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1. Strong and Weak Measurement16

We begin with a review of the quantum measurement theory which gives rise to both the ABL rule in the limit of strong projective17

measurement, and the weak value in the limit of weak measurements. As we will see, the weak value becomes encoded into the pointer18

wavefunction of a measurement device when the translation induced by the coupling Hamiltonian is so small relative to the width of the19

pointer wavefunction that the different terms interfere — a weak measurement — and the ensemble is both pre- and post-selected.20

We can model a general measurement by considering the position wavefunction of the pointer system as it is moved along some ruler21

by the measurement interaction. Let us consider the case that the pointer wavefunction is a Gaussian of width ε, and the ruler tick marks22

that indicate orthogonal states of the measured system are a distance d apart. The usual case of a strong projective measurement is the23

case that ε≪ d, which means that the pointer has a very narrow peak, always centered on a tick mark of the ruler. The other extreme case24

where ε≫ d is the regime of weak measurements, in which case each Gaussian is broadly spread around its ruler mark, and may overlap25
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and interfere with Gaussian terms centered on other marks. If we consider a pre- and post-selected ensemble of weak measurements, this26

interference results in a Gaussian that is centered at the weak value (to first order in d/ε).27

As an example, let us consider a measurement of a single spin-1/2 particle using a continuous Gaussian pointer. The impulsive coupling28

Hamiltonian between the spin and the pointer is given by,29

Ĥ = g(t)σzP̂p, [1]30

where σz = ∣0⟩⟨0∣ − ∣1⟩⟨1∣ is the Pauli operator of the qubit, P̂p is the momentum operator of the pointer system, and g(t) is the coupling31

strength. We will assume that the interaction lasts for only a very brief period τ , and that during this time, we can neglect the systems’ other32

unitary evolution. This go = ∫
τ

0 g(t)dt is the relevant coupling parameter. The general initial state of the qubit is,33

∣ϕ0⟩ = a∣0⟩ + b∣1⟩, [2]34

which is expressed in the σz basis, with ∣a∣2 + ∣b∣2 = 1, and the initial wavefunction of the pointer is35

ψ(x) = (ε2π)−1/4e−x
2
/2ε2

[3]36

The system and pointer begin in the product state,37

∣Ψ0⟩ = ∣ϕ0⟩∫
∞

−∞

ψ(x)∣x⟩dx. [4]38

After the interaction, the two systems are in the entangled state,39

∣Ψ⟩ = e−ig0σzPp/h̵∣Ψ0⟩ [5]40

41

= (a∣0⟩e−ig0Pp/2 + b∣1⟩eig0Pp/2)∫
∞

−∞

ψ(x)∣x⟩dx42

43

= ∫
∞

−∞

dx∣x⟩[a∣0⟩ψ(x − d) + b∣1⟩ψ(x + d)],44

with d = g0, which sets the scale of the ruler.45

Now, suppose we project the qubit onto a general normalized state ∣ϕf ⟩ = α∣0⟩ + β∣1⟩ (the post-selection).46

First we consider the strong measurement limit ε→ 0, where ψ(x) →
√
δ(x), and the renormalized wavefunction is,47

ψsf(x) = (α∗a
√
δ(x − d) + β∗b

√
δ(x + d))/

√
∣αa∣2 + ∣βb∣2. [6]48

Taking the probability to find the pointer at positions x = ±d, we obtain the ABL probability rule for finding eigenstate ∣j⟩ (j ∈ {0,1}) when49

an intermediate strong projective measurement of σz is made,50

PABL(∣j⟩⟨j∣ = 1 ∣ ϕf , ϕ0, σz) =
∣⟨ϕf ∣j⟩⟨j∣ϕ0⟩∣2

∑k∈{0,1} ∣⟨ϕf ∣k⟩⟨k∣ϕ0⟩∣2
. [7]51

For a large PPS ensemble, the conditional expectation value of the intermediate measurement of σz ,52

⟨σ̂z⟩ABL = ∑
j

λjPABL(∣j⟩⟨j∣ = 1 ∣ ϕf , ϕ0, σz) [8]53

54

= PABL(∣0⟩⟨0∣ = 1 ∣ ϕf , ϕ0, σz) − PABL(∣1⟩⟨1∣ = 1 ∣ ϕf , ϕ0, σz)55
56

= ∣αa∣2 − ∣βb∣2

∣αa∣2 + ∣βb∣2
,57

where λj is the eigenvalue corresponding to eigenstate ∣j⟩.58
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Next we consider the weak measurement regime where ε ≫ d, the two ψ terms explicitly interfere, and the renormalized pointer59

wavefunction is,60

ψwf (x) = (α∗aψ(x − d) + β∗bψ(x + d))/⟨ϕf ∣ϕ0⟩ [9]61

62

= (ε2π)−1/4(α∗ae−(x−d)
2
/2ε2
+ β∗be−(x+d)

2
/2ε2

)/⟨ϕf ∣ϕ0⟩63

64

≈ (ε2π)−1/4e−(x
2
+d2
)/2ε2

(α
∗a(1 + xd/ε2) + β∗b(1 − xd/ε2)

α∗a + β∗b
)65

66

= (ε2π)−1/4e−(x
2
+d2
)/2ε2

(1 + α
∗a − β∗b
α∗a + β∗b

(xd/ε2))67

68

≈ (ε2π)−1/4 exp
⎛
⎝
− 1

2ε2 (x − d [α
∗a − β∗b
α∗a + β∗b

])
2⎞
⎠

69

70

= ψ(x − d(σz)w),71

where,72

(σz)w ≡ ⟨ϕf ∣σz ∣ϕ0⟩
⟨ϕf ∣ϕ0⟩

= α
∗a − β∗b
α∗a + β∗b

, [10]73

is the weak value of σz given the pre-selection ∣ϕ0⟩ and the post-selection ⟨ϕf ∣. Note that the weak value has emerged from the interference74

of two Gaussian terms with complex coefficients coming from both the pre- and post-selection.75

Let us contrast the two limits: In the strong case, the final pointer function is a superposition of two delta functions at x = ±d, meaning76

one obtains a definite eigenvalue shot-by-shot, and the mean value d⟨σ̂z⟩ABL emerges from a PPS ensemble. In the weak case, the final77

pointer function is a broad Gaussian, meaning one effectively obtains only noise shot-by-shot, and the mean value d(σz)w emerges from a78

PPS ensemble.79

As we have seen, the weak value emerges due to interference of the pointer, mediated (or steered) by entanglement with the measured80

system. Now, the initial pointer state had ⟨x⟩0 = 0 and ⟨p⟩0 = 0, and it is straightforward to check that the final pointer state has81

⟨x⟩f = dRe[(σz)w] and ⟨p⟩f ≈ dh̵Im[(σz)w)]/ε2, and thus we see that the real part of the weak value is proportional to the shift in the82

pointer position, while the imaginary part is proportional to the shift in the pointer momentum (to first order). This gives us a physical83

interpretation of the complex weak value.84

The derivation above can be naturally generalized to measure any observable Â on any physical system using the same pointer, and the85

Hamiltonian, Ĥ = g(t)ÂP̂p to measure the weak value, Aw.86

In the limit that ε≫ d, the weak value is the dominant effect on the pointer wavefunction, and as one takes the limit that d/ε→ 0, the87

weak value is always encoded in the pointer wavefunction, right down to the limit that there is no interaction at all. The premise of the weak88

value interpretation is that all of these weak values are physically existent properties of the system, whether or not we choose to weakly89

measure them. This is reminiscent of how the electric field is defined at each location by considering the limit that the magnitude of a test90

charge placed at that location goes to zero, whether or not we actually measure the force the field exerts on a charge at that location. In this91

picture, it is the weak values which describe how nature behaves when we are not looking, and the usual eigenvalues which describe how it92

behaves when we are.93

2. Resolving Paradoxes94

Here we explore a number of PPS-scenarios and PPS-paradoxes and construct the relevant weak values. We then work out the top-down95

counterparticle description in the weak reality, and discuss the resolution of the corresponding paradoxes (if any) in the ABL interpretation.96
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A. The Disappearing and Reappearing Particle Paradox. The 3-box paradox can be generalized to a time-dependent case in an97

interesting way (1). Suppose that a particle is pre-selected in the state ∣ψ⟩ = (∣1⟩ +
√

2∣2⟩)/
√

3 at time t = 0, and post-selected in the state98

∣ϕ⟩ = (∣1⟩ − i
√

2∣3⟩)/
√

3 at t = 2. Boxes 2 and 3 share a wall that allows tunneling, while box 1 is isolated from both of them. Due to the99

tunneling, the amplitude of the wavefunction will oscillate back and forth between between the two boxes according to the unitary evolution100

matrix,101

U(∆t) =

⎛
⎜⎜⎜⎜
⎝

1 0 0

0 cos(π∆t/4) i sin(π∆t/4)

0 i sin(π∆t/4) cos(π∆t/4)

⎞
⎟⎟⎟⎟
⎠

. [11]102

Using this expression we can propagate ∣ψ⟩ forward and ∣ϕ⟩ backward to an intermediate time t. This gives ∣ψt⟩ = (∣1⟩ +
√

2 cos(πt/4)∣2⟩ +103

i
√

2 sin(πt/4)∣3⟩)/
√

3 and ∣ϕt⟩ = (∣1⟩ +
√

2 sin(πt/4)∣2⟩ − i
√

2 cos(πt/4)∣3⟩)/
√

3, where we call ∣ϕt⟩ the destiny vector. With these we104

can compute the weak value of each projector at time t as, ∣1t∣w = 1, ∣2t∣w = sin(πt/2), and ∣3t∣w = − sin(πt/2).105

Consider the weak value ∣Π23
t ∣w = ∣2t∣w + ∣3t∣w = 0. According to the ABL interpretation, this should mean that there is never a particle106

in either of boxes 2 or 3, and thus the particle must be in box 1 at all times. However, at t = 1, we have ∣Π13
1 ∣w = ∣11∣w + ∣31∣w = 0, meaning107

the particle must be in box 2, at t = 3 we have ∣Π12
3 ∣w = ∣13∣w + ∣23∣w = 0, meaning the particle must be in box 3. At these two times, we108

have recovered exactly the original 3-box paradox. The added subtlety is that the particle seems to definitely be in box 1 at all times, but then109

at t = 1 it seems paradoxically to also be in box 2, even though there is no tunneling between boxes 1 and 2, and likewise it seems to also be110

in box 3 at t = 3.111

The counterparticle ontology has a single positive particle in box 1 with probability 1, however the situation in boxes 2 and 3 is more112

complicated. At t = 0 there probability 1/2 to find a positive particle in box 2 and a negative one in box 2, and also probability 1/2 to find113

them reversed - leading to weak value of 0. As time evolves, each of these starting configurations of counterparticles has some probability to114

flip due to tunneling, such that the total probability of finding the first configuration is P+− = [1 − sin(πt/2)]/2 and the total probability to115

find the second is P−+ = [1 + sin(πt/2)]/2.116

As this happens, the negative real particles can mask the positive real particles so that sometimes it looks as though a given box is empty,117

and in time it looks as though the positive-real particle in boxes 2 or 3 gradually disappears and then gradually reappears as a negative-real118

particle, only to reverse course, vanishing and reappearing as a positive particle before the entire process repeats.119

Note that the total probability to find a negative particle in boxes 2 or 3 is always 1, as is the probability find a positive particle in boxes 2120

or 3. Note also, that provided the pre-selected state at t = 0 is ∣ψ⟩, we can choose the post-selection ∣ϕt⟩ at any time t and the ontology is the121

same.122

B. The Case of the Hollow Atoms. In the following thought experiment we will analyze another case of the 3-box paradox using tripartite123

system composed of two protons (hereby denoted by p1,p2) and one electron (e) superposed over 3 boxes. The electron is assumed to124

bind to either proton if they are left in the same box, thus forming a hydrogen atom. As we shall see, upon a particular choice of pre- and125

post-selected states, the weak reality will tell us a peculiar story.126

The system is prepared in the state127

∣ψ⟩ = ∣1p1⟩∣1e⟩∣3p2⟩ + ∣2p1⟩∣2e⟩∣3p2⟩ + ∣2p1⟩∣3e⟩∣3p2⟩, [12]128

and post-selected in the state:129

∣ϕ⟩ = ∣1p1⟩∣1e⟩∣3p2⟩ + ∣2p1⟩∣2e⟩∣3p2⟩ − ∣2p1⟩∣3e⟩∣3p2⟩, [13]130

Both the pre- and post-selected states therefore represent the case where there is a hydrogen atom superposed over the three boxes and there131

is always a “spectator” proton, which is sometimes the separable proton in the third box and sometimes is the entangled proton in the second132

box.133

The nonzero weak values of the rank-1 projectors are,134
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∣1p1 1e∣w = 1, ∣2p1 2e∣w = 1, ∣2p1 3e∣w = −1 ∣3p2 ∣w = 1, and the rank-2 projector weak values for p1 are, ∣1p1 ∣w = ∣1p1 2e∣w = 1,135

∣2p1 ∣w = ∣2p1 2e∣w + ∣2p1 3e∣w = 0, and for e they are ∣1e∣w = ∣1p1 1e∣w = 1, ∣2e∣w = ∣2p1 2e∣w = 1, and ∣3e∣w = ∣2p1 3e∣w = −1.136

In terms of single-particle weak values, the second term in the pre- and post-selected states indicates the effective presence of a positive137

electron and a positive proton within the second box. However, the third term implies the effective presence of a proton counter-particle138

(i.e. the weak value of the corresponding projector is equal to −1). Therefore, in the weak reality, the proton particle and counter-particle139

effectively cancel and we seem to have in total just one electron within the second box. However, the two-particle weak value of the projector140

onto an electron-proton pair (henceforth an “atom”) within the second box is ∣2p1 2e∣w = 1. We can thus interpret the ABL paradox here as141

implying that the electron in box 2 is bound to an empty nucleus, thus forming a ‘Hollow Atom.’142

The top-down 2-structures and counterparticles of the weak value ontology of this case has a positive 2-structure with a p1 and an e in143

box 1, a positive 2-structure with a p1 and an e both in box 2, a negative 2-structure with a p1 in box 2 and an e in box 3, and single positive144

p2 in box 3. This explains the weak values, and there is no paradox.145

Remarkably, the ABL paradox here may suggest novel atomic structures in the weak value ontology composed of counterparticles and146

N -structures.147

C. The 4-Box Paradox. The 4-box paradox is much less discussed, so we formally introduce it here before moving on to several148

better-known examples. The projector weak values in the 4-box paradox are (1,1,1,−1)/2, or (Π1)w = (Π2)w = (Π3)w = 1/2,149

and (Π4)w = −1/2. To see the paradox, we must consider the three coarse-grained dichotomic bases B1 = (Π1 + Π2,Π3 + Π4),150

B2 = (Π1 +Π3,Π2 +Π4), and B3 = (Π2 +Π3,Π1 +Π4), which all have weak values 0 and 1. These three bases tell us that in the ABL151

interpretation, the particle must be in boxes (1 or 2), and also (1 or 3), and also (2 or 3), giving us a logical contradiction.152

D. The (Original) Quantum Cheshire Cat Paradox. The quantum Cheshire Cat paradox (2, 3) is given by a composite 4-level system153

composed of the spin and path degrees of freedom of a neutron in a Mach-Zehnder interferometer. The pre-selected entangled state inside154

the interferometer is,155

∣ψ⟩ = (∣ ↑⟩∣L⟩ + ∣ ↑⟩∣R⟩ + ∣ ↓⟩∣L⟩ − ∣ ↓⟩∣R⟩)/2, [14]156

and the post-selected product state is,157

∣ϕ⟩ = (∣ ↑⟩∣L⟩ + ∣ ↑⟩∣R⟩ + ∣ ↓⟩∣L⟩ + ∣ ↓⟩∣R⟩)/2. [15]158

Using compact notation, the weak values of the projectors onto these four basis states are,159

∣ ↑ L∣w = ∣ ↑ R∣w = ∣ ↓ L∣w = 1/2, and ∣ ↓ R∣w = −1/2, from which we see that this a 4-box paradox. We also find the weak values of the six160

rank-2 projectors projectors,161

∣ ↑ ∣w = ∣ ↑ L∣w + ∣ ↑ R∣w = 1, [16]162
163

∣ ↓ ∣w = ∣ ↓ L∣w + ∣ ↓ R∣w = 0, [17]164
165

∣L∣w = ∣ ↑ L∣w + ∣ ↓ L∣w = 1, [18]166
167

∣R∣w = ∣ ↑ R∣w + ∣ ↓ R∣w = 0, [19]168
169

∣ ↺ ∣w = ∣ ↓ L∣w + ∣ ↑ R∣w = 1, [20]170
171

∣ ↻ ∣w = ∣ ↑ L∣w + ∣ ↓ R∣w = 0, [21]172

which pair up into complete dichotomic measurement bases.173

Following the ABL-weak-value correspondence rule, the paradox here is that ∣ ↑ ∣w = 1 implies that the particle has spin up, and ∣L∣w = 1174

implies that it is in the left arm of the interferometer, and ∣ ↺ ∣w = 1 implies that a spin up particle must take the right arm, while a spin175

down particle must take the left arm, and these three statements are mutually contradictory.176

A fantastical interpretation of this contradiction is that the neutron’s spin becomes disembodied from its mass, allowing the up spin to177

travel the right arm, while the spinless mass travels the left (4). Indeed, experiments seem to show that in the left arm there will be evidence178
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of massive particles where no spin is detected, and in the right arm there is no evidence of massive particles where a spin is detected. This179

disembodiment effect is called the Quantum Cheshire Cat in reference to a disembodied grin without a cat from Alice in Wonderland.180

The simplest resolution of this paradox in the weak value ontology has a probability 1/2 for a single spin-up particle on the left path, and181

a probability 1/2 to have a spin-up on the right path along with a negative spin-down, and positive spin-down on the right. Thus a mass182

detector always finds something on the left, and finds an average of zero on the left since the particle is negative half the time. And a spin183

detector finds an average of zero on the left, since the spin is up and down with equal probability, while on the right a spin up is always184

detected, since a negative spin-down couples in the same way as a positive spin-up due to its opposite charge.185

This ontology provides a clear explanation for the experimental observations related to the Quantum Cheshire Cat, without the paradoxical186

spatial separation of the neutron’s spin and mass.187

As an aside, we can think of these rank-1 projectors as 2-structures, but since the spin is an internal property of the particle, it is a single188

localized object.189

E. The Quantum Pigeonhole Paradox. The quantum pigeonhole paradox (5–7) uses three 2-level systems (pigeons in of two boxes)190

all pre-selected in the state ∣ψ⟩ = (∣L⟩ + ∣R⟩)/
√

2 and post-selected in the state ∣ϕ⟩ = (∣L⟩ + i∣R⟩)/
√

2, where ∣L⟩ and ∣R⟩ are two boxes191

(pigeonholes). For each pigeon, the weak value of the projector into the left box is ∣L∣w = (1+i)/2, and for the right box it is ∣R∣w = (1−i)/2.192

Because these are independent systems we know that the weak value of the tensor product is also the product of the individual weak193

values. This allows us to deduce that for any two of the three pigeons, ∣LL∣w = i/2, ∣LR∣w = 1/2, ∣RL∣w = 1/2, ∣RR∣w = −i/2, and194

from these we can construct the weak values ∣S∣w = ∣LL∣w + ∣RR∣w = 0 for the projector onto both pigeons being in the same box, and195

∣O∣w = ∣LR∣w + ∣RL∣w = 1 for the two pigeons being in opposite boxes.196

Following the ABL-weak-value-correspondence rule, the paradox is that ∣O∣12
w = 1 implies that pigeons 1 and 2 are in opposite boxes,197

∣O∣13
w = 1 implies that pigeons 1 and 3 are in opposite boxes, and ∣O∣23

w = 1 implies that pigeons 2 and 3 are in opposite boxes, and these198

three statements are mutually contradictory. In fact, they violate the pigeonhole principle which states that if three (classical) pigeons are199

placed into two boxes, then one of the boxes must have two or more pigeons in it.200

The 4-box paradox is also the key to the Quantum Pigeonhole Effect. To see this we must consider the projectors onto states of all three201

particles, ∣LLL∣w = (−1+ i)/4, ∣LLR∣w = (1+ i)/4, ∣LRL∣w = (1+ i)/4, ∣LRR∣w = (1− i)/4, ∣RLL∣w = (1+ i)/4, ∣RLR∣w = (1− i)/4,202

∣RRL∣w = (1 − i)/4, ∣RRR∣w = (−1 − i)/4. Then we construct the coarse-grained projector weak values, ∣LLL∣w + ∣RRR∣w = −1/2 and203

∣LLR∣w + ∣RRL∣w = ∣LRL∣w + ∣RLR∣w = ∣RLL∣w + ∣LRR∣w = 1/2, which gives us the 4-box paradox.204

This paradox can also be seen from the conditional correlations that appear between each pair of pigeons, even though they never205

interact in this PPS. The conditional correlation is defined using the conditional expectation value formula of Eq. 8, ⟨σ̂z⟩ABL = 0206

for each pigeon and ⟨σ̂1
z σ̂

2
z⟩ABL = −1 for each pair of pigeons, with σ̂z ≡ ∣L⟩⟨L∣ − ∣R⟩⟨R∣. As a result, the conditional covariance207

covABL(σ̂1
z , σ̂

2
z) = ⟨σ̂1

z σ̂
2
z⟩ABL−⟨σ̂1

z⟩ABL⟨σ̂2
z⟩ABL = −1, which suggests that two causally disconnected systems are strongly reproducibly208

correlated, which is a logical contradiction.209

In the weak value interpretation, each pigeon appears in the left box or right box with probability 1/2, and independently there is an210

imaginary positive-negative pair that appears with probability 1/2, with the positive imaginary particle on the left, and the negative on on211

the right. The products then arise as the products of three such independent distributions, and explain all of the weak values - without any212

paradoxical correlations between the three independent systems.213

F. The All-or-Nothing Paradox. Next we explore the All-or-Nothing paradox on N 3-level systems (see also (8)). Ignoring normalization,214

the pre-selection is ∣ψ⟩ = ⊗Ni=1(∣1⟩ − ∣2⟩) +⊗Ni=1 ∣3⟩, and the post-selection is ∣ϕ⟩ = ⊗Ni=1(∣1⟩ + ∣2⟩) +⊗Ni=1 ∣3⟩.215

For example, let N = 2. There are nine projectors in the joint product basis of the two systems, with weak values, ∣11∣w = ∣22∣w = ∣33∣w =216

1, ∣12∣w = ∣21∣w = −1, and ∣13∣w = ∣23∣w = ∣31∣w = ∣32∣w = 0.217

This can be seen as an extended 3-box paradox, where a +1, a -1, and four 0 weak values have been added to the set, and the paradox218

obtains in more combinations. The All-or-Nothing paradox is based on another observation about this set, which starts with constructing the219
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coarse-grained projector weak values of the individual systems,220

∣11∣w = ∣11∣w + ∣12∣w + ∣13∣w = 0, [22]221

222

∣21∣w = ∣21∣w + ∣22∣w + ∣23∣w = 0, [23]223
224

∣31∣w = ∣31∣w + ∣32∣w + ∣33∣w = 1, [24]225
226

∣12∣w = ∣11∣w + ∣21∣w + ∣31∣w = 0, [25]227
228

∣22∣w = ∣12∣w + ∣22∣w + ∣32∣w = 0, [26]229

and230

∣32∣w = ∣13∣w + ∣23∣w + ∣33∣w = 1. [27]231

In the ABL interpretation, these weak values show that neither system can be in states Π1 or Π2, and thus they must always be in Π3. But232

this contradicts the nonzero weak values ∣11∣w = ∣22∣w = 1 which both appear in dichotomic coarse-grained bases, and indicate that the233

system must also always be in orthogonal states Π1 and Π2. This is the All-or-Nothing paradox for boxes 1 and 2 – only joint weak values of234

Π1 or Π2 for all N systems can have nonzero weak values, whereas any joint weak value of Π1 or Π2 for N − 1 or fewer systems has zero235

weak value. Specifically, if a strong projective measurement is made in the product basis {∣i, j⟩} during the interval between the pre- and236

post-selection, then the ABL formula gives a probability of 1/5 to find the system in any of the states, |11|,|12|, |21|, |22|, or |33|, whereas if a237

projective measurement is made on only one of the two systems, then the ABL probability is 1 to find the system in |3|. Thus, if one hides the238

third box, it seems very literally that boxes 1 and 2 are either both empty, or contain all N systems.239

In the weak value ontology, there are three positive 2-structures with both particles in the same box, for boxes 1, 2 and 3, and for there are240

2-negative 2-structures, each with one particle in box 1 and the other in box 2. This means that in box 1 there are a total of two positive241

particles and 2 negative particles, which hide each other, and likewise in box 2. The four 2-structures for boxes 1 and 2 produces nonzero242

values for joint measurements. This explain all of the weak values for this scenario, without any paradoxes.243

It is easy to check that for larger values of N the results are similar, with zero weak value for any rank-1 projector that includes box 3,244

and so the All-or-Nothing property is general for all N .245

G. The Hermit Particle. The Hermit Particle is not actually a logical PPS paradox. Instead, it is a case where the logic of the ABL246

interpretation is plausible, but results in a very counterintuitive situation. Consider the set of projector weak values (Π1)w = δ, (Π2)w =247

−1 + δ, (Π3)w = 1 − δ, (Π4)w = 1 − δ, with real positive δ ≪ 1. In the ABL interpretation the particle is always found in the first state, no248

matter how small δ is made. To see this, consider the two coarse-grained dichotomic bases with weak values 0 and 1, B1 = (Π1+Π3,Π2+Π4)249

and B2 = (Π1 +Π4,Π2 +Π3). This shows that the system must be in states (Π1 or Π3) and (Π1 or Π4), from which we logically conclude250

it must be in state Π1. However, if we perform a projective measurement of the dichotomic basis B3 = (Π1,Π2 +Π3 +Π4) during the251

interval between the pre- and post-selection, then the ABL formula give a probability on the order of δ2 ≪ 1. Thus according to the ABL252

interpretation, the particle is always located where it is least likely to be found – and thus a hermit.253

The Hermit Particle can be generalized to a d-level system (d > 4) by adding additional projector weak values (Πi)w = 1 − δ, and254

resetting (Π2)w = (−1 + δ)(d − 3). In the limit δ → 0, the case of the Hermit Particle reduces to the extended 3-box paradox.255

In the weak value interpretation, the there is a particle in box 1 with probability δ, and with probability 1 − δ there is a negative particle in256

box 2, and a positive particle in box 3 along with another in box 4.257

H. The Energy Teleportation Paradox. The Energy Teleportation Paradox is not a logical PPS paradox. Instead the paradox is that258

energy seems to be transferred from one system to another without ever passing through the space between them – thus teleported (9, 10).259

This case is closely related to Hardy’s paradox and interaction free measurement (11).260

A particle with average energy Ep is sent through a Mach-Zehnder interferometer (MZ), where it may strike a quantum object in one261

of the arms. If the particle strikes the object, it is always absorbed or deflected, and does not reach the second beam splitter of the MZ.262
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The object starts in a low energy eigenstate, ∣0o⟩ = (∣in⟩ + ∣out⟩)/
√

2 of its confining potential with energy eigenvalue E0, which is a263

superposition of being inside and outside arm I of the MZ. The energy eigenstate ∣1o⟩ = (∣in⟩ − ∣out⟩)/
√

2 has energy eigenvalue E1 > E0.264

Once the particle inside the MZ has reached the object, the two enter an entangled state because of the nonzero probability for the particle265

to scatter off of the object. We will make this state our (unnormalized) pre-selection, ∣ψ⟩ = ∣Ip⟩∣outo⟩ + ∣IIp⟩∣ino⟩ + ∣IIp⟩∣outo⟩.266

Evolving this through the second beam splitter, we obtain ∣ψ′⟩ = 2∣brp⟩∣outo⟩ + ∣brp⟩∣ino⟩ − ∣dkp⟩∣ino⟩, where ‘br’ is the bright port, and267

‘dk’ is the dark port of the MZ. From ∣ψ′⟩ we can see that projecting the particle onto the dark port also projects the object inside the MZ.268

Thus we have detected that the object is inside arm I of the MZ, but the particle must have taken taken arm II, since the object in arm I269

would have scattered it out of the MZ and it would never have reached the dark port. Because the particle detects the object without ever270

going near it, we have an interaction-free measurement. Furthermore, the object has been left in the state ∣ino⟩, which is superposition of271

energy eigenstates with average energy (E0 +E1)/2. This means that on average, the particle has delivered ∆E = (E1 −E0)/2 to the272

object, without ever going near it, and thus the energy appears to have been teleported.273

We now take the post-selection ∣ϕ′⟩ = ∣dkp⟩∣ino⟩, which we can retropropagate back through the second beam splitter to obtain274

∣ϕ⟩ = (∣Ip − ∣IIp)⟩∣ino⟩/
√

2. Now, with the unprimed PPS, we consider the weak values, ∣Ip0o∣w = −1/2, ∣Ip1o∣w = 1/2, ∣IIp0o∣w = 1, and275

∣IIp1o∣w = 0. Considering the coarse-grained dichotomic basis, B = (∣Ip0o∣ + ∣Ip1o∣, ∣IIp0o∣ + ∣IIp1o∣), we see that in the ABL interpretation,276

the particle definitely takes path II of the MZ.277

The projector weak values of the energy eigenstates of the object are ∣0o∣w = ∣Ip0o∣w+∣IIp0o∣w = 1/2 and ∣1o∣w = ∣Ip1o∣w+∣IIp1o∣w = 1/2,278

and thus the weak value of the object’s energy is (E0+E1)/2. The extra energy ∆E was delivered by the particle due to an energy-conserving279

local interaction Hamiltonian in arm I.280

In the weak value interpretation, there is a positive 2-structure with a particle on arm II with average energyEp and an object in the ground281

state of energy E0 with probability 1. This 2-structure corresponds to zero energy transfer between the particle and object. Furthermore, with282

probability 1/2 there is a positive-negative pair of 2-structures; a positive 2-structure with a particle on arm I with energy Ep −(E1 −E0) and283

an object in the excited state of energy E1, and a negative 2-structure with a particle on arm I with energy −Ep and the object in the ground284

state of energy −E0. Then the average energy of the particle is Ēp = Ep + [Ep −E1 +E0 −Ep]/2 = Ep − (E1 −E0)/2, and the average285

energy of the object is Ēo = E0 + [E1 −E0]/2 = (E0 +E1)/2. And of particular interest, on arm II there is no exchange between the286

particle and object, while on arm I the average energy of the particle and object are Ēp,I = [Ep −E1 +E0 −Ep]/2 = −∆E, and Ēo = ∆E,287

respectively, and so the particle effectively gains this energy while emitting a packet of negative energy which is absorbed into the particle288

during post-selection.289

If we insist that all counterparticles must exist during the entire interval between the pre-selection before the MZ to the post-selection at290

the dark port, then we see that the positive and negative particle in arm I were already present before the interaction with the object, and this291

is where their total energies became different from zero.292

Thus, the counterparticle model gives us a satisfying resolution to the Energy Teleportation Paradox, where instead of a nonlocal transfer,293

the object gets the energy from a local interaction with a particle in arm I. In order for this effect to obtain, the incident particle must have an294

energy uncertainty σ ≫ ∆E, so that the particle can deliver the energy without significantly reducing the visibility of interference at the295

second beam splitter.296

I. Three entangled 2-position systems. Consider three 2-position quantum systems, each with an eigenbasis (∣L⟩, ∣R⟩) which are297

prepared (pre-selected) in the entangled state,298

∣ψ⟩ = (2∣LLL⟩ − ∣LRR⟩ + i∣RLL⟩ − i∣RRL⟩)/
√

7, [28]299

and post-selected in the product state300

∣ϕ⟩ = (∣L⟩ + ∣R⟩)(∣L⟩ + ∣R⟩)(∣L⟩ + ∣R⟩)/
√

8. [29]301
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Fig. 1. The subpairs and corresponding 2-structures for of the 3-party system. All of the edges of the correspinding 3-structure can be read off of these three diagrams.
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The weak values of the eight rank-1 projector are ∣LLL∣w = 2, ∣LRR∣w = −1, ∣RLL∣w = i, ∣RRL∣w = −i, and ∣LLR∣w = ∣LRL∣w =302

∣RLR∣w = ∣RRR∣w = 0, which correspond to five (nonzero) 3-structures.303

To find the edges of these 3-structures we will need to consider the 2-structures corresponding to each pair of fundamental subsystems.304

Summing over system 3 we find the weak values for the product projectors onto systems 1 and 2,305

∣L1L2∣w = ∣LLL∣w + ∣LLR∣w = 2, [30]306

307

∣L1R2∣w = ∣LRL∣w + ∣LRR∣w = −1, [31]308
309

∣R1L2∣w = ∣RLL∣w + ∣RLR∣w = i, [32]310
311

∣R1R2∣w = ∣RRL∣w + ∣RRR∣w = −i, [33]312

summing over system 2 we find the weak values for the product projectors onto systems 1 and 3,313

∣L1L3∣w = ∣LLL∣w + ∣LRL∣w = 2, [34]314

315

∣L1R3∣w = ∣LLR∣w + ∣LRR∣w = −1, [35]316
317

∣R1L3∣w = ∣RLL∣w + ∣RRL∣w = 0, [36]318
319

∣R1R3∣w = ∣RLR∣w + ∣RRR∣w = 0, [37]320

and summing over system 1 we find the weak values for the product projectors onto systems 2 and 3,321

∣L2L3∣w = ∣LLL∣w + ∣RLL∣w = 2 + i, [38]322

323

∣L2R3∣w = ∣LLR∣w + ∣RLR∣w = 0, [39]324
325

∣R2L3∣w = ∣LRL∣w + ∣RRL∣w = −i, [40]326
327

∣R2R3∣w = ∣LRR∣w + ∣RRR∣w = −1. [41]328

The configurations of 2-structures for these subpairs are shown in Fig 1.329

The five 3-structures for this PPS are shown in Fig. 2. Note that for this example the three real 3-structures are fully connected, while the330

two imaginary 3-structures are not.331

This example also allows us to consider measurements of lower-rank projectors of an entangled system. To measure an N -structure,332

the pointer must be somehow coupled to the rank-1 projector, which is a product of the values of all N systems at N particular locations,333

and thus the pointer must somehow interact at all N locations during the PPS interval. In all cases, the end result is that the pointer has334

received a quasi-classical impulsive shift corresponding to the weak value. For projectors corresponding to n < N systems and locations, the335

pointer only needs to couple to the n sites, and the shift is determined using the n-structure subgraph of the N -structure corresponding to336

those systems. Note that a physical weak measurement inherently disturbs both systems, and so there is always some mixture of the purely337

impulsive shift due to the counterparticles and higher-order entanglement effects, which are negligible in the weak regime.338
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3. Discussion339

A. The Counterparticle Representation of All Observables. All of the cases we have examine so far considered a single fine-grained340

basis for a given PPS, along with various coarse-grainings of that same basis, since this is where the PPS paradoxes originate, but the weak341

values are defined for every observable of the system, and the counterparticle model should provide a single consistent description of all of342

these weak values. We show that this can be done by choosing a cardinal set of observables, and rather than a counterparticle being in just343

one state of the system, it is simultaneously in one eigenstate of each cardinal observable.344

For a single cardinal direction n, we have a set of distributions of counterparticle configurations {Cni}, each of which occurs with345

probability Pni. Each Cni is a vector with the same dimension as the Hilbert space of the system, and each component is a complex346

integer corresponding to a definite set of real and/or imaginary counterparticles. The general distribution is obtained by taking the Cartesian347

product of all such cardinal sets, multiplying the corresponding probabilities, and the corresponding counterparticle sets. Note that each348

quasi-classical 2-level particle is in a definite state of all three observables, even though none of them commute. The weak value of just one349

of the cardinal projectors is obtained by summing over all values of the projectors belonging to other cardinal observables.350

It will be useful to introduce a pseudo-density matrix for the PPS which we call the upsidedown state, ρ̆ ≡ ∣ψ⟩⟨ϕ∣/⟨ϕ∣ψ⟩, which satisfies351

ρ̆2 = ρ̆ and Trρ̆ = 1, but is clearly non-Hermitian. The utility of the upsidedown state is that we now have Aw =Trρ̆A, in analogy to the usual352

expectation value ⟨A⟩ =TrρA.353

Now, in a 2-level system, the cardinal set is (σx, σy, σz), which we can see by decomposing the upside-down state for a general PPS as,354

ρ̆ ≡ ∣ψ⟩⟨ϕ∣
⟨ϕ∣ψ⟩

= (I + (σx)wσx + (σy)wσy + (σz)wσz)/2 = (I + w⃗ ⋅ σ⃗)/2, [42]355

where w⃗ is the vector of cardinal weak values. The weak value of an observable A is then,356

Aw = Tr(ρ̆A) = [Tr(A) + (σx)wTr(σxA) + (σy)wTr(σyA) + (σz)wTr(σzA)]/2 = A0 + w⃗ ⋅ A⃗, [43]357

where A⃗ is the vector of normalized expectation values Ax = Tr(σxA)/2, Ay = Tr(σyA)/2, Az = Tr(σzA)/2, and A0 = Tr(A)/2. For the358

case of a the Pauli observable in the direction of unit vector n̂, this reduces to the simple form,359

(σn̂)w = w⃗ ⋅ n̂. [44]360

Thus we can obtain the weak values along any direction n̂ simply by knowing the cardinal weak values, and we can still use the same set of361

particles and counterparticles in their combined eigenstates to obtain the weak value in any direction.362

Of course, we could rotate the coordinate system and find a new representation in terms of counterparticles for the new cardinal363

observables. This is yet another symmetry of the counterparticle model, since the descriptions of the same physical system may call for a364

completely different counterparticle representation in the different coordinate system.365

As a simple example, consider a single pigeon from the quantum pigeonhole paradox, with pre-selection ∣ψ⟩ = ∣L⟩+∣R⟩ and post-selection366

∣ϕ⟩ = ∣L⟩ + i∣R⟩ for each 2-level system. Recalling that σz = ∣L⟩⟨L∣ − ∣R⟩⟨R∣, we also have σx∣ψ⟩ = ∣ψ⟩, and σy ∣ϕ⟩ = ∣ϕ⟩, we can see that367

the weak vector is w⃗ = (1,1, i). We thus have upside-down state ρ̆ = (I + σx + σy + iσz)/2. For x and y the simplest configurations both368

have a single positive particle in Π+x and Π+y (Cx1 = [1,0], and Cy1 = [1,0]), respectively, with probability 1. For z, the simplest case we369

can use has, with probability Pz1 = 1/2, a single positive particle in Π+z (Cz1 = [1,0]), and with probability Pz2 = 1/2 there is a positive370

imaginary particle in Π+z and positive real particle plus a negative imaginary particle in Π−z (Cz2 = [1 + i, i]). The Cartesian product of371

these three distributions has, with probability P1 = 1/2, a positive counterparticle in joint state Π+x,+y,+z (C1 = [1,0,0,0,0,0,0,0,0]), and372

with probability P2 = 1/2 a positive imaginary particle in Π+x,+y,+z and positive real particle plus a negative imaginary particle in Π+x,+y,−z373

(C2 = [i,1 − i,0,0,0,0,0,0,0]), where the configurations Cj now include counterparticles of all eight joint types in canonical order.374

To make the situation slightly more interesting, we rotate the coordinate system so that the direction of the post-selection changes375

from ŷ to (ŷ + ẑ)/
√

2 on the Bloch sphere, which is still in the plane perpendicular to the direction of the pre-selection x̂. Formally, we376
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have ∣ϕ′⟩ = cos(π/8)∣L⟩ + i sin(π/8)∣R⟩ and ∣ψ′⟩ = ∣ψ⟩, which results in the cardinal weak vector w⃗ = (1, (1 − i)/
√

2, (1 + i)/
√

2).377

The same upside down state is now represented as ρ̆ = (I + σx + 1−i
√

2 σy +
1+i
√

2 σz)/2 in the new coordinates, from which we obtain378

(Π±

y)w = (1 ± (1 − i)/
√

2) and (Π±

z)w = (1 ± (1 + i)/
√

2).379

As before we have Π+x with probability 1, but for the y direction we now have Py1 = 1
2
√

2 , Py2 = 1
2 , and Py3 = 1

2 −
1

2
√

2 , with380

corresponding configurations Cy1 = [1 − i, i], Cy2 = [1,0], and Cy3 = [0,1], and for the z direction we have Pz1 = 1
2
√

2 , Pz2 = 1
2 , and381

Pz3 = 1
2 −

1
2
√

2 , with corresponding configurations Cz1 = [1 + i,−i], Cz2 = [1,0], and Cz3 = [0,1].382

The joint distribution then has nine configurations, each with a probability and a set of counterparticles obtained by taking the products383

of the three individual sets. For example, the probability to obtain the first configuration is P1 = (1)( 1
2
√

2)(
1

2
√

2) = 1
8 , and the set of384

counterparticles in the joint state Π+x,+y,+z in that configuration is (1)(1 − i)(1 + i) = 2. The full set of probabilities and configurations is385

given in Fig. 3386

Now, when the 2-level system is the spin of a particle, it is straighforward to imagine a single particle which somehow simultaneously has387

the three properties σx = σy = σz = +1, but if the system is a spatial superposition, then the interpretation is more subtle. If the Π±

z are388

orthogonal spatial states, like the arms of an MZ, then Π±

x and Π±

y are spatial superpositions, so how can a particle with a single trajectory be389

in a simultaneous state of all three? The simplest answer seems to be that the spatial basis is the one that tells us where the particle is actually390

located, since each projectors can be measured at only one location. The other states are internal properties of the particle, which are only391

revealed by a measurement which couples to the system at both locations (measurements of say σx or σy), similar to measuring N -structures.392

Finally, this type of cardinal representation can be found in all dimensions by expanding the upside-down state into the set of d-dimensional393

generalized Gell-Mann matrices. This works just as in the d = 2 case above, because the Gell-Mann matrices are all traceless, as is the394

product of any two of them, and the trace of their squares are always 2. There are d2 − 1 different Hermitian Gell-Mann matrices, which395

combined with the identity span the space of all observables of the system (with real coefficients, and the space of all operators with complex396

coefficients). This means the general expanded form of the upside-down state is,397

ρ̆ = 1
d
I + 1

2

d2
−1
∑
i=1

(gi)wgi =
1
d
I + 1

2
w⃗d ⋅ g⃗, [45]398

and thus a complete counterparticle representation can always be constructed in this way, with g⃗ a vector of the d2 −1 generalized Gell-Mann399

matrices, and w⃗d the vector of their weak values. Likewise a general observable can be said to point in a particular direction n̂d in the400

(d2 − 1)-dimensional real space of cardinal matrices, and we can expand a general Gell-Mann observable as gn̂d = n̂d ⋅ g⃗, and we again401

obtain,402

(gn̂d)w = w⃗d ⋅ n̂d, [46]403

which shows that this cardinal counterparticle representation defines the weak values of all observables of the system.404

Finally for dimensions d = 2N , a similar expansion can be constructed using the observables of the N -qubit Pauli group, which are all405

tensor products, and so this representation may be more convenient for some applications.406

B. Intermediate Interaction Strength. The counterparticle model is a good physical approximation only in the limit of weak measure-407

ments. The weak limit is the first order approximation for small d/ε. We expect that a more elaborate model can be devised in which higher408

order terms also have a physical interpretation, and become increasingly relevant as the interaction strength increases. In the projective409

measurement limit, this would require interpreting an infinite number of terms, and more importantly, this is the limit where the interaction410

induces a post-selection, and so as the interaction strength is slowly increased from zero, at first there may be higher order objects in the411

counterparticle model (we have not yet explored this), but then this entire picture starts to give way, to be replaced by a new collapse event.412

This raises a more fundamental questions about the range of physical situations this model can describe.413

In particular, consider a system that undergoes frequent periodic measurement interactions, each of small, but not insignificant strength.414

This system is unlikely to collapse due to any one measurement, and instead its continuous weak measurement readout will wander back and415
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forth, only eventually collapsing to an eigenvalue after many measurements (12). Then it will tend to remain there for a little while due to an416

effect called Zeno pinning, but eventually its Hamiltonian dynamics will set it back to wandering, and then to another random collapse.417

Now, consider a long period of wandering during which the system never actually collapses to either eigenvalue, which can be more418

readily accomplished by alternating kicks in complementary measurement bases (13). It has been shown in numerical simulations that due to419

the random kicks, the state of a system rapidly becomes independent of its previous states, even if it never fully collapses. The simulations420

also show that the continuous weak measurement readout likewise becomes rapidly independent of the future states of the system. This421

means that the intermediate (nearly weak) values that are being continuously read out simply do not have a projective pre-selection or a422

projective post-selection. Instead, the pre- and post-selection occurred gradually, over the course of enough random kicks to screen a small423

time interval off from both its past and future. To give a rough idea of how this could work, suppose that the measurement events are indexed424

by i, and the state is screen off after n such events. Then the physical readout at event i will be centered on roughly the weak value, using425

the some function of the physical states at events i − 1, i − 2,..., i − n, as the pre-selection, and some function of i + 1, i + 2,..., i + n as426

the post-selection. The trouble with this is that we cannot actually know the physical state at each event, as we do in the case of projective427

measurements, and this seems to be the price we pay for the counterparticle model to apply to physical situations like this. Nevertheless,428

nature knows the PPS, even when it cannot be experimentally observed.429
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Fig. 2. The five 3-structures, each a different color, for the entangled pre-selection ∣ψ⟩ = (2∣LLL⟩ − ∣LRR⟩ + i∣RLL⟩ − i∣RRL⟩)/
√

7 and post-selection ∣ϕ⟩ =

(∣L⟩ + ∣R⟩)(∣L⟩ + ∣R⟩)(∣L⟩ + ∣R⟩)/
√

8, and their corresponding counterparticles, with each web assigned a different color. The 2-structures for any 2 subsystems are just

the subgraphs of the graphs shown here, which can be verified by considering Fig. 1 - and the 1-structures are just the counterparticles themselves.

Fig. 3. The probabilities and simplified counterparticle representation of the PPS with upside-down state ρ̆ = (I + σx +
1−i√

2
σy +

1+i√
2
σz)/2. The marginal weak value of

Π±i is given by summing over the corresponding columns.
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