pr(P 2

i (x̃) = 1))

= Pr(P 1
i (x̃) = P 1

i (x))) · Pr(P 2
i (x̃) ̸= P 2

i (x))

=
(
1− Pr(P 1

i (x̃) ̸= P 1
i (x)))

)
· Pr(P 2

i (x̃) ̸= P 2
i (x))

= (1− |Bi
P 1 |)|Bi

P 2|

(2.22)

Where the fourth equality is due to P 1
i P

2
i .



31

Case (iv): P 1
i (x) = 1 ∧ P 2

i (x) = 1, therefore Pi(x) = P 1
i (x) ∧ P 2

i (x) = 1 ∧ 1 = 1. Hence:

Pr(Pi(x̃) ̸= Pi(x)) = Pr
[
(P 1

i (x̃) ∧ P 2
i (x̃)) ̸= 1

]

= Pr
[
(P 1

i (x̃) ∧ P 2
i (x̃)) = 0

]

= 1− Pr
[
(P 1

i (x̃) = 1) ∧ (P 2
i (x̃) = 1))

]

= 1− Pr(P 1
i (x̃) = 1)) Pr(P 2

i (x̃) = 1))

= 1−
(
1− Pr(P 1

i (x̃) ̸= P 1
i (x)))

)(
1− Pr(P 2

i (x̃) ̸= P 2
i (x)))

)

= 1− (1− |Bi
P 1|)(1− |Bi

P 2 |)

= |Bi
P 1|+ |Bi

P 2| − |Bi
P 1||Bi

P 2|

(2.23)

Where the fourth equality is due to P 1
i P

2
i .

Lemma 2.2. Consider predicates P 1
i and P 2

i and let P = P 1
i ∨ P 2

i , then, for any dataset x ∈ X ,

label=() If P 1
i (x) = 0, P 2

i (x) = 0 then

Pr(Pi(x̃) ̸= Pi(x)) = |Bi
P 1|+ |Bi

P 2| − |Bi
P 1||Bi

P 2|

lbbel=() If P 1
i (x) = 0, P 2

i (x) = 1 then

Pr(Pi(x̃) ̸= Pi(x)) = (1− |Bi
P 1|)|Bi

P 2|

lcbel=() If P 1
i (x) = 1, P 2

i (x) = 0 then

Pr(Pi(x̃) ̸= Pi(x)) = |Bi
P 1|(1− |Bi

P 2|)

ldbel=() If P 1
i (x) = 1, P 2

i (x) = 1 then

Pr(Pi(x̃) ̸= Pi(x)) = |Bi
P 1||Bi

P 2|

where x̃ =M(x) is the privacy-preserving dataset.

The proof is similar to proof of Lemma 2.1.

Lemma 2.3. Given P (x) = P 1(x)⊕ P 2(x), then for any value of P 1
i (x), P

2
i (x) ∈ {0, 1}:

Pr(Pi(x̃) ̸= Pi(x)) = |Bi
P 1|+ |Bi

P 2| − 2|Bi
P 1||Bi

P 2|.
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Proof. The following hold for all four combination of binary boolean values for P 1
i (x)i, P

2
i (x) ∈

{0, 1}:

Pr(Pi(x̃) ̸= Pi(x))

=Pr
[
(P 1

i (x̃)⊕ P 2
i (x̃)) ̸= (P 1

i (x)⊕ P 2
i (x))

]

=1− Pr(P 1
i (x̃) = P 1

i (x)) · Pr(P 2
i (x̃) = P 2

i (x))

−Pr(P 1
i (x̃) ̸= P 1

i (x)) · Pr(P 2
i (x̃) ̸= P 2

i (x))

=1− |Bi
P 1||Bi

P 2| − (1− |Bi
P 1|)(1− |Bi

P 2|)

=|Bi
P 1|+ |Bi

P 2| − 2|Bi
P 1||Bi

P 2|.

Where the second equality is due to P 1
i P

2
i .

Theorem 2.8. Consider predicates P1 and P2 such that P 1P 2 and assume that mechanismM that

is αk-fair for predicate P k (k ∈ {1, 2}). ThenM is α-fair for predicates P 1 ∨ P 2 and P 1 ∧ P 2

with

α=
(
α1+B

1+α2+B
2−(α1+B

1)(α2+B
2)−B1B2

)
,

whereB
k

andBk are the maximum and minimum absolute biases forM w.r.t. P k (for k = {1, 2}).

The proof focuses on the case P 1 ∧ P 2 while the proof for the disjunction is similar.

Proof. To prove the statement, first notice that, by Lemma 2.1 and by assumption of M being

non-trivial, it follows that

|Bi
P 1||Bi

P 2| < |Bi
P 1|(1− |Bi

P 2|),

|Bi
P 2|(1− |Bi

P 1|) < |Bi
P 1|+ |Bi

P 2| − |Bi
P 1||Bi

P 2|. (2.24)
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due to that 0 ≤ |Bi
P 1| ≤ 0.5 and 0 ≤ |Bi

P 2| ≤ 0.5, and thus:

|Bi
P 1 ||Bi

P 2| ≤ Pr(Pi(x̃) ̸= Pi(x)) (2.25)

≤ |Bi
P 1|+ |Bi

P 2| − |Bi
P 1||Bi

P 2|, (2.26)

From the above, the maximum absolute bias BP can be upper bounded as:

BP = max
i

Pr(Pi(x̃) ̸= Pi(x)) (2.27)

≤ max
i
|Bi

P 1|+ |Bi
P 2| − |Bi

P 1||Bi
P 2| (2.28)

= B1 +B2 −B1B2, (2.29)

where the first inequality follows by Lemma 2.1 and the last equality follows by Property 2.1.

Similarly, the minimum absolute bias of BP can be lower bounded as:

BP =min
i

Pr(Pi(x̃) ̸= Pi(x)) (2.30)

≥ min
i
|Bi

P 1||Bi
P 2| = B1B2 (2.31)

where the first inequality is due to Lemma 2.1, and the last equality is due to Property 2.1.

Hence, the level of unfairness α of problem P can be determined by:

α = BP −BP ≤ B1 +B2 −B1B2 −B1B2 (2.32)

Substituting B1 = α1 + B1 and B2 = α2 + B2 into the Equation (2.32), gives the sought

fairness bound.

Theorem 2.9. Consider predicates P1 and P2 such that P 1P 2 and assume that mechanismM that

is αk-fair for predicate P k (k∈{1, 2}). ThenM is α-fair for predicates P 1 ⊕ P 2 with

α=
(
α1(1− 2B2) + α2(1− 2B1)− 2α1α2

)
,
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where Bk is the minimum absolute bias forM w.r.t. P k (for k = {1, 2}).

Proof. To prove the statement, first, notice that the maximum absolute bias for M w.r.t. P =

P 1 ⊕ P 2 can be expressed as:

max
i

Pr(Pi(x̃) ̸= Pi(x))

= max
|Bi

P1 |,|Bi
P2 |
|Bi

P 1|+ |Bi
P 2| − 2|Bi

P 1||Bi
P 2| (2.33)

= B
1
+B

2 − 2B
1
B

2
, (2.34)

where the first equality is due to Lemma 2.3, and the second due to Property 2.1.

Next, notice that the minimum absolute bias forM w.r.t. P = P 1 ⊕ P 2 can be expressed as:

min
i

Pr(Pi(x̃) ̸= Pi(x))

= min
|Bi

P1 |,|Bi
P2 |
|Bi

P 1|+ |Bi
P 2| − 2|Bi

P 1||Bi
P 2| (2.35)

= B1 +B2 − 2B1B2 (2.36)

Since the fairness bound α is defined as the difference between the maximum and the minimum

absolute biases, it follows:

α = max
i

Pr(Pi(x̃) ̸= Pi(x))−min
i

Pr(Pi(x̃) ̸= Pi(x)) (2.37)

= B
1

i +B
2 − 2B

1

iB
2 −B1

i +B2 − 2B1
iB

2, (2.38)

Replacing B
1

i = B1
i + α1 and B

2
= B2 + α2, gives the south fairness bound.

Corollary 2.9. Assume that mechanismM is fair w.r.t. problems P 1 and P 2. ThenM is also fair

w.r.t. P 1 ⊕ P 2.

The above is a direct consequence of Theorem 2.9 for α1 = 0, α2 = 0.
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Corollary 2.10. Consider an allocation problem P . MechanismM is not fair w.r.t. P if there exist

two entries i, j ∈ [n] such that Tr(HPi)(x) ̸= Tr(HPj)(x) for some dataset x.

The corollary is a direct consequence of Theorem 2.6 – see Equation (2.15).

Corollary 4 is not clear. First, Corollary 4 was mentioned in the main text to illustrate the

unfairness of "non-convex function, as is the case for all the allocation problems considered in this

chapter." However we are saying here this corollary is a direct consequence of Theorem 1, and

in Theorem 1, we limit the mapping functions of quadratic form, i.e the second derivatives are

constant.

I do not have the best solutions to fix the above issues because it might requires to reorganize

the main text. If we can reorganize the main text, then one possible solution is to explain that

sometimes we could not compute the level of unfairness α but can approximate it by Taylor ap-

proximation. Or if you or reviewers do not like the concept of approximation, then we can have a

statement in Corollary 4 for general functions but the proof can not relies on Theorem 1.

Corollary 2.11. MechanismM is not fair w.r.t. Pi(⟨x, y⟩) = x/y and inputs x, y.

This corollary is also a direct consequence of Theorem 2.6.

This should be a direct consequence of Corollary 4, not Theorem 1

Corollary 2.12. Let mechanismM be αk-fair w.r.t. to problem P k (k ∈ {1, 2}). ThenM is α-fair

w.r.t. problems P = P 1 ∨ P 2 and P = P 1 ∧ P 2, with α > max(α1, α2).

An analogous result holds for the logical connector ∧.

Proof. The proof is provided for P = P 1 ∨ P 2. By Theorem 2.8 it follows that:

α =
(
α1+B

1+α2+B
2−(α1+B

1)(α2+B
2)−B1B2

)

We need to show that α > max(α1, α2).
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First the proof shows that α > α1. From the equation above, it follows,

α− α1 = B1 + α2 +B2 − (α1 +B1)(α2+B
2)−B1B2 (2.39)

= B1 + α2 +B2 − α1α2 − α1B
2 − α2B

1 (2.40)

= B1(1− α2) + α2(1− α1) +B2(1− α1) (2.41)

Due toM being not trivial (by assumption), we have that 0 ≤ α1, α2 < 0.5. Thus, it follow:

B1(1− α2) > 0 (2.42)

α2(1− α1) ≥ 0 (2.43)

B2(1− α1) > 0. (2.44)

Combining the three inequalities above with Equation 2.39, gives

α− α1 > 0

which implies α > α1. The same argument above follows for α2. Therefore, α > α1 and α > α2,

which asserts the claim.

Theorem 2.10. Let x̃ = x + (λ), with scale λ > 0, and x̂ = PP≥ℓ(x̃), with ℓ < x, be its post-

processed value. Then,

E[x̂] = x+
λ

2
exp(

ℓ− x
λ

).

Proof. The expectation of post-processed value x̂ is given by:

E[x̂] =

∫ ∞

−∞
max(ℓ, x̃)p(x̃)dx̃ =

∫ ℓ

−∞
max(ℓ, x̃)p(x̃)dx̃

+

∫ x

ℓ

max(ℓ, x̃)p(x̃)dx̃+

∫ ∞

x

max(ℓ, x̃)p(x̃)dx̃,

(2.45)

where p(x̃) = 1
2λ

exp(− |x̃−x|
λ

) is the pdf of Laplace. We will compute separately each of three
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terms in Equation 2.45. We first have:

∫ ℓ

−∞
max(ℓ, x̃)p(x̃)dx̃ =

∫ ℓ

−∞
ℓ p(x̃)dx̃ = ℓ

∫ ℓ

−∞
p(x̃)dx̃

= ℓ× 0.5 exp(
ℓ− x
λ

) =
1

2
ℓ exp(

ℓ− x
λ

)

(2.46)

Second,

∫ x

ℓ

max(ℓ, x̃)p(x̃)dx̃ =

∫ x

ℓ

x̃p(x̃)dx̃

=
1

2
(x− λ)− 1

2
(ℓ− λ) exp(ℓ− x

λ
)

(2.47)

Finally

∫ ∞

x

max(ℓ, x̃)p(x̃)dx̃ =

∫ ∞

x

x̃p(x̃)dx̃

=
1

2
(x+ λ)

(2.48)

Combine Equations (2.46)–(5.3) with Equation (2.45), gives

E[x̂] = x+
λ

2
exp(

ℓ− x
λ

)

2.9.2 The nature of bias (Ext)

Predicates Composition WhenM is fair w.r.t P 1 and P 2 we have the following Property

Property 2.2. Suppose mechanismM is fair w.r.t. P 1 and P 2, and consider predicate P = P 1 ∧

P 2. Let |BP (a, b)| denote the absolute bias forM w.r.t. P when predicate P 1 = a and predicate

P 1 = b, for a, b ∈ {True,False}. Then, |BP (True,True)| ≥ |BP (a, b)| for any other a, b ∈

{True,False}.

Proof. Since, by assumption,M is fair w.r.t. to both predicates P 1 and P 2, then its absolute bias
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w.r.t. these predicates is constant, that is ∀i ∈ [n],

|Bi
P 1| = B1 ∈ (0, 0.5)

|Bi
P 2| = B2 ∈ (0, 0.5)

By Lemma 2.1 and for every x ∈ X , it follows:

1. P 1
i (x) = 0 ∧ P 2

i (x) = 0 ⇒

Pr(Pi(x̃) ̸= Pi(x)) = B1B2

2. P 1
i (x) = 0 ∧ P 2

i (x) = 1 ⇒

Pr(Pi(x̃) ̸= Pi(x)) = (1−B2)B1

3. P 1
i (x) = 1 ∧ P 2

i (x) = 0 ⇒

Pr(Pi(x̃) ̸= Pi(x)) = (1−B1)B2

4. P 1
i (x) = 1 ∧ P 2

i (x) = 1 ⇒

Pr(Pi(x̃) ̸= Pi(x)) = B1 +B2 −B1B2

We are interested in showing that the last quantity is the largest among the four quantities

above. From the equalities above the following sequence of relations can be derived,

(4) > (2); (4) > 3; (2) > (1); (3) > 1

which shows that quantity (4) is the largest among all the other possibilities and concludes the

proof.

Property 2.3. Suppose mechanismM is fair w.r.t. P 1 and P 2, and consider predicate P = P 1 ∨

P 2. Let |BP (a, b)| denote the absolute bias forM w.r.t. P when predicate P 1 = a and predicate

P 1 = b, for a, b ∈ {True,False}. Then, |BP (False,False)| ≥ |BP (a, b)| for any other a, b ∈

{True,False}.
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Fig. 2.9: Decision errors for four different groups of data under P = P 1 ∧ P 2 (left) and P =
P 1 ∨ P 2 (right)

The proof is similar to the proof of Property 2.2.

Figure 2.9 illustrates this result on the Minority Language dataset. It reports the decision errors

on the y-axis (absolute bias). Notice that the red group is the least penalized in Figure 2.9 (left)

and the most penalized in Figure 2.9 (right).

Post-processing This discussion analyzes positive results for two additional classes of post-

processing, with respect to that analyzed in the main chapter: (1) The integrality constraint pro-

gram PPN(z) which makes sure the released data of integer data types (2) The sum-constrained

constrained program PP
∑

S(z) which enforces the private data satisfies some equality constraints.

The following results show that these post-processing do not contribute to further bias the deci-

sions.

Integrality Post-processing The integrality post-processing PPN(z) is used when the released

data are integral quantities. To make sure that this processing step does not introduce additional

bias, we can rely on the stochastic rounding technique:

PPN(z) =





z w.p.: 1− (z − z)

z + 1 w.p.: z − z
(2.49)

The stochastic rounding guarantees that E[PPN(x̃)] = x̃ so no additional bias will introduce to

PPN(x̃).
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Sum-constrained Post-processing The sum-constrained post-processing PP
∑

S(z) can be for-

mulated as the solution of following constrained optimization:

min
ẑ
∥ẑ − z∥22 s.t : 1T z = S (2.50)

The sum-constrained post-processing is of need in case when one requires the private outcome

should satisfy some equality constraint, e.g the number of private representative in Apportionment

of Legislative Representatives should sum up to S = 543. We have the following positive result

regarding sum-constrained post-processing.

Theorem 2.11. Consider a mechanismM which is α-fair w.r.t problem P , thenM is also α-fair

w.r.t problem PP
∑

S(P )

Note that our result is an extension of previous work [146].

Proof. For notation convenience, denote zi = Pi(x̃) so ẑ = PP
∑

S(z). It is easy to see that

one unique solution for the convex optimization problem in Equation 2.11 is ẑi = zi + η, where

η =
S−

∑
i zi

n
.

For an entity i by linearization of expectation, it follows:

E[ẑi] = E[zi + η] = E[zi +
S −∑j ̸=i zj

n
] (2.51)

=
n− 1

n
E[zi]−

1

n

∑

j ̸=i

E[zj] +
S

n
(2.52)

=
n− 1

n
(zi +Bi

P )−
1

n

(∑

j ̸=i

zj +Bj
P )
)
+
S

n
(2.53)

=
n− 1

n
(zi +Bi

P )−
1

n

(
S − zi +

∑

j ̸=i

Bj
P

)
+
S

n
(2.54)

= zi +

∑
j ̸=i(B

i
P −Bj

P )

n
. (2.55)

The last equality indicates that bias for i-th entity under sum-constrained post-processing isBi
PP

∑
S (P )

=
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∑
j ̸=i(B

i
P−B

j
P )

n
. Thus the fairness bound α′ after post-processing can be determined by:

α′ = max
i,k
|Bi

PP
∑

S (P )
−Bk

PP
∑

S (P )
| (2.56)

= max
i,k

∑
j ̸=i(B

i
P −Bj

P )

n
−
∑

j ̸=k(B
k
P −Bj

P )

n
(2.57)

= max
i,k
|Bi

P −Bk
P | = α (2.58)

The last equality asserts the sum-constrained post-processing does not introduce additional unfair-

ness to mechanismM.

2.9.3 Mitigating solutions (Ext)

Learning piece-wise linear proxy-functions This subsection discusses a practical mitigating

solution for decision rules of type PM . Due to the discontinuities and non-linearities arising in

this problem, approximating PM using a single proxy-linear function may introduce high errors.

The idea explored below relies to partition the inputs x into several groups x1, . . .xG, e.g., by

grouping individuals from the same state or by looking at similarity of counts. For each group

k ∈ [G], a linear-proxy function P̄M
k (xk) can thus be constructed. The resulting problem P̄M is

a combination of these linear-proxy functions, and thus a piece-wise linear function that aims at

approximating the original problem PM .

Rather than using an ad-hoc method to linearize problem PM , the chapter proposes to learn a

linear function by fitting a Linear regression model or a Linear Support Vector Classifier model to

the data xk of each group k ∈ [G]. Specifically, each group is trained using features {xspe, xsp, xs}

and the resulting coefficient are used to construct the proxy linear function. The proxy problem

P̄M is thus represented by a set of (piece-wise) linear functions whose coefficients are learned to

approximate the original data. This is similar to the purpose that a decision rule has – capture some

aspect of the true data.

The chapter uses the value xsp to partition the dataset into 9 groups of approximately equal
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size. To ensure privacy, the grouping is executed using privacy-preserving xsp values.

Figure 2.10 compares the original problem P , a proxy-model P̄LR whose pieces are learned

using linear regression (LR) and a proxy model P̄SVM whose pieces are learned using a linear

SVM model. All three problem take as input the private data x̃ and are compared with the original

version of the problem P . The x-axis shows the range of xsp that defines each group while the y-

axis shows the fairness bound α (computed within each group). The positive effects of the proposed

piece-wise linear proxy problem are dramatic. The fairness violations decrease significantly when

compared to those obtained by the original model. We also noticed that the fairness violation of

the SVM model is typically lower than that obtained by the LR model, and this may be due to the

accuracy of the resulting model – with SVM reaching higher accuracy than LR in our experiments.

Finally, as the population size increases, the fairness bound α decreases. This aspect was already

shown in the main chapter, and emphasizes further the largest negative impact of the noise on the

smaller counties.
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Fig. 2.10: fairness α under private grouping

2.9.4 Experimental details

General settings All experimental codes were written in Python 3.7. Some heavy computation

tasks were performed on a cluster equipped with Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz

and 8GB of RAM. We will release our codes upon chapter’s acceptance.
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Datasets

Title 1 School Allocation The dataset was uploaded as a supplemental materials of [6]. The

dataset can be downloaded directly from https://tinyurl.com/y6adjsyn.

We processed the dataset by removing schools which contains NULL information, and keeping

school districts with at least 1 students. The post-processed dataset left with 16441 school districts.

Minority language voting right benefits The dataset can be downloaded from https://

tinyurl.com/y2244gbt.

The focus of the experiments is on Hispanic groups, which represent the largest minority pop-

ulation. There are 2774 counties that contain at least a Hispanic person.

Mechanism implementation

Linear Proxy Allocation P̄ F The linear proxy allocation method used in problem P̄ F , is im-

plement so that, for a given privacy parameter ϵ, the algorithm allocates ϵ1 = ϵ
2

to release the

normalization term Z. The remaining ϵ2 = ϵ
2

budget is used to publish the population counts xi.

Output Perturbation mechanism To implement the output perturbation method for prob-

lem P F the chapter uses a Laplace mechanism. That is, the private outcome P̃ F
i (x) = Pi(x) +

Lap(0, ∆
ϵ
) where the global sensitivity ∆ is obtained from Theorem 2.12. In the experiments, we

set the known public lower bound L = 0.9Z for the normalization term Z in Theorem 2.12.

Theorem 2.12. In the Title I School Allocation Problem, denote amax = maxi ai, and let L ≤
∑

i∈[n] xiai is a known public lower bound for the normalization term. The l1 global sensitivity of

the query P F = {P F
i }ni=1 where, P F

i =
(

xiai∑
i∈[n] xiai

)
is given by:

∆ = max
x,x′

∣∣P F (x)− P F (x′)
∣∣
1
=

2amax

L
(2.59)

https://tinyurl.com/y6adjsyn
https://tinyurl.com/y2244gbt
https://tinyurl.com/y2244gbt
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Proof. W.o.l.g assume we remove one individual from i-th district school in the dataset x to obtain

the dataset x′. This surely will affect the fraction of fund allocation of all district schools. Denote

Z =
∑

j xjaj , then we have:

P F
i (x)− P F

i (x′) =
xiai
Z
− (xi − 1)ai

Z − ai
P F
j (x)− P F

j (x′) =
xjaj
Z
− xjaj
Z − aj

∀j ̸= i

(2.60)

First, it is simple to show that:

P F
i (x)− P F

i (x′) =
ai [Z − xiai]
Z(Z − ai)

≤ ai(Z − ai)
Z(Z − ai)

=
ai
Z
≤ amax

Z

≤ amax

L

(2.61)

The last inequality is due to the assumption that Z =
∑

j∈[n] aj · xj ≥ L. Second, ∀j ̸= i we

have:

P F
j (x)− P F

j (x′) =
−ajxjai
Z(Z − ai)

(2.62)

Hence:

∑

j ̸=i

∣∣P F
j (x)− P F

j (x′)
∣∣ = ai

Z − aixi
Z(Z − ai)

≤ ai
Z − ai

Z(Z − ai)
= ai

1

Z
≤ amax

L

(2.63)

Combine Equation (2.61) and Equation (2.63), we obtain:
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|P (x)− P (x′)| ≤
∣∣P F

i (D)− P F
i (D′)

∣∣+
∑

j ̸=i

∣∣P F
j (x)− P F

j (x′)
∣∣ ≤ 2amax

L
,

(2.64)

The last inequality asserts the corrects of Theorem 2.12

2.9.5 Related work

In literature the work on algorithmic fairness and differential privacy were mostly studied sepa-

rately. However, there are several noticeable work which address the connection between these

two concepts. One of the earliest work was [36] which showed individual fairness is a general

notation of differential privacy. More recently, Cummings et. al [33] consider the tradeoffs when

considering differential privacy and equal opportunity, a notion of fairness that restricts a classifier

to produce equal true positive rates across different groups. The work claim that there is no classi-

fier that achieves ϵ-differential privacy, satisfies equal opportunity, and has accuracy better than a

constant classifier. Ekstrand et. al [40] raise questions about the tradeoffs involved between privacy

and fairness and, finally, Jagielski et. al [63] shows two simple, yet effective algorithms that satisfy

(ϵ, δ)-differential privacy and equalized odds. Finally, a recent line of work has also observed that

private models may have a negative impact towards fairness. In particular, Pujol et. al [71] shows

that differential privacy could disproportionately affect some groups on several Census resource

allocation tasks. A similar observation was made by Bagdasaryan et. al [12] in the context of pri-

vate deep learning models trained using DP-SDG. The authors observed disparity in performance

across different sub-populations on several classification tasks. In addition, Chang et al [26] has

showed that fairness comes at the cost of privacy and this cost is not distributed uniformly: the

information leakage of fair models increases significantly on the unprivileged subgroups, which

suffer from the discrimination in regular models. Finally, Khalili et. al [81], has indicated that
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exponential mechanism [83] can be used as a post-processing step to improve fairness and privacy

of the pre-trained supervised model.
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CHAPTER 3

DISPARATE IMPACTS OF PRIVACY INTO

LEARNING TASKS

Differential Privacy (DP) [37] is an important privacy-enhancing technology for private machine

learning systems. It allows to measure and bound the risk associated with an individual participa-

tion in a computation. However, it was recently observed that DP learning systems may exacerbate

bias and unfairness for different groups of individuals [12, 71, 137]. This chapter builds on these

important observations and sheds light on the causes of the disparate impacts arising in the problem

of differentially private empirical risk minimization. It focuses on the accuracy disparity arising

among groups of individuals in two well-studied DP learning methods: output perturbation [27]

and differentially private stochastic gradient descent [4]. The chapter analyzes which data and

model properties are responsible for the disproportionate impacts, why these aspects are affecting

different groups disproportionately, and proposes guidelines to mitigate these effects. The pro-

posed approach is evaluated on several datasets and settings.
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3.1 Introduction

While learning systems have become instrumental for many decisions and policy operations in-

volving individuals, the use of rich datasets combined with the adoption of black-box algorithms

has sparked concerns about how these systems operate. Two key concerns regard how these sys-

tems handle discrimination and how much information they leak about the individuals whose data

is used as input.

Differential Privacy (DP) [37] has become the paradigm of choice for protecting data privacy

and its deployments are growing at a fast rate. DP is appealing as it bounds the risks of disclos-

ing sensitive information of individuals participating in a computation. However, it was recently

observed that DP systems may induce biased and unfair outcomes for different groups of individ-

uals [12, 71, 137]. The resulting outcomes can have significant societal and economic impacts on

the involved individuals: classification errors may penalize some groups over others in important

determinations including criminal assessment, landing, and hiring [12] or can result in disparities

regarding the allocation of critical funds, benefits, and therapeutics [71]. While these surprising

observations have become apparent in several contexts, their causes are largely understudied and

not fully understood.

This chapter makes a step toward addressing this important knowledge gap. It builds on these

key observations and sheds light on the causes of the disparate impacts arising in the problem

of differentially private empirical risk minimization (ERM). It focuses on the accuracy disparity

arising among groups of individuals in two well-studied DP learning methods: output perturbation

[27] and differentially private stochastic gradient descent (DP-SGD) [4]. The chapter analyzes

which properties of the model and the data are responsible for the disproportionate impacts, why

these aspects are affecting different groups disproportionately, and proposes guidelines to mitigate

these effects.

In summary, the chapter makes the following contributions:

1. It develops a notion of fairness under private training that relies on the concept of excessive
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risk.

2. It analyzes this fairness notion in two DP learning methods: output perturbation and DP-

SGD.

3. It isolates the relevant components related with noise addition and gradient clipping respon-

sible for the disparate impacts.

4. It studies the behaviors and the causes for these components to affect different groups of

individuals disproportionately during private training.

5. Based on these observations, it proposes a mitigation solution and evaluates its effectiveness

on several standard datasets.

To the best of the authors knowledge, this work represents a first step toward a deeper understand-

ing of the causes of the unfairness impacts in differentially private learning.

3.2 Related work

The research at the interface between differential privacy and fairness is receiving increasing at-

tention and can be broadly categorized into three main lines of work. The first shows that DP

is in alignment with fairness. Notable contribution in this direction include [36] seminal work,

which highlights the relation between individual fairness and differential privacy, and [81], which

shows that the private exponential mechanism can produce fair outcomes in some selection prob-

lems. Works in the second category study the setting under which a fair model can leak pri-

vacy [26,63,87,128,140]. These works propose learning frameworks that guarantee DP while also

encouraging the satisfaction of different notions of fairness. For example, [137] proposes a private

and fair variant of DP-SGD that uses separate clipping bounds for each groups of individuals. Such

proposal encourages accuracy parity at the expense of an extra privacy cost (required to customize

the clipping bound for each group). Works in the last category show that private mechanisms can

have a negative impact towards fairness [12, 43, 71, 128, 137]. For example, Cummings et al. [33]
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shows that it is impossible to achieve exact equalized odds while also satisfying pure DP. [71] ob-

serve that decisions made using a private version of a dataset may disproportionately affect some

groups over others. Similar observations were also made in the context of model learning. [12]

empirically observed that the accuracy of a DP model trained using DP-SGD drops disproportion-

ately across groups causing larger negative impacts to the underrepresented groups. [43] reaches

similar conclusions. The authors empirically show that the disparate impact of differential privacy

on model accuracy is not limited to highly imbalanced data and can occur even in situations where

the classes are slightly imbalanced.

This chapter builds on this body of work and their important empirical observations. It de-

rives the conditions and studies the causes of unfairness in the context of private empirical risk

minimization problems as well as it introduces mitigating guidelines.

3.3 Preliminaries

Differential privacy (DP) [37] is a strong privacy notion used to quantify and bound the privacy

loss of an individual participation to a computation. Informally, it states that the probability of

any output does not change much when a record is added or removed from a dataset, limiting

the amount of information that the output reveals about any individual. The action of adding or

removing a record from a dataset D, resulting in a new dataset D′, defines the notion of adjacency,

denoted D ∼ D′.

Definition 3.1. A mechanism M : D → R with domain D and range R is (ϵ, δ)-differentially

private, if, for any two adjacent inputs D ∼ D′∈D, and any subset of output responses R ⊆ R:

Pr[M(D) ∈ R] ≤ eϵ Pr[M(D′) ∈ R] + δ.

Parameter ϵ > 0 describes the privacy loss of the algorithm, with values close to 0 denoting

strong privacy, while parameter δ ∈ [0, 1) captures the probability of failure of the algorithm to

satisfy ϵ-DP. The global sensitivity ∆ℓ of a real-valued function ℓ : D → Rk is defined as the
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maximum amount by which ℓ changes in two adjacent inputs: ∆ℓ = maxD∼D′ ∥ℓ(D)− ℓ(D′)∥. In

particular, the Gaussian mechanism, defined byM(D) = ℓ(D)+N (0,∆2
ℓ σ

2),whereN (0,∆2
ℓ σ

2)

is the Gaussian distribution with 0 mean and standard deviation ∆2
ℓ σ

2, satisfies (ϵ, δ)-DP for δ >

4
5
exp(−(σϵ)2/2) and ϵ<1 [39].

3.4 Problem settings and goals

The chapter adopts boldface symbols to describe vectors (lowercase) and matrices (uppercase).

Italic symbols are used to denote scalars (lowercase) and data features or random variables (upper-

case). Notation ∥ · ∥ is used to denote the L2 norm. The chapter considers datasets D consisting

of n individuals’ data points (Xi, Ai, Yi), with i ∈ [n] drawn i.i.d. from an unknown distribution.

Therein, Xi∈X is a feature vector, Ai∈A is a protected group attribute, and Yi∈Y is a label. For

example, consider the case of a classifier that needs to predict the risks associated with a lending

decision. The training example features Xi may describe the individual’s demographics, educa-

tion, credit score, and loan amount, the protected attribute Ai may describe the individual gender

or ethnicity, and Yi represents whether or not the individual will default on the loan. The goal is

to learn a classifier fθ : X → Y , where θ is a vector of real-valued parameters, that guarantees

the privacy of each individual data (Xi, Ai, Yi) in D. The model quality is measured in terms of a

nonnegative loss function ℓ : Y × Y → R+, and the problem is that of minimizing the empirical

risk (ERM) function:

min
θ
L(θ;D) =

1

n

n∑

i=1

ℓ(fθ(Xi), Yi). (L)

For a group a ∈ A, the chapter uses Da to denote the subset of D containing exclusively samples

whose group attributeA = a. The chapter focuses on learning classifiers that protect the disclosure

of the individuals’ data using the notion of differential privacy and it analyzes the fairness impact

(as defined next) of privacy on different groups of individuals. Importantly, the chapter assumes

that the attribute A is not part of the model input during inference.
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Fairness The fairness analysis focuses on the notion of excessive risk, a widely adopted metric

in private learning [132, 142]. It defines the difference between the private and non private risk

functions:

R(θ, D) = Eθ̃

[
L(θ̃;D)

]
− L(θ∗;D), (3.1)

where the expectation is defined over the randomness of the private mechanism and θ̃ denotes

the private model parameters while θ∗ = argminθ L(θ;D). The chapter uses shorthands R(θ)

and Ra(θ) to denote, respectively, the population-level R(θ, D) excessive risk and the group level

R(θ, Da) excessive risk for group a. Fairness is measured with respect to the excessive risk gap:

ξa = |Ra(θ)−R(θ)|. (3.2)

(Pure) fairness is achieved when ξa = 0 for all groups a ∈ A and, thus, a private and fair classifier

aims at minimizing the maximum excessive risk gap among all groups. The chapter assumes

that the private mechanisms are non-trivial, i.e., they minimize the population-level excessive risk

R(θ).

All proofs are reported in the Section, Section 3.11.1.

3.5 Warm up: output perturbation

The chapter starts with analyzing fairness under the DP setting induced by an output perturbation

mechanism. In this setting the analysis restricts to twice differentiable and convex loss functions ℓ.

Output perturbation is a standard DP paradigm in which noise calibrated to the function sensitivity

is added directly to the output of the computation. In the context of the regularized ERM problem,

adding noise drawn from a Gaussian distribution N (0,∆2
ℓσ

2) to the optimal model parameters θ∗

ensures (ϵ, δ)-differential privacy [27]. Therein, ∆ℓ = 2/nλ with regularization parameter λ. The

following result sheds light on the unfairness induced by this mechanism.
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Theorem 3.1. Let ℓ be a twice differentiable and convex loss function and consider the out-

put perturbation mechanism described above. Then, the excessive risk gap for group a ∈ A

is approximated by:

ξa ≈
1

2
∆2

ℓσ
2 |Tr(Ha

ℓ )− Tr(Hℓ)| , (3.3)

where Ha
ℓ =∇2

θ∗
∑

(X,A,Y )∈Da
ℓ(fθ∗(X), Y ) is the Hessian matrix of the loss function, at the optimal

parameters vector θ∗, computed using the group data Da, Hℓ is the analogous Hessian computed

using the population data D, and Tr(·) denotes the trace of a matrix.

The approximation above follows form a second order Taylor expansion of the loss function,

linearity of expectation, and the properties of Gaussian distributions. It uses that fact that the

excessive risk Ra(θ) for a group a can be approximated as 1/2∆2
ℓσ

2Tr(Ha
ℓ ). The proof is reported

in Section 3.11.1.

Theorem 3.1 sheds light on the relation between fairness and the difference in the local curva-

tures of the losses ℓ associated with a group and the population and provides a necessary condition

to guarantee pure fairness. It suggests that output perturbation mechanisms may introduce unfair-

ness when the local curvatures associated with the loss function of different groups differ substan-

tially from one another. Additionally, the unfairness level is proportional to the amount of noise

σ or, equivalently, inversely proportional to the privacy parameter ϵ, for a fixed δ. Finally, it also

suggests that groups with larger Hessian traces Tr(Hℓ
a) will have larger excessive risk compared

to groups with smaller Hessian traces. An additional analysis on the reasons behind why different

groups may have large differences in their associated Hessian traces is provided in Section 3.8.

Figure 3.1 illustrates Theorem 3.1. The plots show the correlation between the excessive risk 1

and the quantity Tr(Hℓ
z) for each group z ∈ A, at varying of the privacy loss ϵ ∈ [0.005, 0.5], δ =

1e−5 on two datasets. Each data point represents the average of 100 runs of a DP Logistic Regres-

sion (obtained with output perturbation) on each group z ∈ A. Details on dataset and experimental

1In all experiment presented, the excessive risk is approximated by sampling over 100 repetitions.
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Fig. 3.1: Correlation between excessive risk and Hessian Traces at varying of the privacy loss ϵ.

setting are provided in Section 3.11.2 and additional experiments in Section 3.11.3. Note the pos-

itive correlation between the excessive risk and the Hessian trace: Groups with larger Hessian

traces tend to have larger excessive risks. Note also the inverse correlation between ϵ and the

dependency between the excessive risk and the Hessian trace. This is due to that larger ϵ values re-

quire smaller σ values, and thus, as shown in Equation 3.3, the dependency between the excessive

risk and Hessian trace is attenuated.

The following illustrates that even a class of simple linear models may not to satisfy pure

fairness.

Corollary 3.1. Consider the ERM problem for a linear model fθ(X)
def
= θTX , withL2 loss function

i.e., ℓ(fθ(X), Y ) = (fθ(X)− Y )2. Then, output perturbation does not guarantee pure fairness.

It follows from the observation that the Hessian of the L2 loss for group a ∈ A, i.e., Tr(Ha
ℓ ) =

EX∼Da Tr(XX
T )=EX∼Da∥X∥2, depends solely on the input norms of the elements in Da

2. Inter-

estingly, this result highlights the relation between fairness and the average input norms of different

group elements. When these norms are substantially different one another they will impact their

respective excessive risks differently. An additional analysis on this behavior is also discussed in

Section 3.7.
2Throughout the chapter, we abuse notation and treat the dataset DZ associated with group Z as distributions.
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Algorithm 1: DP-SGD
input: Disjoint dataset D ; Sample prob. q; Iterations T ; Noise

variance σ2; Clipping bound C; learning rate η
1 θ0 ← 0T

2 for iteration t = 1, 2, . . . T do
3 B ← random sub-sample of D with Pr q
4 foreach (Xi, Ai, Yi) ∈ B do
5 gi = ∇ℓ (fθt(Xi), Yi)

6 ḡB ← 1
|B|
(∑

i πC(g
i) +N (0, IC2σ2)

)

7 θt+1 ← θt − ηḡB

The following is a positive result.

Corollary 3.2. If for any two groups a, b ∈ A their average group norms EXa∼Da∥Xa∥ =

EX∼Db
∥Xb∥ have identical values, then output perturbation with L2 loss function provides pure

fairness.

The above is a direct consequence of Corollary 3.3. Note also that pure fairness may be

achieved, in this setting, by normalizing the input values for each group independently (as shown in

Section 3.11.3) although this solution requires accessing the sensitive group attributes at inference

time.

3.6 Gradient perturbation: DP-SGD

Having identified the dependency between the Hessian of the model loss and the privacy parame-

ters with the excessive risk gap in output perturbation mechanisms, this section extends the analysis

to the context of DP Stochastic Gradient Descent (DP-SGD) [4]. In contrast to output perturbation,

DP-SGD does not restrict focus on convex loss functions and the privacy analysis does not require

optimality of the model parameters θ, rendering it an appealing framework for DP ERM problems.

In a nutshell, DP-SGD computes the gradients for each data sample in a random mini-batch

B, clips their L2-norm, adds noise to ensure privacy, and computes the average. Two key char-

acteristics of DP-SGD are: (1) Clipping the gradients whose L2 norm exceeds a given bound C,
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and (2) Perturbing the averaged clipped gradients with 0-mean Gaussian noise with variance σ2C2.

The procedure is described in Algorithm 2. Therein, gi represents the gradient of a data sample

(Xi, Ai, Yi), ḡB the average clipped noisy gradient of the samples in mini-batchB, and the function

πC(x) = x ·min(1, C
∥x∥).

The following theorem is an important result of this section. It connects the expected loss

E[L(θ;Da)] of a group a ∈ A with its excessive risk Ra(θ), which is, in turn, used in our fairness

analysis. It decomposes the expected loss during private training into three key components: The

first relates with the model parameters update and it is not affected by the private training. The

other two relate with gradient clipping and noise addition, and, combined, capture the notion of

excessive risk.

Theorem 3.2. Consider the ERM problem (6.1) with loss ℓ twice differentiable w.r.t. the model

parameters. The expected loss E[L(θt+1;Da)] of group a∈A at iteration t+1, is approximated as:

E [L(θt+1;Da)] = L(θt;Da)− η ⟨gDa , gD⟩+
η2

2
E
[
gT
BH

a
ℓ gB

]
︸ ︷︷ ︸

non-private term

(3.4)

+ η (⟨gDa , gD⟩ − ⟨gDa , ḡD⟩) +
η2

2

(
E
[
ḡT
BH

a
ℓ ḡB

]
− E

[
gT
BH

a
ℓ gB

])
︸ ︷︷ ︸

private term due to clipping

(Rclip
a )

+
η2

2
Tr(Ha

ℓ )C
2σ2

︸ ︷︷ ︸
private term due to noise

(Rnoise
a )

+ O(∥θt+1 − θt∥3),

where the expectation is taken over the randomness of the private noise and the mini-batch selec-

tion, and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients

over subset Z of D at iteration t (the iteration number is dropped for ease of notation).

The result in Theorem 5.1 follows from a second order Taylor expansion of the non-private

and private ERM functions L(θt − ηgB;Da) and L(θt − η(ḡB +N (0, IC2σ2);Da), respectively,

around θt and by comparing their differences. Once again, proofs are reported in Section 3.11.1.
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The first term in the expression (Equation (4)) denotes the Taylor approximation of the (non-

private) SGD loss. Terms (Rclip
a ) and (Rnoise

a ) quantify, together, the excessive risk for group a.

The last term O(∥θt+1 − θt∥3) captures for negligible higher order components. Therein, (Rclip
a )

quantifies the effect of clipping to the excessive risk, and (Rnoise
a ) quantifies the effect of perturbing

the average gradients to the excessive risk. Therefore, Theorem 5.1 shows that there are two main

sources of disparate impact in DP-SGD training:

1. Gradient clipping (Rclip
a ): which, in turn, depends of three factors: (i) The values of the

Hessian matrix Ha
ℓ of the loss function associated with group a; (ii) The gradients values

gDa associated with the samples of group a; and (iii) The clipping bound C, which appears

in ḡB and ḡD.

2. Noise addition (Rnoise
a ): which, in turn, depends on two factors: (i) The values of the (trace

of the) Hessian matrix Ha
ℓ of the loss function associated with group a; and (ii) The privacy

loss parameters (ϵ, δ,∆ℓ) (which, in turn, are characterized by the noise variance C2σ2).

A schematic representation of these factors is shown in Figure 3.2. Therein, XDa denotes the

features valuesX ∈ X of the subsetDa ofD. Theorem 5.1 entails that unfairness occurs whenever

different groups have different values for any of the gradient clipping and noise addition excessive

risk terms.

The next sections analyze the reasons behind the disparity in excessive risk focusing, indepen-

dently, on terms Rclip
a (Section 3.7) and Rnoise

a (Section 3.8). Independently studying these terms

is motivated by observation that the clipping value C regulates the dominance of a factor over the

other. Indeed, for sufficiently large (small) C values Rnoise
a will dominate (be dominated by) Rclip

a .3

3.7 Why gradient clipping causes unfairness?

As highlighted above, there are three factors influencing the clipping effect to the excessive risk

Rclip
a : the Hessian loss, the gradient values, and the clipping bound. This section illustrates their

3This observation relates with the bias-variance trade-off typically observed in DP-SGD [128].
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Fig. 3.2: Diagram of the factors affecting the excessive risk Ra for a group a ∈ A of individuals.
Components affecting Ra in output perturbation involve exclusively the green boxes while those affecting
Ra in DP-SGD involve both green and blue boxes. The main direct factors (e.g., those appearing in Eq. (4))
affecting the excessive risk clipping R

clip
a and noise Rnoise

a components are highlighted within colored boxes.
These direct factors are also regulated by latent factors, shown in white boxes, with dotted lines illustrating
dependencies.

dependencies with the excessive risk, provides conditions to compare the disparate impacts be-

tween different groups, and shows the presence of an extra (latent) factor: the norm of the input

values XDa , which plays a role to this disparate impacts by indirectly controlling the norms of

gradient gDa (see the diagram illustrated in Figure 3.2).

The next results assume that the empirical loss function L(θ;Da), associated with each group

a ∈ A, is convex and βa-smooth. The analysis also consider learning rates η ≤ 1/maxa βa and

gradients g(B) and ḡ(B) with small variances. Note that this is not restrictive as the variance

decreases as a function of the batch size B. Finally, for notational convenience, and w.l.o.g., the

result focus on the case in which |A| = 2. As shown in the empirical assessment (see Section

3.11.3), however, the conclusions carry on even in cases when the above assumptions may not

hold.

Theorem 3.3. Let pz = |Dz |/|D| be the fraction of training samples in group z ∈ A. For groups

a, b ∈ A, Rclip
a > Rclip

b whenever:

∥gDa∥
p2a
2
≥ 5

2
C + ∥gDb

∥
(
1 + pb +

p2b
2

)
. (3.5)

Theorem 3.3 provides a sufficient condition for which a group may have larger excessive risk
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Fig. 3.3: Impact of gradient clipping on gradient norms for different clipping bounds on Bank dataset.

than another solely based on the clipping term analysis. It relates unfairness with the average

(non-private) gradient norms of the groups gDa and gDb
and the clipping value C. As shown in

the diagram of Figure 3.2, this result relates two main factors to the excessive risk due to clipping

Rclip
a : (1) the clipping bound C, and (2) the (norm of the) gradients ∥gDa∥. While the relative

dataset size pa = |Da|/|D| of each group also appears in Equation (3.5), our extensive experiments

showed that this factor may not play a prime role in controlling the disparate impacts (see Section

3.11.3).

The relation with these two factors is illustrated in Figure 3.3, which shows the impact of

gradient clipping (for different C values) to the gradient norms (top) and to the excessive risk Ra

(bottom). It shows that the gradient norms reduce as C increases and that the group with larger

gradient norms have also larger excessive risk.

Finally, the diagram in Figure 3.2 also shows the presence of an additional factor affecting the

gradient norms: the input norms, whose average is denoted XDa = EX∼XDa
∥X∥, in the figure.

While this aspect is not directly evident in Theorem 3.3, the following examples highlight the

positive correlation between input and gradients norms when considering a linear classifier and a

feedforward neural network.

Example 3.1. Consider the ERM problem (6.1) for a linear classifier fθ(X)
def
= softmax(θTX)



60

0 10 20 30 40
Iterations

0.0

0.2

0.4

0.6

Co
rre

lat
ion

Bank
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and cross-entropy loss ℓ(fθ(X), Y ) = −∑K
i=1 Yi log f

i
θ(X) whereK is the number of classes. The

gradient of the loss function at a given data point (X, Y ) is: gX = ∇θℓ(fθ(X), Y ) = (Y −f)⊗X.

The result is by [21] and it suggests that the gradient norms are proportional to the input norms:

∥gX∥ ∝ ∥X∥.

Example 3.2. Next, consider a neural network with single hidden layer, fθ(X)
def
= softmax

(
θT
1 o(θ

T
2X)

)
,

where o(·) is a proper activation function and θ1,θ2 are the model parameters. It can be seen that

∥gX∥ ∝ ∥∇θ1ℓ(fθ(X), Y )∥ + ∥∇θ2ℓ(fθ(X), Y )∥, where ∥∇θ2ℓ(fθ(X), Y )∥ ∝ ∥X∥. The full

derivations are reported in Section 3.11.8.

Both examples illustrate a correlation between the gradients norms ∥gX∥ and input norms ∥X∥

for a given data sample X . This behavior is also illustrated in Figure 3.4, which highlights a

positive correlation between the individual inputs and the gradients norms obtained while privately

training a simple neural network (with one hidden layer) using DP-SGD on the Bank dataset. The

experiment use C = 0.1 and σ = 1. The correlation decreases during training since the gradients

norms reduce as training advances.

These observations imply that group data with large input norms—typically defining the tail

of data distribution—result in large gradient norms and, thus, as shown in Theorem 3.3, may

have larger disproportionate impacts than groups with smaller input norms, under DP-SGD. This

analysis is in alignment with the empirical observation raised in [12], showing that samples at the

tail of a distribution may experience larger accuracy losses, in private training, with respect to other

samples.
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While the above shows a dependency between gradients and clipping bound, as illustrated in

the (Rclip
a ) equation, the group excessive risk is also affected by the Hessian values. However,

as shown in Section 3.11.3, the Hessian factor is almost always dominated by the other factors

examined in this section. This is due to the presence of the multiplier η2/2 which attenuate the

impact of the Hessian value to the excessive risk due to clipping in conjunction with the smoothness

assumptions, which prevents the Hessian values to grow too large.

In summary, the main factors affecting Rclip
a for a group a ∈ A are the norm of the group

gradients gDa , in turn controlled by the norm of the inputs XDa , and the clipping bound C.

3.8 Why noise addition causes unfairness?

Next, the chapter analyzes the factors influencing the noise effect to the excessive risk Rnoise
a ,

which, as highlighted in Theorem 5.1, for DP-SGD and Theorem 3.1 for output perturbation, are

the Hessian loss, and the privacy loss parameters (ϵ, δ,∆ℓ) (see also Figure 3.2). Noting that

the privacy parameters have a multiplicative effect on the Hessian loss (see Equations (Rnoise
a ) and

(3.3)), the following analysis, treats them as constants, and restricts focus on the effects of the

Hessian trace to the disparate impacts.

The following result provide a condition to compare the disparate impacts between different

groups,

Theorem 3.4. For groups a, b ∈ A, Rnoise
a > Rnoise

b whenever

Tr(Ha
ℓ ) > Tr(Hb

ℓ ).

Note the connection of the result above with Theorem 3.1. Additionally, as illustrated in the

diagram of Figure 3.2 the Hessian trace for a group is controlled by two (latent) factors: (1) The

average distance of the group data to the decision boundary, and (2) The values of the group input

norms. While these aspects are not directly evident in Theorem 3.9, the following highlights the

positive correlation between these two factors and the Hessian Traces.
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Example 3.3. Consider the same setting of Example 3.1. The Hessian of the cross entropy loss

of a sample X ∼ D is given by HX
ℓ = [

(
diag(f) − ffT

)
⊗ XXT ], where ⊗ is the Kronecker

product [21]. This result suggests that the trace of the Hessian for sample X is proportional to its

input norm: Tr(HX
ℓ ) ∝ ∥X∥2. Additionally it also shows that: Tr(HX

ℓ ) ∝ (1 −∑K
k=1 f

2
θ,k(X)),

whereK is the number of classes, whose term is connected to the distance to the decision boundary,

as shown next.

The following result highlights the connection between the term (1 −∑K
k=1 f

2
θ,k(X)) and the

distance of sample X to the decision boundary.

Theorem 3.5. Consider a K-class classifier fθ,k (k ∈ [K]). For a given sample X ∼ D, the

term
(
1−∑K

k=1 f
2
θ,k(X)

)
is maximized when fθ,k(X) = 1/K and minimized when ∃k ∈ [K]

s.t. fθ,k(X) = 1 and fθ,k′ = 0 ∀k′ ∈ [K], k ̸= k.

That is, the term
(
1−∑K

k=1 f
2
θ,k(X)

)
is maximized (minimized) when the sample X is close

(far) to the decision boundary. Since, as shown in Example 3.3 this term can be proportional to the

Hessian trace, then the aforementioned relation also indicates a connection between the Hessian

trace value for a sample and its distance to the decision boundary: The closest (farther) is a sample

X to the decision boundary the larger (smaller) is the associated Hessian trace value Tr(HX
ℓ ).
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Fig. 3.5: Correlation between
trace of Hessian with closeness to
boundary (dark color) and input
norm (light color).

This is intuitive as the model decision are less robust to the pres-

ence of noise in the model (e.g., as that introduced by a DP mech-

anism) for the samples which are close to the decision boundary

w.r.t. those which are far from it.

An analogous behavior is also observed in Neural Networks

and described in Section 3.11.8 due to space constraints. Fig-

ure 3.5 illustrates this behavior using the same setting adopted in

Figure 3.4. It highlights the positive correlation between the in-

put norm, the trace of Hessian, and the closeness to the decision

boundary for a given sample X .
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Fig. 3.6: Correlation between input norms and excessive risk; DP-SGD withC = 0.1 and σ = 1.0.

While the above discusses the relation between input norms

and Hessian losses, Figure 3.6 illustrates this dependencies with

the excessive risk, which is one of the main objective of the analysis, on three datasets. Once again

this observation recognizes the difference in input norms as a crucial proxy to unfairness: Groups

with larger input norms will tend to have larger disproportionate impacts under private training

than groups with smaller input norms.

In summary, the main factor affecting Rnoise
a for a group a ∈ A is the Hessian loss Ha

ℓ , which,

in turn, is controlled by the group’s distance to the decision boundary and by their inputs norm.

3.9 Mitigation solution

The previous sections showed that, in DP-SGD, the excessive risk Ra for a group a ∈ A could

be decomposed into two factors Rclip
a , due to clipping, and Rnoise

a , due to noise addition. In turn, it

identified the gradients values gDa associated with the samples of group a and the clipping bound

C as the main sources of disparate impact in component Rclip
a , and the (trace of the) Hessian Ha

ℓ

of the group a loss function as the main source of disparate impact in component Rnoise
a .

A solution to mitigate the effects of these components to the excessive risk gap is to equalize

the factors responsible for Rclip
a and Rnoise

a among all group a ∈ A during private training. The
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resulting empirical risk loss becomes:

min
θ
L(θ;D) +

∑

a∈A

(γ1 |⟨gDa − gD, gD − ḡD⟩|+ γ2 |Tr(Ha
ℓ )− Tr(Hℓ)|) , (3.6)

where the component multiplied by γ1 comes for simplifying the expression | ⟨gDa , gD⟩−⟨gDa , ḡD⟩−

⟨gD, gD⟩− ⟨gD, ḡD⟩ | associated to the empirical risk gap ξa of the main factor affecting Rclip
a , and

component multiplied by γ2 by the analogous expression for the main factor affecting Rnoise
a . Note

that this last component involves computing the Hessian matrices of the loss functions during

each training step, which is a computationally expensive process. The previous section, however,

showed a strong dependency between the trace of the Hessian losses and the distance to the deci-

sion boundary (Theorem 3.5). Thus, in place of Equation (3.6) the proposed mitigating solution

solves:

min
θ
L(θ;D) +

∑

a∈A

(
γ1 |⟨gDa − gD, gD − ḡD⟩|+ γ2

∣∣∣∣∣EX∼Da [1−
K∑

k=1

f 2
θ,k(X)]− EX∼D[1−

K∑

k=1

f 2
θ,k(X)]

∣∣∣∣∣

)
.

Figure 3.7 illustrates this approach at work, for various multipliers γ1 and γ2 on the Bank dataset

with two protected group (blue = majority; orange = minority). Similar trends are shown for other

datasets as well in Section 3.11.3. The implementation uses a neural network with a single hidden

layer and Suppose uses DP-SGD with C = 0.1, σ = 5.0. A clear trend arises: For appropriately

selected values γ1 and γ2 the excessive risk gap between the majority and minority groups not only

tends to be equalized, but it also decreases significantly for both groups. These results imply that

the proposed mitigating strategy may not only improve fairness but also the loss in utility of the

private models.

3.10 Limitations and conclusions

This work was motivated by the recent observations regarding the disparate impacts induced by DP

in learning systems. The chapter introduced a notion of fairness that relies on the concept of ex-
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Fig. 3.7: Mitigating solution: Excessive risk gap at varying of the privacy loss ϵ on the Bank
dataset for different values of γ1 and γ2. Majority (minority) group is shown in dark (light) colors.

cessive risk, analyzed this fairness notion in output perturbation and DP-SGD for ERM problems,

it isolated the relevant components related with noise addition and gradient clipping responsible

for the disparate impacts, studied the main factors affecting these components, and introduced a

mitigation solution.

This study recognizes the following limitations: Firstly, the analyses in Section 3.7 requires

the ERM losses to be smooth and convex. While these are common assumptions adopted in the

analysis of private ERM [28,142], the generalization to the non-convex case is an interesting open

question. The second limitation regards the selection of the multipliers γ1 and γ2 in Equation 3.6.

While the chapter does not investigate how to optimally selecting these values, the adoption of a

Lagrangian Dual framework, as in [128], could a useful tool to the automatic selection of such

parameters, for an extra privacy cost. Finally, the proposed mitigation solution negatively affects

the training runtime and the design of more efficient solutions and implementations is an interesting

challenge.

Despite these limitations, given the increasingly key role of differential privacy in machine

learning, we believe that this work may represent an important and broadly useful step toward

understanding the roots of the disparate impacts observed in differentially private learning systems.
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3.11 Appendix

3.11.1 Missing proofs

Theorem 3.6. Let ℓ be a twice differentiable and convex loss function and consider the out-

put perturbation mechanism described above. Then, the excessive risk gap for group a ∈ A

is approximated by:

ξa ≈
1

2
∆2

ℓσ
2 |Tr(Ha

ℓ )− Tr(Hℓ)| , (3)

where Ha
ℓ =∇2

θ∗
∑

(X,A,Y )∈Da
ℓ(fθ∗(X), Y ) is the Hessian matrix of the loss function at the optimal

parameters vector θ∗, computed using the group data Da, Hℓ is the analogous Hessian computed

using the population data D, and Tr(·) denotes the trace of a matrix.

Proof. Recall that the output perturbation mechanism adds Gaussian noise directly to the non-

private model parameters θ∗ to obtain the private parameters θ̃. Denote ψ ∼ N (0, I∆2
ℓσ

2) the

random noise vector with the same size as θ∗. Then θ̃ = θ∗ + ψ. Using a second order Taylor

expansion around θ∗ the private risk function for group a ∈ A is approximated as follows:

L(θ̃, Da) = L(θ∗ + ψ,Da) ≈ L(θ∗, Da) + ψT∇θ∗L(θ∗, Da) +
1

2
ψTHa

ℓ ψ. (3.7)

Taking the expectation with respect to ψ on both sides of the above equation results in:

E
[
L(θ̃, Da)

]
≈ E [L(θ∗, Da)] + E

[
ψT∇θ∗L(θ∗, Da)

]
+

1

2
E
[
ψTHa

ℓ ψ
]

(3.8a)

= L(θ∗, Da) +
1

2
E
[
ψTHa

ℓ ψ
]

(3.8b)

= L(θ∗, Da) +
1

2

∑

i,j

E [ψi(H
a
ℓ )ijψj] (3.8c)

= L(θ∗, Da) +
1

2

∑

i

E
[
ψ2
i

]
(Ha

ℓ )ii (3.8d)

= L(θ∗, Da) +
1

2
∆2

ℓσ
2Tr (Ha

ℓ ) , (3.8e)

where equation (3.8b) follows from linearity of expectation, by observing that ∇θ∗L(θ∗, Da) is
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a constant term, and that ψ is a 0-mean noise variable, thus, E[ψ] = 0T × ∇θ∗L(θ∗, Da) =

0T . Equation (3.8c) follows by definition of Hessian matrix, where (Ha
ℓ )ij denotes the entry with

indices i and j of the matrix. Equation (3.8d) follows from that ψi ⊥ ψj , for all i ̸= j, and Equation

(3.8e) from that for a random variable X , E[X2] = (E[X])2 + Var[X], and Var[ψi] = ∆2
ℓσ

2 ∀i

and definition of Trace of a matrix.

Therefore, the group and population excessive risks are approximated as:

Ra(θ) = E
[
L(θ̃, Da)

]
− L(θ∗, Da) ≈

1

2
∆2

ℓσ
2Tr (Ha

ℓ ) (3.9)

R(θ) = E
[
L(θ̃, D)

]
− L(θ∗, D) ≈ 1

2
∆2

ℓσ
2Tr (Hℓ) . (3.10)

The claim follows by definition of excessive risk gap (Equation 3.2) subtracting Equation (4.41)

from (3.10) in absolute values.

Corollary 3.3. Consider the ERM problem for a linear model fθ(X)
def
= θTX , withL2 loss function

i.e., ℓ(fθ(X), Y ) = (fθ(X)− Y )2. Then, output perturbation does not guarantee pure fairness.

Proof. First, notice that for an L2 loss function the trace of Hessian loss for a group a ∈ A is:

Tr(Ha
ℓ ) = Ex∼Da∥X∥.

Therefore, from Theorem 3.6, the excessive risk gap ξa for group a is:

ξa ≈
1

2
∆2

ℓσ
2 |Ex∼Da∥X∥ − Ex∼D∥X∥| . (3.11)

Notice that ξa is larger than zero only if the average input norm of group a is different with that of

the population one. Since this condition cannot be guaranteed in general, the output perturbation

mechanism for a linear ERM model under the L2 loss does not guarantee pure fairness.

Corollary 3.4. If for any two groups a, b ∈ A their average group norms EXa∼Da∥Xa∥ =

EXb∼Db
∥Xb∥ have identical values, then output perturbation with L2 loss function provides pure
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fairness.

Proof. The above follows directly by observing that, when the average norms of any two groups

have identical values, ξa ≈ 0 for any group a ∈ A (see Equation (3.11)), and thus the average

norm of each group also coincide with that of the population.

The above indicates that as long as the average group norm is invariant across different groups,

then output perturbation mechanism provides pure fairness.

Theorem 3.7. Consider the ERM problem (6.1) with loss ℓ twice differentiable with respect to

the model parameters. The expected loss E[L(θt+1;Da)] of group a ∈ A at iteration t+1, is

approximated as:

E [L(θt+1;Da)] ≈ L(θt;Da)− η ⟨gDa , gD⟩+
η2

2
E
[
gT
BH

a
ℓ gB

]
︸ ︷︷ ︸

non-private term

(4)

+ η (⟨gDa , gD⟩ − ⟨gDa , ḡD⟩) +
η2

2

(
E
[
ḡT
BH

a
ℓ ḡB

]
− E

[
gT
BH

a
ℓ gB

])
︸ ︷︷ ︸

private term due to clipping

(Rclip
a )

+
η2

2
Tr(Ha

ℓ )C
2σ2

︸ ︷︷ ︸
private term due to noise

(Rnoise
a )

where the expectation is taken over the randomness of the private noise and the mini-batch selec-

tion, and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients

over subset Z of D at iteration t (the iteration number is dropped for ease of notation).

Proof. The proof of Theorem 5.1 relies on the following two second order Taylor approximations:

(1) The first approximates the ERM loss at iteration t + 1 under non-private training, i.e., θt+1 =

θt − ηgB, where B ⊆ D denotes the minibatch. (2) The second approximates expected ERM loss

under private-training, i.e θt+1 = θt − η(ḡB + ψ) where ψ ∼ N (0, IC2σ2). Finally, the result is

obtained by taking the difference of these approximations under private and non-private training.
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1. Non-private term. The non private term of Theorem 5.1 can be derived using second order

Taylor approximation as follows:

L(θt+1, Da) = L(θt − ηgB, Da) ≈ L(θt, Da)− η⟨gDa , gB⟩+
η2

2
gT
BH

a
ℓ gB (3.12)

Taking the expectation with respect to the randomness of the mini-batch B selection on both sides

of the above approximation, and noting that E[gB] = gD (as B is selected randomly from dataset

D), it follows:

E[L(θt+1, Da)] ≈ L(θt, Da)− ηE[⟨gDa , gB]⟩+
η2

2
E[gT

BH
a
ℓ gB] (3.13a)

= L(θt, Da)− η⟨gDa , gD⟩+
η2

2
E[gT

BH
a
ℓ gB]. (3.13b)

2. Private term (due to both clipping and noise). Consider the private update in DP-SGD,

i.e., θt+1 = θt − η(ḡB + ψ). Again, applying a second order Taylor approximation around θt

allows us to estimate the expected private loss at iteration t+ 1 as:

L(θt+1, Da) = L (θt − η(ḡB + ψ), Da)

≈ L (θt, Da)− η ⟨gDa , ḡB + ψ⟩+ η2

2
(ḡB + ψ)T Ha

ℓ (ḡB + ψ) (3.14a)

= L (θt, Da)− η ⟨gDa , ḡB⟩ − η ⟨gDa , ψ⟩+
η2

2
ḡT
BH

a
ℓ ḡB (3.14b)

+
η2

2

(
ψTHa

ℓ ḡB + ḡT
BH

a
ℓ ψ + ψTHa

ℓ ψ
)

Taking the expectation with respect to the randomness of the mini-batch B selection and with
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respect to the randomness of noise ψ on both sides of the above equation gives:

E [L(θt+1, Da)] ≈ E
[
L (θt, Da)− η ⟨gDa , ḡB⟩ − η ⟨gDa , ψ⟩+

η2

2
ḡT
BH

a
ℓ ḡB (3.15a)

+
η2

2

(
ψTHa

ℓ ḡB + ḡT
BH

a
ℓ ψ + ψTHa

ℓ ψ
) ]

= L(θt, Da)− η ⟨ gDa , ḡB⟩ − η ⟨gDa ,E[ψ]⟩+
η2

2
E
[
ḡT
BH

a
ℓ ḡB

]
(3.15b)

+
η2

2

(
E [ψ]THa

ℓ ḡB + ḡT
BH

a
ℓ E[ψ] + E

[
ψTHa

ℓ ψ
])

= L(θt, Da)− η ⟨ gDa , ḡB⟩ +
η2

2
E
[
ḡT
BH

a
ℓ ḡB

]
+
η2

2
E
[
ψTHa

ℓ ψ
]

(3.15c)

= L(θt, Da)− η ⟨ gDa , ḡB⟩ +
η2

2
E
[
ḡT
BH

a
ℓ ḡB

]
+
η2

2
Tr (Ha

ℓ )C
2σ2, (3.15d)

where (3.15b), and (3.15c) follow from linearity of expectation and from that E[ψ] = 0, since ψ is

a 0-mean noise variable. Equation (3.15d) follows from that,

E
[
ψTHa

ℓ ψ
]
= E

[∑

i,j

ψi(H
a
ℓ )i,jψj

]
=
∑

i

E
[
ψ2
i (H

a
ℓ )i,i

]
= Tr (Ha

ℓ )C
2σ2,

since E[ψ2] = E[ψ]2 +Var[ψ] and E[ψ] = 0 while Var[ψ] = C2σ2.

Note that in the above approximation (Equation (3.15)), the component

L(θt, Da)− η⟨gDa , ḡB⟩+
η2

2
E
[
ḡT
BH

a
ℓ ḡB

]
(3.16)

is associated to the SGD update step in which gradients have been clipped to the clipping bound

value C, i.e. θt+1 = θt − η(ḡB).

Next, the component
η2

2
Tr (Ha

ℓ )C
2σ2 (3.17)

is associated to the SGD update step in which the noise ψ is added to the gradients.

If we take the difference between the approximation associated with the non-private loss term,

obtained in Equation 3.13b, with that associated with the private loss term, obtained in Equation
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3.15d, we can derive the effect of a single step of (private) DP-SGD compared to its non-private

counterpart:

E [L(θt+1;Da)] ≈ L(θt;Da)− η ⟨gDa , gD⟩+
η2

2
E
[
gT
BH

a
ℓ gB

]
(3.18a)

+ η (⟨gDa , gD⟩ − ⟨gDa , ḡD⟩) +
η2

2

(
E
[
ḡT
BH

a
ℓ ḡB

]
− E

[
gT
BH

a
ℓ gB

])
(3.18b)

+
η2

2
Tr (Ha

ℓ )C
2σ2. (3.18c)

In the above,

• The components in Equation (3.18a) are associated with the loss under non-private training

(see again Equation 3.13b);

• The components in Equation (3.18b) is associated with for excessive risk due to gradient

clipping;

• Finally, the components in Equation (3.18c) is associated with the excessive risk due to noise

addition.

Next, the chapter proves Theorem 3.8. This result is based on the following assumptions.

Assumption 3.1. [Convexity and Smoothness assumption] For a group a ∈ A, its empirical loss

function L(θ, Da) is convex and βa-smooth.

Assumption 3.2. Let B ⊆ D be a subset of the dataset D, and consider a constant ε ≥ 0. Then,

the variance associated with the gradient norms of a random mini-batch B, σ2
B = Var [∥gB∥] ≤ ε

as well as that associated with its clipped counterpart, σ̄2
B = Var [∥ḡB∥] ≤ ε.

The assumption above can be satisfied when the mini-batch size is large enough. For example,

the variance is 0 when |B| = |D|.

Assumption 3.3. The learning rate used in DP-SGD η is upper bounded by quantity 1/maxz∈A βz.
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Theorem 3.8. Let pz = |Dz |/|D| be the fraction of training samples in group z ∈ A. For groups

a, b ∈ A, Rclip
a > Rclip

b whenever:

∥gDa∥
p2a
2
≥ 5

2
C + ∥gDb

∥
(
1 + pb +

p2b
2

)
. (5)

To ease notation, the statement of the theorem above uses ε = 0 (See Assumption 3.2) but the

theorem can be generalized to any ε ≥ 0.

The following Lemmas are introduced to aid the proof of Theorem 3.8.

Lemma 3.1. Consider the ERM problem (6.1) solved with DP-SGD with clipping value C. The

following average clipped per-sample gradients ḡZ , where Z ⊆ D, has norm at most C.

Proof. The result follows by triangle inequality:

∥ḡDZ
∥ =

∥∥∥∥∥
1

|DZ |
∑

i∈DZ

ḡi

∥∥∥∥∥

≤ 1

|DZ |
∑

i∈DZ

∥ḡi∥

=
1

|DZ |
∑

i∈DZ

∥∥∥∥gimin
(
1,

C

∥gi∥
)∥∥∥∥

≤ 1

|DZ |
∑

i∈DZ

C = C.

The next Lemma derives a lower and an upper bound for the component E[ḡT
BH

a
ℓ ḡB] −

E[gT
BH

a
ℓ gB], which appears in the excessive risk term due to clipping Rclip

a for some group a ∈ A.

Lemma 3.2. Consider the ERM problem (6.1) with loss ℓ, solved with DP-SGD with clipping value

C. Further, let ε = 0 (see Assumption 3.2). For any group a ∈ A, the following inequality holds:

−βa∥gD∥2 ≤ E[ḡT
BH

a
ℓ ḡB]− E[gT

BH
a
ℓ gB] ≤ βaC

2 (3.19)
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Proof. Consider a group a ∈ A. By the convexity assumption of the loss function, the Hessian Ha
ℓ

is a positive semi-definite matrix, i.e., for all real vectors of appropriate dimensions v, it follows

that vTHa
ℓ v ≥ 0.

Therefore, for a subset B ⊆ D the following inequalities hold:

• ḡBH
a
ℓ ḡB ≥ 0,

• gT
BH

a
ℓ gB ≥ 0 .

Additionally their expectations E[ḡBH
a
ℓ ḡB] and E[gT

BH
a
ℓ gB] are non-negative.

By the smoothness property of the loss function, ḡT
BH

a
ℓ ḡB ≤ βa∥ḡB∥2, thus:

E[ḡT
BH

a
ℓ ḡB] ≤ βaE

[
∥ḡB∥2

]
(3.20a)

= βa
(
E[∥ḡB∥]2 +Var [∥ḡB∥]

)
(3.20b)

≤ βa
(
C2 + σ̄2

B

)
(3.20c)

≤ βa(C
2 + ε), (3.20d)

where Equation (3.20b) follows from that E[X2] = (E[X])2 + Var[X], Equation (3.20c) is due to

Lemma 3.1, and finally, the last inequality is due to Assumption 3.2.

Therefore, since ε = 0 by assumption of the Lemma, the following upper bound holds:

E[ḡT
BH

a
ℓ ḡB]− E[gT

BH
a
ℓ gB] ≤ βaC

2. (3.21)

Next, notice that

E[ḡT
BH

a
ℓ ḡB]− E[gT

BH
a
ℓ gB] ≥ −E[gT

BH
a
ℓ gB] (3.22a)

≥ −E[βa∥gB∥2] (3.22b)

= −βa
(
E[∥gB∥]2 +Var [∥gB∥]

)
(3.22c)

= −βa∥gD∥2, (3.22d)
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where the inequality in Equation (3.22a) follows since both terms on the left hand side of the

Equation are non negative. Equation (3.22b) follows by smoothness assumption of the loss func-

tion. Equation (3.22c) follows by definition of expectation of a random variable, since E[X]2 =

E[X2] + Var[X]. Finally, Equation (3.22d) follows from that Var[gB] ≤ ε = 0 by Assumption

3.2, and that ε = 0 by assumption of the Lemma, and thus the norms ∥gB∥ = ∥gD∥ and, thus,

E[gB] = gD. Therefore if follows:

−βa∥gD∥2 ≤E[ḡT
BH

a
ℓ ḡB]− E[gT

BH
a
ℓ gB]. (3.23)

which concludes the proof.

Again, the above uses ε = 0 to simplify notation, but the results generalize to the case when

ε > 0. In such a case, the bounds require slight modifications to involve the term ε.

Lemma 3.3. Let a, b ∈ A be two groups. Consider the ERM problem (6.1) solved with DP-SGD

with clipping value C and learning rate η ≤ 1/maxa∈A βa. Then, the difference on the excessive risk

due to clipping Ra
clip −Rb

clip is lower bounded as:

Ra
clip −Rb

clip ≥ η

(
⟨gDa − gDb

, gD − ḡD⟩ −
1

2
(∥gD∥2 + C2)

)
. (3.24)

Proof. Recall thatB ⊆ D is the mini-batch during the resolution of DP-SGD. Using the lower and
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upper bounds obtained from Lemma 3.2, it follows:

Ra
clip −Rb

clip = η (⟨gDa , gD⟩ − ⟨gDa , ḡD⟩) +
η2

2

(
E
[
ḡT
BH

a
ℓ ḡB

]
− E

[
gT
BH

a
ℓ gB

])
(3.25a)

− η (⟨gDb
, gD⟩ − ⟨gDb

, ḡD⟩)−
η2

2

(
E
[
ḡT
BH

b
ℓ ḡB

]
− E

[
gT
BH

b
ℓgB

])

= η⟨gDa − gDb
, gD − ḡD⟩+

η2

2

(
E
[
ḡT
BH

a
ℓ ḡB

]
− E

[
gT
BH

a
ℓ gB

])
(3.25b)

− η2

2

(
E
[
ḡT
BH

b
ℓ ḡB

]
− E

[
gT
BH

b
ℓgB

])

≥ η⟨gDa − gDb
, gD − ḡD⟩ −

η2

2
βa∥gD∥2 −

η2

2
βbC

2 (3.25c)

≥ η⟨gDa − gDb
, gD − ḡD⟩ −

η2

2
max
z∈A

βz
(
∥gD∥2 + C2

)
(3.25d)

≥ η

(
⟨gDa − gDb

, gD − ḡD⟩ −
1

2
(∥gD∥2 + C2)

)
, (3.25e)

where the inequality (3.25c) follows as a consequence of Lemma 3.2, and the inequality (3.25e)

since η ≤ 1
maxa∈A βa

.

Proof of Theorem 3.8. We want to show that Ra
clip > Rb

clip given Equation (4.27). Since, by

Lemma 3.3 the difference Ra
clip − Rb

clip is lower bounded – see Equation (3.24), the following

shows that the right hand side of Equation (3.24) is positive, that is:

⟨gDa − gDb
, gD − ḡD⟩ −

1

2

(
∥gD∥2 + C2

)
> 0. (3.26)

First, observe that the gradients at the population level can be expressed as a combination of

the gradients of the two groups a and b in the dataset: gD = pagDa+pbgDb
and ḡ = paḡDa+pbḡDb

.

By algebraic manipulation, and the above, Equation (3.26) can thus be expressed as:

(3.26) = ⟨gDa − gDb
, pagDa + pbgDb

− paḡDa − pbḡDb
⟩ − 1

2

(
∥gDapa + gDb

pb∥2 + C2
)

(3.27a)

= (pa∥gDa∥2 + pbg
T
Da

gDb
− pagT

Da
ḡDa − pbgT

Da
ḡDb
− pagT

Db
gDa − pb∥gDb

∥2 (3.27b)

+ pag
T
Db
ḡDa + pbg

T
Db
ḡDb
− 1

2

(
p2a∥gDa∥2 + 2papbgDagDb

+ p2b∥gDb
∥2 + C2

)
.
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Noting that for any vector x,y the following inequality hold: xTy ≥ −∥x∥∥y∥, all the inner

products in the above expression can be replaced by their lower bounds:

(3.26) ≥ ∥gDa∥
(
∥gDa∥pa(1−

pa
2
)− pb∥gDb

∥ − paC − pbC − pa∥gDb
∥ − papb∥gDb

∥
)

(3.28a)

− ∥gDb
∥ − papb∥gDb

∥
(
∥gDb
∥pb(1 +

pb
2
) + paC + pbC

)
− 1

2
C2

= ∥gDa∥
(
∥gDa∥pa(1−

pa
2
)− papb∥gDb

∥(pb + pa)(∥gDb
∥+ C)

)
(3.28b)

− ∥gDb
∥
(
∥gDb
∥pb(1 +

pb
2
) + (pa + pb)C

)
− 1

2
C2

= ∥gDa∥
(
∥gDa∥pa(1−

pa
2
)− papb∥gDb

∥ − ∥gDb
∥ − C)

)
− ∥gDb

∥
(
∥gDb
∥pb(1 +

pb
2
) + C

)
− 1

2
C2

(3.28c)

where the last equality is because pa + pb = 1, by assumption of the dataset having exactly two

groups.

By theorem assumption, ∥gDa∥p
2
a

2
≥ 5

2
C + ∥gDb

∥(1 + pb +
p2b
2
). It follows that ∥gDa∥ > ∥gDb

∥

and ∥gDa∥ > C. Combined with Equation (3.28c) it follows that:

(3.28c) = ∥gDa∥
(
∥gDa∥pa(1−

pa
2
)− papb∥gDb

∥ − ∥gDb
∥ − C − ∥gDb

∥pb(1 +
pb
2
)− C

)
− 1

2
C2

(3.29a)

≥ ∥gDa∥
(
∥gDa∥pa(1−

pa
2
)− papb∥gDa∥ − 2C − ∥gDb

∥(1 + pb +
p2b
2
)

)
− 1

2
C2

(3.29b)

≥ ∥gDa∥
(
∥gDa∥pa(1−

pa
2
− pb)− 2C − ∥gDb

∥(1 + pb +
p2b
2
)

)
− 1

2
C2 (3.29c)

= ∥gDa∥
(
∥gDa∥

p2a
2
− 2C − ∥gDb

∥(1 + pb +
p2b
2
)

)
− 1

2
C2 (3.29d)

≥ ∥gDa∥
C

2
− 1

2
C2 (3.29e)

> 0, (3.29f)
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where the last equality is because ∥gDa∥ > C.

Theorem 3.9. For groups a, b ∈ A, Rnoise
a > Rnoise

b whenever

Tr(Ha
ℓ ) > Tr(Hb

ℓ ).

Proof. Suppose Tr(Ha
ℓ ) > Tr(Hb

ℓ ). By definition of Rnoise
a and Rnoise

b from Theorem 5.1 it

follows that:

Rnoise
a =

η2

2
Tr(Ha

ℓ )C
2σ2 >

η2

2
Tr(Hb

ℓ )C
2σ2 = Rnoise

b ,

which concludes the proof.

Theorem 3.10. Consider a K-class classifier fθ,k (k ∈ [K]). For a given sample X ∼ D, the

term
(
1−∑K

k=1 f
2
θ,k(X)

)
is maximized when fθ,k(X) = 1/K and minimized when ∃k ∈ [K]

s.t. fθ,k(X) = 1 and fθ,k′ = 0 ∀k′ ∈ [K], k′ ̸= k.

Proof. Fix an input X of D and denote yk = fθ,k(X) ∈ [0, 1]. Recall that yk represents the

likelihood of the prediction of input X to be associated with label k.

Note that, by Cauchy–Schwarz inequality

1−
K∑

k=1

y2k ≤ 1−K
(∑K

i yk
K

)2

(3.30a)

= 1− 1

K
, (3.30b)

where Equation (3.30b) follows since
∑K

i yk(X) = 1. The above expression is maximized when

yk = fθ,k(X) =
1

K
.
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Additionally, since yk ∈ [0, 1] it follows that y2k ≤ yk. Hence,

1−
K∑

k=1

y2k ≥ 1−
K∑

i=1

yk = 0. (3.31)

To hold, the equality above, it must exists k ∈ [K] such that yk = fθ,k(X) = 1 and for any other

k′ ∈ [K] with k′ ̸= k, yk′ = fθ,k′ = 0.

Given the connection of the term 1 −∑K
k=1(1 − f 2

θ,k(X)) and the associated (trace of the)

Hessian loss Hf , the result above suggests that the trace of the Hessian is minimized (maximized)

when the classifier is very confident (uncertain) about the prediction of X ∼ D , i.e., when X is

far (close) to the decision boundary.

3.11.2 Experimental settings

Datasets The chapter uses the following UCI datasets to support its claims:

1. Adult (Income) dataset, where the task is to predict if an individual has low or high income,

and the group labels are defined by race: White vs Non-White [18].

2. Bank dataset, where the task is to predict if a user subscribes a term deposit or not and the

group labels are defined by age: people whose age is less than 60 years old vs the rest [86].

3. Wine dataset, where the task is to predict if a given wine is of good quality, and the group

labels are defined by wine color: red vs white [18].

4. Abalone dataset, where the task is to predict if a given abalone ring exceeds the median

value, and the group labels are defined by gender: female vs male [18].

5. Parkinsons dataset, where the task is to predict if a patient has total UPDRS score that

exceeds the median value, and the group labels are defined by gender: female vs male [77].

6. Churn dataset, where the task is to predict if a customer churned or not. The group labels

are defined by on gender: female vs male [31].
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7. Credit Card dataset, where the task is to predict if a customer defaults a loan or not. The

group labels are defined by gender: female vs male [23].

8. Stroke dataset, where the task is to predict if a patient have had a stroke based on their

physical conditions. The group labels are defined by gender: female vs male [1].

All datasets were processed by standardization so each feature has zero mean and unit variance.

Settings For output perturbation, the chapter uses a Logistic regression model to obtain the

optimal model parameters (we set the regularization parameter λ = 1) and add Gaussian noise

to achieve privacy. The standard deviation of the noise required to the mechanism is determined

following [13].

For DP-SGD, the chapter uses a neural network with single hidden layer with tanh activation

function for the different datasets. The batch size |B| is fixed to 32 and the learning rate η = 1e−4.

Unless specified we set the clipping bound C = 0.1 and noise multiplier σ = 5.0. The experiments

consider 100 runs of DP-SGD with different random seeds for each configuration. We employ the

Tensorflow Privacy toolbox to compute the privacy loss ϵ spent during training.

Computing infrastructure All experiments were performed on a cluster equipped with Intel(R)

Xeon(R) Platinum 8260 CPU @ 2.40GHz and 8GB of RAM.

Software and libraries All models and experiments were written in Python 3.7 and in Pytorch

1.5.0.

Code The code used for this submission is attached as supplemental material. All implementation

of the experiments and proposed mitigation solution will be released upon publication.

3.11.3 Additional experiments

3.11.4 More on “Warm up: output perturbation”

Correlation between Hessian trace and excessive risk The following provides additional

empirical support for the claims of the main chapter: Groups with larger Hessian trace tend to
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have larger excessive risks in this subsection.

The experiments in this sub-section use output perturbation. Figure 3.8 reports the exces-

sive risk and Hessian traces for the two groups defined in the datasets (as described in Section

3.11.2. The figure clearly illustrates that the groups with larger Hessian traces have larger exces-

sive risk (i.e., experienced more unfairness) under private output perturbation when compared with

the groups with smaller Hessian traces. These empirical findings are again a strong support for the

claims of Theorem 3.1.
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Fig. 3.8: Correlation between excessive risk gap and Hessian Traces at varying of the privacy loss
ϵ.

Impact of data normalization by group The next results provide evidence to support the fol-

lowing claim raised in Section 3.5: Given the impact of gradient norms to unfairness, normalizing

data independently for each group can help improve fairness. Figure 3.9 shows the evolution of

the excessive risk Ra and Rb for the dataset groups during training. The top plots present the re-

sults with standard data normalization (e.g., each sample data is normalized independently from its

group membership) while the bottom plots show the counterpart results for models trained when

the data was normalized within the group datasets Da and Db. Note that the normalization adopted

ensures that the data is 0-mean and of unit variance in each group dataset, which is a required

condition to achieve the desired property.

The results clearly show that this strategy can not only reduce unfairness, but also the excessive

risk gaps.
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Fig. 3.9: Excessive risk for each group without group normalization (top) and with group normal-
ization (bottom).

3.11.5 More on “Why gradient clipping causes unfairness?”

This section provides additional empirical evidence to support the claim made in Section 3.7 spec-

ifying the three direct factors influencing the clipping effect to the excessive risk: (1) the Hessian

loss, (2) the gradient values, and (3) the clipping bound. Among these three factors, the gradient

values and clipping bound are the dominant ones.

Impact of gradient values and clipping bound C Figure 3.10 provides the relation between

the gradient norm and the different choices of clipping bounds to the excessive risks. The results are

shown for the Abalone, Churn and Credit Card datasets. The experiments show that gradient norms

reduce as C increases and that the group with larger gradient norms have also larger excessive risk.

Similar results were achieved for other datasets as well (not reported to avoid redundancy).
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Fig. 3.10: Impact of gradient clipping with different clipping bound values C to the excessive
risk.
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The Hessian loss is a minor impact factor to the excessive risk. As showed in the main

text, the excessive risk associated to the gradient clipping for a particular group a ∈ A can be

decomposed as:

Rclip
a = η (⟨gDa , gD⟩ − ⟨gDa , ḡD⟩) +

η2

2

(
E
[
ḡT
BH

a
ℓ ḡB

]
− E

[
gT
BH

a
ℓ gB

])
(3.32)

Denote ψa =
(
E
[
ḡT
BH

a
ℓ ḡB

]
− E

[
gT
BH

a
ℓ gB

])
. This quantity clearly depends on the Hessian

loss Ha
ℓ . However, under the assumptions in Theorem 3.8: convexity and smoothness of the loss

function and the magnitude of the learning rate (i.e., that is small enough), the term ψa will be a

negligible component in Rclip
a .

While this is evident under those assumption, our empirical analysis has reported a similar

behavior for loss function for which those conditions do not generally apply. In the following

experiment we run DP-SGD on a neural network with single hidden layer and tracked the values of

Rclip
a and ψa for each group a ∈ A during private training. These values are reported in Figure 3.11

for different datasets. It can be seen that the components ψa (dotted lines) constitute a negligible

amount to the excessive risk under gradient clipping Rclip
a .

Relative group data size is a minor impact factor to the excessive risk. Section 3.7 also

observed that the relative group data size, pb/pa for two groups a, b ∈ A had a minor impact on

unfairness. Figure 3.12 provides empirical evidence to support this observation. It shows the

effects of varying the relative group data pb/pa to the gradient norms (top rows) and excessive risk

(bottom rows) in three datasets: Abalone, Bank, and Income. The different relative group data

ratios were obtained through subsampling. Notice that changing the relative group sizes does not

result in a noticeable effect in the group gradient norms and excessive risk. These experiments

demonstrate that the relative group data size might play a minor role in affecting unfairness.

These observation are also in alignment with the those raised by [43], who showed that the

disparate impact of DP on model accuracy is not limited to highly imbalanced data and can occur

in situations where the groups are slightly imbalanced.
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Fig. 3.11: Values of Rclip
a and ψa during private training for a neural network classifier.

3.11.6 More on “Why noise addition causes unfairness?”

Figure 3.13 illustrates the connection between the trace of the Hessian of the loss function at some

sample X ∈ D and its distance to the decision boundary. The figure clearly show that the closest

(father) is a sample X to the decision boundary, the larger (smaller) is the associated Hessian trace

value Tr(HX
ℓ ). The experiments are reported for datasets Parkinson, Stroke, Wine, and Churn, but

once again they extend to other datasets as well. b

3.11.7 More on mitigation solutions

Next, this section demonstrates the benefits of the proposed mitigation solution on additional

datasets. Figure 3.14 illustrates the excessive risk for each group in the reported datasets (re-

call that better fairness is achieved when the excessive risk curves values are small and similar) at

varying of the privacy parameter ϵ (i.e., the excessive risk is tracked during private training).

The leftmost column in each sub-figure present the results for the baseline model, which runs

DP-SGD without the proposed fairness-mitigating constraints. Observe the positive effects in re-
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Fig. 3.12: Impact of the relative group data size towards unfairness under DP-SGD (with C =
0.1, σ = 5.0).

ducing the inequality between the excessive risks between the groups when the solution activates

both γ1 (which regulates the component associated with Rclip) and γ2 (which regulates the compo-
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Fig. 3.13: Correlation between the trace of the Hessian of the loss function for a data sample X
with its distance to the decision boundary (dark colors) and input norm (light colors).

nent associated with Rnoise). In the reported experiments hyper-parameters γ1 = 1, γ2 = 1 were

found to be good values for all our benchmark datasets. Smaller γ1 and γ2 values may not reduce

unfairness. Likewise, large values could even exacerbate unfairness. Using the above setting, the

proposed mitigation solution was able not only to reduce unfairness in 6 out 8 cases studied, but

also to increase the utility of the private models.

Once again, we mention that the design of optimal hyper-parameters is an interesting open

challenge.
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Fig. 3.14: Mitigating solution: Excessive risk at varying of the privacy loss ϵ for different γ1, γ2.
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3.11.8 Additional examples

3.11.9 More on gradient and Hessian loss of neural networks

This section focuses on two tasks: The first is to demonstrate the connection between the gradient

norm ∥gX∥ for some input X with its input norm ∥X∥. The second is to demonstrate the relation

between the trace of the Hessian loss at a sample X with input norm ∥X∥ and the closeness of X

to the decision boundary. We do so by providing a derivation of the gradients and the Hessian trace

of a neural networks with one hidden layer.

Settings Consider a neural network model fθ(X)
def
= softmax

(
θT
1 σ(θ

T
2X)

)
whereX ∈ Rd, θ2 ∈

Rd×H , θ1 ∈ RH×K and the cross-entropy loss ℓ(fθ(X), Y ) = −∑K
k=1 Yi log fθ,k(X) where K is

the number of classes, and σ(·) is the a proper activation function, e.g. a sigmoid function. Let

O = σ(θT
2X) ∈ RH be the vector (O1, . . . , OH) of H hidden nodes of the network. Denote with

hj =
∑

i θjiXi as the j-th hidden unit before the activation function. Next, denote θ1,j,k ∈ R as the

weight parameter that connects the j-th hidden unit hj with the k-th output unit fk and θ2,i,j ∈ R

as the weight parameter that connects the i-th input Xi unit with the j-th hidden unit hj .

Gradients Norm First notice that we can decompose the gradients norm of this neural network

into two layers as follows:

∥∇θℓ(fθ(X), Y )∥2 = ∥∇θ1ℓ(fθ(X), Y )∥2 + ∥∇θ2ℓ(fθ(X), Y )∥2. (3.33)

We will show that∇θ2ℓ(fθ(X), Y )∥ ∝ ∥X∥.

Notice that:

∥∇θ2ℓ(fθ(X), Y )∥2 =
∑

i,j

∥∇θ2,i,jℓ(fθ(X), Y )∥2.
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Applying, Equation (14) from [108], it follows that:

∇θ2,i,jℓ(fθ(X), Y ) =
K∑

k=1

(Yk − fθ,k(X)) θ1,j,k (Oj(1−Oj))Xi, (3.34)

which highlights the dependency of the gradient norm ∥∇θ2ℓ(fθ(X), Y )∥ and the input norm

∥X∥2.

Hessian trace For the connections between the Hessian trace of the loss function at a sample

X with the closeness of X to the decision boundary and the input norm ∥X∥, the analysis follows

the derivation provided by [16]. First, notice that:

Tr(HX
ℓ ) = Tr(∇2

θ1
ℓ(fθ(X), Y )) + Tr(∇2

θ2
ℓ(fθ(X), Y )) (3.35)

The following shows that:

1. Tr
(
∇2

θ2
ℓ(fθ(X), Y )

)
∝
(
1−∑K

k=1 f
2
θ,k(X)

)

2. Tr
(
∇2

θ1
ℓ(fθ(X), Y )

)
∝ ∥X∥2.

The former follows from Equation (26) of [16], since:

∇2
θ1,j,k

ℓ(fθ(X), Y )) = fk(1− fk)O2
j , (3.36)

and thus,

Tr(∇2
θ1
ℓ(fθ(X), Y )) =

H∑

j=1

K∑

k=1

fk(1− fk)O2
j =

H∑

j=1

( K∑

k=1

fk−
K∑

k=1

f 2
k

)
O2

j = (1−
K∑

k=1

f 2
k )

H∑

j=1

O2
j .

The above shows the connection between the trace of Hessian loss at a sample X for the

second layer of the neural network and the quantity 1 −∑K
k=1 f

2
k (X) which measures how close

is the sample X to the decision boundary. This result relates with Theorem 3.10.
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Regarding point (2), by applying Equation (27) of [16] we obtain:

∇2
θ2,i,j

ℓ(fθ(X), Y )) = X2
i Γj, (3.37)

where Γj = σ′′(hj)
∑K

k=1 θ2,j,k(Yk − fk) + σ′(hj)
2
∑K

k=1 θ
2
2,j,kfk(1 − fk), where σ′ and σ′′ are,

respectively, the first and second derivative of the activation σ with respect to the hidden node hj .

Thus:

Tr(∇2
θ2
ℓ(fθ(X), Y )) =

H∑

j=1

d∑

i=1

∇2
θ2,i,j

ℓ(fθ(X), Y ) =
H∑

j=1

(
d∑

i=1

X2
i

)
Γj ∝ ∥X∥2,

which shows the dependency of the trace of the Hessian of the loss function in the first layer at

sample X and the data input norm.
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CHAPTER 4

ON THE FAIRNESS IMPACTS OF PRIVATE

ENSEMBLES MODELS

The Private Aggregation of Teacher Ensembles (PATE) is a machine learning framework that en-

ables the creation of private models through the combination of multiple "teacher" models and a

"student" model. The student model learns to predict an output based on the voting of the teachers,

and the resulting model satisfies differential privacy. PATE has been shown to be effective in cre-

ating private models in semi-supervised settings or when protecting data labels is a priority. This

chapter explores whether the use of PATE can result in unfairness, and demonstrates that it can lead

to accuracy disparities among groups of individuals. The chapter also analyzes the algorithmic and

data properties that contribute to these disproportionate impacts, why these aspects are affecting

different groups disproportionately, and offers recommendations for mitigating these effects.

4.1 Introduction

The widespread adoption of machine learning (ML) systems in decision-making processes have

raised concerns about bias and discrimination, as well as the potential for these systems to leak

sensitive information about the individuals whose data is used as input. These issues are partic-
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ularly relevant in contexts where ML systems are used to assist in decisions processes impacting

individuals’ lives, such as criminal assessment, lending, and hiring.

Differential Privacy (DP) [37] is an algorithmic property that bounds the risks of disclosing

sensitive information of individuals participating in a computation. In the context of machine

learning, DP ensures that algorithms can learn the relations between data and predictions while

preventing them from memorizing sensitive information about any specific individual in the train-

ing data. While this property is appealing, it was recently observed that DP systems may induce

biased and unfair outcomes for different groups of individuals [12, 137]. The resulting outcomes

can have significant impacts on the life of the individuals with negative effects on financial, crim-

inal, or job-hiring decisions [45]. While these surprising observations have become apparent in

several contexts, their causes are largely understudied.

This chapter makes a step toward filling this important gap and investigates the unequal impacts

that can occur when training a model using Private Aggregation of Teacher Ensembles (PATE), a

state-of-the-art privacy-preserving ML framework [93]. PATE involves combining multiple ag-

nostic models, referred to as teachers, to create a student model that is able to predict an output

based on noisy voting among the teachers. This approach satisfies differential privacy and has

been demonstrated to be effective for learning high-quality private models in semi-supervised set-

tings. The chapter examines which algorithmic and data properties contribute to disproportionate

impacts, why these aspects are affecting different groups of individuals disproportionately, and

proposes a solution for mitigating these effects.

In summary, the chapter makes several key contributions: (1) It introduces a fairness measure

that extends beyond accuracy parity and assesses the direct impact of privacy on model outputs for

different groups. (2) It examines this fairness measure in the context of PATE, a leading privacy-

focused ML framework. (3) It identifies key components of model parameters and data properties

that contribute to disproportionate impacts on different groups during private training. (4) It inves-

tigates the circumstances under which these components disproportionately affect different groups.

(5) Finally, based on these findings, the chapter proposes a method for reducing these unfair im-
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Fig. 4.1: Illustration of PATE and aspects contributing to fairness.

pacts while maintaining high accuracy.

The empirical advantages of privacy-preserving ensemble models over other frameworks, such

as DP-SGD [3, 49, 130], make this work a significant and widely relevant contribution to under-

standing and addressing the disproportionate impacts observed in semi-supervised private learning

systems. As far as we are aware, this is the first study to examine the causes of disparate impacts

in privacy-preserving ensemble models.

4.2 Related work

The relationship between privacy and fairness has been a topic of recent debate, as recently sur-

veyed by [46], with several researchers raising questions about the tradeoffs involved [41]. [34]

specifically studied the tradeoffs between differential privacy and equal opportunity, a fairness cri-

terion that requires a classifier to have equal true positive rates for different groups. They demon-

strated that it is not possible to simultaneously achieve (ϵ, 0)-differential privacy, satisfy equal

opportunity, and have accuracy better than a constant classifier. Additionally, it has been proven

that when training data has a long-tailed distribution, it is impossible to develop a private learning

algorithm that has high accuracy for minority groups [109]. These findings have led to the question

of whether fair models can be created while preserving sensitive information, and have spurred the

development of various approaches such as those presented in [87, 128].

[71] were the first to show, empirically, that decision tasks made using DP datasets may dis-

proportionately affect some groups of individuals over others. These studies were complemented
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theoretically by [126]. Similar observations were also made in the context of model learning. [12]

empirically observed that the accuracy of a DP model trained using DP-Stochastic Gradient De-

scent (DP-SGD) decreased disproportionately across groups causing larger negative impacts to the

underrepresented groups. [43] and [130] reached similar conclusions and showed that this disparate

impact was not limited to highly imbalanced data.

This chapter builds on this body of work and their important empirical observations. It provides

an analysis of the causes of unfairness in the context of private learning ensembles, a significant

privacy-enhancing ML system, and introduces guidelines for mitigating these effects.

4.3 Preliminaries: differential privacy

Differential privacy (DP) is a strong privacy notion stating that the probability of any output does

not change much when a record is added or removed from a dataset, limiting the amount of in-

formation that the output reveals about any individual. The action of adding or removing a record

from a dataset D, resulting in a new dataset D′, defines the notion of adjacency, denoted D ∼ D′.

Definition 4.1 ( [37]). A mechanism M : D → R with domain D and range R satisfies (ϵ, δ)-

differential privacy, if, for any two adjacent inputsD ∼ D′∈D, and any subset of output responses

R ⊆ R:

Pr[M(D) ∈ R] ≤ eϵ Pr[M(D′) ∈ R] + δ.

Parameter ϵ > 0 describes the privacy loss of the algorithm, with values close to 0 denoting

strong privacy, while parameter δ ∈ [0, 1) captures the probability of failure of the algorithm to

satisfy ϵ-DP. The global sensitivity ∆ℓ of a real-valued function ℓ : D → R is defined as the

maximum amount by which ℓ changes in two adjacent inputs: ∆ℓ = maxD∼D′ ∥ℓ(D)− ℓ(D′)∥. In

particular, the Gaussian mechanism, defined byM(D) = ℓ(D)+N (0,∆2
ℓ σ

2),whereN (0,∆2
ℓ σ

2)

is the Gaussian distribution with 0 mean and standard deviation ∆2
ℓ σ

2, satisfies (ϵ, δ)-DP for δ >

4
5
exp(−(σϵ)2/2) and ϵ<1 [39].
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4.4 Problem settings and goals

This chapter considers a private dataset D consisting of n individuals’ data (xi, yi), with i∈ [n],

drawn i.i.d. from an unknown distribution Π. Therein, xi∈X is a sensitive feature vector contain-

ing a protected group attribute ai ∈ A ⊂ X , and yi ∈ Y = [C] is a C-class label. For example,

consider a classifier that needs to predict criminal defendants’ recidivism. The data features xi may

describe the individual’s demographics, education, and crime committed, the protected attribute ai

may describe the individual’s gender or ethnicity, and yi whether the individual has high risk to

reoffend.

This chapter studies the fairness implications arising when training private semi-supervised

transfer learning models. The setting is depicted in Figure 4.1. We are given an ensemble of

teacher models T ={f j}kj=1, with each f j :X →Y trained on a non-overlapping portion Di of D.

This ensemble is used to transfer knowledge to a student model f̄θ :X →Y , where θ is a vector of

real-valued parameters.

The student model f̄ is trained using a public dataset D̄ = {xi}mi=1 with samples drawn

i.i.d. from the same distribution Π considered above but whose labels are unrevealed. We fo-

cus on learning classifier f̄θ using knowledge transfer from the teacher model ensemble T while

guaranteeing the privacy of each individual’s data (xi, yi) ∈D. The sought model is learned by

minimizing the regularized empirical risk function with loss ℓ :Y × Y→R+:

θ∗ = argmin
θ
L(θ; D̄,T ) + λ∥θ∥2 (4.1)

=
∑

x∈D̄

ℓ
(
f̄θ(x), v (T (x))

)
+ λ∥θ∥2, (4.2)

where v :Yk→Y is a voting scheme used to decide the prediction label from the ensemble T , with

T (x) used as a shorthand for {f j(x)}kj=1, and λ > 0 is a regularization term.

We focus on DP classifiers that protect the disclosure of the individual’s data and analyzes the

fairness impact (as defined below) of privacy on different groups of individuals.
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Privacy. Privacy is achieved by using a DP version ṽ of the voting function v:

ṽ(T (x))=argmaxc{#c(T (x))+N (0, σ2)} (4.3)

which perturbs the reported counts #c(T (x)) = |{j : j ∈ [k], f j(x) = c}| for class c ∈ C with

zero-mean Gaussian and standard deviation σ. The overall approach, called PATE [97], guarantees

(ϵ, δ)-DP, with privacy loss scaling with the magnitude of the standard deviation σ and the size

of the public dataset D̄. A detailed review of the privacy analysis of PATE is reported in Sec-

tion 4.10.3. Throughout the chapter, the privacy-preserving parameters of the model f̄ trained with

noisy voting ṽ(T (x)) are denoted with θ̃.

Fairness. One widely used metric for measuring utility in private learning is the excess risk

[142], which is defined as the difference between the private and non-private risk functions:

R(S,T )
def
= Eθ̃

[
L(θ̃;S,T )

]
− L(θ∗;S,T ), (4.4)

where the expectation is taken over the randomness of the private mechanism, S is a subset of D̄,

θ̃ is the private student model’s parameters, and θ∗=argminθ L(θ; D̄,T ) + λ∥θ∥2.

In this chapter, the unfairness introduced by privacy in the learning task is measured using the

difference in excess risks of each protected subgroup. This notion is significant because it captures

the unintended impact of privacy on task accuracy for a given group, and it chapters to the concept

of accuracy parity, a standard metric in fair and private learning. More specifically, the chapter

focuses on measuring the excess risk R(D̄←a,T ) for groups a ∈ A, where D̄←a is the subset of D̄

containing only samples from a group a. We use the shorthandR(D̄←a) to refer toR(D̄←a,T ) and

assume that the private mechanisms are non-trivial, i.e., they minimize the population-level excess

risk R(D̄).
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Definition 4.2. Fairness is measured as the highest excess risk difference among all groups:

ξ(D̄) = max
a,a′∈A

R(D̄←a)−R(D̄←a′). (4.5)

Notice how this definition of fairness chapters to the concept of accuracy parity [12], which

measures the disparity of task accuracy across groups, when the adopted loss ℓ is a 0/1-loss. All

the experiments in the chapter use, in fact, this 0/1-loss, while the theoretical analysis considers

general differentiable loss functions.

4.5 PATE fairness analysis: roadmap

The objective of this chapter is to identify the factors that cause unfairness in PATE and understand

why they have this effect. The following sections isolate these key factors, which will be divided

into two categories: algorithm parameters and public student data characteristics. The theoretical

analysis assumes that, for a group a ∈ A, the group loss function L(θ;D←a,T ) is convex and

βa-smooth with respect to the model parameters θ for some βa ≥ 0. However, the evaluation

does not impose any restrictions on the form of the loss function. A detailed description of the

experimental settings can be found in Section 4.10.4, and the proofs of all theorems are included

in Section 4.10.2.

A fairness bound. We start by introducing a bound on the model disparity, which will be

crucial for identifying the algorithm and data characteristics that contribute to unfairness in PATE.

Throughout the chapter, we refer to the quantity ∆θ̃

def
= ∥θ̃ − θ∗∥ as to model deviation due to

privacy, or simply model deviation, as it captures the effect of the private teachers’ voting on the

student learned model. Here, θ∗ and θ̃ represent the parameters of student model f̄ learned using

a clean or noisy voting scheme, respectively.
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Fig. 4.2: Factors impacting PATE fairness.

Theorem 4.1. The model fairness is upper bounded as:

ξ(D̄) ≤ 2max
a
∥Ga∥ E [∆θ̃] +

1/2max
a
βa E

[
∆2

θ̃

]
, (4.6)

where Ga = Ex∼D̄←a

[
∇θ∗ℓ(f̄θ∗(x), y)

]
is the gradient of the group loss evaluated at θ∗, and ∆θ̃

and ∆2
θ̃

capture the first and second order statistics of the model deviation.

The above illustrates that the model unfairness is proportionally regulated by three direct fac-

tors: (1) the model deviation ∆θ̃, (2) the maximum gradient norm maxa ∥Ga∥ among all groups,

and (3) the largest smoothness parameter maxa βa among all groups.

The chapter delves into which Algorithms’ parameters and Data characteristics affect the fac-

tors that contribute to model unfairness. Within the Algorithm’s parameters, in addition to the

privacy variable ϵ (captured by the noise parameter σ), the chapter identifies two factors having a

direct impact on fairness: (A1) the regularization term λ associated with the student risk function

and (A2) the size k of the teachers’ ensemble. Regarding the public student Data’s characteristics,

the chapter shows that (D1) the magnitude of the sample input norms ∥x∥ and (D2) the distance

of a sample to the decision boundary (denoted s(x)) are key factors that can exacerbate the excess

risks induced by the student model. The relationships between these factors and how they impact

model fairness are illustrated in Figure 4.2.

Several aspects of the analysis in this chapter rely on the following definition.

Definition 4.3. Given a data sample (x, y) ∈ D, for an ensemble T and voting scheme v, the
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flipping probability is:

p↔x
def
= Pr [ṽ(T (x)) ̸= v(T (x))] .

It connects the voting confidence of the teacher ensemble with the perturbation induced by the

private voting scheme and will be useful in the fairness analysis introduced below.

The theoretical results presented in the following sections are supported and corroborated by

empirical evidence from tabular datasets (UCI Adults, Credit card, Bank, and Parkinsons) and an

image dataset (UTKFace). These results were obtained using feed-forward networks with two

hidden layers and nonlinear ReLU activations for both the ensemble and student models for tab-

ular data, and CNNs for image data. All reported metrics are the average of 100 repetitions used

to compute empirical expectations and report 0/1 losses, which capture the concept of accuracy

parity. While the chapter provides a brief overview of the empirical results to support the theoret-

ical claims, extended experiments and more detailed descriptions of the datasets can be found in

Section 4.10.4.

4.6 Algorithm’s parameters

This section analyzes the algorithm’s parameters that affect the disparate impact of the student

model outputs. The fairness analysis reported in this section assumes that the student model loss

ℓ(·) is convex and decomposable:

Definition 4.4. A function ℓ(·) is decomposable if there exists a parametric function hθ :X →R, a

constant real number c, and a function z :R→R, such that, for x∈X , and y∈Y:

ℓ(fθ(x), y) = z(hθ(x)) + c y hθ(x). (4.7)

A number of loss functions commonly adopted in ML, including the logistic loss (used in our

experiments) or the least square loss function, are decomposable [99]. Additionally, while restric-

tions are commonly imposed on the loss functions to render the analysis tractable, our findings are



100

empirically validated on non-linear models.

It is important to recall that the model deviation is a central factor that proportionally controls

the unfairness of PATE (Theorem 4.1). In the following, we provide a useful bound on the model

deviation and highlight its relationship with key algorithm parameters.

Theorem 4.2. Consider a student model f̄θ trained with a convex and decomposable loss function

ℓ(·). Then, the first order statistics of the model deviation is upper bounded as:

E
[
∆θ̃

]
≤ |c|
mλ

[∑

x∈D̄

p↔x ∥Gmax
x ∥

]
, (4.8)

where c is a real constant and Gmax
x = maxθ ∥∇θhθ(x)∥ represents the maximum gradient norm

distortion introduced by a sample x. Both c and h are defined as in Equation 4.7.

The proof relies on λ-strong convexity of the loss function L(·) + λ∥θ∥ (see Section 4.10.2) and

its tightness is demonstrated empirically in Section 4.10.6. Theorem 4.2 reveals how the student

model changes due to privacy and chapters it with two mechanism-dependent components: (1) the

regularization term λ of the empirical risk function L(θ, D̄,T ) (see (4.1)), and (2) the flipping

probability p↔x , which, as it will be shown later, is heavily controlled by the size k of the teacher

ensemble. These mechanisms-dependent components and the focus of this section, while data-

dependent components, including those chapterd to the maximum gradient norm distortion Gmax
x

are discussed to Section 4.7.

A1: The impact of the regularization term λ. The first immediate observation of Theorem

4.2 is that variations of the regularization term λ can increase or decrease the difference between

the private and non-private student model parameters. Since the model deviation E[∆θ̃] has adirect

relationship with the fairness goal (see the first term of RHS of (4.6) in Theorem 4.1) the regular-

ization term affects the disparate impact of the privacy-preserving student model. These effects

are further illustrated in Figure 4.3 (top). The figure shows how increasing λ reduces the expected

difference between the privacy-preserving and original model parameters E[∆θ̃] (left), as well as
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Fig. 4.3: Credit card dataset with σ = 50, k = 150 (top) and λ= 100 (bottom). Expected model
deviation (left), excess risk (middle), and model accuracy (right) as a function of the regularization
term (top) and ensemble size (bottom).

the excess risk R(D̄←a) difference between groups a = 0 and a = 1 (middle). Note, however,

that while larger λ values may reduce the model unfairness, they can hurt the model’s accuracy, as

shown in the right plot. The latter is an intuitive and recognized effect of large regularizers [82].

A2: The impact of the teachers ensemble size k. Next, we consider the relationship between

the ensemble size k and the resulting private model’s fairness. The following result chapters the

size of the ensemble with its voting confidence.

Theorem 4.3. For a sample x∈D̄ let the teacher models outputs f i(x) be in agreement, ∀i ∈ [k].

The flipping probability p↔x is given by p↔x = 1− Φ( k√
2σ
), where Φ(·) is the CDF of the standard

Normal distribution and σ is the standard deviation in the Gaussian mechanism.

The proof is based on the properties of independent Gaussian random variables. This analysis

shows that the ensemble size k (as well as the privacy parameter σ) directly affects the outcome

of the teacher voting and, therefore, the model deviation and its disparate impact. The theorem

shows that larger k values correspond to smaller flipping probability p↔x . In conjunction with

Theorem 4.1, this suggests that the model deviation due to privacy and the excess risks for various

groups are inversely proportional to the ensemble size k.

Figure 4.4 (top) illustrates the relationship between the number k of teachers and the flipping
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Fig. 4.4: Credit-card: Average flipping probability p↔x for samples x ∈ D̄ as a function of the ensemble
size k (left) and the relation between gradient and input norms (right).

probability p↔x of the ensemble. The plot shows a clear trend indicating that larger ensembles result

in smaller flipping probabilities. It is worth noting that in these experiments, different teachers may

have different agreements on each sample, thus this result generalizes the one presented in The-

orem 4.3. Additionally, Figure 4.3 (bottom) shows that increasing k reduces the expected model

deviation (left), reduces the group excess risk difference (middle), and increases the accuracy of

the model f̄ (right). Similar to theregularization term λ, large values k can decrease the accuracy

of the (private and non-private) models. This behavior is chapterd to the bias-variance tradeoff

imposed on the growing ensemble with less training data available to each teacher.

This section concludes with a useful corollary of Theorem 4.2.

Corollary 4.1 (Theorem 4.2). For a logistic regression classifier f̄θ, the model deviation is upper

bounded as:

E [∆θ̃] ≤
1

mλ

[∑

x∈D̄

p↔x ∥x∥
]
. (4.9)

This result highlights the presence of a relationship between gradient norms and input norms,

which is further illustrated in Figure 4.4 (bottom). The plot shows a strong correlation between

inputs and their associated gradient norms. The result also shows that samples with large norms

can significantly impact fairness, emphasizing the importance of considering the characteristics of

the student data, which are the subject of study in the next section.

In summary, the regularization parameter λ and the ensemble size k are two key algorithmic

parameters that, by bounding the model deviation ∆θ̃, can control the disparate impacts of the

student model. These relations are further illustrated in the causal graph in Figure 4.1.
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4.7 Student’s data properties

Having examined the algorithmic properties of PATE affecting fairness, this section turns on an-

alyzing the role of certain characteristics of the student data in regulating the disproportionate

impacts of of the algorithm. The results below will show that the norms of the student’s data sam-

ples and their distance to the decision boundary can significantly impact the excess risk in PATE.

This is particularly interesting as it dispels the notion that unfairness in these models is solely due

to imbalanced training data. The following is a second corollary of Theorem 4.2 and bounds the

second order statistics of the model deviation to privacy.

Corollary 4.2 (Theorem 4.2). Given the same settings and assumption of Theorem 4.2, it follows:

E
[
∆2

θ̃

]
≤ |c|

2

mλ2

[∑

x∈D̄

p↔2
x ∥Gmax

x ∥2
]
. (4.10)

Note that, similarly to what shown by Corollary 5.1, when f̄θ is a logistic regression model, the

gradient norm ∥Gmax
x ∥ above can be substituted with the input norm ∥x∥.

The rest of the section focuses on logistic regression models, however, as our experimental

results illustrate, the observations extend to complex nonlinear models as well.

(D1): The impact of the data input norms. First notice that the norm ∥x∥ of a sample x

strongly influences the model deviation controlling quantity ∆θ̃ as already observed by Corollaries

5.1 and 4.2. This aspect is further highlighted in Figure 4.5 (top), which illustrates that samples

with high input norms have a significant impact on the model deviation. As a result, these samples
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may contribute to the unfairness of the model, as per Theorem 4.1.

Next, recall that the group gradient norms Ga have a proportional effect on the upper bound

of the model unfairness, as shown in Theorem 4.1. These norms also have an effect on the excess

risk R(D̄←a), as shown in Lemma 4.1, Section 4.10.2. The following results reveal a connection

between the gradient norm for a sample x ∈ D̄ and its associated input norm, and how these

factors chapter to the unfairness observed in the student model.

Proposition 4.1. Consider a logistic regression binary classifier f̄θ with cross entropy loss function

ℓ. For a given sample (x, a, y) ∈ D̄, the gradient∇θ∗ℓ(f̄θ∗(x), y) is given by:

∇θ∗ℓ(f̄θ∗(x), y) = (f̄θ∗(x)− y
)
⊗ x,

where ⊗ expresses the Kronecker product.

Thus, the relation above suggests that the input norm of data samples play a key role in controlling

their associated excess risk, and, thus, that of the group in which they belong to. This aspect can be

appreciated in Figure 4.5 (bottom), which shows a strong correlation between the input norms and

excess risk. This observation is significant because it challenges the common belief that unfairness

is solely caused by imbalances in group sizes. Instead, it suggests that the properties of the data

itself directly contribute to unfairness.

Finally, it should be noted that the smoothness parameter βa reflects the local flatness of the

loss function in relation to samples from a group a. An extension of the results from [114] is

provided to derive βa for logistic regression classifiers, further illustrating the connection between

the input norms ∥x∥ of a group a ∈ A and the smoothness parameters βa.

Proposition 4.2. Consider again a binary logistic regression as in Proposition 4.1. The smooth-

ness parameter βa for a group a ∈ A is given by: βa = 0.25maxx∈Da ∥x∥2.

Therefore, Propositions 4.1 and 4.2 show that groups with large (small) inputs’ norms tend to

have large (small) gradient norms and smoothness parameters. Since these factors influence the
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model deviation, they also affect the associated excess risk, leading to larger disparate impacts. An

extended analysis of the above claim is provided in Section 4.10.11.

(D2): The impact of the distance to decision boundary. As mentioned in Theorem 4.2, the

flipping probability p↔x of a sample x ∈ D̄ directly controls the model deviation ∆θ̃. Intuitively,

samples close to the decision boundary are associated to small ensemble voting confidence and

vice-versa. Thus, groups with samples close to the decision boundary will be more sensitive to

the noise induced by the private voting process. To illustrate this intuition the chapter reports the

concept of closeness to boundary.

Definition 4.5 ( [124]). Let fθ be a C-classes classifier trained using data D̄ with its true labels.

The closeness to the decision boundary s(x) is defined as: s(x)
def
= 1−∑C

c=1 fθ∗,c(x)
2, where fθ,c

denotes the softmax probability for class c.
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The above discussion chapters large (small) values of s(x) to projections of point x that are close

(distant) to the model decision boundary. The concept of closeness to decision boundary provides a

way to indirectly quantify the flipping probability of a sample. Empirically, the correlation between

the distance of sample x to the decision boundary and its flipping probability p↔x is illustrated

in Figure 4.6 (top). The plots are once again generated using a neural network with nonlinear

objective and the relation holds for all datasets analyzed. The plot indicates that the samples

that are close to the decision boundary have a higher probability of “flipping” their label, leading

to a worse excess risk and unfairness. Finally, Figure 4.6 (bottom) further illustrates the strong

proportional effect of the flipping probability on the excess risk.

To summarize, the norms ∥x∥ of a group’s samples and their associated distance to boundary

s(x) are two key characteristics of the student data that influence fairness through their control of

the model deviation ∆θ̃, the smoothness parameters βa, and the group gradients Ga, (see Figure

4.2 for a schematic representation).

4.8 Mitigation solution

The previous sections have identified a number of algorithmic and data-chapterd factors that can

influence the disparate impact of the student model. These factors often affect the model deviation

∆θ̃, which is chapterd to the excess risk of different groups (as shown in Theorem 4.1), whose

difference we would like to minimize. With this in mind, this section proposes a strategy to reduce

the deviation of the private model parameters. To do so, we exploit the idea of soft labels instead

of traditional hard labels in the voting process. Hard labels may be significantly affected by small

perturbations due to noise, especially when the teachers have low confidence in their votes. For

example, consider a binary classifier where for a sample x, k/2+1 teachers vote label 0 and k/2−1,

label 1, for some even ensemble size k. If perturbations are introduced to these counts to esnure

privacy, the process may incorrectly report label (ŷ = 1) with high probability, causing causing the

student model’s private parameters to deviate significantly from the non-private ones. This issue
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can be partially addressed by the introduction of soft labels:

Definition 4.6 (Soft label). The soft label of a sample x is: α(x) =
(

#c(T (x))
k

)C
c=1

and their

privacy-preserving counterparts α̃(x) adds Gaussian noise N (0, σ2) in the numerator of α(x).

To exploit soft labels, the training step of the student model uses loss ℓ′(f̄θ(x), α̃) =
∑C

c=1 α̃cℓ(fθ(x), c),

which can be considered as a weighted version of the original loss function ℓ(f̄θ(x), c) on class

label c, whose weight is its confidence α̃c. Note that ℓ′(f̄θ(x), α̃) = ℓ(f̄θ(x)) when all teachers in

the ensemble chose the same label. The privacy loss for this model is equivalent to that of classical

PATE. The analysis is reported in Section 4.10.3.

The effectiveness of this scheme is demonstrated in Figure 4.7. The experiment settings are

reported in detail in the Section and reflect those described in Section 4.5. The left subplot shows

the relation between the model deviation E [∆θ̃] at varying of the privacy loss ϵ (dictated by the

noise level σ). Notice how the student models trained using soft labels reduce their model deviation

(E[∆θ̃]) when compared to the counterparts that use hard labels.

The middle and right plots of Figure 4.7 show the impact of the proposed solution on the private

student model in terms of the utility/fairness tradeoff. The top subplots illustrate the group excess

risks R(D̄←a) associated with each group a ∈ A for Credit (left) and UTKFace datasets (right),

respectively. The bottom subplots illustrate the accuracy of the models, which include a simple

ReLU network for the tabular dataset and a more complex CNN for the image dataset. Recall that

the fairness goal ξ(D̄) is captured by the gap between excess risk curves in the figures. Notice how

soft labels can reduce the disparate impacts in private training (top). Notice also that while fairness

is improved there is seemingly no cost in accuracy. On the contrary, using soft labels produces

comparable or better models than the counterparts produced with hard labels.

Additional experiments, including illustrating the behavior of the mitigating solution at varying

of the number k of teachers are reported in Section 4.10.4 and the trends are all consistent with what

is described above. It is important to note that the proposed solution preserves the original privacy

budget. In contrast, mitigating solutions that would consider explicitly the number of teachers K

or the smoothness parameter λ will inevitably introduce further privacy/fairness tradeoffs as would
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require costly privacy-preserving hyper-parameter optimization [98].

Finally, an important benefit of this solution is that it does not uses the protected group in-

formation (a ∈ A) during training. Thus, it is applicable in challenging situations when it is not

feasible to collect or use protected features (e.g., under the General Data Protection Regulation

(GDPR) [72]). These results are significant. They suggest that this mitigating solution can be

effective for improving the disparate impact of private model ensembles without sacrificing accu-

racy.

4.9 Discussion, limitations, and conclusions

This study highlights two key messages. First, the proposed mitigating solution chapters to con-

cepts in robust machine learning. In particular, [96] showed that training a classifier with soft labels

can increase its robustness against adversarial samples. This connection is not coincidental, as the

deviation of the model is influenced by the voting outcomes of the teacher ensemble (as demon-

strated in Theorems 4.1 and 4.2). In the same way that robust ML models are insensitive to input

perturbations, an ensemble that strongly agrees will be less sensitive to noise and vice versa. This

raises the question of the relationship between robustness and fairness in private models, which is

an important open question. Second, we also note that more advanced voting schemes, such as in-

teractive GNMAX [97], may produce different fairness results. While this is an interesting area for

further analysis, these sophisticated voting schemes may introduce sampling bias (e.g., interactive

GNMAX may exclude samples with low ensemble voting agreement), which could create its own

fairness issues.

Given the growing use of privacy-preserving data-driven algorithms in consequential decisions,

this work represents a significant and widely applicable step towards understanding the causes of

disparate impacts in differentially private learning systems.
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4.10 Appendix

4.10.1 Related work

The study of the disparate impacts caused by privacy-preserving algorithms has recently seen sev-

eral important developments. [41] raise questions about the tradeoffs involved between privacy and

fairness. [34] study the tradeoffs arising between differential privacy and equal opportunity, a fair-

ness notion requiring a classifier to produce equal true positive rates across different groups. They

show that there exists no classifier that simultaneously achieves (ϵ, 0)-DP, satisfies equal opportu-

nity, and has accuracy better than a constant classifier. This development has risen the question of

whether one can practically build fair models while retaining sensitive information private, which

culminated in a variety of proposals, including [62, 87, 128].

[71] were the first to show, empirically, that decision tasks made using DP datasets may dis-

proportionately affect some groups of individuals over others. These studies were complemented

theoretically by [126]. Similar observations were also made in the context of model learning. [12]

empirically observed that the accuracy of a DP model trained using DP-Stochastic Gradient De-

scent (DP-SGD) decreased disproportionately across groups causing larger negative impacts to

the underrepresented groups. [43, 130] reached similar conclusions and showed that this disparate

impact was not limited to highly imbalanced data.

This chapter builds on this body of work and their important empirical observations. It provides

an analysis for the reasons of unfairness in the context of semi-supervised private learning ensem-

bles, an important privacy-enhancing ML system, as well as introduces mitigating guidelines.

4.10.2 Missing proofs

This section contains the missing proofs associated with the theorems and corollaries presented in

the main chapter. The theorems are restated for completeness.

First we provide the upper bound on the excess risk per group a ∈ A in the following Lemma

4.1. This helps to understand what factors control the excess risk for a particular group.
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Lemma 4.1. The excess risk R(D̄←a) of a group a ∈ A is upper bounded as:

R(D←a) ≤ ∥Ga∥E [∆θ̃] +
1/2 βaE

[
∆2

θ̃

]
, (4.11)

where Ga = Ex∼D̄←a

[
∇θ∗ℓ(f̄θ∗(x), y)

]
is the gradient of the group loss evaluated at θ∗, and ∆θ̃

and ∆2
θ̃

capture the first and second order statistics of the model deviation.

Proof. By βa smoothness assumption on the loss function defined over a group a ∈ A it follows

that:

L(θ̃;D←a,T ) ≤ L(θ∗;D←a,T ) +
(
θ̃ − θ∗

)T
Ga +

βa
2
∥θ̃ − θ∗∥2. (4.12)

By taking the expectation on both sides of the above equation w.r.t. the randomness of the noise,

we obtain:

E[L(θ̃;D←a,T ] ≤ L(θ∗;D←a,T ) +GT
aE[(θ̃−

⋆

θ)] +
βa
2
E[∥θ̃− ⋆

θ ∥2] (4.13)

≤ L(θ∗;D←a,T ) + ∥Ga∥E [∆θ̃] +
1

2
βaE[∆2

θ̃
], (4.14)

where the last inequality is by Cauchy-Schwarz inequality on vectors. Next, by substituting

R(D̄←a) = E[L(θ̃;D←a,T ]− L(θ∗;D←a,T ) into eq:finalineqweobtaintheLemmastatement.

Theorem 4.1. The model fairness is upper bounded as:

ξ(D̄) ≤ max
a

2∥Ga∥E [∆θ̃] + max
a

1/2 βaE
[
∆2

θ̃

]
. (4.15)

Proof. By convexity assumption on the loss function defined over a group a ∈ A it follows that:

L(θ∗;D←a,T ) +
(
θ̃ − θ∗

)T
Ga ≤ L(θ̃;D←a,T ) (4.16)
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By taking the expectation on both sides of the above equation w.r.t. the randomness of the noise,

we obtain:

E[L(θ̃;D←a,T )] ≥ L(θ∗;D←a,T ) + E[
(
θ̃ − θ∗

)T
]Ga (4.17)

By combining Equation 4.17 and Equation 4.13 we obtain the following:

E[
(
θ̃ − θ∗

)T
]Ga ≤ R(D̄←a) ≤ E

[(
θ̃ − θ∗

)T]
Ga +

βa
2
E
[
∆2

θ̃

]
(4.18)

Based on the definition of fairness in Equation 4.5, it follows that:

ξ(D̄) = max
a,a′∈A

R(D̄←a)−R(D̄←a′) ≤ max
a,a′∈A

E[
(
θ̃ − θ∗

)T
]
(
Ga −Ga′

)
+max

a∈A

βa
2
E
[
∆2

θ̃

]
(4.19)

≤ max
a

2∥Ga∥E[∥θ̃ − θ∗∥] + max
a

βa
2
E
[
∆2

θ̃

]
= 2max

a
∥Ga∥E [∆θ̃] + max

a

βa
2
E
[
∆2

θ̃

]

(4.20)

Theorem 4.2. Consider a student model f̄θ trained with a convex and decomposable loss function

ℓ(·). Then, the expected difference between the private and non-private model parameters is upper

bounded as follows:

E [∆θ̃] ≤
|c|
mλ

[∑

x∈D̄

p↔x ∥Gmax
x ∥

]
, (4.21)

where c is a real constant and Gmax
x = maxθ ∥∇θhθ(x)∥ represents the maximum gradient norm

distortion introduced by a sample x. Both c and h are defined as in Equation (4.7).

Proof of Theorem 4.2 requires the following Lemma 4.2 from [113] on the property of strongly

convex functions.
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Lemma 4.2 ( [113]). Let L(θ) be a differentiable function. Then L(θ) is λ-strongly convex iff for

all vectors θ,θ′:

(∇θL −∇θ′L)T (θ − θ′) ≥ λ∥θ − θ′∥2. (4.22)

Proof of Theorem 4.2. Let us denote with ŷi = v(T (xi)) to indicate the non-private voting label

associated with xi and ỹi = ṽ(T (xi)) for the private voting label counterpart. The regularized

empirical risk function with the non-private voting labels from 4.1 can be rewritten as follows:

L =
1

m

m∑

i=1

ℓ(f̄θ(xi), ŷi) + λ∥θ∥ (4.23)

=
1

m

m∑

i=1

[
z(hθ(xi)) + cŷihθ(xi)

]
+ λ∥θ∥2, (4.24)

where the second equality is due to the decomposable loss assumption. Likewise, define L̃ to be

the regularized empirical risk function with private voting labels ỹi:

L̃ =
1

m

m∑

i=1

[
z(hθ(xi)) + cỹihθ(xi)

]
+ λ∥θ∥2, (4.25)

Based on Equation 4.24 and Equation 4.25, it follows that: L̃ = L+∆L where ∆L = c
m

∑m
i=1(ỹi−

ŷi)hθ(xi).

Furthermore, since each individual loss function ℓ(f̄θ(xi), ỹi) or ℓ(f̄θ(xi), ŷi) is convex for all i

from the given assumption, then L̃ and L both are λ-strongly convex.

Next, from the definition of θ̃ = argminθ L̃, and
⋆

θ= argminθ L it follows that:

∇θ̃L̃ = 0 and ∇ ⋆
θ
L = 0. (4.26)

By Lemma 4.2, it follows that:

(
∇θ̃L̃ − ∇ ⋆

θ
L̃
)T

(θ̃− ⋆

θ) ≥ λ∥θ̃− ⋆

θ ∥2. (4.27)
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Now since∇θ̃L̃ = 0 by eq:4, we can rewrite Equation 4.27 as

(
−∇ ⋆

θ
L̃
)T

(θ̃− ⋆

θ) ≥ λ∥θ̃− ⋆

θ ∥2, (4.28)

since∇ ⋆
θ
L̃ = ∇ ⋆

θ
L+∇ ⋆

θ
∆L = 0+∇ ⋆

θ
∆L = ∇ ⋆

θ
∆L. In addition, by applying the Cauchy-Schwartz

inequality to the L.H.S of eq:5b we obtain

∥∇ ⋆
θ
∆L∥∥(

⋆

θ −θ̃)∥ ≥ −(∇ ⋆
θ
∆L)

T (θ̃− ⋆

θ) ≥ λ∥θ̃− ⋆

θ ∥2, (4.29)

and thus,

∥∇ ⋆
θ
∆L∥ ≥ λ∥θ̃− ⋆

θ ∥. (4.30)

By definition of∇ ⋆
θ
∆L we can rewrite the above inequality as follows:

∥∇ ⋆
θ
∆L∥ = ∥

c

m

m∑

i=1

(ỹi − ŷi)∇ ⋆
θ
h⋆
θ
(xi)∥ ≥ λ∥θ̃− ⋆

θ ∥2. (4.31)

Next, let ρi = ŷi − ỹi, applying this substitution to the above and by triangle inequality it

follows that:

|c|
m

m∑

i=1

|ρi|∥gi∥ ≥
|c|
m

m∑

i=1

|ρi|∥∇θ̃hθ̃(xi)∥ (4.32)

≥ ∥ c
m

m∑

i=1

ρi∇θ̃hθ̃(xi)∥ ≥ λ∥θ̃− ⋆

θ ∥, (4.33)

where the first inequality is due to definition of gxi
= maxθ ∥∇θhθ(xi)∥ and the second inequality

is due to the general triangle inequality . Since |ρi| is a Bernoulli random variable, in which |ρi| = 1

w.p. p↔xi
and |ρi| = 0 w.p of 1− p↔xi

. Therefore E[|ρi|] = p↔xi
. Thus, it follows that:

E
[ |c|
m

m∑

i=1

|ρi|∥gxi
∥
]
=
|c|
m

m∑

i=1

p↔xi
∥gxi
∥ ≥ λE

[
∥θ̃− ⋆

θ ∥
]
= E

[
∆θ̃

]
, (4.34)
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which concludes the proof.

Theorem 4.3. For a sample x∈D̄ let the teacher models outputs f i(x) be in agreement, ∀i ∈ [k].

The flipping probability p↔x is given by p↔x = 1−Φ( k√
2σ
), where Φ(·) is the CDF of the std. Normal

distribution and σ is the standard deviation in the Gaussian mechanism.

For simplicity of exposition Theorem 4.3 considers binary classifiers, i.e., Y = {0, 1}. The

argument, however, can be trivially extended to generic C-classifiers.

Proof. By assumption, for any given sample x, all teachers agree in their predictions, so w.l.o.g.,

assume k teachers output label 0, while none of them outputs label 1. Next, let ψ, ψ′ ∼ N (0, σ2)

be two independent Gaussian random variables which are added to true voting counts, k and 0,

respectively. The associated flipping probability is:

p↔x = Pr [ṽ(T (x)) ̸= v(T (x))] = Pr(k + ψ ≤ 0 + ψ′) = Pr(ψ′ − ψ ≥ k) (4.35)

= 1− Pr(ψ − ψ′ ≤ k), (4.36)

since ψ, ψ′ are two independent Gaussian random variable with zero mean and standard deviation

of σ. Therefore, ψ′ − ψ ∼ N (0, 2σ2). Thus:

Pr(ψ − ψ′ ≤ k) = Pr(N (0, 2σ2) ≤ k) = Φ(
k√
2σ

).

Hence, the flipping probability will be: p↔x = 1− Φ( k√
2σ
).

Corollary 4.1 (Theorem 4.2). Let f̄θ be a logistic regression classifier. Its expected model devia-

tion is upper bounded as:

E [∆θ̃] ≤
1

mλ

[∑

x∈D̄

p↔x ∥x∥
]
. (4.37)

Proof. The loss function ℓ(f̄θ(x), y) of a logistic regression classifier with binary cross entropy
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loss can be rewritten as follows:

ℓ(f̄θ(x), y) = −y log(
1

1 + exp(−θTx)
)− (1− y) log( exp(−θTx)

1 + exp(−θTx)
) (4.38)

= y log(exp(−θTx))− log
( exp(−θTx)

1 + exp(−θTx)

)
(4.39)

= y(−θTx)− log
( exp(−θTx)

1 + exp(−θTx

)
. (4.40)

Hence, ℓ(·) is decomposable by Definition 4.4 with hθ(x) = −θTx, c = 1 and z(h) = − log( exp(h)
1+exp(h)

).

Applying Theorem 4.2 with Gmax
x = maxθ ∥∇θhθ(x)∥ = maxθ ∥∇θ − θTx∥ = ∥x∥, and

c = 1, gives the intended result.

Corollary 4.2 (Theorem 4.2). Given the same settings and assumption of Theorem 4.2, it follows:

E
[
∆2

θ̃

]
≤ |c|

2

mλ2

[∑

x∈D̄

p↔2
x ∥Gmax

x ∥2
]
. (4.41)

Proof. First, by Theorem 4.2 we obtain an upper bound for E
[
∆2

θ̃

]
as follows:

E
[
∆2

θ̃

]
≤ c2

λ2

[
1

m

∑

x∈D̄

p↔x ∥Gmax
x ∥

]2
. (4.42)

Applying the sum of squares inequality on the R.H.S. of eq:second we obtain:

c2

λ2

[
1

m

∑

x∈D̄

p↔x ∥Gmax
x ∥

]2
≤ c2

λ2

[
1

m
p↔2
x ∥Gmax

x ∥2
]
, (4.43)

which concludes the proof.
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4.10.3 Privacy analysis

This section provides the privacy analysis for the original PATE model and the proposed mitigation

solution. In PATE with the noisy-max scheme presented in (4.3) of the main chapter (also called

GNMAX), the privacy budget is used for releasing the voting labels ṽ(T (xi)) (a.k.a. hard labels)

for each of the m public data samples xi ∈ D̄ according to:

ṽ(T (xi))=argmax
c
{#c(T (xi))+N (0, σ2)} (4.44)

The proposed mitigation solution, instead, releases privately the voting counts (#c(T (xi))+

N (0, σ2))Cc=1 and uses these noisy counts to construct the soft-labels, see Equation (11).

Using an analogous analysis as that provided in [97], adding or removing one individual sample

x from any disjoint partitionDi ofD can change the voting count vector by at most two. This value

of the query deviation is obtained by GNMAX [97]. Therefore the privacy cost for releasing hard

labels or soft-labels is equivalent.

Next, this section provides the privacy computation ϵ given by Gaussian mechanism which

adds Gaussian noise with standard deviation σ to the voting counts.

The privacy analysis of PATE with hard or soft-labels is based on the concept of Renyi differ-

ential privacy (RDP) [85]. In either implementations, the process uses the Gaussian mechanism

to add independent Gaussian noise to the voting counts. The following Proposition 7.4 from [97]

derives the privacy guarantee for GNMAX.

Proposition 4.1. The GNMAX aggregator with private Gaussian noiseN (0, σ2) satisfies (γ, γ/σ2)-

RDP for all γ ≥ 1.

Since the GNMAX mechanism is applied on m public data samples from D̄, the total privacy

loss spent to provide the private labels is derived by the following composition theorem.

Theorem 4.4 (Composition for RDP). If a mechanism M consists of a sequence of adaptive

mechanisms M1,M2, . . . ,Mm such that for any i ∈ [m], Mi guarantees (γ, ϵi)-RDP, then M

guarantees (γ,
∑m

i=1 ϵi)-RDP.
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Based on Theorem 4.4 and Proposition 7.4, PATE satisfies (γ,mγ/σ2)-RDP. PATE also satisfies

(ϵ, δ)-DP by the following theorem.

Theorem 4.5 (From RDP to DP). If a mechanismM guarantees (γ, ϵ)-RDP, thenM guarantees

(ϵ+ log 1/δ
γ−1 , δ)-DP for any δ ∈ (0, 1).

As a result of Theorem 4.5, PATE (with either hard or soft labels) satisfies (mγ/σ2+ log 1/δ
γ−1 , δ)-DP.

4.10.4 Experimental analysis (Ext)

This section reports detailed information about the experimental setting as well as additional results

conducted on the Income, Bank, Parkinsons, Credit Card and UTKFace datasets.

4.10.5 Setting and datasets

Computing Infrastructure All of our experiments are performed on a distributed cluster equipped

with Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz and 8GB of RAM.

Software and Libraries All models and experiments were written in Python 3.7. All neural net-

work classifier models in our chapter were implemented in Pytorch 1.5.0.

The Tensorflow Privacy package was also employed for computing the privacy loss.

Datasets This chapter evaluates the fairness analysis of PATE on the following four UCI datasets:

Bank, Income, Parkinsons, Credit card and UTKFace dataset. A descriptions of each dataset is

reported as follows:

1. Income (Adult) dataset, where the task is to predict if an individual has low or high income,

and the group labels are defined by race: White vs Non-White [18].

2. Bank dataset, where the task is to predict if a user subscribes a term deposit or not and the

group labels are defined by age: people whose age is less than vs greater than 60 years

old [18].
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3. Parkinsons dataset, where the task is to predict if a patient has total UPDRS score that

exceeds the median value, and the group labels are defined by gender: female vs male [77].

4. Credit Card dataset, where the task is to predict if a customer defaults a loan or not. The

group labels are defined by gender: female vs male [23].

5. UTKFace dataset, where the task is to predict the gender of a given facial image. The group

labels are defined based on the following 9 age ranges: 0-10, 10-15, 15-20, 20-25, 25-30,

30-40, 40-50, 50-60, 60-120. [61]

On each dataset we perform standardization to render all input features with zero mean and

unit standard deviation. Each dataset was partitioned into three disjoint subsets: private set, public

train, and test set, as follows. We randomly select 75% of the dataset to use as private data and

the rest for public data. For the public data, m = 200 samples are randomly selected to train the

student model, and the rest of the data is used as a test set to evaluate that model.

Models’ Setting

To visually show how tight the upper bound from Corollary 4.1 is, the chapter uses a logistic

regression model with 1000 runs to estimate the expected model deviation E [∆θ̃] = E
[
∥θ̃− ⋆

θ ∥
]
.

For other experiments, the chapter uses a neural network with with two hidden layers and

nonlinear ReLU activations for both the ensemble and student models. All reported metrics are

an average of 100 repetitions, used to compute the empirical expectations. The batch size for

stochastic gradient descent is fixed to 32 and the learning rate is η = 1e− 4.

4.10.6 Upper bound of the expected model deviation

The following provides empirical results on Corollary 5.1 on four benchmark datasets. As in-

dicated in this corollary, the expected model deviation is bounded by 1
mλ

[∑
x∈D̄ p

↔
x ∥x∥

]
. To

visualize how tight the bounds are we report the RHS and LHS values of eq:8 on different datasets.

We run with two settings: k = 20, λ = 20 in Figure 4.8 and k = 200, λ = 100 in Figure 4.9.
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Fig. 4.8: Upper bound of the expected model deviation on 4 datasets with λ = 20, k = 20.
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Fig. 4.9: Upper bound of the expected model deviation on 4 datasets with λ = 100, k = 200.

4.10.7 The impact of regularization parameter

This section provides further empirical supports regarding impact of the regularization parameter λ

to the accuracy and fairness trade-off. As seen from Theorem 4.2, increasing λ reduces the model

deviation which in turns decreases the group excessive risk R(D̄←a) by Theorem 4.2 from the

main text. On the other hand, large regularization can intuitively impacts negatively to the model

accuracy. This was verified empirically in Figure 4.10 which shows how model deviation(left),

excessive risk difference between two groups (middle) and utility(right) vary according to λ.

4.10.8 The impact of teachers ensemble size k

This section illustrates the effect of teacher ensemble sizes k to: 1) flipping probability p↔x , and 2)

the trade-offs among model deviation E [∆θ̃], model’s fairness and utilities.

First, Theorem 4.3 from the main text shows that larger k values correspond to smaller flipping

probability p↔x . We provide more empirical evidence on other datasets and report the dependency

between flipping probability with number of teachers k in Figure 4.11. It can be observed consis-
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Fig. 4.10: Expected model deviation (left), empirical risk (middle), and model accuracy (right)
as a function of the regularization. The experiments are performed with the following settings:
k = 150, σ = 50.
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Fig. 4.11: Average flipping probability p↔x for samples x ∈ D̄ as a function of the ensemble size
k.

tently on all datasets, the more number of teachers k, the smaller the flipping probability p↔x over

all samples x is.

Second, regarding to the fairness analysis, similar to the previous subsection, we provide ad-

ditional empirical supports on the effects of k on the model deviation, the difference between the

group excessive risk, and the utility of the PATE models. We report these metrics on the other three

benchmarks datasets in Figure 4.12. A similar trend with the regularization parameter λ also holds

for the parameter k here. When the parameter k is increased to a large enough value, both model

deviation and accuracy decreases, but the unfairness measured by the excessive risk difference be-

tween two groups reduces. This can be explained by looking again Figure 4.11 and Theorem 4.3
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Fig. 4.12: Expected model deviation (left), empirical risk (middle), and model accuracy (right)
as a function of the ensemble size. The experiments are performed with the following settings:
λ = 100, σ = 50.

.

from the main text. A large number of teachers k results to a smaller flipping probability which in

turns reduces the model deviation. By Theorem 4.2 a small model deviation can reduce the level

of unfairness.

4.10.9 The impact of the data input norm

This section provides further experimental results regarding relation between (1) the input norm

with the private model deviation and (2) the input norm with its excessive risk.

Regarding the first relation, Corollary 5.1 from the main text implies that the smaller the input

norm ∥x∥ is the smaller the model deviation is. For each dataset, we then vary the range of the

input norm ∥x∥ and report the associated values of the expected model deviation in Figure 4.13.

It can be seen clearly from the Figure 4.13, a monotone connection between input norm and the

model deviation which verifies the statement from Corollary 5.1.

On the other hand, the input norm can affect the excessive risk by Lemma 4.1 of the Appendix,

the individuals or group of individuals of large gradient norm can suffer from large excessive

risk. In other words, the individuals of large data norm which are often observed at the tail of

data can loose more accuracy. To confirm such claims, we report in Figure 4.14 the Spearman
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Fig. 4.13: Relation between input norm and model deviation.

correlation between input norm and the excessive risk at individual levels. On all datasets, we can

see obviously a positive relationship between data input norm and the excessive risk.

4.10.10 Connection between input norm and smoothness parameter βa

It is noted that the smoothness parameter βa captures the local flatness of the loss function of

a particular group a. Consider the logistic regression classifier, then the smoothness parameter

ℓ(fθ(x), y) for one particular data point is given by βx = 0.25∥x∥ [114]. Recall the following

important property of the smooth function: If L =
∑

i ℓi and each ℓi is βi-smooth then L is

maxi βi-smooth. Because of that, the smoothness parameter βa for one particular group a is given

by: βa = 0.25maxx∈Da ∥x∥

The above clearly illustrates the relationship between input norms ∥x∥ and the smoothness

parameters βa.

4.10.11 Connection between input norm and gradient norm

In the main text, we have described, for logistic regression classifiers, there is a strong relation be-

tween the individual input norm ∥x∥ and their gradient norm at optimal parameter ∥∇ ⋆
θ
ℓ(f̄ ⋆

θ
(x), y)∥.

In this subsection, we extend the analysis for non-linear model. In particular, we show a similar

connection between the gradient norm and the input norm for a neural network with a single hidden

layer. We start by considering the following settings:
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Fig. 4.14: Correlation between the excessive risk and input norm on 5 datasets. The experiments
are performed with the following settings: λ = 100, σ = 50, k = 150.
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Settings Consider a neural network model f̄ ⋆
θ
(x)

def
= softmax

(
⋆

θ
T

1 τ(
⋆

θ
T

2 x)
)

where x = (xi)di=1

is a d dimensional input vector, the parameters
⋆

θ2∈ Rd×H ,
⋆

θ1∈ RH×C and the cross entropy loss

ℓ(f̄ ⋆
θ
(x), y) = −∑C

c=1 yc log f̄
⋆
θ,c
(x) where τ(·) is a proper activation function, e.g., a sigmoid

function. Let O = τ(
⋆

θ
T

2 x) ∈ RH be the vector (O1, . . . , OH) of H hidden nodes of the network.

Denote the variables hj =
∑d

i=1

⋆

θ2,j,i x
i as the j-th hidden unit before the activation function.

Next, denote
⋆

θ1,j,k∈ R as the weight parameter that connects the j-th hidden unit hj with the c-th

output unit f̄c and
⋆

θ2,i,j∈ R as the weight parameter that connects the i-th input unit xi with the

j-th hidden unit hj .

Given the settings above, we now show the dependency between gradient norm and input norm.

First notice that we can decompose the gradients norm of this neural network into two layers as

follows:

∥∇ ⋆
θ
ℓ(f̄ ⋆

θ
(x), y)∥2 = ∥∇ ⋆

θ1
ℓ(f̄ ⋆

θ
(x), y)∥2 + ∥∇ ⋆

θ2
ℓ(f̄ ⋆

θ
(x), y)∥2. (4.45)

We will show that∇ ⋆
θ2
ℓ(f̄ ⋆

θ
(x), y)∥ ∝ ∥x∥.

Notice that:

∥∇ ⋆
θ2
ℓ(f̄ ⋆

θ
(x), y)∥2 =

∑

i,j

∥∇ ⋆
θ2,i,j

ℓ(f̄ ⋆
θ
(x), y)∥2.

Applying, Equation (14) from [108], it follows that:

∇ ⋆
θ2,i,j

ℓ(f̄ ⋆
θ
(x), y) =

C∑

c=1

(
yc − f̄ ⋆

θ,c
(x)
) ⋆

θ1,j,c (Oj(1−Oj))x
i, (4.46)

which highlights the dependency of the gradient norm ∥∇ ⋆
θ2
ℓ(f̄θ(x), y)∥ and the input norm ∥x∥.

Figure 4.15 provides an empirical evidence for this dependency on all four datasets used in our

analysis. It can be seen clearly a strong positive correlation between input norm and the gradient

norm at individual levels on all datasets from Figure 4.15.
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4.10.12 Effectiveness of mitigation solution

This subsection provides extended empirical results regarding the effectiveness of our proposed

mitigation solution which was presented in Section 4.8.

We report the comparison between training PATE with hard and soft labels when k = 20 in

Figure 4.16 and when k = 150 in Figure 4.17. These figures again illustrate the effects of the

proposed mitigating solution in terms of utility/fairness tradeoff on the private student model. The

top subplots of each figure show the group excessive risks R(D̄←0) and R(D̄←1) associated with

two groups while the bottom subplots illustrate the accuracy of the model, at increasing of the

privacy loss ϵ. Recall that our mitigation solution does not require the availability of group labels

during training. This challenging settings are of importance under the scenario when it is not

feasible to collect or use protected features (e.g., under GDPR).
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Fig. 4.16: Comparison between training privately PATE with hard labels and soft labels in term
of fairness (top subfigures) and utility(bottom subfigures) on (a) Bank, (b) Credit card, (c) Income
(d) Parkinsons, (e) UTKFace dataset. Here for each dataset, the number of teachers k = 20.
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Fig. 4.17: Comparison between training privately PATE with hard labels and soft labels in term
of fairness (top subfigures) and utility(bottom subfigures) on (a) Bank, (b) Credit card, (c) Income,
and (d) Parkinsons Here for each dataset, the number of teachers k = 150.
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CHAPTER 5

PRUNING HAS A DISPARATE IMPACT ON

MODEL ACCURACY

Network pruning is a widely-used compression technique that is able to significantly scale down

overparameterized models with minimal loss of accuracy. This chapter shows that pruning may

create or exacerbate disparate impacts. The chapter sheds light on the factors to cause such dispar-

ities, suggesting differences in gradient norms and distance to decision boundary across groups to

be responsible for this critical issue. It analyzes these factors in detail, providing both theoretical

and empirical support, and proposes a simple, yet effective, solution that mitigates the disparate

impacts caused by pruning.

5.1 Introduction

As deep learning models evolve and become more powerful, they also become larger and more

costly to store and execute. The trend hinders their deployment in resource-constrained platforms,

such as embedded systems or edge devices, which require efficient models in time and space.

To address this challenge, studies have developed a variety of techniques to prune the relatively

insignificant or insensitive parameters from a neural network while ensuring competitive accu-
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Fig. 5.1: Accuracy of each demographic group in the UTK-Face dataset using Resnet18 [56], at
the increasing of the pruning rate.

racy [8, 15, 20, 104, 107, 111, 143]. When a model needs to be developed to fit given and certain

requirements in size and resource consumption, a pruned model which is derived from a large,

rigorously-trained, and (often) over-parameterized model, is regarded as a de-facto standard. That

is because it performs incomparably better than a same-size dense model which is trained from

scratch, when the same amount of effort and resources are invested.

In spite of its strengths, pruning has been showed to induce or exacerbate disparate effects in

the accuracy of the resulting reduced models [58, 59]. Intuitively, the removal of model weights

affects the process in which the network separates different classes, which can have contrasting

consequences for different groups of individuals. This chapter further shows that the accuracy of

the pruned models tends to increase (decrease) more in classes that had already high (low) accu-

racy in the original model, leading to a “the rich get richer” and “the poor get poorer” effect. This

Matthew effect is illustrated in Figure 7.1. The figure shows the accuracy of a facial recognition

task on different demographic groups for several pruning rates (indicating the percentage of param-

eters removed from the original models). Notice how the accuracy of the majority group (White)

tends to increase while that of the minority groups tends to decrease as the pruning ratio increases.

Following these observations, we shed light on the factors to cause such disparities. The the-

oretical findings suggest the presence of two key factors responsible for why accuracy disparities

arise in pruned models: (1) disparity in gradient norms across groups, and (2) disparity in Hessian

matrices associated with the loss function computed using a group’s data. Informally, the former

carries information about the groups’ local optimality, while the latter relates to model separability.
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We analyze these factors in detail, providing both theoretical and empirical support on a variety

of settings, networks, and datasets. By recognizing these factors, we also develop a simple yet

effective training technique that largely mitigates the disparate impacts caused by pruning. The

method is based on an alteration of the loss function to include components that penalize disparity

of the average gradient norms and distance to decision boundary across groups.

These findings are significant: Pruning is a key enabler for neural network models in embedded

systems with deployments in security cameras and sensors for autonomous devices for applications

where fairness is an essential need. Without careful consideration of the fairness impact of these

techniques, the resulting models can have profound effects on our society and economy.

Related work

Fairness and network pruning have been long studied in isolation. The reader is referred to the

related chapters and surveys on fairness [14, 24, 36, 54, 84] and pruning [8, 15, 20, 104, 107, 111,

121, 143] for a review on these areas.

The recent interest in assessing societal values of machine learning models has seen an increase

of studies at the intersection of different properties of a learning model and their effects on fairness.

For example, [139] studies the setting of adversarial robustness and show that adversarial training

introduces unfair outcomes in term of accuracy parity [145]. [148] show that semisupervised set-

tings can introduce unfair outcomes in the resulting accuracy of the learned models. Finally, several

authors have also shown that private training can have unintended disparate impacts to the resulting

models’ outputs [12, 46, 123, 131, 147] and downstream decisions [71, 125].

Network compression has also been shown to have a profound impact towards the model fair-

ness. For example, several works observed empirically that network compression may amplify

unfairness in different learning tasks [58,59,65,92]. Most of the focus has been on vision tasks and

in identifying the set of Pruning Identified Exemplars (PIEs), the samples that are impacted most

under the compression scheme and conclude that PIEs belongs to low frequency groups (those ob-

served at the tail of the data distribution). [19] further investigate how bias could be evaluated and
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mitigated in pruned neural networks using knowledge distillation while [60] observed empirically

that knowledge distillation processes may produce unfair student models. The impact of network

compression towards fairness has also been assessed in natural language tasks. For example, [35]

and [136] empirically measure the robustness of compressed large language models, while [9]

look into how compression schemes affects data-limited regimes. Finally, [138] investigate ways

to improve fairness in generative language models by compressing them. We also note that, con-

currently to this work, [51] studied the relative distortion in recall for various classes. They show

that pruning has a Matthews effect on the recall for various classes and propose an algorithm to

attenuate such an effect.

This chapter builds on this body of work and their important empirical observations and pro-

vides a step towards a deeper theoretical understanding of the fairness issues arising as a result of

pruning. It derives conditions and studies the causes of unfairness in the context of pruning as well

as it introduces mitigating guidelines.

5.2 Problem settings and goals

The chapter considers datasets D consisting of n datapoints (xi, ai, yi), with i ∈ [n], drawn

i.i.d. from an unknown distribution Π. Therein, xi ∈ X is a feature vector, ai ∈ A with A = [m]

(for some finite m) is a demographic group attribute, and yi ∈ Y is a class label. For example, con-

sider the case of a face recognition task. The training example feature xi may describe a headshot

of an individual, the protected attribute ai may describe the individual’s gender or ethnicity, and yi

represents the identity of the individual. The goal is to learn a predictor fθ : X → Y , where θ is a

k-dimensional real-valued vector of parameters that minimizes the empirical risk function:

⋆

θ= argmin
θ

J(θ;D) =
1

n

n∑

i=1

ℓ(fθ(xi), yi), (5.1)

where ℓ : Y × Y → R+ is a non-negative loss function that measures the model quality.

We focus on analyzing properties arising when extracting a small model fθ̄ with θ̄ ⊂ ⋆

θ of size
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|θ̄| = k̄ ≪ k. Model fθ̄ is constructed by pruning the least important values or filters from vector
⋆

θ (i.e., those with smaller values in magnitude) according to a prescribed criterion, such as an ℓp

norm [88,107]. The chapter focuses on understanding the fairness impacts (as defined next) arising

when pruning general classifiers, such as neural networks.

Fairness The fairness analysis focuses on the notion of excessive loss, defined as the difference

between the original and the pruned risk functions over some group a ∈ A:

R(a) = J(θ̄;Da)− J(
⋆

θ;Da), (5.2)

where Da denotes the subset of the dataset D containing samples (xi, ai, yi) whose group mem-

bership ai = a. Intuitively, the excessive loss represents the change in loss (and thus, in accuracy)

that a given group experiences as a result of pruning. Fairness is measured in terms of the maximal

excessive loss difference, also referred to as fairness violation:

ξ(D) = max
a,a′∈A

|R(a)−R(a′)|, (5.3)

defining the largest excessive loss difference across all protected groups. (Pure) fairness is achieved

when ξ(D) = 0, and thus a fair pruning method aims at minimizing the excessive loss difference.

The goal of this chapter is to shed light on why fairness issues arise (i.e., R(a) > 0) as a result

of pruning, why some groups suffer more than others (i.e., R(a) > R(a′)), and what mitigation

measures could be taken to minimize unfairness due to pruning.

We use the following notation: variables are denoted by calligraph symbols, vectors or matrices

by bold symbols, and sets by uppercase symbols. Finally, ∥ · ∥ denotes the Euclidean norm and we

use fθ(x) to refer to the model’ soft outputs. All proofs are reported in Section 5.8.1.

Network pruning In the scope of this chapter, we focus on single shot network pruning.[CITE]

This network pruning scheme consists of the following three steps:
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1. Standard training In the first step, we perform standard training as in Equation 6.1 to obtain

optimal parameters θ∗.

2. Pruning In the second step, we prune/remove the least important parameters/filters based on

some criteria (e.g., l1/l2 norm based) from θ∗ to obtain θ̄.

3. Fine-tuning In the last step, we fine-tune the pruned parameter θ̄ to obtain parameter θ̃

We are interested in quantifying the disparate impact on accuracy of using the θ̃ compared to the

before pruning parameter θ∗ to different classes.

5.3 Fairness analysis in pruning: Roadmap

To gain insights on how pruning may introduce unfairness, we start with providing a useful upper

bound for a group’s excessive loss. Its goal is to isolate key aspects of model pruning that are

responsible for the observed unfairness. The following discussion assumes the loss function ℓ(·)

to be at least twice differentiable, which is the case for common ML loss functions, such as mean

squared error or cross entropy loss.

Theorem 5.1. The excessive loss of a group a ∈ A is upper bounded by1:

R(a) ≤
∥∥gℓ

a

∥∥×
∥∥θ̄− ⋆

θ
∥∥+ 1

2
λ
(
Hℓ

a

)
×
∥∥θ̄− ⋆

θ
∥∥2 +O

(∥∥θ̄− ⋆

θ
∥∥3
)
, (5.4)

where gℓ
a = ∇θJ(

⋆

θ;Da) is the vector of gradients associated with the loss function ℓ evaluated

at
⋆

θ and computed using group data Da, Hℓ
a = ∇2

θJ(
⋆

θ;Da) is the Hessian matrix of the loss

function ℓ, at the optimal parameters vector
⋆

θ, computed using the group data Da (henceforth

simply referred to as group hessian), and λ(Σ) is the maximum eigenvalue of a matrix Σ.

The bound above follows from a second order Taylor expansion of the loss function, Cauchy-

Schwarz inequality, and properties of the Rayleigh quotient.
1With a slight abuse of notation, the results refer to θ̄ as the homonymous vector which is extended with k − k̄

zeros.
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Notice that, in addition to the difference in the original and pruned parameters vectors, two key

terms appear in Equation (5.4): (1) The norms of the gradients gℓ
a and (2) the maximum eigenvalue

of the Hessian matrix Hℓ
a for a group a. Informally, the former is associated with the groups’ local

optimality while the latter relates to the ability of the model to separate the groups data. As we will

show next these components represent the main sources of unfairness due to model pruning.

The following is an important corollary of Theorem 5.1. It shows that the larger the pruning,

the larger will be the excessive loss for a given group.

Corollary 5.1. Let k̄ and k̄′ be the size of parameter vectors θ̄ and θ̄′, respectively, resulting from

pruning model f⋆
θ
, where k̄ < k̄′ (i.e., the former model prunes more weight than the latter one).

Then, for any group a ∈ A,

R̃(a, θ̄) ≥ R̃(a, θ̄′), (5.5)

where R̃(a,ω) is the excessive loss upper bound computed using pruned model parameters ω

(Eq. (5.4)).

The corollary above indicates that the excess risk for a group increases as the pruning regime

increase. Building on this result, the chapter illustrates next why unfairness can become more

significant as the pruning regime increases.

The next sections analyze the effect of gradient norms and the Hessian to unfairness in the

pruned models. The theoretical claims are supported and complemented by analytical results.

These results use the UTKFace dataset [144] for a vision task whose goal is to classify ethnic-

ity. The experiments use a ResNet-18 architecture and the pruning counterparts remove the P%

parameters with the smallest absolute values for various P . All reported metrics are normalized

and an average of 10 repetitions. While the theoretical analysis focuses on the notion of disparate

impacts under the lens of excessive loss, the empirical results report differences in accuracy of the

resulting models. The empirical results thus reflect the setting commonly adopted when measuring

accuracy parity [145].

We report a glimpse of the empirical results, with the purpose of supporting the theoretical
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claims, and extended experiments, as well as additional descriptions of the datasets and settings,

are reported in Section 5.8.2.

5.4 Why disparity in groups’ gradients causes unfairness?

This section analyzes the effect of gradients norms on the unfairness observed in the pruned mod-

els. In more detail, it shows that unbalanced datasets result in a model with large differences in

gradient norms between groups (Proposition 5.1), it connects gradients norms for a group with

the resulting model errors in such a group (Proposition 5.2), and connects these concepts with the

excessive loss (Theorem 5.1) to show that unfairness in model pruning is largely controlled by the

difference in gradient norms among groups.
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0.0

0.1

0.2

0.3

0.4 Group size
||ga||

Fig. 5.2: Group size vs. gradi-
ent norms.

Gradient norms and group sizes. The section first shows

that imbalanced datasets lead a model to have imbalanced gra-

dient norms across groups. The following result assumes that the

training converges to a local minima.

Proposition 5.1. Consider a dataset with two groups, a and b with

|Da| ≥ |Db|. Then
∥∥gℓ

a

∥∥ ≤
∥∥gℓ

b

∥∥ .

That is, groups with more data samples will result in smaller

gradients norms than groups with fewer data samples and vice-

versa. Figure 5.2 illustrates Proposition 5.1. The plot shows the

relation between groups sizes |Da| and their associated gradient norms ∥gℓ
a∥ on the UTK dataset

and settings described above. Notice the strong trend between decreasing group sizes and in-

creasing gradient norms for such groups. These theoretical considerations can be used to explain

why underrepresented groups are often subject to larger performance impacts after network prun-

ing [59]. These groups tend to exhibit large gradient norms at convergence, relative to other groups,

thus, by Theorem 5.1, they are also subject to larger excessive losses due to pruning.
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Gradient norms and accuracy. Next, the section shows a strong connection between the gra-

dient norms of a group and its associated accuracy. The following assumes the models adopt a

cross entropy loss (or mean squared error for regression tasks, as shown Section 5.8.1).

Proposition 5.2. For a given group a ∈ A, gradient norms can be upper bounded as:

∥gℓ
a∥ ∈ O


 ∑

(x,y)∈Da

∥f⋆
θ
(x)− y∥︸ ︷︷ ︸

Error

×
∥∥∇θf⋆

θ
(x)
∥∥

 .

The above relates gradient norms with an error measure of the classifier to a target label mul-

tiplied by the gradient of the predictions. For example, in a classification task with cross entropy

loss, ℓ(fθ(x), y) = −
∑

z∈Y f
z
θ(x)y

z, where f z
θ(x) represents the z-th element of the output asso-

ciated with the soft-max layer of model fθ, and y is a one-hot encoding of the true label y, with yz

representing its z-th element, then,

∥ga∥ = ∥∇θJ(θ;Da, )∥ =

∥∥∥∥∥∥
1/|Da|

∑

(x,y)∈Da

∇fℓ(fθ(x), y)×∇θfθ(x)

∥∥∥∥∥∥

=

∥∥∥∥∥∥
1/|Da|

∑

(x,y)∈Da

(fθ(x)− y)×∇θfθ(x)

∥∥∥∥∥∥

≤ 1/|Da|
∑

(x,y)∈Da

∥fθ(x)− y∥ × ∥∇θfθ(x)∥ .
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Fig. 5.3: Accuracy vs. gradient
norms.

A similar observation holds for mean square error loss, as illus-

trated in Section 5.8.1. The observation above sheds light on the

correlation between the prediction error of a group and its model

gradients. This relation is emphasized in Figure 5.3, which illus-

trates that the gradient norm for a given group increases as its prediction accuracy decreases.

Proposition 5.2 allows us to link the gradient norms with the group accuracy of the resulting

model, which, together with the result above will be useful to reason about the impact of gradient

norms on the disparities in the group excessive losses.
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Fig. 5.4: Accuracy, gradient norm, and group Hessian max eigenvalues of each ethnicity group,
before and after increasing pruning ratios for UTK-Face dataset. The percentage of data samples
across groups White, Black, Asian, Indian, and Others is ∼ 0.42, 0.19, 0.15, 0.15, 0.07, respec-
tively.

The role of gradient norms in pruning. Having highlighted the connection between gradi-

ents norms of a group with the accuracy of the pruned model on such a group, this section provides

theoretical intuitions on the role of gradient norms in the disparate group losses during pruning.

From Theorem 5.1, notice that the excessive loss is controlled by term ∥gℓ
a∥ × ∥θ̄−

⋆

θ ∥. As

already noted in Corollary 5.1, the term ∥θ̄− ⋆

θ ∥ regulates the impact of pruning on the excessive

loss, as the difference between the pruned and non-pruned parameters vectors directly depends on

the pruning rate. For a fixed pruning rate, however, notice that groups with different gradient norms

will have a disparate effect on the resulting term. In particular, groups with very small gradients

norms (those generally associated with highly accurate predictions) will be less sensitive to the

effects of the pruning rate. Conversely, groups with large gradient norms will be affected by the

pruning rate to a greater extent, with larger pruning rates, typically reflecting in larger excessive

losses.

These observations of the factors of disparity, accuracy, and group size, can also be appreciated

empirically in Figures 5.4a and 5.4b. The plots report accuracy (a) and gradient norms (b) on the

UTKFace datasets for a variety of pruning rates. Consider group White (containing 42% of the

total samples) and Others (containing 7% of the total samples). The unpruned model has high

accuracy on the former group and small gradient norms. The accuracy of this group is insensitive

to various pruning rates and even increases at large pruning regimes. In contrast, group Others
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has much lower accuracy and larger gradient norms in the unpruned model. As the pruning rate

increase, their accuracies drastically drop. As a result, in high pruning regimes, this minority group

exhibits poor accuracy and very high gradient norms.

Notice that the empirical results apply to much more complex settings than those which can be

analyzed formally, thus they complement the theoretical observations.

5.5 Why disparity in groups’ Hessians causes unfairness?

Having examined the properties of the groups gradients and their relation to unfairness in pruning,

this section turns on analyzing how the Hessian associated with the loss function for a group is

linked to the unfairness observed during pruning. In more detail, it connects the groups’ Hessian to

the distance to the decision boundary for the samples in that group and their resulting model errors

(Theorem 5.2), it illustrates a strong positive correlation between groups’ Hessian and gradient

norms, and links these concepts with the excessive loss (Theorem 5.1) to show that unfairness

in model pruning is controlled by the difference in maximum eigenvalues of the Hessians among

groups.

Group Hessians and accuracy. The section first shows that groups presenting large Hessian

values may suffer larger disparate impacts due to pruning, when compared with groups that have

smaller Hessians. It does so by connecting the maximum eigenvalues of the groups Hessians with

their distance to decision boundary and the group accuracy. The following result sheds light on

these observations. It restricts its attention to models trained under binary cross entropy losses, for

clarity of explanation, although an extension to a multi-class case is directly attainable.

Theorem 5.2. Let fθ be a binary classifier trained using a binary cross entropy loss. For any
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group a ∈ A, the maximum eigenvalue of the group Hessian λ(Hℓ
a) can be upper bounded by:

λ(Hℓ
a) ≤

1

|Da|
∑

(x,y)∈Da

(
f⋆
θ
(x)
) (

1− f⋆
θ
(x)
)

︸ ︷︷ ︸
Closeness to decision boundary

×
∥∥∇θf⋆

θ
(x)
∥∥2 +

∣∣f⋆
θ
(x)− y

∣∣
︸ ︷︷ ︸

Error

×λ
(
∇2

θf⋆
θ
(x)
)
.

(5.6)

The proof relies on derivations of the Hessian associated with model loss function and Weyl

inequality. In other words, Theorem 5.2 highlights a direct connection between the maximum

eigenvalue of the group Hessian and (1) the closeness to the decision boundary of the group sam-

ples, and (2) the accuracy of the group. The distance to the decision boundary is derived from [29].

Intuitively this term is maximized when the classifier is highly uncertain about the prediction:

f⋆
θ
(x)→ 0.5, and minimized when it is highly certain f⋆

θ
(x)→ 0 or 1, as showed in the following

proposition.

Proposition 5.3. Consider a binary classifier fθ(x). For a given sample x ∈ D, the term

f⋆
θ
(x)(1− f⋆

θ
(x)) is maximized when f⋆

θ
(x) = 0.5 and minimized when f⋆

θ
(x) ∈ {0, 1}.
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Observe that a group consisting of samples that are far from

the decision boundary will have smaller Hessians and, thus, be less

subject to a drop in accuracy due to model pruning. These results

can be appreciated in Figure 5.5. Notice the inverse relationship

between maximum eigenvalues of the groups’ Hessians and their

average distance to the decision boundary. The same relation also

holds for accuracy: the higher the Hessians maximum eigenvalues,

the smaller the accuracy. This is intuitive as samples which are

close to the decision boundary will be more prone to errors due to

small changes in the model due to pruning, when compared with

samples lying far from the decision boundary.

Correlation between group Hessians and gradient norms. This section observes a posi-

tive correlation between maximum eigenvalues of the Hessian of a group and their gradient norms.
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This relation can be appreciated in Figure 5.6. While mainly empirical, this observation is im-

portant as it illustrates that both the Hessian λ(Hℓ
a) and the gradient ∥gℓ

a∥ terms appearing in the

upper bound of the excessive loss R(a) reported in Theorem 5.1 are in agreement. This relation

was observed in all our experiments and settings. Such observation allows us to infer that it is the

combined effect of gradient norms and group Hessians that is responsible for the excessive loss of

a group and, in turn, for the exacerbation of unfairness in the pruned models.
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Groups
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0.3

0.4 (Ha)
||ga||

Fig. 5.6: Group Hessians
and gradient norms.

The role of the group Hessian in pruning. Having highlighted

the connection between Hessian for a group with the resulting accu-

racy of the model on such a group, this section provides theoretical

intuitions on the role of the Hessians in the disparate group losses

during pruning.

In Theorem 5.1, notice that the excessive loss is controlled by

term ∥Hℓ
a∥ × ∥θ̄−

⋆

θ ∥2. As also noted in the previous section, the

term ∥θ̄− ⋆

θ ∥ regulates the impact of pruning on the excessive loss

as the difference between the pruned and non-pruned parameter vec-

tors directly depends on the pruning rate. Similar to the observation

for gradient norms, with a fixed pruning rate, groups with different

Hessians will have a disparate effect on the resulting term. In particular, groups with small Hes-

sians eigenvalues (those generally distant from the decision boundary and highly accurate) will be

less sensitive to the effects of the pruning rate. Conversely, groups with large Hessians eigenvalues

will be affected by the pruning rate to a greater extent, typically resulting in larger excessive losses.

These observations can further be appreciated empirically in Figures 5.4a (for accuracy) and 5.4c

(for maximum group Hessian eigenvalues) on the UTKFace datasets for a variety of pruning rates.
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5.6 Mitigation solution and evaluation

The previous sections highlighted the presence of two key factors playing a role in the observed

model accuracy disparities due to pruning: the difference in gradient norms, and the difference

in Hessians losses across groups. This section first shows how to leverage these findings to pro-

vide a simple, yet effective solution to reduce the disparate impacts of pruning. Then, the section

illustrates the benefits of this mitigating solution on a variety of tasks, datasets, and network archi-

tectures.

5.6.1 Mitigation solution

To achieve fairness, the aforementioned findings suggest to equalize the disparity associated with

gradient norms ∥gℓ
a∥ and Hessians λ(Hℓ

a) across different groups a ∈ A. For this goal, we adopt

a constrained empirical risk minimization approach:

minimize
θ

J(θ;D) such that: ∥gℓ
a∥ = ∥gℓ∥, λ(Hℓ

a) = λ(Hℓ) ∀a ∈ A, (5.7)

where gℓ = ∇θJ(θ;D) and Hℓ = ∇2
θJ(θ;D) refer to the gradients and Hessian associated

with loss function ℓ, respectively, and are computed using the whole dataset D. The approach

(5.7) is a common strategy adopted in fair learning tasks, and the chapter uses the Lagrangian

Dual method of [44] which exploits Lagrangian duality to extend the loss function with trainable

and weighted regularization terms that encapsulate constraints violations (see Section 5.8.2 for

additional details).

A shortcoming of this approach is, however, that requires computing the gradient norms and

Hessian matrices of the group losses in each and every training iteration, rendering the process

computationally unviable, especially for deep, overparametrized networks.

To overcome this computational burden, we will use two observations made earlier in the chap-

ter. First, recall the strong relation between gradient norms for a group and their associated losses.

This aspect was noted in Proposition 5.2. That is, when the losses across the groups are similar,
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the gradient norms across such groups will also tend to be similar. Next, Theorem 5.2 noted a

positive correlation between model errors (and thus loss values) for a group and its associated Hes-

sian eigenvalues. Thus, when the losses across the groups are similar, the group Hessians will also

tend to be similar. This intuition is also complemented by the strong correlation between group

Hessians and gradient norms reported in Section 5.5. Based on the above observations, we propose

a simpler version of the constrained minimizer (5.7) defined as

minimize
θ

J(θ;D) such that: J(θ;Da) = J(θ;D) ∀a ∈ A, (5.8)

that substitutes the gradient norms and max eigenvalues of group Hessians equality constraints

with proxy terms capturing the group J(θ;Da) and population J(θ;D) losses.
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Fig. 5.7: Effects of fairness constraints in bal-
ancing not only group accuracy (left) but also
gradient norms (middle) and group average dis-
tance to the decision boundary (right).

The impact of such proxy terms in the

fairness-constrained problem above can be ap-

preciated, empirically, in Figure 5.7. The plots,

that use the UTK-Face dataset, with Ethnic-

ity as protected group, show an original un-

fair model (top) and a fair counterpart obtained

through problem (5.8) (bottom). Both top and

bottom sub-figures use an unpruned model.

The top sub-figure shows the performance of

an original unpruned model trained by mini-

mizing the empirical risk function while the

bottom one shows the effect of solving Prob-

lem (5.8), i.e., it constrains the empirical risk

function with the various group loss terms. No-

tice how enforcing balance in the group losses

also helps reducing and balancing the gradient
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Fig. 5.8: Accuracy and Fairness violations attained by all models on ResNet50, UTK-Face dataset
with ethnicity (5 classes) as group attribute (and labels) [left] and age (9 classes) [right].

norms and group’s average distance to the de-

cision boundary. As a consequence, the resulting model fairness is dramatically enhanced (bottom-

left subplot).

5.6.2 Assessment of the mitigation solution

Datasets, models, and settings. This section analyzes the results obtained using the proposed

mitigation solution with ResNet50 and VGG19 on the UTKFace dataset [144], CIFAR-10 [70], and

SVHN [90] for various protected attributes. The experiments compare the following four models:

• No Mitigation: it refers to the standard pruning approach which uses no fairness mitigation

strategy.

• Fair Bf Pruning: it applies the fairness mitigation process (Problem (5.8)) exclusively to the

original large network, thus before pruning.

• Fair Aft Pruning: it applies the mitigation exclusively to the pruned network, thus after pruning.

• Fair Both: it applies the mitigation both to the original large network and to the pruned network.

The experiments report the overall accuracy of resulting models as well as their fairness vi-

olations, defined here as the difference between the maximal and minimal group accuracy. The

reported metrics are the average of 10 repetitions. Additional details on datasets, architectures, and

hyper-parameters adopted, as well as additional and extended results are reported in Section 5.8.2.
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Fig. 5.9: Accuracy and Fairness violations attained by all models on VGG-19, CIFAR-10 dataset
(left) and SVHN (right) with 10 class labels also used as group attribute.

Effects on accuracy. The section first focuses on analyzing the effects of accuracy drop due to

applying the proposed mitigation solution for fair pruning. Figure 5.8 compares the four models on

the UTK-Face dataset using a ResNet50 architecture. The left subplots use ethnicity as protected

group and class label, with |Y| = 5, while the right subplots use age as protected group and

class label, with |Y| = 9. Notice that, as expected, all compared models present some accuracy

deterioration as the pruning rate increases. However, notably, the deterioration of the models that

apply the fair mitigation steps are comparable to (or even improved) those of the "No mitigation"

model, which applies standard pruning.

A similar trend can be seen in Figure 5.9 that reports results on CIFAR (left) and SVHN (right).

Both use the ten class labels as protected attributes. These results clearly illustrate the ability of

the mitigating solution to preserve highly accurate models.

A comparison of the “full” (Equation 5.7) and “relaxed” (Equation 5.8) versions of the pro-

posed mitigation solutions is provided in Table 5.1. We note that while the "full" version leads to

fairer results, the reduction in the various groups accuracy is often insubstantial. We also note that

the running time of the "full" version is largely (over an order magnitude) longer than the relaxed

counterpart. This is due to the calculation of gradient norms and the Hessian terms associated with

each group.

Effects on fairness. The section next illustrates the ability of the proposed solution to achieve

fair pruned models. Table 5.2 illustrates the results for the UTKFaces dataset with ethnicity as

class labels and age as protected attributes for a CNN with two convolutional layers and three
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Dataset version Class-wise accuracy Overall accuracy

UTK-age bins full 0.856, 0.128, 0.145, 0.319, 0.331, 0.342, 0.181, 0.334, 0.512 0.395
relaxed 0.810, 0.096, 0.141, 0.284, 0.385, 0.324, 0.227, 0.257, 0.533 0.390

UTK-gender full 0.830, 0.876 0.857
relaxed 0.868, 0.845 0.852

SVHN full 0.864, 0.911, 0.869, 0.819, 0.887, 0.784, 0.840, 0.877, 0.805, 0.856 0.857
relaxed 0.824, 0.910, 0.775, 0.726, 0.827, 0.752, 0.747, 0.789, 0.713, 0.755 0.795

MNIST full 0.998, 0.996, 0.993, 0.998, 0.994, 0.991, 0.991, 0.993, 0.992, 0.985 0.993
relaxed 0.994, 0.988, 0.989, 0.986, 0.987, 0.979, 0.981, 0.988, 0.969, 0.994 0.986

Table 5.1: Full (Equation 5.7) vs relaxed (Equation 5.8) versions of the proposed mitigation solu-
tions.

Methods Overall accuracy Fairness violations
30% 50% 70% 90 % 30% 50% 70% 90%

No mitigation 0.546 0.545 0.529 0.559 0.179 0.186 0.152 0.134
Fair bf Pruning 0.539 0.557 0.529 0.540 0.189 0.190 0.174 0.238

Fair Aft Pruning 0.538 0.532 0.497 0.472 0.172 0.161 0.163 0.05
Fair both 0.525 0.541 0.508 0.484 0.170 0.144 0.156 0.073

Table 5.2: Accuracy and fairness violations for the UTKFaces dataset with ethnicity as class labels
and age as protected attributes and prune amounts of 30%, 50%, 70%, and 90%.

linear layers and prune amounts: 30%, 50%, 70%, and 90%. Notice how Fair Aft pruning and

Fair both achieve relatively lesser fairness violations compared to the No mitigation and the Fair

bf Pruning methods in most cases.

Next, the second and fourth subplots presented in Figures 5.8 and 5.9 illustrate the fairness

violations obtained by the four models analyzed on different datasets and settings. We make the

following observations: First, all the plots exhibit a consistent trend in that the mitigation solution

produces models which improve the fairness of the baseline, "No mitigation" model. Observe that,

as already illustrated in Figure 5.7, the fair models tend to equalize the gradient norms and group

Hessians components (and thus the distance to the decision boundary across groups). Thus, the

resulting pruned models also attain better fairness, when compared to their standard counterparts.

Next, notice that "Fair Aft Pruning" often achieves better fairness violations than "Fair Bf

Pruning", especially at high pruning regimes. This is because the former has the advantage to

apply the mitigation solution directly to the pruned model to ensure that the resulting model has low

differences in gradient norms and group Hessians. The presentation also illustrates the application

of the mitigation strategies both before and after pruning (Fair Both) which shows once again the
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significance of applying the mitigation solution over the pruned network.

Finally, it is notable that "Fair Aft Pruning" achieves good reductions in fairness violation.

Indeed, pre-trained large (non-pruned) fair models may not be available and the ability to retrain

these large models prior to pruning may be hindered by their size and complexity.

5.7 Discussion and limitations

This section discusses three key messages found in this study. First, we notice that pruning affect-

ing model separability and distance to the decision boundary is related to concepts also explored

in robust machine learning [52, 94]. Not surprisingly, some recent literature in network pruning

has empirically observed that pruning may have a negative impact on adversarial robustness [53].

These observations raise questions about the connection between pruning, robustness, and fairness,

which we believe is an important direction to further investigate.

Next, although the solution proposed in Problem (5.8) allows it to be adopted in large models,

the size of modern ML models (together with the amount of hyperparameters searches) may hinder

retraining such original massive models from incorporating fairness constraints. Notably, however,

the proposed mitigation solution can be used as a post-processing step to be applied during the

pruning operation directly. The previous section shows that the proposed method delivers desirable

performance in terms of both accuracy and fairness.

Finally, we notice that the results analyzed in this chapter pertain to losses that are twice differ-

entiable. Lifting such an assumption will be an interesting and challenging future research avenue.

5.8 Appendix
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5.8.1 Missing proofs

Theorem 5.1. The excessive loss of a group a ∈ A is upper bounded by2:

R(a) ≤
∥∥gℓ

a

∥∥×
∥∥θ̄− ⋆

θ
∥∥+ 1

2
λ
(
Hℓ

a

)
×
∥∥θ̄− ⋆

θ
∥∥2 +O

(∥∥θ̄− ⋆

θ
∥∥3
)
, (5.9)

where gℓ
a = ∇ ⋆

θ
J(

⋆

θ;Da) is the vector of gradients associated with the loss function ℓ evaluated

at
⋆

θ and computed using group data Da, Hℓ
a = ∇2

⋆
θ
J(

⋆

θ;Da) is the Hessian matrix of the loss

function ℓ, at the optimal parameters vector
⋆

θ, computed using the group data Da (henceforth

simply referred to as group hessian), and λ(Σ) is the maximum eigenvalue of a matrix Σ.

Proof. Using a second order Taylor expansion around
⋆

θ, the excessive lossR(a) for a group a ∈ A

can be stated as:

R(a) = J(θ̄;Da)− J(
⋆

θ;Da)

=

[
J
( ⋆

θ;Da

)
+
(
θ̄− ⋆

θ
)⊤ ∇θJ

( ⋆

θ;Da

)
+

1

2

(
θ̄− ⋆

θ
)⊤

Hℓ
a

(
θ̄− ⋆

θ
)
+O

(∥∥ ⋆

θ −θ̄
∥∥3
)]
− J

( ⋆

θ;Da

)

=
(
θ̄− ⋆

θ
)⊤

gℓ
a +

1

2

(
θ̄− ⋆

θ
)⊤

Hℓ
a

(
θ̄− ⋆

θ
)
+O

(
∥ ⋆

θ −θ̄∥3
)

The above, follows from the loss ℓ(·) being at least twice differentiable, by assumption.

By Cauchy-Schwarz inequality, it follows that

(
θ̄− ⋆

θ
)⊤

gℓ
a ≤

∥∥θ̄− ⋆

θ
∥∥×

∥∥gℓ
a

∥∥ .

In addition, due to the property of Rayleigh quotient we have:

1

2

(
θ̄− ⋆

θ
)⊤

Hℓ
a

(
θ̄− ⋆

θ
)
≤ 1

2
λ
(
Hℓ

a

)
×
∥∥θ̄− ⋆

θ
∥∥2 .

The upper bound for the excessive loss R(a) is thus obtained by combining these two inequalities.

2With a slight abuse of notation, the results refer to θ̄ as the homonymous vector which is extended with k − k̄
zeros.
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Proposition 5.1. Consider two groups a and b in A with |Da| ≥ |Db|. Then
∥∥gℓ

a

∥∥ ≤
∥∥gℓ

b

∥∥ .

Proof. By the assumption that the model converges to a local minima, it follows that:

∇θL(
⋆

θ;D) =
∑

a∈A

|Da|
|D| ∇θJ(

⋆

θ;Da)

=
|Da|
|D| g

ℓ
a +
|Db|
|D| g

ℓ
b = 0

Thus, gℓ
a = − |Db|

|Da|gb. Hence ∥gℓ
a∥ = |Db|

|Da|∥g
ℓ
b∥ ≤ ∥gℓ

b∥, because |Da| ≥ |Db|.

Proposition 5.2. For a given group a ∈ A, gradient norms can be upper bounded as:

∥gℓ
a∥ ∈ O




∑

(x,y)∈Da

∥f⋆
θ
(x)− y∥︸ ︷︷ ︸
Accuracy

×
∥∥∇ ⋆

θ
f⋆
θ
(x)
∥∥


 .

The above proposition is presented in the context of cross entropy loss or mean squared error

loss functions. These two cases are reviewed as follows

Cross Entropy Loss. Consider a classification task with cross entropy loss: ℓ(f⋆
θ
(x), y) =

−∑z∈Y f
z
⋆
θ
(x)yz, where f z

⋆
θ
(x) represents the z-th element of the output associated with the soft-

max layer of model f⋆
θ
, and y is a one-hot encoding of the true label y, with yz representing its

z-th element, then,

∥ga∥ =
∥∥∇θJ(

⋆

θ;Da, )
∥∥ =

∥∥∥∥∥∥
1/|Da|

∑

(x,y)∈Da

∇fℓ(f⋆
θ
(x), y)×∇θf⋆

θ
(x)

∥∥∥∥∥∥

=

∥∥∥∥∥∥
1/|Da|

∑

(x,y)∈Da

(f⋆
θ
(x)− y)×∇θf⋆

θ
(x)

∥∥∥∥∥∥

≤ 1/|Da|
∑

(x,y)∈Da

∥∥f⋆
θ
(x)− y

∥∥×
∥∥∇θf⋆

θ
(x)
∥∥ ,
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where the third equality is due to that the gradient of the cross entropy loss reduces to f⋆
θ
(x)− y.

Mean Squared Error. Next, consider a regression task with mean squared error loss ℓ(f⋆
θ
(x), y) =

(f⋆
θ
(x)− y)2. Using the same notation as that made above, if follows:

∥ga∥ =
∥∥∇θJ(

⋆

θ;Da, )
∥∥ =

∥∥∥∥∥∥
1/|Da|

∑

(x,y)∈Da

∇fℓ(f⋆
θ
(x), y)×∇θf⋆

θ
(x)

∥∥∥∥∥∥

=

∥∥∥∥∥∥
2/|Da|

∑

(x,y)∈Da

(f⋆
θ
(x)− y)×∇θf⋆

θ
(x)

∥∥∥∥∥∥

≤ 2/|Da|
∑

(x,y)∈Da

∥∥f⋆
θ
(x)− y

∥∥×
∥∥∇θf⋆

θ
(x)
∥∥ ,

where the third equality is due to that the gradient of the mean squared error loss w.r.t. f⋆
θ
(·) reduces

to 2(f⋆
θ
(x)− y).

Theorem 5.2. Let fθ be a binary classifier trained using a binary cross entropy loss. For any

group a ∈ A, the maximum eigenvalue of the group Hessian λ(Hℓ
a) can be upper bounded by:

λ(Hℓ
a) ≤

1

|Da|
∑

(x,y)∈Da

(
f⋆
θ
(x)
) (

1− f⋆
θ
(x)
)

︸ ︷︷ ︸
Distance to decision boundary

×
∥∥∇θf⋆

θ
(x)
∥∥2 +

∣∣f⋆
θ
(x)− y

∣∣
︸ ︷︷ ︸

Accuracy

×λ
(
∇2

θf⋆
θ
(x)
)
.

(5.10)

Proof. First notice that an upper bound for the Hessian loss computed on a group a ∈ A can be

derived as:

λ(Hℓ
a) = λ


 1

|Da|
∑

(x,y)∈Da

Hℓ
x


 ≤ 1

|Da|
∑

(x,y)∈Da

λ
(
Hℓ

x

)
(5.11)

where Hℓ
x represents the Hessian loss associated with a sample x ∈ Da from group a. The above

follows Weily’s inequality which states that for any two symmetric matrices A and B, λ(A+B) ≤

λ(A) + λ(B).

Next, we will derive an upper bound on the Hessian loss associated to a sample x. First, based
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on the chain rule a closed form expression for the Hessian loss associated to a sample x can be

written as follows:

Hℓ
x = ∇2

fℓ
(
f⋆
θ
(x), y

) [
∇θf⋆

θ
(x)

(
∇θf⋆

θ
(x)
)⊤]

+∇fℓ
(
f⋆
θ
(x), y

)
∇2

θf⋆
θ
(x). (5.12)

The next follows from that

∇fℓ
(
f⋆
θ
(x), y

)
= (f⋆

θ
(x)− y),

∇2
fℓ
(
f⋆
θ
(x), y

)
= f⋆

θ
(x)

(
1− f⋆

θ
(x)
)
.

Applying the Weily inequality again on the R.H.S. of Equation 5.12, we obtain:

λ(Hℓ
x) ≤ f⋆

θ
(x)

(
1− f⋆

θ
(x)
)
×
∥∥∇θf⋆

θ
(x)
∥∥2 + λ

(
f⋆
θ
(x)− y

)
×∇2

θf⋆
θ
(x)

≤ f⋆
θ
(x)

(
1− f⋆

θ
(x)
)
×
∥∥∇θf⋆

θ
(x)
∥∥2 +

∣∣f⋆
θ
(x)− y

∣∣λ
(
∇2

θf⋆
θ
(x)
)

(5.13)

The statement of Theorem 5.2 is obtained combining Equations 5.13 with 5.11.

Proposition 5.3. Consider a binary classifier fθ(x). For a given sample x ∈ D, the term

f⋆
θ
(x)(1− f⋆

θ
(x)) is maximized when f⋆

θ
(x) = 0.5 and minimized when f⋆

θ
(x) ∈ {0, 1}.

Proof. First, notice that f⋆
θ
(x) ∈ [0, 1], as it represents the soft prediction (that returned by the last

layer of the network), thus f⋆
θ
(x) ≥ f 2

⋆
θ
(x). It follows that:

f⋆
θ
(x)

(
1− f⋆

θ
(x)
)
= f⋆

θ
(x)− f 2

⋆
θ
(x) ≥ 0. (5.14)

In the above, it is easy to observe that the equality holds when either f⋆
θ
(x) = 0 or f⋆

θ
(x) = 1.

Next, by the Jensen inequality, it follows that:

f⋆
θ
(x)

(
1− f⋆

θ
(x)
)
≤
(
f⋆
θ
(x) + 1− f⋆

θ
(x)
)2

4
=

1

4
. (5.15)
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The above holds when f⋆
θ
(x) = 1− f⋆

θ
(x), in other words, when f⋆

θ
(x) = 0.5. Notice that, in the

case of binary classifier, this refers to the case when the sample x lies on the decision boundary.

5.8.2 Dataset and experimental settings

5.8.3 Datasets

The chapter uses the following datasets to validate the findings discussed in the main chapter:

• UTK-Face [144]. A large-scale face dataset with a long age span (range from 0 to 116

years old). The dataset consists of over 20,000 face images with annotations of age, gender,

and ethnicity. The images cover large variations in pose, facial expression, illumination,

occlusion, resolution, etc. The experiments adopt the following attributes for classification

(e.g., Y) and as protected group (A): ethnicity, age bins, gender.

• CIFAR-10 [70]. This dataset consists of 60,000 32×32 RGB images in 10 classes, with

6,000 images per class. The 10 different classes represent airplanes, cars, birds, cats, deer,

dogs, frogs, horses, ships, and trucks.

• SVHN [90] Street View House Numbers (SVHN) is a digit classification dataset that con-

tains 600,000 32×32 RGB images of printed digits (from 0 to 9) cropped from pictures of

house number plates.

5.8.4 Architectures, hyper-parameters, and settings

The study adopts the following architectures to validate the results of the main chapter:

• ResNet18: An 18-layer architecture, with 8 residual blocks. Each residual block consists of

two convolution layers. The model has ∼ 11 million trainable parameters.

• ResNet50 This model contains 48 convolution layers, 1 MaxPool layer and a AvgPool layer.

ResNet50 has ∼ 25 million trainable parameters.
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• VGG-19 This model consists of 19 layers (16 convolution layers, 3 fully connected layers,

5 MaxPool layers and 1 SoftMax layer). The model has ∼ 143 million parameters.

Hyperparameters for each of the above models was performed over a grid search (for different

learning rates = [0.0001, 0.001, 0.01, 0.1, 0.5, 0.05, 0.005, 0.0005]) over a cluster of NVIDIA RTX

A6000 with the above networks using the UTKFace dataset. The models with the highest accuracy

were chosen and employed for the assessment of the mitigation solution in Sec. 5.6.2. The running

time required for all sets of experiments which include mitigation solutions was about ~3 days.

The training uses the SGD optimizer with a momentum of 0.9 and weight_decay of 1e−4.

Finally, the Lagrangian step size adopted in the Lagrangian dual learning framework [44] is set to

0.001.

All the models developed were implemented using Pytorch 3.0. The training was performed

using NVidia Tesla P100-PCIE-16GB GPUs and 2GHz Intel Cores. The model was run for 100

epochs for the CIFAR-10 and SVHN and 40 epochs for UTK-Face dataset. Each reported experi-

ment is an average of 10 repetitions. In all experiments, the protected group set coincides with the

target label set: i.e., A = Y .

5.8.5 Impact of pruning on fairness

This section shows and affirms the impact of pruning towards accuracy disparity through VGG-19

network. The same training procedures as employed with ResNet18 in Fig 7.1 were followed. Each

demographic group’s accuracy is shown before and after pruning on the UTK-Face dataset in two

cases: when ethnicity is a group attribute as in Figure 5.10, and when gender is a group attribute as

in Figure 5.11. A consistent message is that under a higher pruning rate, the accuracies are more

imbalanced across different groups, emphasizing the negative impact of pruning on fairness.
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Fig. 5.10: Accuracy of each demographic group in the UTK-Face dataset with ethnicity (5 classes)
as group attribute using VGG19 over increasing pruning rates.
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Fig. 5.11: Accuracy of each demographic group in the UTK-Face dataset with gender (2 classes)
as group attribute using VGG19 over increasing pruning rates.

5.8.6 Correlation of gradient/hessian norm and average distance to the

decision boundary

This subsection elaborates the impact of gradient norms and group Hessians towards the fairness

issues shown in Figures 5.10 and 5.11. In Section 5.4, it has been shown that the group with a larger

gradient norm before pruning will be penalized more than the groups with a smaller gradient norm.

Figures 5.13 and 5.12 show the gradient norm of each demographic group for UTK-Face dataset

under two choices of protected attributes for VGG 19 networks. The results indicate that a group

penalized less will have a smaller gradient norm with respect to those of the other groups.

In addition, Section 5.5 supports that Hessian norm is another factor. More precisely, the groups

with a larger Hessian norm will be penalized more (drop much more in accuracy) than groups with

a smaller Hessian norm. Evidence is provided for the claim on VGG19 in Figures 5.12 and 5.13.

These results on VGG19 again confirm the theoretical findings.

Finally, in Section 5.5, a positive correlation between gradient norms and Hessian groups is

shown in Theorem 5.2, and a negative correlation between Hessian groups and distance to the

decision boundary is shown in Proposition 5.3. These important results again are supported by the
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Fig. 5.12: Gradient/Hessian norm and average distance to the decision boundary of each demo-
graphic group in the UTK-Face dataset with gender (2 classes) as group attribute using VGG19
with no pruning.
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Fig. 5.13: Gradient/Hessian norm and average distance to the decision boundary of each demo-
graphic group in the UTK-Face dataset with ethnicity (5 classes) as group attribute using VGG19
with no pruning.

results in Figures 5.12 and 5.13.

5.8.7 Impact of group sizes to gradient norm

This section presents additional empirical results to support Theorem 5.1, stating that the group

with more samples will tend to have a smaller gradient norm. In these experiments, run on a

ResNet50 network, one group is chosen and upsampled 1×, 5×, 10×, and 20× times. Note that

by increasingly upsampling it, the group becomes the majority group in that dataset. A group with

more samples is expected to end up with a smaller gradient norm when the training convergences.

UTK-Face with gender Since the UTK-Face is balanced with regard to gender (Female/Male),

the number of samples in Female, and Male groups is upsampled in turn. Figure 5.14 reports the

respective gradient norms at the last training iteration when upsampling Females (left) and Males
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Fig. 5.15: Impact of group sizes to the gradient norm per group in UTK-Face dataset where groups
are nine age bins. The group with dotted thick line is a majority group in each chart.

(right.) Note how the Male group, initially with no upsampling, has a larger gradient norm than

the Female group (right sub-plot). However, if the number of Male samples is increased enough,

its gradient norm becomes smaller than that of the Female group.

UTK-Face with age bins Similar experiments are performed with UTK-Face on nine age bin

groups. Three age bins are randomly chosen, 0, 2, 4, and the number of samples for each group

is upsampled in turn. The gradient norms of nine age bin groups are shown in Figure 5.15, where

the upsampled groups are highlighted with dotted thick lines. The results echo that if a group’s

number of samples is increased enough, its gradient norm at convergence will be smaller than the

other 8 age bin groups.
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CHAPTER 6

FAIRNESS INCREASES ADVERSARIAL

VULNERABILITY

The remarkable performance of deep learning and its applications in consequential domains (e.g.,

facial recognition) introduces important challenges at the intersection of equity and security. Fair-

ness and robustness are two desired notions often required in learning models. Fairness ensures

that models do not disproportionately harm (or benefit) some groups over others, while robustness

measures the models’ resilience against small input perturbations.

This chapter shows the existence of a dichotomy between fairness and robustness, and analyzes

when striving for fairness decreases the model robustness to adversarial samples. The reported

analysis sheds light on the factors causing such contrasting behavior, suggesting that distance to

the decision boundary across groups as a key factor. Extensive experiments on non-linear models

and different architectures validate the theoretical findings in multiple vision domains. Finally,

the chapter proposes a simple, yet effective, solution to construct models achieving good tradeoffs

between fairness and robustness.
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6.1 Introduction

Data-driven learning systems have become instrumental for decision-making in a variety of con-

sequential contests, including assisting in legal decisions [64], lending [118], hiring [110], and

providing personalized recommendations [22]. Consequentially, fairness has emerged as a critical

requirement for successful adoption and usage of these systems. Various notions of fairness draw-

ing from legal and philosophical doctrine have been proposed to ensure that the models’ errors do

not affect specific groups [84]. In general, fair models attempt at constraining their hypochapter

space so that the errors in reported outcomes are uniformly distributed across different protected

groups.

When these fairness constraints are enforced in learning systems, a commonly observed be-

havior is an overall degradation of the model accuracy. Thus, a growing body of research has been

focusing on striking the right balance between fairness and accuracy [105]. This chapter shows

that fairness may have another important consequence on the deployed models: a reduction of the

model robustness. This aspect is important as the vulnerability of deep learning models to ad-

versarial examples hinders their application in many security-sensitive domains. However, these

behaviors are currently not fully understood and have not received the attention they deserve given

the significant equity and security consequences they have on the final decisions.

This chapter addresses this important gap and shows that enforcing fairness may negatively

affect the robustness of a model. Specifically, the chapter (1) it analyzes when and why fairness

and robustness may be misaligned in their objectives, (2) it provides an analysis on the relation-

ship between fair, robust, and "natural" (e.g., non-fair non-robust) models, and (3) it identifies the

distance to the decision boundary as a key aspect linking fairness and robustness. Moreover, (4)

the chapter shows how the distance to the decision boundary can explain the increase of adver-

sarial vulnerability of fair models, providing extensive experiments and validation over a variety

of vision tasks and architectures, and verifying the presence of the fairness/robustness dichotomy

for multiple techniques aimed at achieving fairness and measuring robustness. Finally, (5) build-

ing from the reported theoretical observations, the chapter also proposes a simple, yet effective,
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strategy to find a good tradeoff between accuracy, fairness, and robustness.

To the best of the authors’ knowledge, this is is the first work showing that enforcing fairness

may negatively affect robustness. The results show that, without careful considerations, inducing a

desired equity property on a learning task may create significant security challenges. These results

should not be read as an endorsement to avoid constructing fairer or safer models; rather it should

be understood as a call for additional research at the intersection of fairness and robustness to

achieve appropriate tradeoffs.

6.2 Difference with previous work

The intersection of fairness and robustness has received limited attention thus far, with only a

handful of studies examining this area. For instance, Xu et al. [139] recently showed that adversar-

ially robust models can exhibit significant accuracy disparity among different classes, as opposed

to their standard counterparts. To address this issue, they proposed a Fair-Robust-Learning (FRL)

framework for adversarial defense. Meanwhile, Khani and Liang [66] analyzed the impact of noise

in features on disparities in error rates when learning regression models.

In contrast to previous studies such as [89,139], which highlighted how adversarial training can

disproportionately harm certain protected groups, our work takes a different approach. Specifically,

it demonstrates that enforcing fairness comes at the expense of reduced robustness. As a result,

our analysis requires a theoretical approach distinct from those proposed in earlier studies.

6.3 Problem settings

The chapter considers a typical multi-class classification problem, whose input is a dataset D

consisting of n data points (Xi, Ai, Yi), each of which drawn i.i.d. from an unknown distribution Π

and where Xi ∈ X is a feature vector, Ai ∈ A is a protected attribute, and Yi ∈ Y = [C] is a label,

with C being the number of possible class labels. For example, consider the case of a classifier to

predict the age range of an individual. The features Xi may describe the pixels associated with the



159

Ground truth: 0-10

Predicted (reg): 0-10
Predicted (fair): 0-10

class: child

Ground truth: 50-60

Predicted (reg): 30-40
Predicted (fair): 50-60

class: woman

Predicted (reg): 0-10
Predicted (fair): 50-60

Predicted (reg):30-40
Predicted (fair): 10-15

x

x

Fig. 6.1: An example of robustness loss in the UTKFace dataset. A regular (reg) and a fair models
are trained to predict age group from faces and exposed to adversarial examples generated under
an RFGSM [122] attack. The predictions of the regular model do not change under adversarial
examples (regardless of their original correctness), while the fair models decision change in the
presence of adversarial noise.

individual headshot and their demographics, the protected attribute Ai may describe the individual

gender or ethnicity, and Yi represents the age range. The goal is to learn a classifier fθ : X → Y ,

where θ is a vector of real-valued parameters. The model quality is assessed in terms of a non-

negative loss function ℓ : Y × Y → R+, and the training aims at minimizing the empirical risk

function:
⋆

θ= argmin
θ
Lθ(D)

(
=

1

n

n∑

i=1

ℓ(fθ(Xi), Yi)

)
(6.1)

For a group a ∈ A, notation Da is used to denote the subset of D containing exclusively samples

i with Ai = a. Importantly, the chapter assumes that the attribute A is not part of the model

input during inference. The chapter focuses on learning classifiers that satisfy group fairness (to

be defined shortly) and on analyzing the robustness impact of fairness.

6.4 Preliminaries

6.4.1 Fairness and fair learning

This chapter considers a classifier f satisfying accuracy parity [145], a group fairness notion com-

monly adopted in machine learning requiring model misclassification rates to be conditionally
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independent of the protected attribute. That is, ∀(X,A, Y ) ∼ Π and ∀a ∈ A,

|Pr (fθ(X) ̸= Y | A = a)− Pr (fθ(X) ̸= Y )| ≤ α, (6.2)

where α denotes the allowed fairness violation. In practice, the above is expressed as a difference

of empirical expectations of the group and population misclassification rates. That is, ∀a ∈ A:

∣∣∣∣∣∣
1/|Da|

∑

(X,A,Y )∈Da

1{fθ(X) ̸= Y } − 1/n
∑

(X,A,Y )∈D

1{fθ(X) ̸= Y }

∣∣∣∣∣∣
≤ α.

Several approaches have been proposed in the literature to encourage the satisfaction of accuracy

parity. They can be summarized in methods that use penalty terms into the empirical risk loss

function to capture the fairness violations, and those which minimize the maximum group loss.

The core of the chapter focuses on the first set of methods; the analysis for the second set is

presented in Section 6.10.1.

Penalty-based methods. In this category, the model loss function (Equation (6.1)) is augmented

with penalty fairness constraint terms [7, 129] as follows:

θf(λ)=argmin
θ
Lθ(D) + λ

(∑

a∈A

|Lθ(Da)− Lθ(D)|
)

(6.3)

where Lθ(Da) = 1/|Da|
∑

(X,A,Y )∈Da
ℓ(fθ(X), Y ) is the empirical risk loss associated with pro-

tected group a ∈ A. In addition, λ > 0 is the fairness penalty parameter that enforces a tradeoff

between fairness and accuracy.

6.4.2 Robustness and robust learning

This chapter analyzes the effect of enforcing fairness on adversarial robustness, a key property of

trustworthy machine-learning systems. In this work, and following robust learning conventions,
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the robustness of a model f is measured in terms of the robust error:

Lrob
θ (ϵ) = Pr (∃τ, ∥τ∥p ≤ ϵ, fθ(X + τ) ̸= Y ) , (6.4)

which measures the sensitivity of the model errors to small input perturbations ∥τ∥p ≤ ϵ in ℓp

norms, with p often considered in {0, 1, 2,∞}. The robust error can be decomposed into two

components [141]:

Lrob
θ (ϵ) = Lnat

θ + Lbdy
θ (ϵ) , (6.5)

where the first denotes the natural error and the second the boundary error. The natural error

measures the standard model performance when exposed to unperturbed samples (X,A, Y ):

Lnat
θ = Pr (fθ(X) ̸= Y ) , (6.6)

whose empirical version is defined in Equation (6.1) with a 0/1 loss function. The boundary error

measures the probability that the model predictions change on perturbed samples (X+∥τ∥p, A, Y ):

Lbdy
θ (ϵ) = Pr

(
∃∥τ∥p ≤ ϵ, fθ(X + τ) ̸= fθ(X),

fθ(X) = Y
)
. (6.7)

The boundary error implicitly introduces a notion of decision boundary and a distance between an

input sample and this decision boundary. For instance, in linear classifiers, the decision boundary

is represented by a hyperplane. The distance of a sampleX to the decision boundary for a classifier

fθ can be formalized as

∆(X, fθ) = max ϵ s.t. fθ(X + τ) = fθ(X), ∀∥τ∥ ≤ ϵ.

Samples close to the decision boundary will be less tolerant to noise than those lying far from it.

The analysis in this chapter regarding the impact of fairness on robustness is based on this concept.
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In particular, the results show that imposing fairness constraints may reduce the distance to the

decision boundary of the samples (X,A, Y ) ∼ Π.

6.5 Real-world implications

Prior diving into the analysis, the chapter provides an example showing how robustness errors can

be exacerbated when a image classifier is trained to satisfy fairness. Deep neural networks have

been used in many real-world applications, including image facial recognition and object detection.

When perturbations (either due to noise or by malicious adversaries) are introduced in the model

inputs, they may cause harmful effects as they lead the classifier to misclassify targeted inputs.

Figure 6.1 shows an example of inputs from the UTKFace dataset where a classifier is trained

to minimize the regular empirical risk loss of equation (6.1) (top) or the fair empirical risk loss of

equation (6.3) (bottom). Both inputs are perturbed with the same amount of ℓ∞ noise, but the fair

network is much more brittle than its regular counterpart, inducing errors in the classifier outputs. It

is important to note that this chapter uses datasets such as UTKFace (described in detail in Section

6.10.2) only to demonstrate the effects of fairness to robustness. As noted in previous works, the

very task of predicting gender, race, or other characteristics from a person face is flawed and raises

deep ethical concerns [100].

6.6 Why fairness weakens robustness?

This section presents the main results of the chapter. It will show that fairness affects model

robustness because the learned decision boundary is pulled in opposite directions by fair and robust

models. To render the analysis tractable, the theoretical discussion focuses on linear classifiers,

and more specifically on learning a mixture of Gaussians with a linear classifiers. In addition,

Section 6.7 will show that a similar phenomenon occurs in large non-linear models. This section

assumes thatA = Y , i.e., the protected attribute is also the output of the classifier, again to simplify

exposition. All proofs are given in Section 6.10.1.
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Fig. 6.2: Illustration of optimal natural θ∗, fair θf , and robust θr classifiers for K = 5 (left) and
K = 10 (right) with µ− = −1 and µ+ = 1.

Optimal Models for Mixtures of Gaussians

Consider a binary classification setting (i.e., Y = {−1, 1}) with data drawn from a mixture of

Gaussian distributions, so that Pr (X | Y = −1)∝N (µ−, 1) and Pr (X | Y = 1)∝N (µ+, K
2),

with µ− < µ+ and different variances (K > 1). The analysis can be easily extended to higher-

dimensional cases, but these non-restrictive assumptions help simplifying and clarifying exposi-

tion. An illustration of this setting is reported in Figure 6.2 (top) where the data distributions are

highlighted with black dashed curves.

The following analysis poses no restrictions on the relative subgroup sizes |D1| and |D−1| and

focuses on the less-restrictive balanced data setting, in which data samples from different protected

groups are equally likely.

The chapter studies a family of parametric classifiers {fθ}θ with θ ∈ [µ−, µ+] ⊆ R, where

fθ(X) = 1{X > θ} denotes the classification output of the classifier. The optimal models with

respect to the natural, fair, and robust losses can be specified as follows:

• Optimal natural model
(
f⋆
θ

)
. It is the Bayes classifier which minimizes the natural classifica-

tion error as defined in Equation (6.1). In Figure 6.2 (top), this classifier is represented by vertical

blue lines.

• Optimal fair model (fθf ). Intuitively, this classifier is θf(∞) as defined in Equation (6.3).
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Formally speaking, this classifier minimizes a lexicographic function whose first component is
∑

a∈A |(Lθ(Da)− Lθ(D))| and second component is Lθ(D). In Figure 6.2 (top), this classifier is

represented by vertical red lines.

• Optimal robust model (f
θ
(ϵ)
r
). This classifier minimizes the robust classification error in Equa-

tion (6.5), for a given ϵ. In Figure 6.2 (top), it is depicted by vertical green lines.

Relationships Between the Optimal Models

The next result characterizes the positional relationship among the three optimal models mentioned

above, which can be observed in Figure 6.2.

Theorem 6.1. For any ϵ ∈
[
0, µ+−µ−

2

]
andK ∈ (1, BK ], whereBK = min

{
exp

(
(µ+−µ−−2ϵ)2

2

)
, µ+−µ−

ϵ
− 1
}
,

µ− + ϵ ≤ θf ≤
⋆

θ ≤ θ(ϵ)r ≤ µ+ − ϵ . (6.8)

Besides, θ(ϵ)r is an increasing function of ϵ over [0, µ+−µ−
2

].

The result follows from the observation that the optimal natural model f⋆
θ

can be expressed as

⋆

θ= µ− −
µ+ − µ−
K2 − 1

+
K

K2 − 1

√
2(K2 − 1) ln(K) + (µ+ − µ−)2 ; (6.9)

the fair classifier fθf as:

θf = µ− +
µ+ − µ−
K + 1

and the robust classifier f
θ
(ϵ)
r

as

θ(ϵ)r = µ− −
µ+ − µ− − (K2 + 1)ϵ

K2 − 1
+

K

K2 − 1

√
2(K2 − 1) ln(K) + (µ+ − µ− − 2ϵ)2 . (6.10)

We note that [139] derives similar expressions for the optimal natural and robust models, which

are used to investigate the natural error gap between the two classes. Despite the similarity in the

adopted notation, importantly, Theorem 6.1 provides a unique comparison among the three classi-
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fiers analyzed, highlighting the difficulty in achieving both robustness and fairness simultaneously,

as fairness and robustness pull the optimal classifier in opposing directions.

While [139] mainly focuses on the unfairness resulting from robust training, the remainder of

this section examines the cost of adversarial robustness in fair training. Specifically, we measure

this reduced robustness cost analyzing robust and boundary errors.

From the relations highlighted in Theorem 6.1, it follows that (1) the fair classifier achieves the

largest robust error while the robust classifier results in the least error, and (2) the fair classifier

achieves the largest boundary error while the robust classifier results in the smallest boundary

error, as expressed by the following Corollaries.

Corollary 6.1. For any ϵ ∈
[
0, µ+−µ−

2

]
and K ∈ (1, BK ],

Lrob
θf

(ϵ) ≥ Lrob
⋆
θ

(ϵ) ≥ Lrob

θ
(ϵ)
r

(ϵ) .

Corollary 6.2. For any ϵ ∈
[
0, µ+−µ−

4

]
and K ∈

(
1, B̄K

]
,

Lbdy
θf

(ϵ) ≥ Lbdy
⋆
θ

(ϵ) ≥ Lbdy

θ
(ϵ)
r

(ϵ) ,

where B̄K=min
{
exp

(
(µ+−µ−−2ϵ)2

2

)
, ϕ−1

(
µ+−µ−

ϵ
− 2
)}

and ϕ−1 is the inverse function associated

with ϕ : [1,+∞) 7→ [2,+∞) such that ϕ(x) = x+ 1/x.

These results further highlight the impossibility of achieving fairness and robustness simulta-

neously in this classification task. Fairness and robustness are pulling the classifier in opposite

directions.

The Role of the Decision Boundary

Building on the previous results, this section provides the key theoretical intuitions to explain

why fairness increases adversarial vulnerability. It identifies the average distance to the decision

boundary as the central aspect linking fairness and robustness, which is formalized in Theorem
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6.2.

Theorem 6.2. For any ϵ ∈
[
0, µ+−µ−

2

]
and K ∈ (1, BK ],

E
[
∆
(
X, f

θ
(ϵ)
r

)]
≥ E

[
∆
(
X, f⋆

θ

)]
≥ E [∆ (X, fθf )] .

In addition, the fair model minimizes the average distance to its decision boundary over all valid

classifiers, i.e.,

θf = argmin
θ∈[µ−,µ+]

E [∆ (X, fθ)] .

Theorem 6.2 indicates that, among the three considered optimal models, the fair model has the

smallest average distance to the decision boundary while the robust model has the largest distance.

The result above is exemplified in Figure 6.2. The bottom plots show the losses associated with

the optimal natural, fair, and robust models for two choices of K (left and right) while the top

plots show the optimal decision boundaries associated with each of the three models – notice they

correspond to the minima of their relative losses.

Observe that class Y =1 has a higher classification error than class Y =−1 under the natural

(and thus unfair) classifier f⋆
θ
. This is intuitive since the conditional distribution Pr (X | Y =1) has

much higher variance than Pr (X | Y =−1). Hence, to balance the classification errors, the fair

classifier pushes the decision boundary towards the mean of class Y =−1. This increases the error

of class Y =−1 while decreasing the error of class Y =1. In contrast, the robust classifier pushes

the decision boundary far away from the dense input region, i.e., the mean of the data associated

with class Y = −1.

There are a few points worth emphasizing. First, robustness and fairness pull the decision

boundary into two opposite directions. Second, the fair model fθf results in predictions with higher

robust errors, when compared to the optimal natural model f⋆
θ
, and it also increases adversarial

vulnerability as the variance K increases. The variance K regulates the difference in the standard

deviation of the underlying distributions associated with the protected groups and thus controls the

overall distance to the decision boundary. In summary, fairness can reduce the average distance
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of the training samples to the decision boundary which, in turn, makes the model less tolerant to

adversarial noise.

This section concludes with another important result. The previous relationships continue to

hold even when the optimality conditions of the fair classifier are relaxed, i.e., when λ is taking

values different from ∞. Moreover, the fairness constraints always reduce the distance to the

decision boundary among protected groups and this reduction is proportional to the strength of the

fairness constraints (or the tightness of the required fairness bound α).

Theorem 6.3. Consider the fair classifier fθf(λ) that optimizes Eq. (6.3). It follows that, for any

λ ∈
(
K−1
K+1

,+∞
)
,

θf(λ) = θf ,

which means that the fair classifier fθf(λ) coincides with the optimal fair classifier fθf , when the

fairness penalty λ is large. while for any λ ∈
[
0, K−1

K+1

]
, θf(λ) = µ− − µ+−µ−

K2−1 +

K
K2−1

√
2(K2 − 1) ln

(
1−λ
1+λ
·K
)
+ (µ+ − µ−)2. Moreover, the parameter θf(λ) associated with the

fair classifier and the average distance to its decision boundary E
[
∆
(
X, fθf(λ)

)]
are both de-

creasing as λ increases.

Informally speaking, Theorem 6.3 states that applying fairness constraint with large enough penalty

λ will push the decision boundary towards the negative class (group with smallest variance). As a

result, the average distance to the decision boundary of all samples will be reduced.

While the analysis above applies to the linear setting considered in this section, the results

were empirically validated on large non-linear models. For example, Figure 6.3 compares the

performance of a penalty based fair CNN model (bottom plots) with λ = 1.0 against a natural

(non-fair) CNN classifier (top plots). The left plots report the task accuracy by each subgroup

(denoting races) and average distance to decision boundary (right) of each subgroup. Note how

the fair classifier reduces the disparities in task accuracy experienced by the various subgroups.

This effect, however, also reduces the overall average distance to the decision boundary. As a

consequence, fair models will be more vulnerable to adversarial perturbations.
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Fig. 6.3: Comparison between group’s natural accuracy (left) and its average distance to the
decision boundary (right) between unfair and fair models (UTK-Face dataset).

The next sections focus on assessing these theoretical intuitions onto general non-linear clas-

sifiers in a variety of settings and on devising a possible mitigation strategy to balance a good

tradeoff between fairness and robustness.

6.7 Beyond the linear case

This section validates the theoretical intuitions presented above on much more complex architec-

tures, datasets, and loss functions. The experiments focus on highlighting fairness, robustness,

errors, and their relation to the distance to the decision boundary. When fθ is a non-linear model,

computing the distance to the decision boundary becomes a computational challenge. Thus, this

section uses a commonly adopted proxy metric that measures the difference between the first two

order statistics of the softmax outputs in the model [74, 133].

Datasets. The experiments of this section focus on three vision datasets: UTK-Face [144], FM-

NIST [134] and CIFAR-10 [69]. The adopted protected groups and labels in the UTK-Face datasets

are ethnicity (White/Black/Indian/Asian/Others) or age (nine age bins), resulting in two distinct

tasks. For FMNIST and CIFAR, the experiments use their standard labels and assume that la-

bels are also protected groups, mirroring the setting of previous work [79, 127, 139]. A complete

description of the dataset and settings is found in Section 6.10.3.

Settings. The experiments consider several deep neural network architectures, including CNN

[91], ResNet 50 [56] and VGG-13 [115]. The former uses 3 convolutional layers followed by 3

fully connected layers. Models trained on the UTK-Face data use a learning rate of 1e−3 and 70
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Fig. 6.4: Natural errors, fairness violations, and average distance to the decision boundary for the
UTK-Face ethnicity (top) and age bins (middle) and CIFAR (bottom) datasets when varying the
fairness parameter λ on a CNN model.

epochs. Those trained on FMNIST and CIFAR, use a learning rate of 1e−1 and 200 epochs, as

suggested in previous work [139]. For all datasets and models, unless otherwise specified, a batch

size of 32 is used. The experiments analyze penalty-based fairness method, RFGSM attacks [122],

and the VGG-13 network, unless specified otherwise. Additional experiments using group-loss

focused method (see Section 6.10.1), additional network architectures, and adversarial attacks are

reported in Section 6.10.3.

Fairness impacts on the decision boundary

As shown by Theorem 6.3, fairness reduces the average distance of the testing samples to the de-

cision boundary. This section illustrates how this result carries over to larger non-linear models.

Figure 6.4 reports results obtained by executing the penalty-based fair models on the UTK-Face
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Fig. 6.5: Top: Natural errors (left) and fairness violations (right) on the UTKFace ethnicity task
at varying of the fairness parameters λ. The middle plots compares the robustness of fair (λ > 0)
vs. natural (λ = 0) classifiers to different RFGSM attack levels. Bottom: Mitigating solution using
the bounded Ramp loss.

datasets for ethnicity (top) and age (middle) classification and on CIFAR (bottom). A clear trend

emerges: As more fairness is enforced (larger λ values), the natural errors (left plots) increase,

while the fairness violations (center plots) decrease. Importantly, and in agreement with the the-

oretical results, the experiments report a sharp reduction to the average distance to the decision

boundary (right plots). This behavior renders fair models more vulnerable to adversarial attacks,

as will be highlighted shortly. Similar results are also observed for the group-loss based models

and other architectures (see Section 6.10.3).

Boundary errors increase as fairness decreases

This section highlights the key consequence of the sharp reduction to the average distance to the

decision boundary: the increase of the vulnerability to adversarial attacks. Figure 6.5 (top) reports

the natural errors (left), boundary errors (middle), and fairness violations (right) for a VGG-13

model trained on UTKFace dataset on the ethnicity task using a standard cross-entropy (CE) loss.

Once again, other architectures1 and datasets are reported in the Section and the results follow the

1With the caveat that VGG-13 could not be used for FMNIST since the 28x28 pixel resolution of FMNIST is
smaller than that required by some VGG filters.
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Fig. 6.7: Robust errors for different attack levels ϵ of a robust and fair classifier at varying of the
margin perturbation ϵ∗ and fairness parameters λ.

same trends as those reported here.

The natural errors and fairness violations are reported for fair classifiers, at varying of the

fairness violation parameter λ. The boundary errors (middle) are reported for classifiers satisfying

various fairness levels (i.e., using different λ values) and at varying of the strength ϵ of the desired

robustness level (see Equation (6.4)).

Notice how, compared to the natural models, the fair models incur much higher natural and

boundary errors. In particular, the relative increase in boundary errors are significant: The fair-

ness models have boundary errors that are up to 9% larger than their natural counterparts. These

observations match the theoretical analysis and highlight a significant increase in vulnerability to

adversarial examples by the fair models, even for moderate selections of the fairness violation

parameters λ.
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Enforcing Fairness and Robustness Simultaneously

This section considers an additional experiment that highlights the potential negative impact of

fairness on robustness. The experiment involves a classifier attempting to achieve both fairness

and robustness, similar to the approach proposed by Xu et al. [139]. Their method involved incor-

porating two fairness components to align per-class natural/robust accuracy per class with overall

natural/robust accuracy (refer to Equation (9) in [139] for more details). Our approach is similar,

in spirit, as it adds both robustness and fairness regularization terms to the standard classification

objective function.

The resulting model aims at solving the following regularized ERM problem:

min
θ
Lθ(D) +

1

n

n∑

i=1

max
∥τ∥p≤ϵ∗

ℓ(fθ(Xi + τ), Yi)

+ λ
∑

a∈A

∣∣∣∣∣∣
1/|Da|

∑

(X,A,Y )∈Da

ℓ(fθ(X), Y )− 1

n

n∑

i=1

ℓ(fθ(Xi), Yi)

∣∣∣∣∣∣

using stochastic gradient descent. The second component aims at increasing the robustness of the

classifier under a margin perturbation ϵ∗, following the PGD training [80] with perturbation norm

p = ∞. It works by first generating adversarial samples Xi + τ , where ∥τ∥∞ ≤ ϵ∗, and then the

learning progress aims at minimizing the loss between the model prediction for that adversarial

samples and the ground-truth ℓ(fθ(Xi + τ), Yi). The larger the margin perturbation ϵ∗, the more

robust the resulting classifier. The third component implements a penalty-based fairness strategy

[7], which promotes fairness by penalizing the difference among each groups’ average loss and the

overall’s average loss.

The experiments vary the margin perturbation ϵ∗ (robustness) and the penalty value λ (fairness).

Figure 6.6 reports the (natural) error (left) and fairness violations (right) for different levels of the

margin perturbation ϵ∗ on the UTK-Face (ethnicity) dataset. As expected, enforcing larger margin

perturbations ϵ∗ increases model robustness, but at the cost of significantly increasing the natural

errors. Increasing the fairness parameter λ decreases the fairness violation.
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Fig. 6.8: Classifiers using different losses (top) and the associated natural and robust errors
(bottom).

Figure 6.7 reports the robust errors under different levels of adversarial attacks, which are

specified by the level of perturbation ϵ. Notice how the level of defense ϵ∗ correlates with higher

robustness (smaller robust errors) for all fairness parameters λ tested. These results show the

challenge to achieving simultaneously robustness, fairness, and accuracy. The results also suggest

that the incorporation of both robustness and fairness, as proposed in [139], may not effectively

reduce the trade-off between accuracy, robustness, and fairness.

Overall, the results show that, without a careful consideration, inducing a desired equity property

on a learning task may create significant security challenges. This should not be read as an en-

dorsement to satisfy a single property, but as a call for additional research at the intersection of

fairness and robustness in order to design appropriate tradeoffs.
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6.8 A mitigating solution with bounded losses

While the previous sections have shown that the conflict between fairness and robustness is un-

avoidable, this section proposes a theoretically motivated solution attempting to attenuate this

tension. The proposed solution relies on the observation that, using standard (unbounded) loss

functions, misclassified samples lying far away from the decision boundary are associated to much

larger losses than those which are closer to it. Recall also that the decision boundary was found as

the predominant factor linking fairness and robustness. This key observation suggests the use of a

bounded loss function, defined as [30, 50]:

ℓRamp(fθ(X), Y ) = min(1,max(0, 1− Y fθ(X))).

and referred to as Ramp loss, with domain (0, 1]. The proposed strategy simply applies this loss

function to a fair classifier (Equation 6.3). Its benefits can be appreciated in Figure 6.8, which

reports the results for the same setting used in the previous section and compares a fair classifier

trained using the ramp loss with one trained using a 0/1-loss (which is also bounded but not dif-

ferentiable), a log-loss, and an exponential loss (both unbounded) (top). The results show that the

fair classifier trained using a ramp-loss is the least impacted by misclassified samples, resulting

in lower robust errors compared to unbounded losses. It can be observed in the bottom subplot,

where its associated loss is the closest, among all differentiable losses, to the local minima. The

observed benefits of the ramp loss also carry over high-dimensional data and non-linear models, as

shown in Figure 6.5 bottom, and further reported in Section 6.10.3.

6.9 Conclusions

This chapter was motivated by two key challenges brought by the the adoption of modern machine

learning systems in consequential domains: fairness and robustness. The chapter observed and

analyzed the relationship between these two important machine-learning properties and showed
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that fairness increases vulnerability to adversarial examples. Through a theoretical analysis on

linear models, this work provided a new understanding of why such tension arises and identified

the distance to the decision boundary as a key explanation factor linking fairness and robustness.

These theoretical findings were validated on non-linear models through extensive experiments on a

variety of vision tasks. Finally, building from this new understanding, the chapter proposed a sim-

ple, yet effective, strategy to find a better balance between accuracy, fairness and robustness. We

hope these results could stimulate a needed discussion and research at the intersection of fairness

and robustness to achieve appropriate tradeoffs.

6.10 Section

6.10.1 Missing proofs

Proof of Theorem 6.1

Proof. i) Notice that the natural classification error and its derivative can be expressed as

Lnat
θ = Pr (fθ(X) ̸= Y )

=
1

2
Pr (fθ(X) ̸= 1 | Y = 1)+

1

2
Pr (fθ(X) ̸= −1 | Y = −1)

=
1

2

∫ θ

−∞

1√
2πK

exp

(
−(x− µ+)

2

2K2

)
dx+

1

2

∫ +∞

θ

1√
2π

exp

(
−(x− µ−)2

2

)
dx .

and
(
Lnat

θ

)′
=

[
exp

(
− (θ−µ+)2

2K2

)
−K exp

(
− (θ−µ−)2

2

)]

2K
√
2π

.

The derivative (Lnat
θ )

′ turns out to be an increasing function over the interval [µ−, µ+] with
(
Lnat

µ−

)′
< 0 and

(
Lnat

µ+

)′
> 0 due to the assumption that K < BK < exp

(
− (µ+−µ−)2

2

)
.
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Since the Bayes classifier is to minimize the natural classification error,
⋆

θ is supposed to be

the unique root of (Lnat
θ )

′, i.e.,

[
exp

(
− (

⋆
θ−µ+)2

2K2

)
−K exp

(
− (

⋆
θ−µ−)2

2

)]

2K
√
2π

= 0 .

By solving the equation above, we end up with the following.

⋆

θ= µ−
µ+ − µ−
K2 − 1

+
K

K2 − 1

√
2(K2 − 1) ln(K) + (µ+ − µ−)2 , (6.11)

which belongs to the open interval (µ−, µ+).

ii) Equalized classification errors require the following equations hold.

Pr (fθf (X) ̸= 1 | Y = 1) =

∫ θf

−∞

1√
2πK

exp

(
−(x− µ+)

2

2K2

)
dx

=

∫ +∞

θf

1√
2π

exp

(
−(x− µ−)2

2

)
dx

= Pr (fθf (X) ̸= −1 | Y = −1) ,

which leads to the result that

θf = µ− +
µ+ − µ−
K + 1

> µ− + ϵ ,

where the inequality is due to the assumption that K < (µ+ − µ−)/ϵ− 1 ≤ BK .
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iii) The robust classification error and its partial derivative can then be given by the following:

Lrob
θ (ϵ) = Pr (∃ |τ | ≤ ϵ, fθ(X + τ) ̸= Y )

=
1

2
Pr (∃ |τ | ≤ ϵ, fθ(X + τ) ̸= 1 | Y = 1)+

1

2
Pr (∃ |τ | ≤ ϵ, fθ(X + τ) ̸= −1 | Y = −1)

=
1

2
(Pr (X ≤ θ + ϵ | Y = 1) + Pr (X > θ − ϵ | Y = −1))

=
1

2

∫ θ+ϵ

−∞

1√
2πK

exp

(
−(x− µ+)

2

2K2

)
dx+

1

2

∫ +∞

θ−ϵ

1√
2π

exp

(
−(x− µ−)2

2

)
dx ,

and

∂

∂θ
Lrob

θ (ϵ) =

[
exp

(
− (θ+ϵ−µ+)2

2K2

)
−K exp

(
− (θ−ϵ−µ−)2

2

)]

2K
√
2π

. (6.12)

By the assumptions made about K and ϵ, there exists a unique root θ(ϵ)r ∈ (µ−, µ+ − ϵ) of

∂
∂θ
Lrob

θ (ϵ) = 0 such that the robust error Lrob
θ (ϵ) is decreasing over (µ−, θ

(ϵ)
r ) while increasing

over (θ(ϵ)r , µ+), i.e.,

∂

∂θ
Lrob

θ (ϵ)





< 0 , θ ∈ (µ−, θ
(ϵ)
r ) ,

> 0 , θ ∈ (θ
(ϵ)
r , µ+) ,

(6.13)

which indicates that θ(ϵ)r essentially minimizes the robust classification error.

Therefore, by solving ∂
∂θ
Lrob

θ (ϵ)

∣∣∣∣
θ=θ

(ϵ)
r

= 0, we are able to derive the robust classifier as

follows.

θ(ϵ)r = µ− −
µ+ − µ− − (K2 + 1)ϵ

K2 − 1
+

K

K2 − 1

√
2(K2 − 1) ln(K) + (µ+ − µ− − 2ϵ)2 ,

which satisfies the following

θ(ϵ)r ≤ µ+ − ϵ ≤ µ+ .
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iv) The next step is to compare the three different classifiers we just obtained. We start with the

Bayes and fair classifiers.

⋆

θ −θf =
K
(√

2(K2 − 1) ln(K) + (µ+ − µ−)2 − µ+ − µ−
)

K2 − 1

>
K
(√

(µ+ − µ−)2 − µ+ − µ−
)

K2 − 1
= 0 ,

where the inequality comes from the assumption that K is strictly larger than 1. It indicates

that the threshold of the Bayes classifier is greater than that of the fair classifier. Then, we

move on to the comparison between the Bayes and robust classifier. Note that the robust

classifier is identical to the Bayes classifier when ϵ is 0, i.e., θ(0)r =
⋆

θ. Besides, we have that

∂

∂ϵ
θ(ϵ)r =

K2 + 1− 2(µ+−µ−−2ϵ)K√
(µ+−µ−−2ϵ)2+2(K2−1) ln(K)

K2 − 1

>
K2 + 1− 2(µ+−µ−−2ϵ)K√

(µ+−µ−−2ϵ)2

K2 − 1
(6.14)

=
K2 − 2K + 1

K2 − 1
(6.15)

=
K − 1

K + 1
> 0 ,

where Equation (6.14) is due to the fact that K > 1 and Equation (6.15) comes from the

assumption that ϵ ≤ µ+−µ−
2

, which ensures that µ+−µ−−2ϵ is strictly positive. Therefore, the

partial derivative of θ(ϵ)r in ϵ is strictly positive over the interval
[
0, µ+−µ−

2

]
. As a consequence,

for any ϵ ∈
[
0, µ+−µ−

2

]
, the following relation always holds that µ+ ≥ θ

(ϵ)
r ≥ θ

(0)
r =

⋆

θ. Putting

things together, we end up with following relation: for any ϵ ∈
[
0, µ+−µ−

2

]
and K ∈ (1, BK),

µ− + ϵ ≤ θf ≤
⋆

θ ≤ θ(ϵ)r ≤ µ+ − ϵ .
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Proof of Corollary 6.2

Proof. Note that, by Equation (6.13), the robust classification error is strictly decreasing over

(µ−, θ
(ϵ)
r ). Then, by Equation (6.8) in Proposition 6.1, the three classifiers satisfy the following

relation

µ− ≤ θf ≤
⋆

θ ≤ θ(ϵ)r .

Due to contiguity of Lrob
θ (ϵ), we can argue that, for any ϵ ∈

(
0, µ+−µ−

2

)
and K ∈ (1, BK),

Lrob
θf

(ϵ) ≥ Lrob
⋆
θ

(ϵ) ≥ Lrob

θ
(ϵ)
r

(ϵ) .

Proof of Corollary 6.3

Proof. The boundary error and its partial derivative are presented in the following:

Lbdy
θ (ϵ)

= Pr (∃ |τ | ≤ ϵ, fθ(X + τ) ̸= Y, fθ(X) = Y )

=
1

2
Pr (∃ |τ | ≤ ϵ, fθ(X + τ) = −1, fθ(X) = 1 | Y = 1)+

1

2
Pr (∃ |τ | ≤ ϵ, fθ(X + τ) = 1, fθ(X) = −1 | Y = −1)

=
1

2
Pr (θ < X ≤ θ + ϵ | Y = 1)+

1

2
Pr (θ ≥ X > θ − ϵ | Y = −1)

=
1

2

∫ θ+ϵ

θ

1√
2πK

exp

(
−(x− µ+)

2

2K2

)
dx+

1

2

∫ θ

θ−ϵ

1√
2π

exp

(
−(x− µ−)2

2

)
dx ,
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and

∂

∂θ
Lbdy

θ (ϵ) =
exp

(
− (θ+ϵ−µ+)2

2K2

)

2
√
2πK

−
exp

(
− (θ−µ+)2

2K2

)

2
√
2πK

+

exp
(
− (θ−µ−)2

2

)

2
√
2π

−
exp

(
− (θ−ϵ−µ−)2

2

)

2
√
2π

=
g(ϵ; θ,K)− g(0; θ,K)

2
√
2π

,

where g : R 7→ R is an auxiliary function shown as follows

g(ϵ; θ,K) =
exp

(
− (θ+ϵ−µ+)2

2K2

)

K
− exp

(
−(θ − ϵ− µ−)2

2

)
. (6.16)

By Proposition 6.1, the partial derivative of the boundary error in θ is always negative for any

θ ∈
[
θf , θ

(ϵ)
r

]
because

∂

∂θ
Lbdy

θ (ϵ) =
g(ϵ; θ,K)− g(0; θ,K)

2
√
2π

< 0 .

It leads to the following result that the boundary error Lrob
θ (ϵ) decreases in θ over

[
θf , θ

(ϵ)
r

]
, and,

therefore,

Lbdy
θf

(ϵ) ≥ Lbdy
⋆
θ

(ϵ) ≥ Lbdy

θ
(ϵ)
r

(ϵ) .

Proposition 6.1. For any ϵ ∈
[
0, µ+−µ−

4

]
, K ∈

(
1, B̄K

)
, and θ ∈

[
θf , θ

(ϵ)
r

]
, the following relation

holds

g(ϵ; θ,K) ≤ g(0; θ,K) , (6.17)

where the function g is defined in Equation (6.16).
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Proof. Note that the partial derivative of the function g in ϵ can be given by

∂

∂ϵ
g(ϵ; θ,K) =

µ+ − θ − ϵ
K3

exp

(
−(µ+ − θ − ϵ)2

2K2

)
−

(θ − ϵ− µ−) exp
(
−(θ − ϵ− µ−)2

2

)
.

In order to establish the result in Equation (6.17), it suffices to demonstrate that the partial deriva-

tive ∂
∂ϵ
g(ϵ; θ,K) is negative, which implies that the function g(ϵ; θ,K) is strictly decreasing over

[
0, µ+−µ−

4

]
. Note that

ln

(
µ+ − θ − ϵ

K3
exp

(
−(µ+ − θ − ϵ)2

2K2

))
− ln

(
(θ − ϵ− µ−) exp

(
−(θ − ϵ− µ−)2

2

))

= − [ln(θ − ϵ− µ−)− ln(µ+ − θ − ϵ)−] +
[
(θ − ϵ− µ−)2

2
− (µ+ − θ − ϵ)2

2K2

]
− 3 ln(K)

=
1

2
(q(θ; ϵ,K)− p(θ; ϵ,K)− 4 ln(K)) ≤ 0 ,

where the last inequality comes from Proposition 6.2. It follows that, due to monotonicity of the

function x 7→ ln(x),

∂

∂ϵ
g(ϵ; θ,K) =

µ+ − θ − ϵ
K3

exp

(
−(µ+ − θ − ϵ)2

2K2

)
−

(θ − ϵ− µ−) exp
(
−(θ − ϵ− µ−)2

2

)

≤ 0 ,

which completes our proof here.

Proposition 6.2. For any ϵ ∈
[
0, µ+−µ−

4

]
, K ∈

(
1, B̄K

]
, and θ ∈

[
θf , θ

(ϵ)
r

]
, the following relation

always holds:

p(θ; ϵ,K) ≥ q(θ; ϵ,K)− 4 ln(K) ,
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where

p(θ; ϵ,K) = ln
(
(θ − ϵ− µ−)2

)
− ln

(
(µ+ − θ − ϵ)2

K2

)
, (6.18)

q(θ; ϵ,K) = (θ − ϵ− µ−)2 −
(µ+ − θ − ϵ)2

K2
. (6.19)

Proof. First off, observe that the functions p and q are both increasing over
[
θf , θ

(ϵ)
r

]
. It follows

that, for any
[
θf , θ

(ϵ)
r

]
,

p(θ; ϵ,K) ≥ p(θf ; ϵ,K) (6.20)

≥ − 2 ln(K) = 2 ln(K)− 4 ln(K) (6.21)

= q
(
θ(ϵ)r ; ϵ,K

)
− 4 ln(K) (6.22)

≥ q(θ; ϵ,K)− 4 ln(K) , (6.23)

where Equation (6.20) and (6.23) come from monotonicity of the functions p and q. Equation

(6.21) and (6.22) are due to Proposition 6.4 and 6.3 respectively.

Proposition 6.3. For any ϵ ∈
[
0, µ+−µ−

4

]
and K ∈

(
1, B̄K

]
,

q
(
θ(ϵ)r ; ϵ,K

)
= 2 ln(K) ,

where the definition of the function q is given in Equation (6.19).

Proof. Due to optimality of θ(ϵ)r in terms of robust error, θ(ϵ)r should be a solution to Equation

(6.12), i.e.,

exp

(
−(θ

(ϵ)
r + ϵ− µ+)

2

2K2

)
−K exp

(
−(θ

(ϵ)
r − ϵ− µ−)2

2

)
= 0 , (6.24)

which leads to the following, by multiplying the both sides with the term exp
(

(θ
(ϵ)
r −ϵ−µ−)2

2

)
,

exp

(
q(θ

(ϵ)
r ; ϵ,K)

2

)
= K ,
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and

q(θ(ϵ)r ; ϵ,K) = 2 ln(K) .

Proposition 6.4. For any ϵ ∈
[
0, µ+−µ−

4

]
and K ∈

(
1, B̄K

]
,

p (θf ; ϵ,K) ≥ −2 ln(K) , (6.25)

where the definition of the function p is given in Equation (6.18).

Proof. Equation (6.25) can be rewritten into the following equivalent form

exp (p (θf ; ϵ,K) + 2 ln(K)) = K − (K − 1)ϵ
µ+−µ−
K+1

− ϵ
K

> 1 . (6.26)

Note that

K ≤ B̄K =⇒ K +
1

K
≤ µ+ − µ−

ϵ
− 2

=⇒ µ+ − µ−
K + 1

≥ K + 1

K
ϵ ,

which leads to the following result

exp (p (θf ; ϵ,K) + 2 ln(K))

= K − (K − 1)ϵ
µ+−µ−
K+1

− ϵ
K

≥ K − (K − 1)

= 1 .

It helps complete our proof here.

Proof of Theorem 6.4

Proof. Since fθ is essentially a linear classifier, the distance to the decision boundary of fθ is
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simply the absolute value between the feature X and the threshold θ, i.e., ∆(X, fθ) = |X − θ|.

Notice that the average distance to the decision boundary of fθ can then be given by

E [∆ (X, fθ)] = E [|X − θ|]

= E [|X − θ| | Y = 1] · Pr (Y = 1)+

E [|X − θ| | Y = −1] · Pr (Y = −1)

=
1

2

∫ +∞

−∞

|x− θ|√
2πK

exp

(
−(x− µ+)

2

2K2

)
dx+

1

2

∫ +∞

−∞

|x− θ|√
2π

exp

(
−(x− µ−)2

2

)
dx ,

whose derivative can be expressed as

(E [∆ (X, fθ)])
′ = 2

(
Φ(θ − µ−)− Φ

(
µ+ − θ
K

))
,

where Φ represents the cumulative distribution function associated with the standard normal dis-

tribution. Recall that

θf = µ− +
µ+ − µ−
K + 1

.

It follows that

(E [∆ (X, fθ)])
′





< 0 , θ ∈ (µ−, θf) ,

> 0 , θ ∈ (θf , µ+) ,

which implies that the average distance strictly decreases over (µ−, θf) while increases over (θf , µ+).

By the relation shown in Equation (6.8), we figure out that, for any ϵ ∈
[
0, µ+−µ−

2

]
and K ∈

(1, BK ],

E
[
∆
(
X, f

θ
(ϵ)
r

)]
≥ E

[
∆
(
X, f⋆

θ

)]
≥ E [∆ (X, fθf )] .

Moreover, θf is the minimizer of the average distance E [∆ (X, fθ)] over the interval [µ−, µ+].

Proof of Theorem 6.5
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Proof. First off, notice that θf(λ) is the minimizer of Lnat
θ + λ · Lfair

θ over [µ−, µ+], where Lfair
θ is

a shorthand for

|Pr (fθ(X) ̸= 1 | Y = 1)− Pr (fθ(X) ̸= −1 | Y = −1)| .

Thus, Lnat
θ + λ · Lfair

θ can be presented in a piecewise way as follows:

1) if θ ≤ θf ,

Lnat
θ + λ · Lfair

θ = (1− λ) Pr (fθ(X) ̸= 1 | Y = 1)+ (1+ λ) Pr (fθ(X) ̸= −1 | Y = −1) ;

2) if θ > θf ,

Lnat
θ + λ · Lfair

θ = (1+ λ) Pr (fθ(X) ̸= 1 | Y = 1)+ (1− λ) Pr (fθ(X) ̸= −1 | Y = −1) .

We start with the first case where θ is no greater than θf . The partial derivative of Lnat
θ + λ · Lfair

θ

is then given by

∂
(
Lnat

θ + λ · Lfair
θ

)

∂θ
=

1− λ
2
√
2πK

exp

(
−(θ − µ+)

2

2K2

)
− 1 + λ

2
√
2π

exp

(
−(θ − µ−)2

2

)
. (6.27)

Observe that, when λ ∈ [0, 1], this partial derivative is increasing over [µ−, θf ] with its value at θf

no greater than 0 while it is always non-positive for any λ ∈ (1,+∞) and θ ∈ [µ−, θf ]. Therefore,

the partial derivative presented in Equation (6.27) proves to be non-positive, whatever λ, which

implies that the function Lnat
θ + λ · Lfair

θ decreases over [θ, θf ] and we merely need to focus on the

case of θ ∈ [θf , µ+] in pursuit of its minimizer. Then, we continue to investigate the case where θ

is greater than θf . Likewise, the partial derivative of Lnat
θ + λ · Lfair

θ can be expressed as

∂
(
Lnat

θ + λ · Lfair
θ

)

∂θ
=

1 + λ

2
√
2πK

exp

(
−(θ − µ+)

2

2K2

)
− 1− λ

2
√
2π

exp

(
−(θ − µ−)2

2

)
. (6.28)
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We split our studies into the following three scenarios:

1) if λ ∈
[
0, K−1

K+1

]
, Lnat

θ +λ ·Lfair
θ first decreases over [θf , θf(λ)] and then increases over [θf(λ), µ+]

where its minimum takes place at

µ−
µ+ − µ−
K2 − 1

+
K

K2 − 1

√
2(K2 − 1) ln

(
1− λ
1 + λ

·K
)
+ (µ+ − µ−)2 ; (6.29)

2) if λ ∈
(
K−1
K+1

, 1
]
, the partial derivative in Equation (6.28) turns out to be increasing in θ with

its value at θf non-negative. It implies that the partial derivative is always non-negative and,

thus, the function Lnat
θ +λ ·Lfair

θ increases over [θf , µ+]. As a consequence, the minimizer θf(λ)

actually coincides with θf .

3) if λ ∈ (1,+∞), note that the partial derivative is always positive. Following the same reasoning

in the previous scenario, we figure out that the minimizer θf(λ) is identical to θf .

Since the function λ 7→ 1−λ
1+λ

is decreasing over
[
0, K−1

K+1

]
, by Equation (6.29), we can argue that

θf(λ) is decreasing in λ over R+ as well. Furthermore, by the proof of Theorem 6.2, the average

distance to the decision boundary is an increasing function in θ over [θf , µ+], which indicates that

the average distance associated with the classifier fθf(λ) decreases, as λ increases.

subsubsectionFairness and Robustness Models

6.10.1.1 Fair models

The main text mainly discussed penalty-based methods as a way to encourage accuracy parity in a

classifier. This subsectiondiscusses a second methodology to achieve fairness denoted group-loss

focused methods [76]. We will show that the main conclusion of this chapter (e.g., that fairness

increase adversarial vulnerability) holds regardless of the methodology adopted to achieve fairness.

Group-loss focused methods. Methods in this category force the training to focus on the loss

component of worst performing groups. An effective method to achieve this goal was proposed
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in [76]:

θf = argmin
θ

∑

a∈A

1

q + 1
Lθ(Da)

q+1, (6.30)

where q is a non-negative constant. The intuition behind powering the loss by positive number q+1

is to penalize more the classes that have the larger losses. Thus, q plays the role of the fairness

parameter, like λ in penalty-based methods: larger q or λ values are associated with fairer (but also

often less accurate) models. The main differences between penalty-based methods and group-loss

focused methods are the following. First, the loss function of group-loss focused methods is fully

differentiable, in contrast to that of penalty-based methods, which is sub-differentiable when the

group loss equals the population loss. Second, penalty-based methods try to equalize the losses

across various subgroup, while group-focused based methods attempt at minimizing the maximum

loss across all subgroups.

6.10.2 Datasets and settings

Datasets. Experiments were performed using three benchmark datasets: UTK Face [144], CIFAR-

10 [69], and Fashion MNIST (FMNIST) [134].

1. UTK Face [144]. It consists of more than 20,000 facial images of 48x48 pixels resolution.

The experiments consider two learning tasks: (1) The first splits the data into five ethnicities:

White, Black, Asian, Indian, and Others. (2) The second splits the data into nine age bins:

under-ten years old, 10-14, 15-19, 20-24, 25-29, 30-39, 40-49, 50-59, and over 59 years old.

The classes are not uniformly distributed per number of groups and do not contain the same

number of images in each group. An 80/20 train-test split is performed.

2. CIFAR-10 [69]. It consists of 60,000 32x32 coloured images belonging to 10 classes, with

6000 images per class. The training set has 50,000 images while the test set has 10,000

images.
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3. Fashion MNIST(FMNIST) [134]. It consists of 60,000 28x28 gray-colored images belong-

ing to 10 classes, with 6000 images per class. The training set has 50,000 images while the

test set has 10,000 images.

Network architectures. The experiments consider three network architectures of increasing

complexity:

1. A CNN consisting of 3 convolutions layers followed by 3 fully connected layers.

2. A ResNet 50 network [56] (over 23 million parameteres).

3. A VGG-13 network [115] (138 million parameters).

We use CNN to provide some examples in the main text, but in this Section we will focus on

the ResNet and VGG networks.

Fair models and parameter settings. For penalty-based methods the experiments vary the

range of fairness parameter λ ∈ [0, 2]. We note that larger λ values may have a detrimental effects

to the models accuracy, which, we believe, limit the applicability of the fairness methods in real

use cases, thus we focus on these more realistic scenarios. However, we also note that appropriate

choices of hyperparameters λ will necessarily depend on the task and architecture at hand and can

be used to balance the trade-off between accuracy and fairness.

For group-loss focused methods, the experiments consider q ∈ [0, 2] for similar reasons as

those stated above.

The set of hyper-parameters, learning rate (lr), batch-size (bs), and number of training epochs

(epochs) adopted, for each dataset and architecture is reported in Table 6.1.

Dataset lr bs epochs
UTK Face 1e-3 32 70
CIFAR-10 1e-2 32 200
FMNIST 1e-2 32 50

Table 6.1: Hyperparameters settings for each datset.
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For each setting, the experiments report the average results of 10 runs, each initializing the

models parameters using a different random seed.

Adversarial attacks. The experiments also consider two classes of adversarial attacks to test

the model robustness: (1) The l∞ RFGSM attacks [122] and (2) The l2 PGD attacks [80]. The

experiments adopt the implementations reported in the Python package torchattacks [67].

Code and Preprocessing. Follow standard setting, the range of the pixel values was normal-

ized in [0, 1] for all datasets adopted.

All codes were written in Python 3.7 and in Pytorch 1.5.0. The library torchattacks [67] was

adopted to generate different adversarial attacks. The repository contained the dataset and imple-

mentation will be released publicly upon chapter acceptance.

6.10.3 Additional experiments

This subsectiondescribes additional experiments to further support the claims reported in the main

chapter. In particular, the experiments report results for deeper networks (e.g., ResNet-50) and for

additional fairness methods and adversarial attacks.

6.10.3.1 Fairness impacts on the decision boundary

Recall, from Theorem 6.3, that fairness reduces the average distance of the testing samples to the

decision boundary. As a consequence the fair classifiers are more vulnerable against the adver-

sarial attacks than the natural (unfair) classifiers. This subsection provides additional evidence to

support this claim on a high-dimensional model (ResNet 50) and using both penalty based methods

additional and group-loss focused methods (see subsection 6.10.1.1) to derive a fair classifier.

Penalty-based methods. Figure 6.9 and Figure 6.10 summarize the results obtained by a

penalty-based fair model executed on different benchmark datasets. The experiments again re-

port a consistent trend: as more fairness is enforced (increasing the values λ ), the natural errors
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(c) FMNIST dataset

Fig. 6.9: Natural errors (left), fairness violations (middle), and average distance to the decision
boundary (right) for different datasets when varying the fairness parameter λ of penalty-based
methods on ResNet-50 networks
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(b) UTKFace age bins dataset

Fig. 6.10: Natural errors (left), fairness violations (middle), and average distance to the decision
boundary (right) for different datasets when varying the fairness parameter λ of penalty-based
methods on VGG 13 networks

(left plots) generally increase while both the fairness violations (middle plots) and the average dis-

tance to the decision boundary (right plots) decrease. Recall that the latter is a proxy for measuring

the model robustness: the closer are samples to the decision boundary the less robust is a model.

Thus the previous plots show that robustness decreases as fairness increase.

Group-loss focused methods A similar setting is reported for a model satisfying fairness us-

ing the group-loss focused method described in subsection 6.10.1.1. This method maximizes the

worst group accuracy, which, in turn, attempts at equalizing the accuracy across groups. Figure

6.11 reports the results obtained using VGG-13 and the UTK-Face dataset. The results again illus-

trate similar trends: as the fairness parameter q increases, the natural errors (right) tend to increase

while both the fairness violations (middle) and the average distance to the decision boundary (left)

decrease. Notice that small enough q-values may also act as a regularizer and have a beneficial

effect toward the natural error, as observed for the UTK-age bin task (bottom-left plot).
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Fig. 6.11: Natural errors, fairness violations, and average distance to the decision boundary for
the UTK-Face ethnicity (top), UTK-Face age bins (bottom) datasets when varying the fairness
parameter q of group-loss focused methods on VGG-13 networks.

6.10.3.2 Boundary errors increase as fairness decreases

This subsection provides additional experiments to illustrating that the result of the chapter ( fair-

ness increases the adversarial vulnerability) is invarant across different fair classifier implementa-

tions. The experiments adopt the group-loss focused methods for different values of the fairness

parameter q. Notice that a natural classifier is obtained when q = 0. Figure 6.12 displays the

natural (left) and boundary (center) errors attained under different level of RFGSM attacks (regu-

lated by parameter ϵ) and the fairness violation (right) on CIFAR (top) FMNIST (middle) and UTK

(bottom) datasets. Notice how increasing q to large enough values typically decreases the fairness

violations. However, this comes at the cost of increasing the natural error and the boundary errors,
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which, in turn, exacerbate the robust errors.

6.10.3.3 A Mitigating Solution with Bounded Losses

More intuition why bounded loss works. This subsection first provides more intuition

about why bounded loss functions, such as the ramp loss adopted in the main text, can help re-

ducing the impacts of fairness towards robustness. To guide the intuitions, we will refer to Figure

6.13, which plots the graph functions of the following loss function for binary classification tasks:

• Ramp loss [30, 50], defined by:

ℓ(fθ(X), Y ) = min(1,max(0, 1− Y fθ(X))).

• Log-loss [55], defined by:

ℓ(fθ(X), Y ) = log(1 + exp(−Y fθ(X))).

• Exponential loss [55], defined by:

ℓ(fθ(X), Y ) = exp(−Y fθ(X))).

Notice that, as illustrated in Figure 6.13, unbounded losses (such as log-loss or exponential

loss) amplify the classification errors of misclassified samples X , in a way proportionately to the

distance of X from the decision boundary. The misclassification of a sample is captured by the

expression fθ(X)Y < 0, while the distance to the decision boundary by expression |fθ(X)Y |

(x-axis). Notably these losses are unbounded.

Now notice that a consequence of training a fair classifier is to push its decision boundary

to dense region of the advantaged group. This is because such classifier attempts at aligning the

groups classification losses, i.e., E[ℓ(fθ(X), Y )|Y = −1] = E[ℓ(fθ(X), Y )|Y = 1]. When the
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decision boundary is moved closer to the input samples, the classifier will inevitably become less

robust to small perturbations of adversarial noise.

On the contrary, using a bounded loss function, such as ramp loss, during fair learning, can

greatly reduce the impact produced by such (outlier) samples.

Effectiveness of the mitigation solution. Next, this subsection provides additional experi-

ments to demonstrate the effectiveness of the proposed solution to find a good tradeoff between

fairness and robustness. The generality of the proposed solution is demonstrated across several

architectures (VGG-13 and ResNet 50) and adversarial attacks (ℓ∞ RFGSM and ℓ2 PGD attacks

under different level of attacks ϵ).

In summary, the proposed mitigation solution—which uses a bounded loss— result in clas-

sifiers that, in the vast majority of the cases, are fairer and more robust that those produced by

models using a standard (cross entropy) loss.

VGG-13 and ℓ∞ RFGSM attacks. Figures 6.14 and 6.15 report the boundary errors attained

using RFGSM attacks on fair (λ > 0) and regular (λ = 0) classifiers on CIFAR and UTK datasets,

respectively and using a VGG 13. The plots compare models obtained using a cross entropy loss

(top plots) and those using a Ramp loss (bottom plots).

VGG-13 and ℓ2 PGD attacks. Figures 6.16 and 6.17. report the boundary errors attained using

a PGD attacks on fair (λ > 0) and regular (λ = 0) classifiers on UTK datasets and using a VGG

13. Once again, the plots compare models obtained using a cross entropy loss (top plots) and those

using a Ramp loss (bottom plots).

ResNet 50 and ℓ∞ RFGSM attacks Figures 6.18 and 6.19. report the boundary errors attained

using a RFGSM attacks on fair (λ > 0) and regular (λ = 0) classifiers on UTK Face and FMNIST

datasets, respectively and using a ResNet50. Once again, the plots compare models obtained using

a cross entropy loss (top plots) and those using a Ramp loss (bottom plots).
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ResNet 50 and ℓ2 PGD attacks Figures 6.20 and 6.21 report the boundary errors attained using

a PGD attack on fair (λ > 0) and regular (λ = 0) classifiers on CIFAR10 and FMNIST datasets,

respectively, and using a ResNet50. Once again, the plots compare models obtained using a cross

entropy loss (top plots) and those using a Ramp loss (bottom plots).
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(a) CIFAR dataset
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(b) FMNIST dataset
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(c) UTK age bins dataset

Fig. 6.12: Natural errors (left), boundary error under different RFGSM attacks (middle), and
fairness violation (right) of group-focused methods on ResNet-50 networks



196

2 1 0 1 2
f (X)Y

0

2

4

6
Lo

ss
 

ramp
exponential
log-loss
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Fig. 6.14: Top: Natural errors (left) and fairness violations (right) on the CIFAR-10 ethnicity task
at varying of the fairness parameters λ. The middle plots compares the robustness of fair (λ > 0)
vs. natural (λ = 0) classifiers to different RFGSM attack levels. Bottom: Mitigating solution using
the bounded Ramp loss. The base classifiers are VGG-13.
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Fig. 6.15: Top: Natural errors (left) and fairness violations (right) on the UTKFace age bins task
at varying of the fairness parameters λ. The middle plots compares the robustness of fair (λ > 0)
vs. natural (λ = 0) classifiers to different RFGSM attack levels. Bottom: Mitigating solution using
the bounded Ramp loss. The base classifiers are VGG-13.
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Fig. 6.16: Top: Natural errors (left) and fairness violations (right) on the UTKFace ethnicity task
at varying of the fairness parameters λ. The middle plots compares the robustness of fair (λ > 0)
vs. natural (λ = 0) classifiers to different l2 PGD attack levels. Bottom: Mitigating solution using
the bounded Ramp loss. The base classifier are VGG-13.
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Fig. 6.17: Top: Natural errors (left) and fairness violations (right) on the UTKFace age bins task
at varying of the fairness parameters λ. The middle plots compares the robustness of fair (λ > 0)
vs. natural (λ = 0) classifiers to different l2 PGD attack levels. Bottom: Mitigating solution using
the bounded Ramp loss. The base classifiers are VGG-13.
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Fig. 6.18: Top: Natural errors (left) and fairness violations (right) on the UTKFace ethnicity task
at varying of the fairness parameters λ. The middle plots compares the robustness of fair (λ > 0)
vs. natural (λ = 0) classifiers to different l∞ RFGSM attack levels. Bottom: Mitigating solution
using the bounded Ramp loss. The base classifier are Res Net 50.
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Fig. 6.19: Top: Natural errors (left) and fairness violations (right) on the FMNIST task at varying
of the fairness parameters λ. The middle plots compares the robustness of fair (λ > 0) vs. natural
(λ = 0) classifiers to different l∞ RFGSM attack levels. Bottom: Mitigating solution using the
bounded Ramp loss. The base classifier are Res Net 50.
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Fig. 6.20: Top: Natural errors (left) and fairness violations (right) on the CIFAR 10 task at
varying of the fairness parameters λ. The middle plots compares the robustness of fair (λ > 0)
vs. natural (λ = 0) classifiers to different l2 PGD attack levels. Bottom: Mitigating solution using
the bounded Ramp loss. The base classifiers are ResNet 50.
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Fig. 6.21: Top: Natural errors (left) and fairness violations (right) on the FMNIST task at varying
of the fairness parameters λ. The middle plots compares the robustness of fair (λ > 0) vs. nat-
ural (λ = 0) classifiers to different l2 PGD attack levels. Bottom: Mitigating solution using the
bounded Ramp loss. The base classifiers are ResNet 50.
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CHAPTER 7

PERSONALIZED PRIVACY AUDITING AND

OPTIMIZATION AT TEST TIME

A number of learning models used in consequential domains, such as to assist in legal, banking,

hiring, and healthcare decisions, make use of potentially sensitive users’ information to carry out

inference. Further, the complete set of features is typically required to perform inference. This

not only poses severe privacy risks for the individuals using the learning systems, but also re-

quires companies and organizations massive human efforts to verify the correctness of the released

information.

This chapter asks whether it is necessary to require all input features for a model to return

accurate predictions at test time and shows that, under a personalized setting, each individual may

need to release only a small subset of these features without impacting the final decisions. The

chapter also provides an efficient sequential algorithm that chooses which attributes should be

provided by each individual. Evaluation over several learning tasks shows that individuals may be

able to report as little as 10% of their information to ensure the same level of accuracy of a model

that uses the complete users’ information.
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7.1 Introduction

The remarkable success of learning models also brought with it pressing challenges at the interface

of privacy and decision-making. Privacy, in particular, has been cited as one of the most pressing

challenges of modern machine learning systems [95]. The requirement to protect personally identi-

fiable information is especially important as machine learning pipelines become routinely adopted

to guide consequential decisions, such as to assist in legal processes, banking, hiring, and health-

care decisions.

To contrast this challenge, several privacy-enhancing technologies have been proposed in the

last decades. Among these Differential Privacy [37] has found its place as a strong and rigorous

privacy notion, largely considered as the de-facto standard mechanism to protect sensitive users

data in statistical data analysis with notable adoption by the US. Census Bureau [5], Google [42]

and Apple [32].

While this framework has desirable properties its development has been focused on protecting

the information contained in the training data, leaving thus possible exposure to the information

being revealed during deployment by the users adopting the system. Further, to perform inference,

each user is conventionally required to reveal the complete set of features describing its data, even

if they may not be all essential to infer the intended prediction. This not only poses severe privacy

risks for the individuals using the learning systems but also requires companies and organizations

massive human efforts to verify the correctness of the released information. Importantly, this

setting may also violate the EU General Data Protection Regulation in the principle called data

minimization, which is cited as: “Personal data shall be adequate, relevant and limited to what is

necessary in relation to the purposes for which they are processed” [101, 103].

This chapter challenges this setting and asks whether it is necessary to require all input features

for a model to return accurate or approximately accurate predictions at test time. We refer to this

question as the redundant information leakage release for inference problem.

This unique question has profound implications for privacy in model personalization, where

users are required to reveal large amounts of data. We show that, under a personalized setting,
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each individual may need to release only a small subset of their features to produce the same

prediction errors as those obtained when all features are available. Following this result, we also

provide an efficient sequential algorithm that selects the smallest set of attributes to reveal by each

individual. Evaluation over several learning tasks shows that individuals may be able to report as

little as 10% of their information to ensure the same level of accuracy of a model that uses the

complete users’ information.

Contributions. In summary, the chapter makes the following contributions: (1) it initiates a

study to analyze which subset of data features should be released by each individual at deployment

time, to induce a model having the same level of accuracy as if all features were released; (2) it

links this analysis to a new concept of redundant information leakage and privacy, (3) it proposes

theoretically motivated and efficient algorithms that choose which attributes should be provided by

each individual to minimize redundant information leakage, and (4) it conducts a comprehensive

evaluation illustrating that individuals may be able to report as little as 10% of their information to

ensure the same level of accuracy of a model that uses the complete users’ information.

To the best of our knowledge, this is the first work studying this connection between privacy

and accuracy at test time.

7.2 Related work

While we are not aware of studies on redundant information release for inference problems, we

draw connections with differential privacy, feature selection, and active learning.

Differential Privacy. Differential Privacy (DP) [37] is a strong privacy notion which deter-

mines and bounds the risk of disclosing sensitive information of individuals participating into a

computation. In the context of machine learning, DP ensures that algorithms can learn the rela-

tions between data and predictions while preventing them from memorizing sensitive information

about any specific individual in the training data. In such a context, DP is primarily adopted to

protect training data [3,28,135] and thus the setting contrasts with that studied in this work, which



204

focuses on identifying the superfluous features revealed by users at test time to attain high accuracy.

Furthermore, achieving tight constraints in differential privacy often comes at the cost of sacrific-

ing accuracy, while the proposed privacy framework can reduce privacy loss without sacrificing

accuracy under the assumption of linear classifiers.

Feature selection. Feature selection [25] is the process of identifying and selecting a relevant

subset of features from a larger set for use in model construction, with the goal of improving per-

formance by reducing complexity and dimensionality of the data. The problem studied in this work

can be considered as a specialized form of feature selection with the added consideration of person-

alized levels, where each individual may use a different subset of features. This contrasts standard

feature selection [75], which select the same subset of features for each data sample. Additionally,

and unlike traditional feature selection, which is performed during training and independent of the

deployed classifier [25], the proposed framework performs feature selection at deployment time

and is inherently dependent on the deployed classifier.

Active learning. Finally. the proposed framework shares similarities with active learning

[47, 112], whose goal is to iteratively select samples for experts to label in order to construct an

accurate classifier with the least number of labeled samples. Similarly, the proposed framework

iteratively asks individuals to reveal one attribute given their released features so far, with the goal

of minimizing the uncertainty in model predictions.

Despite these similarities, the proposed redundant information leakage concept is motivated

by a privacy need and pertains to the analysis of features to release to induce the same level of

accuracy as if all features were released.

7.3 Settings and objectives

We consider a dataset D consisting of samples (x, y) drawn from an unknown distribution Π.

Here, x is a feature vector with x ∈ X , and y ∈ Y = [L] is a label with L classes. The features

in x can be divided into two categories: public xP and sensitive features xS . The sets of public
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Fig. 7.1: Left: Motivating example. Middle: Feature spaces illustrate the need for users to reveal
their sensitive values based on their public values. Right: Frequency associated with the size of the
minimum pure core feature set in the Credit card dataset under a logistic regression classifier.

and sensitive features indexes in vector x are represented as P and S, respectively.We consider

classifiers fθ : X → Y , which are trained on a public dataset from the same data distribution

Π above. The classifier produces a score over the classes, f̃θ(x) ∈ RL, and a final output class,

fθ(x) ∈ [L], given input x. The model’s outputs fθ(x) and f̃θ(x) are also often referred to as hard

and soft predictions, respectively.

Without loss of generality, we assume that all features in X are in the range of [−1, 1]. In

this setting, we are given a trained model fθ and, at prediction time, we have access to the public

features xP . These features may be revealed in response to a user query or may have been collected

by the provider in a previous interaction. For the purpose of illustration, in the scope of the chapter

we consider the binary classification, where L = {0, 1} and f̃θ ∈ R. We refer to the Section 7.9

for the multi-class settings where L > 2.

In this chapter, the term redundant information leakage of a model, refers to the number of

sensitive features that are revealed unnecessarily, meaning that their exclusion would not signif-

icantly impact the model’s output. Our goal is to design algorithms that accurately predict the

output of the model using the smallest possible number of sensitive features, thus minimizing the

data leakage at test time. This objective reflects our desire for privacy.

Before delving into the details of the chapter, we provide an example to serve as motivation for

several key points discussed throughout the document

Consider the illustration in Figure 7.1 (left). It exemplifies a loan approval task in which indi-

vidual features are represented by the set {Job,Loc(action), Inc(ome)}. The example assumes that

the feature Job is the public feature xP while Loc and Inc are sensitive features xS . The example
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also considers a trained linear model fθ = 1.0 Job− 0.5Loc+0.5 Inc ≥ 0. and looks at a scenario

in which a user (A) has a public feature Job = 1.0 and a user (B) has a public feature Job = −0.9.

Both users have sensitive feature values that are not known. However, notice how, for user A,

the outcome can be determined with certainty even if they do not reveal any additional informa-

tion; No matter the realizations for the sensitive features of A, their outcome will be unaltered,

as all features are bounded in [−1, 1]. For user B, in contrast, the outcome cannot be determined

with certainty based on the public feature alone. But the release of sensitive feature Loc = 1.0 is

sufficient to determine, with certainty, the classifier outcome.

Figure 7.1 (middle) further illustrates the values of the sensitive features Loc and Inc in relation

to the public feature Job which allows the classifiers’ output to be determined without revealing

additional information.

This example highlights two important observations that motivate our study: (1) not all sensi-

tive attributes may be required for decision-making at the time of inference, and (2) the number of

relevant sensitive attributes that need to be revealed to make a decision may differ among individ-

uals.

7.4 Core feature sets

With these ideas in mind, this section introduces the concept of core feature set and its relationship

with the uncertainty of the model predictions. We discuss the main results in the chapter and report

all proofs in Section 7.9.1.

Throughout the chapter, we use R and U to denote, respectively, the set of all revealed and

unrevealed features indices of the sensitive features S. Given a vector x and an index set I , we

denote xI as the vector of entries indexed by I and XI as the associated random variable.

Finally, we write fθ(XU , XR = xR) as a shorthand for fθ(XU , XR = xR, XP = xP ) to denote

the prediction made by the model when the features in U are unrevealed.

We aim to create algorithms that can identify the smallest set of sensitive attributes to reveal
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to render the model’s output certain (with high probability) regardless of the unrevealed attributes’

values. Such a set is denoted core feature set.

Definition 7.1 (Core feature set). Consider a subset R of sensitive features S, and let U =S \ R

be the unrevealed features. The set R is a core feature set if, for some ỹ ∈ Y ,

Pr
(
fθ(XU , XR = xR) = ỹ

)
≥ 1− δ, (7.1)

where δ ∈ [0, 1] is a failure probability.

When δ = 0 the core feature set is called pure. Additionally, the label ỹ satisfying Equation

(7.1) is called the representative label for the core feature set R. The concept of the representative

label ỹ is crucial for the algorithms that will be discussed later. These algorithms use limited

information to make predictions. When predictions are made using a set of unrevealed features,

the representative label ỹ will be used in place of the model’s prediction.

The following is a useful property of core feature sets used by this work to minimize redundant

information leakage.

Proposition 7.1. Let R ⊆ S be a core feature set with failure probability δ < 0.5. Then, there

exists a monotonic decreasing function ϵ : R→ R with ϵ(0) = 0 such that:

H
[
fθ(XU , XR = xR)

]
≤ ϵ(δ),

where H[Z]=−∑z∈[L] Pr(Z = z) log Pr(Z = z) is the entropy of the random variable Z.

This property highlights the relationship between core feature sets and entropy associated with

the model that uses incomplete information. Smaller δ values result in less uncertainty in the

model’s predictions and when δ is equal to zero (or when R is a pure core feature set), we have

complete knowledge of the model’s predictions even without observing xU . Thus this property

also illustrates the relationship between the failure probability δ and the uncertainty of model

predictions.
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It is worth noticing that more accurate predictions also require revealing more information, as

highlighted in the previous result and the following celebrated information theoretical result.

Proposition 7.2. Given two subsets R and R′ of sensitive features S, with R ⊆ R′,

H
(
fθ(XU , XR = xR)

)
≥ H

(
fθ(XU ′ , XR′ = xR′)

)
,

where U = S \R and U ′ = S \R′.

Thus, the parameter δ plays an important role in balancing the trade-off between the privacy

loss and the model performance. It controls how much sensitive information needs to be revealed

to make accurate predictions (for a desired level of uncertainty in the model’s predictions). As δ

gets larger, less sensitive features need to be revealed, leading to smaller information leakage but

also less accurate model predictions, and vice-versa.

Note that, as pointed out in the previous example, the core feature set is not unique for all users.

This is also highlighted in Figure 7.1 (right), which illustrates the minimum pure core feature sets

computed using a logistic regression classifier on the Credit dataset [18]. The figure shows that

many individuals need to release no additional information to obtain the model predictions and that

most individuals can get accurate model predictions with certainty by releasing just ≤ 2 sensitive

features. These connections, together with the previous observations linking core feature sets to

entropy motivate the proposed online algorithm.

7.5 Personalized feature release (PFR)

The goal of the proposed algorithm, called Personalized feature release (PFR), is to reveal sensitive

features one at a time based on their released feature values. This section provides a high-level

description of the algorithm and outlines the challenges in some of its aspects. Next, Section 7.6,

applies PFR to linear classifiers and discusses its performance on several datasets and benchmarks.

Further, Section 7.7, extends PFR to non-linear classifiers and considers an evaluation over a range
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of standard datasets. In the subsequent sections, we assume that the input features are jointly

distributed as Gaussians with mean vector µ and covariance matrix Σ, unless stated otherwise.

Additionally, as our motivation suggests, we will concentrate solely on maintaining privacy at

deployment time.

High-level ideas of PFR. At a high level, the algorithm chooses a feature to reveal by inspect-

ing the posterior probabilities Pr(Xj|XR = xR, XP = xP ) for each unrevealed feature j ∈ U and

with respect to the revealed sensitive features xR and the public features xP . Given the current set

of features revealed xR and unrevealed xU , the algorithm chooses the next feature j ∈ U such that:

j = argmax
j∈U

F (xR, xj; θ)

= argmax
j∈U

−H
[
fθ(Xj = xj, XU\{j}, XR = xR)

]
, (7.2)

where F is a scoring function that measures how much information can be gained on the model’s

predictions if feature Xj is revealed. Upon revealing feature Xj with a value of xj , the algorithm

adjusts the posterior probabilities for all remaining unrevealed features. The process concludes

when either all sensitive features have been disclosed or a core feature set has been identified.

The remainder of the section delves into the difficulties of calculating the scoring function F ,

including the unknown value of Xj beforehand and methods for determining if a set of revealed

features constitutes a core feature set.

7.5.1 Computing the scoring function F

The scoring function F quantifies the level of certainty in model predictions when a user reveals

the value of feature Xj . There are two challenges to consider. First, the value of Xj is unknown

until the decision is made, challenging the computation of the entropy function. Second, even if

the value of Xj were known, determining the entropy of model predictions in an efficient manner

is a further difficulty. We next discuss how to overcome these challenges.
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To address the first challenge, we exploit the information encoded in the revealed features to

infer xj . Thus, we can compute the posterior probability Pr(Xj|XR=xR) of the unrevealed feature

Xj given the values of the revealed ones. This estimate allows us to modify the scoring function,

abbreviated as F (Xj), to be the expected negative entropy given the randomness of Xj .

F (Xj) = EXj
−
[
H[fθ(Xj, XU\{j}, XR=xR)

]

= −
∫
H
[
fθ(Xj=z,XU\{j}, XR=xR)

]
(7.3a)

× Pr(Xj=z|XR=xR)dz, (7.3b)

where z ∈ Xj is a value in the support of Xj .

Estimating this scoring function efficiently is however challenged by the presence of two key

components. The first (Equation (7.3a)) is the entropy of the model’s prediction given a specific

unrevealed feature value, Xj = z. This prediction is a function of the random variable XU\{j},

and, due to Proposition 7.1, its estimation is related to the conditional densities Pr(XU\{j}|XR =

xR, Xj = z). The second component (Equation (7.3b)) is the conditional probability Pr(Xj =

z|XR = xR). Computing these conditional densities efficiently is discussed next.

The following result relies on the joint Gaussian assumption of the input features and will

be useful in providing a computationally efficient method to estimate such conditional density

functions. In the following, ΣIJ represents a sub-matrix of size |I| × |J | of a matrix Σ formed by

selecting rows indexed by I and columns indexed by J .

Proposition 7.3. The conditional distribution of any subset of unrevealed features U ′ ∈ U , given

the the values of released features XR = xR is given by:

Pr(XU ′|XR = xR) = N
(
µU ′ + ΣU ′,RΣ

−1
R,R(xR − µR),

ΣU ′,U ′ − ΣU ′,RΣ
−1
R,RΣR,U ′

)
,

where Σ is the covariance matrix
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To complete Equation 7.3, we must estimate the entropy H[fθ(Xj = z,XU\{j}, XR = xR)] for

a specific instance z, drawn from the distribution Pr(Xj|XR = xR) (see Equation (7.3a)). This can

be achieved by estimating Pr(f̃θ(Xj = z,XU\{j}, XR = xR)), as fθ = 1{f̃θ ≥ 0}, where 1 is the

indicator function and in the following sections, we will show how to assess this estimate for linear

and non-linear classifiers. Finally, by approximating the distribution over soft model predictions

through Monte Carlo sampling, we can compute the score function in F (Xj), as

F (Xj) = EXj
−
[
H
[
fθ(Xj, XU\{j}, XR = xR)

]]
(7.4)

≈ −
∑

z′∈Z

H
[
fθ(Xj = z′, XU\{j}, XR = xR)

]
,

where Z is a set of random samples drawn from Pr(Xj|XR = xR) and estimated through Propo-

sition 7.3, which thus can be computed efficiently.

7.5.2 Testing a core feature set

As reviewed above, the proposed iterative algorithm stops when it determines whether a subset R

of the sensitive feature set S is a core feature set. We divide this verification process into two cases:

When δ = 0, verifying thatR is a pure core feature set only requires checking if fθ(XU , XR = xR)

is constant for all realizations ofXU . We demonstrate, in Section 7.6, that this can be accomplished

in linear time for linear classifiers without any input distribution assumptions. When δ > 0, such

a property is no longer valid. Recall that, in order to verify a core feature set as per Definition 7.1,

we need to estimate the distribution of Pr(f̃θ(XU , XR = xR)). In Section 7.6, we show that one

can analytically estimate this distribution for linear classifiers, while in Section 7.7 we show how

to approximate this distribution locally, and use this estimate to derive a simple, yet effective (in

practice), estimator.
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7.6 PFR for linear classifiers

This section will devote to estimating the distribution Pr(f̃θ(Xj=z,XU\{j}, XR=xR)), or simply

expressed as Pr(f̃θ(XU , XR = xR)) and provides an instantiation of the PFR algorithm for linear

classifiers. In particular, it shows that when the input features are jointly Gaussian, both the es-

timation of the conditional distributions required to compute the scoring function F (Xj) and the

termination condition to test whether a set of revealed features is a core feature set, can be com-

puted efficiently. This is an important property for the developed algorithms, which are considered

online and interactive protocols.

7.6.1 Efficiently estimating Pr(f̃θ(XU , XR = xR))

For a linear classifier f̃θ = θ⊤x, and under the Gaussian distribution assumption adopted, the

model predictions f̃θ(x) are also Gaussian, as highlighted by the following result.

Proposition 7.4. The model predictions before thresholding, f̃θ(XU , XR = xR) = θUXU + θRxR

is a random variable with a Gaussian distribution N
(
mf , σ

2
f

)
, where

mf = θRxR + θ⊤U
(
µU + ΣU,RΣ

−1
R,R(xR − µR)

)
(7.5)

σ2
f = θ⊤U

(
ΣU,U − ΣU,RΣ

−1
R,RΣR,U

)
θU , (7.6)

where θU is the sub-vector of parameters θ corresponding to the unrevealed features U .

The above result is used to assist in calculating the conditional distribution of model predictions

fθ(x), following thresholding. This is a random variable that adheres to a Gaussian distribution,

as shown next, and will be used to compute the entropy of the model predictions, as well as to

determine if a subset of features constitutes a core set.

Proposition 7.5. Let the model predictions prior thresholding f̃θ(XU , XR = xR) be a random vari-

able following a Gaussian distribution N (mf , σ
2
f ). Then, the model prediction following thresh-

olding fθ(XU , XR = xR) is a random variable following a Bernoulli distribution Bern(p) with
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Fig. 7.2: Histogram of core feature set size for PFR under different δ on Bank dataset when
|S| = 7 and the underlying classifier is Logistic Regression

Algorithm 2: PFR for linear classifiers
input : A test sample x; Training data D
output: A core feature set R and its representative label ỹ

1 µ← 1
|D|
∑

(x,y)∈D x

2 Σ← 1
|D|
∑

(x,y)∈D(x− µ)(x− µ)⊤
3 Initialize R = ∅
4 while True do
5 if R is a core feature set with repr. label ỹ then
6 return (R, ỹ)
7 else
8 foreach j ∈ U do
9 Compute Pr(Xj|XR = xR) (using Prop. 7.3)

10 Z ← sample(Pr(Xj|XR = xR)) T times
11 Compute Pr

(
fθ(Xj = z,XU\{j}XR = xR)

)
(using Prop. 7.4 and 7.5)

12 Compute F (Xj) (using Eq. (7.4))

13 j∗ ← argmaxj F (Xj)

14 (R,U)← R ∪ {j∗}, U \ {j∗}

p = Φ(
mf

σf
), where Φ(·) refers to the CDF of the standard normal distribution, and mf and σf , are

given in Equations (7.5) and (7.6), respectively.

7.6.2 Testing pure core feature sets

In this subsection, we outline the methods for determining if a subset U is a pure core feature set,

and, if so, identifying its representative label. As per Definition 7.1, U is a pure core feature set

if fθ(XU , XR = xR) = ỹ for all XU . Equivalently, f̃θ(XU , XR = xR) = θ⊤UXU + θ⊤RxR must

have the same sign (either positive or negative) for all XU in the range of [−1, 1]|U |. Rather than
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Fig. 7.3: Accuracy and redundant information leakage for different choices of number of sensitive
features |S| on Insurance (left) and Credit (right) datasets using a Logistic Regression classifier.

evaluating all possible values of f̃θ(XU , XR = xR), we only need to examine if the maximum and

minimum values have the same sign. By virtue of the linear programming property under the box

constraint XU ∈ [−1, 1]|U |, it follows that:

max
XU

θ⊤UXU + θ⊤RxR = ∥θU∥1 + θ⊤RxR

min
XU

θ⊤UXU + θ⊤RxR = −∥θU∥1 + θ⊤RxR.

(7.7)

Therefore, if the sum ∥θU∥1 + θ⊤RxR and the difference −∥θU∥1 + θ⊤RxR are both negative (non-

negative), then U is considered a pure core feature set with representative label ỹ = 0 (ỹ = 1),

otherwise U is not a pure core feature set.

Importantly, determining whether a subset R of sensitive features S constitutes a pure core

feature set can be accomplished in linear time with respect to the number of features.

Proposition 7.6. Assume fθ is a linear classifier. Then, determining if a subset U of sensitive

features S is a pure core feature set can be performed in O(|P |+ |S|) time.

7.6.3 PFR-linear algorithm and evaluation

A pseudo-code of PFR specialized for linear classifiers is reported in Algorithm 2. The algorithm

takes as input a sample x (which only exposes the set of public features xP ) and uses the training

data D to estimate the mean and covariance matrix needed to compute the conditional distribution

of the model predictions given the unrevealed features (lines 1 and 2), as discussed above. After
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initializing empty the set of revealed features to the (line 3) it iteratively releases one feature until

a core feature set (and its associated representative label) are determined (line 5), as discussed

in detail in Section 7.6.2. The released feature Xj∗ is the one, among the unrevealed features

U , that maximizes the scoring function F (line 13). Computing such a scoring function requires

estimating the conditional distribution Pr(Xj|XR = xR) (line 9), constructing a sample set Z from

such distribution (line 10), and approximating the distribution over soft model predictions through

Monte Carlo sampling to compute (line 11). Finally, the algorithm updates the set of the revealed

and unrevealed features (line 14).

Notice that PFR relies on estimating the mean vector and covariance matrix from the training

data, which is considered public, for the scope of this chapter. If the training data is private, various

techniques exist to release DP mean, and variance [11, 78] and can be readily adopted. However,

the protection of training data is beyond the scope of this work.

Evaluation. Next, this section evaluates the effectiveness of PFR in minimizing information

leakage. The experiments are conducted on six standard UCI datasets [18]. We discuss here a

selection of these results and refer the reader to the Section 7.9 for additional experiments.

Figure 7.2 reports the snapshot on the redundant data leakage subject by various users on a

Logistic regression classifier trained on the Bank dataset [18] (more details reported in the Section

7.9), when using the proposed PFR algorithm for various core feature set failure probability δ

levels. The benefits of PFR are clearly evident from this histogram. For each testing sample, PFR

finds core feature sets that are much smaller than the overall sensitive feature set size |S| = 7.

Additionally, notice that when δ > 0, it finds core features sets of size smaller than 2 for the vast

majority of the individuals. This suggests that a significant number of users would need to disclose

only a small fraction of all of their sensitive information to allow the model to make accurate

predictions either with complete certainty or with very high confidence.

To further illustrate the advantages of PFR, we compare it to a baseline and an optimal model

for various choices of the number of sensitive attributes |S| ∈ [2, 7]. The baseline, in this context,

refers to the use of the original classifier, which requires users to disclose all sensitive features.
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The optimal model refers to the process of using a brute force method to identify the minimum

core feature set and its representative label by evaluating all possible subsets of sensitive features.

Once identified, this representative label is used as the model prediction when not all sensitive

features are disclosed. Verification tests are used to determine if a subset is a core feature set. It

is important to note that this method is not only computationally inefficient due to the exponential

number of cases, but also infeasible to implement in practice as it assumes that all sensitive features

are known.

For each choice of |S|, we randomly select |S| features from the entire set of features and

designate them as sensitive attributes. The remaining features are considered as public attributes.

The average accuracy and information leakage are then reported based on 100 random selections

of the sensitive attributes. Additional details on the experimental settings can be found in Section

7.9.5.

The performance results in terms of accuracy (left subplots) and information leakage (right

subplots) are presented in Figure 7.3. It is observed that across all datasets, PFR with δ = 0 are able

to identify a pure core feature set that is much smaller than the set of sensitive features. As a result,

only a small percentage of sensitive features need to be disclosed by users, while maintaining the

same level of accuracy. Furthermore, PFR with δ = 0, identifying pure core feature sets, can

retain the same accuracy as the Baseline models. This implies that under linear models, privacy

(as defined in this chapter) can be achieved “for free”!. Additionally, notice that how δ increases,

fewer features need to be revealed by users, but at the cost of a decrease in accuracy, generally.

Notice also that there may be cases (e.g., right subplots) where such features do not correlate well

with the predictions, and not revealing them may thus even improve the prediction accuracy (this

aspect is related to feature selection). Generally, however, the larger the failure probability δ the

more information leakage can be protected but at a cost of a larger drop in accuracy. At the same

time, notice how marginal is the decrease in accuracy, which demonstrates the robustness of the

proposed model.
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Fig. 7.4: Accuracy and redundant information leakage for different choices of number of sensi-
tive features |S| on Insurance (left) and Credit (right) datasets using a nonlinear (neural network)
classifier.

7.7 PFR for non-linear classifiers

Next, the chapter focuses on computing the estimate Pr(f̃θ(XU , XR = xR)) and determining

core feature sets when fθ is a nonlinear classifier. Then, the section presents results that illus-

trate the practical benefits of PFR in minimizing information leakage on neural networks. The

determination of core feature sets relies on the assumption that the classifiers are ∆-robust, i.e.,

∀x, x′ ∈ X , s.t: ∥x − x′∥∞ ≤ ∆ then fθ(x) = fθ(x
′). In practice, however, we show that, even in

the presence of arbitrary classifiers, the proposed PFR is able to significantly reduce information

leakage at test time.

7.7.1 Efficiently estimating Pr(f̃θ(XU , XR = xR))

First notice that even if the input features x are jointly Gaussian, the outputs fθ(x) of the classifier

will no longer follow a Gaussian distribution after undergoing a non-linear transform. This makes

estimating the distribution of Pr(f̃θ(XU , XR = xR) more challenging. To address this issue, the

chapter proposes to locally approximate the model predictions f̃ θ using a Gaussian distribution.

This approach is demonstrated in the following result.

Theorem 7.1. The distribution of the random variable f̃θ = f̃θ(XU , XR = xR) where XU ∼

N
(
µ

pos
U ,Σ

pos
U

)
can be approximated by a Normal distribution as

f̃θ ∼ N
(
f̃θ(XU = µpos

U , XR = xR), g
⊤
UΣ

pos
U gU

)
(7.8)
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where gU = ∇XU
f̃θ(XU = µpos

U , XR = xR) is the gradient of model prediction at XU = µpos
U .

In the above, the mean vector µpos
U and and covariance matrix Σ

pos
U of Pr(XU |XR = xR) are

obtained from Proposition 7.3. The result above relies on a first-order Taylor approximation of the

classifier fθ around its mean.

7.7.2 Testing pure core feature sets

To determine if a subset U of the sensitive features S is a pure core feature set, we consider

a set of ( 1
∆
)|U | input points, represented by Q = [XU , xR]. The entries corresponding to the

revealed features are fixed with the value xR, while the entries corresponding to the unrevealed

features are evenly spaced over the cube [−1, 1]|U |. The test verifies if the model predictions

fθ(x) remain constant for all x in Q. Note that the computational runtime of this verification

process is affected by the degree of robustness ∆ of the underlying classifier f . Rendering such a

procedure more generally computationally efficient will be an interesting direction for future work.

In the next section, we will show that even considering arbitrary classifiers (e.g., we use standard

neural networks), PFR can reduce information leakage dramatically when compared to standard

approaches.

7.7.3 PFR-nonlinear algorithm and evaluation

The FPR algorithm for non-linear classifiers differs from Algorithm 2 only in the method of calcu-

lating the estimates for the distribution of the soft model predictions, represented by Pr(fθ(Xj =

z,XU\j, XR = xR)) (line 11), by utilizing the results in Theorem 7.2 and Proposition 7.5. Addi-

tionally, the algorithm’s termination test relies on the discussion presented in the previous section.

A complete description of the algorithm is reported in Section 7.9.2.

Evaluation. Next, we assess the performance of PFR in reducing information leakage when

standard non-linear classifiers are adopted. Specifically, we use a neural network with two hidden

layers and ReLU activation functions as baselines classifiers and train models using stochastic
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gradient descent (as specified in more detail in Section 7.9.5). The evaluation, baselines, and

benchmarks adopted follow the same settings as those adopted in Section 7.6.3.

Figure 7.4 illustrates the results in terms of accuracy (left subplots) and information leakage

(right subplots). Unlike linear classifiers, non-linear models using PFR with a failure probability

δ = 0 cannot ensure the same level of accuracy as the baseline models. However, notice how

small this difference in accuracy is. Remarkably, a failure probability δ = 0 allows users to re-

lease less than a half and up to 90% less sensitive features across different datasets while obtaining

accuracies comparable to those of traditional classifiers. Notice also that when more relaxed fail-

ure probabilities are considered the information leakage reduces significantly. For example, when

δ = 0.05, users require to release only 5% of their sensitive features while retaining comparable

accuracies to the baseline models (the largest accuracy difference reported was 0.005%). These

results are significant: They demonstrate that the introduced privacy leakage notion and the pro-

posed algorithm can become an important tool to safeguard the privacy of individual’s data at test

time, without excessively compromising accuracy.

7.8 Conclusion

This chapter introduced the concept of information leakage at test time whose goal is to minimize

the number of features that individuals need to disclose during model inference while maintaining

accurate predictions from the model. The motivations of this notion are grounded in the privacy

risks imposed by the adoption of learning models in consequential domains, by the significant

efforts required by organizations to verify the accuracy of the released information, and align with

the data minimization principle outlined in the GDPR. The chapter then discusses an iterative and

personalized algorithm that selects the features each individual should release with the goal of

minimizing information leakage while retaining exact (in the case of linear classifiers) or high (for

non-linear classifiers) accuracy. Experiments over a range of benchmarks and datasets indicate

that individuals may be able to release as little as 10% of their information without compromising
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the accuracy of the model, providing a strong argument for the effectiveness of this approach in

protecting privacy while preserving the accuracy of the model.

7.9 Appendix

7.9.1 Missing proofs

Proposition 7.7. Given a core feature set R ⊆ S with failure probability δ < 0.5, then there exists

a function ϵ : R→ R that is monotonic decreasing function with ϵ(0) = 0 such that:

H
[
fθ(XU , XR = xR)

]
≤ ϵ(δ),

where H[Z]=−∑z∈[L] Pr(Z = z) log Pr(Z = z) is the entropy of the random variable Z.

Proof. In this proof, we demonstrate the binary classification case. The extension to a multi-class

scenario can be achieved through a similar process.

By the definition of the core feature set, there exists a representative label, denoted as ỹ ∈ {0, 1}

such that the probability of P (fθ(XU , XR = xR) = ỹ) is greater than or equal to 1 − δ. Without

loss of generality, we assume that the representative label is ỹ = 1. Therefore, if we denote Z as

the probability of Pr(fθ(XU , XR = xR) = 1), then the probability of Pr(fθ(XU , XR = xR) =

0) = 1 − Z. Additionally, we have Z ≥ 1 − δ > 0.5 due to the assumption that δ < 0.5. The

entropy of the model’s prediction can be represented as: H
[
fθ(XU , XR = xR)

]
= −Z logZ −

(1− Z) log(1− Z).

Let ϵ(Z) = −Z logZ − (1 − Z) log(1 − Z). The derivative of ϵ(Z) is given by dϵ(Z)
dZ

=

log 1−Z
Z

< 0, as Z > 0.5. As a result, ϵ(Z) is a monotonically decreasing function.

When δ = 0, we have Z = 1, and by the property of the entropy H
[
fθ(XU , XR = xR)

]
=

0.
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Proposition 7.8. Given two subsets R and R′ of sensitive features S, with R ⊆ R′,

H
(
fθ(XU , XR = xR)

)
≥ H

(
fθ(XU ′ , XR′ = xR′)

)
,

where U = S \R and U ′ = S \R′.

Proof. This is due to the property that conditioning reduces the uncertainty, or the well-known

information never hurts theorem in information theory [68].

Proposition 7.9. The conditional distribution of any subset of unrevealed features U ′ ∈ U , given

the the values of released features XR = xR is given by:

Pr(XU ′ |XR = xR) = N
(
µU ′ + ΣU ′,RΣ

−1
R,R(xR − µR), ΣU ′,U ′ − ΣU ′,RΣ

−1
R,RΣR,U ′

)
,

where Σ is the covariance matrix

Proof. This is a well-known property of the Gaussian distribution and we refer the reader to Chap-

ter 2.3.2 of the textbook [17] for further details.

Proposition 7.10. The model predictions before thresholding, f̃θ(XU , XR = xR) = θUXU +θRxR

is a random variable with a Gaussian distribution N
(
mf , σf

)
, where

mf = θRxR + θ⊤U
(
µU + ΣU,RΣ

−1
R,R(xR − µR)

)
(7.9)

σ2
f = θ⊤U

(
ΣU,U − ΣU,RΣ

−1
R,RΣR,U

)
θU , (7.10)

where θU is the sub-vector of parameters θ corresponding to the unrevealed features U .

Proof. The proof of this statement is straightforward due to the property that a linear combination

of Gaussian variablesXU is also Gaussian. Additionally, the posterior distribution ofXU is already

provided in Proposition 7.3.

Proposition 7.11. Let the model predictions prior thresholding f̃θ(XU , XR = xR), be a ran-

dom variable following a Gaussian distribution N (mf , σ
2
f ). Then, the model prediction following
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thresholding fθ(XU , XR = xR) is a random variable following a Bernoulli distribution Bern(p)

with p = Φ(
mf

σf
), where Φ(·) refers to the CDF of the standard normal distribution, and mf and

σf , are given in Equations (7.5) and (7.6), respectively.

Proof. In the case of a binary classifier, we have fθ(x) = 1{f̃θ(x) ≥ 0}. If f̃ follows a normal

distribution, denoted as f̃ ∼ N (mf , σ
2
f ), then by the properties of the normal distribution, fθ

follows a Bernoulli distribution, denoted as fθ ∼ Bern(p), with parameter p = Φ(
mf

σf
), where

Φ(·) is the cumulative density function of the standard normal distribution.

Proposition 7.12. Assume fθ is a linear classifier. Then, determining if a subset U of sensitive

features S is a pure core feature set can be performed in O(|P |+ |S|) time.

Proof. As discussed in the main text, to test if a subset U is a core feature set or not, we need to

check if the following two terms have the same sign (either negative or non-negative):

max
XU

θ⊤UXU + θ⊤RxR = ∥θ∥1 + θ⊤RxR

min
XU

θ⊤UXU + θ⊤RxR = −∥θ∥1 + θ⊤RxR.

(7.11)

These can be solved in time O(|P |+ |S|) due to the property of the linear equality above.

Theorem 7.2. The distribution of the random variable f̃θ = f̃θ(XU , XR = xR) where XU ∼

N
(
µ

pos
U ,Σ

pos
U

)
can be approximated by a Normal distribution as

f̃θ ∼ N
(
f̃θ(XU = µpos

U , XR = xR), g
⊤
UΣ

pos
U gU

)
(7.12)

where gU = ∇XU
f̃θ(XU = µpos

U , XR = xR) is the gradient of model prediction at XU = µpos
U .

Proof. The proof relies on the first Taylor approximation of classifier f̃ around its mean:

f̃θ(XU , XR = xR, ) ≈ f̃θ(XU = µpos
U , XR = xR) + (XU − µpos

U )T∇XU
f̃θ(XU = µpos

U , XR = xR)

(7.13)
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Algorithm 3: PFR for non-linear classifiers
input : A test sample x; Training data D
output: A core feature set R and its representative label ỹ

1 µ← 1
|D|
∑

(x,y)∈D x

2 Σ← 1
|D|
∑

(x,y)∈D(x− µ)(x− µ)⊤
3 Initialize R = ∅
4 while True do
5 if R is a core feature set with repr. label ỹ then
6 return (R, ỹ)
7 else
8 foreach j ∈ U do
9 Compute Pr(Xj|XR = xR) (using Prop. 7.3)

10 Z ← sample(Pr(Xj|XR = xR)) T times
11 Compute Pr

(
fθ(Xj = z,XU\{j}XR = xR)

)
( using Theorem 7.2)

12 Compute F (Xj) (using Eq. (7.4))

13 j∗ ← argmaxj F (Xj)

14 R← R ∪ {j∗}
15 U ← U \ {j∗}

Since XU ∼ N
(
µ

pos
U ,Σ

pos
U

)
hence XU − µ

pos
U ∼ N

(
0,Σ

pos
U

)
. By the properties of normal

distribution, the right-hand side of Equation (7.13) is a linear combination of Gaussian variables,

and it is also Gaussian.

7.9.2 Algorithms pseudocode

The pseudocode for PFR for non-linear classifiers is presented in Algorithm 3. There are two main

differences between this algorithm and the case of linear classifiers. Firstly, the procedure of pure

core feature testing on line 5 takes exponential time with respect to |U | instead of linear time as in

the case of linear classifiers. Additionally, we use Theorem 7.2 to estimate the distribution of the

soft prediction as seen on line 11, as the exact distribution cannot be computed analytically as in

the case of linear classifiers.
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7.9.3 Extension from binary to multiclass classification

In the main text, we provide the implementation of PFR for binary classification problem. In this

section, we extend the method to the multiclass classification problem.

7.9.4 Estimating P (fθ(XU , XR = xR))

In order to achieve our goals of determining if a subset is a core feature set for a given δ >

0, and computing the entropy in the scoring function, we need to estimate the distribution of

fθ(XU , XR = xR). In this section, we first discuss the method of computing the distribution

of f̃ θ(XU , XR = xR) for both linear and non-linear models. Once this is done, we then address

the challenge of estimating the hard label distribution P (fθ(XU , XR = xR)).

It is important to note that, under the assumption that the input features X are normally dis-

tributed with mean µ and covariance matrix Σ, the linear classifier f̃θ = θ⊤x will also have a

multivariate normal distribution. Specifically, if XU ∼ N (µpos
U ,Σpos

U ), then f̃ θ(XU , XR = xR) ∼

N (θ⊤RxR + θTUµ
pos
U , θ⊤UΣθU).

For non-linear classifiers, the output fθ(XU , XR = xR) is not a Gaussian distribution due to the

non-linear transformation. To approximate it, we use Theorem 7.2 which states that the non-linear

function f̃θ(XU , XR = xR) can be approximated as a multivariate Gaussian distribution.

Challenges when estimating P (fθ(XU , XR = xR)) For multi-class classification problems,

the hard label fθ(XU , XR = xR) is obtained by selecting the class with the highest score, which

is given by argmaxi∈[L] f̃
i
θ(XU , XR = xR). However, due to the non-analytical nature of the

argmax function, even when f̃ θ(XU , XR = xR) follows a Gaussian distribution, the distribution

of fθ(XU , XR = xR) cannot be computed analytically. To estimate this distribution, we resort to

Monte Carlo sampling. Specifically, we draw a number of samples from P (fθ(XU , XR = xR)),

and approximate the probability of each class as the proportion of samples that fall in that class.

We provide experiments of PFR for multi-class classification cases in Section 7.9.8.
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7.9.5 Experiments details

Datasets information To show the advantages of the suggested PFR technique for safeguard-

ing feature-level privacy, we employ benchmark datasets in our experiments. These datasets in-

clude both binary and multi-class classification datasets. The following are examples of binary

datasets that we use to evaluate the method:

1. Bank dataset [18]. The objective of this task is to predict whether a customer will subscribe

to a term deposit using data from various features, including but not limited to call duration

and age. There are a total of 16 features available for this analysis.

2. Adult income dataset [18]. The goal of this task is to predict whether an individual earns

more than $50,000 annually. After preprocessing the data, there are a total of 40 features

available for analysis, including but not limited to occupation, gender, race, and age.

3. Credit card default dataset [18]. The objective of this task is to predict whether a customer

will default on a loan. The data used for this analysis includes 22 different features, such as

the customer’s age, marital status, and payment history.

4. Car insurance dataset [106]. The task at hand is to predict whether a customer has filed

a claim with their car insurance company. The dataset for this analysis is provided by the

insurance company and includes 16 features related to the customer, such as their gender,

driving experience, age, and credit score.

Furthermore, we also evaluate our method on two additional multi-class classification datasets:

1. Customer segmentation dataset [119]. The task at hand is to classify a customer into one of

four distinct categories: A, B, C, and D. The dataset used for this task contains 9 different

features, including profession, gender, and working experience, among others.

2. Children fetal health dataset [73]. The task at hand is to classify the health of a fetus into one

of three categories: normal, suspect, or pathological, using data from CTG (cardiotocogra-
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phy) recordings. The data includes approximately 21 different features, such as heart rate

and the number of uterine contractions.

Settings: For each dataset, 70% of the data will be used for training the classifiers, while the

remaining 30% will be used for testing. The number of sensitive features, denoted as |S|, will be

chosen randomly from the set of all features, with |S| ranging from 2 to 7. The remaining features

will be considered as public. 100 repetition experiments will be performed for each choice of |S|,

under different random seeds, and the results will be averaged. All methods that require Monte

Carlo sampling will use 1000 random samples. The performance of different methods will be

evaluated based on accuracy and information leakage. Two different classifiers will be considered.

1. Linear classifiers: We use Logistic Regression as the base classifier.

2. Nonlinear classifiers: The nonlinear classifiers used in this study consist of a neural network

with two hidden layers, using the ReLU activation function. The number of nodes in each

hidden layer is set to 10. The network is trained using stochastic gradient descent (SGD)

with a batch size of 32 and a learning rate of 0.001 for 300 epochs. A value of ∆ = 0.2 is

used when testing the pure core feature set for nonlinear classifiers.

Baseline models. We compare our proposed algorithms with the following baseline models:

1. Baseline: This refers to the usage of original classifier which asks users to reveal all sensitive

features.

2. Opt: This method involves evaluating all possible subsets of sensitive features in order to

identify the minimum pure core feature set. For each subset, the verification algorithm is

used to determine whether it is a pure core feature set. The minimum pure core feature set

that is found is then selected. It should be noted that as all possible subsets are evaluated, all

sensitive feature values must be revealed. Therefore, this approach is not practical in real-

world scenarios. However, it does provide a lower bound on information leakage for PFR

(when δ = 0).
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Fig. 7.5: Accuracy and information leakage for different choices of number of private features m
under Logistic Regression classifiers
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Fig. 7.6: Accuracy and information leakage for different choices of number of sensitive features
|S| under non-linear classifiers

Metrics. We compare all different algorithms in terms of accuracy and information leakage:

1. Accuracy. For algorithms that are based on the core feature set, such as our PFR and "Opt,"

the representative label is used as the model’s prediction. The accuracy is then determined

by comparing this label to the ground truth.

2. Information leakage. We compute the average number of sensitive features that need to be

revealed over the test set. A smaller number is considered better.

7.9.6 Additional experiments on linear binary classifiers

Additional experiments were conducted to compare the performance of PFR to that of the baseline

methods using linear classifiers on the Bank and Adult income datasets, as shown in Figure 7.5. As

in the main text, a consistent trend in terms of performance is observed. As the number of sensitive
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attributes, |S|, increases, the information leakage introduced by PFR with various values of δ

increases at a slower rate. With different choices of |S|, PFR (with δ = 0) requires the revelation

of at most 50% of sensitive information. To significantly reduce the information leakage of PFR,

the value of δ can be relaxed. By choosing an appropriate value for the failure probability, such as

δ = 0.1, only minimal accuracy is sacrificed (at most 0.002%), while the information leakage can

be reduced to as low as 5% of the total number of sensitive attributes.

7.9.7 Additional experiments on non-linear binary classifiers

Additional experiments were conducted to compare the performance of PFR to that of the baseline

methods using non-linear classifiers on the Bank and Adult income datasets, as shown in Figure

7.6. As seen, while the Baseline method requires the revelation of all sensitive attributes, PFR with

different values of δ only requires the revelation of a much smaller number of sensitive attributes.

The accuracy difference between the Baseline method and PFR is also minimal (at most 2%).

These results demonstrate the effectiveness of PFR in protecting privacy while maintaining a good

prediction performance for test data.

7.9.8 Evaluation of PFR on multi-class classifiers

Linear classifiers We also provide a comparison of accuracy and information leakage between

our proposed FPR and the baseline models for linear classifiers. These metrics are reported for the

Customer and Children Fetal Health datasets in Figure 7.7. The figure clearly shows the benefits

of FPR in reducing information leakage while maintaining a comparable accuracy to the baseline

models.

Nonlinear classifiers Similarly, we present a comparison of our proposed algorithms with the

baseline methods when using non-linear classifiers. These metrics are reported for the Customer

and Children Fetal Health datasets in Figure 7.8. The results show that using PFR with a value of

δ = 0 results in a minimal decrease in accuracy, but significantly reduces the amount of information
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Fig. 7.7: Accuracy and information leakage for different choices of number of sensitive features
|S| under multinomial Logistic Regression
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Fig. 7.8: Accuracy and information leakage for different choices of number of sensitive features
|S| under non-linear classifiers

leakage compared to the Baseline method.
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CHAPTER 8

CONCLUSION

The current research at the intersection of differential privacy and fairness has shown promise in

building solutions to realize more trustworthy systems. Furthermore, the analysis of the disparate

impacts arising in several learning and decision tasks has paved the way to develop promising

mitigating strategies. Despite these encouraging results, a number of challenges must be addressed

to have a full understanding of the trade-offs between privacy, fairness, and accuracy.

1. The development of a unified theoretical framework to characterize and reason about fairness

issues arising in general decision tasks is still missing. Of particular importance would be to

capture the relation between the privacy loss values and the fairness violations resulting in

both decision-making and learning settings.

2. While the current focus in the analysis of fairness in private ML tasks has focused on data

and algorithmic properties, it has also been observed that batch-size and learning rate may

affect the Hessian spectrum of a network classifier [Yao et al., 2018]. These observations

may suggest that fairness in private ML tasks may be impacted by key hyper-parameters,

including batch size, learning rates, and the depth of neural networks.

3. Another aspect that has been observed repeatedly when connecting privacy and fairness is

their link with model robustness. While this observation arises both in decision and in learn-
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ing tasks, an understanding of this link is currently missing.

4. A further important direction is the study of the disparate impacts that may arise in algo-

rithms and generative models producing private synthetic datasets as well the development

of mitigation measures.

5. Finally, the development of software library to facilitate auditing fairness and bias issues in

a private decision or learning task would be crucial to broaden the knowledge and adoption

of these important issues.
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