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Abstract
To model sequential relationships between items, Markov Models build a transition probability matrix P of size n × n,
where n represents number of states (items) and each matrix entry p(i, j) represents transition probabilities from state i
to state j . Existing systems such as factorized personalized Markov chains (FPMC) and fossil either combine sequential
information with user preference information or add the high-order Markov chains concept. However, they suffer from (i)
model complexity: an increase in Markov Model’s order (number of states) and separation of sequential pattern and user
preference matrices, (ii) sparse transition probability matrix: few product purchases from thousands of available products, (iii)
ambiguous prediction: multiple states (items) having same transition probability from current state and (iv) lack of semantic
knowledge: transition to next state (item) depends on probabilities of items’ purchase frequency. To alleviate sparsity and
ambiguous prediction problems, this paper proposes semantic-enabled Markov model recommendation (SEMMRec) system
which inputs customers’ purchase history and products’ metadata (e.g., title, description and brand) and extract products’
sequential and semantic knowledge according to their (i) usage (e.g., products co-purchased or co-reviewed) and (ii) textual
features byfinding similarity betweenproducts based on their characteristics using distributional hypothesismethods (Doc2vec
and TF-IDF) which consider the context of items’ usage. Next, this extracted knowledge is integrated into the transition
probability matrix P to generate personalized sequential and semantically rich next item recommendations. Experimental
results on various E-commerce data sets exhibit an improved performance by the proposed model

Keywords Recommendation systems · Sequential recommendation · Semantics · Markov model · Collaborative filtering ·
E-commerce

1 Introduction

Domain-driven data mining discovers actionable knowledge
and insights from complex data and behaviors. Various
frameworks, algorithms, models and evaluation systems for
actionable knowledge discovery have been studied in the past
[68]. Traditional data driven pattern mining and knowledge
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discovery lacks outputs that are actionable. However, in this
modern era of big data, it is imperative to discover knowledge
and insights from complex data to facilitate business decision
makers for performing appropriate actions. For instance, big
E-commerce platforms like Amazon1 and AliBaba2 strive
continuously to discover actionable knowledge (decision-
making actions) from their customers’ historical trends to
better serve their customers’ future needs and retain their
market share. The past years have seen a significant paradigm
shift in the evolution of domain-driven actionable knowledge
discovery from the traditional data-driven pattern mining
[14,21,22]. During the last decade, several new research
problems and challenges emerged where incorporating the
domain knowledge into data mining processes and models
(e.g., text mining, deep neural networks, graph embedding

1 https://www.amazon.com/.
2 https://www.alibaba.com/.
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and reinforcement learning) is important.Researchon action-
able knowledge discovery can be seen as a shift in paradigm
from knowledge discovery from data to actionable knowl-
edge discovery [11,13,15] bymining and extracting complex
data patterns for complexknowledge in either amulti-feature,
multi-source, or multi-method scenario [12].

Next, we will discuss some preliminaries such as mining
sequential patterns from user-item interactions (customers’
historical purchases) to gain actionable insights for generat-
ing sequential next item recommendation for customers’ and
then how to enrich this sequential modeling process with E-
commerce products’ domain knowledge by first extracting
items’ semantic knowledge based on their (a) usage (e.g.,
products co-purchased or co-reviewed) and (b) textual fea-
tures by finding similarity between products according to
their characteristics using distributional hypothesis methods
(Doc2vec and TF-IDF) which consider the context of items’
usage. The semantic and sequential product knowledge is
then integrated into the sequential recommendation process
to facilitate the domain driven data mining process, hence,
providing domain-driven knowledge discovery for semantic
and sequential next item recommendation.

1.1 Semantic and sequential E-commerce
recommendation

E-Commerce Recommendation Systems (RS) facilitate cus-
tomers’ purchase decision by recommending products or
services of interest [2,9,31]. To increase revenue and retain
customers’ loyalty, designing a recommender system tailored
toward individual customers’ need is inevitable for retail-
ers. Collaborative filtering (CF), a common recommendation
technique, takes user-item interaction matrix as input which
represents user interactions (clicks, views, purchases) per-
formed either explicitly (users’ ratings) or implicitly (users’
browsing or buying behavior) and outputs top item recom-
mendations for each target user, byfinding similarities among
users or items [2,19,51,55,56,60]. CF-based methods suffer
from sparsity [7,30,66] and cold start [7,44,66] due to low
user-item interaction. Alternately, content based methods,
generate recommendations based on the content (features)
of the item and suffer from content overspecialization (lack
of diversity in recommend-ed products) due to the use of
specific features only [1]. Therefore, to generate recommen-
dations that are of interest to user, it is important to create
user and item profiles by extracting semantics (meaningful
relationships) fromuser-item interactions (clicks, views, pur-
chases) and item’ metadata (title, description, brand). Such
input information can better reflect user’s interest by captur-
ing more insights about users’ behavior. These include user
and item information (e.g., metadata) [37,64], information
contributed by users (e.g., tags, geotags, multimedia content,
free comments, reviews) [40,64,69] and information associ-

ated with user-item interaction also known as context [1]. An
example of context information can be when a user is inter-
acting with an item, such as purchasing an item on special
occasions, watching a movie during a holiday or listening to
a song while driving.

Furthermore, as users’ preferences tend to change with
time, the above methods are unable to adapt their recom-
mendations to meet users’ short- and long-term interests.
Learning the sequential purchase patterns of user interac-
tions based on the timestamps is useful to: (i) understand
the long- and short-term preferences of user and (ii) predict
the next items for purchase by users’ as the time interval
between any such interactions provides useful insights about
users’ behavior.

In the next subsection, we will discuss the process of
learning sequential purchase patterns to capture users’ short-
and long-term interests (Sect. 1.1.1), and then in Sect. 1.1.2,
we will present details about enriching this sequential pur-
chase pattern learning process by incorporating the semantic
knowledge of products extracted from products’ metadata
and customers’ purchase histories to generate recommenda-
tions that are of interest to the user.

Here, we present details of notations and symbols used in
the paper in Table 1.

1.1.1 Learning sequential patterns in recommendation
systems

Learning sequential associations (relationships) betwe-en
items for next item recommendation assist in modeling user
preferences by reflecting the sequential dependency of an
event (e.g., click or purchase) on its preceding event. Rec-
ommendation systems that aim to model and understand
sequential user behaviors for next itemprediction are sequen-
tial recommendation systems. In sequential recommendation
systems, sequential patterns of user interactions can be learnt
through various approaches such as (i) traditional approaches
(sequence similarity, sequential pattern mining), (ii) fac-
torization and latent representation-based methods (matrix
factorization and Markov models) and (iii) neural network-
based methods (recurrent neural networks) [47].

Mining-based methods such as sequential pattern mining
[3,5,7,36,41] mine frequent sequential patterns (where a pat-
tern represent item co-occurrences when the items appeared
in the same order) from a sequential database (such as his-
torical purchase or click sequence database of customers)
based on a user-defined threshold (minimum support) to
learn sequential associations between itemset sequences. A
sequence is known as a frequent sequential pattern if an
item’s support count is greater than the minimum support.
The pattern mining process is performed offline, and mined
patterns are then represented as a set of association rules. The
strength of a rule is determined by values such as support
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Table 1 Symbols and notations

Symbol Description

P Transition probability matrix

S Observable states

p(i, j) Entry in transition probability matrix, where each
entry represents the probability of going from state
i to state j (i.e., probability of purchasing product j
after purchasing product i

si Current state

s j Next state

ps Initial probability distribution vector for a state to be
a start state

pt Probability vector for transitioning to states at time t

pt+1 Probability vector for transitioning to states at time
t + 1

C Set of all customers

I Set of all products

m Size of set of customers

n Size of set of all products

Hj Purchase history of a customer j (ordered set of pur-
chased products

c j,t Products purchased by customer j at time t

t j Last timestep when the customer made a purchase

D Set of all documents

T Set of all unique tokens in the documents

I Set of all product descriptions

U Set of all unique words in product descriptions

wk, j Weight for the term tk in a document d j

PF Product Frequency Matrix

N Total number of product descriptions

nk Number of product descriptions where a term appears
at least once

W Word vector for each word

D Document vector for each document

R Set of all nonnegative real numbers

M Item to Item semantic similarity matrix

V Vocabulary of all words

U Weight matrix from input to hidden layer

X Word-to-Word co-occurrence matrix

Y Weight matrix from hidden to output layer

and confidence. So, for a given transaction (with items that
user has already bought), the goal is to predict next items in
sequence that the customer is likely to purchase. These items
are predicted by performing a database scan for matching
rules and then applying them on the given transaction. For
recommendation, the Naïve approach is to find pairwise item
co-occurrence frequencies to get purchase recommendations
of the form ‘Customers who purchased... also purchased...’.

Probabilistic and machine learning-based methods aim
to learn sequential patterns by modeling sequential behav-

iors from past observations to predict future ones, i.e., user
actions. Markov Chains [6,10,50,59] are successful proba-
bilisticmodels thatmodel sequential patterns and are an early
approach to Top-K sequential recommendation. Markov
chain (MC) model-based RS utilize sequential data (by pre-
dicting the users’ next action based on the last actions). They
are assumed to capture underlying relations from the data by
detecting sequential patterns through stochastic transitions
(random probability) between states.

Markov chain contains three components which are (i)
the set of states (where a state can represent, an item, stock
trends, weather conditions etc.,), (ii) the process function that
directs transition from one state to another, and (iii) a start
state s [52]. For a given set of states S = {s1, s2, s3, . . . , sn},
the process initiates from one of these states, and it moves
successively one step toward another state. The probability of
moving from a current state si to the next state s j is denoted
by probability p(i, j). The probabilities are called transition
probabilities. Therefore, a transition matrix is estimated that
gives the probability of transitioning to the next state based
on the current state (for example, buying an item based on
the last purchase of the user). In the transition matrix P, the
rows represent the current state, i.e., from si , the columns
represent the next state, i.e., going to s j . Each entry pi, j
in the matrix is the conditional probability of going to the
next state s j , given the current state si , i.e., the probability of
going from state i to state j [52]. The transition matrix of the
MC models is assumed to be the same over all users which
is a draw back as it does not include an individual users’
preference (personalization) into account while generating
recommendations. Furthermore, it suffers from the problem
of ambiguous prediction where two or more states (where
a state is representing an item in this case) have the same
transition probability from the current state [39,52,54].

The process can remain in the state, and this occurs with
probability p(i, i). An initial probability is assigned to the
state which is designated as a start state.

Example 1.1 Markov Model Process for Next Item Recom-
mendation

Consider an example to understand the process ofMarkov
model for next item recommendation by computing transi-
tion probabilities for transitions from current state to the next
state.
Input: Finite set of states, S = {s1, s2, ......, sn}, Initial Prob-
abilities ps for every s specifying the probability of starting
from state s.
Output: Transition Matrix Pt+1 with Transition Probabili-
ties P(s j |si ) defining the probability of going from state si
to state s j .

Consider we have three states representing three products
A, B and C and the transition probabilities of moving from
one state to the next (probabilities of purchasing these prod-
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Fig. 1 First-orderMarkovmodel process (transition probabilitymatrix)

ucts) as shown inFig. 1.Assumean initial transitionmatrixPt

with transition probabilities defining the probability of going
from one state to another (based on analysis of customers’
purchase data), in this case the probability of purchasing the
next product. The column indicates the start state (from) and
the rows indicate the end state (to). For example, at current
time t , the probability of going from state A to B is 0.1 (prob-
ability of purchasing product B after product A). An initial
probability vector ps for each state to be the start state (cho-
sen randomly) is also provided. For example, for the given
vector ps with values [0.40 0.24 0.36], the probability that
the customer will start its purchasing journey from product
A is 40% (0.40) (based on analysis from historic purchases
on the company’s site), whereas the probability that product
B will be purchased first is 24% (0.24). To predict the tran-
sition probabilities from each of these states to next states at
time t + 1, we take the product of the transition matrix Pt

with the initial probabilities vector ps. For example, as can
be seen from the new probabilities Pt+1 (at time t + 1), the
probability of purchasing product B after product A is 0.31
(second row in the probability transition matrix Pt+1).

The first-orderMarkov chain is an item-to-item tra-nsition
matrix learnt using maximum likelihood estimation (MLE)
where the transition to next state depends only on the current
state. An L-order Markov chain makes recommendations
based on L previous actions. However, including more states
increases the computations and adds complexity to the sys-
tem [52].

Neural network-based approaches such as recurrent neu-
ral networks (RNNs) [28,29,48] are type of neural networks
that are suitable for sequence problems. Given a sequence of
historical user-item interactions, an RNN-based RS tries to
predict the next possible interaction by modeling the sequen-
tial dependencies over the given interactions. A basic RNN
is a standard feed-forward multilayer perceptron network
(MLP) architecture (a network with single input, multiple
hidden and single output layer) with addition of loops to the
architecture. RNN’s have internal memory which helps the
model to store important things about the input and enables it
to predict precisely about what is coming next. For this rea-
son, RNN’s are preferred for sequential data like time series,
speech, text, financial data, audio, video and weather. They
are designed to handle variable length sequence data as well.

1.1.2 Using semantics in sequential recommendation

To improve the effectiveness of intelligent information
access platforms (e.g., Recommendations Systems), seman-
tics (meanings) are required to (i) improve the qua-lity of
user profiles and (ii) understand the information conveyed
by the textual content represented by items’ metadata. To
understand a target users’ needs, semantics can be obtained
by utilizing (i) top-down or (ii) bottom-up approaches [18].

Top-down approaches learn semantics by utilizing exter-
nal knowledge sources (e.g., taxonomies, dictionaries and
ontologies) to create user profiles and interpret the meaning
of items. The idea is to map the item features with seman-
tic concepts [57], or linking the item to the concepts in the
knowledge graph [23,42,58].

Alternately, bottom-up approaches explore paradigmatic
(e.g., substitutional words) [26] and syntagmatic (co-occur
ring words in the same context) [4] relations between words.
An example of paradigmatic relationship is substituting ‘Fer-
rero Rocher’ chocolate with ‘Ferrero Rocher Heart’ due
to similarity in brand, ingredients and characteristics. The
example, ‘ I ate fish with chips’ represents syntagmatic rela-
tionship between ‘fish’ and ‘chips’ as most often both are
eaten together (same context). Similarly, a user’s review
stating ‘I liked my new laptop’ represents syntagmatic rela-
tionship between ‘laptop’ and ‘liked.’ Bottom-up approaches
represent each term in a vector space model (VSM) [63] by
creating a Term-Context matrix. The Term-Context matrix
encodes the context (e.g., a situation) representing the usage
of the term. The context depends upon the granularity which
can be coarse grained (e.g., awhole document) or fine grained
(awindow ofwords, paragraph or a sentence). For example, a
document of customers’ reviews regarding the cutlery served
and the quality of beverages at the restaurant they dined at
can represent a coarse grained context, whereas descriptions
of items customers’ purchased over the weekend can be an
example of a fine grained context. Therefore, a Wordspace
(vector space representation of words) is learnt according to
the usage of terms in contexts. Terms with similar usage will
be similar and represented closely in the vector space. After
obtaining these vector representations (e.g., vector represen-
tation of item descriptions), similarity calculations such as
using cosine similarity between vectors can be performed to
find items similar to each other.

To better reflect users’ preferences and to interpret the
meaning of the items, in this paper, we explored the effec-
tiveness of utilizing semantic knowledge (meaningful rela-
tionships between items) learnt through the use of bottom-up
models based on distributional hypothesis such as Doc2vec
[43] and TF-IDF [53] methods which consider the con-
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text of item usage, e.g., their co-occurrence in the purchase
sequences to learn the semantic relationships between prod-
ucts (e.g., products co-purchased and co-reviewed alongwith
computing semantic similarities based on their textual fea-
tures). This semantic knowledge can then be integrated into
the Markov process for personalized sequential recommen-
dation process by (i) learning semantic associations between
items (ii) creating item transition probability matrix by first
extracting the sequential co-occurrences of product pairs,
normalizing it and then (iii) fusing the semantic knowledge
into the transition probability matrix and using it with users’
preferences (personalized vector) to generate semantically
similar, sequential next item recommendations. Thus, the
inclusion of semantic knowledge can address the issues of
sparsity, ambiguous prediction and provide recommenda-
tions which are diverse, similar in context (usage) and better
reflect users’ interests.

1.2 Contributions

The contributions of this study are to improve the per-
formance of recommendation system by fusing products’
semantic knowledge (obtained through their usage context
and metadata using distributional models) into the transition
probability matrix of first-order Markov Models to enrich
the process of sequential next item prediction by providing
customized next item recommendations to the customer.

In existing studies, top-down approaches were used to
extract semantics by utilizing external knowledge sources
(e.g., taxonomies, dictionaries and ontologies) to create user
profiles and interpret the meaning of items. The idea is to
map the item features with semantic concepts [57], or linking
the item to the concepts in the knowledge graph [23,42,57]
for items (e.g., movies). One such limitations of these
approaches is that it requires a pre-defined product ontol-
ogy which may not be applicable to all retailers as each of
them may have a different hierarchical structure (categories)
to represent the products in store. Therefore, in this study, we
aim to explore the bottom-up approaches to extract products’
semantic knowledge extracted from customers’ historical
records (e.g., purchase histories) and productsmetadata (e.g.,
title, brand and description) in terms of their textual features
(attributes), concepts (meaning) and their context of usage
(e.g., co-purchased, co-reviewed). The extracted semantic
knowledge is then utilized to learn (i) semantic and sequen-
tial relationships between items, (ii) potential candidate item
generation and (iii) generating semantic-rich and sequential
next item recommendations for the target customers. The
rationale to obtain product embeddings through aggregat-
ing two models (e.g., TFIDF [53] and Doc2Vec [43]) on
product sequences was to capture semantic information from
the purchase sequences at the local and the global level
where TFIDF [53] captures information from the purchase

sequences at the local level by extracting tokens (key words)
present in the products’ textual metadata. Doc2vec [43] on
the other hand, provides global context as in Doc2Vecmodel,
the words (products) and the paragraph (products’ metadata
in a purchase sequence) are trained jointly and a document
embedding (where a document represents collection of all
product descriptions, title, brand in a list of list format and
each list element represents description, title and brand of a
product purchased, along with a document ID for each doc-
ument) is generated. The unified joint embedding (hybrid
feature product vectors) obtained by averaging vector embed-
dings acquired from both models (TFIDF [53] and Doc2Vec
[43]) for each product in the corpus, therefore, capture infor-
mation from the purchase sequences at the local and the
global level and this unified representation of products’ fea-
ture vectors provide better results in terms of finding products
which are similar in semantics.

Our approach provides a unified structure for generat-
ing product recommendations which are semantically rich,
sequential and personalized without requiring the use of user
item ratings.

In summary, the main contributions of our work are:

1. Proposing a comprehensive model to learn item (pr-
oduct) semantics by utilizing product features ormetadata
such as product title, description and brands and then
incorporating those obtained semantics in the transition
probability matrix of Mar-kov model to enrich the next
itemprediction process bygeneratingTop-K semantic and
sequential recommendation without using any explicit
information (such as customers’ ratings).

2. Enriching the transition probability matrix in the Markov
model by integrating semantic knowledge to address the
problem of ambiguous prediction, as well as sparsity.

3. Learning products’ semantics by training various distribu-
tional models and obtained products’ representations by:
(a) Individually training TF-IDF [53] and Doc2Vec [43]
models using more product features such as title, descrip-
tion and brand from customers purchase sequences and
products’ metadata, where a document represents the col-
lection of products’ title, description and brand purchased
by the customer sorted according to the time stamp. (b)
Utilizing embeddings obtained from TF-IDF [53] and
Doc2Vec [43] to create hybrid embeddings for product
representation.

4. Providing personalized next item recommendation by
computing a personalized vector for the target customer
and utilizing it with the transition probability matrix of
the first-order Markov model.

5. Proposing a weighted score measure based on semantic
similarity and sequential transition probabilities to deter-
mine the relationship between products.
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6. Performing extensive and detailed experiments using E-
commerce datasets such as Amazon dataset under various
categories (auto, baby, garden, office, video).

1.3 Problem definition

The aim of this paper is to generate sequential next item
recommendations which are personalized and semantically
similar to the customers’ last recent purchase. Formally stat-
ing:

Given a set of customers C with size m and the set of all
products denoted by I , where the size is |I | = n. Customer j
has a purchase history Hj , that is an ordered set of products,
{C j,1,C j,t , ...,C j,t j } where C j,t represents set of products
purchased by the customer at time t and t j represents the
last timestamp at which the customer made a purchase. The
goal of the system is to predict (recommend) Top-K next
item(s) which are personalized, semantically similar and can
be purchased sequentially according to the items in target
customers’ last recent purchase as we assume that the cus-
tomers’ next purchase depends on the products they have
purchased so far,more specifically the recent one. This goal is
achieved by (i) extracting semantic knowledge of items from
items’ metadata (title, description and brand) and (ii) cus-
tomers’ purchase histories (co-purchased and co-reviewed
products) and then (iii) fusing the semantic knowledge into
the transition probability matrix of Markov model to enrich
the sequential recommendation process. The rest of this paper
is organized as follows. Section2 summarizes related work
about recommendation systems in particular about sequential
recommendation using Markov models and semantic-based
recommendation using distribution approaches such as vec-
tor space models and 2Vec approaches. Section3 introduces
the proposedmodel in detail alongwith the architecture. Sec-
tion4 and 5 present the experiments and results along with
analysis of the model. Finally, Section 6 presents the conclu-
sion and the future work.

2 Related work

Various studies on recommendation systems exist in the
literature. We have explored related work in three main cate-
gories as (i) general recommendation methods which only
include user feedback without considering any sequential
user interactions, (ii) sequential recommendation methods
which take into account sequential order of user actions
and (iii) semantic-based recommendation methods which
learn meaningful relationship between items by using dis-
tributional models such as vector space models and 2Vec
approaches to better understand user’s preferences. In this
section, we will discuss them, respectively.

2.1 General recommenders

General recommenders (traditional recommenders)-recom-
mend items through modeling the users’ general tastes (pref-
erences) based on their historical interactions. Traditional
recommendation methods include C-ollaborative filtering
[2,19,20,51,55,56,60], matrix factorization [34,35,50], and
rule-based approaches [3,36,66]. Recommendations are gen-
erated based on using either explicit feedback (ratings,
reviews) or implicit feedback (clicks, purchases). The user
may not interact with these recommended items in short
term (e.g., next purchased item); however, she may con-
sume them eventually during her later purchases. Common
recommendation method to achieve this task is matrix fac-
torization (MF)-based collaborative filtering. The idea is to
learn user and item latent vectors to discover underlying pref-
erences of user [35]. MF-based methods may utilize explicit
feedback and formulate recommendation as rating predic-
tion problem where a user’s preference is reflected through
their ratings; however, due to low availability of explicit rat-
ings (as users’ may not always prefer to rate items after
purchase and not necessarily purchase all products out of
thousands of available products), recent MF-based methods
learn user preferences through implicit feedback by borrow-
ing the idea of the Learning to Rank technique, which is
focused on designing an effective objective loss function
for optimization [34]. General recommender systems are
good at capturing general features of user behavior. How-
ever, they cannot adapt their recommendations to incorporate
users’ recent interactions as they do not take into account
sequential purchase patterns of users’. Furthermore, to retain
customers and maximize profit for the retailers, it is impor-
tant to consider diversity in [49,61] recommendations while
still maintaining the accuracy of recommendations.

2.2 Sequential recommenders

Sequential recommender systems represent users’ interac-
tions (e.g., clicks, views, purchases) as a sequence and predict
the next item(s) with which the user is most likely to interact
with.

A sequential recommender system views the interactions
of a user as a sequence and aims to predictwhich item the user
will interact with next. Sequential recommendation based
on probabilistic and machine learning approaches such as
Markov models aim to learn sequential patterns by modeling
sequential behaviors from past observations to predict future
ones, i.e., user actions. Markov Chains are successful proba-
bilistic models that model sequential patterns. Model-based
methods applymachine learning techniques during themodel
training process. They capture underlying relations from the
data. This is achieved by computing an item-to-item matrix
where items which are nearest (most similar) to the recently
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interacted item by the user are recommended. An example is
Markov chains-based methods [6,10,50,59] which estimate
an item-to-item transition probability matrix to predict the
probability of the next item given the last interaction of the
user [50,59]. The model detects sequential patterns through
stochastic transitions between states.

However, the limitation of first-order Markov model is
that the next state prediction depends only on the current
state. UsingMarkovmodels for prediction suffers from some
limitations. An increase in the order of Markov model also
increases the number of states and the model complexity.
Alternately, reducing the number of states leads to inaccurate
transition probability matrix and limits the predictive power.
To address this trade-off, the All-lth-Order Markov model
wasproposed, such that if the lth-orderMarkovmodel cannot
make the prediction then the (l − 1)th-order Markov model
is used. However, this model involves large number of states.
Selective Markov models SMM [17] that only store some of
the states within themodel were proposed as a better solution
to the mentioned trade off problem. However, this solution
may fail when the datasets are very large.

Other works utilizing Markov chains for sequential rec-
ommendation involve the work by [59] who introduced a
recommender based on Markov decision processes (MDP)
and also a MC based recommender. A sequential recom-
mender based on Markov model is presented in [71]. They
investigate how to extract sequential patterns to learn the
next state with a standard predictor, e.g., a decision tree. The
authors in [50] proposed a factorized personalized Markov
chains (FPMC) that outperforms traditional recommenda-
tion models by combining sequential information with user
preference information. Despite the successful results of the
FPMC, thismodel considers only the previous order informa-
tion of the user, and the calculation is complicated due to the
separationof the sequential patternmatrix and theuser prefer-
ence matrix. Similarly, [27] presented a factorized sequential
predictionwith item similaritymodel (Fossil) which includes
the advantages of the aforementioned approach. Besides, it
adds the high-orderMarkov chains concept, and considers the
item similarity model approach proposed by [32]. Although
Fossil surpassed the other previous methods, it only relies on
the user’s log information, so there is a limit to identifying
similarity between items. Some other works [38] proposed
to use a model based on topic-based hidden Markov model
to analyze temporal dynamics of users’ preference which
identifies the groups to which the users’ belong and recom-
mend what topic user will be mostly interested in reading.
Scholarswalk, another Markov model random-walk-based
approach [46], was proposed for generating sequential next
course recommendation for students by capturing the sequen-
tial relationships between different courses.

Recently, great progress have been shown by deep learn-
ing, and many new techniques such as recurrent neural

networks (RNN) [28,29,48] and graph-based neural net-
works [25,67,70] have been adapted to sequential recom-
mendation. RNN-based methods embed users’ historical
interactions into a latent vector to represent their preferences.
To improve sequential recommendation by using memory
networks, RUM [16] is proposed which explicitly captures
sequential patterns at item and feature level. Also, Bayesian-
based deep learning methods [65] are proposed to improve
personalized recommendations by building deep learning
architectures for learning user and item interactions. A
graph neural network-based sequential recommender system
(SDE-GNN) [25] captures sequential dependencies and item
transition relations within sessions for generating accurate
next item recommendations. Another recommender system
[67] generates unified friend and item recommendation by
incorporating amutualisticmechanismwhichmodelsmutual
relationships between consumption and social behavior of
users. A hierarchical and interactive gate network (HIGnet)
model for items’ rating prediction is proposed [70] which
explores users’ and items’ textual features to capture their
correlations by modeling informativeness of local words and
captures global semantics from customer reviews in a hier-
archical way.

These techniques capture high-order sequential interac-
tion between items and users; however, they usually require
a high computational time and are complex.

To address the sparsity and ambiguous prediction prob-
lems [52,54] in Markov-based models, in our proposed
model, we integrate semantic information into the Markov
model, during its creation to provide semantically rich
sequential next item prediction. In summary, we are using
semantic context to enrich the transition probability matrix
in the Markov Model to address the issues of sparsity,
ambiguous prediction and provide personalized, semantic-
rich sequential next item recommendations.

2.3 Semantic-based recommendation

Research works have introduced to learn item associations
(relationships) for recommendation by learning their seman-
tics (meanings) through various distributional models such
asWord2Vec [43], Prod2Vec [24], Glove [45], Doc2Vec [43]
and count-based model such as TF-IDF [53]. Semantics are
required to have a deep comprehension of the information
conveyed by the textual content and to achieve the goal of
improving the quality of user profiles and the effectiveness of
intelligent information access platforms such as recommen-
dation systems. Word2Vec [43] creates word embeddings
(dense numeric representations of words which stores the
contextual (semantic) information in a low-dimensional ve-
ctor). Using word embeddings, words similar in context tend
be to closer to each other in the vector space. The model is
basically a two layer neural network architecture based on
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distributional hypothesis for learning words’ semantic rep-
resentation. Word2vec model is fed with an input of a text
corpus, and it outputs a set of feature vectors (embeddings)
of dimension d that represent the words in the input cor-
pus. However, these features representing those words are
not explicitly defined. Given a target word, the skipgram
approach inWord2Vec [43] predicts the probability of aword
being a context word. The context of a word w within a sen-
tence is the set of x surrounding words. For example, for the
sentence ‘My new laptop fell out of my bagpack and broke
its screen,’ we have the target word ‘laptop.’ With a sliding
window of size=1, and the target word = ‘laptop’ moving
along a sentence, the skipgram model will predict the prob-
ability of a word being a context word where a context word
is on each side of the target word within the sliding window.

GloVe [45] obtain words’ vector representation bas-ed on
their co-occurrence information (for example, in a large text
corpora, how frequently they appear together). It is observed
that certain words co-occur more often with certain words
than others. For example, the word ‘butter’ may occur more
frequently with ‘cheese’ as they share similar context (break-
fast items). Given a document with some word wi , a context
window of size n surrounding the wordwi , then there are the
subsequent words in that document, i.e., words wi+1...wi+n ,
the model builds a co-occurrence matrix X (a symmetric
word-by-word matrix) in which xi j represents number of
times word w j appears inside wi window among all doc-
uments and then from that matrix, the model learns the
vector representations of words. The main intuition behind
the model is that ratios of word–word co-occurrence proba-
bilities encode some form of meaning.

TF-IDF [53] approach use keyword matching or vector
space model (VSM) to represent items (for example, prod-
ucts, music, videos, documents). VSM represents each item
in an n-dimensional vector space referred to as spatial rep-
resentation of items where each dimension in the vector
represents a term from the vocabulary obtained from a given
collection of items. For example, given a large collection
of text documents, a vocabulary will represent all unique
words or terms (concepts) that are relevant to the content
of the document. Given D = {d1, d2, . . . , dN } denoting a
set of documents and T = {t1, t2, . . . , tN } be the vocabu-
lary that is the set of words in the documents where T is
obtained by applying some standard natural language pro-
cessing operations (for example, tokenization, stop words
removal and stemming), each document d j is then repre-
sented as a vector in a n-dimensional vector space, such that
d j =< w1 j , w2 j , . . . , wnj > where wk j is the weight for
term tk in document d j .

After the creation of term vectors, next task is to measure
the similarities between feature vectors of documents in order
to find documents similar to the target. To achieve this goal,
TF-IDFweighting (TermFrequen-cy-InverseDocument Fre-

quency) [53] is used which co-mputes a term’s weight as a
product of term frequency (TF) weight and inverse document
frequency (IDF) weight, where TF represents the number of
times the term occurs in the document and IDF represents
how rare a term is in the collection. The TF-IDF weight
increases if the term occurs frequently within the document
and with the term being rare in the collection.

SEMSRec [44] proposed to integrate e-commerce prod-
ucts’ semantic and sequential relationships extrac-ted from
customers’ purchase histories into CF’s item similarity
matrix to provide semantically similar and sequential rec-
ommendations. However, the limitation is that they did not
include any item metadata for learning products’ semantic
knowledge.

3 Architecture of the proposed
semantic-enabledMarkovmodel for
sequential E-commerce product
recommendation (SEMMRec)

Wepropose a component-based architecture for our proposed
system. Figure2 presents the diagram depicting the architec-
ture of the system. The system consists of four main modules
which are (i) data preprocessing (Sect. 3.1), (ii) items’ seman-
tic representation (Sect. 3.2), (iii) Markov model building
(Sect. 3.3) and (iv) semantic and sequential recommenda-
tion module (Sect. 3.4). The dashed lines in Fig. 2 show each
module along with the sub-processes being performed in that
module. Next, we will discuss each module in detail.

3.1 Data preprocessingmodule

This module preprocesses the products’ metadata (items’
title, description and brands) and users’ (customers’) his-
torical purchase data to be fed as input to the system. The
customers’ historical data represents customers’ purchases
made over a period of time. This historical data are processed
to be cleaned and then transformed tomake it suitable for next
modules. The various preprocessing operations involve (i)
filling mis-sing values, (ii) removing duplicate records, (iii)
sorting and grouping customers’ purchase sequences accord-
ing to the timestamp. Additional preprocessing for products’
metadata involves natural language processing operations
(NLP) such as (i) tokenization (the process of segmenting text
intowords, clauses or sentences such as separatingwords and
removing punctuations), (ii) stop words removal (removal
of commonly used words unlikely to be useful for learn-
ing such as a, the, of), and (iii) stemming which involves
reducing related words to a common stem such as reducing
the words ‘liked,’ ‘likeliness’ and ‘likely’ to the word ‘like’
obtained from customer’s review about a product expressing
her preferences toward the product. All these operations are
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Fig. 2 Architecture of the proposed model SEMMRec

performed before the data can be input to the modules for
learning products’ semantic representations.

3.2 Items’ semantic vector representation
(embeddings) module

This module involves learning the product vector represen-
tations (semantics) from the customers’ purchase histories
which are then used in the later phases for computing prod-
uct similarities, computing each products’ score (based on
its semantic and sequential occurrence) and then fusing this
semantic and sequential informationwith the transition prob-
ability matrix to generate next item recommendation. This
module consists of two steps which are (i) learning prod-
uct semantic vector representation through TF-IDF [53],
Doc2Vec models [43], their hybrid and (ii) creating item
to item semantic similarity matrix based on learnt seman-
tic vector representation in (i). Next, we discuss the steps in
detail.

3.2.1 Items’ semantic vector representations

In this subsection, we will present the details of obtaining
product’s vector representations based on products’metadata
using the Doc2vec [43] and TFIDF [53] methods. To explore
the impact of obtaining product semantics fromother product
features (textual data), we create (i) a corpus of documents
and tokens in case of TF-IDF (where a document represents
collection of products’ title, description, brand and tokens
comprise of unique words present in the textual data) and (ii)
documents for Doc2vec [43] (where a document represents
collection of product descriptions, title and brand in a list of
list format and each list element represents description, title
and brand of a product purchased, and a document ID for each
document). Additionally, we obtained unified hybrid feature
product vectors acquired after training bothmodels Doc2Vec
[43] and TF-IDF [53]. This was achieved by averaging vector
embeddings acquired from both models for each product in
the corpus.
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Table 2 Sample historical product purchase records

Customer ID Stock code Invoice no. Invoice date

17850 20674 536365 12/1/10 8:26

17850 21242 536365 12/1/10 8:26

17850 20675 536365 12/1/10 8:26

17850 21245 536365 12/1/10 8:28

17850 20677 536365 12/1/10 8:28

17850 20655 536365 12/1/10 8:30

17850 20677 536365 12/1/10 8:30

To explain the input format and theworking of themodels,
TF-IDF [53] andDoc2Vec [43], wewill use sample data from
historical product purchase records of customers (Table2)
and products’ metadata (Table3). For both models, we will
obtain a semantic vector representation of items across d
dimensions (d=100), where an item can represent documents
(for example, products, articles, books, customer reviews or
product descriptions). For the sake of simplicity, we repre-
sent products using small alphabets instead of their id’s as
{a, b, c, d, e, f } where ‘a’ = product with stock code 20674,
‘b’= 21242, ‘c’ = 21238,‘d’=21245, ‘e’=21239, ‘f’ =20655
and ‘g’=‘20675.’ Next, consider Table4 which shows a sam-
ple purchase sequence database consisting of purchasesmade
by customers sorted according to a time stamp. Each pur-
chase sequence is assigned a sequence ID. For example, the
purchase sequence with SID 2 that in the first transaction,
the customer first purchased the product ‘b’ followed by the
purchase of item ‘a.’ Then, in the next transaction (made
on another timestamp), she purchased item ‘b’ followed by
the purchase of item ‘d’ and so on. Next, we will present an

Table 4 Sample purchase sequences of customers

SID Sequences

1. (a,b),(a,c),(a,d),(a,e),(a,f),(c,b),(b,e)

2. (b,a),(b,c),(b,d),(b,c),(b,e),(a,f),(c,b)

3. (c,b),(a,c),(a,d),(a,e),(e,c)

4. (e,b),(e,c),(a,e),(c,b),(b,e)

example to explain the process of learning products’ seman-
tic vector representation using TF-IDF [53] and Doc2Vec
[43] models.

Example 3.1 Products Semantic Vector Re-presentations
Using TF-IDF

Problem:
Given a collection of documents (collection of product

descriptions in a list format as [‘airline bag vintage jet set
brown,’ ‘woodland charlotte bag,’ ‘black candelabra t-light
holder’ and ‘medium ceramic top storage jar’] where each
element represents description of a product purchased and
a set of features (unique tokens extracted from the product
descriptions), goal is to find the association (weight) between
the products and the features.

Input: D = {d1, d2, ........, dN } where in our case,
I= [’airline bag vintage jet set brown,’ ’wood land char-

lotte bag,’ ’black candelabra tlight holder,’ ’medium ceramic
top storage jar’], T = {t1, t2, ......, tN }, where in our case,
U= [’‘lue,’ ‘bowl,’ ‘dot,’ ‘green,’ ‘luggage,’ ‘pink,’ ‘plate,’
‘polka,’ ‘queen,’ ‘red,’ ’retrospot,’ ‘skies,’ ‘tag’]

Output: d j =< w1 j , w2 j , ...., wnj >

Table 3 Sample of product metadata

Stock code Title Description Brand

20655 Queen of skies Luggage Tag Suitcase tag made PU material, in front with a pro-
tective film, waterproof. Fully Bendable and Flexible
Material to Prevent Breaking or Losing Your leather
luggage tags

PAGSRAH

20674 Green polka Dot bowl Earthenware, largest measures 5.5 in h × 12 in l ×
11.25 in hand wash

Tag limited

21245 Green polka Dot plate Add a splash of color with this bright party detail!
Green and White Dots Dessert Plates (8), 7”

Party2u

20677 Pink polka Dot bowl Earthenware, largest measures 5.5 in h × 12 in l ×
11.25 in. Hand wash

Tag limited

21242 Red retrospot Plate These beautiful plates are composed of high-rated
heavyweight plastic materials rendering the plates
leak-free, soak resistant, cut proof and unbreakable

Silver Spoons

20675 Blue Polka Dot bowl This polka dot bowl is fun and festive and perfect
for that bowl of cereal in the morning or bowl of ice
cream in the evening. It is finished in a blue celadon
glaze with a sprinkling of matte black polkadots. Dish
washer safe and Creative innovations
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Table 5 Frequency count of unique tokens occurring in the product descriptions

Products Tokens

blue bowl Dot green luggage pink plate polka queen red retrospot skies tag

Queen of skies luggage tag 0 0 0 0 1 0 0 0 1 0 0 1 1

Green polka dot plate 0 0 1 1 0 0 1 1 0 0 0 0 0

Pink polka dot bowl 0 1 1 0 0 1 0 1 0 0 0 0 0

Red retrospot plate 0 0 0 0 0 0 1 0 0 1 1 0 0

Blue polka dot bowl 1 1 1 0 0 0 0 1 0 0 0 0 0

Green polka dot bowl 0 1 1 1 0 0 0 1 0 0 0 0 0

Table 6 Term frequencies (TF Computation)

Products Tokens

blue bowl dot green luggage pink plate polka queen red retrospot skies tag

Queen of skies luggage tag 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.25 0.00 0.00 0.25 0.25

Green polka dot plate 0.00 0.00 0.25 0.25 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.00

Pink polka dot bowl 0.00 0.25 0.25 0.00 0.00 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.00

Red retrospot plate 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.33 0.33 0.00 0.00

Blue polka dot bowl 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00

Green polka dot bowl 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00

Table5 shows frequency count of thirteen terms occurring
in the product descriptions For example, the term ‘plate’
appears two times among the product descriptions (as indi-
cated by a 1 in each corresponding row where the term
appears in a product). The steps to learn the product feature
vectors using TF-IDF are given below:
Step 1: Term Frequency Computation (TF)

Term Frequency (TF) will be computed by using Eq. (1),

TFIDF
(
tk, d j

) = T F
(
tk, d j

) · log N

nk
(1)

whereTF(tk, d j ) represents frequency of term tk in document
d j and is represented as ftk ,t j and the maximum is computed
the frequencies fz, j of all terms tz that occur in document d j

using Eq. (2),

T F
(
tk,d j

) = ftk ,d j

maxz fz, j
(2)

For example term frequency for ‘pink’ in product description
‘blue polka dot bowl’ is computed as:
TF (pink, blue polka dot bowl) = 0/4 =0.00. Similarly, the
term frequencies of all tokens are shown in Table6.
Step 2: Inverse Document Frequency Computation (IDF)

IDF for all the terms is computed using the formula
(log N

nk
) where N is the total number of product descrip-

tions and nk represents the number of product descriptions
in which the term appears at least once. Table7 shows the
IDF of all terms.

Table 7 IDF computation

Term IDF Term IDF Term IDF Term IDF

blue 0.78 green 0.48 plate 0.48 red 0.78

bowl 0.30 luggage 0.78 polka 0.18 retrospot 0.78

dot 0.18 pink 0.78 queen 0.78 skies 0.78

tag 0.78

Step 3: TF- IDF Computation
The TF-IDF is computed using Eq. (1) that is, taking the

product of Term Frequency of each token in the product
description with Inverse Document Frequency of the token
in that product description. For example, the TF-IDF of the
term ‘pink’ and ‘bowl’ in the description ‘blue polka dot
bowl’ will be:
TF-IDF (pink, blue polka dot bowl) = TF (pink)× IDF (pink,
blue polka dot bowl) = 0.00 × 0.78 = 0.00 TF-IDF (bowl,
blue polka dot bowl) = TF (bowl) × IDF (bowl, blue polka
dot bowl) = 0.25 × 0.30 = 0.08 Table8 shows the TF-IDF’s
of all tokens.

After the computation of TF-IDF, we can represent each
product as ad-dimensional feature vector,where each dimen-
sion represents a feature (token). For our example, we have
thirteen features (tokens) and the third row in Table8 rep-
resents the product ‘pink polka dot bowl’ as term weighted
vector. After training the model on all products in the pur-
chase sequence, we reduce the dimension of the features by
using singular value decomposition (SVD) and obtain final
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Table 8 TF-IDF of tokens in product descriptions (product vectors using TF-IDF)

Products Tokens

blue bowl dot green luggage pink plate queen red retrospot skies tag

Queen of skies luggage tag 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.19 0.00 0.00 0.19

Green polka dot plate 0.00 0.00 0.04 0.12 0.00 0.00 0.12 0.04 0.00 0.00 0.00 0.00

Pink polka dot bowl 0.00 0.08 0.04 0.00 0.00 0.19 0.00 0.04 0.00 0.00 0.00 0.00

Red retrospot plate 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.26 0.26 0.00

Blue polka dot bowl 0.19 0.08 0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00

Green polka dot bowl 0.00 0.08 0.04 0.12 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00

Fig. 3 Product vectors obtained from TF-IDF model

product vector matrix across 100 dimensions (features) as
shown in Fig. 3 where each column represents the feature
and each rows represents the product across 100 dimensions.

Example 3.2 Learning Product Vector Representations
Using Doc2vec Problem:

Given a collection of documents (collection of product
descriptions, product title and product brand in a list of list
format where each element represents description, title and
brand of a product purchased, and a document ID for each
document, learn document representation (product represen-
tation).

Input: A collection of documents in a list of list format
[[green polka dot plate add a splash of color bright party detail
green white dots dessert plates party2u], [red retrospot plate
beautiful plates composed high rat-ed heavy weight plas-
tic material render plate leak free soak resistant cut proof
unbreakable, silver spoon], [gr-een polka dot bowl earthen-
ware largest measures hand wash tag limited]]

Intermediates: vectors (word and document Id vectors)
with vector dimensions as 1× V (one-hot vector) and 1× N
respectively, where N represents the total number of docu-
ments (product descriptions), weight matrixW from input to
hidden layer and weight matrix Y from the hidden layer to
the output layer.

Output: Each document with a vector representation of
across N dimensions.

Steps: Doc2Vec process to learn document representation
is similar to word2vec with the difference that along with

Fig. 4 Product vectors obtained from Doc2vec model

Fig. 5 Hybrid product vectors by Doc2vec TF-IDF model

the generation of word vectorW for each word, a document
vectorD is also generated for each document during the train-
ing phase. For example, TaggedDocument (words=[‘green,’
‘polka,’ ‘dot,’ ‘bowl,’ ‘earthenware,’ ‘largest,’ ‘measures,’
‘hand,’ ‘wash,’ ‘tag,’ ‘limited’] tags=[’0’]) and in the end
of training, a numeric representation of the document (prod-
ucts) is represented as shown in Fig. 4.

We then created a hybrid matrix of product vector rep-
resentations as hybrid of PVt f id f and PVdoctovec (Fig. 5) to
better learn product semantics. This is achieved by averaging
the embeddings of each product in the respective matrices.

3.2.2 Item-to item semantic similarity matrix creation

Next step is to create the item to item semantic similarity
matrixM to compute products’ semantic similarity by apply-
ing cosine similarity on product vectors in the PVdoc2vect f id f
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Fig. 6 Item-to-Item Semantic Similarity Matrix M

matrix using Eq. (3),

Cosine Similarity (x, y) =
∑n

i=1 xi yi√∑n
i=1 x

2
i

√∑n
i=1 y

2
i

(3)

where xi and yi represent components of vectors for products
x and y, respectively. For example, to compute the similarity
of product ‘a’ (Green Polka Dot Bowl) with product ‘e’ (Pink
Polka Dot Cup) and product ‘g’ (Blue Polka Dot Bowl), we
will take their corresponding product vectors (column) from
the hybrid PV matrix and compute cosine similarity between
them.

So, Cosine similarity (a,e) is 0.81 and Cosine similarity
(a,g) is 0.98, which shows that product ‘a’ is more close to
product ‘g’ in the vector space than product ‘e.’ Similarity
between other products is computed in the same way. Next,
populate the item–item similarity matrix M using Eq. (4).
Each entry mi, j in the matrix M represents semantic simi-
larity between products i and j in the vector space. Figure 6
shows a sample of matrixM.

Mi, j =
{
1, if i = j
CosineSimilarity (i, j), otherwise

(4)

3.3 Markovmodel buildingmodule

This module builds a Markov model from the daily purchase
sequences of customers’ historical purchase and consists of
two steps which are (i) creating product pairs’ sequential fre-
quency matrix and (ii) creating transition probability matrix.
Next, we will discuss each of these steps in detail.

Markov models satisfy the Markov property, i.e., the con-
ditional probability distribution of future states depends only
on the current state. In the simplest Markov model, known
as first-order, each state is formed by a single action, i.e.,
a customer purchased a product. In the case of L − th-
order models (where L represents the order), the state-space
will correspond to all possible sequences of L actions. As
the available data could not adequately support the number
of states of higher-order chains, these models would suffer
from reduced coverage and possibly worse overall perfor-

Fig. 7 Product frequency matrix (PF)

mance. Therefore,we adopted afirst-orderMarkov chain.We
assume that the next-product purchase depends strongly on
the purchase that was made recently or (the purchase which
is happening now). Markov models are represented by the
parameters (S,P), where S is the set of states for which the
Markov model is designed and P is an n × n transition prob-
ability matrix, where n is the number of states (i.e., products
in our example). In this context, state si is associated with
the fact that the customer purchased the product i . Each entry
pi, j corresponds to the probability ofmoving to state s j when
the process is in state si , i.e., purchasing product j after prod-
uct i . Note that this matrix is not symmetric, i.e., pi, j �= p j,i ,
as the order in which the products are purchased matters.

3.3.1 Product pairs frequency matrix creation

Basedon thehistorical purchase informationof the customers
(purchase sequences from Table4, we first compute product
frequency, PF matrix, which is an n × n matrix where each
entry p fi, j holds the counts of every pair of consecutive prod-
ucts purchased. Every pair of products (i, j) that a customer
has taken consecutively is used to estimate the entry p fi, j ,
i.e., the frequency of the event that state s j follows the state si .
The product frequency matrix PF of products from the pur-
chase sequences in Table4 is shown in Fig. 7. An entry p fi, j
shows the frequency of the occurrence of the product pair i, j
among all sequences. For example, the entry p fa,b = 0.25
which shows that the purchase of product b followed by the
purchase of product a occurs once among the four sequences
so, fa,b = 1

4 = 0.25. The ‘0’ in the matrix shows that these
pairs of products are never purchased together.

3.3.2 Transition probability matrix creation

After we compute the frequencies of matrix PF , we need
to normalize it to get P, a row stochastic matrix (transition
probability matrix), so that the total transition probability
from state i to any other state will sum up to 1 according to
Eq. (5), where the numerator represents the matrix entry at a
row (starting state) and the denominator represents the sum
of all states from that start state. For example, Fig. 8 shows
the transition probability matrix P created after normalizing
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Fig. 8 Transition probability matrix P

the product frequency matrix PF in Fig. 7.

Pi = PFi∑n
j=1 PFi, j

, if
n∑

j=1

PFi, j > 0 (5)

3.4 Personalized semantically rich and sequential
next item recommendationmodule

Thismodule is responsible to generate personalized, semanti-
cally rich sequential next item recommendation for the target
customer and consists of four steps which are (i) score com-
putation for products, (ii) updating the transition probability
matrix inMarkovmodel, (iii) personalized vector creation for
target customer and (iv) generating recommendations. Next,
we will provide details of each step.

3.5 Score computation for products

Next, enrich the transition probability matrix P with the
semantic information of products (item similarities) from
item to item similarity matrix M. This will be obtained by
(i) computing a score for each product using Eq. (6) and then
(ii) updating the transition probabilitymatrix entries by using
Eq. (7).

Score (i, j) = α( CosineSimilarity (i, j))+β(P(i, j)) (6)

For example, score between product pair (a, b) can be com-
puted as:

Score (a, b) = α( CosineSimilarity (a, b)) + β(P(a, b))

Score (a, b) = 0.80 ∗ 0.84 + 0.2 ∗ 0.11 = 0.69

Similarly, Score(a, d) = 0.80 ∗ 0.80+ 0.2 ∗ 0.22 = 0.68
(where α = 0.8, β = 0.2) Similarly, score for other product
pairs is computed.

Fig. 9 Semantic and sequentially rich updated transition probability
Matrix P

Fig. 10 Normalized semantic and sequentially rich transition probabil-
ity matrix P

3.6 Semantic and sequentially rich transition
probability matrix

The entries in the matrix P are updated with this score value
showing the semantic and sequential relationship between
products (by showing the transitioning probabilities fromone
state to another). Figure9 shows semantic and sequentially
rich updated transition probability matrix P populated using
Eq. (7) after score calculations for sample products. Matrix P
can now be used to recommend next personalized semantic
and sequential items to users (Sect. 3.6.1). Here, the proba-
bility at being at the same state is 0, all diagonal entries are
‘0’ (as we are assuming not to recommend the same product
at time t+1 which the customer has purchased in the current
state at time t).

P =
{
0, if i = j
Score (i, j), otherwise

(7)

This semantic and sequentially rich transition probability
matrix also addresses the ambiguous prediction problem by
having adifferent scoremeasure (probabilities) of purchasing
a particular product after the target product. For example, in
Fig. 8 after the purchase of product a, products b and f have
same probabilities which cause ambiguity as which product
to select from both. However, this is resolved as shown in
Fig. 9 where both products b and f have different probabil-
ities stating that product f has higher probability of being
purchased than product b. After normalization, we have the
final semantic and sequential transition probability matrix as
shown in Fig. 10.
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3.6.1 Personalized semantically rich and sequential next
item recommendation

For next item recommendation, a Markov Model can be tra-
versed as a random walk [8]. A random walk on a directed
graph consists of a sequence of vertices generated from a start
vertex by selecting an edge, traversing the edge to a new ver-
tex, and repeating the process. So, in this case, a Markov
model is considered as an item-to-item graph based on the
transition probability matrix where each item in the matrix
represents a vertex and each entry pi, j represents probabil-
ity of the walk at vertex i selecting the edge to vertex j . To
initiate the walk at a vertex xo at time t , a starting probability
distribution is required and then its productwith the transition
probability matrix is computed to obtain the probability of
being at vertex x at time t+1 (that is, the probability of going
from state i at time t to state j at time t+1). The initial prob-
ability distribution represented as p ∈ R

1×n at time t , where
p is a row vector with nonnegative components whose sum
equals 1, and px being the probability of starting at vertex x,
R representing set of nonnegative numbers.

The initial probability distribution at time t can be com-
puted (i) by starting thewalk at a given vertex or (ii) initiating
the walk at random (where all vertices have an equally likely
chance of being selected). For example, if we have states
(vertices) as {a, b, c, d, e, f , g} and we want to initiate the
walk at a given vertex c, then the starting probability distri-
bution vector p will be p = [0 0 1 0 0 0 0 ] i.e., the vertex
from where we will initiate the walk will have ‘1,’ i.e., px =
1 where x = c and remaining vertices will have ‘0.’ How-
ever, to start the walk at random from any vertex at time t
where each vertex is equally likely to be selected to initiate
the walk, the initial probability distribution for each vertex
will be 1

degree(v)
, where degree(v) represents the number of

vertices. For example, here it will be px =[ 17 1
7

1
7

1
7

1
7

1
7

1
7 ].

In our setting, the randomwalk for customer j will equally
start from any given product in the customers’ last purchase,
so the initial probability distribution will be computed using
Eq. (8). This also serves as a customer’s personalization vec-
tor as we are taking into account customers’ purchase history
for each customer contrary to other approaches where same
state of initial probabilities is used for all customers to deter-

mine the transition probabilities to the next state.

pt =
{
1/

∣∣I j,t j
∣∣ if i ∈ I j,t j

0 otherwise
(8)

where I j,t j is the set of all items purchased at time t . Now,
given an initial probability distribution pt which is a row
vector with a component for each vertex specifying the prob-
ability of the vertex at time t and the transition probability
matrix P, we can walk over the Markov model to obtain pt+1

(the row vector of probabilities at time t + 1) using Eq. (9)
which represents the probabilities of transitioning to next
state j at time t + 1. Next, we present two example usecases
to understand the next item recommendation process.

ptP = pt+1 (9)

Example 3.3 Semantic and Sequential Next Item Recom-
mendation with Single item purcha-se at time t
For example, if a customer’s last purchase sequence contains
product < c >, we want to predict (recommend) the next
item after the purchased item c, then our initial probability
distribution vector will be pt =[0 0 1 0 0 0 0]. Using Eq. (9),
we take product of the enriched transition probability matrix
and the initial probability vector to get pt+1 as shown in
Fig. 11.

So, the next product recommended to customer will be
product e which has high score of 0.181.

Furthermore, if we want to compute the probabilities (rec-
ommend items) after t+1 steps, it will be obtained by the sum
over each adjacent vertex i of starting at i and taking the tran-
sition from i to j using Eq. (10),

pPt = pt+1 (10)

For example, if we want to predict the next possible pur-
chase after 3 time steps (i.e., after purchase of three products
where each purchase involves transition from one product to
the next). So, substituting values in the above equation we
get,

Fig. 11 Computation for next item purchase prediction with single item purchase at time t
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Fig. 12 Computation to predict next product purchase at time t + 1 with single item purchase at time t

Table 9 Product recommendation by proposed semantic enhanced transition probability matrix in Markov model method with single item in users’
last purchase record

User’s last purchased product Recommended products (semantically similar and sequential)

t = 1 t = 2 t = 3

c (Red retrospot cup) e (Pink polka dot bowl) a (Green polka dot bowl) c (Red retrospot cup)

a (Green polka dot bowl) g (blue Polka dot bowl) a (Green polka dot bowl) c (Red retrospot cup)

b (Red retrospot plate) a (Green polka dot bowl) b (Red retrospot plate) c (Red retrospot cup)

e (Pink polka dot bowl) c (Red retrospot cup) e (Pink polka dot bowl) c (Red retrospot cup)

pP3 = p4

as shown in Fig. 12.
So, the recommended product after time 3 (after 3 pur-

chases) will be product c as it has the highest probability.
So, the recommended sequence of customer purchase will
be < e, a, c >.

In our running example, for the users where the last pur-
chased product is c, the recommended products upto 3 time
stepswill be e, a and c as shown in Table9. Results are shown
for some other products as well.

The recommendedproducts results show that the probabil-
ity of the walker to reach the vertices after K steps provides
an intuitive measure that can be used to rank the products
and offer personalized recommendations to the customers
accordingly.

Example 3.4 Semantic and Sequential Next Item Recom-
mendation with multiple items purchase at time t

For example, if a customer’s last purchase sequence con-
tains products< bac >, wewant to predict (recommend) the
next item after the purchase, then our initial probability dis-
tribution vector will be [ 17 1

7
1
7 0 0 0 0], we take product of the

enriched transition probability matrix and the initial proba-
bility vector using Eq. (9) to get pt+1 as shown in Fig. 13.

So, the next product recommended to customer will be
product g which has high score of 0.078. Similarly, to rec-
ommend products after t+1 steps (e.g., after 3 steps), we use
Eq. (10) to get, pP3 = p4 as shown in Fig. 14.

So, the recommended product after 3 steps will be d as it
has the highest probability and the recommended sequence
of customer purchase will be < g, c, d > .

In our running example, for the users where the last pur-
chase sequence is< bac >, the recommended products upto
3 time steps will be g, c and d as shown in Table10. Results
are shown for some other products as well.

4 Experimental evaluation

In this section, we present our experimental setup and then
results and analysis.

4.1 Datasets and implementation details

Amazon:3 This dataset includes reviews (ratings, text, help-
fulness votes, timestamps), product metadata (descriptions,
category information, price, brand, and image features), links
(also viewed/also bought graphs). The statistics for dataset
are shown in Table11.

To test our model, we selected the review-K core (which
is a subset of the dataset where all items have greater than
K reviews, where K=5) and product metadata for five cate-
gories including auto, baby, garden, office and videos.

Following previous works [27,50], the explicit feedback
is converted to implicit feedback by setting a rating score of
‘1’ for a user item interaction and ‘0’ otherwise.

We implemented the proposed model using python. To
compare our proposed model with the baselines, the code
from their respective authors [27,32,33,50]was used tomain-
tain their models’ accuracy.

3 http://jmcauley.ucsd.edu/data/amazon/.
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Fig. 13 Computation for Next Item Purchase Prediction with multiple items purchase at time t

Fig. 14 Computation for next item purchase prediction with multiple items purchase at time t + 1 (after 3 time steps)

Table 10 Product recommendation by our proposed method with multiple items’ in users’ last purchase record

User’s last purchased product Recommended products (semantically similar and sequential)

t = 1 t = 2 t = 3

<b,a,c> (Red retrospot plate, Green polka dot bowl, Red retrospot cup ) g (Blue Polka dot bowl) c(Red retrospot cup) d (green polka dot plate)

4.2 Preprocessing and hyper-parameter tuning

For dataset partitioning, we adopted commonly used strate-
gies of (i) leave one out (the most recent, i.e., last sequence
of each user is used for testing and all remaining sequences
for training) and (ii) temporal user splitting (where a per-
centage of the last interactions of each user is reserved for
testing rather than just one). In the temporal user splitting,
we used train and test splits of (a) 70%, 30% and (b) 80%,
20%. Availability of a rating or review (Amazon) is con-
sidered as user-item interaction, and we used timestamps to
determine the sequential order of actions. Purchases made by
each customer were grouped into sequences according to the
timestamp. Data were preprocessed to create train and test
data. For leave-one-out, the training data were created from
those purchase sequences and the last purchase sequence of

each customer was used to create the test set for evaluating
model’s performance.

Users with purchasing records greater than five are
selected. Furthermore, to evaluate the impact of proposed
model (SEMMRec’s) performance on handl-ing sparse data,
two variants of each dataset (auto, baby and garden)were cre-
ated. For example, the dataset Auto1 refers to dataset which
have minimum user interaction as seven and the dataset
Auto2 represents dataset with minimum user interaction as
ten. Performance comparison is shown in Fig. 17. All the
models have some parameters to tune. We followed the
reported optimal parameter settings for the baseline meth-
ods. On all datasets, for BPR-MF, FISM, FPMC, and Fossil,
following settings were adopted: size of latent dimension
=100, learning rate= 0.02 and the number of recommen-
dation items = 20. For our model, products’ embedding

Table 11 Dataset statistics

Dataset Amazon

No. of users No. of items Total inter-actions Avg. inter-action per user Avg. inter-action per item

Auto 122,492 28,473 369,525 3.02 12.98

Baby 20,434 8,293 169,153 8.28 20.4

Garden 5,376 5,098 59,634 11.09 11.69

Office 7,416 5,490 52,175 9.73 13.15

Video 176,404 19,421 630,513 3.57 32.47
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dimension d is determined by grid search in the range
{10, 20, 30, 40, 50, 100}, Markov chain based on different
order of L (where L ∈ {1, 2, 3, 4, 5}), number of Top recom-
mendation items K (where K in {1, 5, 10, 20, 30, 50, 100}).
The values of coefficients (alpha and beta) while comput-
ing score measure for products were explored through grid
search. Optimal performance was with d=100, α = 0.8 and
β = 0.2.

4.3 Evaluationmetrics

The model was evaluated on commonly used metrics includ-
ing Recall@K and NDCG@K as used in [33,62,65]. For a
given length of user profile in a test sequence, we predict a
list of Top-K items denoted as R̂1:K and the remaining part
of the test sequence, i.e., ground truth denoted as R. The per-
formance was measured at K=30. The different evaluation
metrics are defined as:

– Recall@K: It is defined as the proportion of relevant
items found in the Top-K recommendations.

Recall@K =
∣∣∣R ∩ R̂1:K

∣∣∣

|R| (11)

– Normalized Discounted Cumulative Gain: (NDCG@
K) Evaluates ranking performance by taking the posi-
tions of correct items into consideration. NDCG@k is
normalized to [0, 1] and a perfect ranking is represented
by 1. For each user, the NDCG is computed using the
following:

NDCG@ K =
∑K

k=1

I kc j
log2(k+1)

∑mK
c j

k=1
1

log2(k+1)

(12)

where I kui will be 1 if the kth recommendation for customer c j
is relevant, or it exits in the actual response, and 0 otherwise.
Besides, mK

c j is the number of relevant items for customer
c j up to the Kth recommendation. We used the average of
NDCG over all users as the final metric of amethod. For each
user in a test sequence, we predict lists of Top-K personal-
ized items where K is in {1, 5, 10, 20, 30, 50, 100}. We first
computed the per-user score for each K and then reported the
global average score for all users for each K.

4.4 Complexity analysis

SEMMRec predicts the semantic and sequential product rec-
ommendation for the customers. In terms of time complexity,
once the transition probability matrix is built, it is trivial to

walk through the products (states). As a result, with the num-
ber of customers, the model scales well and provides them
personalized recommendations.

4.5 Baselinemethods for comparison

To show the effectiveness of our model, we compared the
performance of our proposed model SEMMRec with the fol-
lowing advanced existing approaches (Table12) shows the
performance comparison for each model:

1. Bayesian PersonalizedRanking (BPR-MF).A state-of-
the-art method for non-sequential item recommendation
on implicit feedback, utilizingmatrix factorizationmodel.

2. The Factored Item SimilarityModel (FISM).Based on
one of the latest recommendation algorithms to capture
the relationship between items for personalized recom-
mendations.

3. Factorized Personalized Markov Chain. A hybrid
approach (FPMC) that combines matrix factorization
(MF)which factorizes thematrix onuser-itempreferences
for learning users’ general taste and Markov chains (MC)
thatmodels sequential behavior through a transition graph
built over itemswhich predicts users’ next action based on
the recent actions. However, since this method does not
take into account the high-order Markov chain, includ-
ing it helps in comparative analysis while analyzing the
effectiveness of high-order Markov chain.

4. Factorized Sequential Prediction with Item Similar-
ity (Fossil). A model for sequential recommendations
inspired from FPMC and FISM. To increase the perfor-
mance, it emphasizes the sequential features by combin-
ing user preference with high-order Markov chain in a
similarity model.

5. Self-Attentive Sequential (SASRec). It captures long-
term user preferences by using attention mechanism and
makes its predictions based on relatively few actions. The
introduction of adaptive self-attentionmechanismmethod
models high-order sequence, and it shows high perfor-
mance for sequential recommendations.

6. GRU4Rec. To model sequential dependencies and mak-
ing predictions in session-based recommendation sys-
tems, [28] proposed thismethod based on recurrent neural
networks (RNN’s).

7. Convolutional Sequence Embedding (Caser). A con-
volutional neural network (CNN)-based meth-od which
takes the embeddingmatrix of the L most recent items and
applies convolution operations on it to achieve sequential
recommendation [62].

8. Bert4Rec. A sequential recommendation model with
bidirectional encoder representations from transformer by
[61]. The model utilizes deep bidirectional self-attention
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Table 12 Performance comparison of proposed model (SEMMRec) with the baselines

Models\Metric Datasets

Auto Baby Garden Office Video Average

Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

BPR-MF 0.038 0.016 0.058 0.032 0.044 0.021 0.037 0.017 0.043 0.028 0.044 0.022

FISM 0.082 0.047 0.073 0.041 0.085 0.046 0.075 0.049 0.043 0.082 0.071 0.053

FPMC 0.025 0.013 0.047 0.027 0.043 0.024 0.043 0.023 0.030 0.031 0.037 0.023

Fossil 0.081 0.04 0.061 0.034 0.081 0.045 0.082 0.042 0.043 0.067 0.069 0.045

SAS 0.085 0.030 0.067 0.022 0.125 0.043 0.132 0.046 0.186 0.066 0.119 0.041

GRU4Rec 0.0961 0.0331 0.0911 0.0291 0.1011 0.0341 0.1012 0.0341 0.0918 0.0421 0.0962 0.0345

Caser 0.0991 0.0413 0.0971 0.0421 0.0982 0.0441 0.0989 0.0411 0.1024 0.0412 0.0991 0.0419

BERT4Rec 0.1211 0.0710 0.1241 0.0734 0.1521 0.0867 0.1193 0.0973 0.1393 0.1225 0.1311 0.0901

SEMMRec 0.1070 0.0673 0.1254 0.0721 0.1313 0.0731 0.106 0.0602 0.1124 0.1140 0.1164 0.0773

mechanism for modeling user behavioral sequences and
learns a bidirectional representation model which makes
recommendations by allowing each item in users’ histor-
ical behavior to integrate information from both left and
right sides.

4.6 Results and analysis

Our proposedmodel SEMMRec gave improved performance
in comparison to the baselines on all K tested after incor-
porating products’ metadata to learn product semantics and
using semantic similarity measures to compute relationship
between products and then utilizing this semantic knowl-
edge while building the transition probability matrix for
Markov model. The aforementioned baseline methods and
our method used the same dimension (d =100) to evaluate
performance via Recall and NDCG for a uniform compari-
son. The comparative evaluation results of proposed model
(SEMMRec) on five datasets in Amazon data (Auto, Baby,
Office, Garden, Video) are presented in Table12. Here,
we report results on all evaluation metrics at a cutoff of
K=30 where K ∈ {1, 5, 10, 20, 30, 50, 100}. We notice that
SEMMRec performed considerably well on all datasets. A
graphical representation of results in Table12 is also shown
in Fig. 15, and it can be seen that BPR-MF and FISM are the
recommender systems that only consider user preferences.
However, BPR-MF uses a method of factoring a user-item
interaction matrix, and FISM factors an item–item similarity
matrix.The comparison results show that FISMbetter reflects
user preferences by highlighting the relationships between
items. More specifically, FISM shows that on all datasets,
the average of Recall is 0.071 and NDCG is 0.053 which is
higher than BPR-MF showing that factoring the item–item
similarity matrix is technically better.

Fossil and FPMC present the user preference and the
sequential patterns for the recommender system. However,

fossil highlights the sequential pattern better than FPMC, and
introduces the concept of FISM. In this regard, as presented
in Table12, Fossil outperforms FPMC on all the datasets; the
average of Recall is 0.069 and NDCG 0.045 indicating that
learning sequential information about customers’ behavior is
important to capture user’s long and short-term preferences
and to improve quality of recommendations and show that
the high-order Markov chain and item similarity method are
useful for a recommender system in a sequential environ-
ment.

SAS deals with sequential information to implement
a sparse sequential recommendation models using deep
learning-based approaches. On all datasets, SAS has an aver-
age Recall of 0.119 and NDCG of 0.041 which imply that
deep learning-based models are useful for sparse sequen-
tial recommendation. The comparison between the deep
learning-based recommendation methods and conventional
recommendation algorithms along with SEMMRec shows
that deep learning-based methods outperforms almost all
conventional recommendation algorithms. However, they
require more hyper-parameter tuning and training the model
takes much longer. Additional recommender systems such as
GRU4Rec [28], Caser [62] and Bert4Rec [61] are also pre-
sented for baseline comparisons, and the results show that
except for BERT4Rec, our model (SEMMRec) has shown
good performance in comparison with other existing related
approaches. SEMMRec’s performance in comparison with
BERT4Rec is bit low, and we believe that this is because
BERT4Rec is a bidirectional transformer-basedmodelwhich
learns a bidirectional representation model and makes rec-
ommendations by allowing each item in users’ historical
behavior to integrate information from both left and right
sides, whereas our proposed SEMMRec model is proba-
bilistic based (Markov Model), a unidirectional model that
only learns the representations from user’s historical behav-
ior and items’ metadata. Figure15 illustrates the NDCG and
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Fig. 15 Performance
comparison of proposed
SEMMRec with baseline
models on five datasets on the
basis of a Recall and b NDCG
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Table 13 Effect of different order of L in Markov chain in SEMMRec

Metric Order of L

Dataset 1 2 3 4 5

Auto Recall 0.143 0.151 0.149 0.150 0.149

NDCG 0.089 0.093 0.92 0.092 0.092

Baby Recall 0.02 0.139 0.15 0.154 0.157

NDCG 0.092 0.115 0.135 0.140 0.145

Garden Recall 0.153 0.17 0.192 0.19 0.191

NDCG 0.093 0.108 0.119 0.12 0.122

Office Recall 0.02 0.121 0.15 0.154 0.157

NDCG 0.07 0.083 0.096 0.104 0.104

Video Recall 0.193 0.197 0.23 0.21 0.20

NDCG 0.115 0.122 0.124 0.126 0.127

recall evaluations of the five datasets for all the methods
used in the experiment. According to these results, SEMM-
Rec has an improved average recall and NDCG compared to
all presented baseline recommendation methods; however, it
does has a slight low Recall and NDCG in comparison with
BERT4Rec as mentioned above.

Given performance of all existing methods, it can be
said that SEMMRec mostly has better recommendation per-
formance than other related recommendation models as it
extract semantic knowledge of items from items’ meta-
data (title, description and brand) and customers’ purchase
histories (co-purchased and co-reviewed products), to com-
pute semantic similarities between items and enriches the
sequential next item prediction process of Markov model by
incorporating the semantic knowledge (semantic similarity)
into the transition probability matrix thereby generating per-
sonalized recommendations.

Next, we will discuss the impact of different order of
Markov chain (L), effect of sparsity and effects of train and
test split on our proposed SEMMRec Model.

4.6.1 Influence of different order L of Markov chain

Next, we analyze the change in performance of the high-
order Markov chain based on different order of L where
(L ∈ {1, 2, 3, 4, 5}). In other words, we compared the per-
formance of recommendations with different values for L .
Performance comparisons were made through the 1-order
Markov chain. Table13 shows the performance of our pro-
posed SEMMRec with different values for L in all the
datasets. An increase in the number of L elicits an increase
in the recommendation performance formost datasets (Baby,
Office, Garden, and Video) as shown in Fig. 16. It means that
a high-order Markov chain works well for sequential recom-
mendation in our proposed method.

4.6.2 Handling sparsity

To show how effectively the proposed SEMMRec deal with
sparsity, we generated two variants of each of the Amazon
datasets in categories auto, baby and garden. For example,
the dataset Auto1 refers to dataset which have minimum user
interaction as seven and the dataset Auto2 represents dataset
with minimum user interaction as ten.

Variants for baby and garden dataset were also created
in the same way. Models’ performance was evaluated using
same parameters as explained in Sect. 4.2. The results are
presented in Fig. 17 which shows that SEMMRec outper-
forms the other approaches on different sizes and the length
of sequences of datasets. In particular, in small size dataset
and high-order sequential datasets (e.g., Auto2 and Gar-
den2), SEMMRec and fossil outperformSASwhich is a deep
learning-based algorithm. This shows that the conventional
machine learning approach compared to deep learning-based
approaches appear to have a better performance on the small
and high-order sequential dataset. Thus, it can be concluded

Fig. 16 Effects of different order of L on proposed model (SEMMRec) performance based on a recall and b NDCG
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Fig. 17 Performance comparison of proposed model using sparse
datasets (two variants of each dataset)

that our proposed approach ismainly stable on various sparse
datasets (with different size and sequence).

4.6.3 Influence of train and test split

For dataset partitioning, we adopted the strategies of (i) leave
one out (the most recent, i.e., last sequence of each user is
used for testing and all remaining sequences for training) and
(ii) temporal user splitting (where a percentage of the last
interactions of each user is reserved for testing rather than
just one). In the temporal user splitting, we used train and

test splits of (a) 70%, 30% and (b) 80%, 20%. Availability
of a rating (Amazon) is considered as user-item interac-
tion and we used timestamps to determine the sequential
order of actions. Data were pre-processed to create train and
test data. Purchases made by each customer were grouped
into sequences according to the timestamp. For leave-one-
out, the training data were created from those purchase
sequences, and the last purchase sequence of each customer
was used to create the test set for evaluating model’s perfor-
mance. Users with greater than five purchasing records are
selected. The experiments showed that the proposed model
SEMMRec performed well when the data set was split using
temporal user setting with training as 80% and test as 20%
which indicates that extracting semantic knowledge of items
from items’ metadata (title, description and brand) and cus-
tomers’ purchase histories (co-purchased and co-reviewed
products) and utilizing it to compute semantic similarities
between items and then integrating the semantic knowledge
(semantic similarity) into the transition probability matrix
enhanced the recommendation process by generating per-
sonalized recommendations. Prediction performance of the
proposed model with different train and test split strategies
is shown in Table14.

Table 14 Prediction
performance of proposed model
with different train and test split
strategies

Train and Test Split

Leave one
Out Temporal Split

Evaluation Metric K Leave one
Out Train = 70% Test = 30% Train = 80% Test = 20%

Precision@K 1 0.3284 0.3805 0.4846

5 0.1528 0.1906 0.2279

10 0.1065 0.1290 0.1450

20 0.0768 0.0868 0.0932

50 0.0510 0.0537 0.0524

100 0.0374 0.0375 0.0347

Recall@K 1 0.1431 0.1323 0.1967

5 0.2167 0.2466 0.3484

10 0.2452 0.2911 0.3918

20 0.2830 0.3386 0.4425

50 0.3500 0.4176 0.5175

100 0.4181 0.4892 0.5847

NDCG@K 1 0.3382 0.3897 0.4993

5 0.3030 0.3444 0.4512

10 0.3081 0.3601 0.4667

20 0.3243 0.3820 0.4908

50 0.3570 0.4189 0.5243

100 0.3886 0.4498 0.5515
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