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TINTRODUCTION

Cellular mappines of a2 manifold onto itself
possess many properties of homeomorphisms., In par=-

ticular, for n ¥ 4, a continuous function defined

from a manifold onto itself is cellular if and only

if it can be uniformly apprcximated by homeomorphisms,
This .thesis is a study of cellular mapoincs, spaces
of cellulaf mappines and a class of mappinrs, called
UV®-maps which are a natural reneralization of cellular
nappines for spaces which are not manifolds.

In Chapter one we prove that the space of cellular
_mappings from a manifold onto itsclif is a topolo-
gical semi-group and that the space of all cellular

mappings cf g"

onto itself which are the identity

on the boundary is locally contractible, The main
theorem of Chapter two is that a mappines f of the
n-sphere, n # 4, onto itself 1is cellular if and only
if £ has a continuous extension which maps the
interior of the n+l ball homeomorrhically onto
itself. This theorem is a hicher dimensional analo-ue
of a result of Floyd and Fort [11]. For hicher
dimensional manifolds with boundary, ¥", we show
that if f mars the Interior of ! onto itself and

the boundary of M onto itself and if f restricted

to the interlor is cellular, then f restricted to

the boundary of M is also cellular,




’

Chﬁpter threce is concerned with showines that
under certaig ‘conditions cellular rappinvsvcan be
replaced in a canonical manner with bounded cellular
mappings that arree with the orisinal mappinecs on
a riven set, Sirmilar techniques have proven valuable
in studyins homeomorphisms and spéces of homeomor-
phisms, In Chapter four we introduce a new type
of coverinr property possessed bty many metric spaces
and show that possession of this prorerty by the
space of cellular mappinés of Bn onto itself would
show that the srace of cellular nappinrs of a mani;
fold onto itself is locally contractitle,

In Chapter five we show that if f:X =+ Y, Y

a metric space, is a UV®-map, K a locally finite
. ’

’ complex and h:K - vV 1is any continucus function,

then for any € > 0 there exists a mappins m:K + X

such that fz is e-homotopic to h.

vi



CHAPTER I
SOME PROPERTIES OF CELLULAR MAPPINGS

In this chapter we prove sorme of the basic properties
of cellular mappings and spaces of cellular mappings
of a manifold onto 1tself, Propoosition 1.1, which
states that a mapoine from a manifold onto itself which
can be uniformly aporoximated by homeomorphisms 1s
cellular, provides an important tool for dealines with
cellular mapoines, and while 1t is a conseaquence of a
more reneral theorem anncunced by Finney [ 9 7] the
sirple proof is included here for completeness, The
proof of this theorem imolies that the space of all
cellular mappines i1s a topolorical semirroup.

We next discuss the relationships between cellular
mappings and certain classes of monotone mappines, The
chapter 1s concluded with the oroof that the space of
all cellular mappines of BN onto itself which are the
identity on the boundary is locally contractible. In
proving this theorem we show that for any manifold
local contractibility at the identity map imolies local
contractibility of the svace.

A compact mappine £, H“, from an n-manifold
onto itself, is defined to be cellular if for each
yer?, £=1(y) 1s a cellular set; i.e., there is a se-

quence Cl, Co, ¢« « « of topological n-cells such that



: )
f’l(y) = N Cy and Cy,, C Int C ., Many properties
- 1=1 1

~ of homeomorphisms are also possessed by cellular

mappings, The first step for results in this direction .

“1s the followine observation:

Proposition 1.1. Suppose £:M™ > M 45 an onto

map which can be approximated uniformly by homeo-’
morphisms, Then f is cellﬁlar.

Proof., First we show that f is a compact maﬁpinq.
Let C be a compact sﬁbset of Hn. We choose €:> .0
small enoush so that X, (C) = {x ¢ Mnld(x,c) < 2¢}
is compact., Let h be a homeomorphism from Zn onto

.

such that d(f,h) < c.‘ Throurhout this paper,

if £ and h are any functions, d(f,h) is defined to
be sup,(d(f(x), h(x))). Tor this h, h(f'i(C)) C
T—_%%§. By the continuity of £, £73(C) 1s closed,

‘26

and hence h(r'l(c))) is a compact subset of the
compact space ﬁ;:?ES} By the continuity of h-l,
h'l(h(f-l(C))) = f-l(C) is compact.

NHow it remains to be shown that if b ¢ M", then
t1(b) 1s a cellular set, It suffices to show that if
U is aﬁ open subset of M7, with =y U, then there
exists an n-cell, C, containing f-l(b) and contained
in U, (Since Nl(f-l(b) is open, this would show that
there exists an n-cell, C,, contained in Nl(f-l(b))

and containing f'l(b). Ng(f'l(b)) N Int C, is open and




we therefore could obtain an n-cell C2 contalined 1n

this open set and containine £~1(b). Continue inductively.)
Since f 1s a compact mapping, f(a) is a closed

subset of *N, We note that & = d(r(V), r(r~1(b)))=

d(f(h), b) is a positive number. Since i

is an n-
manifold, there exists a positive number n:G with the
property that Nn/3(b) is an n-cell, By our hypothesis,
we can choose a homeomorphism h so that d(h,f)< n/3.
Then h'l(Nn/3(b)) is the desired n-cell, C.

First we show that f=1(b)Ch~l(n_ ,.(b)). Let

. n/3
xef=1(v), then d(h(x), £(x))< n/3; i.e., d(h(x),bln/3,
which implies that h(f‘l(b))c:xn/B(b). Therefore,

r=1(v)C h-l(nn/3(b)). Next, we show that h=l(l 3(b))ClL

/
We supnose not, Then there exists xsh'l(un/3(b))f1%.

xch-l(_‘.'n/s(b)) implies that h(x)an/3(b) and d(h(x),b)<n/3.
By choice of h, d(f(x), h(x)) <n/3. Therefore, d(f(x),b)<
2n/3. But, xeU imolies that d(f(x),b)>n. This is the
desired contradiction.

Combined with the followine major result of Armentrout
for n <3 [ 2] and more recently of Sievenmann for n ¥ 4
[ 23], the preceding proposition prdvides a character-
ization of those mapoings which can be uniformly approxi-
mated by homeomorphisnms,

Theorem 1.2. Suppnose f:47 M7 i1s a cellular map

of " onto Mn, n ¥ 4, and suppose g:Mn-*(O, =) is a
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riven continuous function., Then there exists a homeo=

morohism " » 0 such that d(~(x), h(x)) < ~(x),

for all x ¢ ¥,

This theorem is the analovue of a result of
Hockin« [ 12] which e will state after the necessary
preliminaries., A racnine € is said to bde emT 1° 1t is both
compact and r-monotene (i.,e., the inverse i~are of each
point is k-acyclic in the sense of Vietoris, for all
k < r). £ soace 1is ule’ 1f 1t 1s unicormly locally
connected in 211 dirensions k < r.

Theorem 1,3, Let 32 be a ulel 2-manicold. &
uniformly continuous maonine f:ﬂz - 22 can be uniforrly
apnroximated by homeomornhisms 1€ 2né only 1 f is cnl.

As the followine oronosition deronstrates, a

n

n Y n
cellular ran £ + * is crm ,

Provosition 1.4, Let X €Y'

Then X 1s k-acvlic for all k < n,

Proof: Let v = {vy, Y5» « .|y ts an e -cvele
and 1lim g4 = N} be a k-dimensional in“inite cvcle in
K. W%e wish to ©ind a k-dirensicnal Infinite chaln
Kk in K such that 3x = y, Let Yi be an e,=-cvcle,
Bv the cellularity of K, there exists a cell Ci such
that xCc, €N (K). Now, vy, lles in C,. There‘ore,
there exists an ci-chain xz such that 3<; * Ty and each

vertex of <; lies in Ci‘ We define Ki by desirnatine a




vertex v for each vertex v* of x4 1in the followine
manner:
vk, 1f vReK

any point of K within €
vig X

g of vE,if

Then 3, = v, and K, 1s a k-dimensional 2e,-chain.

Since 1lim €; = 0, 1im 2e, = 0,

i

This proposition leads to a natural question,
Let f::" +¥% ve cmP, Is f cellular? Proposition 1.5
provides a partial answer for n = 2,

Proposition 1.5. Let 2 be a ulel 2-manifold.
2 1

A uniformly continuous mapping f:ll *nz is en™ i1f and
only if it is cellular,

Proof. If f is cellular it is cm1 by proposition
1.4, Iff 1s cml, theorem 3.1 irplies it can be uniformly
approximated by homeomorphisms and is therefore cellular
according to proposition 1.1.

It will often be of interest to consider certain
spaces of homeomorphisms and cellular maopines, Let ¥
be a manifold, H(M) will desirnate the space of all
homeomorphisms of ¥ onto itself, Ce(¥) the space of
all cellular mappines of M onto itself, HG(H) will
desirnate the space of all homeomorphisms of 1 onto
itself which equal the identity when restricted to the
boundary of M and CeG(M) the space of all cellular
mappings which equal the identity when restricted to

the boundary. Each of these spaces 1is given the compact




open topolory, the topolory renerated by all sets of
the form N(C,U) = {f|£(C)C U}, where C is compact and
U is open in M., This topoloey agrees with the uniform
topology for the special case where M is compact. In
this instance each of the above mentioned -spaces is

a metric space with metric eiven by d(f,s) = sup d(r(x),
e(x)). H(M) and Hé(M) are known to be topolo:i:al
groups under composition of functions. Since cellular
mappings which are not homeomorphisms have no inverses,
Ce(H? and Ces(H) are not topological groups. However,
the followine is true,

Proposition 1.6. Ce(!1) and Ceg (1) are topolorical

semieroups.,

22222'- We must show that the composition of two
cellular maps is cellular, or equivalently that if f
is a cellular map and K is a cellular set,/then r‘l(x)
is a cellular set, Since the composition of two compact
mappings is tompact, the proof of this staterment is
identical to thatof proposition 1.1 with "K" revlacing "b",

A topological space, S, 1s locally contractible

if given any point s€S and any néighborhood U of s,

there exists a neighborhood V of s, a point voev, and

a homotopy H:V X I *U such that H(v,0) = v and H(v,l) = ¥y
for all veV., Likewise, S is locally contractible at s

if given any neighborhood U of s, there exists a neigh-

borhood V of s, a point VOCV and a homotopy H:V X I+ U



such that H(v,0) = v and H(v,1) = v, for all vV,

Cernavskii [ 7 ] and Edwards and Kirby [ § ] have
showq_that 1f 1 1s .compact or equals En, then H(M) 1is
locally contractiblé. Alexander [[ 1 ] demonstrated
that 1f B" 1s the n-dimensional ball, then HG(Bn) is
locally contractible, We show in this section that
Cec(Bn) is also locally contractible.for n # 4,

Theorem 1.7. Ces(sn) is locally contractible, n # 4,

Proof., We first show that if €>0, there exists
a homotopy H:Nt(id) X1I *Ncgid) such that H(f,0) = f
and H(f,1) = 14, Ve defiﬁe H as follows:

HOE,t) (x) = ro(x) L=t r(itBy), 0 ctel
J1l+t l -t -

x, t =1,

where £(x) = [ £(x), x eBn

x, x e R - 30,
We note that for each ¢, ft is a cellular man, since
it is the comrosition of a cellular map and two homeo=-
morphisms. For each t, ft restricted to the boundary
of B" is equal to the identity map. H 1s continuous
by definition. The following diaeram i1llustrates how
this Alexander-tvpe isotopy works in the case of cellular

mappinrs.

!

A@ A

‘:»
A _(f(x))

[\

F’(”')
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Now, all that remains to be shown 1s local contractibility
at an arbitrary point. [For H(}) or HS(M) this follows
directly from local contractibility at the identity
since these spaces are each topolorical rroups.) lowever,
in our case the implication must be demonstrated. ‘e .
will show more renerally that if Ce(M) or Cea(ﬂ) is
locally contractible at the identity map, it 1s locally
contractible at every point. To this end we will assume
that we have shown local contractibility at the identity.
Let f be cellular and let Nr(K,n) be eiven. Let K' =
{me¥|there exists xeK and heN.(K,n) MH(?) such that
n = h(x)}. Consider N, (K',n/2). We are assuming that
there exists Nid(D,G) and a homotopy @:Nid(D,G) X I»
N(K',n/2) such that:

s KMCD

2, 8§ <n/2

3. ¢(e,t)eN, ,(K',n/2), for all e N, ,(D,8)
4, ¢(my0) = g, for all reNy,(D,8)
5. ¢(e,1) = 1d, for all geN,,(D,$)
Now, pick a homeomorphism h:M +! such that d(h(x),f(x))<8/2,
for all xe., In the case of Cegz(M), choose h so that
in addition, h restricted to the boundary of M 1s the
identity.
We will now define H:N (h™1(D),8/2) X I +N (K,n)
as follows: H(g,t) = (¢(eh~1,t)) o h, for all =eNo(h~1(D,6/2) 9,




9
.In order for this definition to make sense, we must show
that ;_'.ENf(h-l(D),G/Z) implies that eh™1 eN(D,8).
But this follows, since 1f XD, then d(rh™1(x),x) <
a(e(n=1(x)), f(h'l(x))) + d(f(h-l(x)), h(h-}(x))f<
Sr24 §2=6. &5
H is the prooer map if we can show that:‘
1 kcaHD
2) 8/2°=n
3) H(s) € N(Xp), for all s c'Nf(h"l(D), &2)
4) H(e,0) = ¢ '
5) HI(V) = h
It 1s clear that 1) follows since if xe K, then h(x)e
K* and h~1(a(x)) € h=1(k*)Chn~1(D). 2) 1s obvious.
" To show 3), let xe%, then d(;a(c,i)’ (x), r(x)) =
d( dﬁh-l.t)(h(x)),f(x)) = dfg (eh'l,t)(h(x)),h(x)) +
d(h(x),f(x)k w2 + w2 =n, since @(ch-l,t)e N(K',n/2).

4) and 5) are true by definition of H; i.,e., H(e,0) =

(o(gh-l, 0)) oh = qh-l oh = and H(g,l) = (¢(qh-1,1)) oh =

id o h = h,

We therefore have shown that for any 1, local
contractibility of Ce(M) or Ce4(M) at the ldentity
implies local contractibility of the space at any point,
This completes the proof of Theorem 1.7.

Mason [ 19] recently showed that HG(B2) is an

absolute retract. The proof depends upon the construction
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of a special basis for the topolory and uoon the fact

that HG(Bz) is contractible and locally contractible,

We have Just shown that CeG(Bn) is locally contractible
and the Alexander Isotopy apnlied to cellular mappines
demonstrates that CeG(Bn) is contractible. This raises
the question of whether Hd(Bz) 13 also an absolute
retract.

Let E?ﬁ? = {f:M » Ylf can be uniformly approximated
by homeomorphisms},

Corollary 1,8, ETEET is locally contractible,

Proof., Same as theorem 1,7.




CHAPTER II
A CHARACTERIZATION THEOREM FOR CELLULAR MAPS

The main result of this chapter is that a manoinge
f of the n-sohere, as“*l, n # 4, onto itself 1is cellular
if and only if £ 5as a continuous extension which maps
the interior of the n+l-ball B"*! onto itself by a
homeomorphism, This theorem is the hirher dimensional
analogue of a result of Floyd and Fort [ 11] which

3

states that a mapping f of the 2-sphere 33~ onto itself

is nmonotone if and only if f has a continuou; extension
which maps the interior of the 3-ball, 33, homeoror=-
phically onto itself, Cur theorem actually is an extension
of Floyd and Fort's result since a mapping of a compact '
spéce onto itself is monotone if and only if it is

cm1 and, as we dercnstrated in chapﬁer 1, 2 mapping

of a é-sphere onto itself 1is cml if and only 1if it 1is
cellular, ‘

Lemma 2.1; Sunpose f:38n+aBn, for any n, can be
approximated by homeomorphisms. Then f can be extended
to a map which is a homeomorphism on the interior of
B,

Proof. As we stated in chapter 1, H(3B") is locally
contractible, This implies, in particular, that H(28™)
is locally arcwise connected at the identity. 1In other

words, given an €>0, there exists a 6>0 such that 1if







f e H(aé") and d(f, 1d) < §, then there exists
0:[0,1] » H(38") such that #(0) = f, (1) = id and
for all t, d(e(t), 1d) < €.

Since for all f, g, h in H(3B™), d(f,r) = d(fh, ch),
this implies that #(33") 1s uniformly locally arcwise
connected, as the following argument indicates. Let
€>0 be given, There exists §>0 such that any element

of H(3B™) within § of the identity can be joined to
the identity in H(aBn) by a curve of diameter less than e.
Suppose h and g are elerents of H(aan) and d(h,r) < &.
Then d(Ph-l, 1d) < § and there exists &:[0,1] -H(38"
such that ¢(0) = he'l, #(1) = 1d and d(9(t), 1d) < €,
for all t., We define ¥:[0,1] ~H(3B™) by ¥(t) = &(t)e
and note that ¥(0) = h, ¥(1) = 7 and ¥ is a curve of
diameter less than €.

Now suppose f is as in the statement of Lemma 2.1.
Using a standard technique, we now can construct a map
¢:1 +H(28™) such that 0 <t <1 implies 4(t) ¢ #(3B™)
and ¢(1) = f, For each interer k, pick ék such that
d(e,h)< Gk implies = and h can be joined by a curve
of diameter less than 1/k, and such that § < Sy

k+l =
Also choose a sequence of homeomorphisms h such that

d(hy,f) < §,/2. We now define ¢ by:
¢(1 - 1/x) = h
$(1) = £,
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Extend 4 over all of I by the promised curves. ¢ 1is

continuous since the diareters of the curves approach
0 as k increases and (hk] converces to f.

The followine corollary 1s an immediate consenuence
of Lemma 2,1 and our characterization of cellular mappings
when n # U, »

+ +
Corollary 2.2, Let f:3B" b 38" 1, n # 4, be cellular,

Then f can be extended to a map from Bn+1 onto pn*l

in such a2 way that restricted to the interior of Bn+1
it 1s a homeomornhism,

AVarious properties of mappincs wﬁich aré in reneral
weaxer than cellularity have been studled extensively
[u’ 15 j. Here we make use of one such pronerty. Let
f:YX +Y be continuous, Then f has proverty UV* if for
each yeY and each onen set U containine ?'1(y), there
4s an oven set V cohtaininr P'l(y) and contained inU
such that V 1s null-homotopic in U, This property
was introduced by Mc¥illan (18] in his characterization
of cellular sets upon which our main theorem strongly
depends,

Lemma 2.3, Let " be a manifold and F:¥ x (0,1] =+
M x (0,1] be a map such that 211 x 1) = % x 1 and
P|M x (0,1):4 x (0,1) » M x (0,1) is a homeomorphism,
then F|M x {1}:¥ x {1} + * x {1} is a UV -map.

Proof., We identify M with M x 1 . We make use of

the following auxiliary maps: for each 3, define
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mosM o+ M ox {1-3} by ﬂa(x) = (x, 1-3) and p:M x (0,1]V*

9
M by n(x,t) = x,

Let U' be open in M with *~1(v) C U', U' x (0,1]
is omen in ™ X-(O,l]. Therefore, there is a U such

that:

a) U is oven in ¥ x (0,1].

UCu x (0,1].

e) f(U) is open in ™ x (0,1].

a) *L(v) Ccu,
Now.choose to < 1 and an oren cylinder, C, about b x [to,l]
such that C C f(U). %e note that:

e=1(c) 1s oven in ¥ x (0,1],

(61 C 1,

1o x [t C o,
Let n = a(b;Es, n > 09, Let & be chosen so that
N, (7ten ¢ ey
b) d(x,v) < 2&=> d(~(x), f(¥)) <n

a)

Let V = Na(f-l(b)) N 1, Ve note that if x is an elerent
of wG(V), then f(x) is an element of Nn(b)11 ¥ x (0,1) CC.,
Since C 1s a cell we can define a homotopy 5:C x I + C
so that
1) xeC= a(x,t) € CNCTx (0,1))
2) G6(x,0) = x

3) there exists z ¢ M x (0,1) such that
6(x,1) = z, for all x e C.
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Ve now can define the desired horotopy H:V x I » U',
by H(x,t) = pr™i(a(fr (x), t)). Thus

H(x,0) = p!‘-l[’}(f‘ﬂé(x),o)] . pf'-l(f‘né(x)) = x

E(x,1) = pr-l[ﬂ(fwé(x),l)] = pf'l(z)_- constant,
The continuity of f follows from that of G, so all
that remains to be shown 1s that H(x,t) £ U', for all
x € Vand all t €I, x € V::;wé(x) € (V) =31(me(x)) €
cCNMx (0,1)=35(fr (x),t) e CN 8_—_}?-1 is defined
and r'l[c(rné(x), t)] € ey cuc ur x (%s1] .
Thus p(f-l[ﬁ(fwé(x), t)] = H(x,t) € U'. This completes
the proof of the lerrma, '

Let MC X. " 1s collared 1€ there is a homeo-
morphism h takinm !1 x (0,1] intc a neirhborhood of M.
with the property that h(m,1) = rm, for all m € ﬂ;

M, Brown proved that the boundary of any nanifold with
toundary 1s collared [ € ], Trerefore, we have tAe
followine corollary.

Corollary 2,4, Let ™ be a manifold with boundary
and let f:M -+ Eaprinr the intericr of ™ onto the
interior and the boundary onto the boundary be
such that f restricted to the interior of !1 is a
homeomorphism, Then f|3* is a UV" = map.

As we stated before we will make use of an
important theorem of “cMillan [18] :

Theorem 2.5, Let X be a compact subset of the

interior of a plecewise linear manifold Mn. Suppose
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1) eiven any onen set U of wh

which contains X,
there exists an oven V containine X and contained in
U such that V 1s null-=hormotonic in U

2) for each oven U containine X, there exists
an open set V such that X CV C U and each loop in V = X
is null-homotoonic in U - X »

3)l n >5orn =3 and sorme neichborhood of X
can be embedded in E3.

Usinge this theorem we will prove the following
lemna:.

: +
Lemma 2.5, Sunoose £:33™*1 4 33™1 n 23 0n

n :_5;'18 a2 maopine of ann*l onto itself and can be

. n+l
Bn+1 onto B . 1in such a way
n+l

extehded to a mao from
that restricted to the interior of B it 1s 2 homeo-
mbrbhisr. Then f is cellular.

Proof., Let x ¢ 38n+1. By corollary 2.4, ccndition
1l on McMillan's theorem is satisfled, If n = 3, for

b 2200 Lol
any y € 33 N f~4(x), 38

-y 1s a neirhborhood of
£=1(x) which can be embedded in E3; therefore, condition
3 is satisfied. So, all that remalns i1s to show that
condition 2 1is satisfied.

Let x ¢ ¥ and let U be an open set containing
t~1(x). We note that f(f-l(x)) = x 1s an element of

the interior of f(U)., Since Mn is a manifold we can

choose an open cell, C, containine x and contained in f£(U).
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We then let V = r'l(c). ﬁet y:s1 +V - r'l(x); We
wish to show that we can extend y to a map I‘:B2 + U - f'l(x).
By the definition of y, fy is a maponine from S1 into
C - x, Since C is an n-cell with n >3, Tycan be
extended to a man 6:82 + C - x, ﬁ(B2) is a compact
subset of C = x. For each ¥y ¢ G(Bz), we note that
Vv = ~1(x) 1s an oocen set containinc f'l(v)._ By the
previous lemma, we can choose an onen set Ay such that:

Hy) €Ay €V - )

Ay is null-homotonic in V - #~1(x)

r(Ay) is 6pen, and

£=10r(n ) = A,

y 4
Therefore, {f(A,)|v ¢ 5(B2)} 1s an oren cover of G(B?2),
Ye now choose an onen cover Tl o® 3(B2) that star

refines {r(Ay)ly € 1(82)}, 1€y

a) “or each T1 € Ty» {Te Tlle\ T1 # ¢} 1is

contained in some f(Ay).
b) T, € T1 implies that T, 1s an open subset
of ¥
) 6(p%) C U(T|T e T,}
We repeat this process once more, For each y ¢ 4(52),

1

choose Ty e T
is an oven set containine £~1(y). By the previous lemma,

such that v ¢ T . e note that t'l(Ty)
y

There exists an open set By such that £~1(y) C By C r'l(Ty),

By is null-homotovnic in f‘l(Ty) and f(By) is open.
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“ Therefore, {f(By)Iy e 1(B2)} 1s an open cover of 5(B%).
e now choose a finite subcollection, Tz, of (T(By)lycﬂ(BQ)}
that covers G(Bz).

Trianculate B2 such that if o 1s a simplex of
Bz, 6(o) 1s contained in some elerent of 72. ‘e now
are in a nosition to define the desired extension of
the loon y to all of B2, First we will define the ex-.
tension T on the O-simnlices of B2, Let v be a vertex
of B2, If ve SI, let r(v) = y(v). If v ¢s', let
r(v) be some element of f'1(1(v)). Nlext we will define
I' on the l-simplices of 52. Let o be a l-simplex of
B2, 6(30) is contained in some element of T, bV our
trianrulation of 82, so T(30) C:Bv, for scre v. ‘B 1s
null-horotopic in "I(T) for snre.T € Tl. e can
therefore define T on all of o so that T(o) C ~l(m,

Pinally, we wish to define T on the 2-skeleton

of 82, Let t be a 2-simpléx of B2, f(r(31)) is con-

tained in f(Ay) for some y, since T, star refines

{f(Ay)|y € 5(52)}. We chose Ay so that ¢=1(r(r )) = Av;
y ph

therefore, T'(31) C Ay. But'ny is null-homotopic in
V = t=1(x) 2nd we can extend T to all of Tt and hence
to all of 832 in such a way that r(32)C V - 71 (x).
This cormpletes the proo® of lemma 2.5.
Note: 1In effect we have shown that proverty 2
is satisfied for f‘l(x) i f has oroverty UVO. Sirilar

theorems have been oroven by Lacher [ 16 ], Armentrout
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and Price [ 4 ] and Kozlowski [ 15]. We will nrovide

an extension of Kozlowski's theorem later in this
thesis,

Combinine corollary 2.2 and lemma 2.5 we can state

the main theorem of this chanter,
Theorem 2,6, A =manpine f of the n-snhere 38"*1,

n ¥ b, onto 1tsei’ is cellular 1f and only if f has

a continuous extension which maps the interior of B+l

homeomorphically onto itself,

We next consider the followine reneral situation.
Suppose f:A + B is an onto manpine such that f mans

the interior of A onto the interior of B and the boundary

If the restriction of

of A onto thé boundaryv of B,
f to the interior of A has a certaln prroperty, does

the restriction of f to the boundary of A have the

same nronerty? ‘/hyburn oroved that if A and B are

locally connected cornact continua and f restricted

to the interior of A is monotone, then f restricted

to the boundarv is also monotone [ 24 ]. Another

result of Whyburn is that 1f A and B are locally connected
'cohiinua, then f quasi-open on the interior of A imnlles
that £ is quasi-open on the boundary of A, (f:X » Y

1s quasi-open if each v € Y is interior to the imare

of any open set in X which contains a compact component

of £=1(y).) It would be interestins to determine

whether certain conditions could be placed on A and B
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which would insure that if f restricted to the interior
of A has property uv® (f cmrj then f restricted to the
boundary of A has oronertv UV® (f er’). (See Chanter 1
for the definition of c¢m",) The followinr corollaries
provide the corresponding result for cellular maps
defined on an n-nanifold, for n # 4 or 5; 1.e,, if
£:MN 5 MM 45 as above and £ restricted to the interior
of P is cellular, then f restricted to the boundary
of ' 1s cellular,

Corollarv 2.7. Let ™ be an n-rmanifold, n > 5,
with boundary. Let f be a map of M onto M such that
f|Int M:Int M » Int M is cellular and f]3M:31 » 3™,
Then f|3M is a UV -rao,

Proof. Define ~:Int ™ » (0,=) by g(m) = d(m;3"V).
Since f|Int M is a cellular map, by Siebenmann's theorem
(theorem 1,2), there 1s a homeomorphism h such that
for all x € Int M, d(~(x), h(x)) < e(f(x)). %e define
F:4 - M by

h(x), x € Int M
P(x) =
f(x), x € M
F is continuous, for suppose there is a sequence,
(xn}, of points in Int M which converre to 'x € M.
Let ¢ > 0 be piven, PRy the continuity of f, there.

exists N such that n > N =» d(fn(x), r(x)) < e/2.
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Then for such n:
d(?(xn), F(x)) = d(h(xn). f(x)) <

. d(h(xn), f(xn)) + d(r(xn), f(x)) < e.
Thus, by corollary 2., T|3¥ = £]3 is a UV®-rao,

Corollary 2,8, Let ¥ be an n-manifold with boundary,
n ::6. Let f:M + M be such that £|Int ™ 1s a cellular
rappine of Int M onto Int ¥ and f|3 rans 34 onto 3.
Then f|3! is a cellular raopinw,

Proof. Since n 2 6, the dimension of the boundary
of ™ isv:S and the corollary follows immediately from

corollary 2,7 and lerma 2.5.



CHAPTER ITITI
OBTAININA BOUNDED CELLULAR “MAPPINAS

An imnortant nrocedure develoved in recent vears
for dealine~ with certain homeomeornhisms and spaces of
homeomorohisms has been that o€ assicnine to 2 clven
homeomorrhism, ¢, a bounded homeororohism which acrees
with © on 2 riven set, Kirby first develoned such
techniques to nrove that a homeomornhism of 7 15 stable
1¢ and only 1 it is isotooic to the identitv,

The procedure has also proved to be a valuable

tool in showine that: H(1?) 13 locally contractible

1¢ 4" s compact or equals E" (Edwards and Kirby r 81

every cellular manoine of an n-manifold, n # U4, can
be uniformly anproximated by hemeororonisms (Siebenmann
[23 ]); and in showin~ that the Hauotverrutune and
the trianrulation conifecture are false (Kirby and Siebenmann
L D).
In this chapnter we develoo the same techninues

for a class of mappines on manifolds which can be uniformly
approximated by homeorornhisms and therefore for a élass
of cellular maovoines when n ¥ 4, For instance, corollarv
3.2 states (lettine r = 3/2, k = 0, and n # 1) that
there exists an € > 0 and 2 mapnine

0:(r € Ce(R™)|d(r(x),x) < e, for 2ll x € 3/23"} —>

{r e ce(RM)|for x ¢ R = 38", ~(x) = x} with
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the proverty that 4(f)|B™ = £|3%, Cur proof will consist
of considerine a ﬁeauence 6? homeomornhisms, {hi}, which
converce to a maoning and then arnlyine to each hcreo=-
merphism the techniques. of Fdwards and Kirby in 2 ~cdi“ied
and slirhtly refined form.

Pronosition 3,1, Let rB” be a fixed n-ball,

r > 1, Then there i1s an ¢ > 3 so that if T 1s the
] n

, . X
space of all functions, ¢, rannine 25 x 43" into 3" x 3

such that:

1. ¢]a8¥ x 437 (U [x,1]8% x 387 = 14

K« r8", then a(f(x),x) < ¢

2. 1fxe®
3. - £ can be uniformly anoroxinated by hcreo-
’worﬁhisms which eaqual the identity on

03% x 1r" U [x,1]3% x 337,
and 10 F = (¢ Teelz¥ x (427 - 2r2") = 14},
there exists a continuous function ¢:7 » Kl sa
the condition that 4(r)|3% x B® = ¢|3% x 8",

Proof.. Let H = {f ¢ W|* 1s a homeomornhisr}.
The n:oof of this nronosition will consist 0® 23si~nine
to each (h,1) € H x N a homecrorphism, hl, with tze
followinr prooefties:
2) ‘h[B% x BN = nl|n¥ « 3"

5) hl|s¥ x (487 - 2r8") = 14
¢) eiven n > 0, there exists § > 0 2nd an

intecer N such that 1f 1, § > N and
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d(h(x), =(x)) < § cor all x ¢ BK x r3",

then a(hl(x), T < n for all x ¢ 3% x un"

The construction of such an h* for each pair (h,1)
would comnlete the nroof o€ the rrerositiocn, as the
followine arcurent indicates. Let ¢ ¢ T and choose
a sequence of homeomornhisms {hi} each of which is an
elerent of H, ‘e let (") = 1ir hy.

jio= g Kk

By pronerty a), ¢(7)|B"x B = £|B" x 3" since
for any x ¢ BX x BR, hi(x) = h,(x) and hy(x) converces
to f(x). Similarly oronerty b) assures that lek x
(48" - 2r3") 1s the identity. Prorerty c) assures that
{hi} 1s a Cauchy senuence and therefore that 4(f) is
a continuous “unction, Tor, let n >0 be riven., Pick
an interer Nl larcer than the N o€ wronerty c¢) such
that 1, 1 > N

implies that d(h,, hy) < 6 . Then d(hi, h:) < n.
n ;

1 1?2
¢(f) 1s indenendent of the choice of the senuence

of homeomornhisms convereine to ¢, Tor sunnose {r + °
1 »

Qe shall show that 1lirm wi = ¢(¢). Let n > 0 be riven,
foo 1

There 1is an ”1 such that 1 > !N, irnlies d(f-i ) < %€

1
There 1s an Nz such that 1 > 32 i=nlies
Choose N, so that 1 > N irolfes a(n;, ¢(£)) < n/2.

Then 1f 1 > max (H N ), ororewtv c) implies that

N,,
d(”i, hii) <n/2, 1In this case, d(r » 0(1)) < a(el 1 hi) +
d(hy, ¢(f)) < n/2 + n/2, A similar arwuvent vields that

$ 1s continuous. To construct the homeororphism h We

shall make use of the diagram on the followine nare.







26
Let D", 2pn, 307, 40" be four concentric n-cells

tn ™ - 2n" such that 10" C Tat (141)D% for each 1.
In the same manner we let Dk, 2Dk, 3:k, 4pX be concentric
k=cells in Int Bk such that ¥3k C.Ek and 1D¥ C Int (j+1)Dk
for each 1. Then let a:T" = 0 » Int rB0 be 2 fixed
immersion with the pronerty tha2t T restricted to r+l Bn
is the identity. 'e chocse cur oricinal € > 0 srall
enourh so that h(3< x 3™)C 2% x r+1 3", 1 theorem
of Lees [ 17 ] assures that such an inmrersicn exists.
Let a denote the nroduct irrersion 1d x 7:3¥ x (7" - D7) »

k

B% x Int rB®, Tor h € ¥, we wish to cancnically choose
’

k

h:B x(T° - 2Dn) + 8% x (7% - D7) s0 that the lower

square of the diarram commutes. To accomplisa this
A
let {U,} be 2 finite cover of 3% x (T" - Int 207) uy
1 -
omen subsets of 3% x (T? - ©7) with the nroperty that
if Uif7 U, # ¢, then alU, U U, 1s a homeorornhism,
For each Ui’ consider a comnz2ct V, such that YV, C,
7 ¢ mn ~N v
andU\1 covers R" x (T - Int 207), 'e choose cur

oririnal € small encuch 30 thaat ha(¥,) C a(u,) for|each

of the finite nurber of i's. fiven h ¢ H, let ali, =

(alUi)-lhal” h 1s well defined since *© x ¢ ™ i

"1 i b
ha(x) € u(Ui(W U,) and we have required that a be a

homeomornhism on U1 L)U,. n 1s thus the desired

homeomornhism,
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Pinallv, let y:Int 2er x 2rB" + RF x 7 be a
homeomornohism which 1s a2 radial expansion 2nd is the
1dentitr on r+18¥ x r+17", ue extend gi_by the identity
2 a12 1 n " n 1 n
to a homeowornhism h :RX x R7 + R¥ x R? and define h*:B% x r™s
BX x =7 5y

-

1
1% v(x), x ¢ 3% x 2ra"

1 Y
h (x) = K n n
X, x e BO x (R = Int 2rB ).
51 1
Since d(h™, 1d) < ¥, h™ 1s continuous and therefore
is a homeomornhism, Pronerty a) 1s satisfied since
yemi'li"li’la(x) = x for all x € BX x r+1 B and since

€ > 0 was chosen small enouch 5o that 1f x ¢ Bk x Bn,

then h{x) ¢ Ek x r+1?n. That nroperty d) is satisfied

was ruaranteed bv the choice of the homeorornhism y.
To show that nronertv c¢) is satisfiled, supnose
v 1
n >0 1s riven, If d(h (x), # (x)) < n, then

d(hi(x), P’(x)) < n since vy is a radial exn=nsion.

e:Bk x 2% & Bk x Tn is uniformly continucus; therefore,
there is a §, such that If d(ﬁi(x), :'(x)) < 61 for

a1l x ¢ 3% x T, then d(gi(x), 2’(x)) < n for all x ¢

BK x r"., We now wish to find an interer N 2nd a positive

number &, such that 1f d(g(x), F(x)) <52 for all x €

(K x %) = (20% x 20") and 1r 1,1 > 1 a(Bl(x), F(x)) < s,

for all x ¢ 8K x Tn;

let N be an inteser such that 2/N < 61

pick &, so that 62 < 61/16
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We note that h|(BX = 20¥) x (TP - 2D™) 1s the

tdentity man, since h is the identitv on [%,] gk 33"

~

and'kBk(: Dk. There®ore, to obtaln %, we extend h to

he the identitv on (!’,k - 2Dk) x Tn. Consider the restric-

N
tion of B to (8% x ") = (30K x 30™). By the Schoenflies

theorer we can extend this restriction of % to a horeo-

n n

- mernhism 5.2k x ™ » 5% x T, This extension cannct
Se made to be canonical; i.,e., 1if {gi) is a Cauchy se=-
qhence of homeomorphisms, it does not follow that (W}
is a .Cauchyv seauence of homeomornhisrs,
 Until this point, the construction of the diasram
is indenendenﬁ of 1 and varies only with the homeorornhis=
h. Consider 4DX x 40" to be {tx|x ¢ 3(40¥ x 4D™),
0<t< 4, YWe then cefine the horeomorprhism mi:Bk x T »
Bk x ™" which takes 3‘<Dk x 3x0" to 1/1 D¥ « 1/1 D" by
S a) wylB¥ e T o (D% x 4™ = 14
b) w (ex) = (¢ = PNR)(E = 1/, Fectet
{ t_ x, 0<t < 3%

Then FL1:p¥ x oM+ p¥ x o7

15 defined by Wt(x) = wi?(x).
Let €:R% » Tn be a covering rrojection such that 5]2En
1s the identity and let e:B¥X x PN 8% x T be enual

to id x €, Then El 11ts to the homeomorphism

N~ )
h :BXx p7as Bk x ®", Ve note that ﬁi has the pronerty

that for some constant, M, d(ﬁi, 1d) < M,




Ve will consider the cases: _
1) either R(x) or ¥(x) 1s not an
of 35D% x 3uD"
11) R(x) ¢ 3w0¥ «x 3% D" and F(x) ¢
In case 1), one of H(x) and ¥(x) 1s an
of (BX x ™) - (30X x 30") by chotce of the oricinal
€ and hence F(x) = h(x) and T(x) = #(x). Tﬁerefoée,
d(h(x), ®(x)) < §,/16. This imolies that the radial
distance between the two noints and the distance in
the sohere are  each less than 51/16. Tor any 1 and
anv 1, w; and wy have the effect of increasine the
radial distance between two noints by a factof less than
8. Hence the radial distance between miT(x)‘and
ij(x) s less than 8(8,/16). The distance in the
sphere rerains the sare or 1s decreased,
aRl(x), 71x)) < 61716 + 8(5,/16) < 5y
In case 11), H(x) c3"Dk x 3x0" and F(x) € 3¥Dk x 3xD"
which implies that w,F(x) € 1/¥ DX x 1/1 p® and
o f(x) € 14 DK x 1/ D%, Thus, d(B'(x), 7 (x)) < 2/% < §,.

If d(h(x), «(x)) < &, for all x e BK x (T - 2pM),

2

then d(N(x), #(x)) < & for 211 x ¢ (8K x T%) - (20X x 207).

2
Since a 1s unifornly continuous, there exists 2 & > 0

with the orovertyv that 1f d(h(x), «(x)) < §, for all

x € BK x 1B then a(A(x), 5(x)) < §, for all x ¢ B¥ x

(T" - 2D™)., We have now shown that the construction
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of hi has the desired nronerties, This cownlete; the
oroof of nronosltipn'3.1.

Corollary 3.2, Let 2" he a fixed n-ball, > 1,
Then there is an € >0 so0 that 1f 7 15 the space of

k

all functiong,®, mannine 2K x 42" 1nto RY x 27 such

that: .
1) r]3m% x 4n" = 14
“2) x e BX x rB™ 4rnltes d((x),x) < ¢
" 3) € can be uniformly anoroximated bv
‘homeomornhisms which equal the identity

1
on QR‘ x hﬂn

¥

tnd 1 5& = {r ¢ n:r|2" x (437 - 20") = 14}, thnen

oY)

there’ex1sts a2 continuous “unction ?:; > such that
v(r) 5" x 8" = £18¥ x 37,
Proof.  Let Vl = {(tx,v) € ¥ x Le™ | -'t)’:
3/8(1 - 2d(y,32")))
M, = Uexv) e P x a1 - t) < %L - 28, 387)))

Ye de®ine 2 harmeomorphism

y:(E?2 x 4B) - 32 -+ BV x ua” by
v(tx,v) = {(tx,v), (tx,v) £ N
| ([3t - % - 3a(v,33M]x,v), (tx,7) € X,

Anote that vy - N, mans My = 1, onto Y.

Next we define for each f ¢ ! ancther “unctlen,

(") defined by

v lry(x), x e (8% x &BY) - N
(") (x) =

2
X, X € N,
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1(f) 1s an element n® the set i o® provnosition 3.1.
Thus 1f ¢ ts the orormised ranpines of that nrovosition,
¢(t(r)) € ;1. Define G:;l + ;1 by o(h)(x) = Ythl(x).

%inally we define V¥:M = El by ¥(f) = gé¢1(r).

k n

Thus, 1 x e B" x B,
¥r)(x) = yaly ley)y l(x) =
vt ey () = vorten (v i) =
r(x), since y'l(x) e BX x p",

In the next chapter, it will be more convenlent

- to work with this result in the followings form.

Corollary 3.3, Let (a2,b) be a pair of real

" numbers, 0 < a < b, Then there is an € > 0 so that

1f G is the space of all functions, f, mapping Bk x Up"

n

k
into B x R such that:

K n
1) fr|aB” x 4B = id

k

2) x € B" x a+b " irplies d(f(x), x) < €
-3

3) f can be uniformly approximated by
homeomorphisms which equal the identity
on 3B¥ x up",

by - k n n
And 1f G; = {f ¢ G:f|B x (48 = b3 )}= 1d , then
there exists a continuous function ¥:G =+ Gy such that

k n n
¥(r)|B x aB = rlak x aB ,



CHAPTER IV
N OPEN QUESTION AND A COVERING PROPERTY

This chapter is concerned with the protle= of
showing that the space of cellular mappinss of an
n-manifold onto itself 1s locally contractible.

As was pointed out previously, it 1is known trhat the
space of homeomorphisms of an n-ﬁanifold cnto 1itself

is locally contractible, It was demonstrated in

chapter one that for n # 4, CeG(Bn) is loc2lly con-

tractible and that for any n-manifold, ", n # &4,
it suffices to show local contractibility of Ce(¥™")
at the identity, In this chapter we will show that
for any n # 4 and any compact manifold Xn, Ce(?n)
would be locally contractible if piven € > C, there

™)

exists a continuous function ¢C:Ce£(8“) - B (5%).
It appears likely that Siebenmann's proof trhat any
cellular rappinr of Mn onto Mn can be unifor—ly
approximated by homeomorphisms could be made to

be canonical in the sense that we deslire, Hcwever,
I have not teen able to demonstrate the truth of
this conjecture, In the second par§ of this chapter
we introduce a new type of covering property that

is possessed by many metric spaces, If it could

be shown that Cea(Bn) has this property, then we




could define directly the function@e. Assuminc
the existence of such a ¢€ for all ¢, we will prove:

Proposition 4,1, Suprose n # 4, There is a
k

k n
neichborhood Q of the inclusion n:B x 48" » BX x R

K n
in Ce(B x 4B, 2B x 48R; B¥

x Rn) and a deformation
of Q into Ce(BK x 48", ask x 430 X x 8%; BK x %)
modulo a(Bk x 1™,

Proof., Choose the neightorhood € small enourh
so that the conditions of corocllary 3.3 for (1%, 2)
will be met and associate with € € 9 in a canonical

k

v Lk -n n
manner the cellular map f1:B x 437 + B" x R with

the properties:

A k k n
a) f[B° x 12" = £|B x 1xB

k en k
b) ¥ [B x (48" - 28) U2  x 43" = 1d
N N
Then associate with f the hcmecrmorphism fl =¢_(f))

€ 1°®
1
where €) 1s small enourh so that ff1°1 is close
enoush to the identity to satisfy the hypothesis
of corollary 3.3 for (1 1/3, 1%). Noteg that
a) fI:Bk x 48" + 8% x 8P 15a homeomorphism
" K oy
b) d(f;(x), £,(x)) < ey, for all x e B x 4B
¢) d(r,(x), £(x)) < ¢, for all x ¢ 8K x 138"
k
a) fy]a(B" x 23") = 14
n n
o) 1185 x (up” - 28") = 14
-1 .k n k n
Now gonsider ffy “:B x 4B" »+ B x R, Since

rl-lla(sk x 2B") 1s the identity, there exists a
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canonical Alexander-type 1sotovy taking f to frl

i k n -1
modulo the complement of B x 2B , rfl is a

: n
cellular map which equals the identity on aBk x 4B

and is close enourh to the identity to satisfy the

conditions of corollary 3.3 for (1 1/3, 1%). There-

fore, we can associate with ffl in a canonical

N k n k n
manner a cellular rmap f,:B X 48" + B® x R with

the properties that
-1,k
I

N n
a) B x11/38" = £r;7M 2" x 1 1/3 8"

v n o k
b) £,[8% x (8" - 158%) Y as x 48" = 1a
N~

Then assbciate'with 5 the homeomorphism f2 =

-1 -1
¢52(f2), where €, 1s small enouch so that ff; f,

is close enouch to the identity to satisfy the hy-
pothesis of corollary 3.3 for ( 1%, 1 1/3). lote
that ’

a) fg:Bk x 4"+ Bk « B" 15 a homeomorpnism
b) d(fy(x), ;2(x)) < €y, for all x e BX x 4"
e) d(r,(x), rrl'l(x)) < €5, for all

x € Bk~x 148"
a) rzla(ak x 158") = 1d

on
e) 8% x (uE" - 1:5) = 1a

k

Now consider flfl'lfz';:Bk x 4B™ » B x R™, Since

rz'lla(ek x 1%B") 1s the identity, there exists a

canonical Alexander-type isotopy taking ffl to

ffl'lfz'l, modulo the complement of B x 148",
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Continuine inductively in this manner we define a
: v : n
k
sequence of cellular mappines f,:B° x 4g" + B x RP
with the properties:

1

-1 -
* o .ri-ll

N
a) rilak x 117141 8" = £t

B¥ x 1 17141 20

- o i
b) f1|Bk x (48" -(1 + 1/1)B") U ar" x 45" =

id

Also define a sequence of homeomorphisms fizak x 4p" o

BK x RP with the properties:
N
a) d(r,(x), fl(x)) < €4, for all x ¢ BX x 45"

ce -1 -1
b) d(fi(x), -Al o o afi_l (x)) < Ci

for all x ¢ B'x 1 1/141 BP
¢) rylaB¥ x us" U B* x (8" - (1 + 1/1)8") =

id

where ¢, 1s chosen srmall enourh so that ffl-l. o ofy

is close enourh to the icentity to satisfy corollary

3.3 for (1 1/1+2, 1 1/141). For each i we also

1 -1 -
oo ofy0] to £y

Let g:Bk x 43" - B‘ x R" be the 1imit of the

sequence {f, ffl-l, ffl-lfz-l, P P

n
continuocus since if x ¢ B x B , the sequence

define an isotopy takine ffl-

Then ¢ 1is

{r(x), ffl-l(x), + + +}-converres to x, if x £ B¥ x 8",

the sequence becomes constant for sufficiently larre

k
1, and 1f x ¢ B" x 3B" and X, * X, then r(x,) converges

to x = g(x), Since for any 1, ffl-l- . '91-1 is
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cellular, ¢ is also cellular, The composition of

the isotoples takinr ffl-l.v. . fi:i

provides the desired isotopy takingm ¢ to o,

-1 -1 -1
to £IV . o100

Let MN be a compact n-dimensional manifold.
Using proposition 4,1 it is possible to'cpnsider
a handlebody decomposition of " and construct the
homotopy proving the followinsg prorbsitiph. See
Edwards and Kirby [ 8 ] for the details.

Proposition 4,2, Let M be a compact manifold.

If given € > 0 there is a continuous function
¢C:ETEHT > H(Bn), then Ce (™) 15'loca11y contractible.
Proof. The construction of Edwards and Kirby

shows that Ce(i") is locally contractible at the
identity and we have shdwn.in chaptér one that this
implies local contractibility of the srace.

Definition 4,3, . A metric space (¥,d) is said

to have property (C) if riven any € > 0 there is

a locally finite open cover Cfor M with diameter
less than € with the property that if x € M and n

is any intepger there exist at most n elements of 61
which contain x and have diametefs ereater than or:
equal to /2",

Proposition 4,4, Let X be a finite dimensional

metric space, Then X has property (C).



Proof. Suppose X has coverines dimension n,
Let U e an open cover of X of diameter less than
n+ '
€/2 l. ~Then there exists a locally finite open

refinemeni tzof”u of order less than or equal to

n+1'[.20‘]. C? meets the requirements of property

(c) Sihce if 1 < n there are no sets of diameter
greater thén or equal to c/2i and 1f 1 > n+l,
there are at most n+l sets containing any given point,
It can be shown that any locally finite poly-
hedron, any space that can be written as the union
of countably many open finite dimensional spaces
and Hilbert space under the usual metric all have
"property (C).

Proposition 4.5, If HG(E ) has property (C),

then riven any € > 0 there is a map ¢é:§§?§ﬂ} hd Hﬁ(Bn)
such that if f ¢ ﬁ;?ﬁ"}, then d4(f, ¢£(f)) € B
Proof. Choose a locally finite cover Uof

;;?;“3 of diameter less than e€/2 with the property
that 1f f ¢ HG(Bn) and § is any interer, there exist
at most jJ members of‘q(which contain f and have

" dlameters greater than or equal to e/2j*l. Let
n:ﬁ;zgﬁ) + N(U) ve the standard map of HG(Bn) into
the nerve of the cover %, The vertex of N(%)

corresponding to the set Uu is denoted by Moo
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We next will define a mapping v:N(A) =+ %(Bn).
Order the members of U, We define Y, from the
O-skeleton of N(%L) by letting ¥olu,) = h, where

h, 1s an element of U . If <u01, ua2> is a l-simplex

of N(A{) where a; < a define ¥, on this simplex

2 1
by mappine Uy s vy > barycentrically by the Alexander
1 2

isotopy which takes h  to h, . lote that 1f k ¢
<u°1' u02> then d(v¥,(k), ha ) < dlhy ay? haz). Next
suppose <u_ 5 M 5 Wy > 1s a 2-simplex of N(U)

o D L |

where a; <ay < age Define ¥, on <ua » uuz, ua3>
by mapping the simplex barycentrically by the Alexander
isotopy which takes ¥, (<u u_ >) to h.., The fact
1> e’ ey 3
that the Alexander isotopy is canonical assures

that Wz is continuous and the orderinrs of the membgrs

of‘iL assures that ¥, extends ¥). If k ¢ <u°1' uaz, ua3>

then there exists k; € <u > such that ?2(k)

alv. Uae
is on the 1isotopy taking Wl(kl) to h . Hence
d(¥o(k), h°3) < d(vl(kl). h“S) < aly (x), haz) +
d(h, ) 03) < d(hal, h“z) + d(haz‘ hGB). Continuing
inductively, assume that ¥, has been defined on the
n-skeleton of N(9() using the Alexander isotopy
in such a way that if k € <ual,. o eosly >, then
n

+ e e e

acy (k), han) < d(hul, haz) d(haz, ha3)

d(h s N )e Let <u_ ,¢ o oym > be an n+l
Sl ¢ T 1 %n41
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simplex of N(Ql) with ul <a, o o oS a . Define

?n+1 on <"°i" ¢ oy uun*1>‘by mappineg this simplex
barycentrically by the Alexander isotopy which takes
?n(<ua1,.,. o uan>) to h°n+1‘ Then if k €

<uu1,. o« oy uan+1>. d(vn+1(k)’ han*l) i d(hal, hoz) +

e o o+ d(ha s N ). Let ¥= 1im ¥ and define

On+l

n
¢eilig(sT) » H(B") by lettins ¢c(f) = ¥n(f). If

fel, AU, Ne..NU then n(f)e <u, ,¢ o opu, >
B B B’ By " " 8

and hence d(6_(£),7) = d(¥n(f), £) < al¥n(r), h ) +

8

m

d(h. » £) < dlh, o ha ) + « o o + d(h h, ) +
By’ = 8y B Bpe1’  fm

m+1l

alhg , 1) < (e/22 4 e/23 4 L o+ e/2™) 4 es2 <l
m .




CHAPTER V

PACTORIZATICN OF UVZ=1APS

It was demonstrated in chanters one and two that
every cellular man from an n-nani”old onto itself was
closed and had nrorertv UV®, In this chanter we will
consider the more ceneral situation o€ a closed UV™-
man o a snace X onto 2 metric svace V, TFirst let us
consider a nronertv of anv cellular raonine, ¢, of 2

manifold »n

onto itself, n # 4, Let h:K + Y be a rao
of any tonolorical snace intec Y, Then riven ¢ > 0,
there 1s a man e:K » X such that d(f(=(x)), h(x)) < ¢,
for all x ¢ X, The nroo® of this staterent is trivial,
Let w:"’.n > “n be a homeomorphism with the property
that d(x(w), f(m)) < e, for all = ¢ "n, and define =~
by e(k) = w-l(h(k)). Then,

Ar(=(1)), h(K)) = Ao L)), n(k)) =

At (h(k))), T (R(K)))) < ¢, since

wn(x)) e 1",
It has been shown by Price [p1 7], Kozlouskl [T15 ]
and Lacher [ 16] thet if FiY - T 13 any closed UV™-
mao and K 1s a finite dimensfonal comnlex then hiK +» V
can sti1ll be anproximately factored throuch £, We will
demonstrate the corresnondine thecrem for K a locallyv
finite complex,

First we introduce sore terrinoloery that will

be used throuchout this chanter. A cover,T, of a
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space A is a collection of onen sets whose union enuals
A, The diameter of a cover T 15 equal to the supre~um
of the dlameters of the merbers of T; St(T, T) #s de“ined
to be the set of a2ll noints of A which are contalined
in a memher of T intersectine T non=-vacucuslv,

“hen there 1s no con®usion we shall not distincuish
between the comnlex ¥ and the noint set |X|., I- B
1s a set and T a2 cover, h will be sald to map B into
T 41f there 1s some T ¢ T with h(B) C T. & will be
said to map a comnlex ¥ into T %f h wans each simnlex

K(n) w11l denote the n-th skeleton of the

of X into T.
cernlex X, If a 1s a simnlex of K, St(a, K) is defined
te be the set of all roints of X which are cont=2ined
in a simnlex of K which Intersects a non-vacuouslvy,
Termrma 5,1, Let ©:¥Y + ¥V be a closed UV —man of
X onto YV, Let 9Ube a cover of V, Then there exists
a cover 4 0f v such that for each V e 7/ there 15 a
U €% so that
a) stv,2Hrcn
b) T°* y:Sk—l -+ 0-1(St(v,<y5) is civen “or
any k, then there 1s an extension

7:8% » ey,

-

Proof, Choose a cover T of Y that star refines

qL; t.e., 1 T € T, there exists U e YL with 5t(T, T) C U,

Such a cover exists since VY is pnaracorpact. Then “or
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Veach noint v e VY, choose Ty e T such that v ¢ Ty,
Since P.is a UV"-nan, there 15 an onen set, £, in X
containine ’-l(y) and contained in ’-1(Tv) with the
nrOﬁerﬁv‘that A 1s null-homotonic in P-I(Ty). Then
qhoose V'v such that Vy ‘s onen in VY, Vy ClTy, vevV
and "l(Vv) C A, Hence ’-l(vv) 1s null-homotonic in
Ler ). et ¥= (v |v e V).
y v
Lemma 5,2, Let X be 2 locally “inite comnlex,
Sunpose h:X + Y 1s ~iven and 9 1s an onen cover of Y,
Let p be a nositive intecer, Then there exists a
subdivision, Kl' of ¥ so that
a) 1 0 1s a p-simplex o” K,, then h mans
St(a, ¥;) tnto U
b) 1f a 1s a sirolex of K and St(a, X) M
i_:_?TF:Tj = ¢, then a Iis a simnlex of ¥

"
Proof, Let ¥ he the ©irst barvcentric subdivision
r=1
o K and let L = ? - } . Then decine .7 to be the
A7)
closed star of L 1in X, J 1s a locally finite comnlex
(subcomplex of ¥) which can therefore be subd!vided,
formine }, in such a manner that 1€ a 1s a simnlex o
~ N a
J then h|.7 mans St(a, 7) into 9. 15y is any sirnlex
")
of K which is not contzined in T but intersects T,
subdivide y by conine frorm the barycenter of y over
"

its boundary as subdivided by the fecrration of J, Ve
have by this procedure constructed a subdivision, K

1’
of K with the desired oronerties,
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Theorer 5,3, Let f:X + Y be a closed UV“-nan,
K be a locally finite cornlex and h:X » ¥ be an arble-
trarv conitnuous funcﬁton. Given an& € > 0 there is
a map e:X » X such that d(re(k), H(k)) < g, for all
k € ¥; 1.e,, such that the followin~ diarram commutes

w}thin €eo

X
a
'

'

'
e
i

i

'

'

3322:. Choose an onen coverU of Y o~ diaveter
less than €. Thén choose a subcover ?1 with the pronerty
that for each T) € Ty there exists Ue U such that
a) st(Ty, T)C U
b) eiven any n and any man y:S"°l o
f.l(St(Tl, Tl)), Y can be extended to
a.man ;:Rn -+ "1(U).
Makine use of lemma 5.2, we let K, be a subdjvision
of X so thet h maps St(K)) into T.. Deftne rq:¥] + X

by lettine e (v) be anv element of e=1{n(v)). Now let

a be a l=sirplex of K%. Let Tl bhe an elewent of Tl
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with the pronerty that h(St(a)) C:Tl. This irplies
*that no(aa) C ’-l(Tl). Therefore, we can extend o
to a wan.vl takine a into P-I(U) for some U containin-~
.Tl' e repeat this nrccedure for each l-sirpnlex o€

) Kl and therehv define «l:Kl + X with the »nropertyv that

1
1 a 1s a simplex of Ki, then f(r(a)) U h(St(a, X))
1s ecitagined 1in sorme member of Y.

Pssume ~seiuvetively that we have defined subdivisions
Kl’ K2, o« o 0y Ky 0f K3 covers U = T, Tl, o o e Tn
o® Y and mans "1’ o ee sy Ty with the followine oronerties

a) vizK} - Y

b) 1f a is 3 sirnlex o Ki and St(a, ¥,) D
1 s g

]
Ky = ¥y = ¢, then 1 > 1 imnlies that

oi‘n = oﬁ!q,

it a is a f=-sirnlex of Ki and 1® k 1is
the maximum o 1 and the di~ension »f
St(a, K,), then h(t(a,Ky)) U () C
T for sore Tk-ﬁ € Ty_y

k=1
b v " o o
K>K >¥_ » > K

1 2
if a is a f-sirolex of Kj, h mans St(u,Kj)
into T,
for each T, ¢ Ty there 1s a Ty e Tyq
such that St(Ty, T4) C Ty_, 2nd 1°
y:Sk’l - ,-I(St(Ti, T4)) 1s de“ined for
any k, then there is an extension of y,

~.nk -1
y:BE & (Ti-l)
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Note that we have comnleted such 2 nrocedure “or n = 1,

e now will de®ine K o and T with the renuired
n

+1° n+l n+l

pronerties,

Let T be a refinerent o® T_ such that for each
n+l n )

T there exists T_ e T_ such that
n+l n n

a) gt(Tn+1’ Tn+1) & Tn

. k-1 -1
b) “or anv k and any v:S + £ (St(T

))

_ ) n+1°Tns1
there 1s 2n extension‘y:Bk - (Tn).

2 subdivision o Kn such that
1) 1f a is a simolex of K: and t(a, K:) N
- n
Kn - X, = ¢, then a s a sirplex of Kn+1

11) 1f a is 2n (n+l)=-si-nlex o X then

n+l’
h S ) int .
h maps St(a, K::%_ into Tn+1
n*l_: Y‘n+l

3 ..
+°? de®ine "nsl at v, by

Ye now de®ine the man o + X, 1€ v 15 a vertex

o K
n

7 (v), v Is a vertex of K
- (v) = n 1 n
n+l any elewent of ¢ " (a(v)), v
not a vertex of Kn

1
afs 124 -~ 1 - - 4
We next define ¢ +1|un I 7y, is a l-simplex ©

+1°

K4y let I be the maxirum o® n+l 2nd the dimension

of st(o,, ). Note that h =ans ?t(ol, Kn4y) Into

¥
“n+l
Ty and chonse T, ¢ T4 with h(St(5), ¥p41)) C.Tj.

Choose T such that any mannine of SK into P'I(St(T,, T3}

J=1
extends to a mappine of BX*l tnto ~~1(7,_;) and ct(T,, " C

e
v

Kngy = Foeg = ¢ let ©

c
T Ir \4t(01’ Kn+1) n

§ul * ne1l0y = eplog.




- -1 =
Otherwise, note that e . (%9,) C =7 (st(Ty, T

s

<1 e
Fxtend e on 5. so that "n+1(°1) C (T ). Nnte

n+1 1 k=1

that

*onag (1) U (6, K ) C T

k-1
Next assure (subinductive statement) that

n

"n+1IK:+1 has been defined in such 2 way that

S on
1) 1f dir o < r and <t(o, Kn+1) N Knay = Zne1™ @

] !
then = . lo = vnlc

r
11) 1 o0 is a sirmnlex of Ko4q and 1f k is
the maximum o€ n+l a2nd the dirension

of St(a, X ), then there exists T €

n+l Y-
Tk-p Such that h(st(g, Kn+1)) L)'~n+l(a) C T

Ym ).

“Ke-r

r
-
and "n#l(O) C

We have demonstrated this subinductive staterent for

r+l
r=1, MYw let o,,, be an (r+l)-si-olex o* Kn+1'

e s v X - = 4, then de®ine
T .t(or+1, n+1) N K1 t’n+1 , then

pn+1!ﬂr+1 to be pn'”"4l' (Note that this extends

|3 by assumntion %.) T, Stisfies the inductive

o o
n+l' Tr+l?
statement, Therefore r ., sat!s®ies subinductive

statement 114,

If St(o K +1) N ¥

ri3e K Kn+1 - ¥ # ¢, and vy is
a simolex in the boundary of o _,,, we note that by

11) there exists T
Ker

h(Stly, K )0 U % | (v) €™y

Pick one of these, call 1t Tk ~» and note that

"ne1 (0n4q) C:r-l(St(Tk_r, Tyep))e e then

€ Tk-r such that
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extend Zn+l to o in such a way that for some

r+l

-1,
Tk-r,—l' gn+1(°r+l) cr (‘k-rol) and

£(2 41(0psy ) U h(Stlo 1y K NN CT

n Ker-1’

since

h(St(opyys K 4100 C h(ngHSt(y, K 41)) C

h(, glmsuy, ENC SET,_ T IC Ty e
This completes the subinductive statement and with
that the inductive staterent, Properties a, d, e
and f are trivially satisfied by definition., Pro-
perty b is assured by prorerty 1) of the subinductive
step and property c¢ is satisfied by subinductive
property 1i).

We now define ~:K =+ X by

z(x) = n Fn(x).

For any x € K choose 2ny simplex a containin~ x.
The local finiteness of K assures that there is
an interer N so that St(a, K) N K = K'1 = ¢, Thus,
for any n > ¥, St(a, K )N K - K = st(a, ¥5) O
K = K" C Stla, [K) N K - #! = ¢, Hence for n > N,
gn(x) = QN(X).' Therefore, & 1s well-defined and
continuous, Let x € K and a be a simplex of maximal
dimension containing x. Then there exists an intermer
N such that St(a,K) N K = k" = ¢. Choose a simplex
g in K: containing x. Then g(x) = qN(x) and by
inductive statement c, there is a T in some Ty

so that h(St(g, Ky)) U rr,(8) CT. Since T, refines




AUs h(x) U fe(x) € U for sore U and therefore
d(h(x), fr(x)) < e,

Corollary 5.4, Let f:X = Y be a closed UV®-
map, K a locally finite comrlex, L a subcomplex of
K. Let h:K + Y and r:L + X be mappines such that
for all 1 € L, f(=(1)) = h(1). Then given any
€ > 0 there is a map ;:K + L such that } extends
e and d(f;(k), h(k)) < €, fer all k € K,

Proof. Proceed exactly as in theorem 5,3,
except that 1f at any stace a is contained in L,
define :nla to be pla, Since f= commutes with h,
fe(a) will be contalned in all the necessary T's,

Maps u:A + B and v:A + B are e-homotonic if
there exists a homotony i takine u to v so that
d(H , Hyy) < €, for all t, t',

Theorem 5.5, Let f:X = ¥ be a closed UV™-map
and K a locally finite complex. “iven a map h:X -+ Y
and € >0, there exists a ~:K + X such that fe 1is
e-homotopic to h,

Proof. For each nonnesative interer 1, choose
a cover Y! of Y of diameter less than e/4(1+1).

For each i1 > 1 define sequences

K_1.1’ Kz,:’ c e

1-1 i
To,1 "W, T =U, T

T . . .
1,1 2,1

0,1
81.1. ‘:2'1. e o o
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as in the proof of thecrem 5,3, with the additional
conditions that
for each Uy e} there is a Uy, eQLﬁf{
so that sz(ui,ﬂLi)c_ U,_, and 1f
y:Sk-1 - f’l(St(Ui,Uu})) is defined
for any k, then there is an extension
gy
T | refines T for all p, 1.

P,i4l Pyl

refines K for all o, 1.
p,i

it & iy

Ky, 141
Then let gi = 1lim ¢ g
nee Mo
For each positive interer i, we will define
1
a homotopy # :K x I + X such that
a) 53(k,0) = (k) for all k € K
b
b) 6lek,1) = ¢t (k) for all k € K
4 1=
c) 1f k € K, el maps k x I intodll o

Fix i. Assume, inductively, that we have defined

maps Gi, Gé, « s ey ﬁé in such a way that:
1) Gisz.i x I + X forj=1,2, .. 40N
1) 6y(k,0) = r;(k), ,1(k 1) = v;*1<k)
for all k € k¥
iii) if a is a simplex of Kj,i and St(a,KJ.i) N

K -k} = ¢, then 1f m > 1, G;[u xI=
G Ia x I

iv) for every p-simplex 8 € Kjdi' let k
be the maximum of J and St(B8, Kj,i)‘
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Then there exists ‘k -p-1,1 €

1
such that . f‘(" (g x I)) CrT .
kep=1,1
n#l

1
Ve now will define gn+1.yn+1,i x I +-X, Ifvis

a vertex Qf Kn+l,1' let J be the maximum of n+l

Tkep=1,1

and the dimension of St(v, Kn+1,1)' Then fwn+1(v)t)h(v)cl

S 3
TJ-I,i for sone.Tj_l'; € Fyal 4 and fqn+2(v) v h(v) C

Ty.1,141 for some Ty.1,141+ But, Ty-1,141 refines
-1 m
Tl 4w - Yenee fene1 (V) U (V) C f (St(‘J-l.i))

i 3
and we can define Gn+l'Kn+1 1 x I + X in such a

-1
way that‘for any v ¢ Kne1 » \n+1(v x I) C;f (TJ 2’1)
for some T e T arreeinc with G when
J=2,1 3=2,1"° - ’n

appropriate..

How, assume inductively that we have defined

1. ;P
Gn*l'Kn+1,1 xI + X so that
a) 1if o is a simplex of Kn,i and St(c,Kn.i) N
——r
K

n,i = Kn,i =¢ then qn+l| ox 1=
6ilo x 1
b) if ¢ 1s a simplex of Kg+1.i and 1if k
is the maximur of n+l and the dimension
_of St(og, K n+l, 1)» then there exists

nl C
Tk-p-l,i € Tk-r-l,i such that f(,n+1(cx1))

Tk-p-l i
€) Gpyq (k,0) = @ +1(k). 6l (k1) =
p
n+l,1
Let o be a (p+l)-sirmplex of Kpyy 4. If S““-Kn+1,1) a)

T . n+l i
Kn+l,1 - Kn+1 g = 6, let 6 0o x I = Gplo x I,

glt}(x) ror all k € K
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Let k be the maximum of n+l and the dimension of
St(o, Kn+1 1). For each simplex vy in the boundary

i
of g, there is a x 1,1 such that f(ﬁn+1(y x INHC

Tk-p-l,i' Also there is a member of Tk-p-l,i that

contains f(rn41(o)) and another member of Tkep=1,1
+ .
that contains ?(mi*i(o)), since Ty_n_1,141 refines
i
Tkep-1,1+ Define 5L, (k,0) = < (), for all k ¢ o
and G1 +1 (k,1) = r1+1(k) for all k ¢ o. llence
n+1(3(° x 1)) (1: £ (st(Tk-p-l,i’ Tkap-1,1)) 2nd
we can extend 3 to o x I such that 53,,(c x I) C

n+l
-1

f (*k-p-z,i) for some Tk-p-?,i € Tk-p-z,i' Let

6 = 1im 51, This cormpletes the proof of the inductive
j+o D
statement., Note that for any point k € K, there

b
exists a simplex o and an integer N such that G |k x I =
-1
Uy, €%~
rot (k xc esitexncu jp+ So» the dlarcter

.1 ,
Vlk x I,and that for some T 1,1 =

of rG (0 x I) 1s less than c/hi.
For cach 1 consider 3! as mapping ¥ x [1 - 1/1,
1 = 1/(1+1)] into Y and define i:K x I = Y by
eal(k,t), 1 - 171 <t <1 = 1/(141)
H(k,t) =
n(k), t =1
H 1s continuous since for each i, rol|k x {1 - 1/7(141)}
= rci*llx x {1 = 1/(1+41)} and by choice of the

1 v
covers W, {fzi}converges to h and the diameters




of the definins homotopies approach 0 as § =+ =,

H is therefore an c-hoﬁotopy taking TRI to h.
Corollary 5.6. Let £:X = ¥ be a closed UV -

map, X a locally finite comrlex and L a subcomplex

of K. Let h:X + Y and e:L + X be mappincs such

that for all 1 € L, f(=(1)) = h(l). Then civen

any € >0 there exists a map ¢:X + X and an e-homotopy

taking fr to h,.

Proof, The proof follows irmediately from

that of theorem 5,5.
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