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A 'IN'I‘RODUCTIO!»' ’ _

A Cellular mappings of a manifold onto itself
possess many properties of homeomorphisms. In par-

'ticular;_for n # M, a continuous function defined
from a'manifold onto itself is cellular if and only.
if it can be uniformly approximated by homeomorphisms.

This thesis is a study of cellular nappincs, spaces

V of cellular mappings and a class of mappinns, called

» UV“-maps which are a natural ceneralization of cellular

» nappinvs for spaces which are not manifolds. .
In Chapter one we prove that the space of cellular

‘ - _ mappinzs from a manifold onto itself is a topolo-_

' gical semi-group and that the space of all cellular

mappings of B" onto itself which are the identity

on the boundary is locally ccntractible. The main -

theorem of Chapter two is that a mappinfi f of the
n-sphere, n f 3, onto itself is cellular if and only

/ if f has a continuous extension which maps the

' interior of the n+1 ball homeonorphically onto

itself. This theorem is a hither dimensional analozue

of a result of Floyd and fort [11]. For himher '
dimensional manifolds with boundary, M", we show .
that if f mars the interior of H onto itself and

V the boundary of M onto itself and if f restricted

to the interior is cellular, then f restricted to
the boundary of M is also cellular.

V .



I V Chapter three is concerned with showinc that - I .

. under certain conditions cellular rappinvs can be I _ p

replaced in a canonical manner vith bounded cellular
mappings that agree with the oriqinal nappinvs on

a given set. Similar techniques_have provcn valuable I

i in studying homeomorpnisns and spaces of homeomor-
» phisms. In Chapter four we introduce a nefi type

of covering property possessed by many metric spaces

and show that possession of this property by the

T ‘space of cellular mappinés of En onto itself would _

show that the space of cellular nappinvs of_a manis

fold onto itself is locally contractible. i
In Chapter five we show that if f:X + Y, Y

a metric space, is a UV"-mar, KAa locally finite A
‘ complex and h:K + V is any continuous function,

then for any a > 0 there exists a nappinr c:K + X - - ’

such that F3 is c-homotopic to h. »V

vi
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CHAPTERI . '
SOHE PROPERTIES OF CELLULAR MAPPINGS

-L In this chapter we prove some of the basic properties

of cellular mappings and spaces of cellular mappings '

of a manifold onto itself. Proposition 1.1, which
» states that a mappinv from a manifold onto itself which

can be uniformly approximated by homeomorphisms is

cellular, provides an important tool for dealinv with

cellular mappinzs, and while it is a consequence of a

more veneral theorem announced by Pinhey [ 9 ] the .

simple proof is included here for completeness. The .

' —proof of this theorem implies that the space of all
cellular mappinvs is a topolorical semirroup.

We next discuss the relationships between cellular

mappings and certain classes of monotone mappinrs. The

chapter is concluded with the proof that the space of

all cellular mappinvs of 8“ onto itself which are the
I L identity on the boundary is locally contractible. In

proving this theorem we show that for any manifold
local contractibility at the identity map implies local
contractibility of the space.

L A compact nappina f:H“+ M“, from an n-manifold
. onto itself, is defined_to be cellular if for each

yen", f'1(y) is a cellular set; i.e., there is a se-
quence C1, C3, . . . of topological n-cells such that



. _ ._.
. V ”f'1(?) 3 fzlci and C1+1 C Int C1. Wany properties -‘H A

' _ ._ "of homeomorphisms are also possessed by cellular H 4
- mappings. The first step for results in this direction .’

f ‘ ‘is the followins observation: A fa L. ' A.
. 3 “ Proposition 1.1. Suppose fzfln + M” is an onto 4 '

‘l o 1‘ map which can be approximated uniformly by homeo-' A I
: V morphisms. Then f is cellular. .~

7' “ Egggfi. °irst we show that f is a compact mapping. V
. I i Let C be a compact subset of Mn. we choose a >.0

jfi _ _ 4 small enough so that X2e(C) - {x c Mn|d(x,c)::_2g} ’
" is compact.‘ Let h be a homeomorphism from In onto -

s ' M" such that d(f;h) <_e.' Throunhout this paper,.
e_[ . if f and h are any functions, d(f,h) is defined to -

_ p j be supn(d(f(x), h(x))). "or this h, h(f'1(C)) (: _
fi;;%%€. By the continuity of r, f'1(C) is closed,
and hence h(f'1(C))) is a compact subset of the V

' ‘ compact space N2c(C). By the continuity of'h-1,
i n'1<n<r’1<c>>> - Flcc) is compact. . « . o

How it remains to be shown that if b c M", then
f'1(b) is a cellular set. It suffices to show that if
U is an open subset of M", with f'?(b)£I U, then there
exists an n-cell, C, containinn f-1(b) and contained

- in U. (Since N1(f-1(b) is open, this fiould show that
there exists an n-cell, C1, contained in H1(f-1(b)) V

’ and containing f'1(b). N5(f’1(b)) F\Int C1 is open and



 ' . 7 . 3
. we therefore could obtain an n-cell C2 contained in

' this open set and containinv-f‘1(b). Continue inductively.)
Since f is a compact mappinr, f(3) is a closed

subset of fl". we note that 6 ' d(f(%), f(f'1(b)))'
d(f(b), b) is a positive number. Since Mn is an n-
manifold, there exists a positive number his with the
property that Nn/3(b) is an n-cell. By our hypothesis, .

we can choose a homeomorphism h so that d(h,f)< n/3.
Then h'1(Nn/3(b)) is the desired n-cell, c.

_ First we show that 1'—1(b)Ch'1(Nn/3(b)). Let '
xer’1(b), then d(h(x), f(x))< n/3; i.e., d(h(x),b)<n/3,
which implies that h(f‘1(b))C:Nn/3(b). Therefore, .

' f‘1(b)C h'1(Nn/3(b)). Next, we show that h’1(Nn/3(b))C:U.
b We suppose not. Then there exists xsh'1(Nn/3(b))f1%.

. Q xeh-1(§.'n/3(b)) implies that h(x)cHn/3(b) and d(h(x),b)<n/3.
By choice of h, d(f(x), h(x)) <n/3. Therefore, d(f(x),b)<
25/3. But, xefi implies that d(?(x),b)>n. This is the
desired contradiction. I

Combined with the followinr major result of Armentrout

. for n‘:3 [ 2] and more recently of Siebenmann for n f H
[ 23], the precedina proposition protides a character-
ization of those mappings which can be uniformly approxi-

~ mated by homeomorphisms. ' _
Theorem 1.2. Suppose f:M"-om“ is a cellular map

“ of Mn onto M", n f N, and suppose 8fi¥1+(O, w) is a



’ viven continuous function. Then there exists a honeog
- morohism h:"n + “n such thst d(“(x), h(x)) < v(x),

. for all x e ?n. L h _

This theorem is the analovue of a result of
‘ Hockine [ 12] which we will state after the necessary

. preliminaries. A wanninr ? is said to be car 1' it is both

_. compact and r-monotone (i.e., the inverse irare of each

_ _point is k-acyclic in the sense 0” Vietoris, for all b

' k 3 r). A snace is ulcr if it is uniforrly locally

connected in all dirensions k 3 r. .

Theorem 1.3. Let 12 be a ulcl 2-manifold. A _

uniformly continuous nanninv f:X2 + "2 can be uni'orrly

' ’ aonroximated by homeomornhisms if and only i‘ f is crl.
As the followinv orooosition deronstrates, a

' cellular ran P:"n + "n is crn.

Prnnosition 1.3. Let K C'?“ be a cellular set. —
Then if is k-acvlic. ‘or all ‘.< _<_ n. i_

2332:: Let y - {y1, Y2, . . .Iy1 is an c1~cvcle
and lim :1 = 0} be a k-dimensional in'inite cvcle in
K. we wish to find a k-dinensional in*inite chain

K in K such that 3: 2 y. Let Y1 be an cl-cvcle. '

By the cellularity of K, there exists a cell Ci such

that KCC1 C ?¢c1(K). Now, 71 lies in C1. There“ore,
there exists an :1-chain K; such that 3:: = 71 and each

vertex of K; lies in C1. we define xi by desirnatinr a



l 5
vertex v for each vertex v* of K1 in the following V
manner: V .

v- vi, if v'eK
any point of K within :1 of v‘, if
v'¢ K

Then 3K1 - Y1 and K1 is a k-dimensional 261-chain.
Since lim :1 2 0, lim 2:1 2 0.

This proposition leads to a natural question. .

Let r:n“.+2“ be cm“. Is f cellular? Proposition 1.5
' provides a partial answer for n - 2.

Proposition 1.5. Let M2 be a ulcl 2—manifold.
' A uniformly continuous mapping r:x2 +H2 is cml if and

} only if it is cellular. '
ggggg. If f is cellular it is cm1 by proposition

l.h. If f is cml, theorem 3.1 implies it can be uniformly
approximated by homeomorphisms and is therefore cellular

according to proposition l.l. .

It will often be of interest to consider certain
spaces of homeomorphisms and cellular maopinrs. Let I

be a manifold. H(M) will desivnate the space of all
' homeomorphisms of 2 onto itself, Ce(M) the space of

all cellular mappinps or M onto itself. H6(H) will
designate the space of all homeomorphisms of M onto -
itself which equal the identity when restricted to the

boundary of M and Ce6(M) the space of all cellular

mappings which equal the identity when restricted to

the boundary. Each of these spaces is given the compact



i open topolozy, the topolory venerated by all sets of
the form N(C,U) I {fIf(C)CTU}, where C is compact and . i

. U is open in M. This topology agrees with the uniform -

' V, topology for the special case where M is compact. In
' this instance each of the above mentioned spaces is

V _ I a netric space with metric aiven by d(f,k) - sup d(f(x),
I .z(x)). H(M) and H5(M) are known to be topoloiifial
‘ii groups under composition of functions. Since cellular

mappings which are not homeomorphisms have no inverses,

Ce(M? and Ce5(M) are not topological groups. However,

the followinc is true. " 2' -
Proposition 1.6.. Ce(H) and Ce5(M) are topolorical

,semi¢roups.
£5233.‘ we must show that the composition of two

cellular maps is cellular, or equivalently that if f

is a cellular map and K is a cellular set, then f’1(K)
is a cellular set. Since the composition of two compact

mappings is compact, the proof of this statement is

identical to thatof proposition 1.1 with "K" replacinn "b".
A topolopical space, S, is locallx contractible

if given any point scs and any neighborhood U of s,

there exists a neivhborhood V of s, a point v°cV,.and
a homotopy H:V X I *U such that H(v,0) = v and H(v,l) - V0
for all VCV. Likewise, S is locallg contractible at 5
if given any neighborhood U of s, there exists a neigh-
borhood V of 3, a point vofv and a homotopy H:V X I+ U



. '7
' such that H(v,0) - v and H(v,l) - v0 for all vcv. -

Cernavsfiii [ 7 ] and Edwards and Kirby [ 8'j have I
shown_that if H is.compact or equals En, then H(M) is
locally contractible. Alexander [:1 J demonstrated .
that if B“ is the n-dimensional ball, then H6(Bn) is
locally contractible. we show in this section that
Ce5(Bn) is also locally contract;ible.v'op n ,4 1., -

Theorem 1.7. Ce6(Bn) is locally contractible. n g a.
3522:. we first show that if £>O, there exists

a homotopy H:Nt(id) X I +N€{id) such that H(f,0) - f
and H(f,l) - id. We define H as follows: i i

H(f,t) (x) = rtm }_:..£ 1-(.1—t-Ex), o «<1
. 1 + t 1 - t ’ _

V _ ' :{:h, t = 1,
where f(x) 8 f(x), x ea” » A e

x, x c Rh - B“. A
we note that for each t, ft is a cellular man; since‘
it is the comoosition of a cellular map and two homeo-

morphisms. For each t, ft restricted to the boundary

' of B“ is equal to the identity map. H is continuous
’ by definition. The following diaaran illustrates how

M this Alexander-type isotopy works in the case of cellular

mappings. _

7:! AV!!    };) ‘L £i;% ¥%|II—-F———9 P“)
10 Y/>(X))
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Now, all that remains to be shown is local contractibility
at an arbitrary point. (For H(M) or H6(M) this follows _ '

directly from local contractibility at the identity ' A

since these spaces are each topolocical rroups.) However,

in our case the implication must be demonstrated. we I A

will show more venerally that if Ce(M) or Ce6(M) is V

locally contractible at the identity map, it is locally

contractible at every point. To this end we will assume

that we have shown local contractibility at the identity.

Let f be cellular and let Nf(K,n) be viven. ‘Let K‘ -
(mcxlthere exists xcK and heNf(K,n) r]H(2) such that I.

n - h(x)}. Consider Nid(K',n/2). we are assuming that __
there exists N1d(D,6) and a homotopy ¢:H1d(D,6) X I» _ .
N(K',n/2) such that: I

1. xvco _:
2. 5 _<_ n/2. ' -
3. ¢(v,,t)cN1d(K',n/2), for all «-e :.vid(o,a) "
M. ¢(v,0) - c, for all qcN1d(D,6)
5. ¢(¢,1) - id, for all geN1d(D,6)

Now, pick a homeomorphism h:M 4H such that d(h(x),f(x))<6/2, H
for all xefl. In the case of Ce5(M), choose h so that
in addition, h restricted to the boundary of M is the .

identity. y I
we will now define H:Nf.(h'1(D),6/2) x I ->Wf(K,n)

as follows: H(g,t) - (¢(ah‘1,t)) o h, for all q€Nr(h'1(D,5/2)).



._ __ J I » A9 ..

_. 5 7 AIn order for this dei"i.nition to make sense, we. must show
’ i that g.€N1.(h-1(D),6/2) implies that :m'1 ¢u(o,5’).

b. ' But this follows, since if 1213, then d(r.h‘1(x),x) < .

i  d(9:(h"1(x)), t‘(h_"1(x))) + a<:~<n‘1<x>), h(h'}(x4)V))V< _ t
6/2+6'2-6. % ‘ L

I H is the proper map if we can show that: I '
1) xch'1(o) . .. "

' _2)‘5/2'-n . -. ' ’
3) Ht'(cir.) e Nf(K,n ), for a11.s_r'.e‘Nf(h'1(D), as/2)

 In sumo) - P ” p l
5). .H1(v) - h A l p ‘

It is clear that 1) follo:-xs since if 3: K, then h(x) e

K‘ and h'1(h(:t)) c-h‘1(K')Ch'1(4b)>. 2) is obvious.
. - To show 3), let xgif, then d(Ei(c—-_',t)‘ (x), 't‘(x)) - j

% a< ¢(?.hb1.t)(h(x)),f(x)) = as <«:n'1,c><n<x))’.n(x>> +
d(h(x),i‘(x))< “/2 + “/2 an , since’ M:-.n"1,t)e n(x',n/2).
11) and 5) are true by definition of H; i.e., H(nr,0) .

 <¢<s;n'1. on o n - r:h'1 o n - r and a<g.15s- <¢<«»,n'1,1>> o n =-
_ id__oh-h." ._ ‘ A ‘

I We therefore have shown‘ tha_t for any 31, local

contractibility of‘ Ce(M) or Ce Gm) at the identity
implies local contractibility of the space at any point.

V This completes the proof‘ of Theorem 1.7.

‘ Mason [19] recently showed that H6032) is an
- absolute. retract. The proof depends upon the construction



A V "1o_'
V of a special basis for the topolovy and upon the fact

that H6(B2) is contractible and locally contractible.

we have just shown that Ce6(B”) is locally contractible
and the Alexander Isotopy applied to cellular mappinas

demonstrates that Ce6(Bn) is contractible. This raises
the question of whether §;?§§3 is also an absolute
retract. A .

. Let RTE? - {r:w + MI? can be uniformly approximated
by homeomorphisms}. . '

I ' Corollarv 1.8. £753; is locally contractible.
Egggt. Same as theorem 1.7.
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'.. . C H A P T E,R II - p

A CHARACTERIZATION THEOREM FOR CELLULAR MAPS

A The main result of this chapter is that a mappinv

‘ f of the n-sphere,'aBn+1, n # H, onto itself is cellular

if and only if f has a continuous extension which maps

the interior of the n+1-ball B"+1 onto itself by a

homeomorphism. This theorem is the hivher dimensional ' '

analogue of a result of Floyd and Fort [ 1g] which V
states that a mapping f of the 2-sphere 333 onto itself

is monotone if and only if f has a continuous extension

“ which maps the interior of the 3-ball, B3, horeonor-
_ phically onto itself. Our theorem actually is an extension

. of Floyd and Fort's result since a_waopin7 of a compact ‘

space onto itself is monotone if and only if it is

cm1 and, as we deronstrated in chapter 1, a nappine

of a 2-sphere onto itself is cml if and only if it is

cellular. ' A .

Lemma 2.li Suppose f:3Bn+3B“, for any n, can be

approximated by homeomorphisms. Then f can be extended

to a map which is a homeomorphism on the interior of

3“.
Proof. As we stated in chapter 1, H(3Bn) is locally

contractible. This implies, in particular, that M33“)
is locally arcwise connected at the identity. In other

words, yiven an e>0, there exists a 6>0 such that if
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f.e mas”) and d(£‘, id) < 5, then there exists
¢:[0,l] + H(3Bn) such that 0(0) = f, ¢(1) - id and Ad
for all 1:; 'd(o(t), id) < e. _ '

Since for all r, g, h in mas“), a(r,p) - d(fh, nth),
_ this implies that H(a3") is uniformly locally arcwise .

I connected, as the following argument indicates. Let
c>0 be given.‘ There exists 5>O such that any element

2 » or man“) within as of the identity can be Joined to V
the identity in H(3Bn) hp a curve of diameter less than c.

I Suppose h and g are elements of H(3Bn) and d(h,w) < 6.
Then d(ph-1, id) < 6 and there exists ¢:[Q,l] +H(a5“)
such that e(o) - n:-'1», em = id and awe), id) < e, . .

V for all t. We define ?:[O,l] +H(3Bn) by W(t) = ¢(t)q _

' and note that V(O) = h, ?(1) = g and ¥ is a curve of
diameter less than e.

V Now suppose f is as in the statement of Lemma 2.1.

Usinv a standard technique, we now can construct a nap

b ¢:I +H(3B“) such that 0 i t < 1 implies ¢(t) e H(3Bn) ‘ i
and ¢(l) -if. For each interer k, pick 5k such that

‘ d(z,h)< Gk implies 2 and h can be Joined by a curve
of diameter less than 1/k, and such that 6k+1 5 6k.
Also choose a sequence of homeomorphisms h such that

d(hk.f) < Gk/2. We now define o by:
M1 — 1/k) - nk [
0(1) - r. ~- ' A _
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Extend ¢ over all of I by the promised curves. ¢ is

‘continuous since the diareters of the curves approach

Ovas k increases and {hk} converves to f. ‘ I
' v I The followinq corollary is an immediate consequence

Aof Lemma 2.1 and our characterization of cellular mappings.

4 when n i H. I V '
A Corollaru 2.2. Let f:3Bn+1+ 3Bn+1, n f H, be cellular.

- I Then f can be extended to a map from Bn+1 onto B"*1
in such a way that restricted to the interior of hn+1

, it is a homeomorphism.
‘Various properties of mappinqs which are in veneral

weaker than cellularity have been studied extensively
[p’ 15 3. Here we make use o5 one such property. Let

f:X +Y be continuous. Then 9 has property UV” if “or
each yeY and each open set U containinv f‘1(y), there
is an open set V containinv P'1(y) and contained inU
such that V is null-homotopic in U. This property

was introduced by Mcfiillan [18] in his characterization V
‘ of cellular sets upon which our main theorem stronvly _’

depends. A ’ ‘
Lefiva 2.3. Let H be a manifold and P:H‘X (0t1] *

3 1 (0,l] be a nap such that V-1(M X 1) ' W x l and . .
PIM X (O,1):M X (0,1) + M x (0,1) is a homeomorphism, >
then PM :2 {l}:Y x {1} + *4 x {1} is a uv°°—n-ap.

figggg. we identify M with M I l . We make use of
I the following auxiliary maps:_ for each 3, define
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j ‘w3;M + H 5 {1-3} by u3(x) - (X; 1-3) end o:H x.(0,l]'+

M by n(x,t) - x. . I _ T
" ’ Let .u' be open in 2-1 with v-'1(b) C U‘. u' x (o,1] .'

[ is onen in W x (0,1). Therefore, there is a U such
that: ' . _

I _a)'_' U13 openjiin v x (o,1]. —
- lb) UCAU' '9 (o,1].

- c) f(U) 1s’onen in W X (O,1].
d)«P"1<b_) C u. %

Now choose to <41 and an oven cylinder, C, about b x [to,1]
such that C C ?(U). we note that:

t'.1(c) is open in 3'. x (o,1], > '
 r'1<c> c c,  

.2-'1(b x [to,1])C E'1<c).
Let n - c(b;E), n > 0. Let 6 be chosen so that

a) >:26<v'1(2»)> Cr"1(c)' ~
b) d(x,y) <25 => d(“(x), f‘(y)) < n

Let V - N6(f-1(b))(W 2. We note that if x is an e1e~ent I

0' w6(V), then '(x) is an element of Nn(b){) M x (0,1) C C.
Since C is a cell we can de'1ne a homotopy 1:C x I + C

so that I ' —
1) x c 5 =9 ¢(x,t) e C r\(H x (0,1)) '
2) G(x,0) I x

A 3) there exists 2 e W x (0,1) such that
G(k,1) - z, "or all x 2 C.
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we now can define the desired horotopy H:V x I + U’,

by n<x,:> - Df"1(’?(f‘fi6(x), t)). Thus ' L T
, H(x,0) - pf‘-1[’?(f‘1r6(x),O)j - pf'-1(f‘1r6(x)) - x "

H(x,1) - pf-1fl1(fn6(x),l)] - pf'1(z)_- constant;»
The continuity of f follows from that of C, so all V _

that remains to be shown is that H(x,t) E U‘, for all .
x e V and all t cI. x e V_—.—.)1r5(x) e 1v6(V)—;)t‘(n5(x)) e
C 0 M x (0,1);G(fw6(x),t) c C /N B=;f‘-1 is defined
and 1-'1[r:(rn6(x), t)] c r'1(c) c 11c 11' x 03,1]. ‘V
Thus p(f-1[p(?w6(x), t)] - E(x,t) L U‘. This completes 4 .

the proof of the lemma; I '
Let W C X. W is collared i“ there is a ho~eo- .v ’

morphism h takinr: 7: x (o,1] into a neirhborhood of‘ V. - I. ‘ .
with the property that h(n,1) = n, for all n c Kl
M. Brown proved that the boundary of any manifold with A

boundary is collared [ 6 ]. Therefore, we have the ' .
following corollary. ‘L’ n"'. :

Corollary 2.3. Let T he a oanifold with boundary _.
and let f:M + M raprinr the interior of H onto the V
interior and the boundary onto the boundary be M T ‘
such that F restricted to the interior of H is a
homeomorphism. Then rlaz is a UV'- nap. ' ’ -L

. As we stated before we will rake use of an I '
Vimportant theorem of McMillan [18] : _ L

Theorem 2.5. Let X be a compact subset of the I
interior of a piecewise linear manifold Mn. Suppose I
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' _l) niven any open set U of V" which contains X,

. there exists an onen V containinn X and contained in I
U such that V is null-honotonic in U I

2) for each onen U containiny 3; there exists_
an open set v such that x C v C U and each loop in v - x
is null-homotopic in U - X ' V i -A

l ' 3). n 1 S or n - 3 and some neiqhborhood of X
V can be embedded in E3. V i * '

» Using this theorem we wil1'nrove the following ‘

1emma:4 ‘A I '
‘ _Lemma 2.5. Sunoose f:3B”+1 + 3Bn+1, n = 3 or

n 3 S, is a naoninv of 33n+1 onto itself and can be ,
extended to a man rrow Bnfl onto Bn+; in such a way '

V that restricted to the interior of Bn+1 it is a homeo-

morohisr. Then f is cellular.
is j £3221. Let x e 3Bn+1. By corollary 2.“, condition

l’on Mcfiil1an's thecren is satisfied. If n = 3, for
any y e 3Bu(W ;:I?;;, 53" -«y is a neivhborhood of _

» ~f'1(x) which can be enbedded in E3; therefore, condition
3'is satisfied. ‘So, all that remains is to show that

i condition 2 is satisfied." » _

. Let x c N" and let U be an open set containing
f'1(x). We note that f(f'1(x)) - x is an element of A

I the interior of f(U)i —Since Mn is a manifold we can

i choose an open cell, C, containinv x and contained in f(U).
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we then let v =- r'1(c). ‘Let y:S1 + v - r'1(x).- we
wish to show that we can extend y to a map T:B2 + U - f'1(x).
By the definition o’ y, “y is a mappinr from S1 into

C - x. Since C is an n4ce11 with n 3.3, °‘ycan be
extended to a man G:B2 4 C - x. ¢(B2) is a compact
subset of C - x. For each y e ¢(B2), we note that

i V - P'1(x) is an open set containinv f'1(Y). By the
previous lemma, we can choose an open set Ay such that: I

f'.1(y), C Ay C v - !"1(x) .
Ay is null-homotopic in V - P’1(x)

I _ ?(Ay) is open, and
r'1(r<A )) - A .A .V ..V

Therefore, {f(Ay)[y e G(B2)} is an open cover of G(B2).
V - we now choose an open cover T1 0’ G(B2) that star

refines {f(Ay)ly e G(B2)}, i.e.,
a) .“or each T1 ; T1, {'1' 5 1‘1|'rn T1 yl ¢} 15

contained in some ?(Ay).
b) T1 c T1 implies that T1 is an open subset

or :4“
c) G(B?) C U{':'|'r 2 T1}

We repeat this process once none. For each y c ¢(B2),
choose Ty c T1 such that y e Ty. we note that f'1(Ty)
is an open set containinv f'1(y). By the previous lemma,
There exists an open set By such that f'1(y) C By C f'1(Ty),
By is null-homotopic in €‘1(Ty) and f(By) is open.
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V V "Therefore, {€(By)Iy c f(B2)} is an open cover or n(B2).

we now choose a finite subcollection, T2, of {f(By)|ygG(B2)}

that covers G(B2),
Trianvulate B2 such that if a is a simplex of

B2, G(o) is contained in some element of T2. we now ,

are in a position to de'ine the desired extension of
the loop y to all of 82. First we will define the ex-.

I tension F on the 0-sinplices of B9. Let v be a vertex

or B2. If v c 31, let r(v)'= y(v). If‘ v t 31, let
P(v) be some element or ?'1(1(v)). Next we will define
P on the 1-sinplices of 32. Let 0 be a 1-simplex 0?

B2. C(30) is contained in some element of T2, hv our
’ trianrulation of 82, so F(3o) CIBV, for sore y. ‘RV is

' null-horotopic in "1(T) tor sore T 2 T1. we can-

therefore define F on all of 0 so that r(o) C "1(T).

‘ , Finally, we wish to dePine F on the 2-skeleton

of 32. Let 1 be a 2-siwplex o? 82, r(r(31)) is con-

tained in ?(Ay) for some y, since T1 star refines

. {f(Ay)ly c G(B2)). we chose Ay so that f'1(P(Av)) = fly;
therefore, T(31) C Av. But Ry is null-honotopic in

V - f'1(x) and we can extend F to all of 1 and hence

to all of B? in such a way that P(B2)C: V - f'1(x). '

p This completes the prop” of lemma 2.5.

Note: In effect we have shown that property 2

is satisfied for f‘1(x) if f has property UV”. Similar

theorems have been proven by Lacher [ 16 ], Armentrout
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_ and Price [ u ] and I-fozlowski [ 15]. We will nrovidev

an extension of Kozlowski's theorem later in this
thesis. H A

- Combinino corollary 2.2 and lewna 2.5 we can state
the main theorem of this chanter.

Theorem 2.6. A ranoinc f of the n-sphere 3B"+1,
n f H, onto itsel' is cellular if and only if f has
a continuous extension which maps the interior of B”*1

_ homeomorphically onto itself.

we next consider the followinv ceneral situation. 4
Suppose ?:A + B is an onto manpino such that f maos '
the interior of A onto the interior of B and the boundary

of A onto the boundary of B. If the restriction of ~ .

s r to the interior of A has a certain property, does A

' the restriction of f‘to the boundary o?,A have the

same oronerty? Whvburn proved that if A and B are

locally connected coroact continua and f restricted

to the interior of A is monotone, then f restricted
to the boundarv is also nonotone [ 2h ]. Another I

: ;result of whyburn is that if A and B are locally connected -
‘continua, then f quasi-open on the interior of A imnlies
that f is quasi-open on the boundary of A. (f:X + Y
is quasi-open if each y a Y is interior to the imave

of any open set in X which contains a compact component

A of r’1(y).) It would be interestinv to determine I
whether certain conditions could be placed on A and B,



'- which would insure that if F restricted to the interior
of A has property UV" (f cm”) then f restricted to the

I 1 boundary of A has oronertv UV“ (f or”). (See Chapter 1
for the definition or c~“.) The 'ollowinw corollaries
provide the corresponding result for cellular maps

L defined on an n-manifold, for n # H or S; i.e., if
f:M" o M" is as above and f restricted to the interior

. of Mn is cellular, then f restricted to the boundary L

of Mn is cel1ular.V
- Corollary 2.7. Let V be an n-manifold, n 3 5,

' with boundary. Let 9 be a map of fl-onto V such that
fllnt M:Int M + Int M is cellular and r|aw:aw + 3“.
Then r|am is a UV”-wan.

A Define c':1’nt ~~ » (o,«») by ;*(m) = d(m,-3‘-').
Since f|Int V is a cellular map, by Siebenmann's theorev ‘
(theorem 1.2), there is/a homeomorohism h such that

, for all x 5 Int ¥, d(°(x), h(x)) < v(f(x)). we de'ine
' Fix + M by ‘ -

‘L _ {rh(x), x c Int H L v ’
”(x) - -

. f(x), x c BM _ , A
P is continuous, For suppose there is a sequence,

I {xn}, of points in Int M which converge to‘x c H.
Let c > 0 be piven. By the continuity of f, there.

% exists N such that n > N -» d(fn(x), f(x)) < c/2.
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o than for such n: ‘ . ‘ V I

% d<?<xn>; F'(x))_=.d(h(xn), rm) 5  
' I d(h(xn), f(xn)) + d(f(xn), f(x)) < e. ’

Thus,-by corollary 2.“, ?[3M 2 r|ax is a UV“-wap.
_ o Corollary 2.8. Let_X be an n-manifold with boundary,

’ n 6.‘ Let rm» M be such that f‘|Int .--2 is a cellular
V fiannino of Int M onto Int Y and {I31 vans an onto 32.

V Then rlan gs a cellular ranpinr. . V
Tfigggi. Since n 3 6, the dimension of the boundary

4 of H is :5 and the corollary follows immediately from
corollory 2.7 and lemma 2.5.
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' CHAPTER III. ._ _,

OBTAINING BOUNDED CELLULAR 1APPINfiS i ,Vil

‘ An imnortant procedure develobed in recent years c

for dealinv with certain homeomornhisms and spaces of ' H’

homeomorphisms has been that of assivninc to a fiiven 4.

homeomornhism, ‘, a bounded homeorornhisw which avrees‘ '_u

with P on a riven set. Kirby first develoned such y .

techninues to brave that a homeomornhisr o" R” is stable i _

1' and only if it is isotonic to the identity. '

VThe procedure has also proved to be a valuable . V" ‘V

tool in showinv that: H(Hn) is locally contractible ' I

if U“ is compact or equals En (Edwards and Kirby [ 8‘]);
every cellular mannino of an n-manifold, n ¥ 5, can i I

be uniformly annroxiwated by hcmeororphisrs (Siebenrann

['23 J); and in showinw that the Haubtverrutunv and
the trianvulation conjecture are false (Kirby—and_Sieben¢ann

[1u.]). -
In this chapter we develoo the same techniques

for a class-of wanninos on manifolds which can be uniformly

approximated by homeomornhisws and therefore "or a class

of cellular maooinos when n # N. For instance, corollary

3.2 states (lettinv r - 3/2, k = O, and n # N) that
i there exists an e > 0 and a mappinv ‘ A

T ¢:{P e Ce(Rn)|d('(x),x) < e, “or all x e 3/28”}-—+—-9
{r e ce(v2")|ror x e R“_ - 35“, _"(x) - x} with
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V the nroberty that ¢(f)|Bn i f[3”. Cur nroof will consist ~
of considerinv a eenuenceAef hoieomornhisms, {hi}, which
eonveroe to a maon1nv.and then annlyinw to each hereo-

_ morphism the techniques of Edwards and Kirby in a rcd1’1ed
and slivhtlv refined form; t .

« . _ ' Pronosition 3.1. Let r8? be a Fixed n-bal1,
. - ~ I r > 1. Then there is an e > 3 so that if H is the

I ' snace of all functiohs, ?, ranolnv Bk x as“ into Bk 1 Rn
’ such that: ’‘-.l—. '

’ _ 1.. flask x as” U [!.<,1]B" x 353“ - id -
I . A 2; if i e Bk 1 rs”, then d(?(x),x) < c

. 1 b 3..-f ean be un1?orm1y anoroxinated by hereo-
h b ' : ‘worphisms which equal the identity on V V

» I ‘I8.-'3“ x‘_u_n"U [=<,1]a"~ x 33“. .
' And 1" 31 = ("be ?T:_'7lB"‘ X (I43-" .. 2r-B”) = id}, then ‘H t

t ~ there exists a contingdus function ¢:¥ + Ki set1:'§1nr ~ _.
I the condition that.®(?)IBk x B” s PIER x B".

§§ggfi.. Let H - {T e W]? is a homeonornhisr}.
l The npoof of this nronosition will cohsist 0° assifninv

‘ to each (hgi) c H 8 N a hovecrorohism, hi, with the I
?o11ow1nr'pr9oe}t1es:

' ,§) this“ xla“ - 21113“ x 3“
«. V: b) n.1|Bk * M3“ .. 2:-3“) - 1:: T
- ‘ c) aiven n > 0, there exists 5" > O and an * b

. ‘ _1nteo'er 21 such that 11' 1, .1 > 2: and .
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d(h(x), 0(x)) < an "or all x 5 Bk ,. rs“,

.  then d(h1(x), v’(x)) < n "or all x E Bk x U3". -
The construction of such an hi "or each pair (h,i) .

would cownlete the nroof o“ the proposition, as the V

¢o11owinn arouvent indicates. Let P 5 W and choose .

a sequence 0' howeomnrnhisns {hi} each of which is an .
elewent of H. We let ¢(“) = 11¢ hé. _

. ki-no n ‘IBy pronerty a), ¢(”)|B x B 2 f|B‘ x 8“ since , _
for any x e Bk x B", hi(x) - h1(x) and h1(x) converoes '
to P(x). Similarly pronerty b) assures that f|Bk x

(us" - 2rBn) is the identity. Property c) assures that
{hi}_is a Cauchy sequence and there'ore that ¢(f) is
a continuous 'unction. For, let 3 >3 be riven. Pick '

' an intener H1 larwer than the S o’ rronerty e) such
.that i, 5 > N imnlies that d(h , h ) < 5 . Then d(hi h’) < n.- T 1 1 i n 1’ 3

¢(') is indenendent of the choice 0' the senuence
of homeonornhisws convervinv to ?. “or sunnose {vi} 4 f,
he shall show that 11% 0: - ¢('). Let n > 0 be viven.

1-9:»
There is an 31 such that i > H irnlies d(~ , f) < E5 .
There is an N such that i > w innlies d(h1, ') < *5 ._ 2 2 71/2Choose N3 so that 1 > 333 imclies Mai, .:(r)) < n/2.
Then if i > max (N1, N2, N3), aronerty c) irplies that

1Mai, hii) < n/2, yn this case, an-1, ¢(r)) _<_ (Moi, hi‘) +
I d(h1, ¢(f)) ‘ "/2 + n/2. A similar arvurent yields that

¢ is continuous. To construct the honeororphism hi we
shall make use of the diavram on the followinc nave.
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' Let D“, 213“, 30”, 1113” be (‘our concentric n-ce11s .

in T" — 2?“ such that 40"-ct Int (*+1)Dn.i‘ox~ each .1. V A
- In the same manner we let I23‘, 22)”-, 323k, 11'0" be concentric _

k-cells in Int Bk such that ‘>«3kC Bk and 1D?‘ Q Int (_1+l)Dk ‘ .

for each 1. Then let 3:?” - D" -> Int r3" be a fixed - ‘
immersion with the prone:-tv that H restricted to £51 En I

is the identitv. '.-.'e choose our oricvinal c > 0 srrall A

enouvh so that h(Bk Bn)C B2 2: r+'1 3". A theorem -‘ as I

of‘ Lees [17 ] assures that such -=3:-inversion exists.
Let on denote the nroduct irr-‘er-sion id x 'E:.‘%k x (Tn - D“) -o A
Bk X Int 1'3“. .‘7'or- h e H, :»:e wish to canonically choose

hzdk x('I‘" - 22)”) + By x (‘Tn - D") so that the lower

square o" the diarvran com-utes. To accorr,-slishithis _

_ let {U1} be 2 “inite cover or 3"‘ x ('r” - Int 23-“) 2~._~.v
cnen subsets o" Bk x (T33 - 3”)" with the nronertv that
it‘ U10 Ufi )1 9.“, than u!-U: U is a ho'r.ec-rr~.rnhis'''.

« For each U1, consider a correct V1 such that 'l_._ C ‘J:
and UV1 covers 9"" X (T5 - Int 2D"). '.-.'e choose our

. orisrinal 6 small encuvh so that ha(':.'i) C a('J1) forfeach

of the finite number 0" 1'5. czven n 5 ii, let 5|:-;'1 =-
' (GIU1)-1haI':!1. E is well defined since 19' x e 7.-.'if\ '-3'5,

ha(x) e a('J1n U5) and we have required that a be a
I homeomornhism on U1 U U}. is thus the desired

homeomorohisn. V . _
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_ Pinallv, ‘let y:Int 2r-Bk as arts” + Rk x R.“ be a ‘

_ homeonornhism which is a radial expansion and is the
identitv on zglfik x Ealfin. we extend h1_by the identity

to a 2~.o-zeo-«omms-1 ?a'1:F°.“ x :2” + RV x P.“ and define h1:a"~ x 3”»
. Bk X h" bv .

1 y-1h1y(x), x e Bk x 2rBnh (X) * {h k n n
- x, x e B x (R - Int 2rB ).

Since d(fi1, id) < 2, hi is continuous and therefore
is a honeofiorohism. Dronerty a) is satisfied since

I Yem1°1i"1i’1a(x) = x for all x cABk x 2;; B" and since
5 > O was chosen small enouvh so that if‘: c Bk x B",

then Mat) 2 9“ x 15in”. That nroperty b) is satisfied
I I was wuar>nteed'hv the choice of the honeorornhism y.

to show that oronertv c) is satis”ied, sunnose
n > 0 is riven. I’ d(hi(x), :’(x)) < n, then .
'd(h1(x), v'(x)) <.n since y is a radial exoension.
e:Bk I 7“ + Bk X T" is uni”or~lv continuous; there'ore,

V there is a 61 such that if d(Hi(i), 7‘(x)) < 51 for I
i all x c Bk I Tn, then d(h1(x), :fi(x)) < n for all x c |

Bk x R". we now wish to find an intewer H and a positive
number 62 such that 1' d(h(x),-:(x)) <62 for all x a
ma“ x 2*) - (ask x 21:“) and 19' 1,: > 2*,d(51(x), ';‘<x)> < 52
for all x e Bk x T“:» h

_ let N be an intewer such that 2/N < 61
pick 62 so that 62 < 61/16
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we note that films" - 20“) x ('r“ — 21)“) is the

' identitv Mao-, sincefh is the identitv on [15,] Bk x 38“
" and",<F3kC Dk'.V 'I"here"ore, to obtain 5%, we extend h to

A - he the identitv on (Bk - 2i)k)_ x Tn. Consider‘ the restric-
A tion of‘ h to (Bk X T") - (3Dk x 32)”). By the Schoenflies

A theorefr we can extend this restriction of 3 to a hor~eo-
I ' -!"CI"~')h1sV'!'. h':F!k X T" -9 Bk x Tn.. This extension cannot

I be made to be canonical; i.e., if‘ {?ii} is a Cauchy se-

A quence of’ homeonorohiswfs, it does not follow that {W}

V - is ‘a»Cauch_v senuence of‘ howeonorohisrs.

' . In Until‘ this point, the construction of‘ the diarrra-n

» is 41ndenenden.t_o“ i and varies only with the hot-weorwortahisr-2

' _ ‘n. Consider ask as an“ to be {tx|x 5 a(z.-:3“ x no"), .
o 5 t _<_ I: . A'.-.'e then define the honecnorphisr ..,1:B“ x T" .

' . Bk x-'17" which takes 3&5" a: 31:9“ to 1/1 D" x 1/1 9” by
. .." a) mil?-3k x '_r” - (Imk x up”) - id

b) ...1<ax) - "(t - 3==><2)<u - 1,/me. 3&5 «:_<_ =
{tX,0:_t_:3‘.'

Then 51:8!‘ * Tn * Pk ii '!‘nV§:_<i]-efined by ?T1(x) = m1T'T(x). '
Let 'e':‘r?.“ -> Tn be a coverirw r:r*o.1ection such that 3] 28”

is the identity and let e:Bk x P” -o Bk x T" be equal
to id 31 'e'. Then '51 1i“ts to the ho»-eornorphisn ‘

‘¥5i3Bk " Rn’ Bk " P-n. We note that H1 has the prone:-ty:
that for some constant, iv}, M51, id) < H.
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we will consider the cases: I h I ' dHf‘.}

1) either H(x) or 7(x) is not an e1e~entAV7 ‘-“.‘
of 3%Dk x 350" -V A hid :5,

11) F(x) 2 3.1501‘ x 31:0“ and ?r’(x) e 3‘~_::»" x 317.3“
' In case 1), one of 5(k) and ?(x) is an elerent V

of (Bk x T”) - (3Dk x 3D") by choice of the oriéinel A
c and hence F(i) - h(x) and ?(x) = ?(x). Therefore,
d(H(x), E(x)) < 61/16. This imolies that the radial V
distance between the two noints and the distance in

_* the sphere are'each less than 61/16. For any i and
any i, mi and u, have the effect of increasinv the
radial distance between two ooints by a factor less than
8. Hence the radial distance between wiT(x) and

. mj?(x) is less than 8(51/16); The distance in the b
snhere rerains the save or is decreased, Theretore, '

o d(F:'1(x), '«=‘(x)) < 51/15 + F.’(51'/16) < 51.  
V - In case ii), F(x) c3“Dk x 3&3” and 7(x) a 323k X 3kDn

which imolies that m4h(x) c 1/N Dk X 1/N D" and
m55'(x) c 1/5! Dk x 1/N‘ 0'‘. Thus, d(5'i(X), F‘(x)) < 2/): < 61.

. If d(h(x), ;(x)) < 52 for aux c 3"): (T“ — zsn),
then d(h(x), 3(x)) < 62 for all x e (Bk X T”) - (2Dk x 2D“);
Since a is uni’orn1y continuous, there exists a 6 > O
with the property that tr d(h(x), é(x)) < 5, “or all
x e Bk X “B” then d(h(x), 3(x)) < 62 for all x c Bk x ‘
(T“ - 2D"). We have now shown that the construction _
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4 , 0? hi has the desired nronerties. This cowfileteg the

nroof of nronos1t1ohv3.1, I ’
A Coro11acv.3#2. Let-r8" he a fixed n-ball, *> 1.
Then there ;s_én c > O‘so that 1* 3 is the snace cf .

c all funct1ohp;?,'wanninv “k x H?“ into RV x V“ such
. ‘ that: V A7 I‘ e . I 4

- __1) flagk x nu” -41d
_ "2)A x c Bk x re" frnlies d(“(x),x) < c

,.’ve_3) ? cah be un1for~1v aooroximated by '
;' I ‘hcneomornhisns which equal the identitv

I V b ' on ask x an"
Anj if :3‘? {T e ;:"|Bk x (hB“ — 2rBn) = id}, then
there exists 2 cohtinunus ’unction 9:; + 3 such that
‘§(r)|ak x E" s rynk x 3“. I

7 Let ‘:1 -'{(tx,v) c nk x In-:”|(1 --t)
e ie c _ 3/u<1 - 2d(y,3a“))}

' . n2 - I(:x,v) e P“ x u9“!(1 - c) 5 k(1 - 2e<v,3s“5)}
‘fie de¢1ne e hn~enwnrnh1s~ _  

lb -> By x 133“ by

I . ‘ I y(tx,v) I {(tx,v), (tx,v) gf H1 '
V e - ' ([3t - if - 3cs(.v.3r=.")]x,.v), (ax,-.-is rel

.. hflote thét yI;;-:_§; mans fi;—:—§; onto Y1.
. Next we de'1ne for each ' e E ancthef vuncggon,

c_t(') de'1ned by _1 .fi__.__fi_____.
b {.7 fy(x), x c (B x as ) - 32

‘!(")(X) -
x, x c N2
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r(r) is an element o’ the set E 0' proposition 3.1.
Thus i'V¢-is the prnvised nanninv o"_th2t proposition,

¢(t(P)) 5 H1. De’ine o:;1 + G1 by 0(h)(x) = yhyf1(x).
Vinally we de'ine W:: + 31 by W(r) s o¢1(').

Thus, i“ x c Bk x En, '
_ Y(f‘)(x) - v¢(Y'1f'v)Y"1(x) -

-1,. -1 -1 -1 ‘- Y(¢(v Y))(Y (x)) = Y(Y "Y)(Y (x),) =
". P(x), since y'1(x) e Bk I B". .

' ' In the next chapter, it will be more convenient
I _ to work with this result in the followinq form.

’ - Corollarv 3.3. Let (a,b) be a pair of real
A V numbers, 0 < a < b. Then there is an e > 0 so that

if E is the space of all functions, f, napping Bk x “En _
kinto B X R" such that: .

k " ._ . 1) r|aI3 x as - id
V 2) x c Bk X a+b Bn implies d(f(x), x) < e

3) f can be uniformly approximated by
homeomorphisms which equal the identity

. on 3Bk x NB". 1
- ‘ k n n- And 11' G1 - {r e o:r|s x(14B - as )}- id , then

' there exists a continuous function ?:G + G1 such that
kv(r)|n x as" - rlrsk x as". ’ ,
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‘ _ ' CHAPTER Iv

I AN OPEN QUESTION AND A COVERIN¢ PROPEFTV I

This chapter is concerned with the proble: of

showing that the space of cellular mappinzs of an

. n-manifold onto itself is locally contractible. _

As was pointed out previously, it is known that the _

space of homeomorphisms of an n-manifold cnto itself

is locally contractible. It was demonstrated in .

9 chapter one that for n # H, Ce5(Bn) is locally con- i ‘

. tractible and that for any n-manifold, H“, n i 3,
it suffices to show local contractibility of Ce(H“)
at the identity. In this chapter we will show that
for-any n f H and any compact manifold X", Ce(Y”)
would be locally contractible if given a > 8, there '

exists a continuous function ¢c:Ce;(B“) + E (En).
It appears likely that Siebenmann's proof that any

cellular mappinn of fin onto Mn can be uniformly

approximated by homeomorphisms could be made to

be canonical in the sense that we desire. However,

I haye not been able to demonstrate the truth of

this conjecture. In the second part of this chapter

we introduce a new type of coverinn property that

is possessed by many metric spaces. If it could

be shown that Ce6(Bn) has this property, then we



t  33 -A
could define directly the functionoe. Assuminq - i I

' the existence of such a ¢£ for all 5, we will prove: b

Progosition H.l. Suppose n # M. There is a
I neighborhood Q of the inclusion n:Bk x R8" + Bk x Rn .

in Ce(Bk X RB“, 38k X RB"; Bk x R") and a deformation
_ of Q into cé(sk x as“, ask x ua"xJ Bk x 3"; 3“ x R“) s '

modulo a(Bk x RB"). " I It
Egggf. Choose the neighborhood C small enough ’

A so that the conditions of corollary 3.3 for (1%, 2) I
will be met and associate with 9 c Q in a canonical
manner the cellular map ?1:Bk x D5” + Bk x R“ with '
the properties: i

' a) ?1|nk x 153" - rlsk x-123"
b) ?1|ek x (ua“ - 23") L133“ x ua" - id

Then associate with ? the hcreororphism F1 - ¢€1(?1),
where cl is small enourh so that ffl'1 is close

” enough to the identity to satisfy the hypothesis

of corollary 3.3 for (l 1/3,.l%). Hot‘ that
a) f1:Bk x 48" + Bk 1 R" isja homeomorphism
b) d(f1(x), ?1(x)) < :1, re all x e Bk x as“
c) d(f1(x), r(x)) < :1, for all x c Bk g 1ge“_

V d) f1I3(Bk x 23") - id
_e) r1|sk x (nan - 28") - id

_ Non gonsider ff1'1:Bk x H8" + Bk x Rn. Since
f1‘1|3(Bk x 28") is the identity, there exists a
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9 canonical Alexander-type isotooy taking f to rr1'1, _ T

modulo the complement of Bk 2 2Bn. ffl-1 is a
cellular map which equals the identity on 38k x RB" -"
and is close enouvh to the identity to satisfy the
conditions of corollary 3.3 for (1 1/3, 1%). There-
fore, we can associate with ffl-1 in a canonical
manner a cellular map ?2:Ek x R8“ + Bk x R" with

_ the properties that -

A‘ . a) }'2|B" x1 1/3 an - rrfllak x 1 1/3 :3"
b) ;2|s" at us" — 1158") u ask” 2: us“ = id

Then associate with :2 the homeomorphism £2 -

¢e2(f2), where :2 is small enouvh so that ff1-1f2-1
[is close enough to the identity to satisfy the hy-

' ‘ pothesis of corollary 3.3 for ( 1%, 1 1/3). Note »
i that - ‘

I ,1 a) f2:Bk x as" + Bk X an is a homeomorphism I
n) d(£‘2(x)—, ;2(x)) < :2, for all x .c 3*‘ x us"

' c) d(f2(x); rr1‘1(x)) < c2, for all
VxcBk-xl1r.Bn.' ‘.

d) t‘2I3(Bk x 1223“) - id . _
7 _e) r2|a“’x um" - 1&3") - id

Now consider f1f1'1f2';:Bk x NB“ + Bk x R”. Since
f2f1|3(Ek'x 1&8“) is the identity, there exists a
canonical Alexander-type isotooy taking ff1-1 to '

ff1'lf2'1, modulo the complement of Bk X l¥Bn.

0- I b
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Continuinq inductively in this manner we define a

sequence of cellular nappinrs ?1:Bk x NE“ + Bk x R"
’ with the properties: *

‘ a) ?1;ak x 1 1/1+1 an -Vrr1’1. . .r;i1|  
_ Bk x 1 1/1+1 2“

_ ' A b) ;1|sk x (ue“ -(1 + i/1)§") L239“ x us“ -
A ; ' ‘T id

I “ ' Also define a sequence of homeomorphisms f1:Bk x “En +

‘i - i Bk x R“ with the properties:
i V V V a) d(f1(x), :1(x)) < £1, for all x c Bk x us“

i % To  b) «rim, r:'1"1. . .133} (x)) < :1
_ i ’ ya for s11 x c Bkx 1 1/1+1 B“

'  i c) was“ x ur2“u B“ x Um" - (1 + 1/1)§“)=
_- id

‘ ‘lwhere :1 is chosen stall enouch so that ffl-1. . .f1'1
. . eiei»is close enough to the identity to satisfy corollary

A . 3.3 for (1 1/1+2, 1 l/1+1). “or each i we also
'.. define an isotopy takinc ff1-l. . .f1:% to ffl-1. . .f1:i f;1.

- Let giBk X U3“_+ Bk xifin be the limit of the

sequence (r, rr1'1, rr1’1r2’1, . . .}. Then a is
. continuous since if x 5 Bk 2 B", the sequence

{f(x), fr1'1(x), . . .}-converges to x, if x t Bk x B“,
the sequence becomes constant For sufficiently larce

1, and if x c Bk X 38" and xn 9 x, then K(Xn) COHVGPCGS
to x - g(x). Since for any 1, ff1-1. . .f1'1 is
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. cellular, g is also cellular. The composition of. 1

the isotopies takinr: ‘rr1"1,V , .' 1-11. to ff;-‘-It .'_r;_1_1r;1
provides the desired isotopy taking f to 2." ,f4. ‘

Let Mn be a compact n-dimensional manifold.
Using proposition'U.1 it is possible to consider

. V7 a handlebody decomposition of Mn and construct the _

homotopy proving the following proposition. see i V

Edwards and Kirby [ 8 J for the details. -
Proposition h.2. Let M" beya compact manifold. '

If given a > 0 there is a continuous function

¢€:§?EfiT'+ H(Bn), then Ce(Wn) is locally contractible. I

E5233. The construction of Edwards and Kirby

shows that-Ce(Hn) is locally contractible at the s
identity and we have shown in chapter one that this y
implies local contractibility of the space. ~ j _

Definition ".3.- A metric space (H,d) is said 1
to have property (C) if given any a > 0 there is A.
a locally finite open cover Cfof H with diameter .

less than c with the property that if x e M and n
. is any integer there exist at most n elements of E: ‘

which contain x and have diameters greater than or‘ i T
equal to 5/2".

Proposition 3.". Let X be a finite dimensional .
metric space. Then X has property (C). I _
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l §r_;Q9_f_‘_. Suppose X has coverinv dimension n.
V Let“’u be" an open cover of X ofndiameter less than

c/2_n+1. _.Then there exists a locally finite open
refinement E obf"’u of‘ order less than or equal to

n+l':[..'20'].. E ‘meets the requirements of property
(C) since if i _<_ n there are no sets of‘ diameter _
greater than or equal to 5/21 and if i 3 n+1,

_ there are at most n+1 sets containing any given point.
v ‘_ ' It can be shown that any locally finite poly-

-‘ hedron, any space that can be written as the union _
‘ l of countably many open finite diraensionalspaces .

_ I and Hilbert space under the usual metric all have
'_. 4‘property (C). ' -

I. ‘ I - . Proposition 13.5. It‘ h_6-(-E7:-) has property (C),
* then given any e > 0 there is a nap ¢€’:?‘:5:(—B,T) -v H6(En)

1 such that it‘ 1' c I-i——6(-I-3“), then d(f‘, ¢€(f‘)) < e_.
. ' f_z£>_gt_:. Choose a locally finite cover ‘No?

it A ,. S57“-) of‘ diameter less than _e/2 with _the property
V - that if‘ 1‘ c E1173“) and ,1 is any interzer, there exist

‘ at most J members or‘l( which contain I‘ and have

. I - " diameters greater than or equal to c/2‘1+1.b Let
_ ' T n:-I-{;(—B'T) + ::(‘Z1) be the standard map of‘ n6(B") into

. the nerve of the cover 71. The vertex of‘ M021) ‘
pl _ corresponding to the set U“ is denoted by nu.
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' we next will define a mapping W:N(Ql) + qlfln).

h Order the members of7L. we define W0 from the
0-skeleton or n(",£) by lettinp: wow“) -ha, where —
ha is an element of U“. If <uu13 p02) is a 1-simplex

of N(Q() where a1 < a2, define W1 on this simplex
by mapping <ua , ya > barycentrically by the Alexander

A 1 2 ’ ..
, isotopy which takes ha to ho . Note that if k e

. ‘ 1 2 -.‘ <uu1, ua2> then d(?1(k), haz) 1 d(ha1f4ha2).. Next .
- suppose <u , u , u > is a 2-simplex of N(7l)

G1 02 03

V where cl < a2 < a3. Define W2 on <ua1, uuz. ua3>
T by mapping the simplex barycentrically by the Alexander

- b isotopy which takes W1(<uq1,ua2>) to hug The fact
that the Alexander isotopy is canonical-assures

that V2 is continuous and the ordering of the members

A of‘2L assures that W2 extends V1. -If k e <ua , pa , ua > ‘
» 1 2 3
then there exists kl c <ua_, pa > such that V2(k) b

l 2 '
is on the isotopy taking ? (k ) to h . Hence1 1 (:3
d(V2(k), ha3) £_d(V1(k1), ha3) 1 d(W1(k1), haz) +

d(ha2, ha3) 5 d(ha1, haz) + d(ha2, ha3). Continuinn
inductively, assume that Vn has been defined on the
n-skeleton of N(?L) using the Alexander isotopy
in such a way that if k c <ua ,. . .,uaA>, then

1 n
d(Yn(k), ban) 5 d(ha1, haz) + d(ha2, ha3) + . . .
d(h h ). Let <u . . . u > be an n+1

an-1. an al. ’ °n+l



. L efi e 39
‘ simplex of‘ 3.'(‘fl) with 011 «:2 . . .< an. Define ' . -

. ‘Pn+1 on <ua~l,. . ., uun,,1> by mapping this simplex
‘ barycentrically by the Alexander isotopy which takes _

‘1’n(‘Uq1,._ 0 op Uan>) to han+1o Then k C

‘"01" ' '- "an+1’- “"*’n+1”‘).v h<1n+1) .‘. "‘“a1’ haz) +
. . . + d(ha , ha ). Let: v- 11m vn and define

_.__T.r n n n+1 _
¢c:H5(B ) -> }§§B ) by lettinq ¢€(f‘) - ‘1’n(f‘). If‘

I‘ U U . . . th 1‘ . . .C V Bin. 82/‘) f\UBm, en n( )5 <u81, ,Au8m>

. and hence d(¢€(f),!‘) - d(\Yn(f‘), f‘) _<_ d(‘i’n(f), hB ) +
‘ m

‘ d(h8m, 1') 5 d(hB1, he?) + . . . + d(hBm-1, ham) +

d(hBF, r) < (e/23 + e/23 + . . . + e/2"‘*1)+ e/2 < c.
m .
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HPACTORIZATTCN 0” UV”-WflPS A i

It was demonstrated in chanters one and two that
every cellular man Prow an n-nani'o1d onto itself was

closed and had nronertv UV”. In this chanter we will
consider the more veneral situation o’ a cloned UV”.

' man 0' a snace X onto 9 Metric space V. Virst let us

b consider a nronerty o“ any cellular rennin", ’, of a
manitold W" onto itself, n # H. Let h:K + Y be a ran
0' any tonolooical snace into Y. Then Riven 5 3 0,

there is a ran v:K + X such that d(P(v(x)), h(x)) < 5,
“or all x e K. The nroo' 0' this statewent is trivial.
Let wzfin + Mn be 2 horeowornhisw with the nronertv

that d(x(r), ?(m)) < 5, for all M 5 “n, and de'ine e I

»by o(k) i w'1(h(k)). Then,
a(r<~n«.>>, h(k)) = a<'-~.«’1<w)>, .».u<>) =
d("(w'1(h(k))). w<w"<2~.<'«.>>>> < 5, since ,
w’1<h<'m 6 =1“. -

It has been shown by °rice [ 1 J, Kozlowski [15 j
and Lacher [ 16] that 1* f:l + Y is any closed UV”- b
man and K is a ¢inite dimensional cownlex then h:K + Y

can still be annroxinetely "actored throurh 7. we will .
. demonstrate the corresoondinv theorem for K a locallv

4 finite corp1ex.' . -

First we introduce some terrinolovy that will

b be used throuvbout this chanter. A cover,T, o” a
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_ space I is a collection of open sets whose union equa1sA

A. The dieneter o? a cover T is equal to the sunrerum '

0' the diameters o‘ the merbers 0* T: 9t(T, T) is de'ined ‘_
to be the set of all noints o’ A which are contained

‘ in a rerber o’ T intersectinv T non-vecuouslv.

V ' Hhen there is no con'usion we shall not distinvuish
between the cownlex K and the noint set IKI. I” B l
is a set and 1 a cover, h will be said to ran 8 into
T if there is sore T 5 T with h(B) CIT. h will be
said to men a conolex K into T 1* h vans each siwolex ‘

' 0’ K into 7. K(n) will denote the n—th skeleton 0* the
cornlex K. I? n is a sirnlex o” K, St(a, K) is detined
to be the set 0' all roints o’ X which are contained
in a sinnlex n” K which intersects a non-vncuouslv.

Leer: 5.1. Let “:Y 4 V be‘a closed UV”—r2n o’ .

»’. X onto V. Let %Lbe 2 cover 0? V. Then there exists
a cover Qro' V such that “or each V_e Qfthere is a

A U 2% so thet -
. 'fa_) st(v,‘?f)C u _ .

.b) T” Y:Sk-1 + '-1(St(V,4U3) is viven “or

. : i any k, then there is an extension

e  . ms" + «'1<u>.
3322:. Choose a cover T of Y that star re'ines

QL; i.e., 1” T e T, there exists U c Qlwith St(T, T)(LlL
Such a coeer exists since Y is paracorpact. Then “or
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. - each noint v c.Y, choose TV c T such that 9 e TV.

- *'Since “dis 2 UV”-nan, there is an ooen set, F, in X
_ contnininv ’ (y) and contained in ' (.v) with the

. ' A -1’_ nronertv that A is null-howotooic in f (TV). Then
choose V such that V is ooen in Y, V CL? , v e V

. L 1 V y 1 :1’ y
L _ and " (VV) Cifi. Hence ’ (Vv) is null-honotonic in

r"1('ry). . Let "2"- {Vv[_v c Y}.
Lemma 5.2. Let X be a locally 'inite cowblex.

Suooose h:K + Y is wiven 2nd‘7lis an onen cover of Y.

Let r be a nositive intever. Then there exists a

- it subdivision, K1, 0'‘ .v.. so that
‘ . ' 3) 1’ 0 is a 1-sinblex o‘ K1, then h vans

' St(o, Y1) into 0&1
b) 12* at is a sivvslex 0" K and s.t(u, K) 0

~ K - K{"'I) z ¢, then a is a simolex o“ K1.

. b Proof. Let 3 be the “inst barvcentric subdivision

of K and let L - X - k . Then de"ine I to be theN .
closed star of L in K. J is a locally Vinite connlex

(subcomnlex or V) which can there'ore be subdivided,
forminv 3, in such a Wanner that 1' n is a sinnlex o"

‘h . \* '\.J then hl. mans St(a, 7) into 1L T“ y is any siwolex
of E which is not contained in I but intersects J,

subdivide y by coninv fron the barycenter of y over
4;

its boundarv as subdivided by the Pcrwation o" 1. We '

have by this orocedure cdnstructed a subdivision, XI,
of K with the desired oronerties.



. Theorem 5.3. Let f:X + Y be 3 closed UV”-man,
K be a locally Pihite cornlei and h:K,+ Y be an arb1- »

trarv continuous function. Given an§ cV> 0 there is

a men v:K + X such toot d(5r(k),bh(k)) < e, Par all .
k 2 K; 1.e., such-that the Pollowinv diavraw cowwutes
wgthtn e. V- V e _ ‘ - _

A '_'r e‘ . V - ;t A
V X V _ f

. ._
I I-I ‘.

t f. 'a.. -' . »h
. 3 ' . 1

I '-
3 . . -
g > ‘ .

°roo'. Choose an ooenvcoverqfl 0? Y o" dlaweter
less than 5. Then choose a subcover T1 with the vronebtv

that for each T1’: T1 there exists U c 4Lsuch that -

=1) sc('r1’,' ~..-1)(, _u _
b) oiven any n and any ran y:?n'1 +

‘ -1 _ ."f (St(T1, T1)), 7 can be extended to
a Man ::Bn + ?'1(U). V b V

Wakinv use of lemma 5.2, we let K1 be a subdivision
of K so that h raps St(K1) into T1. Define vo:HE + X
by lettinv vO(v) be any element 0' €‘1(h(v)). Now let

a be a 1-slnnlex o’ K%. Let T1 be an eleeent 0' T1
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n with the nronerty that h(9t(a)) CZTI. This irplies

‘ - ’thet wo(3a)C: '-1(T1); TherePnre, we can extend an
' ‘n to a can 01 takinw a into *-1(U) for some U containinv

I H: hT1. We repeat this nrecedure for each 1-sirnlex 0"

. '?_i ‘ K1 and therehy de”ine v1:Ki + X with the nronerty that
g H’ if q is a simplex 0' Ki, then f(r(a))kJ h(Ft(a, X1))

‘ . _ is cr.rA.g1ned in snv-e v-ev-vber nflil.
-It _ - flss::e‘§n¢uct*vn1v that we have dePined subdivisions

. — _ K1,‘K2,. . .,v.n nrxgcnver-so-10,11‘, . . . ,1*n
' .u- 0' Y and mans W1, . . . , 0n with the Pollowinv nronerties

. . a) «1:K§ + X _
i b) if a is a sinnlex 0' Kg and St(a, K1)fW

' _ v _ K1 - xi - a, then 1 > 1 1-rnnes that
' . ' Gila = Vila. V . ‘_ V

_ H c) if a is 2 4—sirn1e$ 0' Ki and i‘ k is
>_ the maxinuw 0’ i and the diwension 0*

c St(r:, xi), then n(°.+.(c';,x1))u «-«-lo.) C;
H . Tk_5 for save Tk_j 5 Tk_5 '

.d)K->K1->K2«>"'~>Kn V
e) 1' a is a 1-sinolex 0’ K1, h mans St(a,Kj)

'‘ into T, H
r) for each T1 5 *1 there is a T1_1 e Ti_1

such that St(T1, T1) C.T1_1 and 1*
’ y:s“'1 -o 4"'1(St(T1, 71)) is de"ined “or

any k, then there is an extension o" y,

-y-:Bk -v "'1('I‘1_1) _
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Note that we have cnnnleted such 2 nrocedure ‘or n = 1. -

'--'e now will de"1ne F.n+1, «n+1 .—-nd":'n+1 with the required ' ‘.
pronerties. '

Let T be a re'1nenent 0‘ T such_thét for eachn+1 n
$ . o V >.Tn+1 c . “+1 there exists Tn e Tn such that

8) 'qt(Tn+1’ ?n+1) C Tn b
. V k-1 -1b) “or any k and any y.S‘- + ' (:t(Tn+1fTn+1))

there is an extension y:Bk + °. (Tn).
Let K be a subdivision 0' X such that .n+1 n

1) 1' u is a simnlex c" K: and 9t(a, K2) (7
--—:-m- 4 H 1 4‘K" - Kn s ¢, then a .s 9 s-Pn1ex o Kn+1

11) 1' a is en (n+1)-s1~n1ex 0' K , then. n+1
h mans St(a, Kn:%) into Tn*1.

We now de‘{ne the nan o :Kn + X. I‘ v'*s a vertexn+1_ n+1

0' Kn+1, de'tne nn+1 at v, bv

H w (V), v is a vertex 0’ K '
0 (V) . n -1 n

"+1 any e1e~ent 0’ ” (h(v)), v
not a vertex 0? Zn

We next define vn+1lK$+1. I‘ 01 is 2 1-simplex of
Kn‘1, let 5 be the naxiwum o“ n+1 and the dimension
of St(c1, Kn‘1). Note that h ~ans ?t(o1, Kn+1) into
7, and choose T‘ C 71 with h(St(g1, Kn+1)) C.T1.
Choose T1_1 such that any manninv 0' Sk into *'1(St(T{, T‘))
extends to a maoninw 0' Bk*1 into "1(T,_1) and Pt(T1, T‘)C:

'n 3 I I I'r5_1. Ir St(a1, Km”) n Kn” - !'.n:1I ¢, let rn+1Io1 vnlol.
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- -1_ Otherwise, note that nn+1(=o1) C ” (St(T1, Tj)). _ .

Extend vn+1 on 01 so that ~n+1(o1) C “ (Tk_1). Rot-
that

ran‘1(n1) U h(."~t('11, Kn+1)) C 'rk_1.
Next assuve (subinductive statewent) that

"n+1|K:+1 has been de*1ned in such 2 way that
T"' inV .1.) 1.4- div» 0 _<_ r and .<t(o, KM1) 0 (M1 - (M1. e

' ' 3then vn+1.a vnlo
. . ‘ 11) 1' o is a sinfilex of K:+1 and_1P k is

the maximum n” n+1 and the dirension

. 0* St(o, Kn+1), then there exists Tk_r c
_ Tk_r such that h§Rt(a, Kn+1)) \)’nn+1(5) C,Tk_r

' é and vM1(o) C "' ('?‘k_r.).
we have demonstrated this subinductive state~ent "or

I r 8 1. How let or+1 be en (r+1)-s1—n1ex o“ Kgti. ‘

- If‘ St(oN_1, KM1) n Kn” .. x;“+1 = «t, then de“1r:e
¢rn+1!or+1 to be vnln_+.l. (Note that this extends
on+1[3oP+1, by aszunntion 1.) rn s:t1s'1es the inductive
statement, There'ore on+1 sat‘s’ies subinductive
statement 11.

‘ -.--—-1‘It St(nr+1, Kn+1)lW Kn+1 - Kn+1 # ¢, and y is
a simolex in the boundary or ar+1, we note that by
11) there exists Tk_r c Tk_P such that

Pick one of these, cell it Ty ”, and note that
«M1 (aa,.,1) c ~'1(sc(rk__r, *rk_,.)). we then
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extend gn+i to op+1 in such a way that for some »

Tk-rel’ gn+1(°rf1? C:f-1(Tk-r-1) a"d . ’
f(nn+1(or+1))lJ h(St(ar+1, Kn*1)) C Tk_r-1,

since » .
h(St(o,~+1u V-m>))c h<u§i1st<y. xn+1>> c
n<ukaJ”1st(v, Kn» c st<Tk_P, wk“) c Tk_r_1.

This completes the subinductive statement and with

.- . that the inductive state:ent.- Properties a, d, e
and f are trivially satisfied by definition. Pro-
perty b is assured by property i) of the subinductive

step and property c is satisfied by subinductive

property ii). I
We now define ¢:K + X by i

« 8(1) - r,._(x). .
. For any x c K choose any simplex a containins x.

The local finiteness of K assures that there is '
an intecer 5 so that St(a, K)’1 K - K‘ - ¢. Thus,
for any n 3 N, St(u, Kn)!‘ K - K2 - St(u,'Kn) (W A
§—:—§fi C St(a,{K)/W ;—:—Efi I o. Hence for n 3 N,

gn(x) I qN(x).- Therefore, 3 is well-defined and ‘
continuous. Let x c K and o be a simplex of maximal

- dimension containinn x. Then there exists an intecer

N such that St(a,K)(W E—:—;n - ¢. Choose a simplex
‘ _ 8 in KS containing x. Then g(x) - qN(x) and by

inductive statement c, there is a T in some T1 I

so that_h(St(8, KN))(J 953(8) CfT. Since T1 refines
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‘ Q1, h(x) f'F’,(X) C U for some U and therefore . _

d(h(x). fr'.(x)) < c. ‘ _
- Corollarv 5.u. Let fzx e V be a closed UV". '

nap, K a locally finite complex, L a subcomplex of -
K. Let hiK + Y and c:L + X be mappings such that .

V for all 1 e L, f(g(l)) - h(l). Then given any I T
e > 0 there is a map ::K + L such that 3 extends L I
g and d(f:(k), h(k)) < c, for all k c K. _

figggfi. Proceed exactly as in theorem 5.3, 7
except that if at any stame u is contained in L; L :

‘ define ?v,'n|a to be zla. Since rev commutes with n, L V
. fg(a) will be contained in all the necessary T's. f

Maps u:A + B and v:A + B are c-hcrotopic if ’
there exists a homotony K takinc u to v so that .
amt, Ht.) < c, for an t, t'. V I

. Theorem 5.5. Let f:X + V be a closed UV"-nap
and K a locally finite complex. Given a map h:X + Y
and 5 >0, there exists a c:K 4 X such that re is
e-homotopic to h. ‘

figggg. For each nonnegative integer 1, choose
A : ua cover‘u} of Y of diameter less than c/“(i+l).

. For each 1 3 1 define sequences

e L "1.1' "am ’° ° ' L  
I '!‘_1.1 -'u}"1, 10.1 -‘LL1, 71.1, 12,1 . . .

51.1. 522.1. . . .
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I . ' as in the proof of theorem 5.3, with the additional

‘ conditions that
for each U1 cqif there is a U1_1 cqlfiii

‘ so that St(U1,‘7LL1)C_ u1_1 and 11'
I y:Sk-1 + f'1(St(U1,°u})) is defined

A ‘ for any k, then there is an extension

% ;:Bk + f'1(U1_1).
Tp.1+1 refines Tp’i for all p, i.
Kp.1+1 refines Kp.1 for all o, 1.

A ' Then let g1 - lim 3 ’ ‘n,“ n,i'
. For each positive interer 1, we will define

. a homotopy G1:K X I + X such that A

a) G1(k,0) - r/1(k) for all k c K
_ A b) c1(1<,1) - pi” (k) for all k c K ’
i c) if k c K, P01 maps k X I into¢h}-1.

Iv » ‘ Fix 1. Assume, inductively, that we have defined T
maps Gi, 6%, . . . , 1% in such a way that:

- - I »_ 1) G1:K§’1 X I + X for J ' 1, 2, . . ., n I
I I 11) G§(k,O) - ¢§(k); G:(k,l) . ,,§+;(;<)

I - for all k e K3 ._
iii) if u is a simplex of KJ.i and St(u,KJ'1) (W

- ‘K.-K5-¢,tnen1rm>.1,c;|axI-
G:Ia I I ‘

I iv) for every p-simplex B e Kjfii, let k
be the maximum or 5 and St(B, KJ'1).



I _ Then there exists Tk_p_1.1 c Tk_p_1’i b _
. ” suchUthat«f(G;(P x I)) (:'r ._ 1. .4 ~ k-p-1,1

ewe nou will-define Gn+1:K:+1‘1 x I + X. If v is

. ' a vertex cf Kn+1.1, let 5 be the maximum of n+1 I .
. gnd the dimension of St(v§ Kn+1.1). Then fvn+1(v)L)h(v)CL

TJ_1.1 for some TJ_1'; e TJ_1.1 and fzn+2(v) u h(v) C;
TJ_1.1+1 for some TJ_1.i+1. But, TJ_1’1+1 refines

7 _1 M
TJ_1’1. Hence fgn+1(v) %)fqn+2(v)(; F (St(1J-1.1))

» and we can define G$+13Kn+l’11x I + X in such a
use that for any v E Kn+l . un+1(V x I) (:r (TJ_2.1)

. for some TJ_2'1 e Tj_2.i, avreeinq with On when.
appropriate. . 1

Now, assume inductively that we have defined
.1 _ P V ' 'Gn+1.Kn+1.1 XI.» 3 so that b I

I‘ a) if a is a simplex of :n,i and St(o,Kn’i) f‘
' - ' I nV. We Kn.1 - Kn.1 =¢ then :n+1| 0-! I f V _ H

. i .’v Gala X I V
' . .p _ '_ bi_ irja is a simplex of An+1’1 and if k

' _ is the maximum of n+1 and the dimension

d _ of St(o, hn+1'1), then there exisis .

Tk_p_1.1 c Tk_r_1.1 such that f(Gn+1(oxI))C:

— x Tk-p-1,1 1 1 _- _
’ c) G§,1 (k.o) - qn+1(k). an+1 (k.1) -

1+ 3’ . ’gn+}(k) for all k e Kn+1’1 V
Let a be a (p+1)-simplex of Kn+1’1. If St(o,Kn+1.1) r\

n+1 1



i" 1 _ Let k be the maximum of n+1 and the dimension of
. . , stfo, Kn+1’1). For each simplex y in the boundary

. b of a, there is a 1k_p_1.1 such that f(Gn+1(y x I))(:
V  Tk_p_1.1. Aiso there is a member of Tk_p_1,1 that

o b contains f(rn+1(a)) and another member or Tk_p_1’1
' 1+1 .. . that contains ?(zn*1(o)), since :k_p_1’1+1 refines

' ‘ 1k_p-1.1. Define c:*1 (k,0) - nn+1(k), for all x c o
1 1+1 ‘A and Gn+1 (k,1) - cn+1(k) for all k f 0. Hence

1 -1

welcan extend ¢n+1 to on! I such that 3%+1(o x I) (1
ti (1k_p_2,1) for some Tk_p_2.1 c Tk_p_2’1. Let b

1 G - lim 91. This completes the proof of the inductive
. 1-»: n

statement. Xote that for any point k e K, there .
‘ 1

' exists a simplex o and an inteqer H such that G [k x I 8
'1 ‘ ’ .. .Gulk X I.and that for some ._l,1 - J1_1 e*%fl 1
f6 (k x I)<: rs1(a x I) c,u1 1. so, the diameter1 -
of f6 (a x I) is less than c/hi. _ -

For each 1 consider ffii as mappinv K x [i - 1/1,

h 1 a 1/(1+1)] into Y and define uzx x 1 + Y by

rn’(k,t), 1 — 1/1 3 c 5 1 - 1/(1+1)
h(k), t - 1

H is continuous since for each i, fG1|K X {1 - 1/(1+1)}
- rc1*1|x x {1 - 1/(1+1)} and by choice of the
covers‘u}, {fg1}converges to h and the diameters
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of the definlnm honotopies approach 0 as 1" w. ’
H is therefore an e-hofiotopy taking fzl to h. .

Corollarv 5.6. [Let f:X + Y be a closed UV“- I 7
map, K a locally finite complex and L a subcomplex

of K. Let h:X + Y and'c:L + I be mappincs such

that for all 1 c L,-r(q(1)) - n(1). Then eiven
‘ any a >0 there exists a map z:K * X and an c-homotopy

taking fg to h. e '
25922; The proof follows immediately from

that of theorem 5.5.
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