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RESEARCH ARTICLE
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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The severity of infectious disease outbreaks is governed by patterns of human contact,

which vary by geography, social organization, mobility, access to technology and health-

care, economic development, and culture. Whereas globalized societies and urban centers

exhibit characteristics that can heighten vulnerability to pandemics, small-scale subsistence

societies occupying remote, rural areas may be buffered. Accordingly, voluntary collective

isolation has been proposed as one strategy to mitigate the impacts of COVID-19 and other

pandemics on small-scale Indigenous populations with minimal access to healthcare infra-

structure. To assess the vulnerability of such populations and the viability of interventions

such as voluntary collective isolation, we simulate and analyze the dynamics of SARS-CoV-

2 infection among Amazonian forager-horticulturalists in Bolivia using a stochastic network

metapopulation model parameterized with high-resolution empirical data on population

structure, mobility, and contact networks. Our model suggests that relative isolation offers

little protection at the population level (expected approximatelyAU : PleasenotethatasperPLOSstyle; donotusethesymbol � inprosetomeanaboutorapproximately:}Hence; allinstancesofthissymbolhavebeenreplacedwith}approximately}throughoutthetext:80% cumulative incidence),

and more remote communities are not conferred protection via greater distance from out-

side sources of infection, due to common features of small-scale societies that promote

rapid disease transmission such as high rates of travel and dense social networks. Neigh-

borhood density, central household location in villages, and household size greatly increase
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the individual risk of infection. Simulated interventions further demonstrate that without

implausibly high levels of centralized control, collective isolation is unlikely to be effective,

especially if it is difficult to restrict visitation between communities as well as travel to outside

areas. Finally, comparison of model results to empirical COVID-19 outcomes measured via

seroassay suggest that our theoretical model is successful at predicting outbreak severity at

both the population and community levels. Taken together, these findings suggest that the

social organization and relative isolation from urban centers of many rural Indigenous com-

munities offer little protection from pandemics and that standard control measures, including

vaccination, are required to counteract effects of tight-knit social structures characteristic of

small-scale populations.

Introduction

Indigenous populations worldwide share certain characteristics that elevate vulnerability to

infectious disease outbreaks [1]. This vulnerability has historically manifested as greater rela-

tive mortality rates compared to non-Indigenous populations during epidemics, including

measles, influenza, and malaria in Amazonia after contact with Europeans [2], the 1918 influ-

enza pandemic among Maori, Arctic, and Pacific peoples [3,4], and the 2009 H1N1 influenza

pandemicAU : Pleasenotethat}2009H1N1outbreak}inthesentence}Thisvulnerabilityhashistoricallymanifestedasgreaterrelativemortalityrates:::}hasbeenchangedto}2009H1N1influenzapandemic; }asperPLOSstyle:among Aboriginal Australians, Pacific Islanders, Maori, First Nations peoples, and

Alaska Natives [5]. Factors increasing vulnerability of Indigenous populations include compli-

cations from previous exposures to respiratory diseases, comorbidities, adverse socioeconomic

conditions, minimal access to health and sanitation infrastructure, and discrimination in local

healthcare systems [6–10]. Due to these and other factors, Indigenous communities worldwide

have also suffered disproportionately during the ongoing Coronavirus Disease 2019 (COVIDAU : Pleasenotethat}COVID � 19}hasbeenfullyspelledoutas}CoronavirusDisease2019}atfirstmentioninthesentence}Duetotheseandotherfactors; Indigenouscommunitiesworldwidehave:::}Pleasecorrectifnecessary:-

19) pandemic from especially high morbidity and mortality [11–16].

Data-driven research is needed to guide effective interventions and public health strategies

in Indigenous communities during pandemics. Ideal strategies would account for the particu-

lar features of social structure, geographical distribution, and contact that characterize such

populations. For example, during the global spread of Severe Acute Respiratory Syndrome

Coronavirus 2 (SARSAU : Pleasenotethat}SARS � CoV � 2}hasbeenfullyspelledoutas}SevereAcuteRespiratorySyndromeCoronavirus2}atfirstmentioninthesentence}Forexample; duringtheglobalspreadofSevereAcuteRespiratory:::}Pleasecorrectifnecessary:-CoV-2), specific efforts were made to mitigate viral transmission and

impact in Indigenous Tsimane communities of the Bolivian Amazon. This effort raised key

questions regarding how the disease might spread in remote, small-scale populations and

whether a multistage plan emphasizing a prevention strategy of voluntary collective isolation

(self-isolation at the group level promoting limited interaction with outsiders) followed by

contact tracing and a targeted distribution of available medical resources could be effective [6].

For example, which features of Indigenous communities (e.g., size, density, location) render

them most vulnerable to COVID-19? How much safer are remote communities than commu-

nities located near market towns? How is COVID-19 likely to spread once it has reached rural

communities? Are certain subgroups (e.g., by age or sex) more likely to be exposed and trans-

mit disease? How strict must voluntary collective isolation be in order to succeed? Should

travel restrictions extend to within the Indigenous territory, and to the most remote regions?

Controlling disease outbreaks among Indigenous communities is complicated by a paucity of

detailed information on social organization and mobility, and socioecological features of these

populations that poorly fit the assumptions of standard epidemiological models commonly

used in urban, industrialized contexts [17,18].

Contact networks and thus disease transmission dynamics are directly influenced by certain

demographic, organizational, and political features shared by many small-scale societies, such

PLOS BIOLOGY Infectious disease dynamics in a small-scale society
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population used as input for the model are highly

identifiable (GPS locations of households,

individual household sizes, ages, and sexes, etc.)

and thus are not publicly available. Individual-level

data are stored in the Tsimane Health and Life

History Project (THLHP) Data Repository, and are

available through restricted access for ethical

reasons. THLHP’s highest priority is the

safeguarding of human subjects and minimization

of risk to study participants. The THLHP adheres to

the “CARE Principles for Indigenous Data

Governance” (Collective Benefit, Authority to

Control, Responsibility, and Ethics), which assure

that the Tsimane 1) have sovereignty over how

data are shared, 2) are the primary gatekeepers

determining ethical use, 3) are actively engaged in

the data generation, and 4) derive benefit from data

generated and shared for use whenever possible.

The THLHP is also committed to the “FAIR Guiding

Principles for scientific data management and

stewardship” (Findable, Accessible, Interoperable,

Reusable). Requests for individual-level data

should take the form of an application that details

the exact uses of the data and the research

questions to be addressed, procedures that will be

employed for data security and individual privacy,

potential benefits to the study communities, and

procedures for assessing and minimizing

stigmatizing interpretations of the research results

(see the following webpage for links to the data

sharing policy and data request forms: https://

tsimane.anth.ucsb.edu/data.html). Requests for

individual-level data will require institutional IRB

approval (even if exempt) and will be reviewed by

an Advisory Council composed of Tsimane

community leaders, community members, Bolivian

scientists, and the THLHP leadership. The study

authors and the THLHP leadership are committed

to open science and are available to assist

interested investigators in preparing data access

requests.
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as “bottom-heavy” age pyramids, close residential proximity of intergenerational households

coupled with communal living that facilitates transfers of food and other resources, and rela-

tively egalitarian decision-making at the group level (e.g., [19]). The metapopulation structure

of some groups—consisting of separate villages connected via kinship, visitation, and trade,

and with variable contact patterns with “outsiders” (non-Indigenous individuals living outside

Indigenous territories)—differs markedly from that of large-scale urban contexts. Standard

epidemiological models, particularly deterministic compartmental models that assume suffi-

ciently large, well-mixed populations [20], are therefore unlikely to be useful for guiding public

health decisions in many small-scale Indigenous communities that are relatively isolated from

major urban centers. Fortunately, there is now widespread recognition that the structure of

contact networks affects epidemiological outcomes [20] and new mathematical models have

been developed that are capable of representing underlying network structures (e.g., [21–23])

and spatial organization [24]. These individual-based models integrate biological and social

phenomena to investigate the underlying mechanisms driving infectious disease transmission

dynamics [25] across diverse social and environmental contexts [26].

To explore the dynamics of infectious disease transmission and potential intervention strat-

egies in rural, small-scale, Indigenous societies, we developed an individual-based stochastic

network model that incorporates realistic features derived from long-term, longitudinal

empirical data from one Indigenous population, the Tsimane forager-horticulturalists of low-

land Amazonian Bolivia (Fig 1) [27]. The Tsimane are a largely autonomous subsistence popu-

lation inhabiting a territory outside of urban centers; their social organization can be

Fig 1. Diagram of the modeling procedure. Empirical data on macro- and microlevel social processes describing the

study population are used to fit a generative TERG model. When dynamic networks are simulated from non-

degenerate TERGMs, resulting network properties stochastically reproduce target statistics (age/sex homophily,

interactions with genetic kin, etc.) in expectation. Custom modules are applied in conjunction with network

simulation to implement SEIRD transitions and move individuals between villages and to town. Zero cases are seeded

in the population at the beginning of each simulation, with initial infectious disease seeding occurring during travel to

town. Infections are transmitted probabilistically based on contacts in resulting networks and input parameters.

Individual outcomes are tracked in a transmission matrix allowing for postsimulation analysis.

https://doi.org/10.1371/journal.pbio.3002108.g001
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SARS-CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2; SEIRD, susceptible-exposed-

infectious-recovered-death; TERGM, temporal
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characterized as a dispersed metapopulation of tightly knit, kin-based communities in a rural

region with limited access to modern medical resources. This suite of characteristics is com-

mon to a broad range of Indigenous societies globally, making the well-described Tsimane

case study a useful reference for understanding infectious disease dynamics and effective inter-

vention strategies in other Indigenous populations.

We begin by drawing on extensive data collected over the past 2 decades to characterize Tsi-

mane social networks, mobility, spatial structure, and demography. The resulting high-resolu-

tion description of this system is then used to parameterize a dynamic metapopulation

network model representing the complete adult population of Tsimane living in 65 villages (n
= 7,269 individuals). Networks evolve dynamically over the course of simulation, with mobility

parameters governing visitation to market towns and travel between Tsimane communities.

We use parameters that reflect the characteristics of SARS-CoV-2 to simulate the introduction

(from contact with urban Bolivians) and spread of disease among Tsimane. We evaluated (1)

how socioecological features of an Indigenous small-scale society influence the extent and tra-

jectory of infectious disease (COVID-19) spread at the population-level; (2) community- and

individual-level risk factors for susceptibility to infection; and (3) the effect of potential inter-

ventions (i.e., travel restrictions either to town or between villages, altering disease transmissi-

bility in towns or within villages [e.g., via facial coverings] and restricting within-village

gatherings) on the final outbreak size and trajectories of epidemics. Finally, we compare our

model results to observed outcomes based on seroassays from 612 Tsimane individuals mea-

sured after a first wave of COVID-19 infection in this population, assessing outcomes at the

population level, by sex, and by community.

Results

We first present results on total outbreak size by describing cumulative incidence of infection

at the population, community, and individual levels from our baseline model, which adopts

standard parameters associated with SARS-CoV-2. We then examine disease trajectories by

examining the timing of infections, with special attention to explaining variability among com-

munities. Finally, we examine the efficacy of several potential intervention strategies by exam-

ining how epidemiological outcomes respond to changes in model parameters.

Total outbreak size

Population level. Our baseline model predicts extremely high cumulative incidence

(mean [95% percentile interval] = 80.9% [79.2, 82.3]) and relatively few deaths (mean [95%

CI] = 31.4 [22.0, 38.5]) at the population level after the epidemic runs its course over 150 days

and implementing a relatively modest transmissibility parameter (Fig 2A and Table 1). Epide-

miological trajectories at the population level varied little across model runs despite a heteroge-

neous metapopulation and stochasticity in both network formation and movement patterns.

Although the trajectory of disease spread appears to track the artificially imposed profile of

infection probability at the source (town), the observed exponential increase in infections at

early time points is driven almost entirely by within-village transmission, seeded through

travel to town or other villages where the epidemic was already introduced (Fig 3). A visual

example of this process in a single community is available as a supplementary animation

(S2 Fig) in which a single individual is exposed at t = 17–18 while traveling to town, subse-

quently sparking a local epidemic.

Community level. Median outbreak size at the community level (proportion infected

after 150 simulation days) was 0.83 (SD = 0.08, range = 0.42–1.0) across all model simulations

(S1 Fig). Under baseline conditions, no communities consistently avoided introduction of the

PLOS BIOLOGY Infectious disease dynamics in a small-scale society
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disease across simulations (Fig 2B). This suggests that even the smallest, most remote commu-

nities are at significant risk. Although smaller communities had more variable disease trajecto-

ries than larger communities (Figs 2B and S1), smaller communities consistently experienced

more severe outbreaks compared to larger communities controlling for density, community

centrality, and distance to town (β [95% CI] = −0.270 [−0.39, −0.16]; Table 2: column 1 and

Fig 4B). Distance to the nearest market town, average community density, and community

betweenness centrality (based on the travel network), in contrast, had no discernable effect on

community outbreak size (Fig 4A–4D and Table 2).

Individual level. Models of individual infection probability largely recapitulate commu-

nity-level results but offer the opportunity to examine individual attributes (e.g., age, sex,

household size, local neighborhood density). Adjusting for community properties, including

community size, distance to town, and average community density, probability of individual

infection by the end of simulation was associated with all individual predictors tested: Individ-

uals who were older, female, lived in a more densely populated neighborhoods closer to the

center of the community, and in bigger households had a higher probability of infection by the

end of the simulation (Table 3: Model 1) and experienced earlier infection times (Fig 5 and

Table 3: Model 2). Of these factors, neighborhood density and household size had by far the

largest standardized effect sizes (0.39 and 0.73, respectively), whereas age and sex effects were

relatively weak (Fig 5A and 5B versus Fig 5C–5F).

Disease trajectories: Timing of onset and maximal spread

Population level. Trajectories of exposure and infection varied little across model simula-

tions despite large variation in where local outbreaks occurred first (Fig 2). The number of

infected individuals in the population peaked consistently around days 50 to 60, which is near

the point at which infections due to town visitation were diminishing (S4 Fig).

Fig 2. Baseline scenario model results for (A) the proportion of individuals in SEIRD compartments over time, and (B) cumulative proportion of infected

individuals by community. Communities in (B) are ordered according to increasing community size (labeled by panel) and are colored according to distance of

community from town. The data underlying this Figure can be found in http://doi.org/10.17605/OSF.IO/7YB2M (files: https://osf.io/jb5x7, https://osf.io/yar47,

https://osf.io/p2shn).

https://doi.org/10.1371/journal.pbio.3002108.g002
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Community level. In contrast to total outbreak size, the shapes of disease trajectories

were influenced by several community-level variables. The time of first infection, which

describes how early the disease arrived in a particular community, was later for communities

that were smaller, farther from town, and less densely populated (Fig 4E–4H and Table 2: col-

umn 2). This result is consistent with the observation that people from communities near

towns travel to those towns at greater frequency and also reflects the greater probability of

infection arriving earlier in communities with more individuals.

Likewise, the time at which the proportion of infectious individuals in a village reached

maximum was earlier in communities that are closer to town and smaller in size but was unre-

lated to community density or centrality (Fig 4I–4L and Table 2: column 3). Holding other

covariates at their means, a community in the 10th percentile for community size and distance

from town would reach peak proportion infectious 11 days earlier (54 versus 65 days) than a

community in the 90th percentiles for those same variables.

Finally, the maximum proportion infectious at any given time is a useful measure of the

rate and intensity of disease spread, as it indicates the per-capita number of active infections

that require medical treatment or are liable to continue spreading the disease. In contrast to

the time of first infection or the time of maximum proportion infectious, this outcome was

strongly influenced by only community size, translating to an 11% higher peak proportion of

infectious adults for a community in the 10th percentile for size relative to the 90th percentile

(0.294 versus 0.187) (Fig 4M–4P and Table 2: column 4).

Table 1. Input parameters for the baseline model.

Parameter Description Value Source/rationale

Transmissibility Probability of infection given one

contact between susceptible and

infectious individual.

0.05 This parameter poorly known given that it varies based on local

environment (outdoor vs. indoor, humidity, etc.), the nature of

spread (aerosol, fomite, direct contact), and tremendous

variability in the nature of interpersonal interaction (e.g.,

repeated contact within a household vs. transient interaction).

The value specified corresponds with the mid-lower end of the

range of the pooled estimate reported in the meta-analysis of

SARS-CoV-2 secondary attack rate [60] and is similar to the

secondary attack rate reported for some studies in relatively

similar environments [61]. See S1 Text section “Transmissibility

parameter” for more details.

Contact rate Number of repeated contacts per

day

1 Arbitrarily set such that transmissibility equals effective contact

rate.

Exposed

(noninfectious)

duration

Number of expected days between

exposed and infectious states.

3 Meta-analysis of studies in China [62], showing a median

incubation period of 5 days and assuming that individuals are

infectious a few days prior to showing symptoms.

Infection duration Number of expected days between

entering infectious state and

recovery or death.

Mean = 10 days [63] CDC guidance suggesting individuals remain infectious up

to 10 days: (https://www.cdc.gov/coronavirus/2019-ncov/hcp/

duration-isolation.html)

Age-specific case

fatality rate

Probability of death instead of

recovery at end of infectious period,

by age.

See source IFR values from Table 1 in [59]

Town infection risk Probability of exposure during a

single time step (1 day) in town

Truncated normal distribution

(max = 0.05, min = 0, start = day 0,

end = day 60); see S4 Fig

Based on single-wave infection dynamics, with maximum

corresponding to effective contact rate within-community.

Town visit duration Length of time individuals stay in

town when traveling.

1 Based on observation that many trips occur for brief economic

reasons.

Intercommunity visit

duration

Length of time individuals stay in

nonresident communities when

traveling.

1 Simplifying assumption, such that the overall probability of

intercommunity travel is matched on average by sampling travel

probability each day.

https://doi.org/10.1371/journal.pbio.3002108.t001
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Fig 3. Incidence of new cases contracted in town versus within-communities in the baseline model. Lines and shaded regions

represent mean and 95% percentile intervals across model runs. The data underlying this Figure can be found in http://doi.org/10.

17605/OSF.IO/7YB2M (files: https://osf.io/jb5x7).

https://doi.org/10.1371/journal.pbio.3002108.g003

Table 2. Regression model results for community-level predictors of total outbreak size (proportion infected), time of first infection, time of maximum proportion

infectious, and maximum proportion infectious1. In addition to the fixed effects shown (all z-scored), the models include a random intercept effect for community

across simulations. Effect sizes represent mean [95% bootstrapped CI]. Effects whose 95% CIs do not overlap with zero are bolded.

Dependent variable:

Proportion

infected

Time of first infection Time of max proportion infectious

(days)

Max proportion infectious at any

given time

(1) (2) (3) (4)

ln Community size

(# individuals)

−0.270

[−0.386, −.161]

−0.150

[−0.181, −0.116]

0.033

[0.013, 0.052]

−0.042

[−0.049, −0.034]

ln Community density

(mean individuals within 1 km

radius)

0.055

[−0.066, 0.170]

−0.059

[−0.093, −0.027]

−0.019

[−0.040, 0.001]

0.003

[−0.006, 0.010]

ln Community centrality

(betweenness + 1)

−0.047

[−0.108, 0.015]

−0.005

[−0.022, 0.012]

0.003

[−0.009, 0.013]

−0.003

[−0.008, 0.001]

Distance to town (km) −0.005

[−0.077, 0.064]

0.063

[0.043, 0.085]

0.038

[0.025, 0.050]

0.003

[−0.002, 0.008]

Intercept 1.598

[1.535, 1.658]

2.972

[2.954, 2.993]

4.066

[4.055, 4.077]

0.243

[0.239, 0.247]

Observations 6,500 6,500 6,500 6,500

Model type (error distribution) GLMM (binomial) GLMM (negative

binomial)

LMM

(Gaussian)

LMM

(Gaussian)

1Although there is some correlation between predictor variables, particularly community size and density (S7 Fig), multicollinearity was reasonably low (max VIF = 3.0).

https://doi.org/10.1371/journal.pbio.3002108.t002

PLOS BIOLOGY Infectious disease dynamics in a small-scale society

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002108 August 22, 2023 7 / 29

http://10.0.68.197/OSF.IO/7YB2M
http://10.0.68.197/OSF.IO/7YB2M
https://osf.io/jb5x7
https://doi.org/10.1371/journal.pbio.3002108.g003
https://doi.org/10.1371/journal.pbio.3002108.t002
https://doi.org/10.1371/journal.pbio.3002108


Potential interventions

Perturbations of model parameters revealed variability in the effectiveness of different inter-

vention strategies in a Tsimane-like socioecology: restricting mobility, altering disease trans-

missibility, and restricting within-community gatherings.

Fig 4. Community-level predictors of infection risk. First row (A-D): cumulative proportion exposed/infected; Second row (E-H): time step at which first

infection was identified in community; Third row (I-L): time step at which the proportion of individuals actively infectious in a community reached a

maximum during simulation; Fourth row (M-P): maximum proportion of individuals that were actively infectious at any time during simulation. Each

outcome (row) is plotted as a function of community distance to nearest market town (first column), community size (second column), community density

(third column), and ln+1-transformed community betweenness centrality (measured using an algorithm for weighted, directed graphs, with weights equal to

the visitation probabilities from the travel sociomatrix used in the model) (fourth column). Points and intervals represent means ± SD. Smooths are unadjusted

LOESS (locally estimated scatterplot smoothing) fits with span = 0.75. The data underlying this Figure can be found in http://doi.org/10.17605/OSF.IO/7YB2M

(files: https://osf.io/jb5x7, https://osf.io/vtp3w).

https://doi.org/10.1371/journal.pbio.3002108.g004
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Restricting mobility. Restricting travel to town, travel between villages, or all travel

simultaneously by 50% had essentially no impact on disease outcomes at the population level

(Fig 6A–6C). More severe travel restrictions (up to 90% reduction) either to town or between

villages alone also had minimal impact on the cumulative proportion of infected individuals in

the population by the end of simulation (Fig 6A and 6B). Extreme (90%) reductions in both

town and between-community travel applied simultaneously were required to substantially

slow transmission (approximately twice as long for epidemic to reach conclusion) and to

reduce the overall proportion infected during the epidemic (approximately 15% reduction), a

scenario that was also associated with much more variability across model runs (Fig 6C).

Importantly, severely reducing town travel alone had little effect on final outbreak size but

modified trajectories such that the timing of peak transmission was delayed; average time to

reach 90% of total infections was 80 (95% percentile interval = [75, 85]) versus 108 [97, 118]

days for the baseline versus 90% reduced travel, respectively (Fig 6A).

Altered disease transmissibility. In contrast, changes to transmissibility noticeably

altered epidemiological outcomes. Doubling transmissibility led to 96% [95.8, 96.8] mean

cumulative infection in the population, whereas halving transmissibility reduced the average

cumulative incidence to 35% [31.3, 39.3] by the end of simulation (Fig 6D). Such reductions in

transmissibility could be accomplished by the use of face coverings, vaccines, or novel disease

variants. However, the fifth model scenario tested, in which transmissibility was altered solely

at the disease source (town), demonstrated only a modest difference in disease trajectories and

almost no difference in final outbreak size (Fig 6E). This suggests that efforts to encourage the

use of facial coverings or increased caution when traveling to market towns and interacting

with outsiders, absent of other interventions, is unlikely to be an effective mechanism of epi-

demic control in situations where the potential for rapid within-community spread is high.

Table 3. Models of individual infection risk. The GLMM included simulation, community, and individual as ran-

dom intercepts, and model effects are presented as mean [95% CI]. Multilevel Bayesian hazard models included only a

community random intercept and were run separately across simulations. Coefficients for M-splines describing the

baseline hazard (with 7 df) are not shown. Posteriors were combined without weighting and effects are presented as

median [95% CI]. Effects are bolded if CIs do not overlap zero.

Binomial GLMM

(1)

Multilevel M-splines hazard model

(2)

Intercept 1.726

[1.583, 1.869]

0.582

[0.439, 0.714]

Age 0.098

[0.085, 0.110]

0.046

[0.010, 0.084]

Sex (baseline = female) −0.230

[−0.255, −0.205]

−0.090

[−0.168, −0.018]

Neighborhood density (# individuals within 1 km of

focal)

0.389

[0.369, 0.410]

0.197

[0.117, 0.285]

Distance to center of community (km) −0.191

[−0.208, −0.174]

−0.104

[−0.181, −0.031]

Adult household size 0.731

[0.715, 0.746]

0.316

[0.261, 0.369]

Community distance to town (km) 0.020

[−0.102, 0.142]

−0.042

[−0.171, 0.097]

Ln-Community size (# of individuals) −0.367

[−0.552, −0.182]

−0.219

[−0.414, −0.033]

Ln-Average community density −0.211

[−0.392, −0.031]

−0.071

[−0.256, 0.129]

Observations 726,900 726,900

Number of events 587,806 587,806

https://doi.org/10.1371/journal.pbio.3002108.t003
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Within-community gatherings. Repeated local gatherings can substantially increase both

the speed of outbreaks and final outbreak size (Fig 6F). Adding gatherings that mimic commu-

nity meetings, church, or sporting events (occurring every 7 days), even relatively small events

like parties or other social occasions (attended by 25% of the community) at this interval rap-

idly pushed the population to over 90% infected by the end of simulations. Higher attendance

(50%) had an even stronger effect (Fig 6F). Although we did not explore scenarios combining

the effects of gatherings and other interventions, it is likely that gatherings (which, in reality,

are more frequent and occur for a variety of purposes, e.g., birthday parties) could offset any

gains achieved by severe travel restrictions.

Comparing simulations to real-world outcomes

Preliminary data on COVID-19 prevalence among Tsimane suggests that our baseline model

accurately predicts empirical outcomes in this population, with an overall empirical adjusted

[28] positivity rate of 81.1% (crude positivity rate = 75.7%) across communities following the

first wave of infections [29]. In comparison, simulations predicted a mean cumulative inci-

dence of approximately 80%. Likewise, the timing of the peak of observed positive cases

occurred between approximately 40 and 60 days after initial infection [29], close to model pre-

dictions of 50 to 60 days. The model also accurately predicted a similar, but slightly female

Fig 5. Individual-level predictors of infection risk. Cumulative proportion exposed/infected as a function of (A) neighborhood density (the number of

individuals living within 1 km of focal), (B) household size, (C) distance to nearest market town (km), (D) community size (# individuals), (E) age (years), and

(F) sex. The data underlying this Figure can be found in http://doi.org/10.17605/OSF.IO/7YB2M (files: https://osf.io/nmpfb, https://osf.io/2m4sp, https://osf.io/

agyx7, https://osf.io/75u8w, https://osf.io/j25ku).

https://doi.org/10.1371/journal.pbio.3002108.g005

PLOS BIOLOGY Infectious disease dynamics in a small-scale society

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002108 August 22, 2023 10 / 29

http://10.0.68.197/OSF.IO/7YB2M
https://osf.io/nmpfb
https://osf.io/2m4sp
https://osf.io/agyx7
https://osf.io/agyx7
https://osf.io/75u8w
https://osf.io/j25ku
https://doi.org/10.1371/journal.pbio.3002108.g005
https://doi.org/10.1371/journal.pbio.3002108


biased, cumulative incidence of infections between the sexes (observed adjusted seropositivity:

male = 80.5% female = 81.5%; model: mean cumulative incidence male = 79.7%,

female = 82.1%).

As a finer test of our predictions, we also compared model predictions to empirical cumula-

tive incidence outcomes at the community level. The slope of the relationship between average

model cumulative incidence and empirical crude seropositivity was close to 1 (β ± (SE) = 1.18

(1.87); Fig 7), demonstrating reasonable predictive power of our simulations. Likewise, the

mean absolute deviation in community cumulative incidence (|simulated community mean–

observed|) was 0.082, with an average deviation of −0.001, indicating that model errors were

centered around zero. Interestingly, the largest outlier in this comparison (lowest point shown

on Fig 7) represents a community for which social contacts data were available and was thus

included in our statistical model used to estimate mean degree; examining the random effects

structure of the empirical model reveals that this community had a strong, negative value of the

random intercept term for cumulative contacts, indicating that individuals in that community

interact much less frequently than those in an average community. This suggests that more

fine-grained measures of the type reported here could help to further refine our model. Finally,

as predicted by our model, communities located farther from market town did not have lower

observed cumulative incidence compared to those in closer proximity to town (S5 Fig).

Fig 6. Epidemic trajectories of alternate model scenarios, with modified parameters for (A) travel to town, (B) intervillage travel, (C)

both travel to town and intervillage travel, (D) attack rate (probability of infection spreading from infected to susceptible individual over

1 day of contact), (E) probability of contracting disease while visiting market town, (F) local aggregation events (with denoted

percentage of community coming together at a regular time interval). All scenarios are depicted relative to baseline (black), with red-

blue colors depicting degree of increase–decrease in target parameter. The data underlying this Figure can be found in http://doi.org/10.

17605/OSF.IO/7YB2M (files: https://osf.io/9qgpr, https://osf.io/57bm8, https://osf.io/gp8sn, https://osf.io/tewp4, https://osf.io/p8aqr,

https://osf.io/4xdhc, https://osf.io/vp562, https://osf.io/42kxf, https://osf.io/anfhz, https://osf.io/hav6t, https://osf.io/xjubn, https://osf.io/

h5fxe, https://osf.io/f798u, https://osf.io/a5cvm, https://osf.io/ykt52, https://osf.io/cer5h).

https://doi.org/10.1371/journal.pbio.3002108.g006

PLOS BIOLOGY Infectious disease dynamics in a small-scale society

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002108 August 22, 2023 11 / 29

http://10.0.68.197/OSF.IO/7YB2M
http://10.0.68.197/OSF.IO/7YB2M
https://osf.io/9qgpr
https://osf.io/57bm8
https://osf.io/gp8sn
https://osf.io/tewp4
https://osf.io/p8aqr
https://osf.io/4xdhc
https://osf.io/vp562
https://osf.io/42kxf
https://osf.io/anfhz
https://osf.io/hav6t
https://osf.io/xjubn
https://osf.io/h5fxe
https://osf.io/h5fxe
https://osf.io/f798u
https://osf.io/a5cvm
https://osf.io/ykt52
https://osf.io/cer5h
https://doi.org/10.1371/journal.pbio.3002108.g006
https://doi.org/10.1371/journal.pbio.3002108


Discussion

Our empirically parameterized network model predicts a high potential rate of epidemic

spread (approximately 80% cumulative incidence) for an infectious disease like COVID-19

entering a remote Indigenous community from an outside source, with a high degree of het-

erogeneity in the probability of becoming infected at the community and individual levels (Fig

2). At the community level, subpopulation size is the strongest predictor of total outbreak size

and both the timing of first infection and the maximum instantaneous proportion of infec-

tions. Community density and proximity to town also contribute substantially to how quickly

disease first reached a particular village (Table 2). At the individual level, infection is more

likely among older adults, women, and individuals living in denser neighborhoods, larger

households, and located more centrally in the community (Table 3). Tests of multiple inter-

vention scenarios suggest that mobility restrictions (e.g., collective isolation) have little impact

Fig 7. Comparison of model predictions and empirical estimates of COVID-19 prevalence in Tsimane communities. Communities were only included if

they had a reasonable number of samples (>20). Points and intervals represent average model outcomes and bootstrapped 95% CIs, respectively. The size of

points corresponds with the number of people sampled for SARS-CoV-2 antibodies in a given Tsimane community. Fitted line (solid, red) represents a

weighted linear regression with weights equal to empirical sample sizes in each community. Dotted line represents a 1:1 relationship between model

predictions and empirical outcomes. The data underlying this Figure can be found in http://doi.org/10.17605/OSF.IO/7YB2M (files: https://osf.io/3m7he,

https://osf.io/jb5x7, https://osf.io/vtp3w).

https://doi.org/10.1371/journal.pbio.3002108.g007
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between communities, whereas even minor reductions in transmissibility achieved through

pharmaceutical and other interventions can effectively reduce disease spread and total out-

break size (Fig 6).

These findings suggest that rural Indigenous populations like the Tsimane exhibit both

structural vulnerabilities and potential resiliencies against epidemics [6]. We next consider our

results as they relate to each of our guiding questions.

What features of Tsimane socioecology affect susceptibility to epidemics?

It is well known that historical epidemics in many Indigenous populations have had devastat-

ing effects due to widespread immunological naivety [2,30]. Less well understood, however,

are the effects of geography, metapopulation structure, social organization, and other local

characteristics. A study of the 1918 influenza epidemic, for example, found that factors beyond

isolation and previous exposure were necessary to explain higher mortality in aboriginal com-

munities, including higher concurrent infectious disease rates, greater crowding, lower genetic

diversity, and poor access to primary care [4].

The model developed here provides a theoretical basis for considering how socioecological

factors govern susceptibility to epidemics, particularly as Indigenous communities become

more integrated into market economies. We find that the interconnected metapopulation

structure of communities—as represented by a series of increasingly remote Tsimane villages

spread along rivers and roads—reduces the extent to which geographical distance alone facili-

tates isolation and protection. For example, simulated outbreaks spread in a chain-like fashion;

once the disease is introduced, high rates of travel to nearby communities encourages prolifer-

ation along a local gradient (S3 Fig). Analogous to species persistence in classic ecological

models, metapopulation structure with migration can affect disease persistence and the sus-

ceptibility of differently sized local populations in complex ways [31,32]. In our model-based

simulations, these dynamics may account for the inability of any single community to avoid

severe outbreaks across simulations.

Additionally, analysis of the empirical data underlying our model helps explain high rates

of simulated infections. Daily contact with other community members estimated from obser-

vational social network data is frequent and heterogeneous (low homophily) by age and sex,

unlike in industrialized populations where formal institutions tend to structure interactions

[33]. The combination of intergenerational mixing and large numbers of within-household

contacts may promote transmission of infectious disease by large droplets or small droplet

nuclei, as has also been shown in South African townships [34]. Although interactions among

Tsimane are biased towards genetic and affinal kin and those living in close proximity, this

bias is not strong enough to offset high connectedness across communities. Likewise, travel to

market towns and between villages is frequent (mean empirical probabilities of intervillage

travel and travel to town are 9% and 4% of days, respectively). Although young men were the

most likely to travel to town, travel rates are high enough across age-sex classes that meaning-

ful mobility restrictions would have to target large swaths of the population to be effective. In

sum, once a SARS-CoV-2-like virus enters an Indigenous population with similar socioecolo-

gical characteristics as the Tsimane, viral spread is likely to occur quickly due to cultural and

behavioral factors such as high connectivity and mobility, communal living, and shared meals/

households [35].

Human populations worldwide are also resilient via local strategies for coping with epidem-

ics. One well-documented example is the response of central Africans to Ebola outbreaks,

which included the abandonment of areas known to be disease epicenters, local prohibitions
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against travel in and out of villages, mandated quarantine protocols, and a shift away from nor-

mal cultural practices such as large funerals [36]. Reviewing the ethnographic literature,

McGrath [37] reported a range of common responses to epidemics that are likely ancient,

most notably fleeing, migration, and quarantine/isolation measures. We concur with others

that interventions building off of such existing local mechanisms are the most likely to be suc-

cessful [36].

The Tsimane exhibit notable resiliency in several ways. For example, many families main-

tain separate houses located near their horticultural fields, farther away from village centers.

They often inhabit those houses during the wet season rice harvest, but also during periods of

conflict or turmoil. Movement into these residences during disease outbreaks could potentially

be leveraged to reduce population densities and flatten epidemic trajectories. Tsimane subsis-

tence production also affords self-sufficient individuals the ability to survive independent of

store-bought market resources and associated contact risks [6]. Although this is changing with

increasing market integration [38], and although we are skeptical of the protection afforded by

isolation per se, the Tsimane are nonetheless capable of distancing themselves from broader

social contacts in a way that other populations are not. It is therefore possible that highly effec-

tive voluntary collective isolation could be achieved when cultural models of disease react to a

threat that is perceived to be extremely dire, as observed during Ebola outbreaks in Africa [36].

Individual and community risk factors

Our results also have implications for how medical resources might be distributed in certain

remote populations in advance of an impending epidemic. Overall, our simulations demon-

strated only moderate heterogeneity in both the timing and magnitude of peak infection within

communities (Fig 2B). We found that outbreak size was proportionally largest in the smallest

communities and that first and peak infections occur earliest in communities that are near mar-

ket towns (Figs 2 and 4 and Table 2). Perhaps surprisingly, our empirical model of daily contacts

indicated that community size has minimal effect on contact rates, with a slight but highly

uncertain trend towards a higher number of unique daily contacts in smaller communities.

Overall network density is therefore higher in smaller communities if mean degree is similar

across communities of different size. The importance of local density as a key driver of individ-

ual infection risk (Table 3) in metapopulations also concords with a large body of existing work

[39,40], but our high overall infection outcomes challenge the conclusion of Li and colleagues

[39] that epidemics are necessarily limited in relatively low-density populations.

Contrary to our intuitions, proximity to town and community centrality (betweenness) had

little apparent effect on the magnitude of community infections (Table 2). Our results suggest

that maximum public health impact may be achieved by focusing limited medical and messag-

ing resources not on large, dense communities close to town where an infectious disease is

most likely to arrive first, but rather preferentially towards small outlying communities where

outbreaks are likely to be most severe. Alternatively, predictions of community trajectories

suggest that mobile medical resources during an incipient outbreak could be distributed

according to a combination of village location and size and then redistributed dynamically as

villages farther from town reach peak infection.

Driven by heterogeneity in empirically estimated microlevel processes that govern individ-

ual network structure in the Tsimane population (e.g., individual attributes, travel proclivities,

and spatial layout), our model makes testable predictions about factors likely to elevate indi-

vidual risk of infection in an epidemic. In order of decreasing importance, these include larger

household size, higher neighborhood density, greater proximity to the center of a community,

female sex, and older age (Table 3). People who live close to the village center may also be

PLOS BIOLOGY Infectious disease dynamics in a small-scale society

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002108 August 22, 2023 14 / 29

https://doi.org/10.1371/journal.pbio.3002108


more likely to participate in aggregations or events typically held in these locations, and thus

the observed effect could be exacerbated under more realistic conditions. Although men were

at a slightly lower risk than women, likely due to men having a marginally lower mean network

degree, the magnitude of this effect was small (Fig 5) and the greater mobility of men means

that sex plays an important role in initial disease introduction. These results concord with

findings in similar systems demonstrating the effects of intense within-household mixing and

contact [41] and suggest that spatial density can play an important role in epidemics and may

thus help guide public health efforts.

The coupling of detailed modeling with empirical sampling of disease outcomes in the

same population lends further insight into the drivers of transmission in this system. Overall,

comparison suggests that baseline predictive performance of the model was quite good (Fig 7)

using baseline parameters representative of SARS-CoV-2 (Table 1) and long-term data on

social interaction and mobility in Tsimane communities. Tracking network evolution and epi-

demic spread over time reveals a straightforward path by which large communities near mar-

ket towns experience early introductions of infection, followed by rapid spread within and

between close neighboring communities. Sequential spread driven by intercommunity travel

ensues, rendering even the most remote communities vulnerable to outbreaks; an unfortunate

outcome mirrored in empirical observations of Tsimane communities located on a gradient

from approximately 10 to 70 km from the nearest market town (S5 Fig). In addition, we can

understand a small female bias in infection rates in both model and empirical outcomes in

light of social network data showing that women have a slightly larger number of daily con-

tacts, but with a lack of strong sex homophily in those interactions that precludes the develop-

ment of a large overarching disparity. Finally, community-level comparisons, particularly

where observed outcomes do not match expectation, reveal areas for theoretical model

improvement. For example, and as noted earlier, the outlier in Fig 7 may be explained by com-

munity heterogeneity in contact rate and social network structure due to unexplained factors,

suggesting an important target of future research that could help elucidate protective mecha-

nisms that do not rely on top-down intervention. The strength of the individual-based net-

work modeling approach demonstrated here, as compared to a deterministic compartmental

model of disease transmission, is that our model naturally accommodates metapopulation

structure, mobility dynamics, and social network structure along with stochasticity to yield

predictions about heterogeneity in infection outcomes; understanding such heterogeneity is

critical to addressing our motivating questions regarding whether certain community or indi-

vidual subgroups are at greater risk for infection during an epidemic.

Intervention strategies: Is voluntary collective isolation effective?

Remoteness is an epidemiological double-edged sword. On the one hand, remoteness can pre-

vent the introduction of disease into communities altogether, such as the approximately 19%

of Alaskan populations that avoided exposure to the A(H1N1) virus in 1918 to 1919 [42]. On

the other hand, a history of contact can reduce immunological naivety and thus decrease mor-

tality rates when epidemics reach Indigenous populations [4]. Faced with a globally novel virus

like SARS-CoV-2 where all populations were initially naïve, we advocated for voluntary collec-

tive isolation as part of a broader mitigation strategy for the Tsimane, given their potential for

self-sufficiency, relative lack of available personal protective equipment or vaccines, and lim-

ited access to medical facilities [6], and many Indigenous communities worldwide imple-

mented similar isolation protocols [11,13].

To test the theoretical efficacy of voluntary collective isolation, we ran model simulations to

test for effects of restricted travel to town, between communities, or both. We found that these
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mechanisms achieved minimal effect on the magnitude of disease outbreaks unless imple-

mented at a severe level (Fig 6). Critically, our results suggest that intervention success requires

reductions of both travel outside of Tsimane territories and visitation to other Tsimane com-

munities. The latter is much more difficult to control using a top-down approach and likely to

be more difficult to achieve socially.

Models of highly disparate systems have demonstrated that reduced travel in metapopula-

tions can delay the timing of peak infections but are unlikely to affect final epidemic size unless

implemented with high efficacy early in outbreaks [43,44]. Indeed, models of crude historical

records of individuals from rural Canada during the 1918–1919 influenza epidemic were used

to demonstrate the inefficacy of quarantine as a protective strategy for isolated communities

under all but the most extreme conditions [45], in agreement with the results we present here.

Partial isolation therefore does not appear to be effective at reducing outbreak severity,

although it may prove useful for slowing the regional spread of an epidemic to relieve pressure

on medical resources. Indeed, relatively insulated populations like the Amish in the United

States appear to have experienced COVID-19 mortality rates similar to the broader US popula-

tion [46]. Given that complete isolation is unlikely achievable for Tsimane or many other rural

subsistence populations, our results challenge the efficacy of the collective isolation approach

and suggest that modern medical resources, perhaps via establishment of rural health posts

that serve villages directly, must be directed to remote communities. Isolation should thus be

viewed as a strategy to delay transmission until sufficient medical resources are available rather

than a path to complete protection [6], as underscored by recent outcomes in China following

the end of a governmental “zero-COVID” policy [47].

More broadly, available evidence suggests that among Indigenous populations, voluntary

collective isolation is undermined by the following: (1) conditions that promote the majority

of disease spread occurring between and within communities after introduction, and not con-

tingent on repeated arrivals from regional urban centers (Fig 3); (2) a high degree of autonomy

and lack of top-down control, where villagers “vote with their feet,” making enforcement diffi-

cult; and (3) changing socioeconomic conditions that make interaction with outsiders critical

to local livelihoods. Extreme isolation has been effective in preventing the arrival of epidemics

in some instances in the past, such as Arctic populations during the 1918 influenza [4,42], but

contemporary conditions are not comparable in the extent of isolation. The simulations pre-

sented here based on Tsimane data—combined with the context in which most Indigenous

populations live today—provide further evidence that controlled contact with relatively iso-

lated populations, mediated by cultural experts and health professionals, may be critical to

avoiding the decimation of remaining isolated Indigenous communities [48].

To date, we have observed a variety of self-isolation procedures by Tsimane to limit the

spread of COVID-19 into communities, including blockading roads to limit travel [6]. These

actions mirror reports of numerous attempts by Indigenous communities worldwide to imple-

ment travel restrictions into their territories to limit the spread of COVID-19 [11], but in

most, if not all, cases, data suggest that such measures have ultimately proved unsuccessful in

either urban or remote Indigenous communities [13]. This includes the Tsimane case, where

we have observed limited sustained adherence to community isolation protocols. This out-

come is likely a product of continuing incursion into Indigenous territories by outsiders (min-

ers, lumber harvesters, truck drivers, etc.) combined with the need for Indigenous peoples to

engage in trade and commerce to sustain their livelihoods. A further complication is that

many Indigenous communities still lack territorial sovereignty, thereby hindering efforts to

control or enforce travel within traditional territories [49]. The results of our model support

these suppositions and demonstrate formally the difficulties associated with suppressing a pan-

demic via collective isolation in conditions lacking top-down oversight.
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Alternatively, and as expected based on other studies, reductions in transmissibility are pre-

dicted to be more effective in curtailing disease spread (Fig 6) [43]. Unfortunately, a focus on

reduced transmission while visiting market towns was found to have little effect, and thus

changes (social distancing, face coverings) would have to be implemented within communities

(Fig 6E). We do note, however, that behavioral interventions to reduce transmissibility may be

difficult to implement among Tsimane and similar populations; the extent to which people

share food, household items, and living quarters can be intense, and there is a lack of access to

personal protective equipment. Public health messaging might instead be better focused on

encouraging individuals to avoid unnecessary between-household contacts and traditional

gatherings that could lead to superspreader events. This may be particularly effective, given

that reducing large gatherings is much more feasible compared to reducing intrahousehold

contacts, food sharing with neighbors, or other common forms of interaction.

The future of epidemics in subsistence populations

Nearly all Indigenous populations today, including those relying heavily on subsistence farm-

ing or hunting and gathering, maintain relationships with out-groups and vary along a spec-

trum from autarky to high embeddedness in market interactions. Exposure to epidemics is

typically initiated through direct contact with outsiders in regional or local hubs or via incur-

sions into local territories [50]. With increasing market integration, susceptibility to exposure

will be influenced by several processes. First, improved infrastructure and travel technology

(e.g., new roads, outboard motors, motorbikes) can increase urban–rural disease spread by

enabling more frequent trips to market towns for trading goods, shopping, or socializing [18].

Travel technology can also increase the frequency of intercommunity travel, reducing the

extent to which distance limits exposure in the most remote communities. Second, the arrival

of loggers, miners, and merchants reduces the protection afforded by isolation. Although in

some cases such incursions are illegal or imposed by outsiders [11], improved access to eco-

nomic opportunities and goods are welcomed by many Indigenous communities. Potential

mitigation strategies must therefore be realistic about individual incentives to comply with

public health messaging. Third, high rates of population growth and environmental degrada-

tion may lead to increased reliance on market goods and longer travel in search of resources.

Finally, religious or government-sponsored aggregations (e.g., church, school) can increase

clustered contacts and potentially amplify disease spread (Fig 6). Increasing market integra-

tion, especially when combined with lack of access to healthcare, is therefore expected to ele-

vate the susceptibility of most Indigenous populations to exposure from epidemics. It will also

elevate reverse processes of disease transmission from populations that interact frequently

with wildlife to urban centers. The creation of roads, schools, stores, and economic develop-

ment should be matched with access to modern medical facilities and/or rural health posts,

even in communities that may appear to be relatively isolated, in order to avoid infectious dis-

ease catastrophes.

The mitigation of harmful epidemics among relatively isolated populations in the future

will depend to some degree on the successful deployment of vaccines. Clear challenges in this

arena include not only the logistics of distribution amid limited infrastructure (e.g., no or poor

roads, lack of proper storage facilities such as −80˚C freezers for mRNA vaccines, lack of local

clinics) but also mistrust and misinformation that cause hesitancy and limited uptake. Indeed,

after 3 years into the COVID-19 pandemic, few Tsimane have received vaccines. Our conver-

sations with local communities suggest an overwhelming reticence due to fear and poor public

health messaging. Because vaccine hesitancy in remote-living Indigenous groups like the Tsi-

mane may have a different etiology than comparatively urban, industrialized populations,
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there is a tremendous need to identify successful models of uptake in these contexts for future

application.

Future directions

A limitation of this study is the omission of children less than 10 years old. We excluded

young kids for 2 main reasons. First, given the large size of our study population, computa-

tional demands (both in terms of simulation time and available RAM) limited our ability to

conduct simulations on a greater number of individuals. Second, we have less detailed infor-

mation on model parameters relating to visitation, mobility, and social networks of children in

this population. Although the extent to which children play an important role in SARS-CoV-2

transmission remains poorly understood, children have the potential to further increase intra-

village connectedness via playing, visiting, or through organized activities such as schooling.

As dependents, children often accompany their parents when traveling to town or between vil-

lages and thereby may exacerbate transmission between locations. The inclusion of children

would also increase household sizes and community densities, potentially exacerbating the

rate at which disease spreads. Our model could thus be refined by including young individuals

as well as aggregations in those age classes for villages that have established schools.

Conclusions

Like many Indigenous populations, the Tsimane exhibit demographic, social network, and

mobility patterns that differ from urban industrialized populations. Combined with the on-

the-ground reality of limited public health resources and cultural barriers, these factors chal-

lenge the applicability of standard epidemiological models to make detailed predictions about

disease spread in small-scale rural metapopulations. Using a stochastic network model param-

eterized with rich empirical data, we generated population-specific predictions about the

spread of a SARS-CoV-2-like virus in an Indigenous population of Amazonian forager-horti-

culturalists under different conditions and found that their relative isolation is unlikely to offer

substantial protection from novel epidemics due to a combination of high mobility, intervil-

lage travel, and dense contact networks within communities. Voluntary collective isolation is

only likely to be successful with an unusually high degree of top-down control or community

buy-in and with equal restrictions on travel to market towns and between villages. Public

health messaging focused on reducing transmissibility within communities and protecting

older adults and other vulnerable individuals, either by vaccination or by social distancing,

should be prioritized as in urban industrialized contexts. Authorities should also plan to dis-

tribute medical resources to even the most remote-living communities. Finally, this study illus-

trates how data collected by social scientists—censuses, longitudinal data on geospatial

positioning and residence, time allocation, behavior, demography, and mobility—can be mar-

shalled for epidemiological purposes to improve our ability to respond to future epidemics in a

greater diversity of societies.

Materials and methods

Study population

Our model employs extensive empirical data collected among Tsimane Indigenous Amerindi-

ans (population approximately 17,000) inhabiting the vicinity of the Maniqui and Quiquibey

river systems in the Beni Department of Bolivia. There are over 90 distinct Tsimane communi-

ties in the region that range in size from approximately 50 to 500 people [27]. Subsistence is

derived from a combination of shifting horticulture (cultigen staples are sweet manioc,
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plantain, rice, and corn) and foraging (i.e., fishing, hunting, and gathering forest foods), with

cooperative production and extensive sharing within and between families [51]. Relatedness

within communities tends to be high and visitation with kin between communities occurs fre-

quently [52].

Until recently, Tsimane have had limited access to modern healthcare and the market econ-

omy due to the relatively remote location of villages. Important changes over recent decades

have begun to alter the extent to which Tsimane interact with non-Tsimane Bolivians (napo)

and markets. Road building, timber extraction, internal migration, missionization, and the

introduction of technologies that increase mobility (e.g., motorboats) are key factors that have

led to increased market integration and cultural change. Their impact varies in proximity to

the local towns of Yucumo (population: approximately 5,000), Rurrenabaque (population:

approximately 20,000), and San Borja (population: approximately 42,000), as residents of vil-

lages located closer generally travel to town more often.

Empirical data derive from 2 decades of research on demography, behavior, health, and life

history by the Tsimane Health and Life History Project (THLHP) [27]. The THLHP operates a

mobile medical team that travels between villages in conjunction with targeted research cam-

paigns including biomedical researchers and anthropologists. Census records are collected

during community visits regarding village residents and visitors. Long-term demographic data

provide information on the age, sex, and kin relations of individuals. We used this information

to construct a starting population for our model including 7,269 individuals (excluding all

individuals aged <10) with known age and sex in 65 villages covered by THLHP research.

Individuals aged <10 were excluded due to computational constraints for simulations (mem-

ory and time requirements) and evidence suggesting that children are less susceptible to and

play a lesser role in transmission of SARS-CoV-2 [53,54].

Since 2007, the THLHP collected household interviews with GPS to characterize the com-

position and spatial layout of communities. GPS data were available for approximately 63% of

individuals in the current study. We imputed missing spatial data by sampling from the kernel

density of communities with greater GPS coverage (S1 TextAU : PleasenotethatSIMaterialsandMethodshasbeenchangedtoS1TextthroughoutthetexttomatchwiththeSupportingInformationcitation:Pleaseconfirmthatthisiscorrect:).

Inclusivity in global research

Additional information regarding the ethical, cultural, and scientific considerations specific to

inclusivity in global research is included in S1 Checklist.

Epidemiological model

Dynamic, stochastic individual network modeling using TERG models. We used the R

package EpiModel (version 2.3.1, 53) in the Statnet suite to model the dynamics of infectious

disease transmission in a metapopulation of Tsimane community networks with empirically

parameterized demographics, migration, and contact rates (Fig 1). The EpiModel package uses

the temporal exponential-family random graph model (TERGM) framework [55] to simulate

discrete-time dynamic contact networks in a defined population. This is achieved by using a

statistical model of interaction based on empirical knowledge of the microlevel processes that

govern social contact (tie) formation and dissolution. In brief, a population is constructed

based on the node-level characteristics of individuals in a target sample (see description

below). Egocentric network data on microlevel social processes are used to generate target sta-

tistics that describe system characteristics (e.g., average degree, node/tie attributes, homophily,

other network statistics). These target statistics are used in combination with the sample to fit

a TERG model describing the dynamics of tie formation/dissolution using Markov Chain

Monte Carlo maximum likelihood estimation (MCMC-MLE). Because TERG models are
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generative, they can be used to simulate networks in which outcomes vary stochastically

around the target statistics [56]. Once a TERG model is defined, disease transmission parame-

ters (Table 1) and custom modules (see below) are set that govern additional behavior or

demographic processes. Finally, dynamic simulations are run with tracking at the individual

level for analysis of disease transmission dynamics. For further details of the approach, see

[57,58].

The EpiModel package contains an application programming interface that allows for cus-

tomizable extension of base models. We employ several custom extensions to accommodate

the metapopulation structure of Tsimane communities, travel between communities and to

nearby market towns, and SEIRD (susceptible-exposed-infectious-recovered-death) dynamics.

SEIRD dynamics are classically implemented such that individuals can be in one of 5 com-

partments at each time step: susceptible, exposed, infectious, recovered, or dead. Exposed indi-

viduals are infected but not yet contagious, and recovered individuals are immune to further

infection. Based on a daily probability of (mean infection duration)−1 (here, the tunable mean

infection duration parameter is set to 10 days; Table 1), infectious individuals either survive

(transition to a recovered state) or die according to age-specific case fatality rates [59].

At the outset of our model, all individuals are susceptible, and travel to a nearby market

town is the only source of potential infection. The infection risk profile when travelling to

town is specified as a truncated normal distribution with a theoretical maximum of 0.05 (5%

probability of being infected after 1 day spent in town) with start and end at days 0 and 60,

respectively (S4 Fig). This town infection profile is set to reflect the fact that nearby towns

likely experienced a wave of infection spanning approximately 2 months (reducing town infec-

tion to 0 after this period ensures that the full dynamics of the epidemic play out without con-

tinuous seeding). A normal distribution was chosen because it approximates the empirical

distribution of active COVID-19 cases reported for the country of Bolivia during the initial

outbreak in summer 2020 (https://covid19.who.int/region/amro/country/bo).

Travel between communities and to market towns is governed by a module that dynami-

cally tracks the location of all individuals. At each time step, the model starts by determining

whether an individual will (1) remain in her home community, (2) move to town, or (3) or

visit another Tsimane community, by sampling from a vector of travel probabilities deter-

mined by the age, sex, and home community of each individual (see S1 Text for details of the

empirical data and models used to generate travel probability vectors). Individuals that move

out of their home communities to visit another Tsimane community are assigned to a random

household in the visitation community (and the associated geographical distance matrix asso-

ciated with being in that household) and have all existing network connections removed from

the last time step (to ensure no between-community ties).

Baseline scenario. For all scenarios, we ran 100 simulations over 150 days. The input param-

eters for our baseline model are detailed in Table 1. Tie formation was restricted to occur within-

communities and tie dissolution was set to 1 day, such that ties are resimulated based on target

parameters at each step of the model (S1 Text). Model inputs are either derived from empirical

data on Tsimane or published reference values relating to the SARS-CoV-2 virus. As such, this

scenario serves as a baseline case to generate expectations about transmission dynamics from

underlying low-level processes. Next, we explore how interventions or behavioral changes that

modify model parameters would affect epidemiological outcomes in this population.

Intervention strategies. Several modifications to model parameters were made to explore

how potential interventions or behavioral changes would affect epidemiological outcomes.

1. Travel to town: Alter the frequency with which individuals travel to market towns. This

could represent introduced technology (e.g., motorboats that increase the frequency of
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visits) or interventions encouraging villagers to avoid travel that would increase contact

with non-Tsimane Bolivians.

2. Intervillage travel: Alter the frequency with which individuals travel to nonresident Tsi-

mane communities. Generally, intervillage travel represents social visitation or travel seek-

ing economic opportunities.

3. All travel: Alter the frequency with which individuals travel to both town and other Tsi-

mane communities.

4. Within-community attack rate: Alter the probability of transmission between susceptible

and infected contacts within Tsimane communities. This parameter could be altered by

social distancing, facial mask usage, or SARS-CoV-2 variants that spread more easily.

5. Town transmissibility: Alter the probability of transmission during visits to market town.

6. Local aggregations: Dynamically modify within-community networks by creating local

aggregations specified to occur at a given frequency (i.e., how often aggregations form on a

recurring basis) and intensity (i.e., what proportion of the community aggregates, and what

percentage of dyads form ties). Tsimane communities regularly engage in such aggrega-

tions, including during community meetings or celebrations, church or other religious ser-

vices, school attendance, and soccer games.

Empirical data

Microlevel social processes. Data representing Tsimane contact networks were derived

from a large behavioral observation database collected in 8 communities between 2002 and

2007. Time allocation data were collected as periodic scan samples taken every 30 minutes in

2- to 3-hour time blocks between 7 AM and 7 PM within a focal housing cluster. For each per-

son scan, an anthropologist recorded all individuals present in the social group (defined as par-

ticipating either in the same conversation [actively or passively] or within 3 meters of

proximity), the current activities they were engaged in, and all individuals in the same activity

group (defined as participating in the same cooperative endeavor). If an individual was resi-

dent in a time block but not present at the time of sampling, other residents were interviewed

about the missing person’s whereabouts and activities outside of the household cluster (follow-

up interviews indicated a high degree of reporting accuracy). Limiting the time allocation data

to individuals who were residents of the focal clusters and age 10+ to match our model popula-

tion yielded a total of 44,781 scan samples from 681 unique individuals (nmen = 358, nwomen =

323, mean (range) age: 29 (10 to 84) years).

The TERGM framework was used to simulate longitudinal social networks based on target

statistics derived from these observational data. To generate target statistics, we created 2 sum-

mary datasets. In the first, we generated rows that summarized across all observation points

for each unique person-day. For each person-day, we calculated the total unique number of

alters encountered in the same social group (degree), the number of those unique alters that

fell within each of 5 age categories (10 to 25, 26 to 40, 41 to 55, 56 to 70, and 70+), the average

age difference between ego and all alters, the proportion of alters that were male, average

genetic relatedness between ego and all alters, average affinal relatedness between ego and

alters, and the average ln-transformed distance (in meters) between households of ego and all

alters. Each person-day was thus treated as an egocentric network sample from which we then

calculated weighted averages to use as target statistics (with weights equal to the degree). The

second summary dataset was used to estimate the daily mean degree for men and women by
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age group. Mean degree is fundamental to the model because it determines the number of con-

tacts at each time point that can lead to infectious disease transmission. Because time alloca-

tion data were collected at 30-minute intervals within time blocks that did not cover the span

of an entire 24-hour day, we could not directly estimate the cumulative number of unique

daily contacts directly. We therefore calculated the number of cumulative unique alters

encountered by ego in a single day based on all observations of ego. For example, if person A

had contact with alters B and C at time point 1, and B, C, and D at time point 2, the cumulative

unique degree would be assigned values of 2 and 3, respectively. From these data, we then esti-

mated a Bayesian multilevel power-law model with random slopes using the brms package in

R of the form:

Di � PoissonðliÞ

logðliÞ ¼ aindividual½k� þ gday½j� þ b0malei þ b1community sizei þ b2age½26 � 40�i

þ b3age½41 � 55�i þ b4age½56 � 70�i þ b5age½70þ�i þ rday½j�lnðntmbkÞi

gday

rday

" #

� MVNormalð½
g

b
�; SÞ

S ¼
sg 0

0 sb

 !

R
sg 0

0 sb

 !

R ¼
1 r

r 1

 !

b0�5 � Normalð0; 0:3Þ

a; g � StudentTð3; 0; 1:5Þ

sb; sg � StudentTð3; 0; 2Þ

R � LKJcorrð1Þ

where Di is the unique cumulative degree for observation i of individual k on day j, male is the

sex of an individual (1 = male, 0 = female), community size is the number of individuals living

in the community where the focal is resident, and ntmbk is the sequential number of observa-

tion time blocks for individual k on day j (numbered from 1, 2, 3, . . ., j). We then used the

resulting model to estimate the predicted daily number of contacts at ntmbk = 24 (12 hours/

d = 24 30-minute observation points) by sex and age for an average individual. Community

size was set to the average for predictions because the effect size of this variable was extremely

small (β [95% CI] = −0.07 [−0.11, −0.03]).

Visitation and travel. There are 2 types of empirically parameterized travel in the model.

The first is travel to local Bolivian market towns, the potential initial source of infection. To

estimate the frequency of travel to towns, we utilized interview data collected during routine

medical visits between 2006 and 2018 (n = 7,874 observations of individuals age 10+) in which

participants were asked, “How many days did you spend in town last month?” and “Which

town did you visit?” Respondents reported spending between 0 and 28 days per month in
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town (mean = 1.5). We fit a generalized linear mixed model (GLMM) with a Poisson error dis-

tribution for the number of days per month spent in town as a function of age, age2, sex, and

sex-by-age and sex-by-age2 interactions, with random intercepts for community of residence

and individual. This model was used to generate daily predicted probabilities of travel to town

for each of the 7,269 individuals in the simulated population based on age, sex, and home

community.

The second type of travel included in our model is movement between the 65 communities

(“intervillage”), a common feature of Tsimane life that is shared with many other small-scale

societies worldwide. Intervillage travel was parameterized using data derived from compre-

hensive surveys of individual travel histories collected in 2010 to 2011 ([52]; see S1 Text;

S6 Fig).

Data analysis

At the community level, we employed multilevel generalized linear models (GLMMs) to assess

the effect of independent variables (community size, density, betweenness centrality, distance

to town) on the proportion of individuals infected, time of first infection, the time at which the

maximum proportion of individuals were infectious, and the maximum proportion of individ-

uals that were infectious within a community. Proportion infected was modeled with a bino-

mial error distribution with number of successes and failures representing the number of

individuals infected or not infected, respectively, by the end of simulation. Time of infection

was modeled using a negative binomial error distribution (overdispersed count variable), and

the remaining timing variables were fit with Gaussian models. All models incorporated a ran-

dom intercept term for community (repeated across simulations).

We additionally assessed individual probability of infection by fitting a multilevel general-

ized linear model with a binomial error distribution to data collated across all simulations

(n = 726,900 person-simulations). Each observation represents a single individual within a

simulation, with infection status by the end of the simulation as a (binary) outcome and indi-

vidual- and community-level attributes as predictors. Additional individual attributes include

age, sex, household size, neighborhood density (number of individuals living within 1 km of

focal’s house), and distance to center of community (location where central meetings and

aggregations most commonly occur, usually near church, school, or community meeting

spot). Crossed random intercepts were included for individual, community, and simulation.

Finally, we used Bayesian multilevel hazard models to characterize individual probabilities

of infection over time. To do so, we modeled a flexible baseline hazard function using M-

splines in addition to fixed (individual and community predictors) and random (community

intercept) effects using the “stan_surv” function in the rstanarm package. Whereas the

GLMMs described above assess the probability of an individual node ever being infected over

the course of simulation as a function of predictor variables, the parametric hazard models

assess time to infection event outcomes and are used to generate the survival curves in Fig 5.

Models were fit and standardized survival curves were generated from each simulation sepa-

rately at different levels of predictor variables, before being combined to calculate mean and

95% intervals across simulations.

Ethics statement

This research was approved by institutional review boards (IRBs) at the University of New

Mexico (#07–157) and the University of California, Santa Barbara (#3-21-0652). In addition,

data collection was approved by and discussed with the Tsimane government (Gran Consejo

Tsimane), local community leaders, and study participants. Informed consent was obtained in
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either Tsimane or Spanish (choice of participant) from all participants who contributed empir-

ical data. Individual-level empirical data on the Tsimane population used as model input in

this study are highly identifiable (GPS locations of households, individual household sizes,

ages, and sexes, etc.) and thus are not publicly available.
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ing at a maximum 5% probability of contracting the disease (marked with red line). The data

underlying this Figure can be found in http://doi.org/10.17605/OSF.IO/7YB2M (files: https://

osf.io/m892d).

(TIFF)

S5 Fig. Empirical SARS-CoV-2 seropositivity rate by community as a function of distance

to the nearest market town. Each point represents a single community in which >20 seroas-

says were conducted. The data underlying this Figure can be found in http://doi.org/10.17605/

OSF.IO/7YB2M (files: https://osf.io/3m7he, https://osf.io/jb5x7, https://osf.io/vtp3w).

(TIFF)
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S6 Fig. Map visualizing community interconnectedness. The thickness and transparency of

edges is proportional to visitation probabilities in the baseline model. Yellow circles represent

villages (size proportional to population size), and blue circles represent major market towns.

Villages are displayed roughly according to location in geographic space.

(PNG)

S7 Fig. Correlation matrix of community-level predictor variables (n = 65 communities).

The upper triangle shows Pearson correlation coefficients (95% CIs), and the lower triangle

shows bivariate scatterplots. Variance inflation factors for variables in community models are

generally low with a maximum of 3.0 (community size–community density), indicating that

multicollinearity is unlikely to be a problem for inference given large effect sizes and sample

size. The data underlying this Figure can be found in http://doi.org/10.17605/OSF.IO/7YB2M

(files: https://osf.io/vtp3w).

(TIFF)
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brazilian Amazon. Int J Equity Health. 2021; 20:1–4. https://doi.org/10.1186/S12939-021-01392-8

PMID: 33509206

13. Ortiz-Prado E, Rivera-Olivero IA, Freire-Paspuel B, Lowe R, Lozada T, Henriquez-Trujillo AR, et al.

Testing for SARS-CoV-2 at the core of voluntary collective isolation: lessons from the indigenous popu-

lations living in the Amazon region in Ecuador. Int J Infect Dis. 2021; 105:234–235. https://doi.org/10.

1016/j.ijid.2021.02.039 PMID: 33592341
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