A COMPUTER AIDED APPROACH TO THE NOISE ANALYSIS OF RC AND OPERATIONAL AMPLIFIER NETWORKS

Donald Clarke
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation

Clarke, Donald, "A COMPUTER AIDED APPROACH TO THE NOISE ANALYSIS OF RC AND OPERATIONAL AMPLIFIER NETWORKS" (1980). Master's Theses and Capstones. 1742.
https://scholars.unh.edu/thesis/1742

[^0]
THESES

8NTVERSHIYOE
 NEW HAMPSHIRK

2Y

DONALD CHANME

University of
new Hampshire Librates,

Bix

A COMPUTER AIDED APPROACH TO THE NOISE ANALYSIS OF RC AND OPERATIONAL AMPLIFIER NETWORKS

DONALD CLARKE
B.S., University of New Hampshire, 1974

THESIS

Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of

Master of Science in
Electrical Engineering

December, 1980

This thesis has been examined and approved.

Thesis director, Donald w. Melvin Associate Dean, College of Engineering and Physical Sciences Associate Professor of Electrical and Computer Engineering Mr r la over
John R. LaCourse
Assistant Professor of Electrical and Computer Engineering

Walter T. Miller, III Assistant Professor of Electrical and Computer Engineering

ACKNOWLEDGMENTS

The author is indebted to Dr. D. W. Melvin for guidance throughout the course of this work.

The author also wishes to thank his wife Cynthia for her solid support of the effort.

Financial assistance from Northeast Electronics Corporation, Concord, N.H., is gratefully acknowledged.

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
ABSTRACT viii
CHAPTER PAGE
INTRODUCTION 1
I. BASIC CONCEPTS AND RELATIONSHIPS 2
Noise-Sensitivity Relationship 2
Noise Models 4
Derivation of the Noise Equation 6
The Parameter Extraction Process 10
II. PROGRAM DESCRIPTION 16
Description of NOISE.F4 16
Description of SOLVE.F4 32
III. ANALYSIS OF AN INFINITE GAIN MULTIPLE
FEEDBACK LOW PASS FILTER 33
IV. DISCUSSION AND CONCLUSIONS 39
Conclusions 41
Topics for Future Investigation 42
REFERENCES 43
APPENDIX A OPERATIONAL AMPLIFIER MODEL 45
APPENDIX B NOISE.F4 FLOW DIAGRAM 49
APPENDIX C SOLVE.F4 FLOW DIAGRAM 58

TABLE OF CONTENTS (CONT'D)

PAGE
APPENDIX D NOISE.F4 PROGRAM LISTING. 60
APPENDIX E SOLVE.F4 PROGRAM LISTING. 96

LIST OF TABLES

Table No.
Page No.

1 Program Input Requirements 18
2 Circuit Element Models 35
3 Operational Amplifier Noise 48
Characteristics
4
Operational Amplifier Characteristics
48

LIST OF FIGURES

Figure No.
Page No.

1	Simulation of Resistance Increment	2
2	Using a Small Voltage Source	
3	Operational Amplifier Noise Model	5
4	Op-amp Input Noise Characteristic	5
5	Network Modification	10
6	Program Level Breakdown	17
7	Symbol Location in IAM Pass Filter Network	20
8	Infinite Gain Multiple Feedback LP	21
9	Filter	34
10	LP Filter with Nodes Labeled	34
11	Operational Amplifier Model	46

A COMPUTER AIDED APPROACH TO THE NOISE ANALYSIS OF RC AND OPERATIONAL AMPLIFIER NETWORKS

by

DONALD CLARKE

University of New Hampshire, December , 1980

A noise analysis algorithm and computer program is presented which is based on a relationship between the sensitivity of a network function to variations in the value of an element within the network and the noise associated with that element. The program can handle second order RC-operational amplifier networks and will compute the output noise over the user specified bandwidth. The voltage transfer function of the network is also computed. An infinite gain multiple feedback LP filter is analyzed and the results compared with another method.

INTRODUCTION

The objective of the work presented in this thesis is to provide a means of network noise analysis that can be used without extensive prior knowledge of the subject. The need for a computer aided noise analysis capability became evident while the author was developing low noise active filters for use in telephone line noise test sets. The noise calculations were involved and time consuming.

A literature search revealed many papers dealing with analysis of network noise in operational amplifier networks. However, there were no papers on generalized noise analysis programs.

This paper presents a general noise analysis program written in Fortran that can analyze an arbitrary user specified second order RC-operational amplifier network. The input format is similar to that of well known AC analysis programs such as AC CODED. The program output consists of the network voltage transfer function and the output noise over the user specified bandwidth.

CHAPTER I

BASIC CONCEPTS AND RELATIONSHIPS

Noise-Sensitivity Relationship

The algorithm is based on a noise-sensitivity relationship described in [1] and summarized here. Consider the networks of Figure 1.

(a)

(b)

(c)

Simulation of Resistance Increment Using a Small Voltage Source

Figure 1

Figure $1(a)$ is a network with a noisy resistor in the $i^{\text {th }}$ branch. Figure $l(b)$ is the well known noise model of the resistor: a noiseless resistor in series with a voltage noise generator. Figure $l(c)$ shows the $i^{\text {th }}$ branch with the noise of the resistor characterized as fluctuations of the value of the resistor.

The relationship between e_{n}, the noise generator, and R_{a} is derived as follows. The $V-I$ relation for the $i^{\text {th }}$ branch of Figure $l(b)$ is

$$
\begin{equation*}
V_{a}+\Delta V_{a}=R_{a}\left(I_{a}+\Delta I_{a}\right)+e_{n} \tag{1}
\end{equation*}
$$

and for the $i^{\text {th }}$ branch of Figure $l(c)$ is

$$
\begin{equation*}
\mathrm{V}_{\mathrm{b}}+\Delta \mathrm{V}_{\mathrm{b}}=\left(\mathrm{R}_{\mathrm{b}}+\Delta \mathrm{R}_{\mathrm{b}}\right)\left(I_{\mathrm{b}}+\Delta I_{\mathrm{b}}\right) \tag{2}
\end{equation*}
$$

For equivalence, $V_{a}=V_{b}, I_{a}=I_{b}$, and $R_{a}=R_{b}$. Therefore

$$
\begin{gather*}
V_{a}+\Delta V_{a}=V_{b}+\Delta V_{b}=V+\Delta V \tag{3}\\
I_{a}+\Delta I_{a}=I_{b}+\Delta I_{b}=I+\Delta I \tag{4}\\
R_{a}=R_{b}=R \tag{5}
\end{gather*}
$$

Applying (3)-(5) and equating (1) and (2) yields

$$
\begin{equation*}
e_{n}=I \Delta R+\Delta R \Delta I \tag{6}
\end{equation*}
$$

For very small perturbations, the second order term may be neglected yielding

$$
\begin{align*}
e_{n} & =I \Delta R \quad \text { or } \tag{7}\\
\Delta R & =e_{n} / I \tag{8}
\end{align*}
$$

It has been shown that a voltage generator in series with a noiseless resistive element can be represented by a change in the resistance of that element for small
variations. If the voltage source is assigned the value of the noise associated with the resistor then a noisesensitivity relationship exists from the definition of classical sensitivity. This relationship was derived for resistive network elements because the algorithm models all network noise generators as resistors. The derivation is valid, however, for a generalized impedance element [1].

Noise Models

There are two sources of noise in the type of networks the algorithm can handle; thermal noise of the resistors and the noise inherent in the operational amplifiers. The program uses the power spectral density (PSD) of the noise source in its computation. The PSD is the square of the noise voltage. For resistors, the PSD is simply

$$
\begin{equation*}
s_{n_{i}}=e_{n}^{2}=4 k T R \tag{9}
\end{equation*}
$$

The noise of an operational amplifier is characterized by three equivalent noise generators at the input of a noiseless amplifier as shown in Figure 2.

The PSD of the operational amplifier noise generators typically exhibit the $1 / f$ characteristic shown in Figure 3 and can be fully described by the midband noise value ($e_{n_{a}}{ }^{2}$ or $i_{n_{a}}{ }^{2}$, usually given in $V^{2} / H z$ or $A^{2} / H z$ and the break frequency $f_{b}[6]$.

As stated previously, the only noise sources in the

Operational Amplifier Noise Model
Figure 2

Op-amp Input Noise Characteristic
Figure 3
network are resistors and those due to active elements. Allowable network elements are resistors, capacitors, voltage controlled current sources (VCCS), and operational amplifiers. Capacitors have been shown to be noise free [2]. Any VCCS is included only to model the noiseless portion of an active device and is assumed noiseless. An active device noise generator is modeled as a noisy resistor with a noise PSD as shown in Figure 3.

In summary, the general form of the PSD is

$$
\begin{equation*}
S_{n_{i}}=K_{o}\left(1+f_{b} / f\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{K}_{0} & =4 k T R & f_{b} & =0
\end{aligned} \begin{aligned}
2 & \\
& =e_{n_{a}}
\end{aligned}
$$

Derivation of the Noise Equation

The noise equation is based on the noise-sensitivity relationship discussed earlier and is derived from the network sensitivity in the following manner.

The sensitivity of a network function T to variations of a network element R_{i} is defined as

$$
\begin{equation*}
S_{R_{i}}^{T}=\frac{R_{i}}{T} \cdot \frac{\partial T}{\partial R_{i}} \approx \frac{R_{i}}{T} \cdot \frac{\Delta T}{\Delta R_{i}} \tag{11}
\end{equation*}
$$

for small changes. For $\mathrm{E}_{\text {in }}$ constant

$$
\begin{equation*}
\frac{\Delta T}{T}=\frac{\Delta E_{\text {out }}}{E_{\text {out }}} \quad \text { and } S_{R_{i}}^{T}=S_{R_{i}}^{E} \tag{12}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
S_{R_{i}}^{T}=\frac{R_{i}}{\Delta R_{i}} \cdot \frac{\Delta E_{\text {out }}}{E_{\text {out }}} \tag{13}
\end{equation*}
$$

From (8) and the relation $R_{i}=V_{i} / I_{i}$ for the $i^{\text {th }}$ branch,

$$
\begin{equation*}
S_{R_{i}}^{T}=\frac{V_{i}}{e_{n_{i}}} \cdot \frac{\Delta \text { Bout }}{\text { Ert }} \tag{14}
\end{equation*}
$$

Solving for $E_{\text {out }}$, the desired parameter, yields
$\Delta E_{\text {out }}=S_{R_{i}}^{T} \cdot \frac{E_{\text {out }}}{V_{i}} \cdot e_{n_{i}}$
Since the noise sources for all passive elements are uncorrelated, and most active element noise sources have been shown to be uncorrelated [2], the output noise power due to more than one source can be summed. This requires that (15) be written in terms of PSD's.

$$
\text { Since } E_{\text {out }}^{i} \text {, } V_{i} \text {, and } S_{R_{i}}^{T} \text { are polynomials in }
$$ the complex variable s, we must take the square of the magnitude of (15) to obtain the output power due to the noise generated by the $i^{\text {th }}$ impedance element

$$
\begin{equation*}
S_{n_{0 i}}=\left(\Delta E_{\text {out }_{i}}\right)^{2}=\left\lvert\,\left(\frac{E_{\text {out }_{i}}}{V_{i}}\right) \cdot\left(S_{R_{i}}^{T}\right)^{2} \cdot e_{n_{i}}^{2}\right. \tag{16}
\end{equation*}
$$

$e_{n i}{ }^{2}$ represents the PSD of the noise associated with the $i^{\text {th }}$ impedance element and $S_{n O_{i}}$ represents the PSD of the output noise due to the $i^{\text {th }}$ impedance element.

The total output noise power is $P_{t}=P_{1}+P_{2}+\ldots$ $\ldots+P_{i}+\ldots+P_{n}$ for n noise sources, where P_{i} is the output noise power due to the $i^{\text {th }}$ source. The output noise PSD due to the $i^{\text {th }}$ source is related to the noise power P_{i}
by

$$
\begin{equation*}
P_{i}=\int_{f_{1}}^{f_{2}} S_{n_{0 i}} d f \tag{17}
\end{equation*}
$$

where K_{o} is defined in (10) and $\omega_{b}=2 \pi f_{b}$.
Summing the output power due to all sources gives

$$
\begin{equation*}
P_{t}=\sum_{i=1}^{N}\left[\int_{W_{i}}\left|\frac{E_{\text {out }}}{V_{i}} \cdot S_{R_{i}}^{T}\right|^{2} \cdot K_{o_{i}} \cdot\left(1+W_{b_{i}} / w\right) d w\right] \tag{19}
\end{equation*}
$$ Since $E_{n_{\text {out }}}=\sqrt{P_{t}}$ the noise equation becomes

$E n_{0}=\sqrt{\sum_{i=1}^{N}\left[\int_{w_{i}}^{w_{3}}\left|\frac{E_{o u t}}{V_{i}} \cdot S_{R_{i}}^{T}\right|^{2} \cdot K_{o_{i}} \cdot\left(1+W_{b_{i}} / w\right) d w\right]}$
The technique used to find $E_{\text {out }}(s) / V_{i}(s)$ is straightforward. After the network transfer function $T(s)=E_{\text {out }}(s) / E_{\text {in }}(s)$ has been found, it is necessary to find the transfer function from the input to the voltage across the $i^{\text {th }}$ branch. Dividing $E_{\text {out }}(s) / E_{\text {in }}(s)$ by $V_{i}(s) / E_{i n}(s)$ gives the desired result

$$
\begin{equation*}
\frac{E_{\text {out }}(s) / E \text { in }(s)}{V_{i}(s) / E_{\text {in }}(s)}=\frac{E_{\text {out }}(s)}{V_{i}(s)}=\frac{N(s)}{N^{i}(s)}=\frac{N(s) / D(s)}{N(s) / D(s)} \tag{21}
\end{equation*}
$$

Because the numerator and denominator are polynomials in s with coefficients that are symbol combinations and not ratios of symbol combinations, there is only one form each of them can take. Since the denominator polynomial is the same regardless of where the output is taken, the division
indicated in (21) will give a ratio of two polynomials in s that is uniquely the function $E_{o u t}(s) / V_{i}(s)$. Therefore, it is only necessary to solve for the numerator of $V_{i}(s) / E_{i n}(s)$.

There is still one unknown in the noise equation and that is $S_{R_{i}}^{T(s)}$. If the position of R_{i} in the transfer function is known, then $S_{R_{i}}^{T(s)}$ can be written down by inspection as

$$
\begin{equation*}
S_{R_{i}}^{T}=\sum_{R_{i}} \frac{a_{i j} s^{i}}{N(s)}-\sum_{R_{i}} \frac{b_{k m} s^{k}}{D(s)}=\frac{A I J(s)}{N(s)}-\frac{\operatorname{BKM}(s)}{D(s)} \tag{22}
\end{equation*}
$$

where the transfer function is coded as [3]

$$
\begin{align*}
& T(s)=\underline{\left(a_{n 1}+\ldots+a_{n p}\right) s^{n}+\left(a_{(n-1) 1}+\ldots+a_{(n-1)}\right) q^{n-1}+} \tag{23}\\
& \left(b_{m 1}+\ldots+b_{m r}\right) s^{m}+\left(b_{(m-1) 1}+\ldots+b_{(m-1)}\right) s^{m-1}+
\end{align*}
$$

This implies that if all the R_{i} are coded as to their position in the transfer function, then the sensitivity function for that element can be determined easily by look up methods.

The resultant noise equation written in terms of the polynomial designators of (21) and (22) is

$$
\text { where } s=j w
$$

The Parameter Extraction Process

The solution of the network transfer function begins with the Indefinite Admittance Matrix (IAM). The IAM represents a network whose reference or datum is external to the network. In a real circuit, ground is usually the datum node. However, the network function from one port to another is independent of which node within the network actually is the datum. To form a definite admittance matrix, a node internal to the network is taken as the reference node and its row and column are deleted from the IAM. The determinant of this matrix contains all information necessary to determine the network response provided the IAM represents a network modified as shown in Figure 4 [4].

Network Modification
Figure 4

Because the network function does not depend upon a specific reference node, any node could be chosen as the network datum. Any cofactor of the IAM, therefore, will give the same result. The notation $C(Y)$ can be used to represent any cofactor of the IAM Y.

It has been shown [4] that if Y is the IAM of the modified network of Figure 4, and if the terms of the cofactor of the IAM $[C(Y)]$ are sorted with respect to the symbolic parameters g_{m} and Y_{S} according to

$$
\begin{equation*}
c(\underline{Y})=y_{s} P_{y_{s}}+9_{m} P_{g_{m}}+P_{0} \tag{25}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{E_{\text {out }}}{E_{\text {in }}}=P_{g_{\text {m }}} / P_{y_{s}} \tag{26}
\end{equation*}
$$

If some elements of the original network are left as symbols, then the coefficients of the voltage transfer function may contain these symbols or combinations of these symbols. The cofactor can be written in a form relating to these symbol combinations.

$$
\begin{aligned}
& C(\underline{\sim})=\sum_{i=1}^{M} K_{i} S y_{S_{i}} \underset{\sim}{c}\left(\underset{Y_{S_{i}}}{ }\right)+\sum_{j=1}^{N} K_{j} S_{g_{m_{j}}} c\left(\underset{\sim}{Y_{g_{m_{j}}}}\right)+ \\
& \sum_{k=1}^{P} K_{k} S_{k} C\left(Y_{S_{k}}\right)+C\left(Y_{0}\right) \\
& \text { where } \\
& K_{i}, K_{j} \text {, and } K_{k} \text { hold the sign information which } \\
& \text { resulted from the extraction of } \\
& \text { symbols, }
\end{aligned}
$$

Step 2

Step 3

Step 4 Multiply K_{j} by the value of each symbol contained in $S_{g_{m_{j}}}$ except g_{m}

Combine the results of Step 3 and Step 4 Return to Step 1 and repeat the process until all valid symbol combinations which contain g_{m} have been evaluated Sum the contributions for each power of s to obtain the numerator polynomial $\mathrm{P}_{\mathrm{g}_{\mathrm{m}}}$ $P_{Y_{S}}$ is formed using the same procedure.

In (28) and (29) division by y_{s} and g_{m}, respectively, is indicated. This is achieved during the above process by simply ignoring them during computation.

The extraction of a symbol from the IAM is based on another form for $C(Y)$ discussed by Alderson and Lin [4] and repeated here.

$$
\begin{equation*}
C(Y)=C\left(\left.Y\right|_{\alpha=0}\right)+(-1)^{j+m} \alpha C(Y \infty) \tag{30}
\end{equation*}
$$

where α is a symbol which appears in the IAM represented by y in exactly four elements as follows:

$$
\begin{aligned}
& y_{i k}=\alpha+y_{i k} \mid \alpha=0 \\
& y_{i m}=-\alpha+y_{i m} \mid \alpha=0 \\
& y_{j k}=-\alpha+y_{j k} \mid \alpha=0 \\
& y_{j m}=\alpha+y_{j m} \mid \alpha=0
\end{aligned}
$$

$\mathrm{Y} \mid \alpha=0 \quad$ is an IAM where all symbols have been set to zero, and
$Y_{\alpha} \quad$ is an IAM from which α has been extracted
The actual extraction is accomplished by adding row j to row i, adding column m to column k, then deleting row j and column m.

The relationship in (30) is extended to multiple extractions by its repeated application as illustrated by the following example. Let g_{m} and y_{s} be two symbols contained in the IAM of the modified network of Figure 4. By applying (30) once to extract g_{m} we get $C(Y)=C\left(\left.Y\right|_{g_{m}=0}\right)+(-1)^{J_{1}+m_{1}} g_{m} C\left(Y_{g_{m}}\right)$
Now apply (30) to this result to get

Referring back to (25) we can equate terms to get

$$
\begin{align*}
& P_{0}=c\left(\underset{\sim}{\underline{Y}} \left\lvert\, \begin{array}{l}
g_{m}=0 \\
y_{s}=0
\end{array}\right.\right) \tag{33}\\
& P_{g_{m}}=(-1)^{j_{1}+m_{1}} g_{m} c\left[\left(\underset{\sim}{y} \mid y_{s}=0\right) g_{m}\right] \tag{34}\\
& P_{y_{s}}=(-1) j_{2}+m_{2} y_{s .} c\left[\left(\underline{y} \mid g_{m}=0\right) y_{s}\right] \tag{35}
\end{align*}
$$

$Y_{g_{m} y_{S}}$ does not exist. Since g_{m} and y_{s} appear in the same rows of the IAM, the extraction process results in $y_{S}-y_{S}$ in elements $y_{i_{2} k_{2}}$ and $y_{i_{2} m_{2}}$ meaning y_{S} does not appear in $Y_{g_{m}}$. The combination $g_{m} Y_{s}$ is therefore invalid, and in fact can never be valid for any network.

From (26), (34), and (35)

This example illustrates the special case when there are no symbols in the original network.

CHAPTER II

PROGRAM DESCRIPTION

The description of the program is based on the flow diagrams of Appendix A and B. Each block of the flow diagram is numbered and referenced in the text.

The structure of the program is diagrammed in Figure 5. There are two separate executable programs which make up the overall noise analysis package. These are NOISE.F4 and SOLVE .F4. NOISE.F4 determines the noise equation coefficients for each noise source in the network. It also determines the voltage transfer function of the network. SOLVE.F4 performs the numerical integration of each equation to determine the output noise contributed by each source then sums the result to obtain the total output noise.

NOISE.F4 consists of a main program and twelve subroutines. Figure 5 shows that the program has four levels of subroutines.

SOLVE.F4 consists of a main program and two subroutines.

Description of NOISE.F4

Blocks 1 thru 32 constitute the data entry portion of the program. Here the input data is accepted from a user specified data file and formatted so the program can process the information. The user must provide the following

Program Level Breakdown

Figure 5
information: a) the number of nodes in the network,
b) a description of each element(i.e. R,G),
c) the nodes which the element connects,
d) its value (if applicable),
e) in the case of a controlled source, the nodes of the controlling voltage,
f) the input and output nodes, and
g) the frequencies over which the output noise voltage is to be computed.

Table 1 summarizes the information needed by the program for each type of element and what the program does with it.

Type	Data Required	Program Action
Resistor	Connecting nodes Value	Left in symbol form. Stores location of symbol, its value, and its PSD
Capacitor	Connecting nodes Value	Inserts value into IAM
VCCS	Connecting nodes Controlling nodes Value	Inserts value into IAM
Op-amp	Connecting nodes	Uses operational amplifier model. Inserts non-symbol values into IAM. Stores location of symbols, values, and noise generator PSD's.

Program Input Requirements
Table 1

Block 33 provides a check on the order of the network IAM. If the order of the IAM is less than three, the parameter extraction method cannot be used. If the order is equal to three, then the algorithm can be used but no symbolic parameters can be used except g_{m} and y_{S} which are necessary to solve for the voltage transfer function. If the order of the IAM is greater than three, the algorithm can be used.

Whenever a symbol is extracted from the IAM, a row and column are deleted, reducing the order of the IAM by one. We desire to solve $C(Y)$, but to have a cofactor the order of Y must be greater than one. Since we are looking for the voltage transfer function, each term must contain either g_{m} or $y_{S}($ See (25) and (26)). Both symbols will not appear in the same term. If N is the order of the IAM, then $N-2$ is the maximum number of extractions that can be performed. However, one of these is g_{m} or y_{s}. Therefore only $N-3$ original network symbolic parameters can be processed at any one time.

It is easy to see that if $N=3$ then no original network symbolic parameters can be extracted. But if $N>3$ then the symbolic parameters can be processed $N-3$ at a time. Obviously, if $N<3$ not even g_{m} or y_{S} can be symbols thus defeating the algorithm.

In block 34 the frequencies over which the output noise is to be computed are requested. At this point, the network
has been fully defined and the processing may begin.
Block 35 segments the symbols into groups of $\mathrm{N}-3$. Because of array dimensioning constraints, the maximum number of symbols that can be processed at any one time is three. If $\mathrm{N}-3$ is greater than three, the group size is set at three. Symbols not belonging to the group being processed have their values inserted into the IAM (Block 36).

In block 37, the network is modified as shown in Figure 4. This procedure involves storing the position of the elements in the IAM where g_{m} and y_{S} appear. This is the same procedure indicated in the right-hand column of Table 1 for resistor symbols. The coding of the positions of the symbolic parameters in the IAM will be discussed next. Each of the network elements will appear in the IAM in four places as illustrated by the example for R_{1} and C_{1} in Figure 6.

$$
\left[\begin{array}{ccc}
C_{i} & 0 & -C_{1} \\
0 & 0 & 0 \\
-C_{1} & 0 & C_{i}
\end{array}\right] 5+\left[\begin{array}{ccc}
G_{1} & -G_{1} & 0 \\
-G_{1} & G_{1} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Symbol Location in IAM
Figure 6

The symmetrical location of each element in the IAM is the result of applying Kirchhoff's current law at each node of
the network to obtain the network nodal equations in the form $I=Y V$, where $Y=s C+G$, the $I A M$.

The rows and columns where each element is located in the IAM can be represented by a quintuple (5 element vector)
(i j km p)
where i and j are row indicators, k and m are column indicators, and p is the symbol identifier. Each symbol is coded in this manner [4].

Blocks 38 and 39 involve forming a symbol combination and checking its validity (e.g., whether it is part of the voltage transfer function). This can be done without touching the IAM itself by comparing the elements of the quintuples. The process is described in detail in [4], and is summarized here. It is best illustrated by example. Consider the network

Low Pass Filter Network
Figure 7
where G_{1}, G_{2}, and G_{3} are noise sources and therefore symbols. The IAM associated with this network is

$$
\left[\begin{array}{cccc}
{ }_{5} C_{1}+G_{2} & 0 & -{ }_{s} C_{1}-G_{2} & -G_{4} \tag{38}\\
+G_{4} & & & \\
0 & G_{1} & -G_{1} & 0 \\
& & & \\
-s C_{1}-G_{2} & -G_{1} & G_{1}+G_{2} & -G_{3} \\
-G_{4}+s C_{1} & & & \\
& 0 & -G_{3} & G_{3}+G_{4}
\end{array}\right]
$$

The location of the symbols are coded in quintuplet form as

$$
\begin{align*}
& (2,3,2,3,1)_{\mathrm{G}_{1}} \\
& (1,3,1,3,2)_{\mathrm{G}_{2}} \tag{39}\\
& (3,4,3,4,3) \mathrm{G}_{3}
\end{align*}
$$

For this example, the network will not be modified as the procedure can be established without it.

A symbol combination such as $G_{1} G_{2}$ is invalid if G_{2} does
not appear in the resultant IAM after the symbol G_{1} has been extracted. The procedure to extract a symbol involves adding
 row j and column m. Consider the symbol combination $G_{1} G_{2}$. By extracting G_{1}, the IAM becomes

$$
\left[\begin{array}{ccc}
s C_{1} & & \tag{40}\\
+G_{2}+G_{4} & -s C_{1}-G_{2} & -G_{4} \\
-s C_{1}-G_{2} & G_{2}+G_{3} & \\
+s C_{1} & -G_{3} \\
-G_{4} & -G_{3} & G_{3}+G_{4}
\end{array}\right]
$$

The position of G_{2} in this IAM is

$$
\begin{equation*}
(1,2,1,2,2) \tag{41}
\end{equation*}
$$

Since G_{2} exists in (40), the combination $G_{1} G_{2}$ is valid.
Now consider the symbol combination $G_{1} G_{3}$. After extracting G_{1}, the position of G_{3} in the resulting IAM is

$$
\begin{equation*}
(2,3,2,3,3) \tag{42}
\end{equation*}
$$

This combination is also valid.
The process continues for the combination $G_{1} G_{2} G_{3}$ by extracting G_{2} from (40). The resulting IAM is

$$
\left[\begin{array}{cc}
G_{3}+G_{4} & -G_{3}-G_{4} \tag{43}\\
-G_{3}-G_{4} & G_{3}+G_{4}
\end{array}\right]
$$

The symbol combination $G_{1} G_{2} G_{3}$ is valid since G_{3} exists in (43) after G_{1} and G_{2} have been extracted. The quintuple for G_{3} in (43) is

$$
\begin{equation*}
(1,2,1,2,3) \tag{44}
\end{equation*}
$$

Further insight into the procedure can be gained by utilizing a matrix I to organize the operation. The procedure is as follows. First, insert all quintuples into the first column of $\underset{\sim}{L}$ as shown in (45).

$$
\left[\begin{array}{lllll}
(2 & 3 & 2 & 3 & 1 \tag{45}
\end{array}\right)
$$

When a valid combination is found, the associated quintuple is inserted into the next higher column of L. For the example given, (41) and (42) would be inserted into column two of L as shown in (46).
(44) reveals that G_{3} exists in the resultant IAM after both G_{1} and G_{2} have been extracted. This is indicated by

$$
\left.\left[\begin{array}{llllllllll}
\left(\begin{array}{llllll}
2 & 2 & 3 & 1
\end{array}\right) & \left(\begin{array}{lllll}
1 & 2 & 1 & 2 & 2
\end{array}\right. \tag{46}\\
(1 & 3 & 1 & 3 & 2) & \left(\begin{array}{ll}
2 & 3
\end{array} 2\right. & 3 & 3
\end{array}\right)\right]
$$

inserting (44) into the third column of L as shown in (47)

$$
\left[\begin{array}{lllllllllllllll}
\left(\begin{array}{l}
3 \\
2
\end{array}\right. & 3 & 1
\end{array}\right)\left(\begin{array}{llllll}
1 & 2 & 1 & 2 & 2
\end{array}\right)\left(\begin{array}{lllllll}
1 & 2 & 1 & 2 & 3 \tag{47}
\end{array}\right)
$$

For this example, the process would continue, checking the validity of $G_{1} G_{3}, G_{1}, G_{2}$, and G_{3}.

Block 40 involves the actual extraction of the symbols from the IAM. First, the original IAM must be saved since extraction will destroy the original matrix information. Once this has been done, the adding and deleting of rows and columns can begin. In the example, the information necessary to direct the extraction process is available in (47) for the symbol combination $G_{1} G_{2} G_{3}$. (47) is rewritten here with reference pointers added to clarify the discussion.

$$
\left[\begin{array}{lllll}
(2 & 3 & 2 & 3 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
1 & 2 & 1 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
1 & 2 & 1 & 2 & 3 \tag{48}
\end{array}\right)
$$

If G_{1}, indicated by the reference pointer in column one, is extracted from the IAM, the resulting IAM has symbols G_{2} and G_{3} whose positions are given by

$$
\begin{align*}
& (1,2,1,2,2) \text { and } \tag{49}\\
& (2,3,2,3,3)
\end{align*}
$$

If G_{2}, indicated by the reference pointer in column two, is extracted from the IAM which already has had G_{1} extracted, the resulting IAM has symbol G_{3} in the positions indicated by

$$
\begin{equation*}
(1,2,1,2,3) \tag{50}
\end{equation*}
$$

The three quintuples (49) and (50) contain the row and column information necessary to perform the actual extraction of G_{1}, G_{2}, and G_{3} from the IAM.

Starting in column one, G_{1} is extracted from the original IAM of order four by adding row 3 to row 2, adding column 3 to column 2, then deleting row 3 and column 3. The IAM is now of order three. Then, following the pointer in column two of $\mathrm{L}, \mathrm{G}_{2}$ is extracted from the new IAM by adding
row 2 to row 1, adding column 2 to column 1, then deleting row 2 and column 2. The IAM is now second order. The last extraction is accomplished on the resultant IAM by adding row 2 to row l, adding column 2 to column l, then deleting row 2 and column 2. The final IAM is of order one.

When performing the elementary row and column operation operations, the sign may change. It is important to retain the sign information. The sign term will be $(-1)^{j+m}$ for each extraction.

In block 41, the dimension of the resultant IAM is reduced by one to obtain the matrix whose determinant is the desired cofactor. This matrix, which is of the general form $s C+G$, is then converted using equivalence transformations to the form K(sI - A) to take advantage of one of many [4] fast efficient algorithms to solve for the characteristic equation of the matrix A. The process is discussed in detail in [4] and summarized here.

Starting with an $n \times n$ matrix of the form $s C+G$, perform the following steps:

Step 1

Perform the elementary row and column operations to convert the matrix into the form of (5l). If the rank of C is equal to n, then the form is SI-A and the process is complete.
$P_{1}(s \underset{\sim}{C}+\underset{\sim}{G}) Q_{1}=\left[\begin{array}{cc}I_{i \times i} & 0 \\ 0 & 0\end{array}\right] s+\left[\begin{array}{ll}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right]$

The final result is
$\operatorname{Det}[s C+\underset{\sim}{G}]=\frac{1}{\operatorname{Det}\left[{\underset{\sim}{P}}_{1}^{Q_{1}}\right]} \operatorname{Det}\left[s I+{\underset{\sim}{P}}_{\underset{\sim}{G} \underset{\sim}{Q}}^{Q_{1}}\right]$
If $i=0$, then
$\operatorname{Det}[s C+\underset{\sim}{G}]=\frac{1}{\operatorname{Det}\left[P_{1} Q_{1}\right]} \operatorname{Det}\left[P, G Q_{1}\right]$
is the final result. If $i \neq n$ and $i \neq 0$, then proceed to step 2.

Step 2
Perform the elementary row and column operations to convert (51) into the form of (54).

$$
\mathcal{Z}_{2} \mathbb{N}_{1}[5 \underset{\sim}{C}+G] \mathbb{N}_{1} Q_{2}=
$$

$$
\left[\begin{array}{cc}
I_{i x i} & 0 \tag{54}\\
0 & 0
\end{array}\right] s+\left[\begin{array}{ccc}
G_{11} & 0 & G_{13} \\
0 & I_{j \times j} & 0 \\
G_{31} & 0 & 0
\end{array}\right]
$$

If the rank of G_{22} of (51) is equal to $n-i$, then the form is sI-A and the process is complete.

$$
\begin{equation*}
\operatorname{Det}[s \underset{\sim}{C}+\underset{\sim}{G}]=\frac{1}{\operatorname{Det}\left[P_{2} P_{1}{\underset{1}{1}}_{1} Q_{2}\right]} \operatorname{Det}\left[s \underset{\sim}{I}+{\underset{\sim}{11}}_{G_{1}}\right] \tag{55}
\end{equation*}
$$

is the final result. G_{11} is as depicted in (54). If $i+j \neq n$, then proceed to step 3 .

Step 3
Perform the elementary row and column operations to convert (54) into the form of (56).

$$
P_{3} P_{2} P_{1}\left[{\underset{\sim}{c}}_{s C}^{G}+\underset{\sim}{G}\right]{\underset{-1}{ } Q_{2} Q_{3}=}
$$

$$
\left[\begin{array}{ccccc}
C_{11} & C_{12} & 0 & 0 & 0 \tag{56}\\
C_{2 \times p} & C_{22} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] s+\left[\begin{array}{ccccc}
G_{\alpha 11} & G_{12} & 0 & I_{q \times p} & 0 \\
G_{q \times p} & G_{21} & 0 & 0 & 0 \\
G_{21} & G_{2 x i} & 0 & 0 & I_{j \times j} \\
0 & 0 & 0 \\
I_{p \times p} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & o_{r x u}
\end{array}\right]
$$

where $k=n-(i+j)$. If $p<k$ or $q<k$, then $\operatorname{det}(s C+G)=0$. If $p=q=k$, then the result is given by (57).

where C_{22} and G_{22} are as depicted in (56). If C_{22} in (57) is the identity matrix, then the form is SI-A and the process is complete. If $C_{22} \neq \mathrm{I}$, then we return to step 1 starting with $\mathrm{sC}_{22}+\mathrm{G}_{22}$ of (57) instead of $s C+G$. The process is iterated until the desired form is achieved.

Block 42 represents the algorithm for solving $\operatorname{det}(s I-A)$. An existing program [5] was adapted for this application so that the output vector of the coefficients of the characteristic polynomial would be in the proper form. It is also possible for the matrix obtained in block 41 to take the form G. This will occur if the original network had no capacitors, or if the capacitor values were eliminated by the parameter extraction process. For this case, it is impossible to convert the form of the matrix to sI-A so a separate subroutine called NOCAP is used to solve $\operatorname{det}(G)$.

Blocks 43 thru 45 code the transfer function as described on page 9. When all $\mathrm{N}-3$ symbols in the group being processed have been processed, the transfer function is complete.

In block 46, a symbol in the group of $N-3$ is selected to begin the process of determining its contribution to the
output noise. Block 47 selects the nodes of the chosen symbol as the new network output port and modifies the network with g_{m} and y_{s} accordingly. This follows the same procedure as block 37.

Blocks 48 thru 55 are similar to blocks 38 thru 45 except that only the numerator polynomial of the transfer function is computed since, according to (21), the denominator polynomial is not required to form the noise equation. Care must be taken not to destroy the coding of the positions of the symbols in the original transfer function.

In block 56, the sensitivity function for the symbol being processed is formed from the coded original transfer function according to (22) and (23).

In block 57, the coefficients of the noise equation are computed from the polynomials $N(s)=\operatorname{PGMOUT}(i), D(s)=$ $\operatorname{PYSOUT}(i), N^{\prime}(s)=\operatorname{PGMJ}(i), A I J(s)=A I J(i)$, and $B K M(s)=$ BKM(i) according to (24).

In block 58 thru 60 the noise equation coefficients, the PSD information for the source being processed, and the frequency limits over which the noise is to be computed are written on a user specified data file. The program then sequences through the remaining symbols in the group. When all the symbols of a group have been processed, another group is selected and the process from block 36 thru 60 is repeated; continuing until all symbols
have been processed.
Finally, in block 61, the transfer function is printed along with a message instructing the user to execute SOLVE. Included in this message is the name of the data file which contains the noise equation information.

Description of SOLVE.F4

Block 1 constitutes the data entry portion of the program. Here the noise equation coefficients, the noise source $P S D$, and the frequency range of integration are read from the user specified data file.

Blocks 2 thru 6 perform the actual integration of the noise equation. The integration routine uses the trapezoidal rule method of numerical integration with correction terms generated using Romberg's Method. It was adapted from DQATR which is part of the IBM Scientific Subroutine Package.

Blocks 7 and 8 keep a running sum of the output noise power as each source is evaluated.

When all sources (symbols) have been evaluated, block 9 takes the square root of the noise power to obtain the output noise voltage.

The output noise voltage is printed in block 10.

CHAPTER III

ANALYSIS OF AN INFINITE GAIN
 MULTIPLE FEEDBACK LOW PASS FILTER

An infinite gain multiple feedback low pass filter will be analyzed to illustrate the procedure. The circuit is shown in Figure 8 . This is the same circuit discussed by Treleaven et al [6]. The results of the two methods will be compared and discussed in the next chapter.

Step 1
Label the nodes of the network with ground as node
1 as shown in Figure 9.
Step 2
Create a data file with the network elements entered in the format of Table 2 . The discussion assumes the reader has knowledge of Fortran and the DEC-system 10 and has already performed the login procedure. With the system in Monitor mode(indicated by a "."), type the following. (User entries are underscored)

- CREATE EX.DAT
*00100 $\underline{6}$
00200 R
00300 2,3
$00400 \quad 1125$.
00500 C

Infinite Gain Multiple Feedback LP Filter Figure 8

LP Filter with Nodes Labeled
Figure 9

Resistor

Capacitor

Operational
Amplifier

Entered in data file using three separate lines.

Type
Nodes (From,To): $\left(\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}\right)$ or $\left(N_{Y}, N_{x}\right)$
Value
Entered in data file using three lines.
Type
Nodes (From,To) : $\left(\mathrm{N}_{\mathrm{X}}, \mathrm{N}_{\mathrm{y}}\right)$ or $\left(N_{Y}, N_{X}\right)$
Value
Entered in data file using two lines.
Type
Nodes(-in, + in,out):

$$
\left(\mathrm{N}^{-}, \mathrm{N}^{+}, \mathrm{N}^{\mathrm{O}}\right)
$$

Entered in data file using four lines.
Type
Controlled nodes
(From,To): $\left(N_{x}, N_{y}\right)$
Controlling nodes
(From,To) : $\left(N_{z}, N_{t}\right)$

Value

Circuit Element Models
Table 2

```
00600 l,3
00700 2.2D-6
00800 R
00900 3,6
01000 11250.
01100 R
01200 3,4
01300 1020.
01400 C
01500 4,6
01600 .lD-6
01700 R
01800 1,5
01900 2040.
02000 OA
02100 4,5,6
02200
    02300 l,2
    02400 l,6
    02500 1.
    02600 10000.
    02700 $
*B
```

 EXIT
 When entering the network data, the user must type a TAB or CTRL I for each line entry in the file. This will position the data in column 7. Also, the $\$$ indicates the user has typed ESC. Each line is terminated by RETURN. The asterisk indicates the system is in the editor mode. Exiting the editor via the B command deletes the line numbers from the file. Step 3

Execute the noise analysis program by typing the following.
.EX NOISE
LINK: Loading
(LNKXCT NOISE Execution)
INPUT FILENAME = CKT1.DAT
OUTPUT FILENAME = $\underline{\text { SYNDI }}$
VOLTAGE TRANSFER FUNCTION

	S^{4}	S^{3}	S^{2}	S	
NUMERATOR $=$$0.00 D+0$ $0.00 D+0$ $0.00 D+0$ $0.14 D-3$	$-0.40 \mathrm{D}+7$				
DENOMINATOR $=0.00 D+0$	$0.00 \mathrm{D}+0$	$0.10 \mathrm{D}+1$	$0.89 \mathrm{D}+3$	$0.40 \mathrm{D}+6$	

$+++E X E C U T E$ PROGRAM CALLED SOLVE AND USE SYNDI AS THE FILENAME+++

STOP
END OF EXECUTION
CPU TIME: 1.89 ELAPSED TIME: 51.68
EXIT
.EX SOLVE
LINK: Loading
(LNKXCT SOLVE Execution)
INPUT FILENAME = SYNDI
THE OUTPUT NOISE = $0.856 \mathrm{D}-05$
VOLTS
STOP
END OF EXECUTION
CPU TIME: 14.38 ELAPSED TIME: 22.92
EXIT

DISCUSSION \& CONCLUSIONS

The transfer function printed in Chapter III for the Infinite Gain Multiple Feedback Low Pass Filter is the correct one for the network analyzed. However, it is not the ideal transfer function

$$
T(s)=\frac{k_{0}}{s^{2}+k_{1} s+k_{2}}
$$

that might be expected. Due to the finite gain, finite input resistance, and non-zero output resistance of the op-amp model used, extra terms appear in the transfer function. The algorithm requires that the op-amp have a finite gain though it may be very high. It also requires that the model have a finite output resistance. These parameters are simulated using voltage controlled current sources and resistors since they both are of the form $s C+G$. If the gain or output resistor were not connected across the appropriate current source, the current would have no path to follow and the model would break down. Comparison of the results of this work with that of Treleaven et al [6] shows a disagreement of less than 3% in the value of the output noise. The effects of the non-ideal op-amp model appear to be minimal.

One of the problems with computer-aided circuit analysis is keeping the numbers within the range that can
be represented by the hardware. Frequency scaling and transfer function normalization are employed by the program to help minimize the effects of this type of machine limitation.

When capacitors are read from the input data file, their values are multiplied by 1×10^{9} before they are inserted into the IAM. After the transfer function has been formed, it is normalized so the coefficient of the highest power of s in the denominator is 1.0 . Then the transfer function is unscaled by multiplying each term s^{k} by ($\left.10^{-9}\right)^{k}$. Subsequent to unscaling, the transfer function is again normalized so the coefficient of the highest power of s in the denominator is 1.0 . This unscaled and twice normalized transfer function is the one printed by the program.

The numerator and denominator of the noise equation are each of the form

$$
\begin{align*}
& k_{0}+k_{1} \omega+k_{2} \omega^{2}+k_{3} \omega^{3}+ k_{4} \omega^{4}+k_{5} \omega^{5}+ \\
& k_{6} \omega^{6}+k_{7} \omega^{7}+k_{8} \omega^{8} \tag{58}
\end{align*}
$$

which can be written

$$
\begin{array}{r}
k_{0}+k_{1} w+\left(k_{2}^{1 / 2} w\right)^{2}+\left(k_{3}^{1 / 3} w\right)^{3}+\left(k_{4}^{1 / 4} w\right)^{4}+\left(k_{5}^{1 / 5} w\right)^{5}+ \\
\left(k_{6}^{1 / 6} w\right)^{6}+\left(k_{7}^{1 / 7} w\right)^{7}+\left(k_{8}^{1 / 8} w\right)^{8} \tag{59}
\end{array}
$$

It is necessary to implement the noise equation in the form of (59) to avoid exponent overflows when ω^{k} is evaluated. Multiplying ω by the $k^{\text {th }}$ root of the coefficient then raising the product to the $\mathrm{k}^{\text {th }}$ power relieves the problem to a sufficient extent.

The warning "EXPONENT UNDERFLOW" is printed during program execution when larger networks are analyzed. This means that the result of a multiplication or a division had a negative exponent whose magnitude was greater than that which can be represented by the machine. This occurred for the example of Chapter III. The accuracy of that analysis implies that the effect of the underflows is minimal.

Conclusions

The output noise voltage of $8.56 \mu \mathrm{~V}$ obtained in Chapter III is within 3% of the $8.32 \mu \mathrm{~V}$ value obtained by Treleaven et al [6]. The error can be accounted for by the slight difference in the model used for the operational amplifier current noise generators. The model used in this work is

$$
\begin{equation*}
K\left(1+f_{b} / f\right) \tag{60}
\end{equation*}
$$

while [6] uses

$$
\begin{equation*}
K\left(f_{b} / f\right) \tag{61}
\end{equation*}
$$

There will be a larger contribution to the output noise due to the current noise generators when the model of (60) is used.

The excellent agreement between the results of the two methods supports the validity of the algorithm implemented in this work.

Topics for Future Investigation

The program presented in this work is limited to second order networks containing resistors, capacitors, and operational amplifiers. The algorithm has been proven valid and could be expanded to include other network elements such as inductors and transistors. Any element can be handled by the program if it is modeled in the form sC+G.

The implementation uses symbolic functions and evaluates them using a numerical integration technique. This was found to be extremely slow taking several minutes for moderate size networks. Alternative approaches which avoid the use of numerical integration might be more desirable from a cost/time standpoint and should be investigated. To be useful, however, it must be able to handle an arbitrary user defined network.

REFERENCES

(1) A. G. J. Holt and M. R. Lee," A Relationship Between Sensitivity and Noise," International Journal of Electronics, pp. 591-594, 1969
(2) D. H. Treleaven," Electrical Noise in Inductorless Filters," PhD Thesis, University of Calgary, Calgary, Alberta, Canada, pp. 125-132, 1972
(3) C. F. Yokomoto," A Simple Bookkeeping Scheme for Computing Sensitivities of Symbolic Transfer Functions," IEEE Trans. Circuits and Systems, Vol. CAS-21, pp. 606-608, Sept. 1974
(4) G. E. Alderson and P. M. Lin," Computer Generation of Symbolic Network Functions - A New Theory and Implementation," IEEE Trans. Circuit Theory, Vol. CT-20, pp. 48-56, Jan. 1973
(5) D. E. McLaughlin," A Computer Oriented Course in Linear Algebra," Augustana College, 1971
(6) F. N. Trofimenkoff, D. H. Treleaven, and L. T. Bruton, " Noise Performance of RC-Active Quadratic Filter Sections," IEEE Trans. Circuit Theory, Vol. СT-20, pp. 524-532, Sept. 1973

APPENDIXES

APPENDIX A

OPERATIONAL AMPLIFIER MODEL

The model used for all operational amplifiers is shown in Figure 10 on page 46 . The resistors $R e_{n_{a}},{R i_{n}}{ }^{-}$, and $R i_{n_{a}}{ }^{+}$ represent the input equivalent noise generated by the op-amp. The values for $R i_{n_{a}}^{-}$and $R i_{n_{a}}{ }^{+}$, the current noise sources, were chosen to be ten times larger than the largest expected network resistance. The PSD assigned to these resistors is the $P S D$ of the op-amp equivalent input current noise generators and is not in any way related to the resistor value. The value for $R e_{n_{a}}$ was chosen to be ten times smaller than the smallest expected network resistance. The PSD assigned to this resistor is the PSD of the op-amp equivalent input voltage noise generator and is not related to the resistor value.

The noise generator PSD's are of the form $K\left(I+\omega_{b} / \omega\right)$ where

$$
\begin{array}{rlrl}
\mathrm{K}= & 7 \times 10^{-17} \mathrm{v}^{2} / \text { radian } & & \text { voltage noise generator } \\
& 2.39 \times 10^{-9} \mathrm{v}^{2} / \text { radian } & \text { current noise generator }
\end{array}
$$

and $\quad \omega_{b}=785.4$ radians $/$ second
These values are derived from typical values for $e_{n_{a}}{ }^{2}, i_{n}{ }_{a}{ }^{2}$, and f_{b} given in $[6]$ as follows. The three source equivalent input noise model of an operational amplifier is shown in Figure 11. The algorithm cannot handle an ideal

Operational Amplifier Noise Model Figure 11
voltage source such as $e_{n_{a}}$, so it must be modeled as a noiseless resistor R in series with a voltage source e_{n}. The value of R should be kept as small as possible. A 10 ohm resistor is used in the program.

Ideal current sources such as $i_{n_{a}}^{-}$and $i_{n}+$ pose a similar problem. They also are not compatible with the algorithm so they are modeled as a noiseless resistor R in parallel with a current source i_{n}. The value of R should be kept as large as possible. A loom ohm resistor is used in the program. The algorithm, however, cannot handle current noise sources so they must be converted to equivalent voltage noise sources. This is accomplished by multiplying $i_{n_{a}}$ by R to get $e_{n_{i}}$.

The typical values of $e_{n_{a}}^{2}, i_{n_{a}}{ }^{2}, i_{n_{a}}^{+2}$, and f_{b} for the

741 op-amp are given in Table $3[6]$.

$$
\begin{array}{ll}
e_{n_{a}}^{2} & 4.4 \times 10^{-16} \mathrm{~V}^{2} / \mathrm{Hz} \\
i_{n_{a}}^{2}=i_{n_{a}}^{-2}=i_{n_{a}}^{+^{2}} & 1.5 \times 10^{-24} \mathrm{~A}^{2} / \mathrm{Hz} \\
f_{b} & 125 \mathrm{~Hz}
\end{array}
$$

Operational Amplifier Noise Characteristics Table 3

Since the program uses ω instead of f as the frequency variable, e_{n}^{2} and $i_{n_{a}}^{2}$ must be divided by 2π and f_{b} multiplied by 2π to give the correct result.

Applying the appropriate factors above to $e_{n_{a}}^{2}, i_{n_{a}}^{2}$, and f_{b} yields the values for K and ω_{b} appearing on page 45 .

The remaining elements of the operational amplifier model of Figure 10 are used to simulate a finite input resistance (R_{in}), a finite frequency invariant gain $\left(\mathrm{R}_{\mathrm{g}}\right)$, and a finite output resistance $\left(R_{0}\right)$. The values chosen for these resistors reflect a typical 741. The parameters are summarized in Table 4.

Input resistance	1 M ohm
Gain	$160,000 \mathrm{~V} / \mathrm{V}$
Output resistance	50 ohms

Operational Amplifier Characteristics
Table 4

APPENDIX B
 NOISE.F4 FLOW DIAGRAM

Blocks 11 thrul3 deleted

E

SOLVE.F4 FLOW DIAGRAM

NOISE.F4 PROGRAM LISTING
EXTEFNNL NEON
TOUBIF FFECTSTOM TMAME

1FROFSF(A0)
2FOFSB2(40)

(o) F (1)

FFAL UNSCNL, FNOFM1, FNOFM
IIMEMGTON NOHE (3), TN(2) y L (20, 20,5$)$ M MA (40, 18),
IME (40, 18) : MA2 (40.19), ME2 (40,19)
TYFE:

ACCFFFT ? प GNAME:
FOFMAT (AIO)
*'OUTFUT FILENAME: :=' ${ }^{\prime}$ () OF T. IE E TYFFE 3
FCMEMAT ACCET FOFNAT (AN)
FLAT $(J)=0$.
$X O(T)=0$.
חin $5, \quad 1=1,20$
$F(T, J)=0$.
$008 \quad \mathrm{I}=1,40$
VAL (I) $=0$.
10805
$\operatorname{OS}(T, J)=0$
COMTME:
10 9 J.1.
NOME TNUE:
GBOL. $=0$
OFEN(UNTT=1,FTLE=ENAME:)
KEAO (1,20) N
FGRMAT (1T)
REAIT(1,50) TYFE
Fonmat (a?)
TF(TYFE, EQ.' ') 00 TO 700
IF (TYFE, Ea, GM') 60 TO 600
(04') 60 TO 160
स2
I NOLE (2)
Nont (2)
(EALi(1.90)
fokmiti (ff)
TF ©TYFE EEQ. 'C'SGO TO 150
TF(TYFE,EG.'R') BO TO 110
TYFE 100
FGRMAT (', '*****INFUT ERROR -ILLEGAL COMFONENT*****')
$\stackrel{5}{6}$
POS (SEOL - 1) =NORE (1)
FUS(SEOL , 2) =NONE (2)
FOS(SEOL, 3) =NOME (1)
FOS(SEOL: 3) wolle (2)
FOS (SHOL, 5 ; $=5 \mathrm{EKOL}$
VAL. (SBOL) - VAL.UE
XO (SBOL $)=0$.
200
3
3
$\begin{array}{ll}8 & 2 \\ -4 \\ -1\end{array}$
FIAT(SEOL) = UAL.UE*2. $635050588 E-21$
B0 TO 30
F(MODE (1) , NOLE (1)) :FF (NODE (1) MONE (1)) +VALUE:
 F (NODE (2), NOLE (1)) =F (NOHE (2), NOLE (1)) - VAL UE F(NOLE (2), NONE (2)) FF (NODE (2) nODE (2)) WALLUE $30 \quad 10 \quad 30$
FEAL (1,180) NODE (1), NOME (2), NODE (3) FORMAT(SI)
$\mathrm{N}=\mathrm{N}+2$
SEOL-ESBOL +1

是
160
180
FOS(EEOL. 1) =NORE (1)
FOS (SNOL, 2) $-N-1$
FOS (SBOL - 3) Nome
FOE(SBOL, 4) $=\mathrm{N}-1$
FOS(SEOL , 5 5) = SBOL

X0:SEOL ,-785. 4
UAL (SEOL $)=10$.
TF (NONE (1). EQ. 1)GO TO 290

$\operatorname{FOS}(\operatorname{sent}-2)=1$.

FLAT(GEOL) =2. $39 E-9$
x (SBOI) $=780.4$
IF (NONE (2) FO. 1) 00 r0 300
GROL EEOLTI
FuS(SEML .
FOc (5BOL 3) $=1$
FOS(SBOL 4) : NONE (2) FOS (SEOL 5) $=$ SEOL
FI AT(SBOL) $=2 \cdot 39 E--9$
x0(se0t.) $=785.4$
Val. (SEOLC) $=1$, E+8
G1. 1.
$60 \ldots .02$
$06=5.25 \mathrm{E}-6$
$0.3=1 \mathrm{E}-6$
$G(1, \operatorname{NOLE}(2))=G(1, \operatorname{NOHE}(2))+G 1$ $G(1, N-1)=G(1,1-1)-G 1$

G(1. 1$)=0(1.1)+60$
$G(1, N)=G(1, N)-G G$
$\left.G(i)^{1}\right)=G(N, 1)-60$
$\mathrm{G}(\mathrm{N}, N)=\mathrm{B}(\mathrm{N}, \mathrm{N})+\mathrm{OG}$
$0(1,1): 0(1,1)+60$
 $G($ GHINE $(3), 1)=G(N O H E(3), 1)-60$
 $G(1,1)=G(1,1)-62$
G(NOUE (3), 1) $=$ G(NODE(3)ッ1)+G2

 $G(N-1, N-1)=G(N-1, N-1)+G 3$
 Fukitat (2T)
FLTWT NODE (1)
FOWJ NODE(2)
REAL（1， 640 ）NODE（1），NODE（2）
FORMAT（2I）
FEALi（1，660）
FORvit（1F：

$G($ ROW． 5 NOOE（2）$=G($ ROW．$)$ NORE（2）$)+$ WALUE （3i） 7030
FEGA（1，720）IN（1），IN（2）
Fonciat（2L）
FEAD（1， 7 a）
FORMAT（21）
に以（2）
liv（2）＝－Tiv（1）
IF（OUT（2）．GT．OUT（1））GO TO 74E
I＝our（2）
OUT（2）$=\mathrm{=OLT}(1)$
OUT（1）
FETH（1．7Eの）XLLM
FEAT（1．758）XULTM
FORinat（1F）
CLOSE（UNTT $=1$ ，FILE＝INNAME）
GFEM（UNTT 1，FTLE WFTLE） NOTCE＝0．
IF（ \downarrow ，GT， 3 ）J $=3$

$T I=0$

770

[10 78 - 1 y
1901
16M1:Ty J) FF(Iy.J)
CONTTNUE
HF(ULOL EEQ O) OGO TO 790
100 780 MUM: 1 , 14.0 L

$1+1 /$ UAL (FOS (NUMy 5)

$1+1$ (VAL (FOS (NUNOS))
COVTIMUE:
Nuivi - UE GI. +1
TF(IT.EQ. TMAX)GOTO 810
Mliv2 $=1$ LOU- 1

$1+1$ NBL (FOC (NUMy 5))

1-1/VAL (FOS (rumy 5:)

L0 ©

CCur InduE:
(ii) ESO J. 1 y N(ixi
ПП 330 Noly
 Coid lodue

((NDMt $1,1,4$) $=0$ OUT (1)

L(NWit? 1.4) $=\mathrm{IN}(2)$

$0108401-1,40$
M0 $840 \mathrm{~J}=1 \times 18$
(nis (I, , J) $=0$

COM I IMUE COFFFA, I!: O.
COEFFE:
FRuFBa(I)…
FROF SL(I): - - -
いURTINE
(i) $8<0$ T-1,
FGmoursiz…
Fi FOUT (\&): 0 。
(10) $6.5 \mathrm{I} \cdots 1$ y $\%$
10865.11420

8
8
$\frac{2}{3}$
3

3

COTT LNUE
FTRB： 0

NOMKA＝FRFA

00 ： $370 \mathrm{~T}=1$ y F TRA

COMT TivuE
lio $880 \mathrm{~T}=1$ yFTRE

 CONTアNば：
10）8S1 $1=1,5$
TF COABS $1=1,50$

$1 \mathrm{~T} \cdot \mathrm{I}$

（\％0） 10884
Frotimi 1．010

170 $386 \quad 1=20.5$

F＇SOUTiT）FYSOUT（I ，＊UNGCAL

COWT TVLE：
$100880 \quad 1=1.5$
3
8\％
3
$\overrightarrow{3}$
3883
384
36
3
 CO甘T TNUE：
I $\div 1 \cdots 1$

Gu TO 87
FNOTM2 1．No
FYsOUT（I）FFr马OUT（T）＊FNOKMる

COMTIDUE
LF（ULUL v 裉，D）GO TO 904
10 6000 I： 1.9
TFiN（T）FFBiOUT（ 6 ．．．． ）

COATLINE：
TifE 0002
TYF゙：896
FOFMAT ${ }^{\prime}$ TVFE B97
Fuknmi
COivTMUE


```
    0] 90) [:=1%%
    F゙urm|1j%%.
    Al.J{l)=0.
```


COMTMNE
(10) }908\mathrm{ I - 1,40
COEFHの(I)=0.
COEFB*(T)=0.

```


    COkTTMOS
    M0 910 I=1,40
    M0 910 J=1. 10
    Maz(I, 1)=0
    昰答(1, 1) - - 0
    CONTIMUE:
    100 920 I=1,20
    [10 920 .=1. y20
    FF(I,J)=TAMI(I,y,J)
    GFily.J):=1GMO(Iy,J)
    COMTINUE:
    C=1
```

FTFA＝ㅇ

IF（FOF BA2（I）－LT O）GO TO 930 CDivTlive：
iii） 740 ．
IF（mitil．I．

CONTIMUE
DIO $950 \mathrm{~L}=1$ ，NFTFE

あi） 0950

CONTTNUE

COWTIMいE
1107571025
けFWFS： $1 .-1$
UNSCAL＝（1．M… $\%$ ）＊WNFWFS

CONTIRUE
no $958 \mathrm{I}=1$ y 5
FロッJ（T）FGM，（I）＊FNOKMの

COMTSAE
TYFE 2000，（AIJ（I），$I=1, ~(G)$

-3
3
957
458
TVFE OOU1，（EFT（

TYFE：OUS O X（Y＋ULOL）

F－ITM：

rokror
COMTIMUE

Xo

2＊Fソツ⿴囗十丌（2）

$2 F r 5007(4)$

L（1）…
 14i＋F（MOUT（ 2 （1）

1 （5）…A．J（5）水rscouT（4）

1f"SBuT(4)

Rat. GGMCHK (FFH(4) y SOM(3))

AHLL ELNLH:(2FH(z)ySBM(5))

Cita Gththitk (RF゙T (2)

$1 \mathrm{COHFF}(40), F(20,20), 0(20,20), V+\mathrm{L}(40)$ y $\mathrm{FF}(20,20)$,

2स11-(10. 18$)$

CanTMme:
FOKvAT(' , y (IIy F ())
CONTTHUE:
FTNCH-1. 12
(i) 10 in 1,20
F(畐) (0)
© (M) =0
CONT男NE:
G(1) $=8$ rim
Fivi $=1$
I. Fim)

- تralle

EB(2, (AH(1) 110
 BE(1) EB(1) - 1 .
EB(1) $=$ AA (1)
EB(1):AA(1)
N 20
$\frac{4}{8}$
\square
3
02
8
:
$?$
8
8
 BE（A）$=\mathrm{BE}(4) \cdots 1$

80 TO 140
पु

ES（3）：EB（3）－ 1
GO TO 170
HE（3）$=\mathrm{AA}(3)$
TF（B世（1，－ $\mathrm{EB}(2)) 200$ y 20 y 180
TENFEE（1）
EBS 1 ） $\operatorname{HE}(2)$
BB（ B ）TEMF
TF（EB（3）$-\mathrm{EB}(4)) 210$ у 230 у 205
TEMF：AR（ 3 ）
BE（3）BR（4）
EE（A）：TEFF
$5(n+1)-5(n+1)+i$
10220 ト＝1ッツ
（S（ivit1），M＋1．
CONT TNUE：
店（J．．．S（ri）
$\sigma=1+1$
$60 \quad 10$
Minti
$T=T-1$
TF（S（M）） 260 y 290 y 260
IF $(S(10)-1) 20 y 300,20$
I $\because=\cdots \cdots$
$19=1$
$9=1+1$
F（ivi）$=F(M)+1$
I：F（Mi）
1F（F（N）－S（N）） 30,31090

2
$\begin{array}{lll}02 & 20 & 0 \\ 0 & 0 & 0 \\ -1 & 0\end{array}$
8
$\frac{2}{2}$
830
250
08
B2

8

42

3
9
9
18
8
3
2
400
440

合 GO TO 370

Gil iO 15.3

Cobllave：

1sul．IFt

110 दै？TI：
CONTTIUE：

CONT TMUE：
60 TO 370
CALI FFGFM（DETFQT，FOLY，NCOEFF，SSTENG，MッFTEA，UAL．， LMOF，COIFF（AッFFOFSA）
Go TG $3 \% 0$
rewuen
RETUEN

F̈Fint（＇，＇fTだか
Fincimit（，yE 10.3 ）
ENL

ITMENST 10

CONT TNUE：
1
$\underset{\square}{\square}$

3

\therefore
46
$\underset{\leftarrow}{6}$
≥ 20
410

 1トッ2，がに
CORT INUE
10030 115 1 yT

1L（F゙（バ）ッバッチ））
CONT TVUE
IF（L（F（K），K゙，2）＋EQ，TT）GO TO 4E
$V=L(F$（に）ソドッ2う＋1
Di0 40 ババ $-\mathrm{V}, \mathrm{T} T$
Mï $40, J:=1 \times T \mathrm{~T}$

CONT INUE

いと（F゙（バ）ッドッチ）＋1

CONTIRUE
TreTT…

$\mathrm{I}=\mathrm{I}$

END

バ: 0
$\mathrm{BE}=1$
193 M N
BE E E B + K

П14~M1
I: $=0$
-

 IT-II I 1
$\theta 0 \quad 70 \quad 10$

J.J:=IItI

GO Ta
Iriril (JJy IT) $=0$.
$J . J:=, J J+1$
TF(JJ, GT. NIM) (60 TO 80
BO T0 50
1.) $=1 \mathrm{I}+\mathrm{L}$

2
0
0
0

000
\div
08
$?$
60
70
100

 G0 TO 30

IF (JJ. GT. .IM 3) G0 T0 190
GO TO 160

 (\%O TO 30
Iaríl (RFird」)=0. $J . J=J J+1$ 1F (, 10 200 REFFF+1 00 ro 130 $\mathrm{I}=\mathrm{II}-\mathrm{BB}$ LFBOW=TI-1 ICOL = $11 \cdots-1$ 60 T0 5 $I=I I-E B+I$

LKOW： IT I
LOOL ：： CI I
TF：T，EO，0）OO T0 2w

BO ro 268
 GO T0 10.00

WW…E： 1
If（HABS（TAM2（WW，WW））－FINCH） 290 y 290 － 270

 WW：＝WW＋1．
GO TO 260
IAM2（WWyWW）：＝0．
TF（WW，EQ，HIMB）©0 TO 490
Qa＂：WW＋1

6010280

$G Q=0 \mathrm{C}+\mathrm{L}$

GO ro 300
aic）WW＋1

 Qu ro 2 OH

いま $=0 \mathrm{E}+1$

60 TO 340
RF゙…Wいた1

8
3
$\stackrel{3}{3}$
B0
290
300
310
320
8
2
0
370
380

 60 TO 290

J．J $=$ FR＋」
TF（ 1 ABS （TAM2（JJyFFi））－FFTN（CH） 430 y 430 y 420

$60 \quad 10280$

．1． $5=\omega 1+1$
TF（Jふ． $\mathrm{GT}, \mathrm{HI} 3$ ） GO TO 440
G0 TO 410

CALL SUBI（TAMI，TAM2，WW，FF゙，DETFQI，EB，DTM

GO TO 280
IAM？（Fがy J．J）＝0 。
J」：＝，JJ

GO TO 4 ©
RF：FK＋1
CO 10380
$」=W W-E B-$ I．
LCOL：WW－1
60 TO 510 J：＝1IM－IMZ
LFOW $=1$ IMS
COL：＝11M
CALL SUBZ（AAMZ，IAM ，DETFQT，BE，OTMB，TSFOW，ISFOW，
11．FOW，L．COL．）
K＝IIM－（I＋J）

TF(N:GT.I)GO TO 1080 HF(J.EO.O)60 T0 575 にTRT: EB+T
1ENO: E6t $1+J-1$
Lu G40 MiलMSTRT, MENL
TEND:M
Dio 530 TTMEByIENT
$R=\operatorname{IAMZ}$ (F, TI)/TAM2 (MyM)
RCHK= DAES(R)

ACHK=DAES (TAM2 (JJ,M))
ACHK=DSOKT (ACHK)

conthine:
CONT TNUE
CONTITUE:
(10 570 MEMSTET, MENA

N-1AM (1) (R)
RCHEFOSRFT (RCHK)
[0 5:50 JJEBy DTM

ACHEDERFT (ACHKK)
PCHEFCHK*ACHE

COMTTNUE
contritue
conttnue
1F(iIts), EQ.IIm)GO TO 573
GO TO 575

020
889
415

COL MET（IAMS，BBy I FFOLY，NCOEFF ，DETFOT） （io） 101060 $I=E B+I+J$

首CIW：： 1
$C O L=18 \mathrm{E}+\mathrm{I} \cdots 1$

TF（TI．EQ．WTM3）GO TO 810
 $I X=I I+1$

J＂：Jut
10以（1）11）$=0$

WW＝TT＋1．

BO ro 600
JAM？（WWy，JJ）＝＝
WW：＝：WW＋1．
TF（WW，GT，LTHZ）GO TO 650
60 ro 630
$W W=1 J+1$

 00 TO 590

Ifme（II，WW）$=0$ ．
WW：－WW＋．I．
IF（WW，GT，LCOL $)$ GO TO 690
GO ro 6．50
IF（IT，EQ．WIM HO O TO 1080
以下＂IIt1

2
700
710
673
675
680
590
600
610
620
630
640
650
660
670
680
690
710
$60 \quad 70600$

TF（FR，EO，MTB）GO TO 760
WW：FRt

 60 TO 600
IHM2（WW， GS ）＝＝
WW：：WW＋1
TF：（WW＋BT．
©0 TO 730
$W W=55+1$

GO TÖ 600

WW＝：いい +1
TH（WW．OT＋LOL SO TO 8OO
B0 10\％70

FRKFKが
$55=55+1$
（GO）T0 700

 J．$)$ BE $+I+J$
LKOW＝EB＋I－1
SCOL＝：J．J

1 I $=1+1$
8
号等
750
02
~ 1
790
300
810
820
830
340

G0 10820
Tnil2（TIy JJ）－0．
 WW：－． $\mathbf{j}+1+1$

 60 ro 940
Min？（I．y $W W$

$W W=W W \cdot 1$.
GO 10860
$W W=I I+1$ ．
 6070830

WW：ごいいな
1F（WW，B）！
GO ro 900

$53=1 J+1$

 GO 10840

IAM2（F゙ッ SG）＝0．
IFiSS．EOTH13jGO ro 1000
$W W=95+1$

 BO TO B40

Lant（filig WW）：： 0 ，
WW：WW＋1
IF（WW，GT，HIM3） 00 TO 1000

BO T0 970
WW＝にK＋1
IF（MABG（TMM（WN，SG））－FYNCH） $1030,1030,1020$

GO TO 640
IAM2（WWy 95
WW＝WW＋1 1
IF（WW，GT＋FFOW；GO TO 1040
（1） 1080

だがーがも
SS：
60 10 yno

IF゙（R，EQ，I）GO TO 1100
GO TO
RETURA
 METFQT＝0． （i） $1090 \quad 1 \cdots 1+10$ FOLY（J）$=0$.
CONTTNE

60 TO 1060 FOLY（1j）．．．． 1000
1010
1000

1030
1040
8
8
8
1060
1040
1090
1100
NOGEIF… 1

EiN

GIMERSJON MX 40 y 18) y COEFFX(40) y VAL. (40), FOL.Y(10) BO TO 50
TYFE 10, MLTFRT , My MOEFF
NCOEFF
ökmats
CONT TNUE:
Gia TO 60

CunT INut:

28
2
3
3
98
28
400
8
000
700
3
900
750
1000
3
-2
-1
TMM1(IL, COLJ)=5S1 CHM2(TT, EOL J) $=65$ CONTINUE CET - ITEE 1

EMII
 $15 C O L$ y L...EUWy L..COL

W. 1
1 DTM

53
2
3
3

 COMTHUE

CONTIMUE
CETURW

FEFR *

TF (SFOOW EOC L EOU GO TO 40

8
2080

 ComTMAE
Chirl (II,
CONTTNUE
IF GCOL EOA. LCOLSO TO 80
10 $701 \mathrm{~A}=5 \mathrm{E}, \mathrm{COL}$

R

 contrivue
(amin (SROW,IT)=0.
COMTME
RETUR
EWI
 1NTEGEFR 4 BO, OFFEET

 18(10), Fally (10)

CONTrNuE
NCUEF-O
OFFSET-BA-1
003 1-1.20
$A(I, j)=-A(I, J)$
COnt Tivue
TKACE (1) $=0$.
Lü $10 \quad$ I-1. R
TRACE (1) : TKACE (1) +A(ItOFFBET, ItOFFSET)
$?$
909
8
8308
8

CORTINUE:

IF (N, EW, 1) GO 0020 1. -1 y
$100205=1$ y id COMT JWUE

(i0) 40 I $=1$ y iv
(i0) $40 \ddot{0} \quad \mathrm{I}=\mathrm{N}$
(s $(I, j)=0$ 。
 CONT TNUE:

10 $50 \mathrm{I}=1$ y
$F(I, J)=\mathrm{Q}(\mathrm{I}, \mathrm{y}, \mathrm{J})$
ConT doue
TRACE (L) = =0.
MO $00 \mathrm{~T}=\mathrm{I}$ ソ

CORTITUE:
SUMF: TRACE: (L)
LI:- L... 1
Lu $701 \mathrm{I}=1$, L.L.
 COIVT TNUE: COHTINAE

Mo $\mathrm{BO} \mathrm{T}=1$ y FOLYY(f)=EB(N+1-I) CONT LINE

NCOEFF-N+1
NETUFVN

3
8
$\%$
8
8
$?$
1808
EWN

FINCHFI．E．．．． 2
1．0 $100 \quad 1=1$ y 10
FOLY（I）：＝0．
COMTTRUE：

IF，IJ．EER，DTMる）©O TO 130

IT．TI\＆
GU TO 110
（10） 140 I－BEy -1 LM
IET：－HETXTHM2（I y I）

NCOEFFF－1
0070200
IF（II，ER．LITB）BO TO 1.90
J．J． $11 \div 1$

6070125
1amo（JJyIT）$=0$ 。
$J . j=\omega+1$

（u）T0 L
MEUEFFF：
FETURT
SUEtull Tive
NEAL水 Xy

$$
\begin{aligned}
& \underset{\sim}{0} 20 \rightarrow 3 \\
& \begin{array}{ll}
5 & 3 \\
4 & -1
\end{array} \\
& \underset{\rightarrow+1}{0} \\
& 190 \\
& 2
\end{aligned}
$$

10
10
3
$\therefore 8$
品号
\rightarrow
148
오ㅂㅗㅗㅂ

APPENDIX E
SOLVE．F4 PROGRAM LISTING
EXTEFNAL NE HN

ACCEFT 20 y TFILE

\qquad ACEEF

 1LSUEY，SGNyULOL．）
NOTSENNISE HFAM GO TO ：00
NOLSE：MSGRT（NOTSE ？

 ChLL ExTT
TYFE EOO

CARA．EXIT
FOFivat（5ん10，3）
FORも品（20010．3）
FORTAr（1＋08．1）
FOKMAT（2W0．2．2．22）

ENO

600
1.000
700
300
20
200
300
400
600

20ッロッ

F－＝ULOL＋L．SUEY

Hㅈ․u… CL
IFF（H） $10 \times 10 \times 2$
HI：H

TELT．T $\because 0 . \mathrm{MO}$

（1）

H1．$-1 /$
HH，

$\operatorname{siv}=0.10$
（ii） 3 リンly \downarrow

$\mathrm{Q}=1, \mathrm{H}=$
J1－I -1
10 $4 \quad j=1$ y， 11
$0-012$
$a-a+a$
AUX（II）＝FUX（II＋1）＋（nUX（II＋1）－AUX（II））／（Q－1＋LO）

LELT2．－TAES（YーAUX（1））

」」＂」」な」
i－11antis（1）
ETV

 1r（14）水（TFO（4）WW）＊＊

 REGMANEEALN米1．T1－10

COMTIUE：

 EETURA

ENH

[^0]: This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact Scholarly.Communication@unh.edu.

