
ABSTRACT

Collective cell behavior such as the formation of boundaries and collective cell motion is

crucial for numerous biological functions including development, healing, and homeostasis.

I investigate how changes to heterotypic behavior can drive collective behavior in models

for confluent tissue, tissue with no gaps between cells. First, I examine how cell collectives

can integrate signals from their environment to climb biochemical gradients when individual

cells cannot. We identify two possible mechanisms that could drive this collective climbing

behavior and develop an open-source framework that can be used to couple a biochemical

gradient to any intercellular interaction. I also show that the advection of this gradient by

cells has a minor impact in physically relevant regimes. Next, I construct a graph neural net-

work to make predictions about the fluidity of cell tissue based on the tissue structure. Using

this framework the neural network accurately predicts shear modulus and edge tensions in

a spring vertex model. Next, we analyze the differences between the 3D vertex and Voronoi

models. The systems share the same energy and many of the same geometric properties of

cell tissue. However, we discover that there are differences in cell orientation on the interface

boundary between cell types driven by a difference in discontinuous restoring force for cells to

exit this boundary. Then, we examine the stratified epithelium as a model system with many

layers of heterotypic cell interfaces. We identify changes to heterotypic interfacial tension

as one mechanism for cells to migrate through tissue boundaries. We also create a model

to accurately represent the integrin-based adhesions between cells and extracellular matrix

in real tissue and use this model as a way to inform a similar addition to the 3D vertex

model. Finally, we create a model for hair follicle development in the stratified epithelium.

In conjunction with our experimental collaborators, we identify a dominant mechanism for

the cell shape and tissue morphology changes seen during development. The model predicts

a difference in tissue flow between the mechanisms investigated that is confirmed by experi-

ments. All of the work I have done demonstrates how changes to individual cells, especially

changes to heterotypic interactions, can drive large-scale changes in tissue behavior.
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Chapter 1

Introduction

1.1 Collective behavior in biological tissue

Emergent collective behavior occurs when interactions between individuals drive large scale

changes in behaviors of groups of individuals. It is seen across all of biology and length

scales from birds flocking, to micro-organisms, to even human crowds [18–27]. It is crucial

in many important tissue-scale processes such as development [28–32], migration [33–37],

cancer progression [38–41], and wound healing [42, 43].

One of the more striking examples of emergent collective behavior inside cellular tissue is

when the tissue undergoes a rigidity transition. This occurs when the tissue transitions from

behaving solid-like to behaving fluid-like. When tissue behaves as a solid, the constituent

cells are caged by their neighbors which restrict motion and there is an energy barrier for

them to rearrange. When the tissue behaves as a fluid, the cells can flow past each other

with no energy cost. Oftentimes small changes to cell adhesion, density, or motility can

trigger this change.

This transition is clearly demonstrated in cultured lung tissue. In healthy human bronchial

epithelial cells (HBECs) after a few days in culture, the cells are caged by their neighbors

with small oscillations. During this time, the cells are isotropic and compact. However,

inside asthmatic cells at the same developmental stage, both the shape of the cells and their

motility are vastly different. The asthma cells are much more elongated and will move past

each other [5].

This fluid-to-solid transition can also occur spatially as it does in the zebrafish embyro [7].

In this system, there are fluid-like cells in the mesodermal progenitor zone (MPZ) that will

differentiate and join the presomitic mesoderm (PSM) further down the body axis. In the

embyro, the tissue has a higher density of cells in the PSM while the MPZ has larger gaps
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between cells and higher fluctuations. The lower density of cells in the MPZ is likely the

cause of the fluid-like behavior in the same region in which the tissue has a lower tissue

viscosity and yield stress, the maximum amount of stress the tissue can withstand before

beginning to flow, than the PSM.

Also during zebrafish embryo development, an organ that helps organize left-right sym-

metry, termed Kupffer’s vesicle, experiences large differences in the shape of its cells across

the organelle [44]. These shape changes have been postulated to be caused by fluid-like drag

forces from the organ moving through the surrounding cells. Without the fluid-like nature

of the surrounding tissue, it is likely that the shape changes necessary for the healthy devel-

opment of the embryo would not occur. This again suggests that small changes in how cells

interact with one another can cause large-scale differences in the behavior of the collective.

Along with cell shape, motility, and density changes, another mechanism that triggers

collective emergent behavior is altering the surface tension associated with individual cell

interfaces. This surface tension is driven by the cell’s contractile cortex, composed primary

of actin polymers and myosin motors. Deforming the actin cortex costs a mechanical energy

that is proportional to the surface area of the cell, which is similar to a standard surface

tension in liquid droplets. Several experiments have quantified that the energy is proportional

to increase in surface area, just like surface tension, via single-cell pipette aspirations [45–47].

Cells can alter this effective surface tension when they make contact with other cells by

using short-range signaling pathways to change the composition of the actin cortex and ad-

hesion molecule localization, which in turn drives compartmentalization [48–50]. Once again,

simple interaction rules like an added surface tension can generate large-scale differences in

behavior. Taking into account both adhesive forces due to cell-cell adhesion molecules called

cadherins and surface tension, researchers have developed models that recapitulate the com-

plex pattern formation and compartmentalization that exists inside the Drosophila eye [51].

Patterns are generated by a competition between traditional wetting behavior, driven by ad-

hesive properties of cells that compel them to spread, and surface tension, which pressures

cells to round up. This competition can often be examined by looking at the contact angle

cells make with their environments [52].

When cells of different types self-segregate and compartmentalize it is called cell sorting.

This process is seen over a wide range of systems, but especially in development. Sorting

can be triggered by modulating how a cell interacts with other cells or cell-matrix. For

example, cells have been shown to sort due to changes in their adhesion or cortical tension

with their neighbors [53]. Cells in the stratified epithelium will segregate into different layers
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with extremely sharp boundaries between the layers [54, 55]. It has been shown that adding

explicit interfacial tension between cells of different types in models creates very sharp but

mechanically deformable interfaces [56].

This thesis will investigate how changes in interactions between cells can drive emergent

behavior on a tissue scale. Specifically, this work will investigate how cells of different types

regulate heterotypic interactions differently than homotypic ones and the consequences of

these differences. The goal of this investigation is to understand how small changes on the

cellular scale can drive much larger changes on scales well beyond cellular. The beauty in

this research is the lesson that nature often drives large-scale behavior through precise and

small details, not heavy-handed forcing of action.

1.2 Modeling active matter

The objective, as was outlined in the last section, is to understand how cell interactions can

drive collective behavior in cell tissue. However, before this phenomenon can be explored,

one must understand how to model cellular systems. Fundamentally, biological tissues are

an example of active matter [57–59]. Active matter systems are ones that contain individuals

or agents that intake energy at the scale of individual cells or particles to move or generate

forces. From that definition, it is clear that almost every living system is active matter and

that active matter systems are rich with collective behavior.

One of the seminal models of an active matter system is the Viscek model [19, 60, 61].

This model attempts to capture the flocking behavior seen with groups of birds. Some flocks,

such as those composed of starlings, can number in the thousands and yet, even with no

clear leaders, the bird flocks fly in ordered and active formations. To capture this flocking

behavior, one only needs a simple model. If one places any number of particles, representing

birds, in a periodic box and requires interactions to be determined through their motility

with nearby neighbors, the motion of each bird i can be described as:

dri
dt

= vi(t), θi =
1

n

n∑
j

θj +∆θ (1.1)

where n is the number of neighbors within a certain interaction distance, R, and ∆θ

is a random number chosen with a uniform probability from an interval, or white noise,

which generates fluctuations representing the imperfect alignment of surrounding birds. This

alignment rule in which birds will align themselves based off a distance, in this case the
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interaction radius, is called a metric interaction.

This simple coupling of alignment of birds velocity vectors to that of their neighbors

can produce a wide range of different behaviors. By looking at Fig. 1, which was generated

using these simple equations, one observes order in low noise systems with solid like packs

collectively roaming. As the noise increases, the system comes to resemble more disordered

gas, like flocks. This overall order can be measured by defining an order parameter that

describes total alignment of the flock:

νa =
1

Nν

∣∣∣ N∑
i=1

vi

∣∣∣. (1.2)

This order parameter will approach unity when the entire system is aligned and will approach

zero when the system is randomly oriented. In the original Viscek paper, they examined

systems of constant density but different sizes and observed that the phase transition becomes

sharper as system size increases [60].

A B

Figure 1 : A.) A system of birds with no noise in their alignment which form solid-like packs roaming

collectively. B.) A pack of birds with higher noise which behaves like a disordered gas.

However, this isn’t the only way to define interactions with neighbors. One could also

use topological interactions. This behavior seems to be more biologically motivated in real

starling systems [62, 63] and it appears that starlings will try to align themselves with

a roughly fixed number of nearest neighbors. In topological models, the interactions are

independent of density which makes the phase diagram much simpler. By tuning noise, the

flocks can transition directly from disordered to homogeneously ordered [61].

Together this begins to give a framework for modeling active matter and encourages
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careful consideration of how individuals in the system interact. Already it has been demon-

strated that one can choose between metric and topological interactions. Metric interactions

are important when the distance between agents determines behavior, and topological inter-

actions are important when the number of neighbors governs behavior. These interactions

should be considered as the most common models for biological tissues are explored. In gen-

eral, tissues with strong cell-cell interactions were focused on. In such tissues, cells generally

have a typical average size or volume, a cytoskeleton for structural support, and adhesion

molecules[1]. In addition, each cell has the ability to generate its own forces which can cause

complicated intercellular interactions or individual cell self-propulsion. The majority of these

models fall into three distinct categories: particle-based models, cellular Potts models, and

vertex models.

The first type of model is the particle-based model [64–66]. In these models, each cell is

described by its cell center with some characteristic parameter such as radius, which is used

to describe the cell shape. Using this framework, the intercellular forces can be described

by some overlap potential, where a positive potential will represent repulsive forces from

the cytoskeleton and a negative potential represents attraction from adhesion. Therefore,

by defining different interaction potentials, it becomes possible to mimic different cell types.

These particle-based models are also easily expanded to allow for self-propulsion [22, 67],

which is seen in a variety of cellular systems. The benefit of these types of models is that

they are easy to simulate, which allows access to larger system sizes and added versatility.

They have been used to model tissue growth [68], cell division [69], and clustering [67].

However, many of the cellular systems investigated herein occur when the tissue is at

confluence, where there are no gaps between the cells. These systems are better captured

by the remaining models: the cellular Potts model and the vertex model. Although both

are space-filling, they have some distinct differences. In the cellular Potts model [70] regions

inside the tissue are represented by grid points on a lattice with an energy functional describ-

ing the mechanical energy of the tissue. Each of these grid points will then be assigned to

an individual cell. During the simulation, a Monte Carlo algorithm will flip these grid points

to other cells and check if this new configuration lowers the system energy. By retaining

configurations with lower energies and discarding configurations with higher energies, this

simulation will find the minimum energy state. This model has been used in many different

systems including in conjunction with cell differentiation [71], cell sorting [70], and active

cell motility [72]. Fig. 2 shows schematics of both particle-based models and cellular Potts

models.
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Figure 2 : A.) Schematic of a particle-based model of cells in which each cell is described by its cell center

and its radius, R. B.) Schematic of a cellular Potts model of tissue in which the cells are composed of grid

points inside a lattice. Adapted from [1].

Finally, there are the vertex and Voronoi models of cell tissue [2, 3]. Similar to the

cellular Potts models, these are space-filling models which minimize the mechanical energy

of the cells. In the Voronoi model, a Voronoi tessellation is made of cell centers. Each

cell is denoted by a polygon, and the forces act on the cell centers. The vertex model

follows the same initialization procedure as a Voronoi tessellation of the cell centers, but

now the cell vertices, where different cells come into contact, become the degrees of freedom.

These models have been used in modeling a variety of systems, including but not limited to

embryonic development [44], cell sorting [10], and cell dynamics on heterogeneous substrates

[73].

Since these models were used to model confluent cell tissue later in this work, it is

pertinent to discuss the vertex and Voronoi models in more detail. First, while it may seem

like an oversimplification to model cells as polygonal tilings of space, these models resemble

actual confluent tissue, such as epithelial tissue, to a remarkable degree, as shown in Fig. 3.

Furthermore, as will be explored in proceeding sections, these models capture a large amount

of the biophysics in real systems. The cell shapes are accurately represented from a Voronoi

tessellation of the nuclei [2]. Once a Voronoi tesselation of the cell centers is performed, each

cell, i, is denoted by polygons of a given area, Ai, and perimeter, Pi.

The energy functional in these models describes the mechanical energy required for spe-

cific cell shapes, due to cell volume incompressibility, actin-myosin contractility, and adhesion

molecules.

E =
∑
<i,j>

Λijlij +
N∑
i

Γi

2
L2
i +

N∑
i

KAi(Ai − A0i)
2, (1.3)
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Figure 3 : A.) Drosophila Proto Tissue in which a Voronoi tessellation of the centers of the nuclei is overlaid

in white [2]. B.) Proliferating larva wing disc epithelial cells of a Drosophila. [3]

where the mechanical interaction forces between cells are given by Fi = −∇iE. The first

term in the energy functional describes the competition between line tension and adhesion Λij

due to E-cadherins and other adhesive molecules, which try to lengthen cell-cell contacts,

lij, and line tensions, which try to shrink them. The second term describes a non-linear

restoring force acting on the cell perimeter Li. This non-linearity can come from many

different sources that will prevent the cell perimeter from getting too large. This could be

due to the finite number of adhesion molecules on each cell, surface elasticity introduced from

the contraction of the actomyosin ring on the apical side of the cell, or even just because the

cell is membrane-bound and the surface area can never exceed that of the membrane. The

third term represents the characteristic volume of each cell. For 2D systems, it is common to

assume the lateral modulus of the cells is high so that height fluctuations along the monolayer

are small. Then, since the actin-myosin ring is acting on the apical side, one can show that

volume conservation is equivalent to a quadratic penalty on the area of the apical face Ai

when it deviates from the preferred area A0i, with modulus KAi.

This model can be further simplified by assuming that each cell has the same line tension,

perimeter contractility, and area and perimeter moduli, KA and KP respectively. By writing

the energy function in terms of cell perimeters Pi and preferred perimeter P0 we find an

energy function that depends only on the cell shape.
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E =
N∑
i

KP (Pi − P0)
2 +

N∑
i

KA(Ai − A0)
2 + E0 (1.4)

Figure 4 : A.) Epithelia are composed of a sheet of cells of similar height that are connected via cell-

cell adhesion. The adhesion molecule Cadherin and components of the actin cytoskeleton are enriched

apicolaterally B.) The cell packing geometry is defined by the network of adherens junctions. We represent

this network with a vertex model of tissue in which each cell α is defined by its vertices [3].

A dimensionless target shape index can then be defined as s0 =
P0√
A0
. For high s0, adhe-

sion dominates contractility in a cell and the cell will have a larger perimeter to maximize

contact with neighboring cells. For low s0, a cell will want to round up and reduce neigh-

boring contacts. In these models, the dimensionless preferred cell shape is a great metric to

determine the rigidity of the tissue. In the 2D Voronoi model in the absence of fluctuations,

tissue compromised of cells below s0 = 3.81 will behave solid-like; they will be caged by their

neighbors such that their movement is limited and their shape will be fixed at s0 ≈ 3.81.

As cell shape passes that transition point, which decreases with increasing fluctuations, the

tissue will become fluid-like so that cells will rearrange and their preferred shape will match

the observed shape [74, 75]. Trajectories of this solid-like and fluid-like tissue are shown in

Fig. 5. This behavior matches closely what is seen in experiments like that of the HBECs

mentioned above [5], which can be seen in Fig. 6. Strikingly, recent work has demonstrated

that if one also takes into account disorder and cell alignment, these models quantitatively

predict, with no fit parameters, cell rearrangement rates in body axis elongation in the fruit

fly [76, 77].

Particle-based, cellular Potts, and vertex and Voronoi models represent the three most

used model classes. However, when examining them with a focus on confluency, they seem

to be on a continuum: at one end are the single cells, the particle-based models, and on the

other end are confluent monolayers, the Potts, Voronoi and vertex models. Although these



9

Figure 5 : A.) Phase diagram for confluent tissues as a function of cell fluctuations, in the form of cell

motility v0, and target shape index p0 at fixed Dr = 1. Blue data points correspond to solid like tissue with

vanishing Deff ; orange points correspond to flowing tissues (finite Deff ). B.) The top (bottom) picture is a

snapshot of a fluid-like (solid-like) tissue with the trajectories showing the cells are rearranging (caged). [4].

models all have their own advantages and disadvantages, one common disadvantage is the

inability to model changes in confluency.

In a recent paper [78], the authors showed that confluent mesenchymal tissues in Xenopus

development, cells behaved both like vertex models in which they could also shorten and

extend edges to change neighbors and particle-based models in which cells could push past

one another.

Recently, new partially confluent models have been created to help bridge this gap in

theoretical modeling. In one model, researchers expand on the particle-based models by

creating deformable particles made of many nodes that are connected by linear springs

[79]. These nodes are prevented from overlapping by a strong repulsive interaction and

this generates a packing of cells where the cells can deform to pack tightly. However, the

tissue always behaves like an elastic solid with invaginations occurring after confluence.

Recently, this work has been expanded upon with the introduction of a 3D deformable

particle model [80] which simulates deformable polyhedra and can take into account bending

energy.

Similarly, another model attempts to allow confluence in particle-based models by mixing

a particle-based model with the Voronoi model [81]. In this model, an additional length

scale to the traditional Voronoi model is added, representing the maximum radius of each
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Figure 6 : Human bronchial epithelial cell shape as a function of how long they have been proliferating

inside culture. The non-asthmatic cells eventually jam when their shape corresponds to s0 = 3.81 while the

non-asthmatic cells never jam and their shape stays above the predicted jamming transition [5].

cell. Due to competition between two-cell interactions, three-cell interactions, and geometric

constraints, this model exhibits several different tissue phases. This includes a gas phase

where cells behave as repulsive spheres and confluent phases that share features with those

found in vertex models [82].

Another exciting new study developed an active foam model, which specifies a foam-

like interfacial tension on each edge of a cell and allows gaps to open up spontaneously if

they are energetically favored. This model replicates both the crowding transition seen in

passive foams with increasing packing fraction and some aspects of the tension-driven rigidity

transitions seen in vertex models [9].

In each model, the systems can access particle-like and confluent-like states and one

examines the minimum energy states. However, it is unclear whether these ways of modeling

changes to confluency capture the physics that is occurring in biological tissues. The first

model allows significant slip at cell-cell interfaces, the second doesn’t represent the cost of

cell-gap interfaces explicitly, while the third only accounts for linear interfacial tensions and

does not include nonlinear effects that stabilize the fluid phase of vertex models. How small

changes and interactions can influence large-scale behavior has been discussed previously, and
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so it begs the question: how can the correct model for a system be chosen? The answer to

this question can be found in a reexamination of a prominent reoccurring collective behavior,

cell jamming. What is cell jamming, what are its origins, and how does our choice of models

and interactions affect it?

1.3 Rigidity transitions in cell tissue

This section will draw heavily from the review article written by Lisa Manning and the author

in 2021 [82]. As was hinted in the previous section, in many different biological systems there

is a collective effect in which cell motion is arrested inside a tissue, which has been termed

“cellular jamming” [5, 9, 40, 83, 84]. Specifically this “jamming transition” occurs due to

collective effects emerging from mechanisms like cell-cell or cell-matrix interactions instead

of changes to autonomous cell properties. In addition, changes to cell-cell adhesion [7, 9, 85]

and stress fluctuations driven by nearby cell division [41, 86, 87] can all greatly change cell

motion, shape, and rearrangements of cells inside tissues.

As suggested by the previous paragraph, the umbrella term of “cellular jamming” encom-

passes many different mechanisms and processes. This can lead to confusion in talks and in

papers as some researchers may have different ideas about what “cellular jamming” means.

For example, in this thesis, the phrase “rigidity transition” has been used to encompass the

arrest of cells in tissue like that of the zebrafish embyro [7] and HBECs [5], but it is likely

that the dominant mechanism for jamming in those systems is different.

Traditionally, the first thing that comes to mind when one asks what drives solidification

is cooling or the reduction in fluctuations in the system. A physicist with expertise in

statistical thermodynamics would probably suggest increasing pressure or density, which

means packing the particles or cells more closely together. Engineering students may offer

the definition of jamming which is the onset of solidification at zero temperature, driven

specifically by changes to pressure or density. Those in the field of soft matter may suggest a

glass transition in which a disordered fluid is cooled into a solid without crystallizing. These

are all different phenomena, but they share many similarities. Therefore, the remainder of

this section attempts to unpack what is meant when cell jamming is discussed, to highlight

metrics for jamming, and to discuss how systems might interpolate between these different

mechanisms for cell arrest.

One metric for measuring arrest of cell tissue is to simply examine the motility of cells

within the tissue. In confluent systems, the cells behave either as a solid in which each cell

is caged by its neighbor or a fluid in which the cells will push past each other and rearrange.
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So, to identify if a tissue is solid-like, examining the average motion of cells in the tissue can

be a powerful metric. The most common way of measuring cell motility is to to examine the

mean-squared displacement and extract an effective diffusion coefficient. The mean-squared

displacement is defined as:

⟨r2⟩ = ⟨(r(t+ ∆t)− r(t))2⟩ (1.5)

Where r is the position of a cell and the average is over all cells. It is expected that for solid-

like tissue for short time scales, ∆t, cells will undergo ballistic motion in which ⟨r2⟩ ∼ ∆t2

and at long time scales cells have little movement, ⟨r2⟩ ∼ t0. Fluid-like tissue cells will follow

the same ballistic motion on short time scales, but then have diffusive motion on long-time

scales ⟨r2⟩ ∼ t1 [4].

It should be noted that some systems will have translational modes that should not be

included in the mean squared displacement (MSD). If the translation occurs in the entire

system, the average global tissue movement should be subtracted from the MSD. In order

to eliminate contributions from drift, mean-square separation can be examined instead [88]:

⟨r2ij⟩ = ⟨(rij(t+ ∆t)− rij(t))
2⟩, (1.6)

rij = ri(t)− rj(t), (1.7)

where cell i is neighbors with cell j at time t.

From the mean-squared displacement, one can extract a self-diffusivity coefficient from

the slope of the diffusive region:

Ds = lim
t→∞

MSD(t)

2td
, (1.8)

where d is the dimension of the system. This self-diffusivity can be normalized by the motility

of the system. For example, in a self-propelled Voronoi model the normalization would be:

D0 =
v20
2Dr

, (1.9)

where v0 is the self-propulsion and Dr is the rotational diffusivity coefficient. Then this

normalized effective diffusivity will show a transition from zero to non-zero as the tissue is

tuned from behaving solid-like to fluid-like. This can be seen in the 2D Voronoi model, where

there is a transition in the effective diffusivity that occurs as a function of the cell shape [75],



13

shown in Fig. 7.

A B

Figure 7 : The mean squared displacement (A) and effective diffusion (B) of the homogeneous cell systems

at varying p0 values. Notably, for small p0 on late time scales the motion is caged by its neighbors. Above

that value there is diffusive motion on large time scales which represents the fluid-like cells. This is reflected

in the phase transition in the self-diffusivity. Adapted from [4].

Additionally, one can also examine cell jamming by looking at the energy barrier required

for a cell to rearrange, which occurs in completely confluent tissue through a process called

a T1 transition [89]. The term T1 transition originates from foams [90] but fits well for the

rearrangements seen in confluent tissue models. This happens when the cells in a four-cell

configuration switch neighbors, and is illustrated in Fig. 8(a-c). The edge in the center of the

four cells shrinks down to a point and then expands in the opposite direction. This process is

associated with an increase in energy, as there is an increase in the perimeter of cells thus an

energy barrier involved in the process. If the tissue is fluid enough, cells can overcome this

barrier and rearrange. [75, 91]. Therefore, looking at the rate at which T1 transitions are

performed can be a good indicator of the energy barriers in the tissue and the fluidity of the

tissue. These rates have been used to show fluidity in several different experiments [5, 77].

In the case of a disordered vertex model, the energy barrier to execute a T1 transition

goes from a finite energy barrier to a zero barrier at the same critical value of s0 = 3.81 [75].

This indicates that at this value of s0 it costs no energy for the cells to rearrange and the

tissue behaves as a fluid.

The shear modulus is the last measure of tissue rigidity that must be discussed. Looking

at how cell tissue behaves as the tissue undergoes a shear transformation is indicative of

tissue fluidity. If the tissue flows under shear then it is fluid-like, otherwise it is solid-

like. Standard definitions of the shear modulus investigate the response under infinitesimal

strains. However, it should be noted that in some biological systems it’s been shown that

the effective modulus differs depending on the magnitude of the strain [92].
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Figure 8 : A.) Four cells inside a disordered vertex model about to undergo a T1 transition as the side

between the blue and red cell shrinks. B.) The T1 edge has shrunk to a point between the four cells. C.)

Now the purple and green cells are neighbors after completion of the T1 transition. D.) An ordered vertex

model undergoes a pure shear transformation such that Lx −→ (1 + ϵ)Lx and Ly −→ Ly

1+ϵ where ϵ is the shear

strain.

In simulations with periodic boundary conditions, to calculate the shear modulus one

can apply a pure shear deformation to the box. For a box of size Lx × Ly, the pure shear

transformation with shear ϵ would transform the box such that Lx −→ (1+ϵ)Lx and Ly −→ Ly

1+ϵ
,

as seen in Fig. 8. Then shear modulus is proportional to the second derivative of the energy

with respect to shear.

µs =
1

LxLy

lim
ϵ→0

∂2E(L′
x, L

′
y)

∂ϵ2
. (1.10)

This process can be applied to the standard vertex model energy functional to arrive at

a functional form of the shear modulus.

µs = 12
√
3Γ +

√
3
λ

a
, (1.11)

where a is the side length of the cell. This expression generates the vertex model phase

diagram as shown in Fig. 9.

By setting the shear modulus to zero, as before, one can solve for the critical s0. In this

case, the shear modulus for an ordered system goes to zero at the critical shape s∗0 = 3.722,

which is the shape of a regular hexagon. This indicates that the fluid-solid transition point

found from shearing a system in the ordered vertex model is different from the other metrics

on the disordered vertex model.

This brings up an important question: why are these metrics of motility giving different

transition points? This question is explored in [93] by examining the critical differences

between the systems and metrics.

First, during the shear modulus calculation, it was assumed that the cells were in an



15

Figure 9 : The analytical results for the fluid-solid phase transition in an ordered vertex model. The soft

network behaves like a fluid with a zero shear modulus while the hexagonal network behaves like a solid. [3]

ordered lattice while in the other cases the cells were disordered. This leads to the possibility

that there are two branches of the equation of state for cellular materials: an ordered branch

that becomes floppy at s0 = 3.722, and a disordered branch that becomes floppy at s0 = 3.81.

In some materials, like jammed particulate matter, these two branches of the equation of

state are known to exist[94].

The shear modulus is a measure of the linear stability of a tissue which means that

the energy landscape is locally flat when the shear modulus goes to zero. This normally

corresponds to rearrangements costing zero energy and would therefore be equivalent to the

T1 energy barriers, which measure the non-linear stability, going to zero. However, this is

not always the case, and the vertex model has a complicated energy landscape with cusps

[95]. Therefore, it is possible that energy barriers still exist even though the linear response

is flat. Thus, it is possible that the ordered system is stable under linear perturbations, but

unstable under non-linear ones, at s0 = 3.722.

To answer this question, it is fruitful to reexamine the T1 energy barriers in the ordered

system. By looking at a simple 4-cell system, like that of Figure 13 (a-c), one can calculate

the energy barriers required to perform a T1 transition. By minimizing the energy of the 4-

cell system for various values of s0 and T1 edges l, researchers found that small perturbations

cost zero energy. However, as the edge length becomes smaller, due to a larger perturbation,
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the energy cost becomes non-zero at some critical T1 length l∗. This critical length l∗ goes

to zero as s0 approaches 3.813. They found qualitatively similar results for both a many-

cell and singe-cell system[93]. It has been shown that although small perturbations to the

structure of the ordered system for s0 > 3.722 cost zero energy for finite perturbations, the

energy barriers become non-zero.

This behavior occurs in vertex and Voronoi models due to second-order rigidity. First-

order rigidity occurs in all systems when the number of constraints equals the number of

degrees of freedom. Yet, both vertex and Voronoi models are underconstrained. Instead,

these systems rigidify similar to how a guitar string becomes rigid once it is stretched beyond

the initial length of the string [96–98]. Just as the string becomes frustrated as the rest length

is reduced the cell tissue becomes geometrically frustrated as the cell shape is reduced. The

exact location of this second-order rigidity transition depends on the order in the system [76,

77, 99]

1.4 Cell jamming mechanisms

Now that cell jamming has been discussed in detail, the three primary mechanisms that cause

the arrest of cell motion can be explored: crowding, tension-driven rigidity, and fluctuations.

Schematics of the different mechanisms are shown in Fig 10.

Crowding is the first mechanism that most think of when they imagine jamming. This

is a mechanism for cell jamming that is directly related to particle jamming as taught in

physics and engineering. Crowding occurs when the available space in the system becomes

reduced such that the system becomes rigid. The packing fraction, or the fraction of available

space taken up by particles, molecules, or cells in a packing, is the most common metric of

the amount of space in the system that is occupied. A packing fraction of one means that

all free space is completely consumed, while a packing fraction higher than one implies that

there must be an overlap of particles in the system. The idea behind this mechanism can be

understood through constraint counting arguments and by thinking about a system of hard

spheres in the absence of fluctuations.

The sphere can move up or down, left or right, or forward or backward such that each

sphere can move in d different ways, where d is the number of dimensions. Then trivially,

the number of degrees of freedom in the system is the number of particles Np times the

number of dimensions: NDOF = Npd. As the system becomes more crowded, the particles

will have less free space and will start to contact one another. These contacts will constrain

the particle’s available movement. If each particle has on average z contacts, the number of
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Figure 10 : General mechanisms for cell arrest. (a) Crowding: Compression of cells inside a box increases the

number of contacts, and therefore constraints, on each cell which causes the cells to jam. (b) Tension-driven

rigidity: Cells in a monolayer are fluid-like when their current cell shape, si, is the same as their preferred

shape, s0. By altering the preferred cell shape, the cells become geometrically frustrated and the tissue

becomes rigid. (c) Fluctuations: Trajectories of cells in a monolayer illustrate the caging effect of cells at low

temperature. As the temperature is increased, the cells have the energy to escape their cage and rearrange.

constraints in the system is Nc = Npz/2. When the number of constraints on the particles is

equal to the number of degrees of freedom, the system becomes rigid, meaning the movement

of every particle is constrained: Nc = NDOF . This expression can then be simplified in terms
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of contacts such that the critical number of contacts for a system to rigidify is zc = 2d. It

should be noted that this argument still holds for deformable spheres as well, but it is often

more intuitive to think about hard spheres first.

There is an entire field dedicating to studying how particle jamming works, its origins, and

structure that comes from it [6, 8, 100–102]. Traditionally, there is a jamming phase diagram

created, like in Fig. 11A, with three axes: density, temperature, and load [6]. Temperature

will be discussed later, but load has already been alluded to. Load is the amount of yield

stress needed to be imparted onto a system before it begins to flow.

Figure 11 : A.) The traditional jamming phase diagram thought about in particulate jamming. B.) A

proposed adhesive sphere jamming phase diagram which normalizes fluctuations by adhesive interactions in

the system [6].

Additionally, there is a lot of cutting edge work to try and understand the glass transition

in which a finite temperature disordered particulate packing is cooled, to a yet non-zero value,

until it becomes caged [8, 102]. Ideas about the glass transition and how glasses yield can

be and are being actively used to think about how cell tissue behaves [4, 103].

More directly, one could think about what must be added to the simple deformable

sphere model just discussed to make it behave more like cell tissue. For example, it is

known that cells will tend to round up in culture and behave like stick “active bubbles” [46].

So, an obvious extension would be to add adhesion between the spheres. This additional

adhesion alters how the constraints of other cells affect the rigidity and will in turn change the

rigidity transition [6]. There have been attempts to incorporate these findings into another

jamming phase diagram for attractive colloidal particles in which the temperature axis is
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now normalized by the adhesion or the “stickiness” of the spheres, shown in Fig. 11B.

The next obvious ingredient would be to add cell division. This would allow the density,

and by extension packing fraction, of cells in the system to increase. That if cells divide

enough the system will become crowded and cells will no longer be able to move and the

tissue would become solid-like. These ideas together were an inspiration for a cell arrest

phase diagram shown in Fig [83], which was then used as motivation to connect the different

mechanisms for cell jamming in our review [82].

One example of crowding in biological systems is inside the zebrafish blastoderm [85].

During embryo development, the blastoderm experiences a fluidization in which, during the

course of a few minutes, the viscosity of the tissue drops by more than an order of magni-

tude. The authors observed during this transition that the cell packing fraction decreases

only slightly. However, in particulate jamming, it is quite common for a small change in

packing fraction to drive a huge change in the contact network. In this paper, the authors

reconstruct the cell connectivity networks and show that the same effect that occurs in

jammed particulate packings is occurring in this tissue. Then they perturb E-cadherin ex-

pression, an adhesion molecule, and show that the effect of this perturbation on the contact

network can completely explain the changes to the tissue viscosity.

Figure 12 : A) As N-cadherins are inhibited larger gaps open up in the zebrafish embryo. B) The yield stress

of the zebrafish embryo is plotted against the gap volume fraction of the tissue. As gaps increase in size, the

gap volume fraction increases which is correlated with a lower yield stress of the tissue. Adapted from [7].

Additionally, the partially confluent system of the fluid-solid transition along the body

axis in zebrafish embryos can be reexamined [7]. As mentioned before, there are fluid-like

cells in the mesodermal progenitor zone, MPZ, that are differentiating from the presomitic
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mesoderm, PSM. However, the MPZ has more extracellular spaces such that it has a lower

packing fraction and is fluid-like with a lower tissue viscosity and yield stress, which is the

maximum amount of stress the tissue can withstand before beginning to flow. This is shown

in Fig. 12. This suggests that as more cells are added to the PSM it will become more

crowded, increasing packing fraction and causing a jamming transition along the anterior-

posterior axis.

There is a newly discovered mechanism for rigidity that challenges those previously dis-

cussed: tension-driven rigidity. This mechanism has been hinted at several times in this

thesis, and the reader may recall that there is a rigidity transition in the vertex model

at zero temperature. However, this is a system at confluence, such that there are no gaps

between cells, ensuring a constant packing fraction of one. If the packing fraction isn’t chang-

ing and the system is at a fixed temperature, such that it is not being cooled, the question

arises: how is the rigidity of the system changing? The answer is deeply connected to the

older idea of tensegrity structures as models for cells and tissues [104]. Tensegrity structures

are like many art pieces around the world made of rigid rods and chains; the structure looks

impossible, but a combination of tension and compression creates a solid configuration.

This type of rigidity is seen in an assortment of systems from biological, like confluent

tissues and biopolymer networks, to “mechanical metamaterials,” like origami [105]. This

mechanism has also been referred to as geometric incompatibility [98, 106]. In order to

deconstruct this term, recall the rigidity transition seen in the vertex model. When the

tissue was fluid-like, the cells could achieve their preferred shape, which is dictated by the

mechanical properties, such that the observed shape equals their preferred shape and the

cells would rearrange. However, when the tissue is solid-like, the cells were caged but their

observed shapes were pinned at a fixed value regardless of how low their preferred shape

would be. This geometric incompatibility is imposed by the limits of topology ie. the cells

must still fill all of space as the tissue is confluent. The cells in the tissue cannot achieve

their energetically favorable shape, causing frustration and therefore rigidity.

Similarly, in biopolymer networks, the network can continuously be tuned from floppy

to rigid by applying strain to the network. At small amounts of deformation, the network

will be floppy but after some critical amount of strain, the network will increase its shear

modulus, and thus stiffness, by several orders of magnitudes. This behavior is predicted by

simple models and observed in experiments [92, 107, 108].

Finally, the role of fluctuations in cell jamming can be discussed. The most well-known

mechanism for solidification is by reducing the fluctuations, usually the temperature, of a
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system past a critical point. At the heart of this idea is that there is an energy barrier for

cells to break free of their constraints and rearrange, and the most common way to overcome

these barriers is through active forces, such as self-propulsion or random fluctuations [6].

As these fluctuations are reduced, it becomes less and less likely for particles to be able to

escape their cages and thus become solid-like. The other two mechanisms can be thought

of as though the energy barriers for rearrangements are being raised, but in this case it is

the energy of the cell that is being changed. In that sense, often fluctuations work with the

other two mechanisms to cause jamming.

It is pertinent to reassess how fluctuations affect the vertex and Voronoi models. Typi-

cally, fluctuations are implemented in one of two ways, either through thermal fluctuations

in the form of Brownian noise or through cells consuming energy and propelling themselves.

Both of these will affect the vertex model equation of motion. In the case of Brownian noise

we have:

dri
dt

= −µ∇iE + σ
√
2T (1.12)

where E is the energy function defined in Eq 1.4, T is the temperature, σ is white noise,

and µ is the inverse of the drag coefficient. Then elf propelled models will follow:

dri
dt

= −µ∇iE + v0n̂i (1.13)

where v0 is the self-propulsion speed of individual cells and n̂i = (sinθi, cosθi) is the

direction of polarization. The polarization direction represents the front-facing direction of

the cell and evolves with white rotational noise ηi(t) with mean zero and variance 2Dr:

θ̇i = ηi(t), (1.14)

< ηi(t)ηj(t
′) >= 2Drδ(t− t′)δij, (1.15)

where the value of the rotational noise Dr determines the memory of the noise in the system.

This leads to a persistence length of τ = 1/Dr.

Previously, the vertex model at a constant temperature was examined. It was found that

the model underwent a jamming transition as a function of cell shape through geometric

incompatibility. However, upon reexamination of Fig. 5, one may notice the ability to also

increase fluctuations by increasing the self-propulsion speed. As propulsion speed is increased

for a fixed shape, eventually the system will fluidize [4]. In an experimental study, it was
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observed that in perturbed epithelial lines, fluctuations were driving the rigidity transition

seen in the tissue. Essentially, in this cell line, cells were caged by their neighbors and did

not rearrange even though the tissue structure, the contact network, was floppy [109]. Thus,

even though the tissue should have been fluid-like, there was still cell arrest because there

were no fluctuations to drive cell motion.

While fluctuations are primarily implemented through self-propulsion and temperature,

there are many other avenues of fluctuation creation. For example, during the cell cycle

that cells undertook during division, it has been shown that there are fluctuating tensions

along cell-cell interfaces [110]. In both simulations [111, 112] and experiments [109] there are

indications that tissue can solidify as these tension fluctuations decrease. However, there is

evidence that the persistence of tension affects tissue fluidity in a complicated way [112].

In particle-based models, with fluctuations implemented, the glass transition will not only

be controlled by packing fraction but also by both magnitude of propulsion and persistence

in which these systems will undergo a glass transition [66]. However, the glass transition

that occurs is different between thermal and self-propelled systems [8]. Interestingly, there is

also glassy behavior observed in low-temperature fluid phase of the vertex model, although

this is different than what is seen in particle-based systems [95].

Altogether, this provides a basis for the mechanisms that are acting on biological systems

to cause the arrest of cell motion. While there are still many more intricacies that could

be discussed, this is the framework for the research detailed in this thesis. In the review

article written by the author [82], a speculative cell jamming phase diagram is proposed

which combines the different branches discussed, shown in Fig 13. With all of this in mind,

the specific biological systems, processes, and interactions that incorporate these ideas and

how one may go about thinking about them in terms of modeling biological tissue can be

explored.

1.5 Cell-cell and cell-substrate interactions

Biological systems are extremely complicated and involve many moving parts, from signaling

gradients to physical shape changes to cell-cell interactions to cell-environment interactions.

How small changes to interactions can cause large-scale changes to behavior has already been

mentioned, but many times small changes to interactions in biological systems also have a

cascading effect.

In non-confluent models, cell-cell adhesion plays the expected role; reducing adhesion

will cause larger spaces between cells and fewer cell-cell contacts. This in turn will increase
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(a)
(b) Fluid-like tissue

(c) Sold-like tissue

Figure 13 : (a) A speculative cell jamming phase diagram extrapolated from recent results in literature.

The green line represents the tension-driven rigidity transition seen in confluent tissues due to a competition

between fluctuations and cell shape induced geometric frustration [4]. The blue line represents the glass

transition seen in harmonic spheres [8], which models the behavior seen by nonconfluent rounded cells at

low adhesions. The orange line represents the shear instability seen in partially confluent tissues at finite

temperature as density and adhesion are tuned. At low adhesion, the tissue becomes solid-like as density

increases, reminiscent of crowding. At high adhesion, there is a density-independent transition similar to

what is seen in completely confluent tissues [9]. (b) A snapshot of fluid-like tissue in which cells rearrange

and the tissue flows in response to fluctuations or applied forces. (c) A snapshot of solid-like tissue in which

cells are caged and do not exchange neighbors.

the fluidity of the system [7, 9, 85] similar to what was predicted from the adhesive sphere

models [6].

In confluent tissues, adhesion is a bit more complicated and likely specific to individual

cell lines. In these tissues, we know the main driver for rigidity is tension-driven rigidity,

which can be tuned with the cell shape. Naively, one would think that since you can trace

the adhesion term in the vertex model directly back to its contribution to cell shape, such

that as you increase adhesion the cell shape increases, it is trivial to understand how adhe-

sion affects this transition. However, there have been experiments in confluent monolayers

that show that knockdown of E-cadherins in keratinocytes actually increase the cell shape
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compared to wildtype [10]. This means that cells with lower E-cadherin expression prefer

more surface area of cell-cell contact. But, cadherins are also known to have a signaling effect

that changes the mechanics of the cortical cytoskeleton [113, 114], which is associated with

cell-cell line tension. So, sometimes increases in adhesion are balanced by changes to cortical

tension that have an opposite effect. Still in other situations such as in cell doublet exper-

iments, increasing cadherin expression increases the surface area of cell-cell contacts [115].

Together this highlights one potential pitfall for thinking about biological systems, which

is that oftentimes the interconnected nature and complexity of these systems can confound

expectations.

However, adhesion is also incredibly important to cell sorting. Cell sorting is when cells

of different types segregate and compartmentalize into their own regions. There are many

different hypotheses on how sorting takes place, and likely different mechanisms occur in

different systems, but one of the most common is the differential adhesion hypothesis or DAH.

The hypothesis assumes that cells modulate their interfacial tension between cells of different

types directly proportional to differences in cell-cell adhesion, such that cell sorting occurs

when cells rearrange to minimize that interfacial tension [116]. This is shown to work fairly

well in many different particle-based models [117, 118] and is supported by evidence that

tissue surface tension was proportional to cadherin expression [119]. Additionally, adding

self-propulsion into a DAH system will lead to faster sorting [65].

In completely confluent models, DAH is not enough to drive cell sorting. In fact, dif-

ferences in cell shape, as an extension of cell adhesion, only showed small scale sorting. To

quantify this, researchers often use a metric called the demixing parameter which is defined

as:

DP = 2(⟨Nh

N
⟩ − 1

2
) (1.16)

where Nh is the number of homotypic neighbors a cell has, or neighbors of the same type,

and N is the total number of neighbors of a cell where the average is over all cells in a

system. In the limit of infinite cells, when the demixing parameter is unity then all cells are

only touching cells of the same type; the tissue is completely sorted. When the demixing

parameter is zero, then cells are equally as likely to be neighbors with a cell of either type.

In finite systems, this parameter is normalized by the demixing parameter of a completely

segregated system of that size.

When quantifying the demixing of mixtures of two different cell types with different cell

shapes in the vertex model, researchers found that the demixing parameter would plateau

at a small value, suggesting a “micro-demixing” effect [10]. They also looked at the system
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mentioned earlier, where keratinocytes of different cell shapes were mixed together, and saw

the same micro-demixing. Through analysis of the vertex model simulations, they discovered

that there are asymmetric energy barriers for invading clusters of cells of different shapes. It

was found that it is dynamically more difficult for a floppy cell to invade a stiff cluster than

vice-versa ( 14A).

To drive complete sorting in confluent models, there needs to be an explicit change to

interfacial tension along heterotypic interfaces such that cells recognize interfaces of cells

of different types and add an additional energy cost, coined heterotypic interfacial tension

(HIT). In the 2D vertex model, this can be captured by an additional term in the energy

functional:

E =
N∑
i

KP (Pi − P0)
2 +

N∑
i

KA(Ai − A0)
2 + E0 +

∑
HIT

γijlij (1.17)

where the sum is over all heterotypic interfaces, lij is the interface between cell i and j, and γij

is the additional interfacial tension between cell types of cell i and j. While a seemingly small

term, it turns out that this provides a remarkably strong collective effect. This term causes

cells of different types to quickly and robustly completely demix [10, 14, 120]. Additionally,

this creates a discontinuous restoring force for perturbations at the heterotypic boundary [14].

For tissues near the fluid-solid transition, the final cell and interface shapes may be set by

a competition between the interfacial forces and the shape-based forces governing tension-

driven rigidity [15]. Comparing the micro-demixing previously discussed, with mixtures of

different shapes, to that of two cell types with HIT shows a stark difference. In Fig. 14B,

the dotted line shows demixing due to interfacial tension, and the solid lines are different

micro-demixing plateaus as a function of the difference in shapes [10]. The full range of these

effects will be discussed in later sections.

However, as mentioned earlier, fluctuations can also take the form of fluctuating tensions.

This idea can be thought of as fluctuating the intercellular tension between cells of different

types. It has been shown that pulses of myosin II can cause permanent junctional remodeling

that drives shape changes and increase cell rearrangement rate during convergent extension.

In order to capture this behavior, a model was developed that implements changes to the

network after bonds surpass a strain threshold. This works by altering the edge rest length

when the edge passes a critical strain. However, to avoid permanent shrinking of inter-

faces, there is a long time-scale relaxation [121]. Another model implements cytoskeletal

remodeling through active recruitment of myosin depending on the internal strain rate of its

associated actin filament. Now the pulsating myosin will cause changes to cell shapes which
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Figure 14 : A.) There are asymmetric energy barriers such that it is more difficult for floppy cells to invade

stiff clusters than vice versa. B.) The dotted line is for mixtures of two cell types with heterotypic interfacial

tension, while the solid-colored lines are of mixtures of two different cell shapes. In the case of HIT, the

tissue quickly and completely demixes, while with shape disparity alone the tissue will reach a small demixing

plateau value [10].

will trigger the recruitment of myosin on its interfaces, stabilizing the deformation [122].

In addition to cell-cell adhesion and interfacial tension, planar cell polarity plays a key

role in many tissue scale processes including morphogenesis. Planar cell polarity arises from

anisotropic forces usually generated from either localization of adhesion molecules or motor

proteins along specifically orientated interfaces [123, 124]. The forces generated by this

induced polarity can give rise to cell alignment in which cells will start to point in the same

direction as their neighbors. Accounting for cell alignment caused by planar cell polarity

along with disorder and cell shape was crucial in the earlier paper mentioned, in which

vertex model predictions quantitatively matched body elongation in the fruit fly with no fit

parameters [77] as well as rearrangement rate [125]. Externally driven anisotropic forces can

also affect tension-driven rigidity [126].

The alignment caused by planar cell polarity is reminiscent of what was discussed earlier

in the Vicsek model [24]. Interestingly, this alignment effect is also relevant for jamming.

For example, in a self-propelled particle model, it was found that the particles become

more aligned as the packing fraction increases [66]. In confluent tissue, in both epithelial

monolayers [127] and models [88], it is observed that increasing cell polarity alignment will
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drive tissues towards a solid-like state where cells are not changing neighbors yet the cells

will still collectively move together. This “solid-flocking” is a perfect example of when using

mean squared separation instead of mean squared displacement as a measure of fluidity is

the correct path. Since all the cells are moving together, the mean squared displacement

may suggest fluid-like behavior but since the cells are not moving relative to other cells the

mean squared separation will still label the system as solid-like.

Next, the role of cell-substrate interactions in the rigidity of cell tissue will be investi-

gated. Fundamentally, cell motility is influenced by the substrates that the cells adhere to. In

order to move, many cell types exert traction forces on substrates through integrin-based ad-

hesion [128]. In order to measure traction forces, experimentalists will employ traction force

microscopy [30, 127]. In MDCK monolayers, increasing traction forces had the same effect as

increasing fluctuations. They reverse the effect of density on cell shapes and rearrangement

rates [129].

Additionally, the properties of the substrate can also alter tissue behavior. For example,

cells become more stiff on stiff substrates [35, 130, 131] which can lead to cell tissue be-

coming more solid-like. Interestingly, increasing adhesion to cell substrates will increase cell

spreading and motility [132] and cells will tend to spread more on stiffer substrates [133].

This increased migration rate due to stiffer substrates is also seen in breast tumors, where

the extracellular matrix will stiffen from increased glycation due to high blood sugar levels,

leading to increased tumor migration [134].

In some systems, it’s not just the stiffness of the substrate that matters but the gradient

of stiffness across the substrate. For example, some cell types will migrate up soft substrates

and away from stiff substrates, in a process which has been coined durotaxis [135]. This

has been observed in 3T3 embryonic mouse cells cultured on substrates of identical chemical

properties but different rigidities. In order to identify what causes the cells to move towards

softer substrates, researchers examined the traction forces on the cells. They found that

although the pattern of traction forces from the substrates is the same, the stiff substrates

generate significantly stronger traction forces.

Cells will respond to other gradients in their environment, including chemical gradients.

Chemotaxis is the migration of cells along a chemical gradient. There are many different ways

that different cell types can sense and respond to a chemical gradient. Some cell types can

sense the change in concentration across their length, which gives them explicit directional

information about the chemical gradient [136–139]. Other cell types only sense the average

signal strength at their location and must use other mechanisms to climb the gradient [140].
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There are even some cells that can sense and migrate up steep gradients, but require other

mechanisms to respond to situations with shallower gradients [141, 142]. Some cells also

respond to light as a signal to migrate in a process called phototaxis [143, 144].

While cell division itself isn’t necessarily a cell-cell or cell-environment interaction, it

turns out that cell division plays an important role in the interaction between cells in a

tissue. Trivially, one can notice that cell division directly relates to crowding as cell division

will increase the density of a tissue. However, it also causes active stress fluctuations which

can lead to tissue fluidization [41, 86, 87]. Similarly, during the cell cycle, it appears that

there are changes to the global cortical tension [110] that are likely the source of fluctuations

and fluidization of MDCK monolayers [109]. Cell division has even been implicated as

a mechanism for cell sorting. Asymmetric cell division can introduce daughter cells with

different mechanical properties [145], while in symmetric cell division the two daughter cells

may have lower tension between each other than neighboring interfaces [55].

1.6 Morphogensis and cell fate changes

While chemical gradients can drive locomotion through chemotaxis, they also can trigger

morphogenesis in which cells will change their mechanical properties, shapes, and interactions

with their environment. One of the most well-known examples of morphogenesis occurs in the

model organism Drosophila Melanogaster, the fruit fly. During the process of morphogenesis,

the embryo undergoes large-scale remodeling that includes cell migration, the formation of

folds, and invagination of the mesoderm [146]. For this process to occur successfully, the

embryo is patterned by a few different transcription factors, such as Bicoid, which act as

morphogen gradients. These proteins and RNAs are deposited on the embryo from the

mother and then diffuse to form their corresponding gradients. The combination of many

different gradient concentrations activates specific genes in the cells of the embryo, which

leads to the desired differentiation result. This allows the spatial information required for

morphogenesis to be transmitted without each cell requiring knowledge of its purpose a

priori [147]. Recent strides have been made in replicating biochemical gradients, like the

ones involved in fruit fly morphogenesis, by using microfluidic devices [148, 149] which can

be used to more closely resemble the gradients inside real tissue.

Although biochemical signaling drives many cases of cell differentiation, mechanical forces

can also cause this differentiation. Inside some stem cells, like Mesenchymal stem cells

(MSCs), researchers found that the cells will differentiate into different tissue based on the

stiffness of the underlying substrate [150]. Soft substrates would guide MSCs to become
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brain cells, medium stiffness substrates lead toward muscle cells, and stiff substrates to bone

cells. However, there are many of these developmental systems where the mechanisms of

differentiation are yet to be understood. Often they are attributed to morphogens that are

yet to be located. But, it is possible that differentiation is a combination of biochemical and

mechanical signaling that leads to these desired large-scale cell patterning and movement.

Another example of cell fate change is found in cancer progression, where there exists an

epithelial-to-mesenchymal transition (EMT). In this process, epithelial cells will transition

into mesenchymal cells, which causes the tissue to become less confluent and more migra-

tory [125, 151]. It is observed that when these two cell types are mixed, even when only a

fraction of epithelial cells have differentiated, there is increased motility and cell shape in

the remaining epithelial cells which can fluidize the tissue [152].

In many cases, undifferentiated stem cells and specialized differentiated cells are localized

to specific regions within a tissue, as is the case in stratified epithelia. When this happens,

multiple layers of confluent epithelial tissue are stacked on top of one another. Each of these

layers has different mechanical properties and there are very sharp and strong boundaries

between the layers [54, 153–156]. It’s been shown that E-cadherin expression plays a critical

role in coordinating adhesion and contractile forces that drive the tension involved in layer

segregation [157]. Still, perhaps the most interesting phenomenon is that renewal only hap-

pens in the lowest basal layer composed of undifferentiated stem cells, and yet some cells can

cross boundaries and differentiate without permanently disrupting the boundaries [54, 153].

While the exact mechanism for the upward cell motion through these cell layers, called de-

lamination, is unclear, there are several hypotheses for what drives it. A chapter of this

thesis is dedicated to investigating this phenomenon.

1.7 Thesis Outline

Broadly, this thesis will explore how heterotypic interactions can drive emergent behavior

in tissue systems. There has already been discussion on how small changes to interactions

can cause large scale behavior changes in tissue, but focus will primarily stay fixed on how

interactions between cells of different types can drive these changes. Specifically, much of the

work looks at how the introduction to explicit interfacial tension on boundaries between cells

of different types can alter cell fate and behavior of cells on the boundary. This work also

investigates if and how predictions about tissue fluidity and dynamics in different confluent

tissue models can be made.

In chapter 2, there is an exploration of collective chemotaxis, where single cells cannot
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climb a biochemical signaling gradient but clusters of cells can, inside confluent tissue. There

have already been models that capture this collective chemotactic behavior in particle-based

models [158], but none capture how that mechanism would work in completely confluent

systems. An open-source code was developed that couples a 2D Voronoi simulation for

confluent cell mechanics to a dynamic chemical signal. This biochemical signaling gradient

has dynamic updates so that it can diffuse, advect, and/or degrade over time. While the code

can be used to investigate any possible coupling of signaling to cell mechanics, two possible

mechanisms were focused on, contact inhibition of locomotion and heterotypic interfacial

tension. It was demonstrated that both can drive collective chemotaxis in certain parameter

regimes. Additionally, it was shown that the chemotactic response was well captured by

predictions driven by simple analytic models.

Next in chapter 3, the ability of machine learning to identify rigidity in confluent tissue

models is investigated. There has already been an assortment of work using machine learning

mechanisms to identify softness in particulate jamming systems [13, 159–162], but little work

has been done in their confluent tissue counterparts. In this chapter, the reader can look at

how simple image classification compares to that of a complex graph-neural network. This

graph-neural network is based on the open-source code of a recent paper [13], and attempts

to learn not only from tensions in tissue model but also incorporate a measure of the locality.

While the work described herein focused on developing this tool, the graph neural network

structure that was expanded on is now set up to make predictions about any vertex model

and on an assortment of metrics from rigidity to edge tensions. This will be the starting

point for future works to investigate the origins of states of self-stress in tissue models.

After this, discussion will move into 3D systems, as the difference between the 3D Vertex

and Voronoi models are investigated. While the two models are similar, the extra degrees

of freedom in the vertex model allow it access to more diverse cell shapes and behaviors.

There were hints that heterotypic boundary behavior in 2D vertex and Voronoi models was

quantifiably different [10]. So, a careful examination of how cell behavior on the boundary

of binary mixtures with heterotypic interfacial tensions is performed. It is found that while

much of the behavior is identical, there are dynamic differences that lead to morphological

differences in the models. These differences seem to be caused by significantly higher en-

ergetic cusps for perturbations along the interface in the Voronoi model, and suggest that

vertex models may be more faithful representations of 3D tissue geometries and mechanics

near interfaces.

Chapter 5 will discuss the work done on modeling the stratified epithelium. This takes
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the form of two major subprojects. The first investigates what drives delamination in these

systems and how cells can overcome heterotypic interfaces. The second subproject looks

at the formation of the hair follicle placode and how heterotypic interactions and extrinsic

forces can drive cell fate and shape changes. A spring network with sacrificial bonds was

developed in order to model integrin binding to extracellular matrix in the 3D Vertex model.

Finally, the conclusion will be a summary of the results and future directions for the

projects, for both the research group and the broader soft matter community.
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Chapter 2

Collective Chemotaxis in Voronoi

model

2.1 Chemotaxis in experimental systems

In this section, I discuss the the work I’ve done to model collective chemotaxis in confluent

tissue as described in my paper, Ref [163].

One-way cells can sense and interact with their environment is through the sensing of

chemical signals. While we have already discussed how cells can use chemical gradients for

morphogensis [146, 147], as is the case for the fruit fly, cells can also sense and migrate

up these gradients through a process called chemotaxis. Chemotaxis is seen in a variety

of different biological processes such as wound healing [42, 164, 165], cancer metastasis

[38, 39, 166, 167], and development [168–173]. While chemotaxis is extremely common

among many different cell types, the ways cells sense surrounding biochemical gradients can

vary a lot from cell type to cell type. For example, some cell types can sense the change in

concentration across their length, which gives them explicit directional information about

the chemical gradient [136–139]. However, other cell types can only sense the average signal

strength at their location and thus can not extract directionality from this mechanism alone

and must use other mechanisms to climb the gradient [140]. Another class of cell types

can can sense and migrate up steep gradients but require other mechanisms to respond to

situations with shallower gradients [141, 142].

One strategy cells use when they cannot chemotax alone is to use interactions between

neighboring cells to sense and then collectively migrate up the gradient as a cluster, in a

process called collective chemotaxis [174, 175]. One example of this is the neural crest cells in
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the Xenopus embryo, in which clusters of cells will climb a stromal cell-derived factor 1 gra-

dient but single cells will not [169]. While the exact mechanism driving this behavior is still

unknown, contact inhibition of locomotion [176], cluster confinement [177], and asymmet-

ric actomyosin contraction [178] are implicated as possible mechanisms. Additionally, when

lymphocytes are exposed to ligand gradients they will form clusters that can consistently

climb the gradient. Interestingly, depending on the strength of the gradient, single cells will

either not respond in the case of shallow gradients or migrate in the opposite direction of

clusters in steep gradients [174]. Similarly, inside the Drosophila ovary, border cells migrate

collectively up a ligand gradient by integrating the difference in signal levels between cells

in a group [175, 179–184].

While the mechanism for collective chemotaxis is not known in every case, contact inhi-

bition of locomotion (CIL) is commonly implicated [18, 176, 185, 186]. Contact inhibition

of locomotion is a well-documented and extremely common cellular behavior, not limited to

chemotaxis [187–191], whereby cells stop moving toward one another once they come into

contact. In some cases, CIL occurs because cells lack the cytoskeletal and adhesion machin-

ery to migrate along the surface of another cell [192], while in other cases cell-cell contacts

trigger a signaling cascade that inhibits migratory behavior [193].

A recent theoretical and computational paper [158] investigated a model where individ-

ual cells are modeled as repulsive particles and demonstrated that CIL can indeed induce

collective chemotaxis up the gradient even when individual cells cannot sense the gradient.

In this model, particles that overlap experience a change to their direction of migration that

reduces the overlap. The authors showed that if the magnitude of this change was propor-

tional to the average biochemical signal strength at that location, then the combination of

all such interactions within the cluster would drive the cluster up the gradient. This is a

simple and robust mechanism for collective chemotaxis that captures many features seen in

experiments.

An important open question, however, is whether this mechanism is restricted to cell types

that are well-modeled as overlapping particles. There are many cell types that do not remain

spherical, and instead change their cell shape dramatically when interacting with other cells,

such as epithelial cells in confluent tissues. Moreover, in bulk systems, the collective behavior

of particle-based and confluent models are quite different. In particulate models, the fluid-to-

solid transition is driven by an increase in particle overlaps with increasing density or packing

fraction [7, 9, 194], which is known as jamming [79, 82]. In contrast, in confluent vertex and

Voronoi models, the packing fraction is always unity and the fluid-solid transition is driven by
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a geometric incompatibility, such as changes to the shape of cells in the tissue [5, 77, 96, 195].

The vertex model also exhibits topological cusps in the energy landscape which contribute

to interesting nonlinear responses in certain regimes [14, 93]. Given such differences, it is

not obvious whether CIL can induce collective chemotaxis in a confluent model.

To address this question, we study simulations of a Voronoi model for 2D biological tissues

coupled to a concentration gradient with independent dynamics, where individual cells can

only sense the average concentration at their location ( Fig. 15). We study several possible

mechanisms that could drive collective chemotaxis in such systems, including a version of

CIL that is well-defined in a confluent monolayer, as well as a mechanism based on interfacial

tension between two different cell types. We find that both mechanisms are capable of driving

collective chemotaxis and highlight specific experiments that could distinguish between the

two mechanisms.

Figure 15 : A confluent tissue is composed of exterior cells and cluster cells with an interfacial tension

between the two types, denoted by a thick dark line. The cells in the cluster respond to chemical signaling

and change either their i) CIL or ii) HIT with respect to the exterior cells. Exterior cells do not respond to

the gradient. Due to a higher concentration of the signal on the front of the cluster, there is either a net

polarity or force across the cluster driving it up the signaling gradient.

2.2 Methods

We simulate confluent monolayers using a Voronoi model with energey as defined in Eq 1.4

and dynamics that follow Eq 1.9. Additionally, we will be examining a mixture of two

different cell types, cluster cells and external cells. As in previous work [10, 14], we assume

these cells experience heterotypic interfacial tension (HIT) in which they recognize neighbors

of different cell types and experience an additional energy cost for contacting the opposite

type:
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Ei = KP (Pi − P0)
2 +KA(Ai − A0)

2 +
∑
j

lijγij, (2.18)

where γij represents the additional interfacial tension between the two cell types. This rule

has been shown to create sharp but deformable interfaces [14]. Additionally, this will cause

compartmentalization between the two cell types [10] which maintains the boundary between

the cluster cells and external cells. The model can be nondimensionalized by expressing all

lengths in units of
√
A0 and all time in units of τch = 1/(µKaA0). The integration time

step is set to dt = 0.001 and we set all cells to be fluid-like with P0 = 3.85 and A0 = 1.

Consistent with previous work, we set KP = 1, µ = 1, and KA = 100 to ensure that cluster

cells maintain their area even under large compression from HIT.

The final ingredient to the model is a biochemical signaling gradient. The system will

be overlaid by a scalar field representing the biochemical gradient which evolves accord-

ing to an advection-diffusion equation. In many biological contexts, enzymatic activity

degrades signaling at a roughly constant rate, which contributes to an additional degrada-

tion term [196, 197]. Together, this leads to the following evolution equation for the scalar

concentration C[r⃗, t] of a biochemical signal:

∂C[r⃗, t]

∂t
= D∇2C[r⃗, t]− v⃗[r⃗] · ∇C[r⃗, t]− 1

τd
C[r⃗, t], (2.19)

where D is the diffusion coefficient for the chemical, v⃗[r⃗] is the velocity of the cell at position

r⃗, and τd is the characteristic degradation time of the chemical. For most of my work, we

focus on a simple geometry with a line of source at the top of the system and a sink at the

bottom and assume no degradation of the signal. This generates a linear gradient in steady

state. However, it should be noted that the simulation tool we develop here can accurately

evolve from any initial conditions and with any degradation parameter enabling the study

of more complicated gradients.

We will assume a homogeneous, effective diffusion constant D that averages over smaller-

scale features such as cell membrane permeability. As we are focused on the behavior of cells

that can not individually climb a gradient, we further assume that cells are able to estimate

the average signal across their area – in other words, the absolute concentration at their loca-

tion – but that they cannot calculate other features of the signal, such as the local gradient.

They then use this average signal to alter their individual properties. The code is available

for download at https://github.com/Manning-Research-Group/ClusterVoronoiCode.
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2.3 Computational modeling of the gradient

The signalling gradient is created by superimposing a scalar field on top of the prexisting

cellGPU code [56]. The system is divided into a grid such that there are roughly 10 grid

spaces inside each cell, ∆x = ∆y = 10
√
N , shown in Fig. 16. Initial conditions are set

manually and currently are restricted to a source at the top of the gradient and a sink at

the bottom.

Then the gradient will evolve according to the advection-diffusion equation as defined in

Eq 2.19. This evolution is done using a simple central finite difference method such that:

∂C[y, t]

∂t
=

C[y, t+∆t]− C[y, t]

∆t
. (2.20)

And similarly for second-order:

∂2C[y, t]

∂y2
=

C[y +∆y, t] + C[y −∆y, t]− 2C[y, t]

∆y2
, (2.21)

where ∆t = dt is our integration timestep and ∆y is the grid spacing.

At each time step, the cells will calculate a signal strength by taking the average con-

centration of each gridpoint within their cell walls. This is done by using a winding number

algorithm such that if a gridpoint lies within a cell length of the center of a cell we check if

that gridpoint lies within the cell walls. This is done by calculating the winding number Θ

around the gridpoint which is the sum of the angles between two vertices of the cell and the

gridpoint over all vertices on the cell.

Θ =
N∑
i=1

θi,i+1, (2.22)

where θi,i+1 is the angle between a vertex i, the next vertex in counterclockwise order i+ 1,

and the gridpoint andN is the number of vertices of the cell. Such that if the winding number

is a non-zero multiple of 2π the gridpoint lies within the cell or if the winding number is zero

the gridpoint lies outside the cell.

Then this signal strength becomes a scalar value of concentration for each cell that can

be coupled to that cell’s mechanical properties.
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Figure 16 : The scalar field representing the biochemical signal is divided into a grid that spans the system.

The center of these grid points represents the location concentration in the grid square. Cells will average

the concentration within their cell walls to determine the average signal at their location.

2.4 The role of advection

But, before coupling the cell mechanics to the signaling gradient, we investigate the impor-

tance of advection. As individual cells migrate through the tissue, it is possible that they

may drag signaling molecules along with them and alter the local concentration. Whether

this is a significant effect depends on the competition between cell-motion-driven advection

and diffusion, described by the Peclet number:

Pe =
vL

D
, (2.23)

where v is the velocity of the advective flow, L is the characteristic length, and D is the

diffusion coefficient. Thus for higher Peclet numbers (Pe ≫ 1) advection dominates, while

for low Peclet numbers (Pe ≪ 1) diffusion dominates. Since the bare diffusion constant for

most biochemical signaling molecules inside a cell is much greater than the velocity of cells

in the tissue [198], it is expected that diffusion will dominate. Therefore, many models do

not account for the role of advection. However, for example, if a given cell type has a cell

membrane that is largely impermeable to a given signaling molecule, it is possible that the

effective diffusion constant could be quite small and compete with the advection timescale.

Therefore, we first characterize advection in this system so that we can specify precisely
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when it can be neglected.

We simulate a cluster of cells in a steady state linear concentration gradient. The cells

in the cluster are all being pulled by a body force so that in the overdamped limit they

move at a velocity, v⃗, from a region of low concentration to a region of high concentration

for different diffusion coefficients. Then we measure the total concentration Ca inside the

cluster when we include the advection term and compare it to the concentration Cd in the

purely diffusive case when we do not include that term:

Φ = ⟨Cd[v,D, L]− Ca[v,D, L]⟩cluster . (2.24)

The top panel of Fig 17(A) is a schematic diagram of a moving cell cluster, and the bottom

panel shows the difference in concentration Φ associated with that motion. Fig 17(B) shows

the concentration of signal in the system as a function of y-position. The red(blue) line

corresponds to the behavior when advective terms are neglected(included), highlighting that,

as expected, the moving cluster of cells does entrain and drag along some of the chemical

signal. The simulation data points in Fig 17(C) highlight that this average difference in

concentration within the cluster increases with increasing Peclet number. It is worth noting

that the velocity field constructed in simulations is discontinuous from one cell to another

and, to avoid numeric instabilities, in simulations with high Peclet number we decrease our

integration step significantly to dt = 10−4.

To predict the functional dependence of Φ on Pe, we develop a simple toy model. We

assume a square cluster of side length L is climbing a linear gradient in the y-direction

at a constant velocity v⃗ = vy, and therefore it will reach a steady state in which the rate

that advection pulls the gradient with the cluster is equal to that lost by diffusion. Since

the gradient is uniform in the x-direction, this generates a simple second-order differential

equation:

0 = D
∂2C[r⃗, t]

∂y2
− vy

∂C[r⃗, t]

∂y
. (2.25)

Integrating once we find that the gradient inside the cluster changes in y as a decaying

exponential, where the integration constant is the change in gradient for the pure diffusion

case:

∂C[r⃗, t]

∂y
= ∆cde

vyy

D . (2.26)

Integrating again and then applying the boundary conditions that the gradient is continuous
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Figure 17 : (A) Top panel: snapshot of a cluster moving up the gradient. Bottom panel: The change in

the concentration gradient Φ due to advective terms. (B) A projection of the concentration in the system

in the y-direction for Pe = 1. The dotted lines represent the location of the cluster. The blue line shows

the concentration of signaling gradient in the presence of an advecting cluster and the red line shows the

same gradient with pure diffusion. (C) The difference of the total concentration of signal inside the cluster

with pure diffusion compared to the total concentration with advection Φ increases with increasing Peclet

number (Pe). The cluster cells are climbing the gradient with various velocities: [v⃗ = 0.1, 1, 2, 10] for the

purple, green, orange, and blue points respectively over a range of diffusion constants between D = 10 and

D = 104. The grey and black points are for clusters with Nc = 10, 30 respectively and v⃗ = 1
. The dotted line is the predicted relationship from the toy model.

across the cluster gives the concentration at every point inside the cluster:

C[r⃗, t] = ∆cdL
e

vyy

D − 1

e
vyL

D − 1
. (2.27)

Then we can integrate a final time to find the total concentration inside the cluster in 1D.

We multiply it by the length of the cluster to find the total signal inside a square cluster

and subtract the total concentration inside the same cluster with just pure diffusion. This
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generates an analytical prediction for how the concentration scales with the Peclet number:

Φ = ∆cdL
3(

1

Pe
− 1

ePe − 1
− 1

2
),

which is illustrated by the dashed line in Fig 17(C), showing that the prediction closely

matches what we observe in our simulations. We show that this prediction holds over a

range of cluster sizes, biochemical diffusivities, and cluster velocities. This demonstrates

that the total concentration inside the cluster scales with the Peclet number itself rather

than any of the independent parameters swept over individually. In both cases, we see that

advection does not change the concentration of the cluster outside uncertainty until Pe ≈ 1,

which is higher than what is observed in many experiments. For example, in the Xenopus

embyro the cluster is around 100 µm with a velocity up the gradient around v = 0.1µm
s

[178] within a sdf1 gradient which has a rough diffusivity of D = 3 ∗ 10−10m2

s
[199] and yields

a Pe ≈ 10−2, which is much smaller than what is predicted to cause noticeable advection.

Therefore, for the remainder of the paper, we will neglect advection, though it may be

interesting to revisit in the case of biochemical signals that diffuse very slowly.

2.5 Gradient-coupled contact inhibition of locomotion

Next, we will study collective chemotaxis in our confluent model. Previous work [158] demon-

strated that collective chemotaxis emerges naturally when coupling a biochemical signaling

gradient to a particle-based rule mimicking contact inhibition of locomotion (CIL).

Therefore, we first develop a rule for CIL similar to the one in Ref [158], that can be

directly applied to a confluent model. Their rule was inspired by observations seen in various

experimental systems including neural crest cells [176], rat kidney cells [186], and breast

adenoacarcinoma cells [185]. As in previous self-propelled Voronoi, SPV, models [4, 200], we

assume each cell i has polarity p⃗i and experiences physical forces from the surrounding cells

given by F⃗i = −∇iE. Then the cell’s motion will be over-damped:

dr⃗i
dt

= µF⃗i + p⃗i. (2.28)

The direction of self-propulsion has its own dynamics:

dp⃗i
dt

= −1

τ
p⃗i + σξ⃗i + µ

∑
j

lij(1− Ci)(1− δαjβi
)r̂ij, (2.29)

where µ is the inverse of the drag coefficient, τ is the self-propulsion persistence time for
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a single cell, and σξ⃗i is Gaussian noise. The last term represents CIL, which alters the

polarization so as to repel the two cells, and the strength of the repulsion depends on i)

the concentration of signaling molecule and ii) how close the cells are to one another. Here

Ci = ∆cyi is the value of the concentration field at the center of cell i, which depends

on its position yi and the change in gradient over a cell length ∆c. Then the direction of

the change in polarity is r̂ij, is the unit vector pointing from cell j to cell i. Whereas in

previous work “cell closeness” was quantified by particle overlap [158], in our case cells are

closer when they share a larger interface lij. We choose σ = 1 such that an isolated cell

has a velocity of unity. While difficult to actually quantify numerically the range of the

polarization, we take inspiration from [169] which shows that the sdf1 gradient in neural

crest cells causes asymmetry in Rac1 signaling, and therefore cell protrusion stability, across

the cluster. This manifests in a Fluorescence Resonance Energy Transfer (FRET) efficiency

ratio from the back to the front of the cluster between 0.5− 0.9 [169]. Therefore, we choose

our polarization such that the ratio between the CIL on the front the cluster to the back is

in the same range.

In addition, since in our model we have cells surrounding the migratory cluster (while

in previous work the surrounding environment was not directly modeled), we also have to

specify cell types αj and βi. Since many different cell lines experience contact inhibition of

locomotion with specific types of cells [190], for the most part we will assume that the cluster

cells only experience heterotypic contact inhibition of locomotion between themselves and

exterior cells although we will investigate this more carefully at the end of this subsection.

This rule is represented by the delta function in the last term of Eq 2.29.

In SPV models, a tissue composed of only one cell type, each cell’s velocity will be due

to active forces from surrounding cells and the cell’s polarity. The cell’s polarity will relax

to zero with persistence time τ but be driven away from zero by the noise. As illustrated

in Fig. 18(A,B), when cells of different types share an edge the third term in Eq. 2.29 turns

on. The cluster cell will experience a repulsive polarity away from the exterior cells (along

the direction given by dp/dt in panel (A), which drives the polarization from pi towards pf )

with a magnitude that depends on the concentration inside the cell and the length of the

shared edge. Thus cells on the low-concentration side of the cluster, illustrated by the large

red arrows in Fig 18(B), will experience a greater magnitude polarity inwards than the cells

on the top of the cluster, illustrated by the small tan arrows in Fig 18(B).

Figure 18 (C) shows sample trajectories for single cells and clusters of cells with these

CIL dynamics, demonstrating that single cells do not climb the gradient, but clusters do.
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Figure 18 : A.) The cluster cells experience heterotypic CIL as a change to their polarity away from external

cells. The magnitude of this polarity corresponds to the magnitude of the gradient at that cell. B.) The

entire cluster experiencing gradient-dependent CIL which generates net movement up the gradient. Lighter

color cell centers represent cells that sense a higher gradient and therefore experience less CIL
. C.) 20 Trajectories of Nc=1 and Nc=20 clusters. The scale bar represents one cell length.
Red trajectories have final points on the higher-concentration side of the origin, while blue

trajectories terminate in the lower-concentration half-plane.

To quantify this effect more precisely, we measure the average velocity of the clusters up

the gradient:

⟨v⃗cluster⟩ =
⟨r⃗cm(t+ τch)− r⃗cm(t)⟩

τch
, (2.30)

where r⃗cm is the center of mass of the cluster and τch is the natural time unit. The inset to

Fig. 19 shows that the velocity increases as cluster size increases, with a plateau after the

cluster reaches around 10 cells. We see that this behavior holds over many persistence times

τ and gradient slopes ∆c.

To collapse the data, we attempt to predict the cluster velocity using a simple model.

If we average the polarity of all the cells in the cluster over long times, we expect the

contribution from the noise to average to zero. Assuming the polarity over the entire cluster

will eventually reach a steady state we have:

⟨
∑
i

dp⃗i
dt

⟩ = 0 = −1

τ
⟨
∑
i

p⃗i⟩+ µ⟨
∑
i

∑
j

lij(1− Ci)(1− δαjβi
)r̂ij⟩, (2.31)

where we sum over each cell, i, in the cluster. We assume that the average polarity of the
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entire cluster is the average of the polarity of every cell in the cluster such that, ⟨p⃗cluster⟩ =
1
Nc

∑
i⟨p⃗i⟩. Then Eq. 2.31 can be simplified:

⟨p⃗cluster⟩ = µτ⟨
∑
i

∑
j

lij(1− Ci)(1− δαjβi
)r̂ij⟩. (2.32)

Then we will assume the cluster is roughly circular and turn this sum into an integral:

⟨p⃗cluster⟩ = − µ

Nc

τ⟨
∫

C[r, θ]r̂dl⟩, (2.33)

where C[r, θ] is the concentration inside the circular cluster and r̂ = cos θî + sin θĵ points

radially outward from the center of the circle: C[r, θ] = Ccenter − r∆c sin θ, where Ccenter is

the concentration in the center of the cluster, and ∆c is the change in concentration over

one cell length. Since each each cell has Ai = 1 the radius of the cluster is r =
√
Nc/π.

Integrating gives an expression for the steady state polarity of the cluster:

⟨p⃗cluster⟩ = − µ

Nc

Ncτ∆cĵ. (2.34)

∆𝑐𝜏

Figure 19 : Inset: The average velocity of a cluster up the gradient. The velocity increases as cluster size

increases and then plateaus after Nc = 10. Main panel: The cluster velocity up the gradient collapses when

correctly scaled by the persistence time and magnitude of the CIL. The dashed line represents predicted

velocity from our toy model, which agrees after the cluster reaches Nc = 8. In both panels, error bars are

the average of the standard deviation of the cluster velocity in an individual trial.
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We see that we can collapse the velocity with the gradient slope ∆c and persistence time

τ to a single curve which is independent of the number of cells in the cluster (Fig. 19). This

matches closely with what was seen in lymphocytes exposed to ligand gradients in which

above a certain cluster size, around Nc = 20 in their experimental system, the velocity is

largely independent of cluster size [174]. This trend was also seen in Xenopus neural crest

cells in which the cluster speed reported was independent of size [169]. Together this suggests

that this mechanism is a reasonable model for collective chemotaxis in real systems.

Notably, the fluctuations of cluster velocity for small clusters are much larger than those

for larger clusters. Since collective migration in biology can sometimes involve small clusters

of cells and fluctuations might be biologically relevant, we next explore the source of those

fluctuations in some detail. Visual observations of simulation dynamics highlight that the

smaller clusters rotate or “turn” fairly frequently, presumably due to unbalanced torques

generated during CIL, shown in the schematic diagram in Fig 20 (A). Moreover, once the

clusters turn they move persistently until the polarity invoked by the CIL causes them to

turn back to moving up the gradient. Large clusters, however, would seldom experience this

turning.

To validate these observations, we calculate the persistence time of clusters via a velocity

autocorrelation function, as illustrated in the schematic diagram in Fig 20(B). For persistent

random particles, we expect that the velocity autocorrelation should follow:

⟨v⃗(t) · v⃗(t+∆t)⟩ = nD

τ
e−

∆t
τ . (2.35)

Indeed, a plot of the autocorrelation vs. ∆t, shown in Fig 20(C), is well-fit by an exponential

decay and we extract a persistence time. Fig. 20(D) shows the statistics of persistence times

as a function of cluster size, indicating that the persistence time of the cluster increases as

the cluster size gets larger until around Nc = 5 where it plateaus. This is reminiscent of a

recent work looking at the persistence time of Vicsek aligning Brownian particles [201]. In

that paper, the persistence time of clusters increases linearly with the size of the cluster. For

a larger cluster to change direction, more individual cells are required to change direction.

However, when a new cell which aligns at a much slower rate is added, the entire cluster’s

persistence time decreases. We see for small cluster sizes the persistence time of the cluster

increases linearly with cluster size in agreement with [201], but this effect eventually sat-

urates. In 2D, N ∼ 5 is when each additional new cell added to the cluster has a strong

possibility of being added to the interior, without any exterior interface, and thus does not

experience any CIL. These cells act like the less persistent cells in [201] as they primarily
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just add noise to the cluster’s polarity. There is a balance as the clusters become larger;

they become more resistant to fluctuations from each newly added cell, experience a larger

change in gradient over the cluster as the radius expands, and more noise is added by new

internal cluster cells without significantly increasing the interface with cells on the exterior.

It should be noted that we are only investigating the limit of high interfacial tension between

the cluster cells and the exterior cells. We found that as the exterior surface tension becomes

small, the clusters tend to completely break apart and thus have no preferred cluster size

other than unity. So, while this balance in cluster size plays an important role in persistence

time, the cluster does not seem to be able to self-select an optimal size using this mechanism.
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Figure 20 : (A) The change in polarity from contact inhibition of locomotion, red, can cause a net torque,

black, on small clusters. (B) The trajectory of a Nc = 5 cluster as it turns. (C) The velocity autocorrelation

function of various cluster sizes, Nc = [4, 5, 10, 15, 25]. The dotted lines are the fits to exponential decay.

(D) The persistence time of the cluster for various cluster sizes extracted from C.).

Finally, we analyze the effect of the cluster cells that could also experience CIL between

each other as well as exterior cells. We find that there is no net movement up the gradient

(Fig. 21). Since the magnitude of the repulsive polarity is based purely on the average

concentration of the cell, each cell will experience an isotropic repulsive polarity and thus

will have a net-zero polarity due to CIL on average. However, altering the ratio between

heterotypic (external cells with cluster cells) and homotypic (cluster cells with cluster cells)
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CIL,κ, we see that any difference between the two will recover the collective climbing behavior

(Fig. 21).

κ =
HomotypicCIL

HeterotypicCIL
. (2.36)

The magnitude of the climbing velocity will increase as κ increases as the magnitude of the

polarity counteracting the heterotypic decreases. This means that pure CIL between just

cluster cells and no interactions with external cells should also cause a collective chemotactic

response but in the opposite direction.

𝜅

Figure 21 : The cluster will not climb the gradient regardless of system size when CIL between all cells is

the same magnitude (Purple line, κ = 1). But with any amount of difference in magnitude of homotypic

and heterotypic CIL the cluster will experience collective chemotaxis

2.6 Gradient-coupled HIT

The simulation tools we have developed also allow us to investigate other candidate mecha-

nisms, in addition to CIL, for collective chemotaxis. Along with contact inhibition of locomo-

tion, asymmetric actomyosin contractility has been implicated in the collective chemotaxis

of neural crest cells [178]. Additionally, Eph-Ephrin ligand signaling has been associated

with both collective migration of neural crest cells [202] and heterotypic interfacial tension

[120]. In the Drosophila ovary, differences in mechanical tension between the front and back

of the cluster drive polarization in the chemotactic border cells [203]. In a 3D Vertex model,
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polarized interfacial tension is sufficient to cause collective cluster migration [204]. Taken

together, this suggests an alternative plausible mechanism for gradient climbing may be di-

rectly coupling HIT to a biochemical signaling gradient, and we develop a set of simulations

to test this hypothesis.
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Figure 22 : A.) The cluster cells experience heterotypic interfacial tension as a force away from the edges

shared with exterior cells. The magnitude of this force corresponds to the magnitude of the gradient at that

cell. B.) The entire cluster experiencing gradient-dependent HIT in which there is higher HIT on the rear

of the cluster which propels the cluster up the gradient. Lighter color cell centers represent cells that sense

a higher gradient and therefore experience less HIT
. C.) 20 Trajectories of Nc = 1 and Nc = 20 clusters. The scale bar represents one cell

length.

Since this mechanism does not depend on self-propulsion, for simplicity, we assume cells

follow over-damped Brownian motion such that F⃗i = −∇iE and where active fluctuations

are Gaussian and governed by an effective temperature T :

dr⃗i
dt

= µF⃗i +
√
T ξ⃗i, (2.37)

where the energy function is the same as described in Eq. 2.18, except that additional

interfacial tension, γij is coupled to the gradient:

γij = (2− Ci), (2.38)

Ci = ∆cyi where Ci = ∆cyi is the value of the concentration field at the center of cell i

which is based off the position of cell i, yi, and the change in gradient over a cell length

∆c. A schematic diagram of this type of interaction is shown in Fig. 22 (A,B). There must



48

always be HIT between the cluster and exterior cells, even at the top of the gradient when

Ci = 1. While it is difficult to exactly measure heterotypic interfacial tension, there has

been some work comparing the ratio in surface tensions between different cell types using

cell doublet experiments in Zebrafish where the ratio between tensions is usually between

0.5− 1 [205, 206]. While it may be interesting to study even larger differences, we primarily

look at values of ∆c such that the ratio of HIT on the front to the back of the cluster is

between 0.7− 1.

We expect that the force from the HIT should scale linearly with γij and point along the

outward-oriented chord between the two touching cells r̂ij such that:

F⃗γ = cγij r̂ij = c(γcenter +∆γr sin θ)(cos θî+ sin θĵ), (2.39)

where c is a proportionality constant, as illustrated in Fig. 22(A).We assume this scaling, as

we expect that the additional energy cost for heterotypic interfaces will generate a force on

each cell pointing away from the interface and towards the center of the cluster. To validate

this assumption we look at the average force on exterior cells in the cluster as a function of

their position relative to the center in Fig. 23; it matches this assumption. Since the net

inward force is smaller on the high concentration side compared to the low concentration side

of the cluster, we expect a net force on the cluster that drives the cluster towards regions of

high concentration.
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Figure 23 : The normalized force from HIT on cells in the cluster as a function of cell orientation with

respect to the center of the cluster. The green points are an ensemble average of the tension cluster cells

experience while the purple points are what we assume in our theory for Eqn. 2.39

We simulate this model, resulting in sample trajectories as shown in Fig. 22(C). Similar

to the CIL-coupled system, we see once again that clusters of cells collectively climb the
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gradient while individual cells do not. One obvious difference is that these trajectories are

less persistent than for CIL; this mechanism is not as efficient at driving gradient climbing.

In addition, as shown in the inset to Fig. 25, by comparing clusters of different sizes we

see that small clusters have a higher climbing velocity than larger clusters. Once again this

can be explained using a simple model.

We can perform the same integration steps as we did for the CIL-coupling Eq 2.32-2.34

to show that:

F⃗γ = c

∫
γij r̂ijdθ = c

√
π∆c

√
Ncĵ. (2.40)
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Figure 24 : The average force on a cluster up the gradient due to the HIT. The force will collapse with the

magnitude of the gradient’s effect on HIT ∆γ and follows the
√
Nc scaling from the toy model. We fit the

proportionality constant c = 0.65

As shown in Fig. 24, we find that the line tension force on the cluster observed in simula-

tions follows this predicted functional form, and the best fit for the proportionality constant

is c = 0.65. Just as before, if we average over many systems, we expect that the contribution

for the Brownian noise and the non-gradient coupled forces to go to zero. Assuming that the

force acting on the cluster is on average evenly distributed over the entire cluster, we have:

⟨v⃗⟩ = µc
√
π∆c

√
Nc

Nc

ĵ. (2.41)

Using this functional form and the proportionality constant we identified previously, we can

exactly predict the collapse of the average cluster velocity, shown by the dashed line in the



50

main panel in Fig 25. Perhaps unexpectedly, as the cluster increases in size, the net velocity

up the gradient decreases. This is due to the net force on the cluster being distributed

over every cell in the cluster while only the outer cluster cells contribute to the gradient

sensing. Therefore, we expect that as more cluster cells occupy the interior, the velocity up

the gradient will decrease.

Notably, this scaling depends on Nc while the gradient-coupled CIL does not. This occurs

because in the gradient-coupled CIL cell motion is proportional to the length of heterotypic

cell contacts as described in Eq. 2.29, while in the gradient-coupled HIT the energy cost

is proportional to the length of heterotypic cell contacts. Thus, the force experienced is

independent of this length.

This non-monotonic scaling with cluster size has been observed in other works as well.

On one hand, an identical scaling of v ∼ N
−1/2
c appears in a follow-up paper to [158] with

an expansion on their 2D model, in which they investigate the role of both amplification

and signaling within the cluster [207]. Strikingly, even though the mechanisms between our

models are very different, they both lead to the same collective response with a mean force

driving the cluster that scales like N1/2. This is driven primarily by polarity induced on

the boundary of the cluster. On the other hand, in a different paper examining border cell

migration in the Drosophila ovary, the authors predict that velocity would scale monotoni-

cally with cluster size in 2D but non-monotonically increase in 3D [180]. In that paper, the

discrepancy in behavior is derived mainly from differences between 2D and 3D motion, how

these differences manifest in terms of the forces that drive polarity on the cluster, and the

dominant contribution to friction. Thus, delicate care must be put into each theory to repli-

cate the behavior in the respective experimental system, as small differences in chemotactic

response can lead to vastly different behaviors as a collective.

2.7 Conclusions and future work

We have created an adaptation of a Voronoi model [4, 200] for confluent tissues that allows

individual cells to change their mechanical properties in response to the average biochemical

signaling concentration at their location, and we have identified several local rules suggested

by previous experimental work, that are able to drive collective chemotaxis.

We demonstrate that gradient-dependent contact inhibition of locomotion gives rise to

collective chemotaxis, with smaller clusters climbing the gradient less efficiently than large

clusters, up to a plateau. This, along with the previous results of CIL in particulate-based

systems [158], suggests that CIL is a mechanism for collective chemotaxis regardless of the
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Figure 25 : Inset: The average velocity of a cluster up the gradient. Main panel: The velocity collapses

with the magnitude of the gradient’s effect on HIT (∆γ) and follows the
√
Nc

Nc
scaling predicted from the toy

model shown by the dashed line.

confluency of the tissue.

We also demonstrate a second possible mechanism for collective chemotaxis through a

mechanism where the interfacial tension at the edge of the cluster depends on the local

concentration, and in this case smaller clusters climb the gradient more efficiently than

larger clusters.

This opens up an interesting question about how mechanisms of gradient climbing might

influence the optimal size of collectively migrating clusters. In nature, clusters are often on

the order of 20 cells, which suggests there may be a balancing between velocity and other

considerations such as sensing error. Besides being able to gain more information about a

gradient, cells will also use clusters to help reduce noise from signal processing [208]. In the

future, it would be interesting to study how the mechanisms we present here in combination

with cell sensing noise might generate an optimal cluster size.

Although we have focused here on two specific rules, the general, open-source code we

make available with this manuscript will allow users to input any boundary conditions and

chemical degradation rates to create an assortment of different steady state gradients.

Additionally, our code generally allows for cells to advect a biochemical signal. While

we have focused here on situations where advection can be neglected (Pe < 1), we develop

an analytic expression for how much advection changes concentration gradients in collective
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chemotaxis geometries. Since several experiments have shown that the effective diffusivity

of some particles can be reduced by several orders of magnitude as they bind to the extra-

cellular matrix [209–211] which could drastically increase the Peclet number in certain

systems. This would make advection not only relevant, but crucial to modeling these non-

steady state systems.

There may be other examples of processes where biochemical signaling can affect cell

dynamics where this type of simulation and analysis could be helpful. For example, some

tissues exhibit gradients in tissue fluidity [7], and it would be interesting to model the

dynamic effect of coupling the cell shape and tissue fluidity to a signaling gradient. Another

common mechanism for chemotaxis in cells is through run and tumble behavior [169, 212].

By coupling the biochemical gradient to the rotational diffusion of cells using a different

equation for the polarity dynamics, we can investigate alternate climbing mechanisms.

Finally, the rheology of the tissue has been implicated in the ability of clusters to sense and

react to gradients. There are conflicting theories that predict either that solid-like clusters

[158] or fluid-like clusters are better sensors [208]. Clearly, the conclusions may depend

on the precise model one uses for the mechanical interactions between cells. Therefore, one

obvious extension to this work is to use models with the appropriate mechanical interactions

for confluent tissues to investigate how different tissue fluidities affect the ability of cells to

climb signal gradients.
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Chapter 3

Identifying rigidity with graph-neural

networks

As we discussed above, the conditions under which physical systems rigidify can be difficult

to fully characterize. There has been significant work recently to identify different types of

rigidity transitions (ie. first and second order) and their signatures [96, 97].

In particulate glassy systems, which at zero temperature become rigid due to first order

rigidity, researchers have developed machine learning metrics to measure “softness”. Regions

of high softness identify where in space the glass will be the most likely to break [13, 159–162].

Although researchers have identified methods other than machine learning to identify regions

that are likely to break [162], machine learning has proven extremely effective at doing so.

Since first-order rigid particulate glassy systems share geometrical and other features with

second-order rigid networks such as the vertex model, here, we aim to predict collective

jamming in vertex models using machine learning metrics.

Before we discuss our specific methodologies for vertex models, we will review a few

important principles in machine learning generally. This section draws heavily from [11],

which is a physics centered review article.

3.1 Types of machine learning

Machine learning involves inputting a data set into an algorithm with a cost function. This

algorithm will minimize the cost function in order to make predictions about the input data

set or a data set that is similar to it. The goal is to develop algorithms that are capable

of learning from data automatically [11]. The basics of machine learning are fairly simple,

though the details can be complicated depending on how the structure of the algorithm is
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set up and how the minimization techniques are employed.

In general one can divide machine learning up into three categories: unsupervised, su-

pervised, or reinforcement learning [11]. Unsupervised learning attempts to find patterns

in data that are unlabeled such as in clustering [161, 213, 214]. Reinforcement learning is

done through interaction with the environment and assigning high bias towards favorable

outcomes. This is seen often in nature, such as in birdsong [215], bacteria [216], and even

with human behavior in video games [217]. Supervised learning, which is the method pri-

marily investigated in this thesis, is learning on a labeled data set. The network can learn

how to label things from data sets that are already identified and use what it has learned on

new data sets.

While these techniques can be used for all types of machine learning, we focus on super-

vised learning. As an example, let’s say we have two large data sets: data set A contains

a thousand images of cats and dogs with each image containing a correct label either ’cat’

or ’dog’ and data set B which contains a thousand images of either cats or dogs unlabeled.

How can we train a network to correctly identify all the images in data set B?

3.2 Architecture of neural networks

Fig 26 is an illustrated schematic of a typical neural network. Data is put into an input

layer which is composed of several nodes or neurons [218]. For each neuron, there is a filter

that passes over the data which performs a linear transformation. This information is passed

to the next layer in which different filters, with different transformations, adjust the data

further. The output of each of these layers is high-level features of the data that are not

always easily interpreted. Eventually, after the data passes through many hidden layers

there will be a fully connected layer in which all neurons in the layer are connected together

and the network will learn non-linear combinations of these features and use them to make

predictions about the input data. The network learns, in supervised learning, by looking at

that prediction and comparing it to labeled input data through a cost or error function. It

will attempt to minimize the cost function by looking at the gradients of this function in

each layer and then adjusting the weights on each neuron to change the linear transformation

that each filter applies to the data [11].

In the earlier example of classifying if a picture is a cat or dog, the input data are images.

A simple way to understand an image is as an array. An image is another type of interaction

network similar to both topological and metric systems previously discussed, except instead

of the particles or cells, each “cell” is on a grid at a fixed location. The neighbors of each cell
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Figure 26 : A typical architecture for a neural network. A.) Input data is acted on by linear weights and

then a non-linear activation function acts on the data in order to allow it to learn complex behavior. B.) A

typical representation of the various layers in a network. Each circle represents a neuron which the weights,

or filters, will act. After passing through one to many hidden layers with many different neurons, the data is

collected in a fully connected layer before being acted on by the non-linear activation function. This figure

is taken from Ref [11].

are fixed, one pixel has eight neighbors, one on each of its interfaces. Then each pixel has

one property which is its magnitude, this is a scalar in black and white images and a vector

of length three in RGB images, where each component is the magnitude of red, green, or

blue. This means there is a direct translation from an image into an NxMxP matrix where

the resolution of the image is NxM and P is the number of colors in the image. A visual

representation of this is shown in Fig 27). So, the example network needs to convert this

matrix into a single value a scalar identifying if an image is a cat or a dog.

Convolutional neural networks are neural networks that learn local spatial filters. These

filters are small matrices (3x3, 5x5, 9x9, etc.) that act on the image matrix and start ran-

domly or uniformly initialized. The filters will act on a small subset of the image matrix

and then store the dot product in the next layer of the neural network. The filter will then

move, or convolve, to a different subset of the image matrix [11, 219]. The size of the matrix

will reduce after each filter and each layer of the network represents a new filter acting on



56

Figure 27 : An image is a network in which each pixel can be broken down into a scalar value of the pixel

magnitude. Then these scalar values can be describe the whole picture as a matrix. This figure is from the

Stanford AI Lab.

it. Eventually through many different filters, and other objects, some of which are discussed

later in this chapter, the image will be reduced down to a scalar which can be compared to

that of the identifier.

A supervised network examines how the output, in this case, a scalar, compares to that of

the image labels and adjusts the filters. The filters are modified to optimize a cost function

in order to minimize the error between the output and the labeled data. The networks will

“backpropagate” the gradient of the cost function to each filter and then adjust the filters to

decrease the error. The exact amount the network will alter the filters is set by the learning

rate. Over time, this will change all the filters so that they “learn” something about the

data. In reality, it is often impossible to parse exactly what each filter learns, but in theory,

a filter learns something fundamental about the data set. For example, one filter may learn

to identify horizontal or vertical lines, and then a following filter may determine how those

lines could compose a larger object, and so on. This is shown in Fig 28), in which the top

left image shows a filter that could identify a horizontal line that is composed of dark pixels

next to light pixels next to a moderate pixel magnitude. Then a later filter may recognize

that the number 7 contains two horizontal lines at specific locations. There is a detailed

discussion of this example as well as general neural network architecture in Ref [12].

A cost function is defined to best minimize the error between the predicted and actual

values or labels. While there are many choices of cost functions, including mean squared

error, binary cross-entropy, hinge loss, mean absolute error, etc., we focus on mean squared

error and binary cross-entropy as examples of linear and logistic regression respectively.

Linear regression is one of the most common cost function categories implemented in
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Figure 28 : An example of what a filter might learn. A.) The input image B.) An example of a learned filter

that identifies a dark line, −1, followed by a bright white line, 1, and then a medium line, 0. This filter

detects horizontal edges shown in C.). D.) An example of the output of this filter after acting on the input

image. The result shows an enhancement of horizontal lines. This image is adapted from Ref [12].

machine learning. It is extremely powerful and can be used for neural networks that are

predicting continuous target values. One of the most well used examples of linear regression

is mean squared error.

E(w) =
1

n

n∑
i=1

(yi − ŷi(w))2, (3.42)

where E(w) is the error function, the mean squared error, of a given set of weights, or

parameters, in the neural network, w. The predicted values are ŷi(w) as compared to the

actual values yi [11]. This is a good cost function to minimize as it punishes predictions

far from the true value. While it is beyond the scope of this thesis to go into much further

detail, there are situations where alternative cost functions will be a better choice such as

with high-dimension data, ie. data with a low number of sample sets with a high number of

properties per set, non-normally distributed data and data with many outliers.

Alternatively, logistic regression is common in neural networks that are used in classifi-

cation. Going back to the earlier example of trying to classify images as either a cat or a

dog, the output is not trying to predict a continuous value but a binary - either zero or one,
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cat or dog. The technique can be expanded to predict a vector where each component is a

binary value. This extension allows neural networks to either try and predict if an image is

one of many different possible classifications, such as identifying which digit 0-9 a number

is, or identify multiple sub-objects in an image - such as a predictor identifying that there is

a man next to a dog with a ball - in an image.

Binary cross-entropy is a cost function which assigns a probability to each datapoint of

falling into one of the classifier categories.

E(w) =
1

n

n∑
i=1

−yilog(ŷi)− (1− yi)log(1− ŷi), (3.43)

where E(w) is the error function, the binary cross-entropy, of a given set of weights in the

neural network. Then ŷi(w) is the likelihood that a datapoint i of given dataset w is of

binary classification unity and yi is the actual binary value of datapoint i [11]. This error

function calculates the likelihood that a given data point falls into one of the classification

categories and assigns that a probability. Then, as this cost function is minimized, the neural

network will try to minimize the difference between the predicted probability and the actual

value - which is either zero or one.

The network can learn non-linear features from data sets in two ways. The algorithm

can employ non-linear filters or activation functions. There are many different choices of

activation functions but the most common are step-functions or perceptrons, sigmoids, or

rectified linear units (ReLUs). Examples of various activation functions are shown in Fig 29).

There are two primary considerations when picking an activation function - the shape of the

output data and how the choice of activation function can affect the backpropagation of the

gradient [11].

Sometimes it can be difficult for a network to learn a specific behavior. However, the

network can be assisted by implementing fundamental knowledge about the shape of the

data output into the network architecture. For example, if we know the shear modulus of a

system is zero while the system is fluid-like and then increases linearly as it crosses over into

the solid regime, the activation function can match that behavior in the form of a ReLU.

There is also a concern about how the choice of activation function affects the learning

process. Since the derivatives of these nonlinearities will be used during backpropagation it

can affect how, and if, the network can learn. For example, since step functions have a zero-

derivative everywhere except on the step they cannot be used to learn using gradient descent.

Similarly, a common problem that can occur is called the “vanishing gradient” in which an
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Figure 29 : Various different types of activation functions. The top row have the issue of vanishing gradients

due to near-zero derivatives on their boundaries. Figure from [11].

activation function that is nearly flat in some regions will also have a zero derivative. This

means for functions like sigmoids and hyperbolic functions the network will have trouble

learning on data far away from either side of the transition. This is often why functions like

the ReLU are preferred because they are linearly increasing in the region of interest.

Together, this forms the structure of an example neural network that can be used to

classify images. A labeled set of image data is used as input. Then those images are broken

down into a network, a matrix of pixel magnitudes, and passed through many different

layers composed of many neurons. These neurons act as linear filters on the input to try

and extract high-level features from the image. Then in each layer, the data passes through

non-linear activation functions. Eventually, these high-level features are composed and put

together in a fully-connected layer and run through another non-linear activation function.

Then the output is compared to the label using a cost function and using gradient descent

that error is backpropagated through the network to update the filters. Once the network is

trained, different images can be run through the network and it will output a binary result

identifying the image. While numerous more fine details could be discussed, this provides a

framework for how these networks are made and evaluated.

3.3 Physics informed machine learning

One drawback of machine learning is that it is not always obvious what the network is

learning. Additionally, sometimes there is too much data to be processed or the learned
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output is difficult, resulting in extremely long training times. Finally, sometimes there is

not enough data for a network to learn from, and in that case, it provides poor predictions.

To address all of these, one can think carefully about how neural networks are used to learn

and how they can be guided to learn a physical solution. We cite heavily here from a recent

manuscript, Physics-informed machine learning [220], but these concepts are broad and have

been used in many papers [221, 222]. The authors cite three main techniques involved in

physics-informed learning: observation bias, inductive bias, and learning bias.

Observation bias is fairly straightforward, it involves carefully choosing the data that is

to be learned on [220]. This can be thought of in a couple of ways. First, one can only input

data that is necessary for the network to learn. For example, if a network was trying to

predict whether an animal is a dog or a monkey - given a set of qualities about the animal -

what would be important metrics to input? One would expect that certain qualities would

be more important than others. A network trained on just the qualities of having fur, having

four limbs, or having two eyes may not be able to discern between the two while a network

trained on having a tail or being bipedal would be more successful. Assuming that humans

cannot make predictions on a given dataset, like in the cases of more complicated systems,

one could learn what is important to make predictions by seeing when a network is sucessful

given a small set of qualities. Conversely, if something fundamental about the physical

symmetries in a problem is known then the data can be carefully chosen to enforce these

symmetries. In one example of this, researchers design a neural network that predicts flow in

irregular geometries by selecting data from just positions on a grid and fluid dynamic data

as training data [223].

Inductive bias incorporates information about the physical system directly into the ar-

chitecture of the neural network. Examples of this are convolutional neural networks which

have the same invariances, translations, reflections, and rotations, that images do. Similarly,

later on, we investigate using graph neural networks to make predictions about the rigidity

of a spring vertex model. Here the input data, a vertex network, is fundamentally the same

architecture as the neural network, a graph.

Finally, there is learning bias, which directly imposes constraints on the learning in

the loss function. The learned predictions are guided toward a result that is known to be

physically true. For example, there is a model that was created to learn the discontinuities

due to the realistic impact in robotic systems [224]. Here the authors carefully tailor their

algorithm to learn the discontinuities while most learning models assume motion is always

continuous.
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With all this in mind we can finally start addressing the problem we initially set out

towards: can we use machine learning to help identify the origins of rigidity inside confluent

tissue models?

3.4 Using an image classifier to identify rigidity

A general guiding principle is that if a person can identify the differences between two images

then one can train a neural network to do the same. Looking at Fig 30), an observer can

tell there is a difference between the rigid tissue and the floppy tissue. So, first, we aim to

identify if a network is floppy or rigid far from the transition point. Earlier we discuss how

there is a rigidity transition in the vertex model around a shape index of S0 ≈ 3.81. While

the true situation isn’t quite that simple, for this section we assume that 2D vertex model

tissue is solid-like below that shape and fluid-like above it. Then input data is composed of

images of equilibrated vertex model simulations at various shapes. The data is labeled as a

simulation being solid-like, 0, or fluid-like, 1, depending on its shape index.

𝑠! = 3.5 𝑠! = 4.0

Figure 30 : By eye, an observer can tell the difference between the vertex model on the left which is solid-like

with a preferred shape index much below the rigidity transition, and the right which is fluid-like in which

the observed shape matches the preferred.

We are using a convolutional neural network like the ones described earlier. Specifically,

we are using Inceptionv3 [219] as the framework. This behaves like a normal convolutional

neural network except that it performs convolutions over different scales which allows the

network a quick way to learn about different length scales in the problem. The neural network

is written in Python using TensorFlow and was run locally. The training sets were composed

of 1, 000 images of standard vertex model simulations that were minimized using a FIRE

algorithm at S0 = 3.61, 3.71, 3.76, 3.785, 3.835, 3.86, 3.91, 4.01. Then the neural network was

used to classify another 1, 000 images at each shape, and the accuracy of the network was
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recorded in Fig 31. We use a sigmoid as the activation in order to help predict a binary

value. As one may expect, far from the transition where it is easy by eye to see the difference

between the floppy and rigid networks the algorithm did extremely well. However, as the

transition point is approached the neural network failed with accuracy being close to a coin-

flip. This isn’t surprising as the network can only learn from the image which becomes

increasingly similar on both sides of the transition and the binary fluid-like or solid-like

nature of the classification may not be completely accurate for these systems based on their

preferred shape alone, especially right next to the transition.

Figure 31 : A pure image classification neural network yields accurate predictions far from the transition

but fails as the transition is approached.

So, the question becomes: can we improve these machine-learning techniques by incor-

porating known physics in these systems into the network architecture?

3.5 Predicting rigidity using Graph Neural Networks

One way to improve the learning algorithm is by adding inductive bias into the architecture

of the neural network. Here the physical system is a simulated tissue, which is a network

where each cell is connected to several neighbors. In both glassy and cellular systems,

rigidity often emerges from interactions between particles or cells with their neighbors and

so it makes sense not to use an image as an input but instead to use a network that takes

into account the actual degrees of freedom and their neighbor list.
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A graph neural network, or GNN, takes in a graph as an input. A graph is a structure

consisting of nodes and a description of how those nodes are connected, in the form of edges.

There are several choices one could make about what these nodes or edges are; for example,

in a Voronoi model the nodes would be the cell centers and the edges would be the neighbors

of a cell. However, for ease, we use vertices as the nodes and the edges are the edges of the

cells. Then one can assign any number of features to edges and nodes. For example, we

begin with a node feature being the position of the vertex and an edge feature being the

length of the edge.

We use an open-source model from Ref [13] as the basis of the graph neural network.

In this paper, the authors use a GNN to examine the long-time behavior of glassy systems

using just the initial particle positions. We chose this as a framework as it matches the

same design for identifying structural properties of a disordered media using positions as an

input. We show the architecture of this network in Fig 32). An interesting feature in this

specific network is that the node and edge features begin independently and then update

each other based on a preset number of reoccurrences, nrec. This means that the edges and

nodes start in independent neural networks and then the edge features are updated based

on the surrounding nodes, and the node features are updated based on the surrounding

edges. This updating step happens nrec times with the same weights acting on the data for

each update step. An example of the range of locality this produces as a function of nrec is

shown in Fig 33). This gives the network an input level of locality; the higher number of

reoccurrences, the further distance away each node acquires information.

Nodes: [0 ,1, 2,….]
Node Features: [ [0.1523, 0.232], ….]
Edge:

Src: [0, 0 ,0 ,1 ,1 , …. ]
Dist: [32, 412, 1, 54, 0,….]

Edge Features: [[0.213],..]

Predict:
Rigidity
Shear Modulus
Edge Tensions

𝒏𝒓𝒆𝒄

Figure 32 : A schematic of the structure of the graph neural network. Vertex model simulations are used as

input data and are converted into a structure of nodes and edges. This is followed by the updating scheme

described in Ref [13]. This information is passed into a standard neural network and then used to predict

various values.

We train the network the same way we did before: 1, 000 graphs of different shapes are

used as an input data set and then the GNN learns and predicts if the system is fluid-like or
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𝑛!"# = 2
𝑛!"# = 3
𝑛!"# = 4
𝑛!"# = 5
𝑛!"# = 6
𝑛!"# = 7

Figure 33 : The initial node is identified in red. Then the surrounding nodes and edges are labeled if they

will be part of the updating of the initial node’s features as a function of nrec.

solid-like. We observe that the GNN is outstandingly successful with accuracy nearing unity

except for shapes within 0.015 of the transition, shown in Fig 34). The uncertainty near the

transition may be due to the assumption that if a tissue is composed of cells with preferred

shapes above 3.81 that the tissue is always fluid-like while there is likely some variation. For

example, some tissue may have a zero shear modulus with s0 = 3.8095. The next step is

to move away from the binary classifier and train the network to make predictions about a

scalar, the shear modulus of the simulation tissue.

Since we eventually want a GNN that can predict scalar fields, we switch from the base

vertex model to the spring vertex model that shares a lot of the same behavior but with the

added benefit of having easily calculable edge tensions. The energy functional is identical

except instead of the P 2 term it has a spring-like edge term [225].

Ei = kA(Ai − A0)
2 + ks

∑
ij

(lij − l0)
2. (3.44)

Here the spring stiffness is ks, the rest length is l0, and the edge between vertex i and j is

lij. The network undergoes a rigidity transition as a function of rest length. We minimize

the energy of the tissue using a FIRE algorithm and then calculate the shear modulus. We

find that the tissue goes from solid-like with a non-zero shear modulus to fluid-like with a

shear modulus of zero near l0 ≈ 0.65 shown in Fig 35).

Now that we are training the network to predict a scalar value, the shear modulus, instead

of a binary classification the activation function is changed to better match the output data.

The shear modulus goes from a zero value to a non-zero value that increases linearly which
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Figure 34 : The graph neural network shows a nearly 100% accuracy in predicting if a vertex model simulation

is solid or fluid-like except at the precise transition point.

𝑙! = 0.66840𝑙! = 0.55260

Figure 35 : Examples of the spring vertex model as a function of l0 with edges colored by edge tension.

There is a rigidity transition with shear modulus going from non-zero to zero at around l0 ≈ 0.65.

is the same behavior as a ReLU activation function. Interestingly we find we can predict

the shear modulus fairly well but the accuracy increases as a function of the number of

reoccurrences in the updating step shown in Fig 36). This suggests that the GNN needs to

integrate over a certain sized region to successfully predict the shear modulus. This gives an

idea about the non-local nature of the shear modulus for the entire tissue.
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Figure 36 : A.) The predicted shear modulus of the simulations compared to the actual shear modulus, blue.

A perfect prediction would fall on the orange line. B.) The accuracy of the predictions as a function of the

number of recurrent update steps in which a successful prediction of the shear modulus is within 0.05 of the

true value.

Finally, the graph neural network is tuned such that it can predict edge tensions. The

same graph features are used, the positions and edge lengths, as well as the same input

data set and activation function. Interestingly, the network performs extremely well, even

predicting edge tensions without being given the rest length, l0. This suggests just from the

geometry alone the network can predict the rest length and then calculate the edge tensions

on every bond. We find that the network is able to predict edge tensions within 0.01 of the

true value with 95% accuracy shown in Fig 37).

3.6 Conclusions and future work

We find that we can use an image classification neural network to identify rigidity in a 2D

vertex model far away from the transition. However, learning can be improved by using a

graph neural network that can predict rigidity up until a shape difference of around 0.025

from the transition point. We find that this same network can predict shear modulus with

increasing accuracy depending on the number of reoccurring updating steps. This network

can also predict the edge tensions of cells in a spring vertex model without knowing the rest

length a priori within 0.01 of the true value with 95% accuracy.

While this was only a short project, I’ve set up this GNN which can be used to predict

any value from spring vertex models. This framework can be used to predict binary, scalar,
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Actual edge tensions Predicted edge tensions Difference

Figure 37 : The GNN predicts the edge tensions of a given network extremely well, being able to predict

edge tensions within 0.01 of the true value with 95% accuracy. Except for a few edges, the network predicts

the edge tensions with almost perfect accuracy even without being given the rest length.

or scalar field values. Often the difficulty in creating machine learning algorithms comes

from curating the input data into a usable form and making sure that the network is set up

to predict all manner of output values.

Still, there are a lot of interesting directions that this project could go in the future. The

long-term goal of this project is to investigate the origins of states of self-stress in vertex

models. One way this network could probe that question is by trying to identify important

bonds before the network becomes rigid. So, instead of using just a single temporal point,

we could see if the network could be trained off two different inputs: one before the network

becomes rigid. l0 < 0.65, and then one in which the rest length was reduced and then the

network minimized such that it was rigid. The goal would then be to see if the network could
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identify important, or tension bonds, from the initial configuration in the floppy regime. It

would also be interesting to see if it could predict how bond orientation would change as the

rest length was changed.
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Chapter 4

Differences between 3D Vertex and

Voronoi models

4.1 Introduction to 3D confluent tissue models

While 2D models for confluent tissue are extremely powerful, these models rely on two main

assumptions in order to approximate real 3D tissue as 2D. The first assumption occurs in

the area incompressibility term, which is inspired by the idea that a cell has some charac-

teristic cell size. We assume that cells resist height fluctuations and that they are absolutely

incompressible meaning they have fixed volume, which means that cells must also resist area

fluctuations. The second assumption is that cells are in a single monolayer, or that interac-

tions with cells or substrates in the dimension that we ignore can be mapped onto simple

body forces.

But clearly, these assumptions are not always valid and there are many systems that

require a fully three-dimensional model such as in organ development [226, 227], cancer

spheroids [228–230], and cell sorting [15, 231]. One example in which 3D is required is the

stratified epithelium in which there are multiple layers of confluent epithelial sheets stacked

on top of one another. In each layer, cells have different protein expression and mechanical

properties and there are very sharp and strong boundaries between the layers [54, 153–156].

This system is fundamentally 3D as individual cells experience heterotypic interactions from

cells above and below them, as well as relevant homotypic interactions with cells of the same

types in their own layer.

Traditionally, for 3D modeling of confluent tissues the 3D Voronoi model has been

used [226, 232–234], mainly due to the computational difficulty of creating a 3D Vertex
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model, but also the lack of an open-source codebase. However, there has recently been a

surge of 3D Vertex modeling [235–238] and Zhang has recently released a open-source 3D

vertex model code [227]. Still sometimes small changes in interactions or in this case models

can yield different behaviors. So the question we aimed to answer is: Are there differences

in behaviors of cell tissue between the 3D vertex and 3D Voronoi model?

4.2 Homogeneous bulk behavior

In both models the energy of the tissue is identical and is similar to that of the 2D confluent

tissue models that I described in Eq 1.4 except converted into 3D.

E =
N∑
i

KA(Ai − A0)
2 +

N∑
i

KV (Vi − V0)
2 + E0, (4.45)

where the mechanical interaction forces between cells are given by Fi = −∇iE. The

first term still describes the competition between surface tension and adhesion, except now

the cell-cell contacts are represented by intercellular areas instead of lengths and have area

modulus KA. The second term represents the cells trying and achieve a characteristic cell

size of volume V0 with volumetric modulus KV . Here we are explicitly relaxing the constraint

that cells are incompressible and suggesting that a combination of biological mechanisms,

such as ion channels, regulate the volume to stay within a range parameterized by KV . Then

both systems evolve under Brownian dynamics. The only difference between the two models

is the degrees of freedom in the Voronoi model are the cell centers and the degrees of freedom

in the vertex model are the cell vertices.

A three dimensional non-dimensionalization shape index can be defined as S0 = A0/V
2/3
0 .

The same intuition from the 2D shape index still applies and as the cell shape increases cells

will become less circular or more elongated. Both models experience a rigidity transition

in homogenous systems in which the tissue goes from behaving solid-like to fluid-like as a

function of the cell shape. In the 3D Voronoi model, this rigidity transition occurs at a cell

shape of s0 = 5.413 and is identified by the point in which the shear modulus vanishes [1]. In

the 3D Vertex model, the rigidity transition is identified by looking at the neighbor-overlap

function and the tissue becomes fluid-like when the typical time-scale for rearrangements

becomes zero which occurs at s0 = 5.39± 0.01 [227]. A similar agreement in the location of

rigidity transition with cell shape is seen in the 2D vertex and Voronoi models [4, 75].
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4.3 Geometric signatures of heterotypic interfacial tension

While homogeneous tissue seems to behave identically between the two models, it is also

important to investigate tissue consisting of multiple cell types. As previously stated, the

addition of an additional energy cost for hetereotypic interfaces can cause large scale demix-

ing and compartmentalization between different cell types [10]. This additional interfacial

tension also induces a large difference in cell morphologies for cells at the interface between

the tissue types.

4.3.1 Geometric signatures of interfacial tension in 2D

In the 2D vertex and Voronoi models the addition of interfacial tension between cells of

different types changes the energy to that described in Eq 2.18. This small addition of

heterotypic interfacial tension between cells of different types can create sharp boundaries

between cell types [14]. In completely confluent tissues these sharp boundaries generate

topological consequences.

First, for a vertex on a completely flat boundary to be stable, it must have four neighbors

instead of the typical three-fold coordination. Since a stable vertex is under force balance

and a flat interface will have two parallel edges, the third edge can never achieve force

balance alone. his line of reasoning can be extended to prove that in homogeneous vertex

models fourfold vertices are unstable [239], although in Voronoi models stabilized fourfold

coordinated vertices have been observed at very high shape values. In contrast, the addition

of heterotypic interfacial tension can regularly stabilize four-fold coordinated interfaces in

both vertex and Voronoi models at all shape values [14].

To investigate the configurations of cells on the boundary researchers quantified the

distribution of edge lengths of cells on heterotypic interfaces in simulations [14]. They

find that there is an increasingly bimodal distribution of edge lengths as interfacial tension

increases, as shown in Fig 38B. This distribution is caused by perturbations to the stable

interface due to finite temperature fluctuations. These perturbations will cause the predicted

fourfold coordinated vertices to split and the single long-edge heterotypic interface will split

into one large edge and two small edges as seen in Fig 38A.

The breaking of these fourfold vertices generates a discontinuous restoring force that sup-

presses fluctuations. To quantify these discontinuities the researchers examined the restoring

force generated by perturbing cells along a vector perpendicular to the interface. The au-

thors then analytically calculated the restoring force on a Voronoi cell that is perturbed
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Figure 38 : A.) A heterotypic interface on a square lattice in which a cell of type 1 is perturbed into the

interface such that its new edges are in purple. B.) The distribution of edge lengths along a heterotypic

interface where the magnitude of the interfacial tension increases from pink to purple to blue. C.) The distri-

bution of restoring forces on cells perturbing into the interface where the dashed lines represent the predicted

restoring force from the analytic calculation. Where the interfacial tension γ = 0.04, 0.08, 0.16, 0.32, 0.64 for

the respective colors: blue. orange, green, red, and black. D.) The average restoring force on a cell of the

same tension range as C. at various perturbation distances. These plots were adapted from Ref [14].

from a 9-cell square lattice. They found that the average restoring force cells experienced

in simulations were very similar to that predicted by the analytic calculation and that the

discontinuous restoring force scaled with the magnitude of the interfacial tension as shown

in Fig 38(C-D).

4.3.2 Geometric signatures of interfacial tension in 3D

The inclusion of heterotypic interfacial tension in 3D models is similar to that of 2D except

the additional edge cost is for the shared surface area between cells of different types rather
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than edges.

E =
N∑
i

KA(Ai − A0)
2 +

N∑
i

KV (Vi − V0)
2 + E0 +

∑
HIT

σijAij, (4.46)

where the sum is over interfaces between cells of different types, σij is the interfacial tension

between the type of cell i and the type of cell j and Aij is the interfacial area between cell i

and cell j.

The authors of Ref [15] investigate the geometric and dynamic signatures that arise from

this additional interfacial tension. There is rapid demixing of between cells of different types

which causes the tissue to compartmentalize. Both the speed and magnitude of this demixing

are determined by the magnitude of the interfacial tension. In addition, the cell shapes on

the interface will start to elongate and orient perpendicular to the interfacial axis as shown

in Fig 39A. Additionally, as cell shapes on the boundary increase as interfacial tension is

increased, cells in the bulk will round up and decrease their cell shape as seen in Fig 39B.

Cell orientation is calculated using the moment of inertia tensor of the best0fit ellipsoid to

the cell vertices. Then the orientation is defined as the angle the long axis of the ellipse makes

with the interface. The authors find that as heterotypic interfacial tension increases the cells

go from random orientation as in the case with no HIT to highly oriented perpendicular to

the axis of tension at high values of interfacial tension, shown in Fig 39C.

They also investigated a similar effect to what was seen in 2D which was the effect

HIT had on the interfacial area along the interface. They observe a similar behavior to

the 2D models, as the magnitude of the interfacial tension increase there is an increasingly

bimodal distribution of small area facets and large area facets (Fig 39D) suggesting a similar

phenomenon to the breaking of fourfold vertices in 2D.

Finally, the authors noticed that cells on the boundary start to resemble one-sided prisms

with flat interfaces at the boundary. In a Voronoi model to achieve this geometry, cells on

one side of the interface would need to align their centers in a plane parallel to the interface.

Additionally, cells across the boundary must align their cell centers to minimize the distance

between their centers in the plane parallel to the interface such that the cell centers become

stacked or registered. This registration effect is defined in a system in which the heterotypic

interface is in the XY plane in the following equation.

R = 1− d

l0
(4.47)
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Figure 39 : A.) Snapshot of 3D Voronoi model with HIT. The rods represent the long axis of cells within

the tissue. B.) The shape of cells on the boundary increase with HIT while cells in the bulk round up. C.)

Cells on the boundary will start to orient themselves perpendicular to the axis of tension. D.) Area facets

of cells on the boundary will become increasingly bimodal as HIT increases. Figures adapted from Ref [15].

where d is the distance between neighbors across the interface in the XY plane and l0 is the

average lattice spacing. If a cell is perfectly registered directly on top of its neighbor the

registration will be unity and if they are perfectly misaligned half a lattice spacing away the

registration will be zero. They find that as the interfacial tension magnitude increases the

height of cells on the same side of the boundary converges and that registration goes from

roughly uniformly distributed to being highly peaked near unity shown in Fig 39(A-B).

In the paper supplement, they investigate this registration effect in the 2D models. They

find that while the registration for the 2D Voronoi model shares similar behavior to the 3D

Voronoi model that the 2D vertex model does not. Instead, the vertex model goes from a

uniform registration to having a registration peak around a value of R ≈ 0.55, shown in

Fig 39(C-D). They hypothesize that the difference is due to extra degrees of freedom in the
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vertex model which allows a relaxation of some of the constraints at the interface. But this

poses the question: are the geometric signatures seen in the 3D Voronoi model robust to the

choice of model?

2D Vertex Model

2D Voronoi Model

2D Vertex Model

C

A B

D

Figure 40 : A.) In a 3D Voronoi model, cell heights of cells on one side of a heterotypic interface start to

align in the same plane as tension increases. B.) Also in the 3D Voronoi model, cells across the interface will

completely register as HIT increases. C.) In the 2D vertex model registration instead peaks at a non-unity

value. D.) Comparing both 2D confluent tissue models shows different registration behavior from the same

initial configuration. Figures adapted from Ref [15].

4.4 Comparing vertex and Voronoi model behaviors in 3D

To investigate the differences between these two models in three dimensions I adapt the 3D

Voronoi model code used in Ref [232] and the open-source 3D vertex model first published

in Ref [227]. First, I investigated the behavior of a 3D vertex model simulation comprised

of two different cell types with heterotypic interfacial tension between them. Just as seen in

3D Voronoi models [15], cells rapidly segregate and become completely demixed, see Fig 41.

The speed and magnitude of this demixing are increased as the magnitude of the interfacial
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tension is increased. Additionally, if the tissue starts in a completely demixed state the

boundaries will remain stable and the tissue will stay demixed suggesting that this state is

energetically preferred.

Random initialization Segregated initialization

C

A

D

B

Figure 41 : A.) Snapshot of the 3D Vertex model in which cells were assigned types randomly and allowed

to demix. B.) Snapshot of the long-time behavior of tissue in which cells were initialized in a similar

configuration. C.) Demixing behavior of the 3D Vertex model increasing HIT (purple, green, black). D.)

Demixing behavior between 3D Vertex and Voronoi models.

Next, cell shapes in the tissue were examined. In the 3D Vertex model, the cells in

the bulk of the tissue decrease their observed cell shape index as the magnitude of the

heterotypic surface tension increases, consistent with the behavior observed in the Voronoi

model. Similarly, cells on the boundary experience increases in cell shape with heterotypic

tension, and the magnitude of the increase is even larger than the Voronoi model at large

values of interfacial tension. This is likely due to the extra degrees of freedom in the vertex

model allowing cells access to a wider range of cell shapes.

The cells along the boundary also exhibit similar registration behavior in both models.
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Figure 42 : A.) Snapshot of the 3D Vertex model with HIT between cells of different types B.) Cells on

the boundary of both models increase cell shape while cells in the bulk round-up with increasing HIT C.)

Cells on one side of the interface begin to align in at the same height as interfacial tension increases. D.)

Registration increases for both models as interfacial tension increases.

In the vertex model, cells on the same side of the interface will start to align their height in

a plane as interfacial tension increases. These cells will also start to register with cells across

the interface with an increasing magnitude as HIT increases. The magnitude of registration

is significantly higher in the Voronoi model than in the vertex model, shown in Fig 42, and

consistent with observations in the 2D models.

However, the orientation cells on the boundary exhibit a surprising difference between

the two models. In the Voronoi model, as the magnitude of interfacial tension increases

the cells become highly oriented perpendicular to the interface. But, in the vertex model,

the cells remain randomly oriented. To quantify this orientation effect over an ensemble we
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define an average orientation metric.

⟨O⟩ = ⟨
(θ − π

2
)2

π2

4

⟩, (4.48)

where θ is the angle the long axis of a cell’s moment of inertia tensor makes with the het-

erotypic interface. This metric is designed such that the alignment of all cells completely

parallel to the interface yields an average orientation of zero and alignment completely per-

pendicular yields a value of unity. The observed range of values is slightly smaller as seen

in the examples shown in Fig 43. Strikingly, this metric displays how sharp the difference

is between the two models, where the average orientation increases steadily for the Voronoi

model as HIT increases there is a negligible change in the orientation of vertex model cells.

4.5 Dynamic differences between models at the boundary

So, what is causing this dramatic geometric difference? For orientation to occur on the

tissue boundary two things must occur; cells must remain on the interface and elongate

perpendicular to the interface. In completely confluent simulations with periodic boundary

conditions, for cells to elongate on the interface they must reduce their surface area with the

interface, and new cells must fill that gap. This means there must initially be a net flow of

cells moving from the bulk to the interface to allow the geometry change. We speculate that

this might happen if cells are kinetically pinned at the boundary. As previously stated, there

is a cusp-like restoring force at heterotypic interfaces [240] which suppresses fluctuations. We

hypothesize that the magnitude of this restoring force is lower in the vertex model, which

reduces pinning on the boundary, allows more frequent rearrangements at the boundary, and

prevents the orientation effect.

To measure these restoring forces, we initialize a completely segregated system of two

different cell types. This system is allowed to relax over 105 time steps with thermal fluc-

tuations and then over an additional 106 steps with no fluctuations to reach an energetic

equilibrium. Then a single cell is selected and perturbed into the boundary with magnitude

ϵ. In the Voronoi model, we define the restoring force as the force on the cell center and in

the vertex model as the average force on each vertex. As in previous work, we expect that

a cusp in the energy will result in a restoring force that scales linearly with the interfacial

tension and is independent of the displacement up to a length scale at which the normal

hookean response starts to dominate. Fig 44A shows precisely this response – a flat, non-

zero plateau over a range of small displacements – demonstrating the both models exhibit
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Figure 43 : A.) Examples of tissues at different values of average orientation. B.) Cells will begin to orient

as interfacial tension increases in the vertex model but not the Voronoi model.
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a discontinuous restoring force. While both models share similar cusp behavior, the magni-

tude of this restoring force increases significantly faster as function of the magnitude of the

interfacial tension in the Voronoi model, as seen in Fig 44B, and whereas the plateau value

in the vertex model is much less sensitive to tension magnitude. This results in an order of

magnitude difference in restoring force for moderate values of interfacial tension.

For a fixed displacement value, the distribution of forces over an ensemble of N = 100

simulations in Fig 44C shows an approximately normal distribution. This suggests that the

variation in average restoring force between the two models is not from outlier behavior in

either model but a systematic difference in boundary behavior. We hypothesize that the

difference in restoring force is due to the extra degrees of freedom in the vertex model that

allow fluctuations at the interface to overcome the energetic barriers that protect fourfold

coordinated vertices at the interface.

To test this hypothesis we construct a simple 9-cell numerical toy model in 2 dimensions.

First, we perturb a single Voronoi cell a displacement ϵ into a heterotypic interface, Fig 44E,

and calculate the resulting force replicating the work done in Ref [14]. Then to capture

the variability in accessible states in the vertex model we look at the same initial 9-cell

configuration but now randomly perturb the vertices on the interface with a magnitude 10−3,

as seen in Fig 44F. Then all the vertices of the center cell are perturbed into the interface at

a displacement value ϵ and the resulting restoring force is recorded. We average the restoring

force over an ensemble of N = 1000 trials. Comparing the two different methods in Fig 44D

reveals a striking similarity to that of the results from the 3D simulations. Both methods

show an increase in restoring force as a function of heterotypic interfacial tension but as in

the 3D models, the magnitude of the increase in plateau value as a function of the tension is

much smaller in the vertex-like configurations. This simple model also demonstrates that for

small HIT values, σ ≈ 0.04, the cusp-like restoring force is almost identical which matches

what we observe in simulations.

4.6 Conclusions and future work

We have investigated the difference in tissue behavior between the 3D vertex model and

the 3D Voronoi model. Both models share significant similarities in demixing behavior and

cell shape on the boundary and the bulk in systems with heterotypic interfacial tension

between tissue types. However, registration of cell centers is significantly less in vertex

models compared to Voronoi models, and cells on the boundary between tissue types will

orient perpendicular to the interface in the 3D Voronoi model but not the vertex model.
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In the Voronoi model, the restoring force for perturbations to cells on the boundary is an

order of magnitude higher than that of the vertex model for moderate values of interfacial

tension. The difference in restoring force arises from the extra degrees of freedom in the

vertex model allowing access to more configurations on the boundary. In practice, this

difference means that in Voronoi models more cells can be pinned at a heterotypic interface,

leading to an orientation effect not seen in vertex models. In other words, cell shapes at

heterotypic boundaries of Voronoi models are a consequence of the representation of the

degrees of freedom and not of the underlying energy functional.

As Voronoi models are significantly less computationally intensive and require fewer pa-

rameters that vertex models, this suggests that researchers should consider the dynamics and

structures they are trying to resolve when choosing how to represent the degrees of freedom

in a model. In simulations where dynamics near cell boundaries are not expected to play an

important role, both Voronoi and vertex models generate similar mechanical and structural

properties. In models that need access to more diverse cell shapes or where researchers are

interested in making predictions about cell dynamics near boundaries, the 3D vertex model

may be preferable.
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Figure 44 : A.) The average cusp-like restoring force for cells, ⟨Fr⟩, being perturbed a distance ϵ into the

heterotypic boundary. The solid green lines are from 3D Voronoi model simulations and the dashed purple

lines are from the 3D vertex model where darker lines are higher HIT (σ = 0.04, 0.08, 0.16, 0.32, 0.64. B.)

The plateau values extracted (A). C.) The distribution of restoring forces over an ensemble of N = 100

systems. In both systems, the forces are normally distributed around a central peak. This data is from

ϵ = 10−4. D.) Numeric simulations of the restoring force generated by perturbing a single Voronoi cell in

9 cell configuration in 2 dimensions (E.) and perturbing the vertices of the center cell after adding random

noise to all vertices on the interface (F.). The green lines are from perturbing the Voronoi cell and the purple

lines are from perturbing the vertex model-like cell with darker lines representing higher HIT.
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Chapter 5

Cell fate and shape transitions in the

stratified epithelium

5.1 Introduction

One of the most important biological tissues that is yet to be fully understood is stratified

epithelium, which is composed of layers of confluent epithelial sheets. These tissues, which

perform multiple functions such serving as a barrier and sensing the environment, can be

found in many different organs including the esophagus, thymus, and skin [16, 241]. Cells

in each of these different layers can express different proteins and have different mechanical

properties. Additionally, there are sharp boundaries between each layer of cell tissue. Cell

division only occurs in the lowest basal layer, comprised of undifferentiated stem cells [16].

Strikingly, in tissue homeostasis, cell divisions in the basal layer are perfectly balanced

by cells delaminating, differentiating, and moving to the layer above. How exactly these

boundaries between layers are formed and maintained, as well as how differentiating cells

cross these boundaries, are questions that are not yet well understood.

5.1.1 Delamination of basal cells

Stratified epithelia typical sit above a basement membrane, which cells adhere to via integrin-

based adhesions. From the deepest layer, closest to the membrane, upwards the layers are

basal, spinous, granular, and cornified layers [16]. While there is interesting physics happen-

ing near the top layers, where cells become extremely rigid and elongated, we focus primarily

on the basal and spinous, or suprabasal, layers. Between these layers, there are many differ-

ences in protein expressions which may be generating the sharp boundary between the layers,
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Figure 45 : Schematic of the bottom two layers of that stratified epithelium. There is a clear distinction

between layers as well as integrin-based focal adhesions from basal cells to the matrix. Adapted from Ref [16].

as shown in the schematic Fig 45. Preliminary results from collaborators in the Nisssen and

Wickström labs show that there is more Keratin14 expression in the basal layer while there

is more Keratin10 expression as well as more E-cadherin expression in the suprabasal layer,

shown in Fig 46. Those same labs have also published a paper demonstrating that changes

in mechanical forces generated by adhesion, cortical tension, and cell division can drive the

motion of cells from the basal layer to the suprabasal in a process called delamination [55].

Interestingly, cells that are committed to delamination show joint expression of Keratin10

and Keratin14, which suggests that the change in expression from Keratin14 to Keratin10

may be directly involved in the delamination process. Additionally, it has been shown that

changes to E-cadherin expression will cause a change in cell shape and that differences in

cell shape can cause small-scale demixing [10]. Altogether this generates a simple hypothe-

sis: the differences in protein expression between the layers cause differences in mechanical

properties such as shape or interfacial tensions that drive the formation of these boundaries,

and disruptions of these differences can cause delamination.
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Figure 46 : Preliminary data from Niessen/Wickström labs. (a) Image of a stratified epithelium in the

mouse embryo at stage E14 with labeled Keratin 10 (K10, cyan, associated with differentiated suprabasal

cells), Keratin 14 (K14, magenta, associated with basal stem cells), and E-cadherin (yellow). Starred cells

correspond to cells that are delaminating and have joint expression of K10 and K14. (b) Magnitude of E-cad

fluorescence intensity (arbitrary units) for cells that are delaminating (K14+K10+), are basal (K14+), or

suprabasal (K10+).

The basement membrane is an extracellular matrix (ECM), which is a network that is

made of cross-linked collagen fibers [242–244]. The mechanical properties of this network

have been shown to cause large differences in the cell tissue that interacts with it. For ex-

ample, the stiffness of the substrate has been shown to have a direct effect on the stiffness

of cells. Cells will become stiffer when on stiffer substrates [35, 130, 131]. Additionally, the

architecture and dynamics of ECM have been shown to play a crucial role in growth, devel-

opment, and cancer progress [245, 246]. There have been successful attempts at modeling

the extracellular matrix as a disordered spring network [247–249].

Delamination may be driven by changes in the adhesion of basal cells to the basement

membrane. Basal cells express integrin α6β4, which adheres to the ECM, whiles suprabasal

cells do not. Basal cells will adhere themselves to the basement membrane through these

integrins which collectively form focal adhesions creating strong adhesion to the matrix [250,

251]. Changes to the integrin expression could drive a decrease in adhesion to the basement

which could be another avenue to trigger delamination.
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However, delamination may also be triggered by changes to cells during cell division.

Some recent work has shown that some cell types have cell cycle-dependent cortical ten-

sion [110]. Additionally, cell cycle-dependent cortical tension fluctuations have been shown

to drive the fluidization of MDCK monolayers in both 2D models and experiments [252]. Lo-

cal fluidization of cell tissue due to fluctuations may drive the delamination of differentiating

cells to the suprabasal layer. In addition, asymmetric cell division could drive delamination

as the two daughter cells may exhibit different mechanical properties [145].

Given the scope of possible mechanisms to trigger delamination of basal cells, we worked

closely with the experimentalists in the Niessen and Wickström labs to investigate which

mechanisms are acting in real systems.

5.1.2 Formation of the hair follicle placode

Another open question that I investigate in the second half of this chapter is the formation

of the hair follicle placode. The experimental results I explain are from our collaborators in

the Wickstrom lab and are described further in our paper, Ref [253]. During development in

the mouse embryo, basal cells will differentiate into placode cells, which will eventually form

a hair follicle. At embryonic day 13.5 (E13.5) these placode cells are indistinguishable from

other basal cells. But during the next embryonic day, E14.5, the placode cells will begin to

elongate and push into the basement membrane. At E15.5, the placode shows even more

elongation along with invagination into the basement membrane. The evolution of the tissue

over embryonic stage is shown in Fig 47.

Figure 47 : The mouse epidermis placode during different embryonic days is stained for actin using phalloidin

staining and for FGF20 which is a marker gene for placode cells. Images courtesy of the Wickstrom Lab.
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The mechanism that drives these morphological changes within the tissue is not yet

known. However, we investigate two different hypothesized mechanisms. First, the placode

cells can change their mechanical properties and interactions with the surrounding tissue. For

example phosphorylated myosin light chain2 (pMLC2), which generates contractile force, is

higher along the suprabasal interface than at the basal surface in both placode and epidermal

cells at E14.5, shown in Fig 48. At the same time, pMLC2 was lower within the placode

than in the surrounding basal tissue. So, the first hypothesis is that placode cells alter their

tension with the surrounding tissue in order to drive elongation and invagination into the

membrane.

A

B C

Figure 48 : a.) Phalloidin and pMLC2-stained sagittal cross sections of mouse epidermis at E14.5. Scale

bars 20 µm. Images representative of 3 mice/group. (b, c) Quantifications of pMLC2 intensity in basal

placode and epidermal cells and the apical/basal pMLC2 intensity ratio (b) in E14.5 epidermis. Note low

pMLC2 within placode and high pMLC2 on apical/suprabasal surfaces (n=12 placodes from 3 mice). Images

representative of 3 mice/group. Scale bars 20 µm.

A second hypothesis is that the placode cells experience extrinsic forces from the sur-

rounding tissue. Through vimentin and phalloidin staining, in Fig 49, it is observed that

there is a dense ring of contractile fibroblasts that form around the placode cells around

E14.5 and becomes more prominent at E15.5. Symmetric contraction around the placode

cells may cause the tissue to condense and then push into the basement membrane.
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Figure 49 : Top view of skin whole mount at the level of the dermis shows a ring of vimentin- and actin-high

fibroblasts (white arrows) around the placode at E14.5 and more prominently at E15.5. Images representative

of 3 mice/group. Scale bars 20 µm.

So, in the second part of this chapter, we investigate these two mechanisms that are

possible drivers for the collective cell fate and shape changes seen in the development of the

hair follicle placode. We examine the cell morphologies and dynamics generated by each

model and compare them to the behavior of real tissue in order to isolate the dominant

mechanism. Then we use the models to make predictions that we validate in real embryos.

5.2 Simulating the stratified epithelium

We create models for the stratified epithelium using an adaptation of the open-source 3D

vertex model from Ref [227] and described in the last chapter. The tissue is composed of

three different cell types. First, there is the basal tissue, which is composed of one layer

of cells to match experimental observations. Above that layer will be multiple layers of

suprabasal cells. Then, below the basal layer will be several layers of basement membrane

“cells”. While the basement membrane is not composed of cells, we capture it within the

vertex model as cell units. However, we require that these be small and have a solid-like

shape to mimic the properties of an elastic membrane. While the exact volume of these
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cells does not matter, we set the volume such that multiple basement “cells” cannot form a

supercell of equal volume to either of the other cell types. Additionally, to better capture

the real behavior of the elastic basement membrane and extracellular matrix, we develop a

spring network on the interface between basal cells and basement membrane “cells”. For

simulations following section 5.3, we add it unless otherwise stated and data shown before

section 5.3 does not include the spring network. The details are described in section 5.3.

In addition, we allow an interfacial tension between basal and suprabasal cells, which

generates a strong boundary between these two cell types. An example configuration from

a simulation is shown in Fig 50.

Suprabasal

Basement membrane

Basal

Figure 50 : Snapshot of the simulated stratified epithelium tissue.

We inform the relative volumes of the cell types by the cell volume from experimental

data. Our experimental collaborator Clémentine Villeneuve provided imaging data from cell

tissue at E15.5. Originally, we tried to directly implement the observed relative volumes and

surface areas into the 3D model. However, the real data takes into account complex shapes

and surface area due to ridges, valleys, and protrusions on the cell. Since we model cells as

smooth polyhedra this is a bad estimate of relative volumes. Instead, we fit an ellipsoid to

each cell using the measurements of their principal axis and then use the average surface and

volume over all cells as an input. We also examined how these average shapes and volumes

would change if instead, we fit with a rectangular prism, as shown in Table 1. Using this

data we can enforce that the basal volume, V0,b, is unity and set the suprabasal volume

as V0,s = 0.88. In addition, we investigate the effect that altering the cell shapes of the
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Cell Type

Experiment Ellipsoid

Shape Normalized Volume Shape Normalized Volume

Basal 5.76 1 5.35 1

Suprabasal 5.77 0.867 5.14 0.88

Table 1 : A table detailing the values of shapes and volumes from experiments performed by Clémentine

Villeneuve and the associated shape and volume of an ellipsoid fit of the principal axis.

surrounding tissue had on the cell shape of basal cells. As the cell shape of the surrounding

tissue increases there is a small increase in the observed shape of the basal cells, as shown

in Fig 51. This is due to the increase in adhesion of both the membrane and suprabasal

cells on these interfaces, which lengthens cell contacts, and thus shape, of basal cells on the

interface.

Figure 51 : Snapshots from simulations and a phase diagram of the average observed shape of basal cells as

the preferred cell shape of the surrounding tissue changes. As the surrounding shapes increase the adhesion

of those tissues increases and slightly elongates the basal cells.

The tissue will have the same energy function as in Eq 4.46 with heterotypic interfacial

tension between each cell type. The dynamics of the tissue is given by the following equation,

where we allow Gaussian fluctuations on vertices to capture active fluctuations in the cell:

dri
dt

= −µ
dE

dri
+ ⟨v0n̂i⟩, (5.49)
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In this equation, ri is the position of vertex i and µ is the inverse of frictional drag.

The last term captures active fluctuations in tension, by allowing each vertex i in cell j to

fluctuate in a random direction given by unit vector nj at every time step as Gaussian white

noise on a unit sphere,
dn̂j

dt
=

√
2Dr(E− n̂jn̂j)ξj, (5.50)

where E is the identity tensor and ξj is the Gaussian white noise with ⟨ξj⟩ = 0 and

⟨ξi⟩(t)⟨ξj⟩(t′) = δijδ(t − t′)E. The magnitude of the fluctuations is controlled by v0. This

change in dynamics has shown no difference in any of the previous results mentioned but is

more physically motivated.

Currently, the magnitudes of the heterotypic interfacial tensions σij along interfaces be-

tween two cell types are free parameters, but we can match this to experiments in the future

by incorporating the relative ratio of localized myosin intensity on each interface. Interest-

ingly, although we showed last chapter that increasing HIT on an interface does not cause

cells to orient, having HIT on both surrounding interfaces will cause basal cells to orient as

well as elongate, as shown in Fig 52. Interface tension between cell types i and j will be

labeled as σij where m stands for membrane, b stands for basal, and s stands for suprabasal.

In addition to cell shape and elongation, the sharpness of the interface can also be tuned with

interfacial tension. As HIT increases on an interface, the total interfacial area along that

surface, or equivalently the surface roughness, will decrease. Then a competition between

HIT and fluctuations, in this case, self-propulsion, will dictate how flat the interface becomes

as shown in Fig 52.

Together this gives a framework for simulation of the multilayered system. With the

parameters we have selected, we can create a system that looks very similar to what is

observed in experiments.

5.3 Modeling extracellular matrix

While modeling the basement membrane as small elastic-like “cells” is a good first approx-

imation, the model can be expanded upon by the addition of a spring-like network on the

interface. The energy of the springs is given by:

Espring =
1

2
km

∑
e

(le − l0)
2, (5.51)
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Figure 52 : Snapshots from simulations and a phase diagram of the average observed shape and orientation

of basal cells as interfacial tension with membrane, σbm, and suprabasal cells, σbs, changes.

where km us the stiffness of the springs, l0 is the rest length, and we sum over all the

individual edges of this interface, le. Although this is a simple addition, it leads to larger

scale changes to tissue behavior.

The springs on the basal cell-membrane interface adds an additional energy cost for the

interfacial area touching the membrane. This phenomenon can be observed clearly when

examining the average total surface between basal cells and the surrounding two cell types.

When setting the HIT on the top and bottom interfaces equal to one another, we would

expect that the surface areas would be roughly equal. But in fact, the top interface costs

less energy, and as a result the suprabasal interface will expand unless the HIT on the top

interface is closer to 1.05 times that of the bottom interface for a given rest length. In

other words, the addition of the spring network creates an effective interfacial tension on the

interface.

To characterize the impact of the spring network on the basal cell-membrane interface,

we attempt to extract an effective interfacial tension in two ways. First, we examine the
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Figure 53 : The interfacial area between two cell types is normalzied by the area of a completely flat interface.

The purple (green, red) line represents v0 = 0.1 (0.2, 0.3)

interfacial area between basal cells and the surrounding tissue as a function of the interfacial

tension ratio between basal cells and suprabasal cells and basal cells and the membrane. We

then estimate when the ratio of apical to basal surface area crosses unity, and extract the

value of interfacial tension that would drive the system to an equilibrium of equal surface

area on both interfaces. An example of one of these fits for l0 = 0 is shown in Fig 54.

Second, we extract all of the edges and vertices on the interface of the basal tissue and

the basement membrane from our simulated systems. Then we perform a simple volume

dilation of the network such that

Li → Li(1 + ϵ), (5.52)

where i is over each dimension and ϵ is the dilation. Then we calculate the total surface area

of the spring network using a standard convex hull algorithm and calculate the energy of the

network given the new locations of the vertices. Together this yields the change in energy of

the spring network as a function of the surface area of the network, the slope of which is an

effective surface tension of the spring network.

Comparing the two different methods, we see good agreement for effective surface tension

generated by the spring network as a function of the rest length, shown in Fig 55. In other

words, for any rest length of the network, l0, we know the effective interfacial tension on that

surface. This allows us to approximate the total surface tension of the basal cell-membrane
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Figure 54 : The interfacial area between the basal cells and the suprabasal cells (apical) and basal cells and

membrane (basal). Due to the additional effective interfacial tension from the ECM, the area ratio is not

unity until the HIT between basal and suprabasal layers is nearly 1.05 larger than the HIT between basal

cells and the membrane.

interface:

σbm → σbm + σk(l0), (5.53)

where σk is the effective surface tension generated by the spring network.

5.4 Basal cell delamination and escape from the basement mem-

brane

Next, we investigate how cells in the basal tissue delaminate, migrate through the sharp

basal-suprabasal boundary, and incorporate into the suprabasal tissue. First, we investigate

the case without the addition of a spring network to approximate the extracellular matrix.

As previously discussed, there is distinct protein expression in each different layer in the

tissue. One hypothesis for the mechanism driving delamination is that changes to protein

expression, such as Keritan10, Keritan14 and downstream adhesion molecule expression,

may alter cell-cell interactions such as heterotypic interfacial tension.

Therefore, we introduce a new cell type: the committed cell. We assume that a cell will

begin to differentiate itself and alter its cell properties – becoming committed to migrating

out of the basal layer. To simulate this, after the tissue is initialized and has time to
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Figure 55 : The effective surface tension as calculated from volumetric dilation (blue) and fitting for the

additional tension needed for apical and basal interfaces have equal area for a given l0 (orange).

relax, one cell in the basal layer is selected and changes type to a committed cell. This cell

experiences an instantaneous change in its interfacial tension with the surrounding cell types.

The interfacial tension between the committed cell and basal cells σcb will increase and the

tension between suprabasal cells and the committed cell σcs will decrease. This change in

tension will drive the cell to migrate out of the basal layer into the suprabasal layer.

To quantify the speed at which this cell delaminates, we analyze the position of the com-

mitted cell and quantify when the cell center crosses the lower edge of the suprabasal tissue.

This time, td is extracted over an ensemble and averaged. While there are many different

choices on how one may alter the HIT with the surrounding tissue and the committed cell

we choose such that σcb+σcs = 1. As the ratio of HIT σcs

σcb
increases, the speed at which cells

leave the basal layer increases, as seen in Fig 56. Once this ratio approaches unity cells stop

leaving the basal layer within 1e6 simulation steps. This suggests that altering interfacial

tension with the surrounding tissue provides a mechanism for escape that could be utilized

in biological tissues.

In addition to altering tension with other cells, committed cells could also change their

adhesion to the basement membrane. It is clear that integrin-based adhesion causes cells to

increase their surface area in contact with the basement membrane. To capture this effect, we

could consider a negative heterotypic tension σbm between basal cell and basement membrane,

which is a positive wetting coefficient. However, in the case of the simulated tissue with no
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Figure 56 : (a-c) Snapshot of a committed cell delaminates from the basal membrane. a) At time t=0 we

instantaneously change the interfacial tensions between the newly committed cell and basal cells σcb (e.g.

green interface in panel b) and between the committed cell and the suprabasal cells σcs (e.g. magenta

interface in panel b). (d) The delamination time increases as a function of σcs

σcb
, i.e. delamination is quicker

when the apical interfacial tension is lower relative to lateral interfacial tensions.

ECM, this wetting coefficient causes interfaces to try and lengthen and become unstable,

which creates extremely jagged interfaces that are far from what are observed in experiments

as seen in Fig 57.

A B

Figure 57 : A) Snapshot of basal cells with positive HIT on both interfaces σbs = σbm = 0.5. B) Snapshot

of basal cells with negative HIT on both interfaces σbs = σbm = −0.1

The addition of the extracellular matrix spring network can regulate the effect of this

adhesion and remove the instability, by creating a large energetic cost for large interfaces. We

find that we can control the sharpness of the interface by tuning the competition between the

spring rest length and a negative wetting coefficient as seen in Fig 58. By making the basal
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cells more adhesive, or σbm more negative, the interfacial area will increase, and decreasing

the rest length will cause the interface to shrink.

Figure 58 : The interfacial area between two cell types is normalzied by the area of a completely flat interface.

The orange (blue, green) line represents σbm = −0.1 (−0.2,−0.3)

Our goal is to investigate how a reduction in wetting may cause the delamination of basal

cells. However, the ECM network, which is necessarily anchored at the vertices of the vertex

model, introduces a pathology to the dynamics. Cells are unable to delaminate even under

very large self-propulsion forces away from the interface, as there is a restoring force from

the springs that increases as the cells move away from the interface, which binds them to

the basement membrane.

In the physical biological system, the cell-cell interfaces are separate degrees of freedom

from the underlying fiber network, and cells delaminate when the integrin bonds that bind the

interface to the substrate are broken. Since the only degrees of freedom in vertex models are

the vertices, it is impossible to place a spring network in the simulation that is independent

of the vertices. Instead, we develop a coarse-grained approximation whether the springs that

connect a basal or committed cell to the basement membrane break after reaching a specified

threshold force.

We investigated several possible algorithmic implementations for these sacrificial springs,

studying implementations where the springs break at a characteristic threshold length or

threshold tension, as shown in Fig 59. This introduces a new parameter into the simulation

that must be adjusted to match what is observed in biological experiments.
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Figure 59 : The velocity perpendicular to the interface is required for committed cells to exit the interface.

The blue points are for a spring threshold length l = 0.3 and the red points are for a perpendicular threshold

length lz = 0.1.

5.4.1 A mesoscopic model for integrin based adhesion and comparison to ex-

perimental results

In tissue, this spring threshold is intended to capture the coarse-grained behavior of a cell-

ECM contact, which ultimately depends on the maximum amount of force that an integrin,

or more likely a focal adhesion composed of a collection of integrins, can sustain before

breaking. The 3D Vertex model is necessarily coarse-grained, as there are a small finite

number of vertices at the cell-ECM interface (< 10), whereas in cells there are often hundreds

of focal adhesions. To better couple our coarse-grained vertex model behavior to physiological

observations, we develop a meso-scale model that more accurately represents the cell-ECM

contact geometry, which can be directly coarse-grained to extract vertex model parameters.

This meso-scale model is created by placing N nodes randomly in a 2D space and then

performing a Voronoi tessellation to create a spring network that represent the ECM. Then

we represent a cell coming into contact with the network by requiring that any node that is

underneath the cell interface (blue) will create another spring attached to a duplicate node

(green) at the same location. This new spring will have rest length l0,i and a spring constant

ki, representing the stiffness of integrin-based adhesions between the cell and the matrix.

Finally, each integrin node will have a maximum force threshold of fi, and nodes on the
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boundaries (red) are pinned, shown in Fig 60. We can increase the number of nodes in the

network (the density of integrin bonds), the size of the cell (the area of contact), and the

strength of the adhesion between the cell and the network.

A B

Figure 60 : A) Snapshot of the microscopic model on the last step before the cell (green) completely leaves

the basement membrane (blue, black). B) 2D Snapshot of the relaxed microscopic spring network with the

contacts with the cell in green.

A B

Figure 61 : A) The total force experienced by all integrins as the cell moves away from the ECM. B) Integrins

tend to break like a zipper with most integrins breaking individually.

Then we explore how the network reacts as the cells (green) pull away from the interface.
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The cell nodes move upward at a constant rate and the system minimizes the energy after

each step. Then if any of the integrin springs exceed their force threshold they will break.

This proceeds until every bond connecting the cell to the matrix is broken. Then we measure

the sum of the forces experienced by all integrins as a function of the distance the cell moves

from the matrix (Fig 61). The distance required to pull before all integrins break and the

force required to start breaking bonds can be tuned by the network parameters as seen

in Fig 62. As the force threshold on each integrin is increased both the maximum force

required for the cell to detach and the maximum distance required to pull the cell increase.

Interestingly, in the mesoscopic model, the bonds tend to break in a zipper-like fashion with

a majority of the bonds breaking one at a time.

A B

Figure 62 : A) The force required to start to trigger the breaking of integrins as a function of the force

threshold on individual integrins. B) The distance required to completely remove the cell from the ECM.

Similar experiments have been performed [17, 254] on cells and fibronectin-coated inter-

faces; fibronectin is a type of proteins that binds to specific integrins. In these experiments,

cells are removed from the interface using an AFM at a constant strain rate such that the

change in cell movement is constant over time. The force on the AFM tip is recorded as

it is withdrawn generating a force vs displacement curve. Then the force required to begin

detachment of the cell, or the force required to begin breaking of integrins or focal adhesions

can be recorded, Fdetch. Additional information can be extracted in the form of total retrac-

tion distance, dpull or the average size of the jumps in the force Wdetch. An example of one

of these strain-controlled pull-off experiments is shown in Fig 63.

Many of these experimental observables can be directly compared to the simulation results
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Figure 63 : (a-d) Schematic of a cell being removed from a matrix using an AFM tip. a) AFM approaches

the cell. b) AFM makes contact and pushes into the the matrix. c) AFM is withdrawn. d) Cell is completely

removed from the interface. On the right is the corresponding force displacement curve from this experiment.

Figure frorm Ref [17].

to constrain mesoscopic model parameters.

The density of integrins and radius of individual cell contacts can be extracted from the

literature and added directly into the model. While there is evidence that the connectivity

in the real extracellular matrix is closer to z = 3.4 [255, 256] we model the network using a

coordination number of z = 3 and will check that this does not affect our results. From AFM

pull-off experiments, the linear slope before any bonds break can be quantified and used to

extract the modulus of the integrin springs, ki. The ECM properties (ECM spring stiffness

and rest length) are constrained by measurements of the stiffness of the extracellular matrix

from AFM indentation experiments.

After matching these mesoscale parameters, we can run simulations of the mesoscopic

model and use the maximum pull distance and maximum force required to detach to fix the

coarse-grained vertex model parameters, as detailed below.

5.4.2 Modeling integrin-based adhesions in the 3D vertex model

We can simulate these same pull-off experiments in the vertex model by looking at a sim-

ple two-layer system with ECM between the layers. In order to better represent integrins

breaking over time instead of having the force threshold be a constant, the threshold force

is linearly coupled to the interfacial area with the basement membrane with a constant γ.

This constant represents the average force required to break a patch of integrins per unit
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A B

Figure 64 : A) Example of the resulting force-displacement curve for pull-off simulations in the 3D Vertex

model. B.) Fitting the linear regime of pull-off simulations reveals that the slope follows a linear relationship

with the coupling constant.

area.

fthresh = γAcm, (5.54)

One cell on the boundary will experience a constant displacement away from the interface.

The resulting force-displacement curves look similar to the linear regimes seen in experiments.

The main difference between experiments and vertex model simulations is that the sacrificial

bonds tend to break all at once at the maximum force as seen in Fig 64. However, the slope

of the linear regime before exiting the membrane is directly related to the spring constant

of integrins from the microscopic model and likely real experiments. This slope follows a

linear relationship with the coupling constant γ. In addition, the coupling constant γ has

a linear relationship with the maximum detachment force and pull distance. So, if there

are more integrins per unit area or they require a larger force to break, γ increases, then

the maximum pull distance and force required for the cell to leave the interface increases,

as shown in Fig 65. This coupling constant can be tuned to match what is observed in

experiments and the mesoscopic model.
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Figure 65 : A) The average distance required for a vertex cell to completely exit the basement membrane as

a function of the coupling constant γ. B) The average maximum force to trigger cell exiting the membrane.

5.4.3 Conclusions and future directions

While this research is still ongoing, we have developed the tools to model the integrin-based

adhesion to the basement membrane and the mechanisms involved in breaking those adhe-

sions. The next step is to investigate how changes to adhesion to the basement membrane,

either through changing the wetting with membrane or by altering the integrin-based adhe-

sions, can affect delamination. One possibility is that committed cells reduce their number

of integrin-based adhesions which lowers the energy barrier to delamination such that fluc-

tuations, be that driven by self-propulsion or division, may drive them to move upwards.

We have also shown one possible mechanism for delamination is for cells to alter their

interfacial tension will cells of the surrounding tissue. This mechanism seems plausible due to

the recorded differences in protein expression within the layers. One direction to investigate

is examining a slow change in tension over time instead of an instantaneous one. Likely,

changes to interfacial tension would not be immediate and the time scale involved may play

a crucial role in the dynamics.

In addition to these mechanisms investigated, there are several other possibilities for

delamination to investigate in the future. During cell division, some cells experience cell

cycle-dependent cortical tension. These fluctuations may drive fluidization of the surround-

ing tissue which can be analyzed by looking at local regions of fluidization by changing cell
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shape. These fluctuations can also be interpreted by changes to self-propulsion or temper-

ature of the system which may drive stochastic exiting of the basal layer. Most intriguing

of all would be the implementation of cell division in the 3D vertex code. The changes in

the density of the tissue will cause changes in the fluidity and dynamics of the surrounding

tissue.

5.5 Modeling the mechanisms for placode development

In order to identify which mechanism is dominant in driving the cell fate and morphology

changes in the placode we investigate two different models. Much of this section is taken from

the paper I wrote with my collaborators, Ref [253]. We build off the three-layer simulations

with ECM between basal cells and the membrane as described in the previous section. In

addition, a small cluster of the basal cells, N ≈ 20, will be defined as a new cell type, placode

cells. These cells have the same shapes, volumes, and interactions with ECM as basal cells

unless stated otherwise.

In both models, we assume that the interfacial tension with the placode and the suprabasal

cells, σps, is greater than that of the placode and the membrane, σpb. This assumption origi-

nates from the experimental observation that the placode always invaginates downwards into

the basement membrane. Since we are investigating changes to relative interfacial energy

costs, we define a slightly altered version of the interfacial tension. To capture the effec-

tive energy cost for interfaces a combination of the additional interfacial tension, from HIT,

and the contributions from tension and adhesion within the cell shape must be considered.

To quantify the relative levels of adhesion and tension at any interface we define a “total

interfacial tension” or wetting coefficient on each interface as:

σ̃ij = σij − 2Kss0 + (δim + δjm)σk, (5.55)

The third term takes into account the extra effective tension generated by the spring network

if the interface is touching the membrane. These terms are adhesion dominated and are

negative for this work. In both of our models, we vary the relative effective wetting on the

basal (membrane) interface to the apical interface of the placode, σ̃pm

σ̃ps
.

In the first model, model 1, we investigate the effect of the placode cells changing their

intrinsic properties. In addition to varying the basal to apical wetting coefficient the lateral

wetting coefficient of the placode is also altered. Since there is no interfacial tension between

placode cells and other placode cells this can be controlled purely through the placode cell
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shape, s0,p.

Next, in model 2, we examine contractile forces such as those generated by the fibroblast

ring around the placode cells. To capture this effect in a minimal way, we impose an inward-

directed, compressive body force on basal cells outside the placode which takes the form:

f⃗rad = fr exp

{
−|r⃗ − r⃗c| − rplac

V
1/e
0

}
r⃗ − r⃗c
|r⃗ − r⃗c|

, (5.56)

where fr is the maximum magnitude of external force on the basal cells just outside the

placode, and where the force falls off exponentially away from the placode’s center, r⃗c , over

a small, characteristic length scale V
1/3
0 . Note that a constant placode shape s0 and tensions

are maintained between the placode cells in this model.

Figure 66 : (a) Schematics of the placode and parameters measured from embryos and simulations. (b)

Schematic of the two models where either the lateral wetting coefficient (σpp; Model 1) or magnitude of

extrinsic forces (fr ); Model 2) were varied in combination with a changing basal to apical wetting coefficient

(
σ̃pm

σ̃ps
). (c, d) Phase diagrams of curvatures induced by interaction of lateral wetting coefficient (c) or extrinsic

lateral forces (d) with varying changing basal to apical wetting coefficient

Then we simulated the tissue over a wide range of parameters. In order to quantify

the changes to tissue morphology we measured cell elongation, basal-to-apical surface ratio

and curvature of the simulated placodes and compared them directly to the quantifications

performed in embryos. The curvature of the simulated tissue is determined in a two-step

process. A paraboloid is first fitted to the basal vertices shared between the placode cells

and those representing the basement membrane. Subsequently, a Gaussian Curvature is
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determined at the deepest point for the fitted surface. In the embryonic tissue whole mounts,

we manually identify points on the interface between the placode cells and the membrane in

2D cross-section views. These points are fitted to a parabola assuming that the associated

parabola is symmetric along the missing axis and generate the associated paraboloid. The

same procedure as with simulation data is then followed to extract curvature. In order to

quantify cell elongation, the depth of the paraboloid is extracted and combined with the

average height of cells in the basal layer.

5.5.1 Extrinsic forces are required to match later morphological changes

Scanning over phase space showed that both wetting coefficients and extrinsic force magni-

tudes had a noticeable impact on the extent of placode cell elongation, basal surface expan-

sion, and placode curvature, seen in Fig 66 and Fig 67. In both models increasing the ratio

of the wetting coefficient of basal to apical showed an increase in curvature, basal-apical

surface area ratio, and elongation. This makes sense as when the wetting coefficient on the

placode-membrane interface increases that interface would be expected to elongate which

should drive increased invagination and curvature. In model 1, there was a similar increase

in the observables as the lateral interfacial tension increased although to a lesser magnitude.

Extrinsic forces in combination with asymmetry in the basal-apical wetting ratio showed a

much larger effect over all observables.

The range of these phase diagrams were extracted and 2D slices of the now 3D observable

phase space are plotted in Fig ref. Notably, direct comparisons with the experimental data

indicated that cell-autonomous differences in the lateral wetting coefficient were sufficient

to recapitulate the morphological transformations observed at E14.5, but were insufficient

to fully explain the subsequent morphological changes at E15.5, as indicated by the degree

of overlap between measurements from the embryo and from the simulations. In contrast,

co-operation of extrinsic forces in combination with a high basal to apical wetting coefficient

recapitulated changes observed at both embryonic stages.

In addition, the simulations also predicted that a net flow was generated from the extrinsic

forces. In Fig 69, we see that the velocity field generated by model 1 shows a high net

flow towards the placode with magnitude dictated by the magnitude of the extrinsic force.

Conversely, there is no net flow towards the placode generated from model 2 and changes

to lateral wetting. Then the divergence of this field was calculated revealing a region of

high negative divergence at the placode. Our collaborators investigated this phenomenon

in the experimental system and found similar results. At E14.5 PIV analysis shows little



107

Figure 67 : (a, b) Phase diagrams of cell elongation or changes in basal to apical surface length induced by

interaction of lateral wetting coefficient (a) or extrinsic lateral forces (b) with varying basal to apical wetting

coefficient.

movement towards the placode but at E15.5 there is a much larger flow inward. Divergence

analysis reveals on average there is little to no divergence at E14.5 but an average negative

divergence at E15.5.

While we look at the case where there is effective wetting between each cell type, we

can also examine the case with just small positive interfacial tension. By lowering the value

of Ks << 1 then the tension will dominate in Eq 5.55 and σ̃ij will become positive. This

yields similar tissue morphology phase diagrams which suggest that the dominant mechanism

causing changes to the tissue is due to the differences in HIT in the “effective wetting
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Figure 68 : Comparison of morphological measurements from E14.5 and E15.5 embryos to simulations shows

that model 2 with lateral cell non-autonomous forces recapitulates in vivo morphological transformations

across both developmental stages whereas model 1 recapitulates cell shape changes at E14.5.

coefficient”. This technique could be used to allow direct input of experimental values into

the interfacial tension. In recent literature, it is suggested that there is a linear relationship

between myosin density on an interface and the tension on that interface [122]. Thus, it may

be possible to use the myosin density directly as the single input triggering the difference in

cell fate and shape in the system.

Collectively, our simulations predicted that cell autonomous changes in surface tension

generated by polarized myosin distribution could be sufficient to generate some degree of cell

elongation and curvature, but were not able to explain the morphological transformation at

E15.5, where cell extrinsic forces might be playing a more important role.

5.5.2 Conclusions and future directions

We have successfully created a model for hair follicle development in the stratified epithelium

using a 3D vertex model. The model investigates two different possible mechanisms to

drive cell fate and shape changes in the mouse embryo. The first model which investigates

changes to the intrinsic properties of the placode cells such as adhesion and interfacial tension

replicates the behavior seen at embryonic stage E14.5 but not E15.5. The second model which

examines extrinsic forces on the placode by a contractile fibroblast ring replicates behavior

at both embryonic stages. In addition, the models predict different behavior of flow towards

the placode. Experiments of the physical system agree with the model predictions and see

net flow towards the center of the placode at E15.5 but not E14.5 suggesting that a mix of



109

mechanisms may be at play in the biological system.

There are still other possible mechanisms at work that could be investigated. For ex-

ample, the softening of the basement membrane in combination with asymmetric myosin

activity may also drive invagination and elongation. This could be explored using the same

model by changing one or a combination of ECM properties such as the rest length, spring

constant, or cell shape of basement “cells”. In addition, there may be forces that act on the

placode cells from the yet unmodeled dermal condensate which lies below the placode in the

real tissue. Finally, the inclusion of cell division may also drive changes in behavior through

active fluctuations or crowding in the growing placode.
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Figure 69 : A) Representative snapshots of whole embryo live imaging of membrane-labeled basal epidermis

(left panels; white circles indicate placodes) that have been subjected to PIV analyses (middle panels) to

extract mean divergence of flow vectors (right panels). Note localized tissue flows in both E14.5 and E15.5

placodes and negative divergence in E15.5 placodes (scale bars 50 µm n= 4 mice/stage). B) Flow velocities

and mean divergence of the flows from simulations with differential lateral wetting coefficient (model 1) or

extrinsic lateral forces (model 2).
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Chapter 6

Discussion and future directions

In this thesis, the main goal was to investigate the effect heterotypic interactions had on

tissue dynamics. My work has made great strides in analyzing the collective behavior in

completely confluent monolayers in both 2D and 3D systems. Still, many open questions are

yet to be answered, and new questions raised as a result of this research.

In chapter 2, we discussed collective chemotaxis in the 2D Voronoi model. We showed

that coupling the biochemical gradient signal to heterotypic interfacial tension or contact

inhibition of locomotion is enough to drive collective chemotaxis. However, many other pos-

sible mechanisms can be investigated with our open-source model such as gradients in tissue

fluidity [7] or gradients in substrate stiffness [135]. Fluidity gradients can be investigated

by coupling biochemical strength to cell shape and stiffness gradients can be investigated by

the addition and coupling of similar extracellular matrix structures as we have implemented

in the 3D system.

Additionally, we developed a completely dynamic biochemical gradient that evolves ac-

cording to the advection-diffusion equation. While we demonstrated that typical chemotaxis

occurs in a regime where advection plays a small role there are systems in which the effective

diffusivity of cells can be reduced by an order of magnitude [209–211]. In such systems, the

advection term plays a critical role and will generate advanced non-steady-state signaling

gradients. Similarly, in systems where cells generate or remove biochemical from the system,

dynamic local sources and sinks can be modeled.

Next in chapter 3, we developed a graph neural network that can make predictions about

tissue fluidity and individual cell edge tensions in a 2D spring vertex model. This work

perfectly sets up the framework to analyze the origin of states of self-stress within the vertex

model. The model can be trained to make predictions on networks that begin floppy and
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have their rest length slowly reduced until becoming rigid. Then by training the network on

the changes of orientation of tension bonds involved in the state of self-stress the GNN may

be able to identify important bonds even within floppy networks.

In chapter 4, we investigated the differences in a system of two cell types with interfacial

tension in a 3D Voronoi and 3D vertex model. We identify that while there are many

similarities between the models there is a quantifiable difference in dynamic behavior at

the boundary due to an order of magnitude difference in restoring force of cells perturbing

from the interface. This difference originates due to the additional degrees of freedom in

the vertex model which allow fluctuations to drive tissue away from a perfectly flat interface

resulting in configurations that experience a lower restoring force from perturbations. Our

work suggests that careful consideration must be taken in the future when considering models

and it is worth investigating other metrics that may exhibit different behavior between these

models.

Finally, in chapter 5 we examined the stratified epithelium and worked with our exper-

imental collaborators in the Niessen and Wickström labs. We developed a model for the

stratified epithelium using a 3D vertex model and demonstrated that a possible mechanism

for the delamination of basal cells is through altering cell interfacial tension with its neigh-

bors. We also developed a microscopic toy model for the integrin-based adhesions between

basal cells and the extracellular matrix that is informed by real tissue and helps restrict

model parameters in the 3D vertex model. Then we developed a model for hair follicle de-

velopment which helped isolate the dominant mechanism for changes to tissue morphology

and made predictions about tissue flow in real systems.

For basal cell delamination, there are still many possible driving mechanisms to be inves-

tigated. While we have developed a model for cell-matrix adhesion we still need to investigate

how changes to adhesion may trigger delamination. This could take the form of decreasing

the stiffness of the ECM or altering the force threshold required to break individual integrins

or focal adhesions. In addition, changes to local fluidity and tension fluctuations during the

cell cycle may be one possible driver for delamination. While likely a large endeavor, ac-

curately modeling cell division in a 3D model would allow researchers to make predictions

about tissue dynamics due to the mechanical forces of the two daughter cells as well as

changes to local density in the tissue.

In the cell placode development in addition to the mechanisms we investigated, there are

other possible drivers for changes to tissue morphology. For example, softening of the base-

ment membrane in addition to asymmetric apical-basal myosin distributions may drive the
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invagination of the placode. Also, cell division within the placode itself during development

will trigger changes to tissue fluidity, cortical tension, and density which will have non-trivial

effects on overall tissue structure.
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[16] Matthias Rübsam, Joshua A. Broussard, Sara A. Wickström, Oxana Nekrasova, Kath-

leen J. Green, and Carien M. Niessen. Adherens junctions and desmosomes coordinate

mechanics and signaling to orchestrate tissue morphogenesis and function: An evolu-

tionary perspective. Cold Spring Harbor Perspectives in Biology, 10(11), 2018. xvi, 83,

84



116

[17] Pierre Henri Puech, Anna Taubenberger, Florian Ulrich, Michael Krieg, Daniel J.

Muller, and Carl Philipp Heisenberg. Measuring cell adhesion forces of primary gas-

trulating cells from zebrafish using atomic force microscopy. Journal of Cell Science,

118(18):4199–4206, 2005. xviii, 100, 101

[18] Ricard Alert and Xavier Trepat. Physical Models of Collective Cell Migration. Annual

Review of Condensed Matter Physics, 11:77–101, 2020. 1, 33

[19] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,

V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. In-

teraction ruling animal collective behavior depends on topological rather than metric

distance: Evidence from a field study. Proceedings of the National Academy of Sciences

of the United States of America, 105(4):1232–1237, 2008. 3

[20] Enkeleida Lushi, Hugo Wioland, and Raymond E. Goldstein. Fluid flows created by

swimming bacteria drive self-organization in confined suspensions. Proceedings of the

National Academy of Sciences of the United States of America, 111(27):9733–9738,

2014.
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