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Two-stage Domain Adaptation for Infrared Ship
Target Segmentation

Ting Zhang, Haijian Shen, Sadaqat ur Rehman, Zhaoying Liu*, Yujian Li, Obaid ur Rehman

Abstract—Ship target segmentation in infrared scenes has
always been a hot topic, since it is an important basis and
prerequisite for infrared-guided weapons to reliably capture and
recognize ship targets in the sea level background. However, given
the small target and fuzzy boundary characteristics of infrared
ship images, obtaining accurate pixel-level labels for them is
hardly achievable, which brings difficulty to train segmentation
networks. To improve the segmentation accuracy of infrared
ship images, we propose a two-stage domain adaptation method
for infrared ship target segmentation, where the segmentation
model is trained using visible ship images with clear target
boundaries. In this case, the source domain is the labeled visible
ship images, while the target domain is the unlabeled infrared
ship images. Specifically, in the first stage, we use an image style
transfer network to convert the infrared ship images into those
with visible light style, so that the visual disparity between the
two domain images can be reduced. Next, the visible, infrared
and converted infrared images are input into the Deeplab-v2
segmentation network for training, thereby obtaining the initial
network weights. At this time, random attention modules are
added separately to the low- and high-level spaces of Deeplab-v2,
in order to improve its feature extraction capability. In the second
stage, we mix the visible and infrared images through region
mixing to acquire the mixed domain images, as well as their
corresponding labels. Subsequently, Deeplab-v2 is further trained
using the mixed domain images to attain better segmentation
accuracy. Experimental results on both the home-made visible-
infrared ship image dataset and the public infrared image
dataset are superior to those existing mainstream methods,
demonstrating its effectiveness.

Index Terms—Domain adaptation, ship target segmentation,
two-stage, style transfer, attention mechanism.

I. INTRODUCTION

OCEANS play a vital role in the social progress and
development of all countries in the world. Ships, as a

major carrier of maritime transportation, play an important
role in coastal safety monitoring [1]–[3]. Marine monitoring
is inseparable from accurate and efficient segmentation of ship
targets. Infrared thermal mapping technology works by detect-
ing changes in the infrared radiation caused by differences in
target temperature and radiation [4], [5]. It can work during
daytime and at night. Therefore, precise infrared ship target
segmentation is desired, and this is the motivation of our work.
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However, low signal-to-noise ratio and fuzzy target bound-
aries make it difficult to accurately label infrared ship target
images at the pixel level [6]–[8]. Meanwhile, visible ship
target images have high signal-to-noise ratio and clear target
boundaries, and those acquired in fine weather contain richer
information, whose target structures have more distinct fea-
tures and whose labeled images are easier to acquire. Hence,
an effective method for addressing the difficulty of infrared
image labeling is to apply the segmentation network trained
with visible images to infrared images. Common practice is to
use labeled visible images to train the segmentation network,
which is then directly applied to the segmentation of infrared
images. However, there exists a domain shift phenomenon
due to the different distributions of visual features in the
two domains [9]–[11], so that good segmentation accuracy of
the extant segmentation network cannot be guaranteed on the
infrared image datasets [12]. With the development of transfer
learning, unsupervised domain adaptation methods have been
adopted by researchers [13]–[15].

As shown in Figure 1, unsupervised domain adaptation aims
to transfer knowledge from labeled source domain data to
unlabeled target domain data [16], [17]. This method achieves
domain alignment by learning the feature distribution between
the source and target domains, thereby reducing domain shift
[18]–[20]. Unsupervised domain adaptation has been widely
applied in many fields, such as remote sensing image analysis
[21]–[29], cross-modality medical image analysis [30]–[33],
street scene images semantic segmentation [34]–[38], etc. Ex-
isting unsupervised domain adaptation methods can be roughly
classified into two types: the input space-based methods and
the output space-based methods [39].

With the input space-based methods, image processing
or style transfer network is exploited to narrow the style
difference between two domains before inputting images into
the segmentation network [40]. For instance, Hoffman et
al. proposed a domain adaptation approach based on cyclic
consistency [34]. Hong et al. put forward a domain adaptation
method based on conditional generative adversarial network
[35]. Wu et al. proposed a single-stage unsupervised domain
adaptation network for nighttime image segmentation with
daytime images [36]. Yan et al. proposed a threshold-adaptive
unsupervised domain adaptation model to dynamically opti-
mize individual samples to obtain higher segmentation accu-
racy [37].

The output space-based domain adaptation methods aim to
align the inter-domain data distributions at the feature and
output layers of the segmentation network [41]. For instance,
Hoffman et al. put forward an unsupervised domain adaptation
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Fig. 1. The technology of unsupervised domain adaptation.

segmentation model based on fully convolutional network
[38]. Tsai et al. proposed an unsupervised domain adaptation
segmentation model based on adversarial learning [42]. Luo et
al. proposed a category-level domain adaptation model [43],
where the segmentation network was first used to extract image
features. Then, the discriminator was used to align features.
Vu et al. developed a domain adaptation method based on
adversarial entropy minimization [44], where the entropy map
was used to optimizing the segmentation network. Chen et
al. proposed a domain adaptation approach based on the
maximum squared loss, where the maximum squared loss was
adopted to optimize the network [45]. Truong et al. put forward
a domain adaptation method based on bijective maximum
likelihood loss [46]. With this method, an initial segmentation
model was obtained on the source domain through supervised
training. Then, unsupervised training was performed on the
target domain, and model training was accomplished using
the BiMaL loss function.

The extant input space- and output space-based methods
reduce the differences in image style either via image pro-
cessing or style transfer networks, or perform adversarial
learning on the output layer of segmentation networks with the
utilization of discriminator network. They separately reduce
the inter-domain data differences in varying spaces. Besides,
these methods are all proposed for synthetic–real image
datasets, while rarely for the cases in which the source domain
comprises visible images and the target domain comprises
infrared images. For the visible–infrared ship images, due to
the large difference in their image style, the domain shift is
large and the feature correlation is poor. When the foregoing
methods are applied to the visible–infrared ship datasets, the
segmentation accuracy decreases sharply. The main problems
are three-folds: (1) Firstly, in case the image modalities of two
domains are quite different, there lacks effective strategy for
narrowing the style difference between the two domains; (2)
Secondly, the segmentation network lacks ability to extract
image features sufficiently, making the output space still
not aligning enough; (3) Thirdly, the correlation information
between images in two domains is ignored.

To solve the above problems, we present a two-stage domain
adaptation method for infrared ship target segmentation (T-

DANet). Initially, a style transfer network is designed to
convert infrared ship images to those in visible image style,
so that the inter-domain appearance differences in the input
space can be reduced. Next, to reduce the inter-domain feature
differences in the output space, a random attention module is
constructed and added to the lower- and higher-level spaces
of segmentation model respectively, enabling the segmenta-
tion network to extract richer features. Finally, to fuse the
correlation information between images in different domains,
a random inter-domain image splicing method is designed to
further enhance the accuracy of segmentation network.

To summarize, the main contributions of our work are as
follows:

• A two-stage domain adaptation method for infrared ship
target segmentation (T-DANet) is proposed, as well as its
corresponding training algorithm. It narrows the appear-
ance differences between visible and infrared images with
the style transfer network in the input space, and obtains
the domain invariant features in the output space. By
these two operations, it aims to improve the segmentation
accuracy of infrared ship images;

• An image style transfer network is constructed. It reduces
the appearance differences between visible and infrared
ship images by converting the infrared images into visible
ones;

• A random attention module is established. It enhances the
feature extraction capability of segmentation network by
enabling extraction of more image feature information.

• An inter-domain image splicing method is designed.
By mixing the source domain images with the target
domain image with source domain style, it can acquire
the image correlation information between two domains,
which helps improve the segmentation accuracy of target
domain images;

• The proposed method attains better results than the
existing mainstream methods on both the self-prepared
infrared ship dataset VI-Ship and the public infrared
dataset RGB T. Further, the importance of the whole
model and key submodules are also verified through
substantial ablation experiments.

The rest of the paper is organized as follows. Section 2
briefly introduces the related work, Section 3 describes in
detail the infrared ship segmentation method proposed in this
paper, Section 4 gives the experimental results on the infrared
ship dataset and the public dataset, as well as their related
analysis, and the last section concludes the work of this paper.

II. RELATED WORK

Our work is related to three major tasks: unsupervised do-
main adaptation, image style transfer and attention mechanism.

A. Unsupervised domain adaptation

Unsupervised domain adaptation is an effective way of
solving the domain shift problem [47], It can be roughly
classified into two types: the input space-based domain adap-
tation methods and the output space-based domain adaptation
methods [39].
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The representative model of input space-based domain adap-
tation is CycADA [34]. It uses two style transfer networks
in the input space to convert the target domain images into
the source domain style and vice verse, respectively. CGAN
[35] simultaneously inputs the source domain images and a
conditional generative branch into the generator, and fuses the
low- and high-level features of the generator to increase the
feature diversity. DANNet [36] aligns the appearance distri-
bution of two domains by utilizing an image reillumination
network in the input space, thereby allowing more similar
distribution of image intensities. Although it is effective for
the domain adaptation of daytime–nighttime image datasets, in
the case of visual–infrared image datasets, a preferable effect
can hardly be attained due to the more complicated domain
difference. TUFL [37] introduces a threshold-adaptive focal
loss in the input space to optimize gradients. Through adaptive
adjustment of threshold value in the loss function, the model
can better adapt to the data distribution in the target domain,
so that its performance is improved.

The representative model of output space-based domain
adaptation is AdaptsegNet [42]. It proposes a multi-level
adversarial network to separately perform adversarial learning
on different level features of segmentation network, thereby
reducing the domain shift. On this basis, CLAN [43] adds a
category alignment branch to the discriminator of adversarial
network for aligning the category-level distribution of source
and target domains. ADVENT [44] adopts adversarial entropy
minimization in the output space. On the one hand, minimiza-
tion training is performed directly on the entropy map gener-
ated in the output space. On the other hand, the entropy map of
predictions is sent into the discriminant network for generative
adversarial training. MaxSquare [45] handles the class weight
imbalance problem by using image-level weight factor in the
output space. BiMaL [46] measures the efficiency of model
learning by introducing an unaligned domain scoring into the
output space. On the basis of minimizing the adversarial loss,
it proposed a bias loss to map the network to a potential
space, thereby improving the alignment of the two domains.
Generally, the above output space-based domain adaptation
methods lack operations for reducing the inter-domain image
appearance differences, resulting in their low segmentation
accuracy.

All of the aforementioned input or output space-based
unsupervised domain adaptation approaches merely reduce
domain shift in one space, limiting their performance. In this
study, we design methods separately for reducing domain
differences in the input and output spaces, and acquire the
correlation information of images in two domains through
inter-domain image mixing, with a view to further improving
the segmentation accuracy.

B. Image Style transfer

Image style transfer refers to a process in which the content
of one image (content image) is combined with the style
of another image (style image) to produce a new image
(generated image). This process often requires retention of the
content image’s semantic and structural information, as well as

simultaneous capturing of the style image’s texture and color
information. As a common technique used in unsupervised
adaptation semantic segmentation tasks, image style transfer
converts the images of target domain (or source domain) into a
style resembling that of the source domain (or target domain),
thereby reducing the appearance difference between the two
domain images.

Depending on whether a one-to-one correspondence be-
tween the images in source and target domains, the existing
style transfer networks can be classified into paired transfer
and unpaired transfer networks [48]. The paired style transfer
networks refer to those whose training requires image pairs
of the source and target domains. For example, pix2pix [49]
converts the source domain images into the target domain ones
via a conditional generative adversarial network. Neural Style
Transfer [50] extracts the content and style features of images
using a pretrained convolutional neural network (CNN). For
each pair of input content and style images, the perception
loss function is optimized by iteratively updating the pixel
value of output images. On this basis, Fast Neural Style
Transfer [51] iteratively updates the parameters of pretrained
CNN by optimizing the perception loss function, so that the
style transferred images can be quickly generated through a
single forward propagation of content images with the trained
network.

The unpaired style transfer networks refer to those whose
training not requires image pairs. With this method, two
generative adversarial networks are constructed first to achieve
bidirectional conversion between the source and target domain
images, and then different loss trainings are applied. For
example, CycleGAN [48] proposes cyclic consistency loss
to guarantee the reversibility of inter-domain mapping. On
the basis of cyclic consistency loss, DualGAN [52] uses
the Wasserstein distance as an adversarial loss. Later on,
DiscoGAN [53] adds a reconstruction loss to ensure that there
is little difference between the pre-conversion and converted
images.

Although the above methods can achieve transfer of any
image style, the quality of generated images is often not high,
leading to the occurrence of image content loss. In this paper,
we design an unpaired style transfer network. The designed
network can generate high-quality infrared images of ships in
visible style without the loss of ship targets.

C. Attention mechanism

An attention module, as a data processing method, allows
a model to selectively focus on what is important while
ignoring what is irrelevant during the processing of input
data. According to different parts of the activated feature map,
attention mechanisms can be roughly classified into the spatial
and channel types [54].

Spatial attention refers to weighting every position of a
feature map, which allows a model to focus more on the
areas of value. For instance, Spatial Transformer Networks
[55] enhance the robustness of geometric transformations
like image scaling, rotation and translation through spatial
transformation of input images. Non-local [56] obtains the
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Fig. 2. The overall network structure. In the first stage, the infrared ship images are transferred to visible ones with an image style transfer network. The
segmentation network is trained with the source images and the target images, separately. There are four loss functions in this stage: the adversarial loss,
the consistency loss, the segmentation loss and the structural loss. In the second stage, the transferred images are mixed with visible ones to get the mixed
domain images, which are used to continue to train the segmentation network. The cross-entropy loss is the loss function in this stage.

feature vector of corresponding position in the output feature
map by weighting the feature vectors of all other positions.
SimAM [57] is a parameter-free attention module, which first
generates three-dimensional attention weights for each layer of
feature map output by CNN, and then finds out the importance
of each position in the feature map by optimizing an energy
function. However, the above spatial attention mechanisms are
computationally expensive, so that the model training becomes
more time-consuming.

Channel attention refers to weighting each channel of a
feature map, which allows a model to focus on more mean-
ingful features. For instance, SENet [58] automatically learns
the channel weights first, and then extracts features using
weighted channels, thereby enhancing useful feature channels
and suppressing useless feature channels, improving the net-
work’s representation capability. Through point convolution,
MS-CAM [59] extracts the local and global channel attention
weights first, then enhancing the expressiveness of features and
suppressing the redundant information. ECA-Net [60] achieves
local cross-channel interactions through one-dimensional con-
volution, improving the feature expressiveness. However, the
above channel attention mechanisms are unable to capture the
information in the spatial dimension, resulting in the limited
improvement of the model feature extraction capability.

In this paper, we design a random attention module. It
randomly selects a certain region of feature map for weight-
ing, thus overcoming the heavy burden of global weighting
operation. We add the random attention module separately
in the low- and high-dimensional spaces of the segmentation
network, enabling the network to fully extract the low- and
high-level features of images, which in turn enhances the
feature extraction capability of the network and improves the
segmentation accuracy.

III. METHOD

The architecture of the proposed T-DANet model is dis-
played in Figure 2. As is clear, the first stage involves the
image style transfer, during which the infrared ship images are
converted into visible style images first with the utilization of
style transfer network. Then, the style transfer network and
segmentation network are trained using the converted images
together with labeled visible light images, thereby obtaining
the initial weights of the segmentation network. During the
second stage, the image regional mixing stage, the visible light
images are first subjected to regional mixing with the infrared
ship images that are converted into visible style. Then, using
the mixed domain images, the segmentation network is trained
in a fully-supervised way to ultimately obtain the network
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weights. After the two stages, we verify the performance of
segmentation network on the test set. The rest of this section
introduces the details of each component and the loss function
trained the network.

A. Style transfer network

To reduce the appearance difference between images in the
two domains, a style transfer network is designed. Extract-
ing the features of infrared ship images is difficult, since
they have low signal-to-noise ratio and contain much noise.
Contrastively, visible light images have rich details and clear
target boundaries. Hence, we use a style transfer network to
convert infrared ship images into visible light images. Figure 3
displays the structure of the network. As is clear, the network
first extracts the style information of visible ship images,
followed by extraction of the content information of infrared
ship images. Finally, it combines and upsamples them to obtain
new infrared ship images in visible style.

Concretely, at the first step, the ship images from source
and target domains are obtained for separately extracting the
style and content information. The input channels for the two
domain images are all 3 in quantity and 256×256 in size.
For the source domain visible images, their style information
is obtained sequentially via three successive convolutional
layers, a global average pooling layer and two fully-connected
layers. For the infrared images in target domain, their content
information is obtained via three successive convolutional
layers and four successive residual blocks [61]. Then, the
style information is input into the multilayer perception to
obtain a set of adaptive instance normalization (AdaIN) [62]
parameters. The content information is then processed by
residual blocks with AdaIN layers. The AdaIN layer can be
seen as a style normalization that converts the features of an
arbitrary style image into the same distribution, thus enabling
arbitrary style transfer [62]. The formula for the AdaIN layer
is Eq. (1). Finally, a new feature map is generated by fusing
the content information of infrared ship images with the style
information of visible ship images, which is upsampled to the
size of input feature map to ultimately obtain the target domain
images in visible style. Finally, a new feature map is generated
by fusing the content information of infrared ship images
with the style information of visible ship images, which is
upsampled to the size of input feature map to ultimately obtain
the target domain images in visible style.

AdaIN(f con,fsty) = σ(fsty)

(
f con − µ(f con)

σ(f con)

)
+ µ(fsty)

(1)
where f con is the feature of content image, fsty is the
feature of style image, µ and σ denote the mean and variance,
respectively.

B. Segmentation network

After obtaining the style transferred images, we input them
and the visible images into the segmentation network to
acquire the predicted output images in two domains. Figure
4 depicts the structure of the segmentation network.

As is clear, for input images with the size of 256×256×3,
their features are firstly extracted using five convolutional
layers. They are the first 5 convolutional layers of ResNet101
[61]. Secondly, the extracted features are input to an atrous
spatial pyramid pooling module [63] to capture image contex-
tual information at multiple scales. The pooling sampling rates
are {6,12,18,24}, respectively, and four feature maps with size
of 4×4×1024 are obtained. Finally, the four feature maps are
added up along the channel dimension and the prediction maps
are obtained by upsampling, size 256×256×2.

To enhance the feature extraction capability for small target
regions and capture details of target boundaries of the segmen-
tation network, a random attention module branch is added
separately to its second and fifth layer. The random attention
module can help the segmentation network to focus on small
local regions of interest, and by enhancing these local features,
the performance of small targets can be improved. This module
can also help the segmentation network focus and capture
some subtle boundary features that are easy to be filtered,
which is also helpful for sharpening the fuzzy boundary. Figure
5 depicts the structure of the random attention module.

According to Figure 5, the specific process of this module is
as follows: for the input feature map of current convolutional
layer, a certain region is randomly selected by taking a random
number between 1/2 and 3/4 of the size of the current feature
map. Then, the feature map is input into the global pooling
module to reduce the map size. Next, two convolutional
layers with a convolutional kernel size of 1×1 are connected.
After upsampling operation, pixel-by-pixel multiplication is
accomplished with the original feature map to generate a new
feature map. Thereafter, the new and original feature maps are
added pixel-by-pixel to ultimately obtain the enhanced feature
map. The enhancement process of the i-th (either 2 or 5)
convolutional layer in segmentation network can be expressed
as:

Output (i) = x+Up (Conv1×1 (Conv1×1 (Gp (x))))x (2)

where x represents the input feature map, Gp(·) refers to
the global pooling operation. Conv1×1(·) denotes the 1 × 1
convolutional layer in random attention module and Up(·)
refers to the upsampling operation.

C. Discriminative network
The primary role of discriminative network is to distinguish

the source domain segmentation results from the target domain
segmentation results. Figure 6 displays the structure diagram
of the discriminative network.

As shown in Figure 6, the discriminative network is a five-
layer convolutional network with the convolutional kernel sizes
of all 4×4, the step sizes of all 2 and the channel numbers of
{64,128,256,512,1}, respectively. Then, upsampling operation
is performed to restore the output feature map to the input
size and return the discrimination result, 1 is for the source
domain, and 0 is for target domain.

D. Two-stage training with mixed domain images
This subsection describes the connection between the two

stages. The two stages are trained in sequence. In the first
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Fig. 3. The style transfer network structure

Fig. 4. The structure of the segmentation network

stage, the input of the segmentation network comprises three
parts: visible ship images, original infrared ship images and
infrared ship images in visible style. Meanwhile, the output
comprises their corresponding prediction results. Theoretically,
the predictions by segmentation network are identical for
two images with the same target but different styles. Thus,
the outputs of infrared images with both styles are used to
constrain the consistency in the target domain, and to enhance
the stability of segmentation network.

In the second stage, the segmentation network is further
trained by exploiting the spatial layout similarity between
the two domain images. The segmentation network trained
in the first stage can provide pseudo labels for the shifted
target domain images in the second stage. Through regional
mixing technique, the source domain images are mixed with
the target domain images in source domain style. Their labels
are subjected to the same operation to generate new mixed
domain images and labels. The new image–label pairs are

used to train the segmentation network, thereby improving
the segmentation accuracy of target domain images. Figure
7 describes the image mixing process.

The motivation of randomly cropping half of the image
is to fuse the spatial layout information between the two
domains while preserving sufficient target information. There
are three steps to select the subregions. Specifically, for a
given infrared image, firstly, we randomly generate the starting
point of the cropping rectangle; secondly, we determine one
of the horizontal lines as the starting point’s row; thirdly, we
compute 1/2 of the height of image, and crop out the half
subregions. The reason we select half of the image is that we
can cover the majority of the targets. If we use smaller ratios,
for example, 1/4, it may lose the target. Otherwise, it may lead
to an increase in computational expense.
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Fig. 5. The structure of random attention module

Fig. 6. The structure of the discriminative network

Fig. 7. The mixed mode structure

E. Loss function

This subsection describes the loss functions used to train the
T-DANet. In the first stage, the original infrared ship images
are transferred to the infrared images in visible style first by
using a style transfer network. For this network, an adversarial
loss and a consistency loss are used. The adversarial loss
makes it difficult for the discriminative network to tell whether
its input is from visible or infrared images. The specific

formula for adversarial loss function is as follows:

LGAN (D) = −
N∑
l=1

∑
h,w

log
(
D

(
xl
s

))
−

N∑
l=1

∑
h,w

log
(
1−D

(
G
(
xl
t

))) (3)

where xl
s represents the visible ship images in source domain,

and xl
t represents the l-infrared ship images in target domain,

N is the number of the train samples. G stands for the
network generated during the recombination of content and
style information, and D stands for the discriminative network.

The consistency loss function ensures that the content
information of infrared ship images before and after transfer
are as consistent as possible. Its specific formula is as follows:

Lconsis(D) =

N∑
l=1

∑
h,w

∥∥G(xl
t)− xl

t

∥∥
1

(4)

where xl
t represents the infrared ship images in target domain,

and N is the number of training samples.
For the segmentation network, only the visible ship images

have truth labels. Visible ship images have, on the one hand,
fully supervised cross-entropy loss with their own labels and,
on the other hand, adversarial loss with infrared ship images.
Besides, the prediction results of infrared ship images in
visible style are theoretically consistent with those of original
infrared ship images. Hence, we use the structural similarity
loss to constrain the predictions of these two target domain
images.

The cross-entropy loss is defined as:

Lseg (Fs) = −
N∑
l=1

∑
h,w

∑
c∈C

Y l(h,w,c)
s log(P l(h,w,c)

s ) (5)

where P l
s represents the predicted image generated by the l-

th image in source domain via the segmentation network, Y l
s

refers to the truth label corresponding to the l-th image, and N
is the number of training samples. h , w and c denote length,
width and class, respectively. Fs stands for the segmentation
network in the source domain.

For the adversarial loss, in order to improve the segmen-
tation accuracy of hard-to-classify pixel points, information
entropy is introduced. The smaller the information entropy
value of an image is, the higher credibility it has; and vice
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verse. Therefore, we give larger weights to the pixels with
higher entropy values of predicted images in the target domain.
The entropy value of a target domain prediction image is
defined as:

Et = −
∑
h,w

∑
c∈C

P
(h,w,c)
t log(P

(h,w,c)
t ) (6)

where P t represents the predicted output image generated by
the image in target domain via the segmentation network. h ,
w and c denote length, width and class, respectively.

At this time, the adversarial loss function is formulated as:

Ladv (D) = −
N∑
l=1

Et

∑
h,w

log(D(P
l
t)

(h,w,1)
) (7)

where P l
t represents the predicted output image generated by

the l-th image in target domain via the segmentation network,
N is the number of training samples, h and w denote length
and width, respectively.

The loss function of the segmentation network is as follows:

Lsn (F,D) = Lseg (Fs) + λadvLadv (D) (8)

where λadv is used to equalize the two loss functions.
The structural similarity loss is described as:

Lssim =

N∑
l=1

∑
h,w

∥∥∥1− (SSIM(P l
t′ ,P

l
t))

∥∥∥
1

(9)

where P l
t′ and P l

t respectively denote the predictive outputs of
infrared images after and before transfer, and N is the number
of training samples. Structural Similarity Index (SSIM) [64]
refers to the structural similarity between two images, which
is specifically expressed as:

SSIM =
(2µxµx + c1) (2θxy + c2)

(µx
2 + µx

2 + c1)
(
θx

2 + θx
2 + c2

) (10)

where µx and µy denote the average pixel values of images
x and y, respectively, θx and θy represent the variances of
pixel values for images x and y, respectively, and c1, c2 are
different constant values used for maintaining stability.

The overall loss function in the first stage is formulated as
follows:

Lstage1 = α1LGAN (D) + α2Lconsis (D)

+α3Lsn (Fs, D) + α4Lssim

(11)

where α1, α2, α3 and α4 denote the weight coefficients
between various measured loss functions, whose values are
0.1, 1, 0.1 and 0.1 by experience, respectively.

In the second stage, the segmentation network of the first
stage is trained in the fully-supervised way using the acquired
mixed domain images and corresponding label images. During
training, the cross-entropy loss function is used, which is
specifically formulated as:

Lstage2 = −
N∑
l=1

∑
h,w

∑
c∈C

Y
l(h,w,c)
mixed log

(
P

l(h,w,c)
mixed

)
(12)

where Y l
mixed represents the label corresponding to the mixed

domain image, P l
mixed refers to the mixed domain image, N

is the number of training samples. h , w and c denote length,
width and class, respectively.

Algorithm 1 Learning algorithm of T-DANet
Input: source dataset IS , target dataset IT , number of iter-

ations for the first stage K1, number of iterations for the
second stage K2;

Output: network weights;
[The first stage of training]
i = 0
while i <= K1 do

for j to range(len(IS)) do
Input the images from the two domains IS and IT into
the style transfer network, and obtain new infrared ship
images with visible style;
Input the original images from the two domains and
the transferred images into the segmentation network,
and obtain their respective prediction results;
Input the outputs of the two domains into the discrim-
inative network to optimize the adversarial loss;
Calculate the structural similarity loss between the
transferred infrared image and the original infrared
image;
Update the weight parameters of the segmentation
network and discriminative network;

end for
end while
[The second stage of training]
i = 0
while i <= K2 do

for j to range(len(IS)) do
Generate mixed images by randomly stitching images
from the two domains;
Input the mixed images into the segmentation network
to obtain the prediction results;
Calculate the cross-entropy loss between the prediction
result and the ground truth;
Update the weight parameters of the pre-trained seg-
mentation network;

end for
end while

F. Learning algorithm

The specific training algorithm of the proposed T-DANet
is shown in Algorithm 1. In the first stage, the style transfer
network is used to narrow the appearance difference between
two domains. Then, the obtained three input images are sent
into the segmentation network for generative adversarial train-
ing. In the second stage, fully-supervised training is performed
using the mixed images and corresponding labels, and the
segmentation network is constantly optimized to improve its
accuracy.

IV. EXPERIMENTAL RESULTS

In this section, we sequentially introduces the datasets,
experimental details, evaluation indices and different exper-
imental results of the proposed model, as well as giving
the corresponding analysis. All the experiments were realized
with the deep learning framework Pytorch [65], the operating
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Fig. 8. Examples of the VI-Ship dataset images

system is Windows 10, and the GPU model is NVIDIA Tesla
K40c.

A. Datasets

To verify the segmentation accuracy of the unsupervised
domain adaptation technique on the Visible-infrared Ship (VI-
Ship) image dataset, a visible–infrared ship image dataset is
created in this study, as shown in Figure 8, where the visible
images are collected from the Internet, and the infrared images
are obtained by actual photographing. The visible images are
taken as the source domain, whereas the infrared images as
the target domain. The source domain of the visible–infrared
ship dataset contains 1,000 visible images and their labels, all
of which are used for training. Meanwhile, the target domain
contains 196 infrared ship images.

Prior to the network training, we carry out horizontal flip-
ping, translation, scaling and cropping operations separately
on the source and target domain images, to enhance the
diversity of images. Ultimately, 5,000 visible ship images and
960 infrared ship images are acquired. The infrared images
are divided into training and test sets, and Labelme [66] is
utilized to manually label the test images. In the end, the
training set consists of 576 images without labeled images,
while the test set consists of 384 images, with corresponding
label images. All images are 256×256 in size. Figure 8 displays
some examples of the images. As is clear, the first and second
lines in the figure represent the visible ship images in source
domain and corresponding labels, respectively. The third line
are the infrared ship training set images in target domain
without labels, while the fourth and fifth lines respectively
denotes the infrared ship test set images in target domain and
corresponding labels.

B. Implementation details

(a) Basic parameters configuration. In the first stage, the
style transfer network and segmentation network are trained
from scratch. For the style transfer network, we trained it first
to get transferred images. Specifically, we use the visible ship
images as the source domain and the infrared ship images as

the target domain to construct the training set, and train the
parameters of the transfer network. The training objectives are
to minimize an adversarial loss and a consistency loss, so as
to achieve accurate style transfer from the infrared ship target
domain to the visible style domain. Its total training rounds
is 600, and its training process is optimized via the Adam
optimizer [67]. The momentum parameters are set to 0.9 and
0.999, respectively. The initial learning rate of the network is
set to 10−4, and the learning rate drops by half every 100
rounds. For the segmentation network, we use DeepLab-v2
[63] as the framework with ResNet-101 [61] as the backbone.
The stochastic gradient descent is adopted as the optimization
method [68]. The initial learning rate of the network is set
to 1.5 × 10−4. Due to the instability of adversarial learning,
its total training epochs is set to 1.5 × 104, and its weight is
recorded every 1,000 rounds.

In the second stage, we further fine-tune the segmentation
network with the mixed domain images based on the first
stage. We set the learning rate to be 1.5 × 10−4, and use
the stochastic gradient descent as the optimization method.
With this hyperparameter configuration, it is enough to train
the segmentation network with 500 epochs.

(b) Selecting α1, α2, α3 and α4 in loss function of Stage
1. When training the first stage, there are four hyperparameters
needing to be determined beforehand in Eq. (11). We select
them with three steps. Firstly, we set all of them to be 1
to get the initial segmentation result. Secondly, we set them
be 0.5 and 0.1 in sequence, and identify their impact on
the segmentation performance. According to the experimental
results listed in Table I, we find all of them improved the
experimental results. Moreover, α1 and α2 have a greater
impact on the results than α3 and α4. Therefore, we set
both α3 and α4 be 0.1. Thirdly, we fix α3 and α4 be 0.1,
and use grid search to select α1 and α2 . For these two
hyperparameters, we use grid search from 0.01:0.01:0.1 to get
proper values. Finally, we select these four hyperparameters
be 0.1,1,0.1,0.1, respectively.

TABLE I
THE SEGMENTATION RESULTS OF T-DANET WITH DIFFERENT

HYPERPARAMETERS OF α1 , α2 , α3 AND α4

α1 α2 α3 α4 mIoU(%) ∆ mIoU(%)

1 1 1 1 52.63 -
0.5 1 1 1 53.44 +0.81
1 0.5 1 1 51.69 -0.94
1 1 0.5 1 52.80 +0.17
1 1 1 0.5 52.84 +0.21

0.1 1 1 1 54.12 +1.49
1 0.1 1 1 50.94 -1.69
1 1 0.1 1 52.96 +0.33
1 1 1 0.1 53.07 +0.44

(c) Selecting of λadv . In Eq. (8), the parameter λadv stands
for the weight of adversarial loss. It was selected from the
candidate set {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09, 0.1}. We select the proper value according to their
segmentation accuracies in Table II. According to Table II,
we finally choose 0.01 as the value of λadv .
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TABLE II
THE SEGMENTATION RESULTS OF DIFFERENT λadv .

λadv 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

mIoU(%) 55.40 55.21 55.17 55.19 54.93 54.89 54.71 54.63 54.22 54.07

C. Evaluation indices

The evaluation indices are the mean intersection over union
(mIoU) [69], the number of parameters of model (Params) and
the floating point operations of model (FLOPs). Among them,
mIoU represents the ratio of intersection to union between the
predicted and actual regions, which is specifically formulated
as follows:

mIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(13)

where pii denotes the number of correct classifications, pij
denotes the number of predictions as category j while actual
category is i, pji denotes the number of predictions as category
i while actual category is j, and k + 1 represents the total
number of categories in the dataset.

Params refers to the parameter quantity of the entire net-
work, whose unit is M (Million). FLOPs indicates the number
of floating point operations performed during model inference,
whose unit is GFLOPs (giga/billion floating point operations).

D. Comparison with the state-of-the-art methods

In this subsection, the proposed method is comparatively
analyzed with the existing domain adaptation segmentation
methods on the VI-Ship dataset. Table III details the relevant
experimental results, where the bold numbers represent the
best results. Figure 9 displays the visualization results. Specif-
ically, Figure 10 shows the advantages of our method on ship
images with small targets and fuzzy boundaries compared to
other methods.

TABLE III
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON THE VI-SHIP

DATASET

Methods mIoU(%) Params(M) FLOPs(GFLOPs)

Input-based

CycADA [34] 38.44 20.36 24.90
CGAN [35] 51.03 25.84 29.82
TUFL [37] 51.85 45.27 47.79

DANNet [36] 52.02 44.95 47.74

Output-based

MaxSquare [45] 34.35 40.85 47.75
FCN WId [38] 48.93 48.18 24.92

AdaptsegNet [42] 49.51 40.85 47.70
ADVENT [44] 51.34 40.85 47.71

BiMaL [46] 51.62 41.38 47.71
CLAN [43] 52.11 43.06 47.65

Ours T-DANet(Stage1) 55.40 - -
T-DANet(Stage2) 56.69 53.47 47.85

It can be concluded from Table III and Figure 9 that:
1) The proposed T-DANet (Stage1) and T-DANet (Stage2)

attain mIoU of 55.40% and 56.69%, respectively, with
the latter showing a 1.29% increase compared to the for-
mer. Suggestively, the two-stage mixed domain training

is highly effective and practical. There are two reasons:
firstly, in the second stage, the input images blend the
spatial layout information of both the visible ship images
and transferred infrared ship images, thus increasing
the inter-domain information correlation between the
two datasets; Secondly, by generating the pseudo labels,
the infrared ship images for full-supervised training can
improve the segmentation accuracy.

2) Compared to the results of input space-based meth-
ods, the results of our T-DANet (Stage1) improved
by 3.38–16.96%. This indicates that the style transfer
network and random attention module are feasible for
the T-DANet.

3) Compared to the results of output space-based meth-
ods, the results of our T-DANet(Stage1) increased by
3.29–21.05%. This demonstrates that narrowing the do-
main difference in both the input and output spaces
is helpful for improving the segmentation results of
infrared ship images.

4) As exhibited in Figure 10, our proposed T-DANet
demonstrates more robust segmentation on small and
obscured ship targets compared to other methods. For
example, CycADA completely fails to identify the tiny
ship in the second image. Our approach succeeds owing
to the tailored random attention mechanism focusing on
small areas. CLAN produces blurred boundaries for the
ship in the third image. In contrast, our model yields
clearer contours, benefiting from the feature enhance-
ment of attention modules. The comparison verifies the
superiority of T-DANet on handling small and blurry
infrared targets, which validates the effectiveness of our
model design.

5) Regarding the model parameters, the proposed T-DANet
(Stage2) has the largest number of parameters, since it
uses a style transfer network to convert infrared ship
images into those in visible style, leading to the increase
of network parameters. Despite the sacrifice of some
temporal and spatial efficiencies, the proposed method
attains the best segmentation accuracy based on the
mIoU.

6) Regarding the computational complexity, the proposed
T-DANet (Stage2) achieves comparable FLOPs to other
state-of-the-art methods built on similar backbone net-
works, which is 47.85 GFLOPs. This is because the
core segmentation network dominates the computation,
while the additional modules like attention bring minor
increases. Though there is a sacrifice of some efficiency
due to the style transfer network, our model retains
equivalence in computation to mainstream approaches.
Meanwhile, our method attains superior accuracy, vali-
date by the highest mIoU score.
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Fig. 9. The experimental results of different methods on the VI-ship dataset

Fig. 10. The experimental results of different methods on the VI-ship dataset small targets

7) In summary, the proposed T-DANet (Stage1) and T-
DANet (Stage2) attain higher mIoU, and the images
predicted with them have more distinct targets and richer
detailed information, suggesting the effectiveness of the
proposed method.

E. Effects of style transfer network on segmentation results

This subsection compares the experimental preprocessing
results of two domain images by the proposed T-DANet
(Stage1) versus the T-DANet with no style transfer , pix2pix
[49], Neural Style Transfer (NST) [50], Fast Neural Style
Transfer (Fast NST) [51], CycleGAN [48], DualGAN [52]
and DiscoGAN [53], respectively. The corresponding models
are denoted as T-DANet-NoST, T-DANet-pix2pix, T-DANet-
NST, T-DANet-Fast NST, T-DANet-CycleGAN, T-DANet-
DualGAN, T-DANet-DiscoGAN, respectively. Table IV details
the experimental results, whereas Figure 11 shows the visual-
ized experimental results.

It can be seen from Table IV and Figure 11 that:
1) Compared with the mIoU (50.72%) of T-DANet-NoST

model, the proposed T-DANet (Stage1) attains the mIoU
of 55.40%, with an increase of 4.68%. This indicates that
it is helpful for improving the segmentation accuracy by

TABLE IV
THE INFLUENCE OF THE STYLE TRANSFER ON SEGMENTATION RESULTS

Methods mIoU(%)

T-DANet-NoST 50.72
T-DANet-pix2pix 53.17

T-DANet-NST 53.42
T-DANet-Fast NST 53.39

T-DANet-CycleGAN 54.06
T-DANet-DualGAN 54.31
T-DANet-DiscoGAN 54.35

T-DANet(Stage1) 55.40

narrowing the appearance difference between images in
two domains.

2) Compared with the results of our T-DANet with different
style transfer networks, the segmentation performance
of our T-DANet (Stage1) improved by 1.05–2.23%. It
demonstrates that our style transfer network is more
effective in narrowing the domain gap through photo-
realistic image synthesis than others. The reason maybe
that our network decomposes the images into domain-
independent content information and domain-dependent
stylistic information, which enables effective separation
of semantic and visual features in images, thus improv-
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Fig. 11. The influence of the style transfer on segmentation results

TABLE V
THE INFLUENCE OF THE RANDOM ATTENTION MODULE ON

SEGMENTATION RESULTS

Methods mIoU(%)

T-DANet-NoRAM 54.23
T-DANet(Stage1) 55.40

ing the quality and flexibility of the transfer.
3) As is clear from the visualized results, the ship targets

preprocessed with T-DANet (Stage1) are more complete
than others. While for other segmentation results, they
have either lost some details and boundaries of the ships,
or introduced some noises.

4) In summary, the proposed T-DANet (Stage1) uses a style
transfer network to preprocess images in two domains, it
can generate well-transferred images with visible style.
By this operation, it can not only narrow the appearance
difference between the two domains, but also are helpful
for achieving better segmentation results.

F. Effects of random attention module on segmentation results

In this subsection, experimental results of the proposed T-
DANet (Stage1) are compared with those of T-DANet with
no random attention module (T-DANet-NoRAM) in the seg-
mentation network. Table V details the experimental results,
whereas Figure 12 gives the visualized experimental results.

It can be got from Table V and Figure 12 that:
1) When no random attention is added, the T-DANet-

NoRAM attains a mean crossover ratio of 54.23%;
when random attention is added, the proposed T-DANet
(Stage1) attains a mean crossover ratio of 55.40%,
showing an increase of 1.17%. Suggestively, random
attention is helpful for improving the image feature

Fig. 12. The influence of RAM on segmentation results

capturability of segmentation network, thereby elevating
the segmentation accuracy.

2) As is clear from the visualized results, the ship targets
segmented by T-DANet (Stage1) have clearer contours,
indicating that random attention is conducive to captur-
ing the low-level information of ship targets, leading to
clearer segmentation boundaries.

3) In summary, adding RAM module to the segmentation
network can enhance the feature expressiveness of image
information and help the network extract more detail
feature information during the training process, thereby
improving the segmentation accuracy of the network.

G. Comparisons with other methods on public dataset RGB T

To verify the generalizability of the proposed method, this
subsection compares the target segmentation accuracy of the
proposed T-DANet (Stage2) with other methods on the public
dataset RGB T [70]. The dataset contains a total of 1,569
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Fig. 13. The segmentation results of different methods on the RGB T dataset

Fig. 14. Examples of the RGB T dataset images

TABLE VI
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON THE RGB T

DATASET

Methods mIoU(%)

Input-based

CycADA [34] 32.48
CGAN [35] 39.91
TUFL [37] 41.72

DANNet [36] 41.36

Output-based

MaxSquare [45] 35.71
FCN WId [38] 37.69

AdaptsegNet [42] 38.32
ADVENT [44] 40.75

BiMaL [46] 40.98
CLAN [43] 40.14

Ours T-DANet(Stage2) 43.70

pairs of RGB and infrared scene images, all of which are 480
× 640 in size, with the RGB images as the source domain and
the infrared images as the target domain during the training
period. The images of the RGB T dataset section are shown
in Figure 14. The first and second rows of the figure show the
source domain visible images and the corresponding labels,
respectively, the third row are the target domain infrared
training set images without labels, and the fourth and fifth
rows display the target domain infrared test set images and
the corresponding labels, respectively.

Table VI details the comparison results, whereas Figure 13
reveals the visualized results. It can be concluded from them
that:

1) The proposed T-DANet (Stage2) attains the mIoU
of 43.70% on the public dataset RGB T, which is

0.85–11.22% higher than that of other methods. Clearly,
our method achieves greater segmentation results than
other methods on the public dataset as well.

2) As is also clear from the visualized results, the pro-
posed T-DANet (Stage2) exhibits relatively intact target
segmentation regions on the infrared images. Its seg-
mentation results are more complete than those of other
methods, without excessive segmentations, suggesting
its good performance.

3) In summary, the proposed method all along exhibits high
segmentation accuracy on the public dataset RGB T,
indicating its preferable segmentation accuracy and gen-
eralizability.

V. CONCLUSION

In this paper, we propose a two-stage domain adaptation
method for infrared ship target segmentation. It trains the
segmentation network in two stages to further improve the
segmentation accuracy of infrared ship images. Specifically,
an image style transfer network is designed first to reduce the
appearance difference between visible and infrared images.
Then, a random attention module is constructed to enhance
the feature extraction capability of the segmentation network.
Finally, a random inter-domain image splicing method is
developed to acquire the image correlation information be-
tween two domains. The effectiveness and generalizability of
the proposed method are validated on the self-made VI-Ship
dataset, as well as on the public dataset RGB T.

Nonetheless, the proposed method still has the limitation of
an incomplete segmentation on the infrared ship images with
small targets. In the future, we will focus on the segmentation
technique for small target ship images, and design appropriate
modules to make the network pay attention to small target
ships, with a view to segment more accurately.
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