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Abstract

Introduction: Multiple sclerosis (MS) is an inflammatory disorder of the central ner-

vous system. Although conventional magnetic resonance imaging (MRI) is widely used

for MS diagnosis and clinical follow-up, quantitative MRI has the potential to provide

valuable intrinsic values of tissue properties that can enhance accuracy. In this study,

we investigate the efficacy of diffusion MRI in distinguishing MS lesions within the

cervical spinal cord, using a combination of metrics extracted from diffusion tensor

imaging and Ball-and-Stickmodels.

Methods:Weanalyzed spinal cord data acquired frommultiple hospitals and extracted

average diffusion MRI metrics per vertebral level using a collection of image process-

ing methods and an atlas-based approach. We then performed a statistical analysis to

evaluate the feasibility of these metrics for detecting lesions, exploring the usefulness

of combining different metrics to improve accuracy.

Results: Our study demonstrates the sensitivity of each metric to underlying

microstructure changes in MS patients. We show that selecting a specific subset of

metrics, which provide complementary information, significantly improves the predic-

tion score of lesion presence in the cervical spinal cord. Furthermore, the Ball-and-

Stick model has the potential to provide novel information about the microstructure

of damaged tissue.

Conclusion: Our results suggest that diffusion measures, particularly combined mea-

sures, are sensitive in discriminating abnormal from healthy cervical vertebral levels in

patients. This information could aid in improving MS diagnosis and clinical follow-up.

Our study highlights the potential of the Ball-and-Stick model in providing additional

insights into themicrostructure of the damaged tissue.
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1 INTRODUCTION

Multiple sclerosis (MS) is a chronic and debilitating disease of the cen-

tral nervous system (CNS) that affects millions of people worldwide.

MS is characterized by inflammation, demyelination, and neurodegen-

eration of the CNS, leading to a wide range of symptoms such as visual

disturbances, sensory abnormalities, motor dysfunction, and cognitive

impairment (Inglese & Bester, 2010; Wheeler-Kingshott et al., 2014).

The spinal cord, particularly the cervical region, is frequently affected

by MS and plays a crucial role in many of the symptoms experienced

by patients (Bot & Barkhof, 2009; Stroman et al., 2014). In particu-

lar, spinal cord lesions are common in the cervical region and strongly

associated with disability and functional deficits in MS patients (By

et al., 2017). However, conventionalmagnetic resonance imaging (MRI)

techniques have limited sensitivity and specificity for detecting and

quantifying spinal cord lesions and their underlying pathology. More

accurate and sensitive detection of spinal cord lesions can aid in early

diagnosis, monitoring disease progression, and evaluating treatment

efficacy. Additionally, improving our ability to detect spinal cord lesions

in MS is important not only for the clinical management of patients

but also for advancing our understanding of the disease. Diffusion-

weighted MRI has emerged as a promising tool for assessing tissue

microstructure and pathology in MS. This modality is sensitive to

the microscopic movement of water molecules in biological tissues,

which can be used to derive various metrics related to tissue diffusiv-

ity and microstructure. Diffusion tensor imaging (DTI) is a commonly

used diffusion MRI technique that can quantify the diffusion of water

molecules along different directions and estimate the orientation and

integrity of white matter tracts in the CNS.

The use of diffusion MRI for detecting and identifying spinal cord

lesions in MS still needs further investigation to extract new insights

and underlying information, despite several technical andmethodolog-

ical challenges. For example, a few limited studies have investigated

advanced diffusionmodels such asDiffusionKurtosis Imaging and neu-

rite orientation dispersion and density imaging (NODDI) (By et al.,

2017; Grussu et al., 2015). The application of these multicompartment

models in the spinal cord requires a high b-value and a high number

of diffusion encoding directions, resulting in clinically unfeasible scan

times. In addition, although their important findings, the data used are

very limited in terms of the number of subjects and the volume of

regions in which the diffusionmetrics were quantified.

In this study, we aimed to investigate the effectiveness of regional

diffusion MRI measures in distinguishing MS abnormalities and

address some of these challenges by using an adapted diffusion MRI

model, the Ball-and-Stick model, to assess the sensitivity and speci-

ficity of diffusion metrics in the cervical spinal cord of MS patients.

The Ball-and-Stick model was chosen because it offers the advantage

of identifying and separating crossing fibers, providing more detailed

microstructural information compared to DTI. Our main objective was

to explore the usefulness of combining different metrics derived from

these twomodels to improve their sensitivity associatedwith the pres-

ence of MS lesions. We employed an atlas-based and a collection of

image-processing approaches to quantify diffusion metrics at differ-

ent vertebral levels within the cervical spinal cord and performed a

statistical analysis to detect the presence ofMS lesions.

2 MATERIALS AND METHODS

2.1 Multiple sclerosis patients and healthy
volunteers

This multicenter study includes 82 participants: 29 healthy volun-

teers (mean age = 32.83 ± 7.13, 18F/11M) and 53 MS patients

(mean age = 32.58 ± 6.25, 34F/19M). All subjects were recruited in

accordance with the approval of the local research ethics commit-

tee (EMISEP PHRC project1) and provided informed written consent.

The MS patients included in this study were early relapsing remitting

MS patients, with a median Expanded Disability Status Scale score

of 1.0 (range [0, 2.5]), and were scanned within the first year follow-

ing diagnosis. The study involved participants from four hospitals in

France: Marseille, Rennes, Strasbourg, and Montpellier. Table 1 pro-

vides details regarding the MRI scanners, participating centers, and

characteristics of the study subjects.

2.2 MRI acquisition

Scanswere acquired using Siemens 3TMRI scanners (Verio and Skyra).

The following is a brief presentation of each MR modality that we

processed.

For diffusion-weighted imaging (DWI), 30 images were acquired at

b = 900 s/mm2 with noncollinear gradient directions, along with 6

non-DWI (b = 0) measurements and 1 non-DWI (b = 0) with an oppo-

site phase encoding direction (PED). This was repeated three times

successively in order to increase the signal-to-noise ratio. Scans were

performed in sagittal orientation with head–feet PED. The diffusion

MRI pulse sequence used single-shot echo-planar imagingwith parallel

imaging (GRAPPA, acceleration factor 2). Sixteen slices were acquired

without an inter-slice gap, with a resolution of 2× 2× 2mm3, an image

matrix of 80 × 80, and a TR/TE of 3600/90 ms. The total acquisition

time for the DWI sequence was approximately 7 min. Additionally, the

protocol includes three anatomical references: a T1-weighted scan in

sagittal orientation with a resolution of 1 × 1 × 1 mm3, a TR/TE of

1800/2.79 ms, and field of view (FoV) of 250 mm; T2-weighted scan

in sagittal orientation with a resolution of 0.7 × 0.7 × 2.75 mm3, a

TR/TE of 3000/68 ms, and an FoV of 260 mm; and an axial T2 scan

with a resolution of 0.6 × 0.5 × 3 mm3, a TR/TE of 4790/94 ms, and

an FoV= 180mm.

2.3 Analysis and processing pipeline

In this section, we present the processing pipeline, which takes raw

images and extracts diffusion measures for each subject within the

cervical spinal cord vertebral levels. To ensure that the results are
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TABLE 1 Demographic and clinical information about the participated clinical sites and for all participants, healthy volunteers andmultiple
sclerosis (MS) patients in our cohort.

Center Center 1 Center 2 Center 3 Center 4 TOTAL

3TMRI Verio Verio Verio Skyra –

Volunteers 4 18 3 4 29

Gender F/3M 10F/8M 3F 4F 18F/11M

Mean age (year) 34.0± 4.74 32.61± 7.97 34.67± 5.25 31.25± 5.67 32.83± 7.13

Meanweight (kg) 72.5± 6.7 65.4± 11.4 65.0± 7.5 56.0± 4.1 65.0± 10.7

Mean height (m) 1.75± 0.03 1.72± 0.09 1.66± 0.06 1.64± 0.04 1.71± 0.08

MS patients 6 35 5 7 53

Gender 4F/2M 22F/13M 3F/2M 5F/2M 34F/19M

Mean age (year) 34.17± 7.90 31.74± 6.08 33.80± 5.91 34.57± 4.78 32.58± 6.25

Meanweight (kg) 69.7± 10.5 67.9± 13.9 65.6± 6.7 69.1± 13.6 68.1± 13.0

Mean size (m) 1.68± 0.08 1.70± 0.09 1.71± 0.07 1.68± 0.06 1.70± 0.09

82 (52F/30M)

immune to image artifacts and to identify problems during the process-

ing pipeline, we conducted thorough quality control on the raw data

and after each processing step. This stage is crucial for the quality of

the analysis and the accuracy of the results.

2.3.1 Image preprocessing

Motion between DWIs was corrected using the method presented in

Xu et al. (2013) and implemented in the Spinal Cord Toolbox (SCT)

(De Leener et al., 2017). Subsequently, dMRI data were corrected for

susceptibility distortion using the Hyperelastic Susceptibility Artifact

Correction (HySCO)methodas implemented in the statistical paramet-

ric mapping toolbox and presented in Ruthotto et al. (2012). HySCO

demonstrated efficient performance for diffusion MRI of the spinal

cord, as shown in Snoussi et al. (2019). Using SCT, whole spinal cord

segmentation was performed on T1-weighted images, as well as on

the mean of DWIs (b = 900 s/mm2) corrected for distortion. In some

cases, this segmentation was ameliorated by adjusting parameters.

We then manually identified two vertebral levels, C3 and T1, to fulfill

the requirements for registering of T1-weighted data to the PAM50

template (De Leener et al., 2018).

2.3.2 Computation of diffusion-based metrics

The diffusion-weighted signal in white matter was modeled in the

spinal cord using DTI (Basser et al., 1994) and the Ball-and-Stick model

(Behrens et al., 2007). The DTI model assumes that the probability of

water molecule displacement follows a zero-mean 3D Gaussian distri-

bution. The diffusion tensor, directly related to the covariance matrix,

is a 3 × 3 symmetric, positive-definite matrix. From its eigenvalue

decomposition, we can extract rotation-invariant indices. We focused

on radial diffusivity (RD), axial diffusivity (AD), mean diffusivity (MD),

and fractional anisotropy (FA). Note that MD can be expressed as a

combination of AD and RD. These DTI metrics were computed using

the DIPY library (Garyfallidis et al., 2014).

In contrast to the DTI model, the Ball-and-Stick model is a two-

compartment model, where each compartment provides a normalized

MR signal, S1 and S2. These signal models correspond to intra- and

extra-axonal diffusion, respectively. For the intra-axonal compartment,

S1 refers to signals from thewater inside the axonswhere the diffusion

is restricted. For the extra-axonal compartment, S2 refers to signals

originating fromwater outside the axons.

For the Ball-and-Stick model, the first compartment, S1, is a stick

(anisotropic component) with fiber direction n and diffusivity d as

parameters (Behrens et al., 2003). The stick compartment describes dif-

fusion in an idealized cylinder with a zero radius. The signal for this

component is as follows:

S1 (d, n; b, G) = exp
(
−bd(n ⋅ G)

2
)

(1)

where b is the diffusion-weighting parameter, and G is the gradient

direction. The second compartment S2, referred to as a ball, is an

isotropic component with only the diffusivity d0 as a parameter in its

signal description:

S2 (b) = exp (−bd0) (2)

In our implementation, we fixed 𝜆2 and 𝜆3 of the stick to 0.2 ×

10−3 mm2∕sOBJ and d0 to 3.0 × 10−3 mm2/s, which corresponds to

the free diffusion coefficient of water. Fixing those values allows us to

use this model on data with one non-zero b-value. The signal model is

therefore:

S (d, n, f; b, G) = (1 − f) S1 (d, n; b, G) + fS2 (b) (3)
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The parameters of interest that we extracted from the Ball-and-

Stick model are f , the free water weight (FWW), and d, the stick axial

diffusivity (Stick-AD) (Snoussi et al., 2023).

2.3.3 Quantification of metrics per vertebral level

To calculate themean of the presentedmetrics for each vertebral level,

we followed a processing pipeline to align the labels defined in the

PAM50 template (De Leener et al., 2018) with the native DWI space

of each subject.

First, the T1-weighted anatomical image was registered to the

PAM50-T1 spinal cord template (De Leener et al., 2018), generat-

ing a forward and inverse warping field between them. Next, the

PAM50-T1 template (De Leener et al., 2018) was registered to

the mean DWI using the inverse warping field from the previous

registration as an initial warping field. This registration was per-

formed using T1-weighted images instead of T2-weighted images

because their isotropic resolution made the registration more

effective.

Thus, alignment with the template provides a robust definition of

the inter-vertebral levels for the spine. This allows for a computation

of average metrics in the spinal cord using the atlas-based approach

introduced in Lévy et al. (2015). As a result, we can quantify diffusion-

based metrics averaged for each vertebral level in the cervical part.

Specifically, for scalar metrics, we quantify them only in white matter

according to thePAM50 template (Snoussi et al., 2022). The processing

pipeline is summarized in Figure 1.

2.3.4 Ground truth: segmentation of MS lesion

For the 53 MS patients, MS lesions were manually segmented by 9

raters, including radiologists and experienced readers, as described

in Eden et al. (2019). Briefly, MS lesions were segmented using both

axial T2 and sagittal T2-weighted images with ITK-SNAP Toolbox 3.6.0

(Yushkevich et al., 2006). From these lesion masks, we computed for

each vertebral level: (i) the number of MS lesions within the verte-

bral level and (ii) the total lesion volume normalized by the volume of

the corresponding vertebral level. In Figure 2, we represent the quan-

tity and distribution of lesion volumes in the [C2-C4] and [C1–C7]

regions.

2.4 Statistical analysis

From the processing pipeline described above, we obtained six

diffusion-basedmetrics: FWW, Stick-AD, AD, FA, MD, and RD. All met-

rics were quantified and averaged for each vertebral level of every

subject in our cohort. In this section, we present our proposed sta-

tistical analysis study comparing MS patients and healthy volunteers,

examining eachmetric separately.

2.4.1 Pairwise comparison

Our cohort consists of 29 healthy volunteers and 53MS patients, with

139 segmented lesions of various volumes distributed across cervical

vertebral levels. This sample size is relatively small compared to the

number of extracted metrics and the volume of the vertebral level in

which we computed the average of the proposed metrics. Additionally,

it is common for such statistical analysis to be performed for each ver-

tebral level separately due to the anatomical varietywithin the cervical

spinal cord.

Therefore, we investigated the potential for pooling data from

multiple vertebral levels for the purpose of increasing our analysis’s

statistical power. To do this, we performed a two-way analysis of

variance between vertebral levels for each metric to illustrate the

interaction termbetween them.Wecompared all pairs of vertebral lev-

els of one subject with each level of all the other subjects. This test

reveals the degree to which one subject is differentially effective at

each vertebral level of a second subject. This test was performed using

estimated marginal means, sometimes called least-squares means,

which are predictions from a linear model over a reference grid or

marginal averages thereof.

Figure 3 graphically illustrates this comparison for the six-diffusion

metrics, four from DTI and two from the Ball-and-Stick. These met-

rics were computed using data solely from the 29 healthy volunteers.

Figure 3 summarizes intervals of vertebral levels where no signifi-

cant difference exists. We observed that the [C2–C4] region shows

no significant difference for all metrics. This finding suggests the

possibility of combining and pooling metrics quantified in C2–C4

vertebral levels, thereby increasing the available data for our sta-

tistical analysis. Figure 2 displays the quantity and distribution of

lesion volumewithin the [C2–C4] region in comparison to the [C1–C7]

region.

2.4.2 Unpaired t-test between healthy volunteers
and MS patients

For the data of the [C2–C4] region, we performed Welch’s t-test

between healthy volunteers and MS patients. This t-test is an adap-

tation of Student’s t-test and provides more reliable results when

the two samples have unequal variances and/or unequal sample sizes.

It is commonly referred to as unpaired or independent samples t-

tests. In this statistic test, for each metric mi, we have the following

equations:

Vi = [h1 [mi (c2) , mi (c3) , mi (c4)] ,… , h29 [mi (c2) , mi (c3) , mi (c4)]] (4)

NAWMi =
[
p1

[
mi

(
cj
)]
,… , p53

[
mi

(
cj
)]]

; cj∈(2,3,4) (5)

MSi (thr) =
[
p1

[
mi

(
cj
)]
,… , p53

[
mi

(
cj
)]]

; cj∈(2,3,4) (6)
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F IGURE 1 Illustration of the analysis pipeline, which includes the following steps: (1) segmentation of the spinal cord on T1W, (2) manual
identification of two vertebral levels, (3) registration of T1W image to the PAM50 template, (4) motion and distortion correction of dMRI data, (5)
computation of diffusion tensor imaging (DTI) and Ball-and-Stick metrics, (6) segmentation of the spinal cord using themean of the
diffusion-weighted imaging (DWI) data, (7) registration of the PAM50-T1W registered to DWImean data using the inverse warping field from the
previous registration as an initial warping field, and (8) quantification of metrics within each vertebral level of the cervical part. The unit of free
water weight (FWW), stick axial diffusivity (Stick-AD), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) is mm2/s. T1W, T1
Weighted; PAM50, template and atlas of the white and graymatter spinal cord; FA, fractional anisotropy.

where h refers to healthy volunteer, p refers to MS patient, mi is the

chosen metric with its index i𝜖{1,… ,6}, c2, c3 and c4 are the vertebral

level, thr is the threshold of the percentage of the lesion’s volume,

Vi : 87(29 × 3) vertebral levels from 29 healthy controls, NAWMi : 86

vertebral levels without detected lesion, that is, as normal-appearing

white matter (NAWM ),MSi(threshold%): vertebral levels possess lesion

with volume superior to thr% of the corresponding vertebral level vol-

ume. To maintain reasonable statistical power in this t-test, we chose

only two thresholds: thr = 5% and thr = 10% . Consequently, 36 and

24 vertebral levels in our cohort possess lesion volume greater than

thr = 5% and thr = 10% , respectively.

2.4.3 Multivariate classification of MS lesions

In this section, we propose to utilize and evaluate diffusionMRI data to

detect the presence of a lesion automatically. Throughout this part, we

will assess classification results using the area under the curve (AUC)

of the receiver operating characteristic (ROC) curve.

Building linear discriminant analysis (LDA) classifier: Based on a selec-

tion of metrics extracted from diffusion data, we construct a classifier

that combines this set of features using the LDAmethod (Ripley, 2002).

LDA is a technique employed to identify a linear combination of fea-

tures that separates or characterizes two or more classes of objects.

The resulting combination can be used as a linear classifier.

The whole experience setup is summarized in Algorithm 1. So, the

data vector Xcomb is constructed as the following equation:

Xcomb (thr) =
[
[Xi (thr)] ,… ,

[
Xj (thr)

]]
(7)

where i and j are the index of the chosen metrics, and thr is the

threshold of the lesion volume.

Note that depending on the threshold of the lesion’s volume, the

number of vertebral levels in the patient group may vary. In fact, Xcomb
contains vertebral levels of healthy volunteers (29 × 3) and vertebral

levels ofMSpatientswith lesions. Figure2 shows the count of vertebral

levels having lesions for different cumulative percentage thresholds

for lesion volume in [C2–C4] region. We report the mean and stan-

dard deviation of ROC AUC for 1000 splits of the dataset into training

and testing parts, representing 67% and 33% of the original dataset,

respectively. This figure provides an idea about the sample size of

training and testing datasets used in the subsequent analysis.

Selecting a subset of measures: As mentioned earlier, due to the rela-

tively sample size, we need to reduce our linear classifier’s degrees of

freedom by choosing a subset of metrics. Our goal is to select a subset

of diffusion-basedmetrics that provide complementary information. To

accomplish this, we first calculated the normalized covariance matrix

for all metrics in the [C2–C4] region on healthy volunteers V and

MS(10%) as shown in Figure 4. Dark blue squares indicate a strong

correlation between two metrics, whereas yellow squares signify no
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6 of 12 SNOUSSI ET AL.

F IGURE 2 Left: Distribution of multiple sclerosis (MS) within ourMS cohorts. Right: Distribution of lesion’s volume in [C2–C4] region. The
y-axis shows the number of segmented lesions in [C2–C4] regions, whereas the x-axis represents the threshold percentage for lesion volume.
Lesion’s volume is the part of the vertebral volume occupied by a lesion. C1, . . . C7 refer to the cervical vertebral levels.

F IGURE 3 Estimatedmarginal means (x-axis) for eachmetric in cervical vertebral levels (y-axis) for healthy volunteers data. The blue bars are
confidence intervals for the estimatedmarginal means, and the red arrows are for the comparisons among them. If an arrow from one level
overlaps an arrow from another level, the difference is not significant (p-value>.05). Else, the difference is significant (p-value<.05). The unit of
free water weight (FWW), stick axial diffusivity (Stick-AD), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) is mm2/s. FA,
fractional anisotropy.
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ALGORITHM 1 ROCAUC for a combination of metrics

I. Fix threshold ofMS lesion from {0.02,0.04,… ,0.20}

II. Construct the data vector Xcomb and its label vector Ycomb (0 to healthy volunteers and 1 toMS patients)

III. Standardize Xcomb to get Xscaled by centering to themean and component wise scale to unit variance

IV. Split Xscaled 1000 consecutive times in different Xtrain(67%) and Xtest(33%) with their corresponding Ytrain and Ytest

IV.1. Fit LDA using Xtrain and Ytrain

IV.2. Using the fitted LDAmodel, Predict confidence score on Xtest to obtain YLDA

IV.3. Compute ROCAUC score between Ytest and YLDA

V. Calculate themean and variance of ROCAUC scores which is computed in 1000 consecutive times

F IGURE 4 Normalized covariancematrix of metrics in [C2–C4] levels for healthy volunteers V (left), multiple sclerosis (MS) patientsMS (10%)
(right). The dark blue square shows a strong correlation between the twometrics, and the white square indicates no relationship between them.
The unit of free water weight (FWW), stick axial diffusivity (Stick-AD), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) is
mm2/s. FA: fractional anisotropy.

TABLE 2 Proposed combinations of 2, 3, and 4metrics to be
studied.

Subsets of 2metrics Subsets of 3 and 4metrics

FWWand RD FA,MD, and RD

FWWand FA FWW,MD, and Stick-AD

FWWand Stick-AD FWW,MD, Stick-AD, and RD

FA andMD FWW,MD, FA, and RD

Abbreviations: AD, axial diffusivity; FA, fractional anisotropy; FWW, free

water weight; MD, mean diffusivity; RD, radial diffusivity; Stick-AD, stick

axial diffusivity.

relationship between them. Based on these correlations, we propose

combinations of metrics to be studied in Table 2. A critical remark

here is that the normalized covariance matrix presented in Figure 4

reveals a difference in correlation between some diffusion-based met-

rics derived from healthy and affected vertebral levels. Particularly,

the correlation between FWW and RD decreases when metrics are

quantified in MS vertebral levels. We will focus on metrics with high

potential because they exhibit good classification performance and

present significant differences between MS patients and controls (see

Section 2.4.2).

3 RESULTS

3.1 Unpaired t-test between healthy volunteers
and MS patients

Table 3 presents the mean, standard deviation, and p-value of each

diffusion metric i for healthy volunteers’ data Vi, NAWMi, MSi(5%),

MSi(10%) as introduced in Section 2.4.2.

FWW significantly increases in MS patients, regardless of the

presence and volume of lesions. For the second component of the

Ball-and-Stick model, Stick-AD, there is a significant decrease in MS

patients. FA demonstrates a significant reduction in MS patients with

lesion volume exceeding 5% and 10% of the corresponding vertebral

level volume. MD and RD increase significantly in MS patients with

lesion volumegreater than5%and10%.However, nodetectable differ-

ence exists between values for healthy volunteers andMS patients for

AD. It is important to note that for this unpaired t-test between healthy
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and affectedvertebral levels in the [C2–C4] region,we fixed the thresh-

old of the lesion’s volume as a compromise with the size of available

data. FWW, FA,MD, and RDofMS patients still show significant differ-

ences for various thresholds until the lesion’s volume comprises 22%of

the corresponding vertebral level, but Stick-AD has a p-value<.05 only

until 12%.

3.2 Multivariate classification using diffusion
metrics

Figure5presents themeanandvarianceof theROCAUCfor each com-

bination predicted by LDA, as introduced in Table 2 superimposed by

theROCAUCmeanof eachmetric used in the combination. This super-

position is useful because it shows whether utilizing multiple metrics

improves upon using each metric separately. The combinations pre-

sented in this part are selected and derived mainly after considering

the covariance matrix, the unpaired t-test results, and their ROC AUC

scores.

Subset of 2 metrics: When combining FWW and Stick-AD metrics,

the ROCAUCmean score for separating the vertebral level of controls

andMS patients with lesions is better than using each metric indepen-

dently. For [FWW, FA] and [FA, MD], the combination is slightly better,

as the ROCAUC score of eachmetric is still within the variancemargin

of the ROC AUC score of the combination. However, for [FWW, RD],

the ROC AUC mean is similar to or close to the ROC AUC of the RD

metric.When the lesion’s volumegreater than10%,MS (thr>10%), the

best classification scores are approximately in [0.83, 0.87] using [FWW,

FA] and [Stick-AD, FWW].

Subset of 3 metrics: Figure 5 also displays the mean and variance of

the ROC AUC score for combinations of three metrics: [RD, MD, FA]

and [FWW,MD,Stick-AD]. For these combinations,weobserve that the

ROC AUCmean of the combination is better than the ROC AUC score

of each metric independently. For MS (thr > 10%), [FWW, MD, Stick-

AD] has ROCAUCmean in [0.82, 0.86] and [RD,MD, FA] in [0.86, 0.90],

which is an interesting result.

Subset of 4 metrics: Additionally, we present two combinations of 4

metrics: [RD, FWW, FA, MD] and [FWW, Stick-AD, MD, RD]. For MS

(thr > 10%), [RD, FWW, FA, MD] has an ROC AUCmean in [0.84,0.86],

and [FWW, Stick-AD,MD, RD] has an ROCAUCmean in [0.87, 0.91].

In summary, we can deduce that among all combinations, [RD, MD,

FA] and [FWW, Stick-AD,MD, RD], which are overlaid in Figure 6, yield

the best prediction scores for distinguishing between healthy volun-

teers and MS patients with a lesion. The minimum variance margin

for these subsets is close to or slightly better than the best ROC AUC

score of the independent RD or FAmetrics when the lesion’s volume is

greater than 10%.

4 DISCUSSION

In this study, we aimed to investigate the sensitivity of diffusion MRI

for identifying MS lesions in the cervical spinal cord. We established a
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SNOUSSI ET AL. 9 of 12

F IGURE 5 Receiver operating characteristic (ROC) area under the curve (AUC) predicted by linear discriminant analysis (LDA) as a function of
lesion volume percentage in the corresponding vertebral level for each combinations of metrics, and ROCAUC of nativemetrics betweenmultiple
sclerosis (MS) patients and controls. AD, axial diffusivity; FA, fractional anisotropy; FWW, free water weight; MD, mean diffusivity; RD, radial
diffusivity; STD, standard deviation; Stick-AD, stick axial diffusivity.
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10 of 12 SNOUSSI ET AL.

F IGURE 6 Overlays of receiver operating characteristic (ROC) area under the curve (AUC) score predicted by linear discriminant analysis
(LDA) as a function of lesion volume percentage in the corresponding vertebral level for the best combinations: (fractional anisotropy [FA], mean
diffusivity [MD], radial diffusivity [RD]) and (free water weight [FWW],MD, stick axial diffusivity (Stick-AD), RD). STD, standard deviation.

pipeline that incorporates several image processing techniques and an

atlas-based approach to calculate the average of diffusionMRImetrics

for each vertebral level in the cervical spinal cord.

We derived diffusion measurements from DTI and Ball-and-Stick

models, followed by a statistical analysis to evaluate their sensitivity

associated with the presence of MS lesions within the same verte-

bral level. This analysis included an unpaired t-test and multivariate

classification. Our spinal cord cohort was acquired and collected from

multiple clinical sites.

In our work, we conducted a two-way analysis of variance between

vertebral levels for each metric to illustrate and demonstrate the

interaction term between them. Our results indicated no significant

inter-difference among C2–C4 vertebral levels for all six diffusion

metrics, as illustrated in Figure 3. In fact, pooling [C2–C5] instead of

[C2–C4] was possible for FWW, Stick-AD, FA, MD, and RD. However,

for the MDmetric, we observed a p-value of .065 between C3 and C5,

which was close to being significant. As a result, we preferred to focus

our statistical analysis on the [C2–C4] interval.

We discovered that FWW, Stick-AD, FA, MD, and RD exhibited

significant differences between healthy volunteers and MS patients

within the [C2–C4] region of the cervical spinal cord. Although pre-

vious studies have demonstrated the involvement of FA, MD, and RD

in the spinal cord (Agosta, Absinta, et al., 2007; Agosta, Pagani, et al.,

2007; Valsasina et al., 2005; von Meyenburg et al., 2013), our work

offers several important additions and contributions. First, our dataset

is larger, which enhances the robustness of our results. Second, ourMS

lesion segmentation was performed by nine raters, including radiolo-

gists and experienced readers, which ensured high accuracy. Third, we

quantified the diffusion measures within each vertebral level using an

atlas-based approach. Fourth, we performed a strict quality check of

each step of the pipeline to ensure the accuracy of our results.

In addition to our study using DTI metrics, we also investigated the

sensitivity of FWWand Stick-AD, twomeasurements derived from the

Ball-and-Stick model, for detecting lesions in MS patients. Our find-

ings demonstrated that the Ball-and-Stick multicompartment model

offers valuable insights into the tissue microstructure in lesioned

regions of MS patients. This model, unlike traditional DTI, is capable of

capturing more complex tissue architecture, thus providing a deeper

understanding of the underlying pathological processes in MS. In our

study, we observed that AD did not exhibit any significant sensitiv-

ity between healthy volunteers and MS patients. However, Stick-AD,

a metric derived from the Ball-and-Stick model, showed significant dif-

ferences between the two groups. This suggests that Stick-AD might

be better suited for detecting microstructural changes in MS lesions

compared to conventional AD. Moreover, we found that FWW, the

free water-weighted compartment of the Ball-and-Stick model, which
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is not obtainable from traditional DTI, displayed high accuracy in

discriminating lesioned vertebral levels from healthy ones. This indi-

cates that FWW may offer unique and clinically relevant information

regarding tissue microstructure in MS patients. It is important to note

that our results were obtained using a regularized version of the Ball-

and-Stick model, in which the ball’s diameter and the second and the

third eigenvalues of the stick were fixed manually. We based this

manual adjustment on the state-of-the-art methods and Anima-Public

Software (https://anima.irisa.fr). Despite using a regularizedmodel, our

findings still highlight the potential advantages of the Ball-and-Stick

model in understandingMS pathology.

Therefore, our findings underscore the importance of employ-

ing acquisition protocols with multiple b-values that are designed to

enable richer multicompartment models (Scherrer & Warfield, 2012).

To our knowledge, NODDI is the only multicompartmental diffusion

model used for assessingmicrostructure and characterizing abnormali-

ties in the spinal cordofMSpatients (Byet al., 2017). But this studyonly

analyzed a single slice of the cervical spine to evaluate the sensitivity

and feasibility of NODDI inMS patients.

Furthermore, our studymade a significant contribution by exploring

a multivariate learning approach to automatically detect the presence

of an MS lesion using diffusion MRI data. We trained a linear classi-

fier using LDA, based on a selection ofmetrics extracted from diffusion

MRIwith limited cross-correlation.We discovered that combining cer-

tain metrics improved the prediction accuracy for the presence of MS

lesions, outperforming the use of individual metrics, as illustrated in

Figures 5 and 6. Consequently, we determined that combining three

metrics [FA, RD, and MD] and four metrics [FWW, MD, Stick-AD, and

RD] resulted in better ROC AUC scores when differentiating between

healthy volunteers andMSpatientswith lesions. ForMSpatientswith a

lesion volume greater than 10%, the [FA, RD,MD] combination yielded

ameanROCAUC score in the range of [0.86, 0.90], whereas the [FWW,

Stick-AD, MD, RD] combination had a mean ROC AUC score in the

range of [0.87, 0.91]. These prediction score intervals indicate that the

classification accuracy is good and superior to using individual metrics

independently.

5 CONCLUSION

We demonstrated the sensitivity of DTI and Ball-and-Stick recon-

struction models to underlying microstructure changes in MS within

the context of a multicenter study. A multicompartment model, Ball-

and-Stick, provides novel information about the tissue microstructure

in lesioned regions of MS patients, offering potential improvements

over traditional DTI methods. Our study reveals the significance of

Stick-AD and the value of FWW in discriminating lesioned verte-

bral levels, even when using a regularized version of the model.

Furthermore, we identified that combining several diffusion metrics

together enabled us to distinguish between lesioned and non-lesioned

vertebral levels with higher accuracy. We showed that selecting a sub-

set of metrics, [FA, RD, MD] and [FWW, MD, Stick-AD, RD], which

offer complementary information, significantly increased the predic-

tion accuracy for the presence ofMS lesions in the cervical spinal cord.

Our study provides novel insights and highlights the potential of mul-

tivariate statistical analysis for assessing tissue microstructure and

pathology.
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