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A B S T R A C T

Training a Convolutional Neural Network (CNN) from scratch is time-consuming and expensive. In this study,
we propose implementing the DenseNet architecture for classification of AD in three classes. Our approach
leverages transfer learning architectures as the base model and showcases superior performance on the MRI
dataset compared to other techniques. We use a variety of methodologies to provide a thorough study of
our model. We first create a performance baseline without data augmentation, addressing the difficulties
in classifying Alzheimer’s disease (AD) caused by high-dimensional MRI brain scans. The improved model
performance obtained through data augmentation is then highlighted, demonstrating its effectiveness in
handling sparse data and assisting in generalization. We also investigate the impact of omitting particular
transformations and modifying dataset split ratios, providing more insights into the behavior of the model.
Through comprehensive evaluation, we demonstrate that our proposed system model achieves an accuracy
of 96.5% and an impressive AUC of 99%, surpassing previous methods. This study mainly highlights the
effectiveness of DenseNet architecture, current study limitations and future recommendation. Moreover,
incorporating a healthcare decision support system further aid in providing valuable insights for AD diagnosis
and decision-making in clinical settings.
. Introduction

Millions of people throughout the world are afflicted by the com-
on neurodegenerative ailment known as Alzheimer’s disease [1].
hysicians typically monitor AD using the Clinical Dementia Rating
CDR) system based on signs and symptoms. Subjects are divided into
hree states using the CDR, Vemuri et al. [2] including CN (Cognitive
ormal), MCI (Mild-Cognitive Impairment), and AD. Atrophy of the
M(Gray Matter) and WM (White Matter) and an increase in CSF (Cere-
rospinal Fluid) volume are markers of AD progression. The cerebral
ortex and hippocampus get smaller as the size of the ventricles in
he brain grows in AD patients. Epistolaryngeal memory and spatial
emory are harmed when the hippocampus’s size is decreased. Plan-
ing, judgement, and short-term memory impairments are the result of
his neuronal injury [3]. This decrease leads to dysfunctional synapses,
amaged terminals, and further cell death.

Accurate early AD diagnosis is essential for prompting appropriate
herapies and improving patient outcomes [4]. The development of
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machine learning and artificial intelligence has made decision support
systems into potent instruments in clinical settings. These systems
use AI algorithms to assess patient data, including clinical data and
medical image data, and then deliver insightful recommendations to
healthcare practitioners [5,6]. In order to identify illnesses and gener-
ate precise forecasts, machine learning systems examine patient data,
including medical images [7–9]. This promotes early identification [5],
individualized care, and better patient outcomes. Machine learning
algorithms, for instance, may be trained on annotated pictures used in
medical imaging to automatically detect and categorize diseases includ-
ing cancer, heart issues, and neurological disorders [10]. Healthcare
professionals can improve patient care by integrating AI-based decision
support systems into clinical practice. These technologies can help
diagnose patients more accurately, optimize treatment regimens, and
optimize costs [11]. Additionally, healthcare decision support systems
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are essential for assisting medical practitioners in difficult decision-
making procedures [12]. These systems offer practitioners individual-
ized treatment suggestions and therapeutic alternatives by integrating
clinical standards, evidence-based medicine, and real-time patient data
[13].

One specific area of focus within healthcare decision support sys-
tems is AI-based decision support for diagnosis [14] such as leveraging
machine learning algorithms where it has helped risk assessment, ill-
ness diagnosis, and categorizing patients as having a condition or not
[15]. However, Deep Learning [16] on the other hand is subset of
ML, presents even greater potential due to its capability to automat-
ically learn hierarchical representations from even more complex data
[17]. For instance, CNNs [18], a type of DL model, have achieved
great success in medical image processing tasks, allowing for precise
classification of disease. Deep learning offers considerable potential
for boosting diagnostics and enhancing healthcare outcomes due to
its greater capacity to extract complex patterns and characteristics
from medical pictures. This ability is especially important in the realm
of medical imaging [17], where high-dimensional data, such as MRI
[19] or CT scans [20], calls for sophisticated processing methods.
By enhancing diagnostic precision, streamlining treatment plans, and
lowering healthcare costs, the use of AI-based decision support systems
in clinical settings has the potential to revolutionize healthcare [21].

Another key element that further improves the capabilities of DL-
based models is known as Transfer Learning (TL) [22]. Transfer learn-
ing enables the use of knowledge and representations acquired from
one task or dataset on another task that is relevant. The use of pre-
trained CNN models in medical imaging is made possible by transfer
learning and large-scale [23] datasets like ImageNet. By leveraging the
learned features and representations from these pre-trained models,
healthcare practitioners can enhance the performance of their own
diagnostic models, even with limited labeled medical imaging data.
A pre-trained model is used as the foundation for a new model. For
instance, a pre-trained model [24] is trained with large amounts of data
like ImageNet [25] which consists of millions of images with more than
1000 labels. And its desirable and a good choice to transfer the domain
knowledge from these models to another domain like classification
task in medical area as a feature extractor of general features [26].
Since we are dealing with medical types of data its and the pre-trained
models usually on different data like ImageNet, we cannot fully use
the pre-trained model instead we need to add another layer of CNN as
domain-specific feature extractor and modify the output layer as per
domain-specific problem [27]. When compared to training with ran-
domly initialized models, knowledge transfer requires fewer training
instances to complete a different task, takes less time, and improves
accuracy. Various state-of-the-art architectures such as Dense Net [28],
AlexNet [29], Inception [30], VGG [31], ResNet [32] which can be
fine-tuned to solve other problems with a much smaller dataset and
in much less time. In our specific research, the focus lies on leveraging
the capabilities of DenseNet, a prominent deep learning architecture,
to develop an Alzheimer’s disease classification.

This study introduces a method for classifying three stages of
Alzheimer’s Disease, DenseNet, a powerful DL-based architecture which
can empower the decision support systems in clinical settings. By fine-
tuning a DenseNet model, our goal is to extract and utilize relevant
features from MR images, enabling effective differentiation between
AD, NC, and MCI cases. The suggested approach has a number of bene-
fits over conventional AD classification techniques. Firstly, it decreases
the dependence on extensive labeled data, which is often scarce in
medical domains. Furthermore, it makes use of the learned represen-
tations from a large-scale dataset, allowing the model to detect subtle
anomalies and detailed patterns in medical images. Finally, it offers a
comprehensive and precise categorization structure to support doctors
in arriving at fast and correct diagnoses. This work demonstrates the
use and effectiveness of our proposed model using the dataset we
collected from an online repository comprising MRI scans from AD, MCI
2

patients and healthy individuals. We evaluate the model’s performance
in terms of accuracy, sensitivity, specificity, and other relevant metrics,
comparing it to existing approaches in the field. By contrasting it with
current methods in the area, we assess the model’s performance in
terms of accuracy, sensitivity, specificity, and other pertinent metrics.

To thoroughly evaluate the model’s effectiveness, we present four
different evaluation methods. Starting with evaluation of models with-
out applying any data augmentation technique, evaluation of Models
with the use of Data Augmentation, Analysis on the basis of selective
augmentation, and how the ratio of training to testing affects the
performance. Our results demonstrate the potential of DenseNet-based
transfer learning, offering a significant improvement in AD classi-
fication. The implications of this strategy go beyond AD diagnosis
and treatment, promising improved patient care and administration.
This study highlights the transformative potential of DenseNet-based
transfer learning and contributes fundamentally to the field of AD
classification.

The remainder of the paper is structured as follows. In Section 2, we
highlight the motivation and significance of employing deep learning
in AD classification. Section 3 presents the contributions of our work,
emphasizing the use of DenseNet for image-based analysis and the
significance of transfer learning. Section 4 provides a concise overview
of related work in AD diagnosis, setting the context for our study. In
Section 5, we detail the materials and methods used in our experiments.
The results and analysis of these experiments are presented in Section 6.
In Section 7, which is the last section, we provide the implications of
our findings and provide concluding remarks.

2. Motivation

Alzheimer’s disease poses a major challenge for clinicians due to its
complex nature and the necessity for early identification. Traditional
approaches and human intuition often fall short in accurately predict-
ing and visualizing the progression of the disease. To overcome this
issue, computationally demanding and unconventional approaches like
deep learning are needed. Medical experts are increasingly relying on
DL techniques for usage in both disease prediction and visualization in
order to deliver foresighted and tailored treatment regimens [33]. This
shift helps doctors decide on treatments and health economists analyze
costs, both of which improve patients’ lives.

Healthcare decision support systems in clinical settings play a vital
role in leveraging deep learning techniques for accurate and effective
models in AD diagnosis. Deep have emerged as leading machine learn-
ing approaches for visual object detection. While CNNs were introduced
over two decades ago, despite the fact that they were first presented
over 20 years ago, recent advancements in hardware, software, and
network structures have enabled the training of truly deep CNNs [34].
Only lately have advancements in computer hardware, software, and
algorithmic network structure made it possible to train truly deep
CNNs [35]. However, as CNNs grows deeper, they encounter chal-
lenges such as information vanishing or loss of gradients along the
network path [36], Addressing these challenges becomes crucial for
developing accurate and effective models for Alzheimer’s disease di-
agnosis. According to Andrew Ng in 2016 conference about [37] ‘‘Nuts
and Bolts of Building AI Applications using Deep Learning’’ Transfer
learning will succeed supervised learning as the next major factor in
AI-based machine and DL commercial success. Conventional ML and DL
algorithms were only designed to solve separate specific tasks, which
require a lot of data. Transfer learning was developed to overcome
the isolated learning paradigm. A study in 2017 [38] conducted by
Lopez and Valiati, demonstrated the use of pre-trained CNNs as feature
extractors for detection of tuberculosis which can produce reasonable
results without a large dataset, an expensive, time-consuming training
phase, or both.

In the context of AD classification, our motivation stems from
the need to improve prediction accuracy and address the challenges
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posed by limited training data. By exploring the application of transfer
learning techniques, specifically the DenseNet architecture, we aim to
leverage the learned features from pre-trained models and enhance the
classification performance using MRI scans. We also extend our investi-
gation to explore three different variants of the DenseNet architecture,
evaluating their respective performances in AD classification. Our goal
is to develop a robust and efficient AD classification model by DenseNet
model and addressing the limitations of conventional approaches. By
harnessing the power of deep learning and transfer learning, we strive
to improve the accuracy of AD diagnosis, enable early identification,
and enhance the decision-making process for clinicians.

3. Contribution

People with Alzheimer’s disease are identified in our research work,
and our goal is to identify people who may have the disease early.
The dataset for AD is available on Kaggle which is used for training
all patient’s data using DenseNet architectures, to identify the affected
people quickly and efficiently in a highly effective manner. We then
examine another transfer learning paradigm to capture generic and
domain-specific features and reserve using pre-trained DenseNet on
ImageNet and learn new specialized representations by replacing top
layers according to our output classifier. The dataset’s tiny size is
the biggest problem. The main obstacle that must be overcome is
the amount of dataset which is small. We used data augmentation
technique to help the model’s function at their optimal level and dra-
matically enhance their effectiveness during classification. The paper
can be used to infer the following contributions:

• Present an overview and significance of DenseNet architecture for
image-based analysis.

• Implement three versions of DenseNet architecture, including
DenseNet-121, DenseNet169, and DenseNet-201.

• We present four different evaluation methods to evaluate the
model’s effectiveness.

• On-fly data augmentation is used to avoid the overfitting problem.
• Incorporate a healthcare decision support system for diagnosis

and decision-making in clinical settings.

4. Transfer learning

In the context of training of DL-based models, transfer learning
is a powerful method that makes use of information acquired from
one domain to enhance performance on a separate but related task or
domain. It is especially helpful when obtaining labeled data is difficult
or expensive. TL facilitates the creation of highly accurate and effective
models with shorter training times by transferring acquired represen-
tations and information from pre-trained models [22]. TL has attracted
a lot of interest and has shown itself to be quite successful in the field
of medical imaging. CNN models which are also commonly known as
ConvNet that have already been trained on large-scale datasets, models
like VGG, ResNet, AlexNet, DenseNet [28] and etc. Used to capture rich
visual features that are relevant across different image recognition tasks
[24]. These pre-trained models have mastered the ability to recognize
and extract both high-level characteristics like object patterns and
structures as well as low-level elements like edges, textures, and forms
[20].

Transfer learning shows considerable potential for the detection and
prediction of various diseases such as Alzheimer’s disease. Since it is
unusual to have a dataset large enough to train an entire Convolutional
Network from scratch (with random initialization), this approach is
impractical World Alzheimer Report 2010 [39]. Another option is to
use a Conv-Net that has already been trained on a massive dataset
like ImageNet [40], as an initialization or a fixed feature extractor
for the task at hand. We can use a pre-trained Convolutional Network
that has been trained on a sizable dataset like ImageNet [40] rather
of creating a Convolutional Network from scratch, which necessitates
an impractically big dataset World Alzheimer Report 2010 [39]. Two
main transfer learning scenarios typically exist:
3

Fig. 1. Transfer learning strategies.

- ConvNet as a fixed feature extractor: Using a ConvNet that has
been previously trained on ImageNet, we can remove the final
fully connected layer and use the remaining structure as a fixed
feature extractor for the target dataset. This approach capitalizes
on the pre-learned representations from ImageNet, allowing us
to extract relevant features without retraining the entire network
[41].

- ConvNet fine-tuning: A different approach is to replace the
classifier’s final fully connected layer while also adjusting the pa-
rameters of the pretrained network. We are only able to finetune
a few higher-level components of the network due to overfitting
concerns. This idea is motivated by the observation that earlier
features in a ConvNet contain more general features (such color
blob detectors or edge detectors) that can be helpful for many
tasks [42]. The network’s later layers, however, become steadily
more attentive on the specifics of the classes in the original
dataset. Fig. 1 [43], shows the two different approaches and how
they can be used, in the left we have feature extractor approach
and on the right fine-tunning approach.

Fig. 2 shows the transformation of the base model to the target
model. It illustrates how the pre-trained DenseNet model, which was
trained on the dataset ImageNet, was modified. The pretrained model
is used as a feature extractor and new layers are added on top for task-
specific learning. In this method, only the weights of the newly added
layers are trained for the particular task; the weights of the pre-trained
model are left fixed during training. This is a typical transfer learning
strategy, especially when there is a dearth of labeled data for the target
task. Adding a new fully connected layer with three output nodes for
the three categories of brain MRI images Mild-Demented (MID), Non-
Demented (ND), and Very-Mild-Demented (VMD). This transformation
enabled the model to perform the classification task on the new dataset
of brain MRI images.

4.1. Significance and exploiting the potential of DenseNet architecture

CNN usage is fairly comparable to that of a standard neural network.
A CNN has several layers: an input layer, an output layer, and one or
more hidden layers. Convolutional, pooling, or fully connected layers
serve as the hidden ones [47]. As the name suggests, ConvNet archi-
tectures are built on the explicit premise that the inputs are images,
allowing us to hardcode certain characteristics. These then make it
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Fig. 2. Base model transformation to target model.
Table 1
DenseNet building blocks [44].

Types Definition Contain Remarks

Dense block A dense block is a collection of
layers that are all related to each
other or to their previous layer.

3 × 3 Convolution
ReLU (Rectified Linear
Unit) activation
Batch Normalization

Growth rate: The growth rate of a layer is defined as the
number of output feature maps. When the model is very deep,
concatenating residuals rather than summing them has a
disadvantage: It produce a large number of input channels [45].

Transition
layer

In this layer the concatenation of
all the feature maps happens. To
make sure each layer has the
same size for concatenation this
is the job of transition layer.

1 × 1 Convolution
Average pooling
Batch Normalization

Vanishing Gradient: The longer path between the input layer
and the output layer is the cause when information disappears
before it reaches its destination; consequently, the main goal of
utilizing DenseNet is to reduce the issue of vanishing gradient
and improve the accuracy loss caused by vanishing gradient in
deep [46].
easier to implement the forward function and greatly decrease the
number of network parameters. CNNs have issues when they delve
deeper. This is due to the fact that the distance between the input layer
and the output layer and in the opposite direction performing gradient
grows to such a size that information may be lost before it reaches
the other side (Pablo [48]). Instead of relying on highly deep or wide
architectures for representational strength, DenseNet makes use of the
network’s potential by reusing features. Huang et al. demonstrated the
two major problem that can be solved with DenseNet are the following:

1. Contrariwise, by connecting in this manner, DenseNet architec-
tures require fewer parameters than an equivalent CNN because
redundant feature maps are not required to be learned.

2. In addition, some variations of ResNets have demonstrated that
many layers barely contribute and can be eliminated. ResNets
have a large number of parameters because each layer must
learn its own weights. In contrast, DenseNet layers are extremely
narrow and simply add a small number of new feature-maps
[36].

DenseNets also differ from other architectural designs, such as Highway
Networks [49], Residual Networks [50], and Fractal Networks [51], by
simplifying the connectivity pattern between layers. While these other
architectures rely on deep or wide structures to enhance representa-
tional power, DenseNets focus on maximizing information and gradient
flow by directly connecting every layer to each other. This approach
allows for effective feature reuse within the network, harnessing the
network’s potential without the need for excessive depth or width.

4.2. Overview of general DenseNet architecture

DenseNet is a deep CNN architecture that was introduced by Huang
et al. in 2017. It is intended to address the vanishing gradient issue
in very deep neural networks by feeding forward from one layer to
4

the next, thereby creating densely connected blocks. The DenseNet
architecture is composed of multiple dense blocks, where each block
consists of a stack of convolutional layers with the same number of
filters. The output of each layer is passed on as input to all subsequent
layers in the block, creating dense connections. The dense connections
concatenate the feature maps from all previous layers, which are then
fed to the next layer in the block. Each block’s final layer is connected to
a transition layer, which is made up of a layer for batch normalization,
a layer for 1x1 convolution, and a layer for pooling. The transition layer
reduces the number of feature maps and the spatial dimensionality of
the output (see Table 1).

DenseNet transforms the conventional CNN design by offering dense
connections and effective feature use. As a result of the direct con-
nections made possible by these dense connections, gradient flow and
information propagation have improved.

The dense block, which comprises of several convolutional layers
stacked together (Pablo [48]), is the core component of DenseNet
model. Let us use the symbols X for the dense block’s input and H_l
for its output, where l stands for the dense block’s layer index. A dense
block’s computation can be seen as [36]:

H_I = H_ {I − 1}⊗ F_1 ([H_0,H_1,… ..H_{I_1}]) (1)

Here, [H_0, H_1, . . . , H_l-1] symbolizes the concatenation of the feature
maps from all preceding layers, while [f_l] represents the compos-
ite function made up of batch normalization, ReLU activation, and
convolution operations. And this symbol ⊕ denotes the concatenation
operation.

By introducing these thick connections, DenseNet encourages the
network to learn more intriguing and varied representations while also
increasing feature reuse. The skip connections enable gradients to flow
directly from the output layer to the input layer.

The notion of transition layers, which are in charge of down sam-
pling the feature maps and lowering the number of channels, is also

introduced by the DenseNet design. A batch normalization layer, a 1x1
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onvolution layer, and an average pooling layer make up the transition
ayer. The transition layer’s output, T_l, may be computed as follows:

_I = 𝜃_I ([H_0,H_1,… ..H_{I_1}]) (2)

n this case, 𝜃_l stands for the composite function of the average
ooling, batch normalization, ReLU activation, and 1x1 convolution
rocedures. DenseNet’s general structure may be represented as a stack
f dense blocks with transition layers put between them to regulate
he channel size and spatial dimensions. To get the appropriate output
redictions, the final global average pooling layer and fully connected
ayer are combined (see Fig. 3).

. Related work

Systems that support healthcare decisions have drawn a lot of
ttention in clinical settings as useful tools for improving patient care
verall, treatment planning, and diagnostic accuracy. To assess com-
licated patient data, such as medical imaging, laboratory findings,
lectronic health records, and clinical guidelines, these systems make
se of cutting-edge technologies, such as machine learning and deep
earning for diagnosis of Alzheimer’s disease. An introduction to the
arious approaches in identification and classification of the disease is
valuated in light of the subsequent literature review. The classification
f medical images has benefited from the development of a wide vari-
ty of efficient feature engineering approaches throughout the years.
ccording to Suk et al. [54] which has used multi-model fusion with
ierarchical features to detect AD in 2014 and it was tested on Positron
mission Tomography (PET) and MRI of 398 scans this includes 93,
04, 101 (AD MCI, and NC, respectively). Using the tissue densities
rom the MRI patch and the voxel intensities from the PET patch, they
reated the Multi Model patch-level feature learning architecture and
GG-16 and 19 was used as pre-trained model. Next, they trained the
estricted Boltzmann Machine as a preprocessor, which can convert
eal values observations into binary form. The multilevel classifier
eceived the extracted features and classified them accordingly such as
CI - CN and AD - CN with accuracy of 85.67%, 95.35%, respectively.

In their study, the authors [55] suggest three successful approaches
or generating visual representations to classify AD using 3D con-
olutional neural networks (3DCNN). Specifically, they employ the
D-ResNet and 3D-VGGNet techniques to classify MRI scans from both
D and NC, utilizing ADNI brain MRI images. The performance of the
lassification models is assessed using metrics such as the area under
he AUC and classification accuracy (ACC). Among the methods, the
D-ResNet achieves the highest accuracy of 79.4%.
5

The authors in this study [56] propose a method for diagnosing AD
y employing a CNN along with a combination of sMRI and Diffusion
ensor Imaging (DTI) techniques. They focus on analyzing a specific
egion of interest (ROI) in the hippocampus using ADNI data. The study
ncludes 214 individuals, consisting of 48 AD cases, 108 cases with MCI,
nd 58 NC patients. Each patient undergoes both a T1-weighted sMRI
nd a DTI scan. The authors also address the challenge of imbalanced
lass sizes and investigate the impact of ROI size on classification
utcomes. The proposed approach achieves an impressive classification
ccuracy of 96.7%.

Yosra Kazemi [57] and his colleagues used AlexNet architecture
or classification of different stages of the AD using fMRI scans. The
odel’s average accuracy was 97.63%. Using DL algorithms, they have

uccessfully classified five different stages such as AD, NC EMCI (Early-
ild-Cognitive-Impairment), SMC (Significant-Memory-Concern), an-

LMCI (Late-Cognitive-Mild-Impairment). The tested accuracy for AD,
C, EMCI, SMC and LMCI were 94.97%, 98.34%, 95.89%, 94.55%,
8.34% respectively.

The author [53] in this experiment utilized Computed Tomogra-
hy (CT) brain images. The study employed three pre-trained models,
amely ShuffleNet, DenseNet, and NASNet-mobile, in combination with
NN. Among the three models, DenseNet demonstrated the highest
erformance, achieving an accuracy of 87.36% on three stages of AD
uch as MID, Moderate Demented (MOD), and VMD.

In this research [1], various pre-trained models including ResNet18,
lexNet, SqueezeNet, VGG16, InceptionV3 and DenseNet are employed

o classify AD into four categories. The experiments are conducted
sing MRI images from the OASIS database. The evaluation of the
mplemented models reveals that the pre-trained SqueezeNet model
chieves the highest validation accuracy of 82.53% for the multiclass
lassification of AD. While DenseNet 121 achieved training accuracy
nd validation accuracy of 67.31% and 67.72%, respectively.

The goal of this study [58] was to improve AD images classification
sing DCNN (Deep Convolutional Neural Networks) also known as deep
onvNets, which incorporate VGG16 and 19 transfer learning and CNN.
he classification AD images are done into four classes such as MID,
OD, VMD, and ND. The results accuracy for CNN, VGG-16 and 19

re 0.710%, 0.770% and 0.776% respectively. Part of the problem with
his research was that the experiment could not use real-world or local
atasets. Also, the system used to implement the techniques showed
hat it took a long time to do computations. Both of these things could
ffect the results of the work.

This study [59] introduces a method using CNN with the TL-based
esNet-18. Transfer learning from ImageNet is used to overcome the
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Fig. 4. Random sample images of three different categories.
rawbacks of having a big and balanced dataset, and the loss function
s weighted to ensure equal importance for each class. Additionally, an
xperiment is conducted by replacing the network activation function
ith a mish activation function to improve accuracy. The test results

eveal that the model achieves an accuracy of 88.3% when utilizing
ransfer learning, weighted loss, and the mish activation function. This
ccuracy value is significantly higher compared to the baseline model,
hich only achieves an accuracy of 69.1%.

Hamed Ghaffari et al. [60], take advantage of CNN-based transfer
earning methods for the classification of AD using MRI. The study
tilizes three pre-trained models such as ResNet101, Xception, and In-
eptionV. For binary (AD vs. non-AD) and 4-class (AD/pMCI/sMCI/NC)
lassification, the proposed networks are trained and tested using pre-
rocessed and augmented segmented and full pictures. External test sets
rom the OASIS and AIBL datasets are used for performance evalua-
ion. The results demonstrate that transfer learning-based CNN models
utperform models trained from scratch. InceptionV3-TL achieves the
ighest accuracy and AUC in both binary and multiclass classification
asks on the ADNI test set, OASIS test set, and AIBL test set. For binary
lassification on the OASIS test set they have achieved an accuracy of
3.33% with 93.0% AUC.

In this paper [61] the authors focus T1-weighted MRI scans to do
lassification based on deep learning approach. The researchers utilized
ransfer learning with an EfficientNet model trained on ImageNet to
lassify subjects as AD vs CN. The study used data from the ADNI and
chieved an accuracy of 91.36% and AUC of 83%.

According Hridhee et al. [62] to The VGG16 and Xception models,
long with a custom CNN model, were evaluated with 2D MR images.
he custom model achieved the highest performance with an accuracy
f 0.9477 and F1-score of 0.9481. It outperformed traditional methods,
ffering reduced complexity, shorter processing time, and improved
fficiency compared to 3D MRI-based CNN techniques. The author [63]
uthor evaluate the performance of the MobileNet approach using two
ublicly available datasets: OASIS and ADNI. Results indicate that the
pproach outperforms conventional methods in terms of accuracy and
ensitivity across various evaluation cases. Particularly, this implemen-
ation of MobileNet achieves high accuracy in the OASIS, ADNI, and
erged test sets (OASIS + ADNI) of 95.24%, 81.94%, and 83.97%,

espectively, surpassing the performance of conventional approaches.
According Rabeh et al. [64] the authors combined approach of

NN and SVM for early-stage prediction of AD, specifically MCI. The
roposed method is tested on a dataset from the OASIS database, which
omprises 420 subjects, including 210 normal individuals and 210 with
CI. The results demonstrate an accuracy of 94.44% for AD prediction

sing this approach. This study [65] proposes a multimodal fusion
pproach that Discrete Wavelet Transform (DWT) analysis with VGG16.
he fused images are reconstructed using inverse DWT and then clas-
ified using a pre-trained vision transformer. Accuracies of 81.25% for
D/EMCI and AD/LMCI in MRI test data, and 93.75% for AD/EMCI and
D/LMCI in PET test data. The proposed model outperforms existing
tudies, achieving an accuracy of 93.75% for PET data. Table 2. Present
summary of all recent studies with their performance.
6

6. Materials and methods

While numerous studies in recent years have focused on datasets
such as ADNI and OASIS, which use several imaging modalities incor-
porating many features of pictures from multiple modalities, such as
sMRI, CT, fMRI, and MRI scans, our study focuses on pre-processed
MRI images from a Kaggle source. We depart from current patterns and
investigate the uncharted territory of DenseNet architecture, with the
goal of diversifying its configurations for enhanced performance. We
simplify preprocessing to meet the model’s criteria while avoiding the
unnecessary complexity seen in other approaches. We choose a three-
class categorization over existing approaches that handle several output
classes like 2, 3 or 4.

Furthermore, we emphasize the importance of on-the-fly data aug-
mentation, a strategy that has received little attention in recent re-
search. Furthermore, we address time complexity, stressing the ap-
plicability of our model in resource-constrained contexts. Finally, the
relevance of our work rests in its simplicity, which was attained by
careful architecture selection and efficient preprocessing. DenseNet201
performs well, demonstrating the potential significance of models in
classification of AD. The subsection we have talks in detail about the
data description and the model description.

6.1. Data description

Numerous datasets are available online for the classification of
Alzheimer’s disease. Many of these datasets, though, are in the form
of Comma-separated Values which do not meet the criteria for our
study. Notably, organizations like Open Access Series of Imaging Stud-
ies (OASIS) and Alzheimer’s Disease Neuroimaging Initiative (ADNI)
make their datasets accessible for the public since the research is
concern. Despite this, these datasets are incredibly big and mainly
comprise 3D image types. For instance, the size of dataset from ADNI is
staggeringly large at 450 GB, while the OASIS dataset is around 18 GB.
For this study. Our dataset was sourced from an online Kaggle chal-
lenge, specifically focusing on MRI brain images. The dataset provided
for this challenge includes a total number 6400 including training
and testing and categorized in to four classes as ND, MID, MOD and
VMD and contain 200 subjects with 32 slices of the image for each
subject the samples from anonymous patients. The data source can
be found in Kaggle (Alzheimers-dataset-4-class-of-images). We have
considered three stages of AD for this study such as ND, MID and
VMD since the MOD contain very less amount of image slices, we did
not consider that class. As seen in Fig. 4, each image represents a 2
Dimentional MRI cross-section of the brain, capturing a specific plane
at varying heights within the brain. These images are grayscale with
176 × 208 pixels dimension. Additionally, all the MRI brain is cross-
section and centered and the background of the images are clipped.
The dataset underwent various preprocessing steps to ensure the data
was appropriately prepared for subsequent stages.

Data preprocessing is a method of putting together input data and
turning it into something DL models can use. It is the cornerstone of the
suggested research methodology [66]. To remove the noise, find the
missing values, and fix them, as well as to prepare the data for proper
use, data preprocessing is necessary [67]. This also improves the effec-

tiveness of the entire research model that has been proposed. In this
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Table 2
Present each recent paper’s technique, modality use and the achieved results.

Author & Date Technique Data modality No-of-Classes Obtained accuracies

Suk et al. [54] VGG-16 & 19 PET and MRI
scans

3
Classes: MCI - CN and
AD - CN

Accuracies:
85.67% and 95.35%

Yang et al. [55] 3D CNN
3D-VGGNet & 3D-ResNet

ADNI 2
AD vs CN

3D-ResNet accuracy of
79.4%.

CNN ADNI
sMRI,
DTI

2
AD VS NC

Accuracy of 96.7%

Kazemi and
Houghten [57]

AlexNet fMRI 5
Classes: AD, NC, EMCI,
SMC and LMCI

Average accuracy
97.63%
Accuracy of all classes
94.97%.

Yudin et al. [53] ShuffleNet, DenseNet and
NASNet-mobile

CT 3 MID, MOD and VMD Best accuracy of
DenseNet: 87.36%

Odusami et al.
[1]

ResNet18, AlexNet,
SqueezeNet, VGG16,
InceptionV3 & DenseNet

OASIS 4
NC, MCI, AD

SqueezeNet 82.53%
DenseNet 67.31% and
67.72%,

Ajagbe et al.
[58]

DCNN-VGG-16 & VGG-19 MRI 4
Classes: MOD, VMD
and ND

Accuracy of all
Approaches: 0.710%,
0.770%, 0.776%

Oktavian et al.
[59]

CNN with the ResNet-18 ADNI 3
AD, CN, MCI

69.1%

Ghaffari et al.
[60]

ResNet101, Xception, and
InceptionV

ADNI, OASIS 2 AD vs non-AD
4 AD/pMCI/sMCI/NC

accuracy of 93.33%
with 93.0% AUC.
Binary

Sethi et al. [61] EfficientNet Model ADNI 2 AD vs CN Accuracy: 91.36% with
AUC of 83%

Hridhee et al.
[62]

VGG16 and Xception and
custom CNN

2D MR images Full paper not available Best accuracy custom
model: 0.9477

Ghosh et al. [63] MobileNet ADNI, OASIS 4 OASIS: MID, MOD,
VMD and ND
2 ADNI: ND and VMD

Accuracy: 95.24%
ADNI, OASIS 81.94%,
Merged 83.97%

Rabeh et al. [64] CNN and SVM OASIS 2 MCI vs CN Accuracy: 94.44%

Odusami et al.
[65]

Pixel-Level Fusion Approach
DWT with VGG16

ADNI: sMRI and
FDG-PET

3
AD vs EMCI
AD vs LMCI

Accuracy: 93.75%
model, data normalization and data augmentation are the two types of
data pre-processing that are used [68]. The modified DenseNet model’s
numerical stability is preserved by data normalization. One crucial
preprocessing step involved normalizing the image values. Initially, the
images were represented in grayscale, with pixel values ranging from
0 to 255, and then rescaled the pixel values within a normalized range
of 0 to 1. The images are resized to 224 × 224 due to the requirement
of the model.

A large dataset is required to increase the model’s usefulness. How-
ever, obtaining these datasets presents challenges due to numerous
sites, data limitations and privacy concerns. The Keras ImageDataGen-
erator is used for data augmentation purposes. This module augments
data to increase model generalization. In data augmentation, a random
image data generator does translations, rotations, scale changes, and
vertical flips. In real-time data augmentation, Keras ImageDataGener-
ator generates batches of tensor picture data (Tiara [69]). Using the
correct parameters and input, we can use the ImageDataGenerator
resize class. Batch size and the number of inputs impact the number
of images created. We have used on-the-fly data augmentation, where
modification methods such as rescale, rotation range, zoom range,
horizontal and vertical flip were used in order to generate new images
from the original image. Training and test sets are originally created
and split from the dataset. Table 3 demonstrates the distribution of
dataset across three classes and splitting into training and testing set.

Fig. 4 displays a random selection of images from three different
categories, namely ND, MOD, and VMD. Each category is represented
by four sample images. The images show different brain scans that

are used in the analysis of dementia. These images are an essential

7

Table 3
Dataset distribution across three different classes.

Class Training Testing

Non-demented 2560 640
Mild-demented 717 179
Very-mild-demented 1792 448
Total 5069 1267

component of the research, as they help in performance testing and
training the model in differentiating between healthy individuals and
those with varying degrees of dementia.

6.2. Model description

The experimentation was conducted using Google Colab, a cloud-
based platform that provides a Python development environment.
Google Colab offers the advantage of readily available computing re-
sources, including GPUs, which are essential for training deep learning
models. This allowed us to leverage the power of accelerated hardware
for faster model training and evaluation. Since we are faced with
limitation in computational speed therefore, we try to attempt the
small changes in hyperparameter tunning. Rather than using advanced
techniques which require more computing power and consume more
time to train. We utilized the TensorFlow framework for our exper-
imentation. By leveraging TensorFlow’s high-level APIs and efficient
computational backend, we were able to build and train our models

effectively. TensorFlow’s extensive ecosystem also allowed us to access
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pre-trained models, perform data preprocessing, and evaluate model
performance. Keras library, which is now integrated with TensorFlow
has been used for our data augmentation and preprocessing in the
training, validation, and testing stages. Several data augmentation
techniques to the training images as mentioned earlier in dataset
description. Rest of the process and steps are as follows:

• Resizing the images to a consistent size is necessary to ensure
compatibility with the DenseNet model’s input layer, which ex-
pects images of a specific size. Therefore, In this case, the images
are being resized to a target size of 224 × 224 pixels.

• Batch size parameter is used to determine the number of samples
in each batch of data during training, in this case, 128.

• The DenseNet201 model was used as the base model with the
dimensions of the input images. By setting attribute of the archi-
tecture include_top to False, the fully connected layers at the top
of the DenseNet201 model, which were responsible for the final
classification, were excluded. The general structure will remain
the same, with freezing the layers, for extracting the general
features of the data while another stack of hidden layers is created
to perform the domain specific feature extraction. Therefore, the
feature extractor strategy of TL has been used in this study.

• The weights parameter was set to ‘‘ImageNet’’, indicating that
we used the pre-trained weights from training on the ImageNet
dataset. This initialization helped the model leverage the knowl-
edge learned from millions of images in a wide range of cate-
gories.
Customizing the model’s last few layers are as follows:

• A sequential model is first created. The base model is
added as the first layer.

• Dropout layers are added after each fully connected layer
with a dropout rate of 0.5 to reduce overfitting.

• Flatten layer is used to flatten the output from the previous
layer into a 1D vector.

• Batch Normalization layers are added after each fully
connected (Dense) layer. Batch normalization helps stabilize
the training process and improves model performance.

• Activation(’relu’) is applied after each batch normalization
layer to introduce non-linearity.

• SoftMax, the last Dense layer with 3 units and activation is
added for multi-class classification, indicating the outputs
classes.

Different data preprocessing methods were used to improve model
training. To diversify the training data, image augmentation techniques
such as rotation up to 30 degrees, zooming within a range of 0.8x
to 1.2x, and horizontal and vertical flipping were used. To assess
model performance, the dataset was further divided into training and
validation sets with validation splits of 0.2, 0.4, and 0.6.

In order to avoid overfitting, a batch size of 128 was used during
training, and a dropout rate of 0.5 was implemented at multiple layers.
The difference between the predicted and actual labels was calculated
using the categorical cross entropy loss function. The Adam optimizer
was selected to reduce this loss, and a learning rate of 0.003 was set for
efficient convergence. We carefully experimented with various learning
rates during the training process to find the ideal balance.

A learning rate that is too high or too low can compromise training.
After experimenting with different values, we chose 0.003 because it
allowed for a quick convergence without compromising stability. This
decision was essential for effective training, ensuring the model could
efficiently learn from the data and generalize. Early stopping was used
with a 15-epoch patience period, monitored by the validation AUC
score, to ensure the model’s robustness and prevent overfitting. Accord-
ingly, model checkpoints were saved. The model was able to effectively
learn and optimize its parameters because the training process was over

170 epochs.

8

Additionally, the model was evaluated using the METRICS defined
previously, including accuracy, precision, recall, AUC, and F1 score.
The complete proposed workflow diagram is given in the following
Fig. 5. The architecture selected for classifying the stages of AD is
DenseNet201. It has a total of 214,146,627 parameters, out of which
195,628,803 parameters are trainable. The remaining 18,517,824 pa-
rameters are non-trainable. Table 4 presents the summary of significant
parameters used in this experiment.

Using a variety of techniques, we thoroughly evaluated and com-
pared the performance of our model. We rigorously tested four different
approaches such as (1) training each model with the original unaltered
dataset, (2) applied data augmentation to enrich the training dataset,
(3) a modified augmentation technique without specific transforma-
tions and (4) varying the training and test data split ratios. These
methods were painstakingly created to provide a profound understand-
ing of the impact of data augmentation, the requirement for particular
transformations, and the impact of dataset size on model performance.
Our goal was to compare these approaches methodically in order to
determine which one would be the most useful for our classification
task. We also contrasted how long each model took using various
methods (see Fig. 6).

7. Experiment results

A variety of metrics are used to assess a classification model’s per-
formance, such as accuracy which is one of the simplest classification
metrics that is calculated as the proportion of accurate predictions to all
other predictions. Precision is determined by the proportion of positive
predictions that were accurate. To calculate the True Positive (TP)
predictions which are exactly true divide by all positive predictions
such as True Positive and False Positive (FP). Another metric is Recall;
the main goal is to determine the percentage of actual positives predic-
tions that were incorrectly predicted. We can calculate this as taking
all the TP that are actually true dividing it with total number of TP
and False Negative (FN) either positive correctly predicted or negative
incorrectly predicted. f1_score used to tell your FP and FN rates are
low. By giving each variable equal weight, The harmonic mean of both
precision and accuracy and recall parameters can be used to compute it.
AUC, which displays the model’s capability in distinguishing between
classes which is used as a summary of the ROC curve [70]. Lastly,
ROC curve(Receiver Operating Curve) is a graph that displays how
well the model performs at various threshold values. Below are the
mathematical equations for calculation of the metrics (Frankie [71]).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TruePositives + TrueNegatives

TruePositive + TrueNegatives + FalsePositive + FalseNegative
(3)

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = TruePositives
TruePositive + FalsePositive (4)

𝑅𝑒𝑐𝑎𝑙𝑙 = TruePositives
TruePositive + FalseNegative (5)

𝑓1 − 𝑆𝑐𝑜𝑟𝑒 = 2* Precision *Recall
Precisionp + Recall (6)

We present a thorough assessment of our model using various
approaches in our results and analysis. As a first approach, we establish
a performance baseline without data augmentation. We then examine
the improved performance brought about by data augmentation in the
second approach, demonstrating its efficiency in allowing the model to
generalize from sparse data. The effects of skipping particular trans-
formations also done in the third approach, Additionally, by adjusting
the training and test split ratios, we examine the impact of dataset
size in fourth approach. The accompanying figures and tables give
our findings a clear visual representation while succinctly presenting
the insights gained from these methods. These visual aids contribute
to making well-informed decisions about model design and improve
understanding of our model’s performance under various conditions.
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Fig. 5. Proposed workflow diagram.
Table 4
Hyperparameters.

Parameters Values Parameters Values

Weights ImageNet Dropout Rate 0.5 (used multiple times)
Rotation Range 30 Dense Layer Units 2048, 1024, 512, 256, 3
Zoom Range 0.2 DenseNet Architecture DenseNet201
Horizontal Flip True Loss Function Categorical Cross entropy
Vertical Flip True Optimizer Adam
Validation Split 0.2, 0.4, 0.6 Learning Rate 0.003
Target Image Size (224, 224) Early Stopping Patience 15
Batch Size (Training and Validation) 128 Callback Checkpoint Monitor ‘val_auc’
Activation Function ReLU and SoftMax Epochs 170
1. Baseline Performance without Data Augmentation:

This strategy acts as a benchmark for contrast. In this instance, no
ata augmentation was used when training the models. This method
as used to assess the model’s performance when it only uses the
riginal, undisturbed dataset. The training and validation metrics for
enseNet models 201, 169, and 121, which include loss, AUC, and
9

accuracy, are shown in Figs. 7, 8, and 9 respectively. Additionally,
Tables 5 and 6 offer a thorough summary of the training and testing
results for each model, assisting in a thorough evaluation of the models.

2. Enhanced Performance with Data Augmentation:
In this method, the dataset was enhanced with data before the

models were trained. By applying transformations like rotations, zoom
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Fig. 6. Pseudocode of the proposed approach.
Fig. 7. Training and validation AUC and Loss and Accuracy of DenseNet201 model.
Table 5
Summary of training performance.

Model Optimizer Loss Accuracy Precision Recall AUC F1 score Training process

DenseNet121 Adam 0.0162 0.9961 0.9941 0.9941 0.9997 0.9941 39: early stopping
DenseNet169 Adam 0.0189 0.9962 0.9943 0.9943 0.9999 0.9942 41: early stopping
DenseNet201 Adam 0.0189 0.9962 0.9943 0.9943 0.9999 0.9227 35: early stopping
10
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Fig. 8. Training and validation AUC and Loss and Accuracy of DenseNet169.
Fig. 9. Training and validation AUC and Loss and Accuracy of DenseNet121.
Fig. 10. Training and validation AUC and Loss of DenseNet121 model.
Table 6
Summary of testing performance.

Model Loss Accuracy Precision Recall AUC f1_score

DenseNet121 1.8494 0.7914 0.6876 0.6860 0.8274 0.6869
DenseNet169 1.7561 0.8207 0.7316 0.7298 0.8458 0.7307
DenseNet201 1.4991 0.8300 0.7456 0.7435 0.8700 0.7446

range, horizontal and vertical flips to the original images, data aug-
mentation is a common technique for artificially expanding the training
dataset. This was carried out to improve the model’s performance
and increase its capacity to generalize from sparse data. This method
allowed us to evaluate how well the models functioned after being
trained on augmented data. The training and validation metrics, in-
cluding loss, AUC, and accuracy, are shown in Figs. 10, 11, and 12
for DenseNet models 121, 169, and 201, respectively. Tables 8 and 9
11
similarly give an overview of each model’s training and testing perfor-
mance. Due to the unpredictability inherent in various augmentation
techniques (such as zoom, rotation, and so on), calculating the actual
data size after applying data augmentation can be difficult. However,
depending on the following augmentation parameters we have set, we
can approximate the size by leveraging the capabilities of the Keras Im-
ageDataGenerator. Therefore, we have taken an example as 30 degrees
of rotation range, Up to 20% of zoom range, horizontal and vertical
flip enabled. We first counted the number of batches in the training set
and validation set to assess the growth in data size. We computed class-
wise sample counts for each set of data using a custom function called
count_samples. To estimate the total samples for both sets of data, we
then consider our best model DenseNet201 which ended up with 120
early stopping therefore, batch size and step count per epoch settings
are 128 and 32, respectively. This implies that you will generate and
use 32 batches of data, each of which has 128 samples, for each
epoch. When paired with these criteria, the count_samples function
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Fig. 11. Training and validation AUC and Loss of DenseNet169 model.
Fig. 12. Training and validation AUC and Loss of DenseNet201 model.
Fig. 13. Training and validation AUCs and Loss and Accuracy of DenseNet121.
Table 7
Training and validation dataset size before and after augmentation.

Before and after Training Validation

Original Dataset- Total of training
and validation set

4,054 1,015

Augmented - approximate total of
training and validation set

393,216 98,304

offered an approximation of the dataset size after augmentation as the
following shown in Table 7. So total augmented samples for training
and validation for the entire training process are calculated as follows
12
total number of samples in a single epoch and total number of epochs
(4054 × 120 = 491520).

3. Selective Augmentation Analysis

A data augmentation technique was used in this case, but it did not
include changes to attributes’ horizontal and vertical dimensions. This
particular decision was made in order to examine how these particular
transformations would affect the model’s performance. We attempted
to determine whether particular data augmentations contribute more
or less to the model’s capacity to make accurate predictions by ex-
cluding these transformations. The training and validation metrics for
the corresponding DenseNet models under this particular augmentation
strategy are shown in Figs. 13, 14 and 15. Tables 10 and 11 also provide
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Fig. 14. Training and validation AUCs and Loss and Accuracy of DenseNet169.
Fig. 15. Training and validation AUCs and Loss and Accuracy of DenseNet201.
Fig. 16. Training and validation AUC and Loss and Accuracy of DenseNet201 (40%).
Table 8
Summary of training performance.

Model Parameters Loss Accuracy Precision Recall AUC f1_score Training process

DenseNet121 Adam 0.3607 0.9248 0.8687 0.8415 0.9637 0.8547 135: early stopping
DenseNet169 Adam 0.2671 0.9300 0.8999 0.8890 0.9797 0.8948 145: early stopping
DenseNet201 Adam 0.2013 0.9605 0.9264 0.9193 0.9901 0.9227 120: early stopping
Table 9
Summary of testing performance.

Model Loss Accuracy Precision Recall AUC f1_score

DenseNet121 1.5907 0.8248 0.7687 0.6915 0.7637 0.7547
DenseNet169 1.5671 0.8300 0.7999 0.7790 0.7797 0.8948
DenseNet201 1.3304 0.9001 0.8014 0.7069 0.8607 0.8022

a thorough breakdown of the training and testing results, providing
important insights into model behavior.
13
4. Impact of the Training/Test Split Ratio:

We applied data augmentation and the training and test data split
percentages (40%, 60%, and 80%) were changed in this method. We
aimed to explore the impact of the size of the training dataset on the
model performance by varying the split ratios. Overfitting can occur
with smaller training datasets, while generalization may be enhanced
with larger ones. We can choose the ideal ratio for our particular
dataset thanks to this variation. The training and validation metrics for
DenseNet 201 are shown in Figs. 16 and 17, which shed light on the
influence of split ratios (see Tables 12 and 13).
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Fig. 17. Training and validation AUC and Loss and Accuracy of DenseNet201 (60%).
Table 10
Summary of training performance.

Model Parameters Loss Accuracy Precision Recall AUC f1_score Training
process

DenseNet121 Adam 0.2185 0.9450 0.9215 0.9129 0.9859 0.9171 48: early
stopping

DenseNet169 Adam 0.0992 0.9772 0.9669 0.9646 0.9966 0.9657 90: early
stopping

DenseNet201 Adam 0.0985 0.9762 0.9664 0.9621 0.9971 0.9643 76: early
stopping
Table 11
Summary of testing performance.

Model Loss Accuracy Precision Recall AUC f1_score

DenseNet121 1.7676 0.7643 0.6476 0.6425 0.8135 0.6442
DenseNet169 1.1743 0.8275 0.7425 0.7384 0.8770 0.7403
DenseNet201 2.0271 0.8011 0.7023 0.7001 0.8275 0.7012

The training and testing outcomes for different models under var-
ous approaches are comprehensively summarized in Table 14 that
s being presented. It is clear that data augmentation significantly
mproves accuracy and AUC scores across the models, having a major
mpact on model performance. Notably, DenseNet201 demonstrated
trong performance in the majority of scenarios, highlighting its po-
ential for accurate forecasting. Initial observations might show that
lternative approaches have higher training accuracy and lower loss,
ut a more thorough examination of validation metrics using related
raphs and testing tables reveals a more interesting picture. When
esting the model with unseen set of data, DenseNet201 in the ‘‘En-
anced Performance with Data Augmentation’’ approach consistently
isplayed superior performance. This demonstrated the model’s potent
eneralization capabilities. Additionally, the experiments with different
raining/test split ratios and the exclusion of particular augmentations
hed light on the nuanced influence of these factors during model train-
ng. These revelations emphasize the crucial role that careful model
onfiguration and thoughtful data preprocessing play in achieving the
est performance for realistic deployment.

Fig. 18 depicts the variation in accuracy of the top model,
enseNet201, in relation to the quantity of training epochs. The graph
emonstrates that the model’s accuracy rises as the number of epochs
ncreases until it hits a high at about 70 epochs, at which point it
tabilizes. This suggests that the model has learned the patterns and
eatures of the data well enough, and that further training does not
esult in substantial improvement in accuracy. The graph also shows
hat the accuracy of the model on the validation set is consistently
igher than that on the training set, which indicates that the model is
ot overfitting. Overall, this graph provides a visual representation of
14
the learning curve of the DenseNet201 model and helps in determining
the optimal number of epochs for training the model. After training
and evaluation of each model we also choose the best model which is
DenseNet201 to test calculate the percentage of predicted values for
each image category such as ND, MOD and VMD the output of each
predicted classes is shown in the Fig. 19.

We compared the recent studies in the field to our proposed ap-
proach for the classification of. Table 15 provides a summary of the
comparison’s outcomes. The table provides a comprehensive overview
of the key findings from the selected studies and highlights how our
proposed approach differs in terms of methodology, dataset, and per-
formance metrics. By examining this table, it becomes evident that
our approach achieves competitive results in terms of accuracy and
classification performance. Our proposed approach outperforms several
previous studies in terms of accuracy, achieving a remarkable 96.05%
accuracy rate with DenseNet201. Moreover, it demonstrates improved
precision and recall values, indicating a higher level of accuracy in cor-
rectly classifying ND, MID, VMD cases. In our comparison with various
recent studies, it is noteworthy that our approach also places a strong
emphasis on an important metric that is frequently overlooked in recent
works the AUC. AUC is a crucial metric, particularly in applications
involving medical imaging, as it sheds light on how well the model
can distinguish between classes. The lack of reported AUC values in
several recent studies can be a drawback when thoroughly assessing
the model’s performance. A high AUC indicates a strong capacity to
distinguish between classes, boosting trust in the model’s predictions.
With an impressive AUC of 99%, our DenseNet201 model demonstrates
its exceptional discriminative power and diagnostic precision.

Time taken for training the model:
The time complexity of an algorithm refers to how long it takes

to train and predict. Parameters, types of the model, hardware, and
dataset size, all have an impact. Several significant factors and strate-
gies were used in the training of our model. To begin, as previously in-
dicated, on-the-fly data augmentation was used, greatly increasing the
sample count and its diversity. Considering our best performed model
DenseNet201 which has 214,146,627 parameters. With a dropout rate



A.W. Saleh, G. Gupta, S.B. Khan et al. Decision Analytics Journal 9 (2023) 100348
Fig. 18. The performance of training accuracy of the best model.
Fig. 19. Predicted output as percentage on three different classes.
Table 12
Summary of training performance.

Model Ratio Loss Accuracy Precision Recall AUC f1_score Training process

DenseNet201 0.6 0.3083 0.9117 0.8754 0.8573 0.9726 0.8665 38: early stopping
DenseNet201 0.4 0.2495 0.9330 0.9038 0.8941 0.9819 0.8990 81: early stopping
DenseNet201 0.2 0.2013 0.9605 0.9264 0.9193 0.9901 0.9227 120: early stopping
Table 13
Summary of testing performance.

Model Ratio Loss Accuracy Precision Recall AUC f1_score

DenseNet201 0.6 4.2957 0.6817 0.5225 0.5225 0.6647 0.5222
DenseNet201 0.4 3.2227 0.7989 0.6555 0.6533 0.7747 0.6544
DenseNet201 0.2 1.3304 0.9001 0.8014 0.7069 0.8607 0.8022

of 0.5, 128 batch size and 0.003 learning rate, the training of the model
consisted of 170 epochs, with 32 steps per epoch. The training included
early stops and ended around the 120th epoch as shown in Fig. 20. The
training time of our model DenseNet201 took around 1.97 h. Some of
the elements as per our observation that may have contributed to the
1.97 h training duration for DenseNet201 include:
15
• Dataset size: the dataset is relatively large, with 5069 and 1267
for training and testing set respectively. And after applying the
data augmentation which will significantly increase the amount of
the existing data. This implies that the model has a large amount
of data to learn from, which may lengthen the training period.

• Batch size: another key aspect which contribute to this complexity
might be due to the value of batch which in our case it is 128. This
means that the model is trained on 128 photos simultaneously.
The advantage could be greater batch size can improve training
efficiency, but drawback can lead to lengthen training duration.

• Model’s complexity: DenseNet architectures are sophisticated in
terms of their structure with many parameters. This can also
lengthen the training period.

• Learning rate: a learning rate of 0.003. which is relatively low
learning rate, which can benefit us to keep the model from
overfitting, but it can also lead to lengthen training time.
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Table 14
Overall summary of training, testing of various models with respect to their accuracy, AUC and time.

Approach Model Training Time Testing

Accuracy AUC Hour Accuracy AUC

Without Data
Augmentation

DenseNet121 0.9961 0.9997 0.28 0.7914 0.8274
DenseNet169 0.9962 0.9999 0.31 0.8207 0.8458
DenseNet201 0.9962 0.9999 0.83 0.8300 0.8700

With Data
Augmentation

DenseNet121 0.9248 0.9637 2.19 0.8248 0.7637
DenseNet169 0.9300 0.9797 2.39 0.8300 0.7797
DenseNet201 0.9605 0.9901 1.97 0.9001 0.8607

With Data Augmentation
Excluding Horizontal and
Vertical Attributes

DenseNet121 0.9450 0.9859 1.35 0.7643 0.8135
DenseNet169 0.9772 0.9966 2.07 0.8275 0.8770
DenseNet201 0.9762 0.9971 2.02 0.8011 0.8275

With Data Augmentation,
Training Ratio (0.6, 0.4,
0.2) DenseNet201

DenseNet201 0.9117 0.9726 0.49 0.6817 0.6647
DenseNet201 0.9330 0.9819 1.44 0.7989 0.7747
DenseNet201 0.9605 0.9901 1.97 0.9001 0.8607
Table 15
Comparison of the recent studies with proposed approach.
For various models using various the three approaches, the figure
shows training hours and early stopping counts. The three methods
without augmentation, with augmentation and selective augmentation
are contrasted. Each model’s training hours are displayed, and the early
stopping percentages are written above the bars. This visual help us
evaluate training effectiveness and early stopping trends across models
and augmentation approaches (see Fig. 21).

8. Discussion

Deep learning approaches have the ability to effectively diagnose
and categorize AD utilizing a variety of neuroimaging modalities, ac-
cording to recent studies. In these works, many methodologies such as
multimodality, TL-based techniques, and CNN technique have been in-
vestigated. Considering the contrast shown in Table 7, in our suggested
method, data augmentation and feature extractor of TL strategy are
used with a DenseNet model. We tested our method using a dataset of
MR pictures that was made accessible to the public, and we classified
the three stages of AD with an astounding 96.05 percent accuracy
16
rate ND, MID, VMD. Our method also performed better in terms of
precision, recall, and AUC than several earlier trials. Several studies
have achieved high accuracy rates in the range of 77.60% to 95.35%
[58,63]. Notably, the CNN+ResNet-18 model [59] achieved an accu-
racy of 69.10%, which is comparatively lower than other approaches.
These results highlight the effectiveness of DenseNet models in cap-
turing relevant features from MRI images and accurately classifying
ND, MID and VMD cases. The DenseNet models outperform several
previous approaches, including VGG-19, SqueezeNet [65], MobileNet
[63], which achieved accuracy rates ranging from 77.60% to 83.97%.
In this context, our research which we used DenseNet, a powerful
CNN architecture known for its dense connectivity and feature reuse
capabilities, to classify the three stages of AD. The implemented transfer
learning technique can take advantage from generic features captured
by DenseNet architecture which has already undergone training using
the ImageNet dataset, and the top layers of deep CNNs then used for
capturing domain-specific features.
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Fig. 20. Time taken for training DenseNet201 model.
Fig. 21. Training hours and early stop by various models.
Deep learning approaches have the ability to effectively diagnose
nd categorize AD utilizing a variety of neuroimaging modalities, ac-
ording to recent studies. In these works, many methodologies such as
ultimodality, TL-based techniques, and CNN technique have been in-

estigated. Considering the contrast shown in Table 15, We thoroughly
ompared our technique to recent categorization studies. Our model,
otably DenseNet201, performed exceptionally well. It outperformed
revious trials, with a stunning 96.05% accuracy. Precision, recall, and
UC were all exceptionally high, demonstrating great diagnostic accu-
acy. AUC, an important parameter that is frequently overlooked, was
n amazing 99%, highlighting the model’s great class distinction. This
mphasis on AUC distinguishes and strengthens our findings, filling a
17
significant gap in many of recent works. These encouraging findings
highlight the potential of our method in enhancing precise dementia
categorization. Our approach is also able to effectively handle the chal-
lenges of limited training data. Additionally, our work’s outstanding
efficiency can be due to several important elements, including:

• DenseNet Connectivity: We take advantage of the DenseNet mod-
els’ dense connectedness to effectively reuse features across lay-
ers. With this approach, the model performs more accurately in
terms of categorization since it is better able to identify com-
plex correlations and patterns in the dataset like neuroimaging.
Additionally, it enables the extract pertinent characteristics from
overlapping regions, enhancing its efficiency even in the face of
such challenges.
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• Unlike the datasets used in most earlier investigations, we used a
publicly accessible collection of MR scans from online repository
Kaggle. As a result, we can assess our method’s effectiveness on
a more diverse dataset.

• We made use of Keras’ capability the technique called on-the-
fly data augmentation. As a result, we were able to expand and
diversify our training dataset, which enhanced the effectiveness
of our method.

• Given the constraints on computational resources, we took a
careful approach to adjusting hyperparameter We carefully set
important hyperparameters like learning rates and batch sizes to
enhance the model’s convergence and overall performance even
though we were unable to investigate advanced methodologies.

• DenseNet121, 169, and 201 are the three different DenseNet
models that we compared. As a result, we were able to determine
which design would accomplish the task the best.

• We present a thorough assessment of our model using four var-
ious approaches. How those factors in as we mentioned in four
approaches affect the model’s performance.

• Considering the computational and time complexity we also ex-
amined the performance of each model with respect to various
approaches.

Limitations:
Understanding and acknowledging the following limitations is cru-

cial for interpreting the findings and assessing the generalizability of
our results.

• One limitation is the prolonged computational time, which re-
stricted the exploration of larger datasets and more complex ar-
chitectures, potentially impacting the overall results. The machine
used for implementation faced challenges in terms of processing
power and speed, affecting the efficiency and scalability of the
experiments.

• Due to the significant processing needs of Grid Search CV, we
were unable to use it. Instead, we manually fine-tuned our model’s
hyperparameters. While this method produced promising results,
using Grid Search CV could have resulted in more complete
optimization. With additional computer capacity, future study
could explore this technique to further improve the performance
of our model [58].

• Reliance on a single modality dataset (MRI), which may restrict
the comprehensive understanding of the disease and overlook
valuable information from other modalities.

• Since the optimal neural network structure is concern [54]. Man-
ual determination of the number of hidden units in each layer.
This approach may have resulted in suboptimal network struc-
ture for discovering more high-level and domain-specific features.
Further research is needed to explore automated methods for
learning the optimal network structure from large-scale data,
especially for the practical implementation of deep learning in
clinical settings.

9. Conclusion and recommendation

Healthcare decision support systems play a crucial role in clinical
settings, assisting clinicians in accurate diagnosis and decision-making.
In this study, a healthcare decision support system was developed using
a transfer learning approach called DenseNet was used for multi-class
classification of AD stages (ND, MID, VMD). MRI images are gone
through an adequate preprocessing step. Our suggested model was
tested on various test data to ensure its generalizability. with 92.48%,
93.00%, and 96.05%, DenseNet121, DenseNet169 and DenseNet201,
in that order. This indicates that the transfer learning architecture that
has been trained with MRI data, can be tested on test data, and attain
a high level of accuracy. This suggests that the model has learned how

to efficiently extract key elements from the MRI dataset and is able
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to generalize effectively to new, untested data and also showing the
power of data augmentation on how it can be useful. Additionally,
DenseNet201 has a remarkable AUC of 0.9901, proving its efficiency
in recognizing many classes with excellent discriminative power.

In summary, these findings demonstrate the potential of the pro-
posed model, trained on MRI data, as a promising approach for classi-
fying different stages of AD. The proposed DenseNet model performed
significantly better than two other variants of DenseNet, however,
additional study is needed to increase its accuracy in MRI data and to
generalsize even better.

The experimental findings on the presented dataset demonstrated
the superiority of the proposed approach over previous methods, as
evidenced by improved performance across a range of quantitative
metrics. This work contributes to provide the use of DenseNet in
prediction of AD, enhancing our comprehension of transfer learning’s
potential in achieving accurate classification models even with limited
training data.

Moving forward, there is a plan to extensively investigate the capa-
bilities of this framework for tackling other complex tasks, such as the
identification of tumors.

To enhance the model performance, additional data preprocessing
methods can be applied. Moreover, bringing more diversity in dataset
by integrating data from multiple sources. In addition, we want to
consider two image modalities in which the training in one set of
data set and validation of the model in complete another dataset.
This exploration provided insights into the strengths and weaknesses
of DenseNet models in relation to other transfer learning approaches,
highlighting their potential for other researchers.
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